
I M A G E - B A S E D G R A P H V I S U A L I Z AT I O N

ozan ersoy

Simplified Visualization of Large Graphs

Cover: Edge bundled graph with a radial layout produced by
SBEB.

Image-Based Graph Visualization
Ozan Ersoy
Supervised by Prof. dr. Alexandru C. Telea
PhD thesis Rijksuniversiteit Groningen
isbn 978-90-367-6345-5 (printed version)
isbn 978-90-367-6344-8 (electronic version)

ii

R I J K S U N I V E R S I T E I T G R O N I N G E N

I M A G E - B A S E D
G R A P H V I S U A L I Z AT I O N

Proefschrift

ter verkrijging van het doctoraat in de
Wiskunde en Natuurwetenschappen
aan de Rijksuniversiteit Groningen

op gezag van de
Rector Magnificus, dr. E. Sterken,
in het openbaar te verdedigen op

vrijdag 25 oktober 2013

om 14.30 uur

door

ozan ersoy

geboren op 07 november 1978

te Kütahya, Turkije

Promotor: Prof. dr. A.C. Telea

Beoordelingscommissie: Prof. dr. J. Doellner

Prof. dr. S. Diehl

Prof. dr. G. Melancon

iv

The greatest value of a picture
is
when it forces us to notice
what we never expected to see.
John W. Tukey. Exploratory Data Analysis. 1977.

C O N T E N T S

1 introduction 1

1.1 Graph Edge Bundling 2

1.2 Contributions of this thesis 3

2 related work 7

2.1 Fact Extraction 8

2.1.1 Data modeling 8

2.1.2 Data mining 10

2.2 Compound Graph Visualization 13

2.2.1 Node-link Layouts 14

2.2.2 Edge bundling layouts 16

2.2.3 Rendering 18

2.3 Time-dependent Graphs 19

2.3.1 Types of dynamic graphs 20

2.3.2 Dynamic graph visualization 20

2.3.3 Bundling dynamic graphs 21

2.4 Interaction 22

2.4.1 Magic lenses 22

2.4.2 Semantic lenses, focus and context, and
deformation 22

2.4.3 Interaction in EBL layouts 23

3 comparison of node-link and heb layouts 25

3.1 Introduction 25

3.2 Call Data Extraction 27

3.2.1 Location of calls and definitions 27

3.2.2 Linking 28

3.2.3 Special cases 28

3.2.4 Hierarchy 29

3.3 Methodology 29

3.4 Case study 1: The bison parser 30

3.4.1 Node-link visualizations 30

3.4.2 Hierarchical edge bundling visualizations 33

3.5 Case Study 2: Mozilla Firefox 35

3.6 Case Study 3: The oink Framework 36

3.7 Discussion 39

3.7.1 Usability comparison 39

3.7.2 Performance comparison 40

3.7.3 Threats to validity 40

vii

viii contents

3.7.4 Availability 41

3.8 Conclusions 41

4 the solid* toolset for software visual ana-
lytics 43

4.1 Introduction 43

4.2 SVA Program Comprehension Toolset: Architec-
ture 45

4.2.1 Data architecture 45

4.2.2 Visualization architecture 49

4.3 Toolset Highlights: SolidSX and SolidSDD 50

4.3.1 Toolset Installation and First Usage Steps 50

4.3.2 SolidSX: Structural Analysis 50

4.3.3 SolidSDD: Clone Inspection 54

4.4 Toolset Applications 56

4.4.1 Toolset Usage in Education 56

4.4.2 Toolset Usage in Developing New Research 59

4.4.3 Industrial Usage: Post-Mortem Assessment
of a Software Project 59

4.5 Discussion 62

4.5.1 Should academic tools be of commercial
quality? 62

4.5.2 How to integrate and combine indepen-
dently developed tools? 63

4.5.3 What are the lessons learned and pitfalls
in building tools? 65

4.5.4 What are effective techniques to improve
the quality of academic tools? 66

4.5.5 What is needed to build an active commu-
nity of developers and users? 66

4.5.6 Are there any useful tool building patterns
for software engineering tools? 67

4.5.7 How to compare or benchmark such tools? 68

4.5.8 What particular languages and paradigms
are suited to build tools? 68

4.5.9 Evolution from research prototype to prod-
uct 70

4.6 Conclusions 73

5 image-based edge bundles 75

5.1 Introduction 75

5.2 Method 76

5.2.1 Layout 77

5.2.2 Clustering 78

contents ix

5.2.3 Shape construction 79

5.2.4 Shading 81

5.2.5 Rendering 83

5.2.6 Directional bundles 85

5.2.7 Interaction 87

5.3 Results 88

5.4 Discussion 92

5.5 Conclusions 94

6 skeleton-based edge bundling 95

6.1 Introduction 95

6.2 Algorithm 96

6.2.1 Clustering 98

6.2.2 Shape construction 98

6.2.3 Shape creation 100

6.2.4 Edge attraction 100

6.2.5 Iterative algorithm 104

6.2.6 Postprocessing 106

6.3 Implementation 110

6.3.1 Image-based operations 110

6.3.2 Parameter setting 113

6.4 Applications 115

6.5 Discussion 119

6.6 Conclusion 121

7 graph bundling by kernel density estimation 123

7.1 Introduction 123

7.2 Algorithm 124

7.3 Implementation 127

7.3.1 Graph representation 127

7.3.2 Density computation and gradient estima-
tion 128

7.3.3 Advection 128

7.3.4 Smoothing 129

7.3.5 Iterative bundling 129

7.3.6 Examples 129

7.4 Additions 132

7.4.1 Obstacle-constrained bundles 132

7.4.2 Visualizing bundling quality 136

7.5 Discussion 137

7.5.1 Comparison 137

7.5.2 Performance and simplicity 138

7.6 Conclusion 139

x contents

8 smooth bundling of large streaming and se-
quence graphs 141

8.1 Introduction 141

8.2 Visualizing streaming graphs 142

8.2.1 Algorithm 143

8.2.2 Applications 146

8.3 Visualizing graph sequences 147

8.3.1 Algorithm 148

8.3.2 Applications 149

8.4 Discussion 154

8.4.1 Streaming vs sequence graphs 154

8.4.2 Scalability 155

8.4.3 Bundling algorithm choice 156

8.4.4 Parameters 157

8.4.5 Limitations 157

8.5 Conclusion 158

9 an attribute-and-structure semantic lens 159

9.1 Introduction 159

9.2 MoleView principle 161

9.2.1 Element-based exploration 163

9.2.2 Bundle-based exploration 169

9.2.3 Dual-layout exploration 173

9.2.4 Specification of the zone of interest 179

9.2.5 Implementation 180

9.3 Discussion 181

9.4 Conclusion 183

10 discussion & conclusions 185

10.1 Future work 187

bibliography 191

list of figures 209

list of acronyms 213

publications 215

samenvatting 217

acknowledgments 219

1I N T R O D U C T I O N

S oftware maintenance covers 80% of the cost of modern
software systems, of which over 40% represent software
understanding [164, 35]. Although many visual tools for

software understanding exist, most know very limited accep-
tance in the IT industry. Key reasons for this are limited scalabil-
ity of visualizations and/or dataset sizes, long learning curves,
and poor integration with software analysis or development
toolchains, as strongly voiced by several researchers [143, 31,
99, 223].

Software visualization (SoftVis) uses information visualization
(InfoVis) techniques to create interactive displays of software
structure, behavior, and evolution. Recent trends in SoftVis in-
clude scalable Infovis techniques such as treemaps, icicle plots,
bundled graph layouts, table lenses, parallel coordinates, mul-
tidimensional scaling, and dense pixel charts to increase the
amount of data shown to the user at a single time [43]. Software
visualization tools such as Rigi [95], VCG [148], aiSee [2], Mon-
drian [108], sv3D [116], CodeCity [212, 213], and SeeSoft [51] are
well known in academic circles. Many more such tools appear
on a yearly basis, as illustrated by the material published in the
proceedings of e.g. ACM SOFTVIS, IEEE VISSOFT, MSR, ICPC,
WCRE, ICSE, and CSMR conferences.

Visual analytics (VA) integrates graphics, visualization, inter-
action, and data collection and analysis to support reasoning
and sensemaking for complex problem solving in engineering,
finances, security, and geosciences [220, 188]. These fields share
many similarities with software maintenance in terms of data
(large databases, structured text, and graphs), tasks (sensemak-
ing by hypothesis creation, refinement, and validation), and
tools (combined analysis and visualization). VA stresses tool in-
tegration, as opposed to pure data mining or fact extraction
(whose main focus is scalability) or information visualization
(Infovis, mainly focused on presentation). As such, VA is a prom-
ising model for building effective and efficient software visual
analysis (SVA) tools. However, just as for the established VA con-
text, building efficient and effective SVA tools which gain wide

1

2 introduction

acceptance in both academic and industrial contexts, is challeng-
ing.

Software systems contain large and complex sets of depen-
dencies between their components, such as call and inheritance
graphs, and data flow and type dependency graphs. Analyz-
ing such dependencies is arguably one of the most important
tasks of software maintenance processes such as reverse engi-
neering and reengineering. A good understanding of such data
supports decisions for code refactoring, removing code clones,
identification of design patterns, and debugging [43, 93, 99].

However, understanding large sets of dependencies is chal-
lenging. Visualization is a method of choice, given the inherent
difficulty for understanding large, abstract graphs. Although
numerous methods are being proposed for visualizing depen-
dency graphs in the information visualization (InfoVis), soft-
ware visualization, (SoftVis), and graph drawing (GD) commu-
nities, it is still unclear how such methods are received by soft-
ware practitioners in the field, and how they compare when one
must accomplish tasks in program comprehension. Secondly, it
is not clear how such graph visualization methods can be im-
proved in order to assist the program understanding tasks out-
lined above more effectively.

1.1 graph edge bundling

The visual depiction and understanding of large graphs, such
as composed by the dependencies mentioned in the previous
section, is an open challenge to both SoftVis and InfoVis com-
munities. Efficient and effective visualization methods that ad-
dress this task have a wider relevance than program compre-
hension, as they are applicable to numerous other application
fields, such as network analysis, life sciences, social sciences,
and geosciences [207].

As the number of nodes and edges of a graph increases, node-
link graph visualizations become challenged by clutter, i.e. un-
organized groups of nodes and edges onto small screen areas.
Clutter impairs tasks such as finding the nodes that a given
edge (or edge set) connect, and at a higher level, understand-
ing the coarse-scale graph structure. Several approaches exist
to reduce clutter in graph visualizations. First, the graph can
be simplified prior to visualization, e.g. by extracting structures
such as spanning trees or strongly connected components. Sec-
ondly, the layout of nodes and/or edges can be adjusted. Both

1.2 contributions of this thesis 3

methods can be applied globally, based on clutter estimation
metrics, or locally, based e.g. on user interaction [219, 216].

When node positions encode information, they should not
be changed. Also, clutter is related most often to edge cross-
ings [137, 76]. One of the main directions for reducing clutter
is edge bundling, or the geometrical grouping of edges that fol-
low close paths. Edge-bundling layouts (EBLs) exist for gen-
eral graphs [39, 80, 133], circular layouts [68], hierarchical di-
graphs [78], and parallel coordinates [117, 225]. Bundling typ-
ically starts with a given set of node positions, either present
in the input data, or computed using a layout algorithm. Edges
found to be close in terms of graph structure, geometric posi-
tion of their endpoints, data attributes, or combinations thereof,
are drawn as tightly bundled curves. This trades clutter for
overdraw and produces images which are easier to understand
and/or better emphasize the graph structure. Edge bundles can
be rendered using various effects such as blending or shad-
ing [80, 103]. Edge bundling algorithms exist for both compound
(hierarchy-and-association) [78] and general graphs [80, 39, 133,
103, 70, 150].

1.2 contributions of this thesis

In this thesis, we take a new look at edge bundling layouts
(EBLs) as a method for reducing the clutter in large graphs, with
software understanding as an application area. Within this con-
text, we address the following research questions:

1. Is edge bundling an effective instrument for the under-
standing of large graphs as compared to more classical
node-link graph visualization techniques?

2. How can we design edge bundling techniques which com-
putationally scale to handle large graphs?

3. How can we complement edge bundling techniques with
rendering and interaction techniques to simplify the re-
sulting images, and also add more contextual information,
for a better understanding?

We approach the above questions as follows.
In Chapter 3, we look at the problem of understanding call

graphs extracted from software systems which have a hierarchi-
cal structure, or so-called compound graphs. We describe a tool-
ing pipeline that covers static code analysis, extraction of call

4 introduction

relations and hierarchy data, and visualization. For visualiza-
tion, we compare state-of-the-art node-link visualization tech-
niques [9, 10] with hierarchical edge bundles (HEBs), the best
known bundling method available to the date [78]. The compar-
ison outlines that, in the described context of program compre-
hension, HEBs clearly outperform classical node-link layouts.

In Chapter 4, we take the challenge of edge bundling layouts
a step further. We detail the design, implementation, and evo-
lution of a software visual analytics (SVA) toolset for program
comprehension from early research prototypes to a commercial
toolset used in the IT industry. The described SVA toolset uses
HEB visualizations as one of its key components. We describe
the usage of our SVA toolset in several contexts. The conclu-
sions of our study strengthen and refine the insights obtained
in Chapter 3: HEB visualizations have a high potential to be
accepted by end-users as effective and useful program compre-
hension instruments, if they are seamlessly embedded in an
end-to-end SVA toolset that combines data mining and visual
analysis.

In Chapter 5, we focus on one perceived limitation of EBLs
discovered during our studies presented in Chapters 3 and 4:
the difficulty of understanding bundles in overlapping regions.
We present a novel technique for the visualization of the coarse-
scale structure of an EBL which clarifies edge clutter caused by
bundle overlaps and assists the task of finding nodes connected
by a bundle. The main novel element in our technique is using
an image-based approach: A given EBL is simplified, and next
rendered, using a sequence of operations which occur only in
image space. This offers a way to continuously simplify an EBL
after it has been computed, and thus yields a smoothly varying
sequence of progressively simplified views of the underlying
graph.

In Chapter 6, we take the image-based approach from Chap-
ter 5 a step further. We show how the image processing oper-
ations used earlier for EBL simplification (distance fields and
skeletons) can be effectively and efficiently used for the actual
construction of an EBL starting from an unbundled input graph.
The proposed method has several advantages as compared to
existing EBLs: computational efficiency, generation of organic-
like bundle shapes, and most importantly a way to analyze the
robustness of the proposed method, by using underlying prop-
erties of the used image processing operators.

In Chapter 7, we further exploit the results obtained in Chap-
ter 6. Specifically, we show how we can construct EBLs of gen-

1.2 contributions of this thesis 5

eral graphs using only a density map of the input graph. This
further simplifies the EBL construction by removing the main
technical requirements of SBEB – graph clustering, image seg-
mentation, and skeleton computation – while keeping its key
idea of grouping bundles towards the local maxima of edges
densities. We also present an efficient GPU implementation of
our EBL method. At a conceptual level, we show that our EBL is
practically and conceptually identical to mean shift image seg-
mentation [34], which opens new ways for understanding the
properties of edge bundling techniques.

Chapter 8 moves the focus to dynamic graphs. We present
two types of techniques for visualizing dynamic graphs using
edge bundles. The first technique considers streaming graphs,
i.e. temporally ordered, unstructured, edge-sequences with start
and end lifetime moments. For this use-case, we show how the
EBL technique proposed in Chapter 7 can be naturally extended
to smoothly bundle time-dependent graphs. The second tech-
nique considers graph sequences, i.e. a discrete set of graphs be-
tween which higher-level correspondences can be inferred. For
this use-case, we exploit additional edge-correspondence infor-
mation to further highlight events of interest such as the appear-
ance, change, and disappearance of edge groups. We demon-
strate our method both on software graphs and graphs describ-
ing air traffic information.

Chapter 9 introduces MoleView, a framework for interactive
exploration of large element-based plots, which are sets of dis-
crete data elements, each with several data and/or position (lay-
out) attributes. Examples thereof are EBLs, (multidimensional)
scatter plots, and images. We show how we can extend well-
known semantic lenses with a range-based attribute filter to
select a ‘data layer’ at a user-defined point, i.e. a set of data
elements falling within the lens’ position and attribute filter val-
ues. Next, we present several dynamic re-layouting techniques
that smoothly push these elements away from the lens to obtain
a smooth transition between the original and detailed dataset.
Finally, we extend the semantic lens concept for the task of ex-
ploring a dataset by the smooth animated interpolation between
two completely different layouts of the same data, using as ex-
ample the exploration of two-dimensional scalar images.

We conclude this thesis in Chapter 10 by comparing the re-
search questions outlined above in this section against the visu-
alization methods presented in the subsequent chapters. Over-
all, our observation is that image-based techniques are a promis-
ing avenue for enhancing the efficiency and effectiveness of

6 introduction

edge bundling layouts, and that future work on this topic can
open several new directions for a more widespread application
and usage of such techniques for the exploration of large graphs
both in a program comprehension context and beyond.

2R E L AT E D W O R K

We divide related work in the context of this thesis into several
subsections, as follows.

Fact extraction (see Sec. 2.1) focuses on the process that mines
relational data, and its attributes, from the raw datasets of inter-
est to the visual analysis. In our context that focuses on software
visual analytics, fact extraction consequently focuses on static
and dynamic analysis of software code bases and their related
artifacts.

Node-link graph visualization (see Sec. 2.2.1) focuses on gen-
eral graph visualization techniques aimed at displaying large
graphs, and their related attributes, with a focus on the most
used such techniques in a software visualization context, and
their challenges when visualizing large graphs.

Edge bundling methods (see Sec. 2.2.2) focuses on a specific sub-
class of solutions for managing scalability in the context of visu-
alizing large graphs: edge bundling. This is also the main focus
of the work presented in this thesis.

Rendering graphs (see Sec. 2.2.3) overviews the final part of a
graph visualization pipeline. We focus here on techniques such
as shading, transparency, texturing, and color mapping which
are used in this step of the visualization pipeline to map a com-
puted layout, and additional data attributes, to a final image.

Time-dependent graphs (see Sec. 2.3) outlines the challenges in-
volved in the visual analysis of graphs which encode informa-
tion that changes in time. In particular, we outline here distinc-
tions between various types of graphs, such as streaming and
sequence graphs.

Finally, we overview the class of interaction techniques used
in the context of visual analysis of large graphs (see Sec. 2.4).

We should stress, upfront, that the review of related work pre-
sented in this chapter should not be seen as a comprehensive
coverage of all techniques related to large-scale graph visualiza-
tion. Such a review would require an entire volume by itself. In
contrast, our focus here is to focus on existing research work
that relates to our main investigation topic – the usage of edge
bundling techniques for the visual analysis of large graphs. As
such, we limit our discussion in this chapter to existing tech-
niques which are related to edge bundling, on the one hand,

7

8 related work

and to the visualization of large graphs on software understand-
ing, on the other hand.

2.1 fact extraction

Fact extraction, in the context of software understanding, covers
the gathering of information from source code, binaries, and
source control management (SCM) systems such as CVS, Sub-
version, CM/Synergy, Git, or ClearCase. In the following, we
denote such sources of information by the generic term soft-
ware databases. For the work in this thesis, the actual type of
information source is not important, as long as it provides (a)
attributed graph data; and (b) the size of the provided graphs
is large enough so that the clutter and scalability changes men-
tioned in Chapter 1, and discussed further in the current chap-
ter, are present.

In our context, we are mainly interested in the extraction of
relational information from software databases. From the per-
spective of software understanding, these are classified into var-
ious types of graphs. Common types include dependency, call,
and control flow graphs produced by static syntactic and se-
mantic analysis [14, 112, 181, 119, 118]; program slice graphs
produced by similar types of analysis [191, 21]; and code du-
plicates or code clones extracted by clone detectors [87, 131, 89,
85]. Attributes include software quality metrics, e.g. code size,
complexity, cohesion, and coupling extracted by white-box code
analysis engines [106], and attributes pertaining to the evolution
of software, such as change moments, commit logs, and change
requests, extracted by repository mining techniques [43, 120].

Two aspects are important for the fact extraction part of the vi-
sual software understanding pipeline: data modeling (Sec. 2.1.1)
and data mining (Sec. 2.1.2), as follows.

2.1.1 Data modeling

From a visual analysis perspective, we need to represent the
facts, or data, extracted from a software repository. A generic
model for such data is the so-called compound attributed graph.
Such a graph G = (V ,E) is a set of nodes, or vertices, V and
edges E. Nodes V model software artifacts, ranging from high-
level ones such as folders, files, (sub)packages, and libraries, to
low-level ones such as classes, functions and methods, and in-
dividual code lines or symbols. Edges E model relationships be-

2.1 fact extraction 9

tween the extracted artifacts. These are further subdivided into
containment and association relations.

Containment relations are directed edges which describe the
structure of the software, i.e. model inclusion. For instance, a
containment relation c = (n1,n2) captures the fact that the soft-
ware entity n1 (e.g., a class) contains, or includes, the software
entity n2 (e.g., a method definition). Containment relations most
usually create trees, with the entire system under study at the
root, and the finest-grained extracted artifacts as leaves. How-
ever, in the most general case, containment relations can also
be structured as directed acyclic graphs (DAGs) – consider, for
example, the case of programming languages such as C# where
a class declaration can be contained in several files.

Association relations are directed or undirected edges which
typically describe all extracted relations which cannot be clas-
sified as containment. Examples of such directed relations are
function calls (a relation c = (n1,n2) models that function n1
calls function n2); symbol usage-to-declaration links (a relation
u = (d, s) models that the symbol s has the declaration d);
and execution sequencing (a relation s = (n1,n2) models that
the statement n2 executes after the statement n1). Examples of
undirected associations are code clones, or code duplicates (a
relation c = (n1,n2) models the fact that the source code in
artifact n1 is (very) similar to the source code in artifact n2).

Attributes can be associated to both nodes and edges in the
above model. In the most general case, a node or edge has a set
A = {(ki, vi)} of key-value pairs (ki, vi). Here, ki is an identi-
fier describing the name of a certain attribute, e.g. function name,
element type, or lines of code. The elements vi encode the values
of the named attributes. These can be numeric (e.g amount of
lines of code or complexity); nominal or unordered categorical
(e.g. type of a syntactic construct); ordinal or ordered categor-
ical (e.g. code safety ranked on a scale Low, Average, High), or
text (e.g. the fully-qualified name of a function). In this model,
there is no restriction that all nodes have the same number of
attributes, nor that all nodes have to have the same set of keys
or attribute names.

Although the above model for software relational datasets can
generally capture all the information extracted from software
datasets, several challenges exist, as follows:

• Variability: To fully describe software datasets, several sep-
arate containment and association relation types are need-
ed. For instance, a software system admits several types

10 related work

of hierarchies, e.g. a storage (folder-file) hierarchy and a
syntactic (namespace-symbol) hierarchy. Similarly, several
types of associations exist (calls, symbol usage-definition,
type inheritance). Visualizing several such hierarchies and
association types simultaneously is very hard [108, 95];

• Efficiency: Efficiently storing, querying, and editing com-
pound attribute graphs containing hundreds of thousands
of nodes, edges, and attributes is difficult. Although sev-
eral implementations exist that are optimized for specific
types of data and query operations, such as syntax trees [14,
11, 119, 118, 23], a general solution is still missing;

• Interchange: Effective construction and usage of software
analysis pipelines involves the composition of several tools
[99, 145]. This can practically happen only if data exchange
formats exist for compound attributed graphs. Many for-
mats have been proposed in software analysis, e.g. GXL
[77], FAMIX [189, 128], and SourceML [33]. However, the
widespread acceptance of these formats, as well as their
ability to model the full spectrum of compound attributed
graphs produced by software fact extraction, is still lim-
ited.

2.1.2 Data mining

From a practical perspective, we need techniques and tools that
are able to populate the compound attributed graph introduced
in Sec. 2.1.1 with actual facts (relationships and attributes) from
a given software database. We call this operation data mining.
The graph such constructed will be next the input to our visual
analysis.

Strictly speaking, the challenges of data mining form a sep-
arate concern which is not subject to our work, as our focus is
on the visualization part of the software understanding pipeline.
However, to better outline the type of data and challenges which
our subsequent visualizations will be subjected to, we overview
here several data mining tools which we have concretely used
for extracting static structure and associations (Sec. 2.1.2.1), met-
ric attributes (Sec. 2.1.2.2), and clone associations (Sec. 2.1.2.3)
for our compound attributed graphs.

2.1 fact extraction 11

2.1.2.1 Static structure and associations

Structure (containment) and association relations are most fre-
quently extracted from source code using so-called static ana-
lyzers. In our work, we have focused mainly on source code
written in the C and C++ programming languages. The main
reasons hereof where (a) the fact that, at the inception of this
work, C and C++ code bases were dominant in the open-source
arena; (b) such code bases were significantly larger (millions of
lines of code) than code bases written in other programming lan-
guages such as Java or C#; and (c) the inherently more complex
syntactic structure of C++ provided us with more complex con-
tainment and association graphs. C++ programs are particularly
interesting for software visualization, as they have a deeper hi-
erarchical structure (folders, files, namespaces, classes, nested
classes, methods), whereas C program hierarchical structure is
limited to folders, files, and functions. Moreover, object-oriented
code is supposed to be more modular than classical procedural
code, so a good visualization may be able to emphasize the pres-
ence (or absence) of such modularity.

Well-known static analyzers include LLVM [111], ROSE [139],
Cppx [109], Columbus [61], Eclipse CDT [49], Elsa [119] (for
C/C++), Recoder [115] (for Java), Reflector [142] (for C# and
.NET), and ASF+SDF (a meta-framework with language-specific
front-ends) [197]. Static analyzers can be further divided into
lightweight ones, and heavyweight ones. Lightweight extractors,
e.g. SrcML [33], SNIFF+, GccXML, and MCC, do only partial
parsing and type-checking using a subset of the target language
grammar and semantics and trade fact completeness and accu-
racy for speed and simplicity producing only a fraction of the
entire static information. Heavyweight extractors, e.g. DMS [14],
ASF+SDF [196], CPPX [109], ROSE [139], oink [119, 118], Colum-
bus [61], and SolidFX [181] perform (nearly) full syntactic and
semantic analysis at higher cost. For call data extraction from
C and specifically C++, a heavyweight extractor is mandatory,
as we need full semantic (type) information, as well as a full
implementation of the C++ lookup rules, to be able to correctly
link calls to function declarations and those further to function
definitions, for all types of functions including constructors, de-
structors, and operators [23, 181]. Heavyweight extractors can
be further classified into strict ones, based on a compiler parser
which halts on lexical or syntax errors, e.g. CPPX and, up to
a large extent, LLVM; and tolerant ones, based on fuzzy pars-
ing or Generalized Left-Reduce (GLR) grammars, e.g. Colum-

12 related work

bus, Oink or SolidFX. All extractors are typically run in batch
mode, and produce an annotated syntax graph. This graph is
further filtered to extract the desired types of compound at-
tributed graphs presented in Sec. 2.1.1.

In our work, we have used both lightweight extractors (Gcc-
XML) and heavyweight ones (SolidFX, oink). In the end, heavy-
weight extractors proved more suitable, both in terms of the
completeness and correctness of the delivered graphs, for our
subsequent visualization purposes. As such, all examples pre-
sented further in this thesis which use software graphs extracted
by static analysis were created using the above-mentioned heavy-
weight extractors. Further on, we have also investigated the vi-
sualization of compound attributed graphs extracted from other
programming languages, specifically Java and C#. For these, we
have used the heavyweight extractors Recoder and Reflector.

2.1.2.2 Software metrics

Metric tools include CodeCrawler [105], Understand [149], and
Visual Studio Team System (VSTS). Insights in software evolu-
tion and software quality metrics are given by Mens et al. [120],
Lanza et al. [106], and Fenton et al. [60]. For our specific visual-
ization purpose, the exact selection and type of software metrics
being used is less important, as our main goal is to demonstrate
how such metrics can be scalably and effectively visualized. As
such, we have limited ourselves to the usage of the best known
quality metrics, such as code size, complexity, fan-in, fan-out,
and coupling. We extract these metrics directly from the syntac-
tic structure already provided by the heavyweight extractors we
use (see Sec. 2.1.2.1). If desired, other metrics can be directly re-
placed in our discussion on visualization in the following chap-
ters.

2.1.2.3 Code duplicates

Code duplicates, or code clones, are source code fragments in
a given code base which share large similarities [131]. Several
techniques and tools exist in the program understanding liter-
ature which help finding code clones. Baxter et al. extract ab-
stract syntax trees from the code, determine a hash code from
the entire tree structure, and compare same-hashcode trees us-
ing a bottom-up matching algorithm [13]. Jiang et al. compute
fixed-length vector descriptors of syntax tree nodes, recording
the number of occurrences of each node type, and hash similar

2.2 compound graph visualization 13

subtrees based on the Euclidean distance between vectors [85].
Koschke et al. use a suffix token tree approach, comparing syn-
tax trees by serializing the tree node types to strings, thereby
combining the speed of string approaches with the precision
of tree-based approaches [100]. Wahler et al. use an XML-based
syntax trees and database queries to find code clones as fre-
quent item-sets [210]. Ducasse et al. advocate a string-based
clone detection, thereby removing the need for heavyweight
parsers [46]. Ekoko and Robillard proposed a method to track
code clones across several versions of a code base, by reusing
the SimScan clone detector atop of a lightweight clone represen-
tation combining structural and lexical clone information [45].
Clone detection methods are also implemented in widely-used
clone detection software, such as the well-known CCfinder tool
[88].

Just as for software metrics, the exact choice of a clone de-
tector is not critical for our software visualization aims, as long
as this detector can extract compound graphs, and can handle
large code bases written in the programming language of our
choice (C and C++). To this end, in our work, we have extracted
compound graphs with containment relations describing the
software hierarchy and association relations describing clones
using the SolidSDD clone detector [161]. SolidSDD implements
a slightly modified version of the CCfinder algorithm [88], and
can analyze code bases of millions of lines written in C and C++
in a few minutes on a desktop PC.

2.2 compound graph visualization

Once a compound attributed graph is extracted, e.g. by the soft-
ware analysis techniques mentioned in Sec. 2.1, the next step
in a typical analysis pipeline is to visualize this graph. Concrete
tasks to be addressed by such a visualization include the over-
all assessment of the connectivity pattern (created by associa-
tion edges) between several parts of a software system (repre-
sented by subtrees induced by containment edges); the struc-
tural comparison of two graphs to find similar and different
subgraphs; and the discovery of specific structure-and-attribute
patterns present in the graph [78, 36, 43].

Creating a visual representation of a compound attributed
graph G can be seen as a two-step process:

1. Layout: Given G, the layout can be seen as a function L :

G → Rn, which associates to each node, or vertex, v ∈ G

14 related work

and edge e ∈ G a spatial representation in Rn. In practice,
n ∈ {2, 3}, i.e. we create two- or three-dimensional visual
representations of G.

2. Rendering: Given a layout L(G) of a graph, rendering asso-
ciates concrete visual representations with each laid out
node L(v ∈ G) and edge L(e ∈ G). Examples include
setting the shape, color, transparency, and texture of the
nodes and edges.

The layout vs rendering distinction is important: Layout is a
purely geometric operation that tells where nodes and/or edges
are to be placed in 2D or 3D, but does not specify (or constrain)
how these are to be drawn. In contrast, rendering is a purely
screen-space operation that tells how nodes and edges are to be
drawn at a given 2D or 3D position, but does not specify this po-
sition. Making this distinction enables us to further classify and
analyze the existing graph visualization techniques (Secs. 2.2.1-
2.2.3).

The more information (containment and association edges
and node and edge attributes) such a visualization is able to dis-
play at a single time, the more general are the tasks it can support.
For instance, visualizing only the call relations of a software sys-
tem is of limited use, if our questions are of the type “which are
the dependencies between two subsystems”. Similarly, visual-
izing only the structure of the same system does not allow us
to reason about modularity. Finally, showing no attributes on
a structure-and-association visualization does not allow distin-
guishing between various types of associations, such as calls
and inheritance relations.

However, when more information is “pushed” into such a vi-
sualization, the resulting image can easily get overloaded and
hard to understand. As such, the key challenge we find for
graph visualization in the context of software understanding, is
the design of suitable layout and rendering techniques that (a)
can depict the highest amount of available graph information;
and (b) produce understandable images.

2.2.1 Node-link Layouts

Historically, node-link layouts are the first type of graph layouts.
The key aspect of these methods is representing the edges as
straight-line segments between their corresponding node posi-
tions, a visual convention which is well understood, and consid-

2.2 compound graph visualization 15

ered intuitive, by most end users [72]. Apart from this aspect,
node-link layouts differ in terms of how the graph nodes are
spatially embedded in 2D or 3D.

Several methods exist in the literature for laying out com-
pound graphs [125]. SHriMP Views and similar methods show
containment as nested boxes and associations using straight
lines atop of the nesting [166, 17, 140]. Variations hereof are well
known and used in software visualization, as shown by several
toolsets, e.g. Rigi [95, 190], CodeCrawler [105], VCG [148] and
SoftVision [172]. Although intuitive, such methods have scalabil-
ity limitations. For large systems, association relations, mapped
to straight lines, tend to clutter the nested layout, as any two
elements in the hierarchy can be connected. For a more exten-
sive discussion of clutter in information visualization, we refer
to [53]. ArcTrees lay out containment as nested rectangles and
associations as curved arcs connecting the elements [125]. How-
ever, they have similar association edge cluttering problems as
SHriMP views. Curved edges showing associations can also be
overlaid on treemaps [59], having however the same cluttering
issues. Matrix views remove the clutter by showing associations
as an adjacency matrix and hierarchy as tree views or icicle
plots along the matrix edges [195]. A hybrid technique that com-
bines the lack of clutter of matrix layouts and intuitiveness of
node-link layouts is presented by Henry and Fekete [75]. How-
ever, matrix views (and their variants) are less intuitive than
node-link diagrams and also are less effective in visually show-
ing modularity, i.e. if associations (calls) from a subsystem are
mainly directed at a few other subsystems [72, 195].

For very large graphs, optimizations of both the layout algo-
rithms and graph data management are essential to usability.
One system providing these is the graph visualization frame-
work Tulip, which offers a wide range of search, layout, vi-
sualization, and interaction features, as well as high scalabil-
ity for graphs of hundreds of thousands of elements [9, 10].
Even though less known in the software visualization commu-
nity, Tulip is well-known in the InfoVis community, and is ar-
guably one of the most sophisticated node-link graph visualiza-
tion frameworks available. Further references on classical node-
link layouts can be found in Tollis et al. [192].

Having recognized the clutter challenge posed by large graphs
in node-link layouts, several solutions have been studied. Edge
routing algorithms are one of the earliest attempts to reduce
clutter in graphs. Edge routing algorithms intend to increase
the readability of the graphs by minimizing edge lengths and

16 related work

amount of edge bendings while maintaining a low number of
edge crossings and avoiding node-edge overlaps [168, 44, 47].
Graph simplification techniques reduce clutter by simplifying
the graph prior to layout e.g. by grouping strongly connected
nodes and edges into so-called metanodes, followed by using
classical node-link layouts for visualization. Several simplifica-
tion methods exist, e.g. [1, 4]. Graph simplification is attractive
as it reuses existing node-link layouts out of the box, but can
be sensitive to simplification parameters, which further depend
on the type of graph being processed. Furthermore, simplifica-
tion does not allow a continuous treatment of the graph: The
simplification events yield a set of discrete graphs rather than
a smooth exploration scale [103]. Also, simplification typically
changes node positions (collapse to metanodes), which can be
undesirable e.g. when positions encode information.

A different solution to the clutter problem – graph bundling
– is discussed in the next section.

2.2.2 Edge bundling layouts

As the number of nodes and edges of a graph increases, node-
link layouts can produce significant visual clutter, which shows
up as overlapping edges or nodes. Clutter impairs tasks such as
finding the nodes that a given edge (or edge set) connect, and at
a higher level, understanding the coarse-scale graph structure.
In our software visualization context, for instance, answering
questions such as “which are the main association connections
between subsystems” can be severely impaired by cluttering.

A fundamentally different solution to the visual clutter prob-
lem from graph simplification (Sec. 2.2.1) is edge bundling. In
layout terms, an edge bundling layout (EBL) spatially groups
edges ei ∈ E for a graph G(V ,E) using a metric d(ei, ej) that
models closeness in either graph space, layout space, or both.
Edges ei = {pij}

N
j=1, where N = |ei|, are discretized into points

pij which are next positioned so as to minimize d.
At a high level, EBLs can be seen as a simplification of the

degrees of freedom along which a layout is created: While a
straight-line node-link layout will lay out each edge indepen-
dently, in the direction prescribed by the positions of its end
nodes, EBLs reduce the number of possible directions for edges
by grouping similar edges into a bundle. As we shall see later
on in Ch. 7, this amounts to a sharpening, or simplification, of
both the directional and spatial density distributions of straight-

2.2 compound graph visualization 17

line edges. As such, EBLs trade clutter for overlap: Similar edges
are routed close to, or atop of, each other. Less individual edges
are visible. In contrast, the coarse graph structure becomes more
visible. If related nodes are laid out close to each other, the task
of finding coarse-level connections between groups of nodes,
e.g. finding high-level dependencies between subsystems in a
software system, becomes easier than with node-link layouts.

Hierarchical edge bundles (HEBs) are arguably the first well-
known EBL algorithm used to lay out large compound digraphs
[78, 36]. Containment is compactly shown as a circular icicle
plot. Associations are drawn as splines, routed to follow the
containment hierarchy. When the analyzed software system ex-
hibits modularity (many edges exist that connect subsystems
represented by containment-edge subtrees), the edges get ’bun-
dled’ together, making it possible to see this modularity. Visual
edge clutter is next interpreted as a sign of limited modular-
ity. HEBs have been used in visualizing call graphs in various
applications [36]. However, as the authors mention themselves,
a study on the effectiveness of this method for large-scale soft-
ware systems, as compared to other dependency visualizations,
is still to be done [78]. In an attempt to fill this gap, we present
such a comparison study in Ch. 3.

Dickerson et al. merge edges by reducing non-planar graphs
to planar ones [42]. Although this technique preceeds HEBs [78],
it is limited to graphs whose nodes can be reordered, using a
circular layout, to reduce edge crossings. Gansner and Koren
bundle edges in a circular node layout similar to [78] using area
optimization metrics [68]. Dwyer et al. use curved edges in force-
directed layouts to minimize crossings, which implicitly creates
bundle-like shapes [48]. Force-directed edge bundling (FDEB)
creates bundles by attracting control points on edges close to
each other, and generalizes HEBs to graphs which do not have
a hierarchical structure (containment edges) [80]. Still, FDEB is
implicitly constrained by the node layout, i.e., for meaningful
bundles to emerge, we need that related nodes are placed close
to each other. This is a general constraint of all EBL methods.

FDEB can be significantly optimized using multilevel cluster-
ing techniques such as the MINGLE method [70]. Flow maps
produce a binary clustering of nodes in a directed graph repre-
senting flows to route curved edges along [133]. Control meshes
are used by several authors to route curved edges, e.g. [138,
224]. Other recent methods include geometric-based edge bun-
dling (GBEB) [39], which uses Delaunay diagrams, and ‘wind-

18 related work

ing roads’ (WR), which uses boundaries of Voronoi diagrams of
the node positions for 2D [103] and 3D [104] edge layouts.

Overall, EBLs have gained significant attention in the last
years, both in program understanding and in the more general
Infovis field. However, EBLs are still faced with a number of
important questions and challenges:

• Scalability: Computing EBLs for large graphs which do
not have hierarchical information is computationally ex-
pensive;

• Clutter: Even though EBLs reduce small-scale clutter pro-
duced by straight-node line drawings, at a higher level,
they create significant amounts of overdraw, by placing
edges atop of each other. As such, disambiguating close
or overlapping bundles, i.e. seeing which nodes these con-
nect, can be hard [68, 81]. Bundles are typically implicit:
it is hard to exactly say which are the main bundles in an
EBL and what sub-graphs these relate, since bundles do
not have a distinct visual identity;

In Chapters 5-7, we will show how the above issues can be
alleviated.

2.2.3 Rendering

Classical rendering of straight-line node-link layouts involves
drawing lines for edges, and various types of glyphs for the
nodes [95, 172]. Node and edge attributes can be next encoded
in the size, color, transparency, shape, and texture of the drawn
nodes and edges. The same types of techniques can also be used
for EBLs, e.g. color interpolation along edges for edge direc-
tions [78, 39]; and transparency or hue for local edge density,
i.e. the importance of a bundle, or for edge lengths [103].

Although these rendering techniques work well for moderate-
ly-sized graphs (under roughly 1000 nodes and/or edges), they
create visual clutter for larger graphs. The key reason hereof is
that, in such graphs, nodes and/or edges overlap. As such, ren-
dering nodes and/or edges independently will cause artifacts,
depending e.g. on the drawing order of these elements.

Several techniques exist for reducing visual clutter in the ren-
dering pass of large graphs. An early technique in this direc-
tion, graph splatting, convolves nodes and (optionally) edges
of a node-link layout with a Gaussian filter into a height or in-
tensity map [199]. Dense edge regions, which can cause clutter

2.3 time-dependent graphs 19

in node-link renderings, show up as compact high-value splats.
The filter width controls the scale at which overlap is perceived.
An enhancement of the basic technique is presented by Niels
et al. for the visualization of graphs describing spatial move-
ment of vessels [215]. However producing simplified views, and
eliminating local clutter, splatting makes it hard to follow edges.
Also, the filter width needs careful tuning to avoid creating dis-
connected, thus misleading, splats. Shaded cushions are effec-
tive for showing hierarchies, and have been used for rectangu-
lar and Voronoi treemaps [200, 12] and icicle plots and edge
bundles [177]. Image-space blending of bundled edges can be
used to emphasize both the local edge density and outlier edges
(which run in opposite direction from the main direction in a
bundle) [78].

Image-space techniques such as the ones mentioned above
have several important advantages. Firstly, they reduce the a-
mount of local clutter by essentially performing a low-pass fil-
ter on the rendered graph. This can also achieve a continuous
simplification of the drawn graph, where more information is
shown when more drawing space is available. Secondly, image-
based techniques can be efficiently implemented in graphics
hardware (GPUs), and thereby achieve the high performance
necessary for visualizing large graphs.

However, so far, image-based techniques have been used main-
ly as a postprocessing step to the actual graph layout and graph
rendering. In Chapter 5, we show how EBLs can be simplified
using image-based techniques so that the most salient bundles
become visible. This addresses the clutter issue mentioned at
the end of Sec. 2.2.2. In Chapters 6 and 7, we take this process
a step further, and show how the EBL process itself can be for-
mulated as an image-processing operation. This addresses the
scalability issue mentioned at the end of Sec. 2.2.2.

2.3 time-dependent graphs

As mentioned earlier, graphs can be either static or time-de-
pendent. In our context, examples of the former are structure-
and-dependency graph extracted using static analysis from a
given release of a code base. Examples of the latter are graphs
that describe the structure-and-dependency of the relationships
present in all versions of a code base, such as present, for in-
stance, in a software repository.

20 related work

Given our focus on edge bundling, the main question in this
respect is whether EBL methods can be used to effectively and
efficiently depict time-dependent graphs. We outline the related
work on this topic below.

2.3.1 Types of dynamic graphs

Dynamic graphs can be organized in two categories, as follows.
Streaming graphs are defined as graphs G = (V ,E) on a vertex-

set V and edge-set E, where edges

e ∈ E = {nstart(e) ∈ V ,nend(e) ∈ V , tstart ∈ R, tend ∈ R}

(2.1)

are defined by their start and end nodes nstart and nend, and
lifetime [tstart, tend > tstart]. A weak form of Eqn. 2.1 can be
used to model streaming graphs where only an ordering of the
tstart and tend values is specified, rather than absolute values.
Streaming graphs occur naturally in cases when an entire graph
is not known in advance, e.g. events collected from live data
sources [3].

Graph sequences are defined as ordered sets of graphs Gi =

(Vi,Ei) which typically capture snapshots of the structure of
a system at N moments 1 6 i 6 N in time. We further call a
graph Gi in such a sequence a keyframe. In contrast to streams,
edges are explicitly grouped in keyframes, and additional se-
mantics can be associated with each such keyframe. Following
this, sequences may contain so-called correspondences

c : Ei → {{ecorr ∈ Ei+1},∅} (2.2)

Here, c(e ∈ Ei) yields an edge ecorr ∈ Ei+1 which logically
corresponds to e (if such an edge exists), or the empty set (if no
such edge exists). Correspondences model edge-pairs in consec-
utive keyframes that are related from an application perspective,
e.g. caller-callee relations between the same function definitions
in consecutive revisions of a software system.

2.3.2 Dynamic graph visualization

Visualizing dynamic graphs has a long history. Methods can be
divided into two classes, as follows.

2.3 time-dependent graphs 21

Unfolding the time dimension along a spatial one, e.g. using
the “small multiples” approach [24], has led to many dynamic
graph visualizations. In graph drawing, specific solutions are
known for planar straight-line graphs [22]. In software visual-
ization, TimelineTrees [27], TimeRadarTrees [26], TimeArcTrees
[177], and CodeFlows [177] lay out a graph along a 1D space,
e.g. circle or line, and juxtapose several instances thereof on an
orthogonal axis to show the graph evolution. Although reduc-
ing clutter by not using a node-link drawing metaphor, such
methods are visually not highly scalable, nor are they very in-
tuitive, especially for long time series containing complex event
dynamics.

Producing an animation of the graph’s evolution is a second
way to understand dynamic graphs. Several techniques gener-
ate incremental node-link drawings that show the graph evolu-
tion by optimizing a cost function that combines classical static-
graph-drawing aesthetic criteria with maximizing the layout sta-
bility of unchanging graph parts [65, 56, 62, 82]. Animation can
be preferable to small-multiples in conveying dynamic patterns,
especially for long repetitive time series [194]. Such methods,
however, may suffer from visual clutter, due to the underlying
node-link metaphor.

2.3.3 Bundling dynamic graphs

It seems appropriate to use the EBL metaphor to visualize the
(simplified) structure of dynamic graphs. Indeed, if EBL meth-
ods succeed in showing the coarse-level structure of a static
graph, they can arguably also be effective in accomplishing the
same task for dynamic graphs.

Pioneering work in this area has been recently presented by
Nguyen et al., who cut a streaming graph into a set of graphs
using a sliding time-window, and visualize each such graph us-
ing existing edge-bundling methods [80, 78]. Edge similarity, or
compatibility, is enhanced to take into account temporal coher-
ence. Given a stable edge-bundling layout, this method can pro-
duce animations of bundled graphs with spatial and temporal
continuity.

This approach can be improved in several directions: scalabil-
ity (number of edges handled), ensuring a high spatio-temporal
continuity of the produced animations where large-scale and
long-life structures are stable over time and display space, and
using the correspondence information present in graph sequenc-

22 related work

es. In Chapter 8, we present two edge bundling methods for
streaming and sequence graphs which incorporate the above-
mentioned improvements.

2.4 interaction

Apart from the concerns of constructing a graph layout (see
Secs. 2.2.1 and 2.2.2) and next rendering the constructed layout
(see Sec. 2.2.3), interaction is a major component of any graph vi-
sualization method. Essentially, interaction solves the problem
of presenting additional information (in a limited spatial area)
which the underlying EBL and rendering methods being used
cannot show due to either the inherent limitations of these meth-
ods, or the size of the visualized graphs.

Related work in interaction for large graph visualization falls
within several areas, as follows.

2.4.1 Magic lenses

The Magic Lens [19] introduced the idea of locally modifying
a screen region based on a user-selected operator. Originally
used for modifying the graphics appearance and/or editing the
properties of shapes at a focal point, the Magic Lens was sub-
sequently extended to allow more complex operations such as
complex effect compositing and interactive lens parameter edit-
ing [20]. Tangible magic lenses extended the base concept to
allow users to ‘slice’ through, or zoom in, layered 2D or 3D
datasets by interactively moving a 3D tracked physical planar
object (the lens) which is either rigid [162] or flexible [113]. Non-
linear projection was added to magic lenses to deform 3D scenes
as if seen through a cylindrical or spherical lens, working fully
in image space, i.e. without access to the actual 3D scene [221].

2.4.2 Semantic lenses, focus and context, and deformation

The dust and magnet technique allows users to de-clutter large
scattered plots by placing several data-attribute-driven ‘mag-
nets’ in the display space and moving data points close to them
based on the points’ attributes [222]. This metaphor is some-
what similar to the preset controller [201] which is, however,
used for the inverse operation of synthesizing data values based
on the distance of a cursor to several data-attributed presets.
The bundled graph visualization presented in [79] for compar-

2.4 interaction 23

ing software hierarchies proposes a circular and a line-based
lens which allow users to interactively select a bundle of inter-
est by drawing and/or brushing over the displayed graph. How-
ever, no deformation is used here: focus+context is reached by
color-based highlighting the selected edges.

In a different context, Niels et al. visualize vessel movements
(trajectories) on a geographical map using a blending technique
which groups close trajectories into smoothly shaded shapes
[215]. Overdraw is eliminated as the dataset is shown as a con-
tinuous shaded map. A simple form of semantic lens is used
to emphasize specific trajectories, e.g. slow moving ships, by
tuning the shading and blending parameters. However, spatial
deformation is not used to declutter trajectories, since position
data is deemed too important to be altered.

Deformation techniques are used for visualizing large data-
sets by locally changing the underlying spatial layout of the data
elements in order to dedicate more space to important data el-
ements than to less important elements. Many variations have
been proposed from the original fisheye view [67]. For data ta-
bles, the table lens locally distorts the Cartesian cell layout to
give more space to specific table rows or columns [141]. For
node-link layouts, techniques include local edge deformations,
or re-layouts, such as the EdgeLens and its variations [219],
and selective edge hiding based on attributes at the position
of a user-specified focus point. The local edge lens and bring-
neighbors lens of [193] are variations of EdgeLens which re-
move edges between nodes within a focus zone (lens) and pull
nodes connected to nodes-in-focus within the lens, respectively.
Edge plucking allows the user to explicitly drag groups of edges
away to clarify cluttered zones and/or specify nodes or edges
to be left unmoved [218, 217]. However effective, edge plucking
requires a certain amount of manual effort. Link sliding and
’bring & go’ techniques [122] assist the exploration of node-link
diagrams by constraining the user-controlled focus point along
a given path in a snap-to-edge manner and moving nodes con-
nected to a node of interest close to that point. Fisheye tech-
niques have also been proposed for trees [193, 69].

2.4.3 Interaction in EBL layouts

For EBLs, the visualization can be simplified by creating ad-
ditional empty space. However, overdraw, or edge congestion,
makes interactive selection of specific edges difficult [218]. Since

24 related work

many edges overlap, local interaction techniques such as edge
plucking are less applicable here below bundle level. We ad-
dress this issue at several levels. In Chapter 5, we present the
‘digging lens’, a technique that helps separating bundles which
spatially overlap at a given location to allow one to see and/or
select bundles obscured due to the inherent overdraw. In Chap-
ter 9, we present a more general interaction technique for EBL
layouts that generalizes semantic lenses to work on combined
position and data attributes rather than on position or data only,
as present in most existing lens applications; generalizes the
lens from a fixed or parameterized shape (as present in existing
work) to arbitrary 2D shapes which are interactively specified
by the user via direct painting; uses animation to continuously
deform elements within the lens, for any 2D lens shape; and
generalizes the deformation to interpolate between two differ-
ent spatial layouts of a given dataset, apart from repelling ele-
ments based on distance to a focal point.

3C O M PA R I S O N O F N O D E - L I N K A N D
H I E R A R C H I C A L E D G E B U N D L I N G L AY O U T S

abstract: In Chapter 2, we have outlined that edge bundling is a popular technique

to display large graphs. However, to our knowledge, there is only little evidence for the

effectiveness of edge bundling techniques in program understanding, as compared to

more classical node-link metaphors. In this chapter, we introduce an informal user study

that compares HEB [78, 36], probably the best known edge bundling method, and several

classical node-link layouts provided in the Tulip graph visualization framework [9, 10].

As task, we focus on the comprehension of very large dependency graphs mined from

several open-source C/C++ software projects. We present supporting evidence for the

added value of edge bundling techniques, and also several enhancements to the basic

bundling technique which we found useful.

3.1 introduction

S oftware systems contain large and complex sets of depen-
dencies between their components, such as call and inheri-
tance graphs, and data flow and type dependency graphs.

Analyzing such dependencies is arguably one of the most im-
portant tasks of maintenance processes such as reverse engi-
neering and reengineering. A good understanding of such data
supports decisions for code refactoring, removing code clones,
identification of design patterns, and debugging.

However, understanding large dependency sets is challeng-
ing. Visualization is a method of choice, given the inherent diffi-
culty for understanding large, abstract graphs. Although numer-
ous methods are being proposed for visualizing dependency
graphs in the information visualization (InfoVis), software visu-
alization (SoftVis), and graph drawing (GD) communities, it is
still unclear how such methods are received by software prac-
titioners in the field, and how they compare when one must
accomplish tasks in program comprehension.

In this chapter, we focus on a subset of these activities, and
look at the problem of understanding call graphs extracted from
software systems which have a hierarchical structure. As we aim
to understand the effectiveness of such methods in practice, sev-
eral aspects are relevant besides the visualization method cho-
sen, e.g. the availability of a robust method to extract the call

25

26 comparison of node-link and heb layouts

graphs; the perfect integration of data extraction and visualiza-
tion [99]; and the scalability of the entire pipeline to real-world
systems of hundreds of KLOC.

We describe here an entire tooling pipeline that covers static
code analysis, extraction of calls and hierarchy data and their
attributes, and visualization. Our focus here is on C/C++ code
bases. For this, we implemented a standalone call graph ex-
tractor based on the oink framework [130], one of the most
complete, robust, and scalable open-source static analyzers for
C/C++. Our call graph extractor enhances the oink framework
with several analyses important for call graph extraction, such
as linking declarations to definitions across multiple translation
units, and detecting the potential set of called candidates for vir-
tual functions and function pointers. Besides calls, our extractor
also delivers hierarchy data (folders, files, classes, methods) and
various attributes thereof, such as the call type (static, virtual, by
pointer or reference), and details over the function definitions
(signature data, access rights, and source code location). The
extracted data is saved in several easily importable formats.

For visualization, we needed a scalable, understandable, and
easy to use method. As a candidate, we considered the hier-
archical edge bundling (HEB) technique, which was very well
received in both the InfoVis and SoftVis communities [78, 36].
However, a main question is: How does this technique compare
with classical, more accepted, techniques such as node-link di-
agrams (NLDs)? Such a comparison lacks, and is needed, for
large-scale graphs, as the author of the HEB technique also
points out. To this end, we performed a study that compares
our own implementation of the HEB which adds several en-
hancements we found useful, and several classical NLD layouts
provided in the Tulip graph visualization framework [9, 10].

For this comparison and also to test our entire pipeline, we an-
alyzed several large software systems written in C, C++, and a
mix of the two, such as bison, Mozilla Firefox, and the oink static
analysis framework itself. The analyses were done by develop-
ers experienced in software engineering in general and C/C++
in particular, but had no knowledge of the analyzed systems.
They had to answer several questions solely based on the two
visualizations. We compared the results with the aim of draw-
ing conclusions on the two types of visualizations.

Overall, we can describe our work using the 5-dimensional
model of Marcus et al [116]: our task is to analyze how two differ-
ent visual metaphors support the visual understanding of call
relations in large source code bases; the audience includes soft-

3.2 call data extraction 27

ware developers, designers, and architects; the target is a graph
containing attributed call and hierarchy data; the medium con-
sists of two different visualization tools, the Tulip framework
and our own enhanced HEB method; finally, the representation
consists of various types of node-link diagrams and the hierar-
chical edge bundle metaphor.

This chapter is structured as follows. Section 3.2 presents
our call dependency extractor for C/C++. Sections 3.4.1,3.5 and
[130] present the results obtained when visualizing call graphs
extracted from the bison, Mozilla Firefox, and oink open-source
code bases. In this part, we also introduce the various enhance-
ments we added to the original HEB technique. Section 3.7 dis-
cusses the results found in this study. Section 3.8 concludes the
chapter.

3.2 call data extraction

For our goal, we need a call graph extractor able to accurately
detect the various types of function calls occurring in C and
C++ source code bases, and is also scalable for real-world sys-
tems. After analyzing the available options, we choose to build
such a tool atop of the oink static analysis framework. oink

includes a full-fledged C/C++ parser based on GLR technol-
ogy. Parsing produces possibly ambiguous abstract syntax trees
(ASTs), which are next disambiguated and merged by a seman-
tic analysis pass in a single annotated syntax graph (ASG). The
semantic analyzer implements the full C/C++ lookup rules, op-
erator overloading disambiguation, type conversions, and all
other operations that determine the type of a symbol and as-
sociate it with its declaration. The output of oink is an ASG of
the program, i.e. an AST annotated with type information. A
major advantage of oink is that it is open source, and also has a
fine-grained API to investigate the produced ASG. This allowed
us to implement a call graph extractor atop of the basic static
analyzer with relative ease, as follows.

3.2.1 Location of calls and definitions

The first step is to locate the constructs denoting function calls.
This is easy, as oink provides a visitor by which we can find
all AST node types denoting function calls. These are ’classical’
function calls, constructors, destructors, and operators (includ-
ing conversions and new operators). oink will also provide im-

28 comparison of node-link and heb layouts

plicit function calls that do not appear as explicit syntax in the
program, e.g. calls of base class constructors in derived class con-
structors and calls of destructors of local stack objects when a
scope is exited. Such information has equal importance to ’clas-
sical’ function calls in refactoring analyses.

Second, we locate all function definitions, i.e. functions hav-
ing a body. This is equally easy using the AST visitor of oink.
As for calls, all types of function definitions are located, includ-
ing inline functions and template functions.

Third, for each function call and function definition, we lo-
cate its declaration. For function definitions, this is trivial, as a
definition is its own declaration. For function calls, the type in-
formation in the ASG output by the semantic analysis provides
us with the unique declaration of the called function within its
translation unit.

3.2.2 Linking

C/C++ programs consist of multiple translation units assem-
bled by a linker which links function declarations from a unit
with the corresponding (unique) definitions provided by an-
other unit. We implemented this step atop of oink as follows.
For each translation unit, we save the definitions and declara-
tions of all externally visible functions (i.e., functions that do not
have static linkage) in a temporary file. Next, we scan all decla-
rations without definitions in all such files and match them to
definitions. This step is massively simplified as oink provides
APIs to check that two function signatures match, according to
the full specification of the C/C++ languages. Function decla-
rations for which no definition is found, e.g. because they are
implemented in binary system libraries, are left unmatched.

3.2.3 Special cases

The output of the linking step is a program-wide call graph
whose nodes are function calls and function definitions (or dec-
larations, for functions having no definitions) and whose edges
are the calls. However, some complications exist. In C/C++,
functions can be called via pointers, and C++ has virtual func-
tions. In such cases, the previously described method would
only find the declarations of the called functions, but not their
definitions. We can provide more specific information, as fol-
lows. For functions called via pointers, we construct a set of can-

3.3 methodology 29

didates over the entire program which could be the targets of
the respective call. This involves all function definitions whose
signature matches the call and which do not have static linkage.
For virtual C++ functions, we do the same, this time considering
all public virtual methods declared in each class hierarchy. This
yields a conservative set of candidates for each call via pointers
or virtual functions. Although such candidate sets may seem to
be overly large, they are quite small in practice (5..15 functions),
as signature variability and static linkage limit the number of
potential candidates. It is possible to further restrict this set by
using more sophisticated data flow analyses. The oink frame-
work provides APIs that could be used to implement this, albeit
with more effort.

3.2.4 Hierarchy

Apart from function calls, we also extract a program hierarchy.
This contains nodes that describe the containment of function
definitions (or declarations when no matching definitions were
found), and has several levels: directories, files, namespaces,
classes, and methods, as well as ’free’ (file-scope) global func-
tions. Constructing this hierarchy is easy, since oink provides
for each AST node its exact source code location.

Overall, the output of our entire analysis is a program-wide
compound digraph containing calls and containment relations.
Besides this, we also save data attributes for each node, e.g. its
name, function details (method, signature, location in the code,
access specifiers) and call details (static, virtual, by pointer, and
whether the call is exact or determined via our conservative
analysis outlined above). Producing such a graph from a given
code base is easy: one can simply run an existing makefile, sub-
stituting the compiler’s name with our extractor, with no further
changes. The resulting graph is the input for the visualizations
described next.

3.3 methodology

To compare the two types of visualizations we target, i.e. node-
link diagrams (NLD) and hierarchical edge bundles (HEB), we
proceeded as follows. First, we extracted several call graphs
from increasingly large systems, as described in Sec. 3.2, among
which we mention the bison parser generator, the oink C/C++
static analysis framework, and the Mozilla Firefox browser. Next,

30 comparison of node-link and heb layouts

five developers with no prior knowledge on the analyzed sys-
tems were introduced to the NLD and HEB visualization meth-
ods to be used, and were given the opportunity to use these sys-
tems for a few days, on small datasets, until they were comfort-
able with their operation. Next, the developers used the NLD
and HEB visualizations to answer a number of generic ques-
tions on the analyzed systems, e.g.: which are the main compo-
nents in the system; how these components communicate with
each other; whether the system is highly modular or not; where
is dead code (uncalled functions); and how is the use of poly-
morphic interfaces (i.e. function pointers and virtual functions)
spread over the system. Next, several specific questions were
asked, e.g.: which interfaces (i.e. sets of functions declared in
the same component) does a specific component call, or provide;
and where is a given interface used. The answers, as well as ad-
ditional comments and remarks on the operations performed to
achieve the answers, and the ease-of-use of the respective visu-
alizations, were recorded. A sixth person with detailed knowl-
edge on the analyzed systems performed the study separately
and also checked the answers of the other five. Finally, conclu-
sions were drawn using the analyzed answers.

3.4 case study 1 : the bison parser

3.4.1 Node-link visualizations

The first type of visualization we analyzed is the classical node-
link visualization. Nodes are function definitions or containers
(directories, files, classes) and edges show calls. For visualiza-
tion, we used the Tulip framework for several reasons. First,
Tulip provides a wide range of functions including many node-
link layouts, search and select functions, interactive navigation,
and visual customization of colors, shapes, textures, and labels.
Second, Tulip is highly memory and speed optimized for very
large graphs. Last but not least, all operations are directly ac-
cessible via a well-documented user interface (menus, dialogs),
making it usable with zero programming effort. This is essen-
tial for us, as we assume our users are programmers who want
to quickly investigate a large call graph, and have no time or
experience to develop their own visualization code.

Figure 3.1 shows several snapshots produced using the NLD
layouts of Tulip on the bison call graph (868 functions, 5535 calls).
From the recorded procedure, we saw that all users first aimed

3.4 case study 1 : the bison parser 31

f)

a) b)

d) e)

c)

Figure 3.1: Visualizations of the bison call graph using Tulip: hierarchy
only using bubble trees (a) and directed trees (b); force-
directed layouts of hierarchy and calls using HDE embed-
der (c); hierarchy and calls using bubble trees (d) and den-
drograms (e); and GEM (f).

at obtaining a simple hierarchy view, the reason being to get
an idea of the system size, number of layers, and which are the
largest subsystems. Images (a) and (b) in Fig. 3.1 show the two
layouts which were found best for this task: the bubble tree lay-
out, which arranges child subtrees in a circle around their par-
ent node [73] and the classical directed tree layout. For this and
the other systems analyzed, the bubble tree layout was found
easier to comprehend, as it yields layouts with good aspect ra-
tios, and also lets one compare the relative sizes of subsystems
quite easily (circle size versus length of a row of nodes in the
tree layout).

The next step was to bring the calls in the picture. For this, the
first attempt was to add them to the existing hierarchy visualiza-
tions. Figure 3.1 d shows the complete compound graph with
the bubble tree layout. Calls are drawn as thin yellow (light)
lines, containments are drawn as thick (dark) black lines. Node
colors and shapes show their type: directories (blue, squares),
files (green, squares), and functions (red, circles). As suspected
upfront, the result is quite cluttered. At this scale, the only
conclusion that was drawn is that the system is quite tightly
connected; its three main subsystems lib, src and include, i.e.
the top-left, top-right, and bottom large circles respectively, are
all strongly interacting. Another observation achieved with this

32 comparison of node-link and heb layouts

view is that functions are not uniformly spread over files: some
green squares are surrounded by many red circles. These are
files containing many functions, whereas others have only one
or a few such circles. These are files containing few used func-
tions, e.g. the include subsystem.

Alternative types of tree layouts provided by Tulip were ex-
plored to show both hierarchy and calls, as well as various lay-
out parameter settings. Most of them did not produce useful
results, due to the high clutter caused by the call edges. For ex-
ample, Fig. 3.1 e shows a dendrogram layout overlaid with call
edges drawn as splines. It might be argued that this layout is
useful in comparing call depths between different subsystems,
by looking at the height of the red dot sequences (functions) in
the lower part of the image. However, showing the actual call
edges is not useful, as they produce just clutter.

Further, several force-directed layouts were tried out. Figures
3.1 c and f show the compound graph drawn using the HDE em-
bedder [74] and GEM [63] layouts of Tulip. These are optimized
versions of the original publications, which add several heuris-
tics and speed enhancements to deliver higher quality in less
computational time (see [9, 10] for details). The HDE layout is
able to pull the hierarchy nodes (directories and files, shown in
blue, respectively green) apart from the function nodes (shown
in red, in the middle). For example, we see the files in the
src directory being isolated in the upper-left part of the im-
age. However, the function nodes, strongly connected by many
calls, form a cluster in the middle which is not understandable.
Figure 3.1 f shows a layout using an enhanced version of the
well-known GEM spring embedder. This layout is able to pull
apart the include subsystem, which contains system functions
used by the bison core, but cannot separate well the lib and src
subsystems, as these are tightly coupled.

Overall, the bubble layout was considered to be the best for
the generic comprehension tasks, as it exhibits a stable, reg-
ular node placement pattern. For the specific comprehension
tasks (see Sec. 3.3), the built-in search-by-attribute-value and
path highlighting functions of Tulip were used. Although these
functions are easily accessible via Tulip’s GUI, the high visual
clutter caused by the dense call pattern in bison severely limits
the effectiveness of the node-link visualizations. Here again, the
bubble tree performed best. The reason seems to be the fact that
this layout strongly emphasizes the hierarchy, which is used as
a visual guide when analyzing specific call relations.

3.4 case study 1 : the bison parser 33

3.4.2 Hierarchical edge bundling visualizations

For the second type of visualization, we used SolidSX [159], our
own implementation of the HEB method with several enhance-
ments, described next1. The design of SolidSX is minimalist:
all operations are available within a single interface, the main
visualization. There are no extra buttons or menus except pop-
ups. All operations are accessible with the smallest number of
mouse clicks possible. The main HEB idea is simple: hierarchy
is drawn as a set of concentric rings divided in sectors, each sec-
tor being the container of inner ring sectors corresponding to it;
calls are drawn as splines between their corresponding ring sec-
tors; splines are further bundled according to the containment
hierarchy, as described in [78].

Figure 3.2 a is an overview of the same bison call graph. Sev-
eral points were made when comparing this image with the
NLD layouts in Fig. 3.1. Showing containment as concentring
rings was very easy to understand. The fact that node labels
are, at least on the larger rings, readable was seen as a great
advantage compared to the NLD label display. Although great
effort was done in Tulip to eliminate label overlaps and provide
an automatic level-of-detail control of the label size, this was
not seen as highly effective. Labels still overlap call edges, and
the level-of-detail feature makes labels pop in and out the view
depending on the zoom level in a disturbing way.

We enhanced the concentric ring design to display attributes.
Each node in SolidSX’s input graph can have any number of
data attributes, stored as (name,value) pairs, the values being
string, numerical, or boolean. We map these values to node
colors. A pop-up widget displays all different attribute names
present in the input (Fig. 3.2 a top-right). Attributes can be
sorted by name or number of different values they take in the
input data. Simply moving the mouse over the listed attributes
(brushing) changes the colormapped attribute. For numerical
and boolean attributes, we use a simple blue-to-red colormap-
ping based on range. Strings are mapped based on alphabet-
ical ordering. Overall, one can see which attributes are avail-
able, and quickly change the one shown to compare different
attributes over the same dataset, with one single mouse click
and mouse stroke. An identical mechanism is provided for edge
attributes, which are mapped to edge colors.

1 SolidSX is available for academic or commercial users from www.solidsourceit.
com/products

www.solidsourceit.com/products
www.solidsourceit.com/products

34 comparison of node-link and heb layouts

1
2

3

a) b)

Figure 3.2: Visualizations of the bison call graph using SolidSX: entire
system (a); selected subsystem with most function-pointer
calls (b).

Looking at the overview of bison in Fig. 3.2 a, we quickly lo-
cate the main interactions between the three subsystems: src-
lib (1), src-include (2), and lib-include (3). Due to the bun-
dling effect, visual clutter is much smaller than in the NLD vi-
sualizations in Fig. 3.1. It was easy to find the many functions
which do not get called: these are the innermost circle segments
which have no edges connected to them. Doing this task in the
NLD visualizations was only possible using Tulip’s search func-
tions, but not the images.

Assessing the usage of ’polymorphic’ interfaces2 was easy, by
coloring edges based on call type. In Fig. 3.2 a, static function
calls are red, and pointer calls are blue. Clearly, the pointer calls
are a minority. Many such calls exist in the bitset.h file (below
in the image). We added to SolidSX the ability to show only
calls related to a given node, by clicking on that node. When
clicking on bitset.h, the file and all its contained functions are
displayed in black outline (Figure 3.2 b). We see that this file
has many blue edges going to itself, two blue edges going to
bitset.c to its left, and a few red edges going to various other
parts of the system. This is interpreted as follows: bitset.h pro-
vides many function declarations, which have equivalent signa-
tures (the loop-like edges atop bitset.h); these are only called
via pointers; there are only few clients who call such function
pointers (the red edges going outwards from bitset.h); and
there are only two function definitions, in bitset.c, which can
implement these interfaces. This is precisely the type of infor-

2 By this, we mean C functions called via pointers in bison

3.5 case study 2 : mozilla firefox 35

mation stored in the candidate sets of the pointer-call analysis
(Sec. 3.2).

Adding color to the function definitions in SolidSX brings
additional insight. In Fig. 3.2, we show the static linkage at-
tribute of a function. Green indicates static functions, while
blue shows functions visible by a linker. Interestingly, all func-
tion declarations in bitset.h are static. Hence, access to these
’polymorphic’ features of bison can only be done via pointers to
them.

3.5 case study 2 : mozilla firefox

In this second example, we analyzed the Mozilla Firefox code
base. Given space limitations, we will only discuss two plugins
of the entire system. Figure 3.3 a,b show the entire call graphs of
the libgklayout plugin (11817 functions, 21167 edges), visualized
using SolidSX and Tulip’s GEM layout. Directory nodes are
drawn blue, files are yellow, classes are green, and functions
are blue. Static calls (edges) are red, virtual calls are cyan. At
this scale, the GEM layout is clearly not able to disentangle the
calls. However, the HEB layout is reasonably easy to read, due
to the edge bundling and edge aggregation. For example, we
see that almost all virtual calls are directed at a few functions in
a single file, nsCOMPtr.h, outlined in black in the upper-left of
Fig. 3.3 a. The virtual calls are only visible as a blue spot in the
GEM layout (Fig. 3.3 b).

This figure illustrates also a further enhancement we added
to the basic HEB idea. In SolidSX, we allow users to show or
hide entire hierarchy layers by simple mouse operations. Hid-
den layers, usually the top-level ones in the system, are drawn
as very thin outer rings, as opposed to the regular visible lay-
ers, which are thick. Hiding layers saves screen space for the
inner layers in deep hierarchies. Still, one can see the color of
the hidden (thinly drawn) layers, and count them, thereby get-
ting a cue of how deep one is in the hierarchy. The width of the
hidden rings, regular rings, and leaf-node (functions) ring can
be also controlled explicitly by the user, if desired. A zoom-in
on a small sector of Fig. 3.3 a is shown in Fig. 3.4. We see here
10 hidden hierarchy layers which take up only the space needed
by a single layer in the big picture.

Fig. 3.3 c,d show a much smaller plugin, libembed (677 nodes,
936 edges). At this scale, both the NLD and HEB layouts per-
form comparatively. The users detected here quite easily, in both

36 comparison of node-link and heb layouts

a) b)

c) d)

Figure 3.3: Call graphs of Mozilla plugins: libgklayout (a,b) and libembed
(c,d). Color emphasizes virtual calls.

images, that this plugin contains only a single virtual function
(marked by a circle and arrow in the images), called 7 times.
This figure shows yet another enhancement of the original cir-
cular layout: Instead of rendering all nodes on the same level
as contiguous segments on the same circle, we leave gaps be-
tween neighbor segments which correspond to nodes which do
not have the same parent. In other words, contiguous circle seg-
ments indicate siblings, and gaps separate subtrees. This view
helps emphasizing the software’s hierarchical tree structure, at
the expense of a small space trade-off.

3.6 case study 3 : the oink framework

In this third and last example, we analyzed the oink C/C++
static analysis framework itself. oink contains around 350 KLOC
written mainly in C++, with small parts in C, developed over
6 years by a team of 10 people. The architecture of oink is

3.6 case study 3 : the oink framework 37

hidden nodes leafsregular nodes

Figure 3.4: Zoom-in on Fig. 3.3 a illustrating the hierarchy hiding.

quite elaborate. It consists of a lexer (implemented using flex), a
GLR parser (implemented using the elkhound parser-generator
library[118]), an ast class library for the over 180 C/C++ gram-
mar nodes, and a semantic analyzer (elsa). Our expert program-
mer, who worked for over 2 years on oink development, stated
that the lexer, parser generator, and AST class library are rather
modular and reusable subsystems, in line with the intentions
of the oink developers to make these reusable for a family of
languages; however, the semantic analyzer is a much more com-
plex subsystem, with tight couplings throughout the entire sys-
tem. The question was if this kind of insight could be obtained
by the other users using only dependency visualizations.

The oink call graph, extracted as described in Sec. 3.2, has
23497 function definitions, 242132 calls, and 2060371 attribute
values. This is two orders of magnitude larger than all systems
visualized so far with the HEB method [36]. At this scale, all
NLD layouts in Tulip break down - some only produce fully
cluttered images, some abort with no result. Since showing all
these calls at once may be sometimes too much information
even for the HEB layout, we added support in SolidSX to allow
to navigate the input graph by hierarchy layers. Clicking on
nodes allows expanding or collapsing a node. Collapsed nodes
aggregate all their calls from/to outside nodes ni and display a
single thick edge per node ni. If the attributes of all aggregate
edges have the same value, then this value is used to color the
edge, else the edge is colored gray. Figures 3.5 a-c show the call
dependencies of the entire oink system at file level (a), class
level (b), and method level (c). Only three clicks are needed to
produce these three views - each click further expands a deeper
hierarchy level. Directory nodes are drawn blue, files are yellow,
classes are green, and functions are blue.

38 comparison of node-link and heb layouts

elkhound

elsa

ast

a) b) c)

d) scoping e) variable (types) f) template

Figure 3.5: Oink framework: multilevel visualization of calls on the
level of files (a), classes (b), and functions (c); Main semantic
analysis subsystems: the scoping environment (d), variables
(e), and template analysis code (f). Selected subsystems are
shown in black.

In Fig. 3.5 a, the ast and elhound systems, visible by their
white background and thick black borders, were selected by
clicking as explained in Sec. 3.4.2. We see that these systems
have few calls from the analyzer’s core, elsa. This suggests a po-
tentially good separation of these three subsystems. The next
image, Fig. 3.5 b, shows the entire system one level deeper, i.e.
at class level. The innermost ring is predominantly blue, which
means function definitions (blue) are directly contained in im-
plementation files. The few green spots denote private imple-
mentation classes, which are thus only sparsely used in this sys-
tem. The next image, Fig. 3.5 c zooms one level deeper, showing
all functions in the system. As the number of functions in this
case is far larger than the amount of available pixels, we chose a
simple solution: we render only the nodes involved in the rela-
tions with the selected nodes, and render the remainder of the
nodes in gray (see Fig. 3.4 for a detail zoom-in corresponding to
the image in Fig. 3.3 a). These are shown in green on the inner
circle in Fig. 3.5 c. Here, we see that, although the two selected
subsystems ast and elkhound have very strong internal cohesion
(many self edges), their communication with the system’s core
(elsa) is indeed quite limited. This is a good sign for modularity.

3.7 discussion 39

Figure 3.5 c also shows the relative sizes of oink’s compo-
nents. Files containing many functions occupy a larger part of
the circular layout. We see that these are the files of the semantic
analyzer: the scoping environment (cc_scope.cc), the template
analysis code (template.cc), the type system classes (variable,
cc_type.cc). To analyze how modular the semantic analyzer is,
we select its components by clicking (see Fig. 3.5 d-f). We now
see not only that these are large, but also have much more con-
nections with large parts of the entire system than the ast and
elkhound subsystems - compare the amount of green segments
on the innermost ring and number of edges in Figs. 3.5 d-f with
those in Fig. 3.5 c. This finding correlates with the expert pro-
grammer’s experience: oink is modular with respect to the ast
and elkhound parser generator, but its semantic analyzer is over
half of its code, and a tightly coupled one for that matter.

Finally, to assess the polymorphism of the oink code base, we
use again edge coloring. In Fig. 3.5, red denotes static function
calls, and blue denotes virtual calls. We see relatively few vir-
tual calls - this is in line with the Oink design documentation,
which stresses a minimal use of virtual methods for optimal
performance.

3.7 discussion

3.7.1 Usability comparison

We distilled several points from the reports provided by the five
users in this study. All users strongly agreed that the HEB lay-
out is overall vastly superior to node-link diagrams (NLDs) for
navigating call-and-hierarchy graphs larger than a few hundred
nodes, for virtually all considered tasks, because:

1. HEBs show more data on the same amount of screen space

2. edges in HEBs are much less cluttered

3. hiding/showing nodes changes HEBs less than NLDs

4. the circular layout draws parent nodes naturally larger

5. HEBs show more node labels with less clutter than NLDs

6. interaction in HEB is always near-real-time, while some
NLDs take long to compute

However, some advantages of NLDs were mentioned too:

40 comparison of node-link and heb layouts

1. NLDs allow more freedom in manual layout editing

2. NLDs make it easier to follow a path than the HEB

3. the HEB circular layout places sometimes unrelated nodes
close to each other

For our tasks of interest, the advantages of HEB compensated
the advantages of NLDs. Although not rigorously timed, we no-
ticed users of HEBs being 3..5 times faster in accomplishing the
same task than when using NLDs, the average task in HEB be-
ing 1..3 minutes. The search and select functions of both tools
used are comparable in effectiveness and simplicity, so the dif-
ference can be attributed to the visualization part. For instance,
obtaining a view as Figs. 3.2 or 3.5 takes around 1.5 minutes and
around 10-15 mouse clicks, including loading the data. Obtain-
ing a similar image in Tulip takes around 5 minutes and a few
tens of clicks and selections. In both cases, we used no custom
application presets.

3.7.2 Performance comparison

Both Tulip and SolidSX are highly engineered for performance,
which is important for graphs of hundreds of thousands of el-
ements and attributes. For example, the oink dataset (Sec. 3.6)
takes 178 MB to store in Tulip and 395 MB in SolidSX. The
difference is explained by Tulip’s special memory management
which uses custom bit-level allocation to limit memory waste [8].
All Tulip tree-like layouts are of comparable, near-real-time, per-
formance as the HEB layout. The HDE embedder and GEM are
considerably slower, taking e.g. about 2 minutes on the relatively
small bison dataset (Sec. 3.4.1) on a 2.8 GHz PC.

3.7.3 Threats to validity

For our comparison of visualization methods for call-and-hier-
archy data, the following points are important. First, we only
compared a limited number of NLD layouts with the HEB lay-
out. Other layouts, e.g. SHriMP-like ones, could perform bet-
ter than those studied here. There are, however, reasons to be-
lieve the opposite. SHriMP-like layouts are effective in showing
containment, but they do not scale well in number of associa-
tions. These tend to occlude the containment drawing, and also
are hard to distinguish among themselves (see e.g. [106, 172]).

3.8 conclusions 41

Such layouts are effective for top-level architecture-like views,
but not for massive call graphs. However, we could not test all
possible NLD layouts in existence. The choice for Tulip was ex-
plicitly done from an end-user perspective: choose a scalable,
documented, user-friendly, highly optimized NLD visualization
tool, compare it with a HEB implementation sharing the same
features, and see which one is better accepted by users.

3.7.4 Availability

The entire toolset, including the C/C+ call-and-hierarchy extrac-
tor, the SolidSX visualization tool, and the extracted call graphs
in Tulip and SQL formats, are available from the authors upon
request. Additional components to our toolset, not discussed
here, include plug-ins to automatically extract dependencies,
syntactic information, and metrics from Visual C++ projects and
.NET assemblies.

3.8 conclusions

We have presented a study that compares the usage of node-
link diagram (NLDs) and hierarchical edge bundle (HEB) lay-
outs for the visualization of large call-and-hierarchy graphs of
software systems. To perform this, we have constructed a fully
automatic pipeline for extracting call graphs from C/C++ pro-
grams, including a call static analyzer, and an enhanced imple-
mentation of the HEB method for navigating very large graphs.
The study points out an important advantages of the enhanced
HEB method for typical comprehension tasks involving call-
and-hierarchy data, and demonstrates the applicability of such
methods for the understanding of large, real-world, programs.

We are currently working on extending our call-and-hierarchy
visualization with additional views to support investigation of
additional graphs, e.g. class hierarchies, usage of types, and data
flow, as well as visualizing multiple attributes in a single view,
e.g. static type information, type matching, and source code met-
rics. It is also interesting to study how some of the perceived ad-
vantages of NLD layouts could be merged with the HEB views
to obtain a visualization that combines the benefits of both meth-
ods.

The main conclusion from this study is that edge bundled lay-
outs (EBLs) are a promising tool for exploring large structure-
and-dependency (compound) graphs, and surpass the classical

42 comparison of node-link and heb layouts

straight-line node-link layouts in terms of readability. However,
we also discovered that EBLs pose some interpretation chal-
lenges, such as visually following overlapping bundles. In Chap-
ter 5, we present a method which alleviates these overlap prob-
lems by proposing a simplified way to render edge bundles.

This chapter is based on:

Alexandru Telea, Hessel Hoogendorp, Ozan Ersoy, and Dennie Reniers. Extrac-

tion and visualization of call dependencies for large C/C++ code bases: A com-

parative study. Proceedings of the 5th IEEE International Workshop on Visualizing

Software for Understanding and Analysis (VISSOFT 2009), 81-88 (2009).

4T H E S O L I D * T O O L S E T F O R S O F T WA R E V I S U A L
A N A LY T I C S

abstract: In Chapter 3, we have shown that graph bundling is an effective tech-
nique for typical program comprehension tasks. However, to be successful in practical
contexts, such as for maintenance activities in the IT industry, a visualization technique
has to be embedded in a complete toolchain, with fact extraction, program analysis, data
filtering and selection, and multiple views that address multiple concerns. In this chap-
ter, we present the architecture of an end-to-end software visual analytics (SVA) system
in which graph bundling is an essential component. Software visual analytics (SVA)
tools combine static program analysis and fact extraction with information visualization
to support program comprehension. We illustrate the toolset’s usage for constructing
software visualizations with examples in education, research, and industrial contexts.
We next discuss several design choices which we made during the tool’s evolution path
from research prototype to integrated product. Our discussion provides a context for
assessing the additional requirements that a software visualization application based on
edge bundling has to comply with in order to be accepted in practice.

4.1 introduction

A s mentioned in Chapter 1, software maintenance covers
80% of the cost of modern software systems, of which
over 40% represent software understanding [164, 35].

Although many visual tools for software understanding exist,
most know very limited acceptance in the IT industry. Key rea-
sons for this are limited scalability of visualizations and/or
dataset sizes, long learning curves, and poor integration with
software analysis or development toolchains, as strongly voiced
by several researchers [143, 31, 99, 223].

Visual analytics (VA) integrates graphics, visualization, inter-
action, and data collection and analysis to support reasoning
and sensemaking for complex problem solving in engineering,
finances, security, and geosciences [220, 188]. These fields share
many similarities with software maintenance in terms of data
(large databases, structured text, and graphs), tasks (sensemak-
ing by hypothesis creation, refinement, and validation), and
tools (combined analysis and visualization). VA stresses tool in-
tegration, as opposed to pure data mining or fact extraction
(whose main focus is scalability) or information visualization
(Infovis, mainly focused on presentation). As such, VA is a prom-
ising model for building effective and efficient software visual
analysis (SVA) tools. However, building SVA tools for software

43

44 the solid* toolset for software visual analytics

comprehension is particularly challenging, as developers have
to master static analysis, fact extraction, graphics, information
visualization, and user interaction design technologies.

In Chapter 3, we have described a preliminary comparison
of the effectiveness of node-link layouts and edge bundling lay-
outs (EBLs) in the context of program understanding. The key
conclusion was that EBLs show strong advantages, in terms of
readability and visual scalability, as opposed to node-link lay-
outs. However, for EBLs to be accepted as (part of) integral pro-
gram comprehension solutions in the IT industry, they have to
be complemented by additional tools and mechanisms, such as
fact extraction, quality metrics computation, and additional vi-
sualization techniques.

In this chapter, we present our experience in building SVA
tools for software maintenance. We outline the evolution path
from a set of research prototypes to a commercial toolset used
by many end-users in the IT industry. Our toolset supports
static analysis, quality metrics computation, clone detection, and
state-of-the-art Infovis techniques such as table lenses, cushion
treemaps, and dense pixel charts. EBLs form a key element of
our toolset. The toolset addresses several use-cases, of which
we focus here on two: visual analysis of program structure and
code duplication. These use-cases can be combined to support
tasks such as assessing system quality and planning refactoring.

The contributions of this chapter are as follows:

• describe our toolset with respect to the ease of installation,
usage, and applicability to program comprehension;

• detail the design decisions and evolution path of a SVA
toolset for program comprehension from research proto-
types into an actual product;

• present the lessons learned in developing our toolset in
research and industrial contexts, with focus on efficiency,
effectiveness, acceptance, and experienced pitfalls;

• present evidence for our design decisions based on actual
toolset usage.

In the context of the current thesis, we argue that the con-
struction and usage of our SVA toolset (in which EBLs are a key
visual element) extend and support the hypothesis outlined in
Chapter 3 that EBLs are an effective and efficient instrument
for visual program comprehension in practice. However, the
lessons learned from our SVA toolset construction presented

4.2 sva program comprehension toolset : architecture 45

here also stress the point that EBLs, by themselves, cannot be
a solution to program comprehension in practice: For them to
work effectively, they have to be complemented (and integrated
with) carefully designed techniques for data extraction, interac-
tion, and additional visualizations.

The structure of this chapter is as follows. Section 4.2 details
our toolset’s architecture. Section 4.3 details two tools in our
toolset which offer fact extraction and visualization of software
structure, metrics, and code duplicates, and outlines its installa-
tion, usage, and extensibility. Section 4.4 shows the use of our
toolset in an industrial software assessment case. Section 4.5 dis-
cusses the lessons learned in developing efficient, effective, and
accepted SVA tools. Finally, section 4.6 concludes the chapter.

4.2 sva program comprehension toolset : architec-
ture

The research group in which the current thesis was completed
was involved, in the past decade, in the construction of over
20 SVA tools for software requirements, architecture, behavior,
source code, structure, dependencies, and evolution. These tools
were used in academic classes, research, and industry, in groups
from a few to tens of users. Latest versions of these tools have
formed the basis of SolidSource, a company specialized in soft-
ware visual analytics [160]. Table 4.1 outlines the most impor-
tant tools in this collection, with binaries and source code avail-
able [169]. Evolution of this toolset highlights several aspects
relevant to the path of effective academic-to-widely-used tool
development: architecture and design decisions, choice of tech-
niques and software components, and effective presentation as-
pects. We next detail the data and visualization architecture of
this toolset (Secs. 4.2.1 and 4.2.2). The toolset’s architecture evo-
lution from research prototypes to products is discussed further
in Sec. 4.5.9.

4.2.1 Data architecture

Our toolset uses a simple dataflow architecture (Fig. 4.1). Raw
input data comes as unversioned source code or versioned files
stored in SCM systems. From raw data, we extract several facts:
syntactic and semantic structure, static dependency graphs, and
source code duplication. The data architecture used to manage
these facts is detailed next.

46 the solid* toolset for software visual analytics

Tool Targeted data types Visual techniques Analysis techniques Drawing Data storage Users

SoftVision software architecture node-link layouts none (visualization tool only) Open text files 10..20

(2002) [183] (2D and 3D) Inventor (RSF format)

CSV source code syntax pixel text, cushions C++ static analysis Open plain text and 10..20

(2004) [112] and metrics (gcc based parser) Inventor XML

CVSscan[206] file evolution dense pixel charts CVS fact extraction OpenGL text files 20..30

(2005) annotated text (authors & line-level changes) and SQLite

CVSgrab project evolution dense pixel charts, CVS/SVN fact extraction OpenGL text files 30..50

(2006) [204] cushions (project-level changes) and SQLite

MetricView UML diagrams and 2D node-link layouts, C++ lightweight static analysis Open UML files 50..80

(2006) [186] quality metrics table lenses (class diagram extraction) Inventor (XMI format)

MemoView dynamic logs table lenses, cushions, C runtime instrumentation OpenGL binary files 5..10

(2007) [121] (memory allocations) timelines (libc malloc/free logging) (own format)

SolidBA build dependencies table lenses, C++ dependency mining, OpenGL SQLite 15..25

(2007) [182] build cost metrics 2D node-link layouts and automated refactoring

SolidFX reverse engineering pixel text, annotations, C/C++ heavyweight OpenGL binary files 50..75

(2008) [181] table lenses static analysis and SQLite

SolidSTA file and project-level dense pixel charts, CVS/SVN/Git fact extraction OpenGL SQLite 200..250

(2008) [160] evolution cushions, timelines and source code metrics

SolidSX structure, metrics, HEB views, treemaps, .NET, C++, Java OpenGL SQLite 200..250

(2009) [160] associations table lenses, cushions lightweight static analysis

SolidSDD code duplicates, HEB views, treemaps, C, C++, Java, C# configurable OpenGL SQLite 100..150

(2010) [160] structure, metrics table lenses, pixel text syntax-aware clone detection

Table 4.1: Software visual analytics tools - evolution history (Sec. 4.5.9).
Tools discussed in this paper are in bold. The first six tools
are research prototypes. The latter five tools (Solid*) are com-
mercial products.

Relational and attribute data is stored into a SQLite database
[163] whose entries point to flat text files (for actual source code)
and binary files (for complete syntax trees, see 4.3.2.1). Fact ex-
traction is implemented by specific tools: parsers and semantic
analyzers for source code, and clone detectors for code duplica-
tion (see Sec. 4.3).

Source code
- C, C++

- Java

- .NET/C#/VB

Static analysis
- code parsing

- binary analysis

- code duplication

Visualizations
- edge bundles

- treemaps

- table lenses

- annotated text

- dense pixel charts

- SQLite database

- XML & plain text files

- 3rd party formats

Persistent storage

Facts and metrics
- compound graphs

 - hierarchy

 - association

 - node/edge attributes

- metrics

 - string, numericalEvolution data
- Subversion

- CM/Synergy

- CVS, Git

- IDs of facts in the

 fact database

Selections

refer to

Repository mining

- changes

- authors

- commit logs
readwrite

Queries & filters
- call graphs

- code patterns

- metric engines

Fact database

Graphics engines

- OpenGL

- GLUT, FTGL

- wxWidgets

Applications

Scripting engines

- Python

- Tcl/Tk

- makefiles

SolidFX

SolidSX

SolidSDD

SolidSTA

Legend

data flow

implemented using

refers to

Figure 4.1: Toolset architecture (see Section 4.2).

4.2 sva program comprehension toolset : architecture 47

Besides facts, our database stores two other elements: selec-
tions and metrics. Selections are sets of facts or other selections.
They support the iterative data refinement in the so-called vi-
sual sensemaking cycle of VA [220, 188]. Selections are created
either by tools, e.g. extraction of class hierarchies or call graphs
from annotated syntax graphs (ASGs), or interactively by users.
Selections have unique names by which they are referred by the
tools and under which they are persistently saved. Metrics are
numerical, ordinal, categorical, or text attributes. Metrics can be
added to facts or selections by tools, e.g. complexity, fan-in, fan-
out, cohesion, and coupling, or set as annotations by users, e.g.
marking certain classes in a UML view as being ‘unsafe’.

Using an SQL database to query large attributed relational
data can pose efficiency problems if this requires multiple-table
joins [90, 203]. To alleviate this, we adopted the following schema
(see Fig. 4.2):

• each node, containment (hierarchy) or association edge,
and selection, has a unique ID;

• a hierarchy table: each row stores a containment edge, listed
as (parent, child) node IDs;

• an association table: each row stores an association edge,
listed as (from, to) node IDs;

• a node attribute table: each row stores all attributes (met-
rics) a1, . . . ,an of a given node as n columns;

• an edge attribute table: each row stores all attributes (met-
rics) a1, . . . ,an of a given edge as n columns; different
edge types, e.g. calls, uses, includes, are modeled by adding
an edge-type attribute;

• two selection tables per selection, for the node IDs and
edge IDs of the selected facts, respectively; additional at-
tributes (metrics) of the selected facts in the context of a
specific selection can be added as extra columns.

This schema can store any compound (hierarchy-and-asso-
ciation) attributed graph: ASGs, class hierarchies, call graphs,
or clone relations. New association types can be added to the
database without changing its schema, since types are stored
as attributes. The example in Fig. 4.2 (bottom) shows this for a
simple program. Hierarchy consists of a file main.cc with two
functions main() and run(Foo), and a class Foo with a method

48 the solid* toolset for software visual analytics

hierarchy table

edge ID parent

node ID

child

node ID
0

1

2

3

node attribute table

node ID attribute 1

(name)
main.cc

main()

run(Foo)

Foo

file

function

function

class

attribute 2

(type)

association table

edge ID from

node ID

to

node ID

association attribute table

edge ID attribute 1

(type)
defines

calls

uses type

calls

0

1

2

3

4

5

6

7

4

5

6

7

ID: 0
name: main.cc

LOC: 200

ID: 1 ID: 2 ID: 3
name: main()

LOC: 50

name: run(Foo)

LOC: 20

name: Foo

LOC: 100

ID: 4
name: load()

LOC: 80

ID: 0 ID: 1 ID: 2

ID: 3

ID: 4

ID: 5 ID: 6

ID: 7

0

0

0

3

1

2

3

4

0

1

2

1

1

2

3

4

4 load() method

attribute 3

(LOC)
200

50

20

100

80

contains
calls
defines
uses type

Legend

selection 1 tables

node ID

1

2

4

selection 1 (call graph of main())
selection 2 (requires graph of run(Foo))

edge ID

5

7

selection 2 tables

node ID

2

3

edge ID

6

Figure 4.2: Database schema (top) for a compound attributed graph
(bottom) and two selections: the call graph of main() and
the ‘requires’ graph of run(Foo).

load(). Associations capture call; define; and ‘uses type’ rela-
tions (e.g. the fact that run(Foo) uses the type Foo), modeled
as edge ‘type’ attributes. Nodes have two attributes: name and
lines-of-code size (LOC). Two selections exist: the call graph of
main() (red), and the ‘requires’ graph of run(Foo) (green).

On-the-fly the computed data, e.g. selections, metrics, visual-
ization and layout properties, and annotations, imply the cre-
ation and/or editing of additional selection tables or attribute
columns. Using a separate table for each selection optimizes
speed and memory consumption, as in a typical analysis sce-
nario tens or even hundreds of different selections of variable
size are created and deleted dynamically. Missing values are nat-
urally accommodated by the SQL database. Storing hierarchy
data as a separate table from the associations enables efficient
traversals of the compound graph for e.g. level-of-detail render-
ing and interactive selection. For instance, finding the children
of a node uses just the hierarchy table. If we had containment
and associations edges in the same table, distinguished e.g. by
a special ‘type’ attribute in the association attribute table, find-
ing children would need to query both the association table and
association attribute table. Rendering and selection have to be
as fast as possible to maximize visual fluency, so we opted for
a separate hierarchy table solution. The same special treatment
of hierarchy relations is used also by other graphics or graph
layout toolkits, e.g. OpenInventor [208] and Graphviz [7].

The above simple model scales well to fact databases of hun-
dreds of thousands of facts with tens of metrics per fact [81, 205].
Multiple hierarchies can be added as multiple hierarchy tables.
Simple queries and filters can be directly written in SQL. Struc-

4.2 sva program comprehension toolset : architecture 49

tural queries, e.g. connected components or reachability, are effi-
cient, as they require just iterating over the node and association
tables. For example, rendering the graph in Fig. 4.3 (4K nodes,
15K associations) takes subsecond time on a commodity PC.

Selections are the glue that allows composing different tools.
All analysis (e.g. filters, queries, or transformations) and visu-
alization components in our toolkit read selections, and option-
ally create selections (see Fig. 4.1). Hence, selections are the only
interface that tools use to communicate with each other. In this
way, existing or new tools can be composed either statically or
at run-time with no configuration costs. To ensure consistency,
each tool decides internally whether (and how) to execute its
function on a given input selection.

4.2.2 Visualization architecture

Visualizations display selections and allow users to interactively
navigate, pick elements, and customize the visual aspect. Since
they only receive selection names as inputs, they ‘pull’ their
required referred data on demand, e.g. a source code viewer
opens the files in its input selection to render the text. Tools can
freely decide to cache data internally to reduce traffic with the
fact database, if desired. This decision is completely transparent
at the architecture level.

Our current toolset offers several visualizations, as follows.
Table lenses show large tables by zooming out the table layout
and drawing cells as pixel bars scaled and colored by data val-
ues [141]. Subpixel sampling techniques allow rendering tables
up to hundreds of thousands of rows on a single screen [173,
169]. Hierarchically bundled edges (HEBs) compactly show com-
pound (structure and association) software graphs, e.g. contain-
ment and call relations, by bundling association edges along the
structure [78]. Squarified cushion treemaps show software struc-
ture and metrics for up to tens of thousands of elements on a
single screen [155, 169]. We also provide classical views, such as
metric-annotated code text, tree browsers, customizable color
maps, legends, annotations, timelines, details-on-demand (tool-
tips), and text-based search tools. The above visualizations are
illustrated by the two tools described next in Sec. 4.3.

A single treemap, HEB, or table lens can show the correlation
of just a few attributes. We augment this by the multiple corre-
lated views technique. Besides the ‘input selection’, which con-
tains the data to render, each view has a ‘user selection’, which

50 the solid* toolset for software visual analytics

holds the data interactively selected in that view. Views that
share input selections show the same data. Views sharing user
selections highlight user-picked data in different contexts. All
components are synchronized by an Observer pattern on selec-
tions; when data is modified by user interaction or by analysis
engines, all toolset components update automatically.

4.3 toolset highlights : solidsx and solidsdd

We next present our toolset installation (Sec 4.3.1) and describe
two tools of the toolset: the SolidSX structure analyzer (Sec. 4.3.2)
and the SolidSDD clone analyzer (Sec. 4.3.3).

4.3.1 Toolset Installation and First Usage Steps

SolidSX and SolidSDD are provided as self-contained installers,
freely available for research [160] on Windows XP and later edi-
tions. Installation takes a few minutes and mouse clicks, once
an install location on the host system is provided. SolidSDD,
which uses SolidSX internally (Sec. 4.3.3), installs SolidSX or
uses a previously installed copy of SolidSX. No scripting, third-
party package installation, environment setting, or compilation
are needed. Manuals and sample datasets are also installed.

After installation, starting to use both tools is simple. To ex-
plore software structure and metrics with SolidSX, one only
needs to load .bsc symbol files (for Visual C++), the root of a
code base (for Java code), or any .NET assemblies (for C# or
VB). An example tutorial of using SolidSX is provided sepa-
rately [175]. To explore code clones with SolidSDD, one needs
to load the root of a source code base (C, C++, Java, or C#) and
click the clone detection button. For example, the scenario in
Sec. 4.3.3 can be replicated as follows: (1) install SolidSDD; (2)
download the source code to analyze [209]; (3) point SolidSDD
to the root of the downloaded code; (4) start the clone detection;
(5) visualize the detected clones.

4.3.2 SolidSX: Structural Analysis

The SolidSX (Software eXplorer) tool supports the analysis of
software structure, dependencies, and metrics. Several built-in
parsers are provided: Recoder for Java source and bytecode [115],
Reflector for .NET assemblies [142], and Microsoft’s free parser
for Visual C++ .bsc symbol files. Built-in filters refine parsed

4.3 toolset highlights : solidsx and solidsdd 51

data into a compound attributed graph with folder-file-class-
method and namespace-class-method hierarchies; calls, symbol
usage, inheritance, and package or header inclusion dependen-
cies; and basic metrics, e.g. code and comment size, complexity,
fan-in, fan-out, and symbol source code location.

4.3.2.1 Static Analysis: Ease of Use Considerations

For .NET/VB/C#, Java, and Visual C++, static analysis is com-
pletely automated. The user only needs to input a root directory
for code and, for Java, optional class paths. For Java, Recoder, a
relatively less known analyzer [115], is close to ideal, as it deliv-
ers heavyweight information at 100 KLOC/second on a typical
PC computer. For .NET, the Reflector lightweight analyzer is
fast, robust, and simple to use. The same holds for Microsoft’s
.bsc symbol file parser.

C/C++ static analysis beyond Visual Studio is much harder.
Setting up C/C++ analysis without a tight analyzer integra-
tion with a build system is complex and time consuming. Lan-
guage dialect, files to analyze, include and library paths, facts
to export, and handling of analysis errors must be explicitly
specified if there is no build system, e.g. project file or make-
file, to take these from. An example hereof is the integration of
SolidSX with our separate SolidFX C/C++ static analyzer [181].
SolidFX scales to millions of lines of code, covers several di-
alects (e.g. gcc, C89/99, ANSI C++), handles incorrect and in-
complete code, has a preprocessor, and integrates with the gcc

and Visual C++ build systems via compiler wrapping [61]. Still,
certain options such as platform defines and headers cannot be
inferred from build systems and must be manually specified.
Also, compiler wrapping requires a working build system on
the target machine, which is not always the case. Other heavy-
weight C/C++ analyzers e.g. Columbus [61] or Clang [111] have
the same issues. We also considered using lightweight C/C++
analyzers, e.g. CPPX [109], gccxml, and MC++. We found that
these deliver massively incorrect information, due to simplified
preprocessing and name lookup implementations. Finally, we
considered using the built-in C/C++ parsers of Eclipse CDT,
KDevelop, QtCreator, and Cscope [16]. While better in correct-
ness, such parsers depend in complex ways on their host IDEs
and do not have well-documented APIs, so cannot be embed-
ded into third-party tools. Extended discussions with Roberto
Raggi, the creator of KDevelop and QtCreator, confirmed this
point.

52 the solid* toolset for software visual analytics

4.3.2.2 Structure Visualization

SolidSX offers four views (Fig. 4.3): tree browsers, table lenses
of node and edge metrics, treemaps, and HEB layouts [78]. All
views have carefully designed presets which allow using them
with no extra customization. All views show selections from
the fact database created by static analysis (Sec. 4.2.2). User
selections, created interactively or by queries, effectively ‘link’
facts shown in different views, which enables one to easily cor-
relate structure, dependencies, and metrics along different view-
points.

Figure 4.3 illustrates this on a C# system of around 45 KLOC
(a graphical number puzzle program, whose source code is avail-
able in the tool distribution). The radial HEB view shows func-
tion calls over system structure, with caller edge ends blue and
callee edge ends gray. Node colors show McCabe’s complex-
ity on a green-to-red colormap. We can now correlate complex-
ity with system structure: We see that the most complex func-
tions (warm colors) are in the module and classes top-left in
the HEB view. The table lens shows several function-level code
metrics, sorted on decreasing complexity. This shows how dif-
ferent metrics correlate with each other. Linked HEB-table lens
selections support queries such as "what are the metrics of this
module?" or "where are the most complex functions located?"
The treemap view shows a flattened system hierarchy (modules
and functions only), with functions ordered top-down and left-
to-right in their parent modules on code size, and colored on
complexity. The visible ‘hot spot’ shows that complexity corre-
lates well with size. Constructing the entire scenario, including
the static analysis, takes about 2 minutes and under 20 mouse
clicks.

SolidSX brings several visual additions atop of Holten’s HEB
layout [78]. Luminance textures, added to nodes, enhance the
hierarchical structure. When nodes are collapsed and/or ex-
panded, the layout is smoothly animated between the initial
and final views, which reduces the visual change and helps
users maintain their mental map (for an illustration, see the ac-
tual tool in use). Multiple edges between collapsed nodes are re-
placed by a single edge. This edge’s color shows the aggregated
value (min, max, or average) of the collapsed edges’ attributes,
as indicated by user preferences. Adjacent nodes which are un-
der a few pixels in width are replaced by gray, untextured bars.
This indicates that the view cannot show the full dataset and
also maintains a high frame-rate regardless of dataset size, since

4.3 toolset highlights : solidsx and solidsdd 53

Treemap view

Radial view

Tree browser

Table lens
code size complexity complex functions

hot spot: complex

and large functions

Figure 4.3: SolidSX views (tree browser, treemap, table lens, radial
HEB).

the number of rendered nodes never exceeds the actual view
size divided by the minimal node size. A similar technique is
used for rendering cells in the table view [173]. Finally, attribute-
based color mapping allows quickly locating elements of inter-
est in a large visualization, such as highly complex elements.

4.3.2.3 Toolchain Integration

Similarly to Koschke [99], we noticed that integration in accepted
toolchains is a key acceptance factor when using our tools in
industrial applications [182, 205, 152, 181]. We address integra-
tion by a listener mechanism. The SVA tool listens for command
events sent asynchronously as Windows system messages, e.g.
load a dataset, zoom on some subset, change view parameters,
and also sends user interaction events (e.g. user has selected
some data). This allows integrating SolidSX in any third-party
tool(chain) by building thin wrappers which read, write, and
process such events. No changes to our tool’s code are needed.
For example, we integrated SolidSX in Visual Studio by writing
a thin plug-in of around 200 LOC which translates between the
IDE and SolidSX events. Selecting and browsing code in the two

54 the solid* toolset for software visual analytics

tools is now in sync. The open SQLite database format further
simplifies data integration.

4.3.3 SolidSDD: Clone Inspection

Code duplication (or clone) detection is an important tool in
software maintenance. Although many clone detectors exist, few
show the clone information in easy to understand ways. Simple
clone lists do not show how clones are spread over a system’s
structure [87]. Node-link clone views inherit the limited scala-
bility and visual clutter of force-directed graph layouts [85]. Ad-
jacency matrices, showing clones between file pairs [88], are not
immediately intuitive for software engineers, and do not show
clone relations at several levels-of-detail, e.g. function, file, and
folder.

To address these visualization issues, the SolidSDD (Software
Duplication Detector) was developed. Clone detection uses the
same algorithm as CCfinder [89], configurable by clone length
(in statements), identifier renaming (allowed or not), size of
gaps (inserted or deleted code fragments in a clone), and whites-
pace and comment filtering. From clones detected in an input
C, C++, Java, or C# code base, we store a compound duplica-
tion graph in our fact database. Nodes are cloned code frag-
ments. Edges indicate clone relations. Hierarchy is added ei-
ther from the code directory structure or from a user-supplied
dataset (e.g. from static analysis). Nodes and edges have met-
rics, e.g. percentage of cloned code, number of distinct clones,
and whether a clone includes identifier renaming or not. Met-
rics are aggregated bottom-up using the hierarchy information
(see Sec. 4.3.2.2).

We use the compound graph to visualize clones with two dif-
ferent views, as follows (see Fig. 4.4). Our test dataset is the
well-known Visualization Toolkit code base [209]. On VTK ver-
sion 5.4 (2420 C++ files, 668 C files, 2660 headers, 2.1 MLOC in
total), SolidSDD found 946 clones in 280 seconds on a 3 GHz
PC with 4 GB RAM, using the default tool settings. The first
view (Fig. 4.4 a,b,e) is the SolidSX tool described in Sec. 4.3.2.
Figure 4.4 a shows the code clones atop of the system struc-
ture. Edges show aggregated clone relations between files: two
files are connected when they share at least one clone. Node
colors show the percentage of cloned code in a subsystem on
a green-to-red (0..100%) colormap. Edge colors show percent-
age of cloned code in the clones represented by an edge. Fig-

4.3 toolset highlights : solidsx and solidsdd 55

ure 4.4 a shows that the VTK system has many intra-system
clones (edges connecting files in the same folder) but also some
inter-system clones (edge connecting files in different folders).

a) overview

c) examine clones f-g

node

colormap

edge

colormap

S3

S1 S2

clone partner files f
c

file f

clone partners f
c

file g

clone g

in Rendering

file f file g

clone clone

file f file h

file h

file f

Color legend non-cloned code clone shown in both windowsclone partner not shown identifier renamed (shown as in right window)

d) examine clones f-h

files

folders

 clones

in Filteringb) select file f

zoom in
on S3

#clones %cloned renaming
extract clones

Figure 4.4: SolidSDD clone visualization using the HEB view (top) and
text view (bottom) (see Sec. 4.3.3).

Three subsystems have high clone percentages (red tints in
Fig. 4.4 a): examples (S1), bin (S2) and Filtering (S3). Browsing
these files we saw that clones in examples and bin are in tuto-
rial code and test drivers, arguably created by copy-and-paste.
Clones in Filtering, a core subsystem of VTK, are more inter-
esting. In Fig. 4.4 b, we zoom on Filtering and select a file f
(marked in black) which has over 50% cloned code: vtkGener-
icDataSetAlgorithm. This highlights the files fc with which f

shares clones, called the clone partners of f. We find five clone
partners of f in the same Filtering subsystem (vtkStructuredGri-
dAlgorithm, vtkDataObjectalgorithm, vtkUnstructuredGridAl-
gorithm, vtkHyperOctreeAlgorithm, vtkPolyDataAlgorithm, in-
dicated by light blue in Fig. 4.4 b), and one in the Rendering
subsystem (g, vtkLabelHierarchyAlgorithm, purple). Each such
file contains a separate class, as standard in VTK. When writing
these, developers probably copied and pasted code between sib-
ling classes. Given VTK’s guidelines to keep its subsystems in-

56 the solid* toolset for software visual analytics

dependent and maximize code reuse, the clone g could be refac-
tored by moving the common algorithm part to a superclass.

Figure 4.4 c shows the text view of SolidSDD. The top light-
blue table shows all files with percentage of cloned code, num-
ber of clones, and presence of identifier renaming. Sorting this
table allows e.g. finding files with the most clones or highest
cloned code percentage. This view is linked with SolidSX via
the message mechanism (Sec. 4.3.2.3), so selecting the file f in
the HEB view (Fig. 4.4 c, black) highlights it in this table (in red).
The table below (Fig. 4.4 c, middle panel) shows the clone part-
ner files fc of f. Here we find the file g which shares clones with
f but is in another subsystem. We select g and use the two text
views (Fig. 4.4 b, bottom panels) to study all clones between f
and g. The left view shows the first selected file (f) and the right
view the selected clone partner (g). Scrolling of these views is
synchronized to easily compare corresponding code fragments.
Text is color-coded: non-cloned code (white), code in f which is
cloned in g (light blue), renamed identifier pairs (green in left
view, yellow in right view), and clone code in f whose clones
are in some other file h 6= g (light brown). The last color allows
us to navigate from f to other clone partners h: Clicking on light
brown code in the left view (f) in Fig. 4.4 c replaces the file g in
the right view by the clone partner h, and also selects h in the
clone partner list view. Fig. 4.4 d shows this. We now notice that
code in f which is part of the clone f− g (light blue in Fig. 4.4 c)
is included in the clone f− h (light blue in Fig. 4.4 c).

4.4 toolset applications

We have used our SVA toolset in both research [81, 178] and the
industry [182, 180, 181]. We next describe several such use-cases
and highlight strengths and limitations of our proposal.

4.4.1 Toolset Usage in Education

We used our SVA toolset in academic courses in two different
contexts, as follows.

Tool end-user context: In the first case, 3rd year BSc students at
the University of Groningen, the Netherlands, used SolidSX for
the course Software Quality Assurance and Testing (SQAT) [175]
(30 students per year on average during 2008-2011) to explore a
3500 LOC C++ image processing program [174, 171] in order to

4.4 toolset applications 57

design test cases using white-box testing and also assess the pro-
gram’s modularity, complexity, portability, and testability. Facts
were provided by the Visual C++ .bsc parser (Sec. 4.3.2). No
programming was required. After an 8-week course, students
worked one month on the assignment. Additionally, the stu-
dents could use the Visual Studio Team System (VSTS) tool to
explore the code. Feedback gathered from mandatory course
evaluations indicated that the students found the installation,
learning, and usage of SolidSX very easy, although they had
no previous experience in static analysis or software visualiza-
tion. Table 4.2 shows tool-related points from this course evalu-
ation, ranked on a 5-point scale (very limited, limited, neutral,
good, very good), averaged for 87 students. The listed positive
and/or negative observations aggregate comments given under
a free-text heading concerning additional comments. The HEB
view was found effective for assessing the modularity of a pre-
viously unknown code base, which replicates previous similar
findings [78, 81]. On the negative side, they noted that SolidSX
works on a too ‘abstract’ level, i.e. focuses on generic entities and
relations, whereas white-box testing or code exploration tasks
use more specific concepts e.g. implementation inheritance, de-
pendency via type usage, or dataflow graphs.

Aspect Score Observations

Ease of installation 4.8 No installation problems; installation is easy

Quality of documentation 4.0 Manual needs more step-by-step examples

Scalability 4.2 Tool requires a modern computer with a fast (OpenGL accelerated) graphics card

Fact extraction 3.6 C/C++ support outside Visual Studio is limited

Visualization 4.4 Views have generic, hard to interpret, labels and annotations

More customizable colormaps are required

Interaction 4.0 Selecting small elements can be hard in zoom-out mode

Effectiveness 3.9 Tool gives a good overview of a program’s structure and dependencies

(for general comprehension) It is a nice addition compared to classical IDE text-only views and queries

Effectiveness 2.2 Tool is too generic; needs customized wizards that should address specific questions

(for white-box testing)

Usability 4.0 Tool is easy to use and error-tolerant

(general) An undo function is however missing and would be very useful

Table 4.2: SolidSX tool evaluation in education.

Tool developer context: In the second case, 4th year MSc stu-
dents at the same university used SolidSX for the course Soft-
ware Maintenance and Evolution (SME) (20 students per year
on average during 2008-2011) to develop a visual exploration
application of changing dependencies in a Subversion (SVN)
repository. Hence, in contrast to the first use-case presented ear-

58 the solid* toolset for software visual analytics

revision browser SolidSX component

analysis log view

unchanged codemodi!ed code

Figure 4.5: Subversion-repository dependency evolution browser tool
interface (see Sec. 4.4.1).

lier in this section, where SolidSX was used out of the box by
end users, in this second context, SolidSX was used as a compo-
nent to develop a new SVA application. The repository chosen for
exploration was KOffice, which has mainly C/C++ code (over
10000 files, 3500 versions, over a 8 year period) [97]. Repository
access used the SharpSvn C# library [170]. From each revision,
hierarchy and dependencies (inheritance, type usage, include re-
lations, and function calls) were extracted with the lightweight
CCCC analyzer [110], which uses a C/C++ parser built with
the ANTLR parser generator. The resulting compound graph
was stored in a SQLite database (Sec. 4.2.1). An exploration tool
allowing the selection of the repository and revisions of inter-
est, dependency extraction, and visualization of changing de-
pendencies was built by the students using SolidSX as a starting
point. One such tool resulting from a student project is shown in
Fig. 4.5. Here, the HEB plot reuses the SolidSX tool; all other in-
terface elements are custom-developed by the students for this
specific project. Node colors indicate amount of code changed
on a blue-to-red colormap. The student project along with man-
ual, documentation, binaries, and C# source code is available for
inspection [57]. The students were able to build atop SolidSX to
develop their dependency evolution visualization without ac-
cess to the tool’s source code. The student tool was written in
C#, while SolidSX itself is entirely written in C++ and Python.
Key to this (re)use of SolidSX were the open SQLite data model

4.4 toolset applications 59

(Sec. 4.2.1) and the message-based mechanism that allows ‘driv-
ing’ SolidSX from any application (Sec. 4.3.2.3).

4.4.2 Toolset Usage in Developing New Research

Apart from education, we also used SolidSX in to develop new
visualization research. One such example is Image-based edge
bundles (IBEB), a technique for the simplified display of large
compound graphs [178], presented next in Chapter 5. Briefly
put, IBEB adds several image-processing techniques atop of the
HEB view in order to explicitly group edges into salient shaded
bundles. This shows a (software) system’s structure on a coarse
level of detail. Like in the educational context (Sec. 4.4.1), the
SQLite data model and messaging interface were key to easy
development. However, in this case we also extended SolidSX
by adding new graphical elements to the radial plot (for de-
tails, see Ersoy and Telea [178]), rather than embedding it in a
larger application. Figure 4.6 shows some results: The left im-
age shows a set of software dependencies visualized with the
standard SolidSX tool. The right view shows the same dataset,
with dependencies grouped by IBEB into shaded bundles.

a) b)

Figure 4.6: Left: HEB view of a compound software graph. Right: Sim-
plified view of the same graph with the IBEB method built
atop of SolidSX (Sec 4.4.2).

4.4.3 Industrial Usage: Post-Mortem Assessment of a Software Project

We now describe an application where several of our tools were
combined in an industrial use-case. A major automotive com-
pany developed an embedded software stack of 3.5 MLOC of C

60 the solid* toolset for software visual analytics

code in 15 releases over 6 years with three developer teams in
Western Europe, Eastern Europe, and Asia. Towards the end, it
was seen that the project could not be finished on schedule and
that new features were hard to add. Management was not sure
what went wrong. The main questions were: was the failure
caused by bad architecture, coding, or management; and how to
follow up - start from scratch or redesign the existing code. An
external consultant team had one week to perform a post-mortem
analysis using our toolset, and only the code repository as data
source. For full details, we refer to Voinea and Telea [205].

Software repository

static mining evolution mining

Fact database

Stakeholders Consultants
interpret modify

Resulting

images

Change assessment

Evolution assessment

Quality metric evolution assessment Structural assessment

disallowed

dependencies

mutual

calls

1

2

3

4

5

6

7

8

Team assessment

Result interpretation

Figure 4.7: Data collection, hypothesis forming, and result analysis for
a post-mortem software assessment (Sec. 4.4). Arrows show
the order of the executed steps.

The approach involved the classical VA steps: data acquisi-
tion, hypothesis creation, refinement, (in)validation, and presen-
tation (Fig. 4.7). Change requests (CRs), commit authors, static
quality metrics, and call and dependency graphs were extracted
from a CM/Synergy repository into our SQLite fact database.
For fact extraction, we used our C/C++ analyzer SolidFX [181].
Similar heavyweight analyzers e.g. Clang or Columbus could
be used as well. All further visual analyses were done using
SolidSX and SolidSDD. Next, we examined the distribution of
CRs over project structure. Several folders with many open CRs
emerged (red treemap cells in Fig. 4.7 (2)). These correlate well
with team structure: the ‘red’ team owns most CRs (3). To fur-
ther see if this is a problem, we viewed the CR distribution over

4.4 toolset applications 61

files over time. In the table lens in Fig. 4.7 (4), files are shown
as gray lines vertically stacked on age (oldest at bottom), and
CRs are red dots. The gray area’s shape shows little code size
increase in the last project third (outlined in yellow), but many
red dots over all files in this phase. These are CRs involving old
files that were never closed. When seeing this image, the man-
agers instantly recalled that the ‘red’ team (located in Asia) had
lasting communication problems with the European teams, and
added that it was a mistake to assign many CRs to this team.

We next analyzed the evolution of several quality metrics:
fan-in, fan-out, number of functions and function calls, and av-
erage and total McCabe complexity. The graphs in Fig. 4.7 (5)
show that these metrics increase little in the second project half.
Hence, missed deadlines were not caused by code size or com-
plexity explosion. Yet, the average complexity per function is
high, which implies difficult testing. This was further confirmed
by the project leader.

To find possible refactoring problems, we analyzed the project
structure with SolidSX. Fig. 4.7 (6) shows forbidden dependen-
cies, i.e. modules that interact bypassing interfaces. Fig. 4.7 (7)
shows modules related by mutual calls, which violate the prod-
uct’s desired strict architectural layering. We decided to look at
these specific structural problems after completing the project
intake (the first day out of the one week total project dura-
tion). During this session, the two architects involved stated
that their product should comply with strict interface-based
communication and architectural layering. They were unsure if
these desiderates were respected, and mentioned that problems
in these areas would highly likely affect the ease of refactor-
ing. The two views in Fig. 4.7 (6,7) suggest difficult step-by-step
refactoring and also difficult unit testing. Again, these findings
were in line with the impressions of the involved stakeholders.

Finally, to get more insight on the refactoring cost, we per-
formed a code duplication analysis using SolidSDD. Finding
duplicates can help in several ways. First, if a duplicated code
block is refactored, then it makes sense to refactor all its dupli-
cates too. Secondly, the code modifications caused by insight
found during testing and debugging should be done consis-
tently across duplicated code. We found little cross-file dupli-
cation in this code stack, which supports the case for relative
low-cost refactoring (for full details, we refer to [205]).

The consultants in this project were familiar with the used
tools (SolidSX and SolidFX), but did not (need to) have access
to the tools’ source code. Still, they succeeded in finding satisfac-

62 the solid* toolset for software visual analytics

tory answers for the management questions in a few days and
on a large code base. No modifications were done to SolidSX
or SolidFX. Since SolidFX can export its dependency graphs di-
rectly into the shared SQLite database, tool communication was
automatic. Besides tool installation, the only instrumentation ef-
fort required was for the extraction of evolution information
(CRs, file change moments, and authors) from the CM/Synergy
repository, for which we used the standard ccm client. This last
step took approximately 4 hours of the entire project duration of
one week. Post-study discussions outlined that important suc-
cess factors were the easy installation of the tools, scalability,
and the common (SQLite) database format that made data in-
terchange between all involved tools very simple.

4.5 discussion

Based on our SVA tool building experience, we next address
several questions of interest1. We use herein the concept of a
tool value model [135]: A SVA tool is useful if it delivers high value
with minimal waste to its stakeholders, which can be developers,
testers, project managers, or consultants [184, 185]. Hence, the
answers to the above-mentioned questions strongly depend on
the users’ views on value and waste, as follows.

4.5.1 Should academic tools be of commercial quality?

We see two main situations. If tools are used purely to test new
algorithms or ideas (e.g. the IBEB visualization in Sec. 4.4.2),
large investments in tool infrastructure are seen as waste. If
tools are used in case studies (e.g. Sec. 4.4.1) or in real-life pro-
jects (e.g. Sec. 4.4.3), then usability is key to acceptance and suc-
cess [99, 151, 180]. Hence, we believe that academic tools in-
tended for other users than their own creators should not com-
promise on critical usability, i.e. interactivity, scalability, and ro-
bustness. However, effort critical for the latter adoptability phase,
e.g. manuals, installers, how-to’s, supporting many input/out-
put formats, rich GUIs, can be limited.

An excellent overview of the path from a research tool to a
commercial product is given by Bessey et al. [18] for the Coverity
bug-finding tool. In our experience with SolidSX and SolidSDD,
we noticed several points in line with Bessey et al., as follows:

1 The questions are from the WASDeTT 2010 call for papers
(www.info.fundp.ac.be/wasdett2010)

4.5 discussion 63

• industrial users tend to cluster into detractors and promot-
ers, e.g. ‘why would (visual) program comprehension help
my job?’ vs ‘this is a great tool, no questions asked’;

• early adoption in large organizations having code bases of
several MLOC [182, 181] does cost significant promotion
effort which cannot be easily bypassed;

• the path of least intrusion in a company’s established prac-
tices e.g. via compiler wrapping (makefiles, build process,
coding standards) is the most successful;

• countless variations of platforms, language dialects, and
build systems pose hard problems to a (visual) tool accep-
tance;

• simple visualizations (albeit sometimes too simple) are
easier accepted than subtler correlations of multiple vari-
ables which may be hard to understand.

Still, some differences exist between SVA tools and bug-checking
tools such as Coverity. First, SVA is meant to provide insight,
which for good or bad, is harder to quantify than a bug list. In
other words, it is easier to measure the added value of introduc-
ing a bug-checking tool, e.g. as the ratio of the number of bugs
found to the tool’s ownership and usage costs, than to quantify
how much insight a SVA tool has given. Secondly, we limited
ourselves, on purpose, to support code bases where analysis is
easily done with minimal configuration effort (see Sec. 4.3.2.1).
This makes our proposal less generic than Coverity’s but also re-
duces tool set-up costs. Thirdly, SVA tools are mainly aimed at
individual developers and/or consultants. Hence, issues such
as standard compliance with a company’s policy, deployment
effort, and pricing are less relevant. This further lowers the hur-
dles for acceptance of SVA tools.

4.5.2 How to integrate and combine independently developed tools?

This is a highly challenging question as both the integration de-
gree required and the tool heterogeneity vary widely in practice.
For SVA tools, such as the ones described in this chapter or the
ones mentioned in Sec. 2.2.1, we have seen that the following
patterns provide good returns on investment, in increasing or-
der of difficulty/effort:

64 the solid* toolset for software visual analytics

Dataflow: Tools communicate by reading and writing data files
in standardized formats, e.g. SQL (tables), XML and GXL (at-
tributed graphs) [77], and FAMIX and XMI (architecture mod-
els) [189]. This allows creating dataflow-like tool pipelines, like
the excellent Cpp2Xmi UML diagram extractor using Columbus
and GraphViz [98] or the SQuAVisiT toolset [198].

Shared databases: Tools communicate by reading and writing
a single shared fact database which stores code, metrics, and
relations. Data is typically stored as a combination of text files
(code), XML (lightweight structured data), and proprietary bi-
nary formats for large datasets e.g. ASGs or execution traces.
This model is used by CDT (Eclipse), Intellisense (Visual Stu-
dio) , and our toolset. In contrast to dataflows, shared databases
support the finer-grained data access needed for real-time data
browsing (SolidSX, SolidSDD) or symbol queries (Eclipse, Vi-
sual Studio). If a shared messaging system is used along a shared
database, like for all tools above, tools automatically synchro-
nize their views upon data changes. This is essentially the model-
view-controller pattern, where the database is the model, the vi-
sualization tools are the views, and the message listener is the
controller.

Common API: Tools use a single API to access shared data and
also to execute operations. Although a common API does not
necessarily mean a shared tool code base, the former typically
implies the latter. API examples for SVA tools are Eclipse, Visual
Studio, CodeCrawler [105] and Moose [128] and, at a lower level,
the Prefuse and Mondrian Infovis toolkits [136, 108]. Common
APIs allow a finer grained action composition than dataflow
and shared databases. However, APIs are more restrictive to
use in practice, as they add non-negligible API learning costs
(for tool builders) and maintenance costs (for API providers).

A thorough discussion of interoperability in the context of re-
verse engineering tools is provided by Kienle ([93], Sec. 3.2.2).
Although our context is somewhat different (SVA tools), most,
if not all, the requirements and solutions surveyed by Kienle
are very similar to ours, see e.g. dataflow vs ToolBus [41], and
shared databases and common APIs vs the CORUM model [92].
In contrast to some reverse engineering toolsets, however, we
chose not to explicitly store application or task-dependent sche-
ma models. This reflects our practical observation, in line with
Kienle’s analysis, that schema design (and reuse) is hard in prac-

4.5 discussion 65

tice; and our additional observation that visualization explo-
ration scenarios often need to change viewpoints on the data
dynamically, i.e. in the middle of an exploration, which makes
predefined schemas less effective.

4.5.3 What are the lessons learned and pitfalls in building tools?

SVA tool building is a design activity. A critical success factor
is creating visual and interaction models that optimally fit the
users’ mental map [202]. Within space limitations, we outline
the following points:

2D vs 3D: Software engineers are used to 2D visualizations, so
they will accept these much easier than 3D ones [187]. There
is no single case, that we are aware of, where a 3D visualiza-
tion was better accepted than a 2D one. As such, we abandoned
earlier work in 3D visualizations [183] and focused on 2D visu-
alizations only.

Interaction: Too much interaction and user interface options
confuse even the most patient users. A good solution is to offer
problem-specific minimalist interaction paths or wizards, and
hide the complex options under an ‘advanced’ tab. This design
is visible in the user interfaces of both SolidSX and SolidSDD.

Scalable integration of analysis and visualization is mandatory
for SVA acceptance [99, 185]. However, achieving this is hard.
Over 50% of our toolset code (which is over 700 KLOC in to-
tal) is dedicated to efficient data manipulation. SQLite performs
well up to a few hundred thousands facts (Sec. 4.2). Heavy-
weight parsers, e.g. SolidFX, Clang, or Columbus create ASGs
of millions of facts, roughly 10..15 facts per LOC. These are
stored in a custom binary format which optimizes search speed
to space ratio [181, 23]. The SQL database is used as a ‘master’
component which points to such special storage schemes. Us-
ing XML, although favored by several tool designs [71, 109], is
simply not scalable enough for fine-grained fact databases or
projects over a few hundred KLOC.

66 the solid* toolset for software visual analytics

4.5.4 What are effective techniques to improve the quality of aca-
demic tools?

Quality of SVA tools depends on usability, which has differ-
ent definitions depending on the tool’s context. For example,
research tools aimed at quickly testing new ideas should max-
imize API simplicity. Prefuse and Mondrian are good exam-
ples [136, 108]. In contrast, tools for software engineers in the
field, or used in education, should maximize end-user effective-
ness. This further implies uncluttered, scalable, and responsive
displays, and tight integration for quick analysis-visualization
sensemaking loops. Recent Infovis advances have massively im-
proved the first points. However, integration remains hard, as it
implies large engineering efforts which do not directly map to
high-impact research results.

4.5.5 What is needed to build an active community of developers and
users?

SVA tools rely upon techniques traditionally built in two sepa-
rate communities: software analysis and information visualiza-
tion. The two groups overlap via the software visualization com-
munity. The OSS community has invested considerable effort in
SVA tool building, see e.g. the hundreds of plug-ins available for
Eclipse, QtCreator, or KDevelop. However, most recent work in
this area appears to target software analysis. Visualization is
still centered around tables and node-link layouts. Although
treemaps, table lenses, adjacency matrices, and HEB layouts
have been proven to be more scalable and effective in the In-
fovis community, these techniques are still relatively unknown
to OSS developers. The commercial community can serve as a
strong catalyst: standardized open APIs of well-accepted tools,
such as Visual Studio 2010’s Intellisense semantic database, can
give a widespread and quick impact to successful SVA tools. Un-
fortunately, many tool vendors provide limited tool-integration
APIs, or even provide no such APIs, arguably to limit disclosure
of internal architecture details [185].

4.5 discussion 67

4.5.6 Are there any useful tool building patterns for software engi-
neering tools?

We see the following elements present in most SVA tools we
have studied:

Architecture: The dataflow and shared database models are the
widest used composition patterns.

Visualization: 2D dense-pixel views e.g. table lenses, HEBs, tree-
maps, and annotated text are highly scalable, thus suitable for
large static analysis datasets. Node-link layouts work well for
relatively small relational datasets of less than roughly a few
hundred elements, in which position and shape encode spe-
cific meaning like in (UML) diagrams (see further Sec. 4.5.7).
Shaded cushions, originally used for treemaps [155], are simple
to implement, fast, scalable, and effective for conveying struc-
ture atop of complex layouts. Also, we did not notice so far
requests from users of our toolset to include other types of vi-
sualizations e.g. node-link layouts, adjacency matrices, parallel
coordinates, or 3D plots. This does not imply that such addi-
tional visualizations are not useful for specific use-cases, but it
does support the hypothesis that general structure-and-metric
comprehension of large code bases at a fine grained level is well
supported by the techniques currently present in our toolset.

Integration: Combining separately developed analysis and vi-
sualization tools is still an open challenge. Although a message
mechanism (Sec. 4.3.2.3) has limitations, e.g. cannot shared state,
it is simple and allows keeping the software stacks of the tools
to integrate independent.

Static analysis granularity: Lightweight analyzers are consider-
ably simpler to build, deploy, and (re)use, are faster, and deliver
sufficient details for visualization (Sec. 4.3.2.1). When visualiza-
tion requirements increase, as it happens with a successful tool,
so do the requirements on its input analyzer. Extending static
analyzers is, however, not an incremental process: For providing
more features, one typically needs switching to a completely
new analyzer. Using a simple fact database schema helps this
switching as the analyzer and visualization are weakly coupled.
Adding new analyzers to our toolset, e.g. for additional lan-
guages, only requires setting up a small Python script (under 30

lines) which invokes the respective analyzer and populates the

68 the solid* toolset for software visual analytics

standard SQLite database (Sec. 4.2.1) with the extracted facts.
An example hereof is a Visual Basic parser, developed inde-
pendently and written in Visual Basic itself, which we recently
added to SolidSX [102].

4.5.7 How to compare or benchmark such tools?

SVA tools can be benchmarked by lab, class, or field user stud-
ies, or using them in actual IT projects. One can either compare
several tools against each other [52, 152, 205] or test a tool vs a
requirements set [94, 151]. Technical aspects e.g. speed, scalabil-
ity, or analysis accuracy can be measured using de facto standard
datasets from the ACM SOFTVIS, IEEE Vissoft, and IEEE MSR
conference ‘challenges’, e.g. the Mozilla Firefox, Azureus, JUnit,
or JHotDraw code bases. Measuring a tool’s end-to-end useful-
ness is much harder as this is highly context specific. Still, side-
by-side tool comparison can be used. For example, Figure 4.8
shows four SVA tools: Ispace, CodePro Analytix, SonarJ, and
SolidSX. The first three are well-known in the Java community.
We compared all tools for their effectiveness in supporting an
industrial corrective maintenance task where participants were
actual developers from the IT industry [153, 185]. Several of
our design decisions, e.g. using dense-pixel layouts and bundled
edges, are direct results of this study. Also, this study showed
that integration, ease of installation, scalability, and the com-
pact uncluttered dense-pixel layouts of SolidSX were perceived
as important value factors by developers involved in program
comprehension.

Other useful ways to gather qualitative feedback are ‘piggy-
backing’ the tool atop of an accepted toolchain (e.g. Eclipse or
Visual Studio) and using community blogs for getting user sen-
timent and success (or failure) stories. From our experience, we
noticed that this technique works for both academic and com-
mercial tools.

4.5.8 What particular languages and paradigms are suited to build
tools?

For SVA tools, our experience advocates a minimal set of proven
technologies, as follows:

Graphics: OpenGL, possibly augmented with simple pixel shad-
ers, is by far the most portable, easiest to code and deploy, and

4.5 discussion 69

b) Ispacea) CodePro Analytix

c) SonarJ d) SolidSX

Figure 4.8: Four SVA tools for structure-and-association software anal-
ysis compared (see Sec. 4.5.7).

fastest, graphics solution. This experience is shared by other re-
searchers, e.g. Holten [78].

Core: Scalability to millions of data items, relations, and at-
tributes can only be achieved in programming languages like
C, C++, C#, or Delphi. Over 80% of all our analysis and ap-
plication code is C++. Although Java is a good candidate, its
performance and memory footprint are, from our experience,
still not on par with compiled languages. Recently, we reimple-
mented almost the entire core in C# (.NET 4), using the Win-
dows Presentation Foundation (WPF), with promising results:
Speed is 80% as compared to the original C++ implementation.
Additionally, WPF offers easy ways to render visualizations to
offscreen canvases, which makes embedding our results into e.g.
web pages or PDF documents trivial. However, deployment be-
comes slightly more complex, as users have now to install the
.NET 4 framework on their platform.

Scripting: Flexible configuration can be achieved in lightweight
interpreted languages. The best candidate we found in terms
of robustness, speed, portability, and ease of use was Python.
Tcl/Tk (which we used earlier [183]) and Smalltalk (used by

70 the solid* toolset for software visual analytics

[105]) are other candidates. From our experience, however, Small-
talk and Tcl/Tk require more effort for learning, deploying, and
optimization. Lua [114] brings simplicity and flexibility for ap-
plications that do not require the richer features provided by
Python’s third-party libraries. For SVA tools, we distinguish
two different uses for scripting. Generic SVA frameworks such
as Rigi [190], Prefuse [136], Mondrian [108], or Moose [128] pro-
mote scripting to a first-class citizen: Users have to script to
construct specific visualizations. This makes such frameworks
very generic, but also less effective by end users not interested
in, or not having the time for, programming. In contrast, coarser-
grained tools, like ours, use scripting for (internal) configuration
but expose all their functionality via built-in GUI options. This
inherently limits the customizability of such tools, but makes
them easier and faster to use for predefined tasks.

4.5.9 Evolution from research prototype to product

As already mentioned, our SVA toolset has evolved from an
initial set of visualization research prototypes, starting with an
early Rigi-like generic visualization system (SoftVision [183],
see further Tab. 4.1), to an actual product toolset, via an iter-
ative design process. We next discuss several aspects of this evo-
lution.

Design decisions: During our tool design activities, several tech-
nical design refinements took place, as follows. First, using a
simple, dynamically typed database with a minimal schema
(Sec. 4.2.1) turned out to be simpler, and easier to maintain,
than specialized object-oriented data models (see e.g. SoftVi-
sion [183] or SolidFX [181]). While the former model uses a
fixed set of four data tables (see Sec. 4.2.1), the latter models
need hierarchies of hundreds of classes, each being specialized
for a different graph type, e.g. ASTs or call graphs. Secondly,
using plain OpenGL for rendering is faster, both as develop-
ment and runtime speed, than the more complex scene graph
models of toolkits such as OpenInventor [208] used in SoftVi-
sion [183], CSV [112], MetricView [186], and SolidBA [182]. In
scene graphs, the content to render is first stored explicitly, and
next rendered. This works best for complex imagery that is of-
ten rendered but rarely changed. In SVA tools, views change
often as the user interacts with the data, e.g. expand or col-

4.5 discussion 71

lapse nodes, so updating a scene graph is much slower than
direct content rendering by OpenGL. Thirdly, our earlier tools
used node-link layouts such as Sugiyama-style or spring em-
bedders, based on the Graphviz and VCG engines [7, 148] (Soft-
Vision [183], MetricView [186], and SolidBA [182]). However,
no such engine can currently produce uncluttered layouts for
graphs over a few hundred nodes. Hence, we restricted our
later tools to HEB layouts, treemaps, and table lenses, which
are always scalable and clutter-free. Fourthly, we experimented
with data storage using binary files (SolidFX [181]) and XML
files (MetricView [186], MemoView [121]). The SQLite model,
used in CVSscan, CVSgrab, SolidBA, SolidSX, and SolidSDD
proved to be much simpler to maintain and up to two orders
of magnitude faster and more compact than XML. Finally, we
kept unchanged those design elements which proved successful
during our toolset evolution, such as selections and observers
(introduced by SoftVision). Transition moments between these
design decisions are explained further below.

Evolution phases: Our toolset evolution can be divided into
four main phases:

1. Inception: In this phase, several SVA prototypes were cre-
ated, with the main goal of exploring novel visualization
and interaction technique (SoftVision, CSV, CVSscan). In
this phase, a wide mix of visualization and interaction de-
signs (e.g. node-link layouts, dense pixel displays, cush-
ions, table lenses, linked views) and implementation tech-
nologies (e.g. C/C++ vs Python, OpenGL vs Open Inven-
tor, SQLite vs plain file storage formats), were explored.
The main drivers were the speed of creating new visualiza-
tions and the visualization scalability, with limited focus
on reusability, genericity, or ease of deployment. The out-
come of this phase was a selection of ‘winner’ visualization-
and-interaction designs and implementation elements, e.g.
OpenGL, cushions, table lenses, and C++, which were de-
tected to be visually and computationally scalable. In this
phase, testing was done on relatively small code bases
(up to a few hundreds of entities and relationships and
a few thousands of lines of code), and involved mainly
researchers, students, and OSS code bases.

2. Consolidation: In this phase, additional research prototypes
were created for different exploration tasks (CVSgrab, Met-
ricView, and MemoView). The main focus of this phase

72 the solid* toolset for software visual analytics

was to extend the options for SVA exploration to new
types of datasets and tasks, i.e. entire repositories (CVS-
grab), MetricView (UML diagrams and metrics) and pro-
gram traces (MemoView). The design choices obtained as
outcome from the previous phase were followed in this
development. As they were confirmed to be effective in
terms of desired scalability by the actual usage of the
tools, these design choices were kept fixed until the later
product refinement phase (see further below). Tool testing
involved both large-scale OSS code bases (e.g. VTK and
wxWidgets) and a few commercial code bases. For the first
time, we involved IT professionals in using our tools, and
collected informal feedback on usability and effectiveness,
which further led to our focus on ease of deployment and
configuration, and tool interoperability, addressed in the
next phase. The decision to extend the tool scope to IT
professionals was taken on an ad hoc basis, given our in-
volvement in academy-industry joint projects. GUI design
converged to using the wxWidgets toolkit, as opposed to
several variants in the inception phase (FLTK, Tcl/Tk, and
Windows MFC). The datasets used in this phase were sig-
nificantly larger than for the inception phase, e.g. file evo-
lution information from an entire repository (CVSgrab) as
opposed to a single file evolution (CVSscan), and traces
of hundreds of thousands of samples (MemoView). As
such, efficient storage and retrieval proved critical. SQLite
emerged as a natural candidate, given the usage of SQL
fact databases in other SVA tools. For the specific cases
which required node-link layouts (MetricView), Graphviz
and VCG emerged as best candidates in terms of ease of
use, genericity, and layout quality.

3. Initial products: In this phase, the interactive visual meta-
phors and implementation techniques tried and tested in
the first two phases were used as basis to create the first
versions of products (SolidFX, SolidBA, and SolidSTA).
This phase focused on three main additions: First, new
static and repository analysis components were added,
thereby extending the visualization capabilities of the ear-
lier tools with analysis functions (SolidFX extends CSV,
SolidSTA extends CVSgrab and CVSscan). Secondly, a first
unified fact database model, based on SQLite, was cre-
ated (see Sec. 4.2.1), in order to make tool interoperability
possible. Thirdly, various layers were created to facilitate

4.6 conclusions 73

tool deployment, in terms of installers (NSIS-based [129])
and front-ends for automating static analysis. The techni-
cal outcome of this phase was a first version of the overall
SVA toolset architecture presented in this paper.

4. Refined products: In this phase, a major refactoring of the
visual functionality took place. Visualization components,
so far scattered into different class libraries in the existing
tools, were centralized in a single implementation, which
led to SolidSX. The treemap and HEB components, pio-
neered by other research tools [155, 78], were also added
from scratch. The message-based interface (Sec. 4.3.2.3)
was developed, which allowed incorporating interactive
visualization as a ‘service’ into analysis tools. Analysis-
wise, we extended our initial scope on C/C++ with Java,
C#, and .NET static analysis (SolidSX), and clone detec-
tion (SolidSDD). Deployment-wise, this phase added man-
uals and licensing mechanisms, which turned our toolset
into a first version of true off-the-shelf end-user products.
This enabled us also to conduct larger user evaluations
with both IT professionals [153] and students (Sec. 4.4.1).
Implementation-wise, we migrated from C++, OpenGL,
and wxWidgets to .NET and WPF. This decision was taken
due to perceived shorter development time in C#/.NET,
experienced by our development team in the context of
other ongoing projects, and the richer GUI options of .NET
vs wxWidgets, including offscreen and web rendering, the
latter which was required by several customers.

4.6 conclusions

In this chapter, we have presented our experience in developing
software visual analytics (SVA) tools, starting from research pro-
totypes and ending with a commercial toolset. During this iter-
ative design process, the presented toolset has converged from
a wide variety of techniques to a relatively small set of proven
concepts: a single shared fact database with a simple schema,
implemented in SQL, which allows tool composition by means
of shared fact selections; a small number of scalable Infovis tech-
niques such as hierarchically bundled edge layouts, table lenses,
annotated text, timelines, and dense pixel charts; control flow
composition by means of lightweight message-based adapters
as multiple linked-views in one or several independently devel-

74 the solid* toolset for software visual analytics

oped tools; tool customization by means of Python scripts; and
efficient core tool implementation using C/C++ and OpenGL.

We illustrated our toolset by means of two of its most recent
members: SolidSX for visualization of program structure, de-
pendencies, and metrics; and SolidSDD for visualization of code
clones. We outlined the added value of combining several tools
in typical visual analysis scenarios by means of simple exam-
ples, academic usage in research and education, and an indus-
trial post-mortem software assessment case. Finally, from the
experience gained in this development process, we addressed
several questions relevant to the wider audience of academic
tool builders.

Future work in the direction of improving our toolset for the
general task of program comprehension in the IT industry cov-
ers extending our toolset at several levels e.g. lightweight zero-
configuration C/C++ parsing; dynamic analysis for code cover-
age and execution metrics; and integration with IDEs beyond Vi-
sual Studio, e.g. Eclipse and KDevelop. Combining HEB layouts
and annotated code text in a single scalable view to allow easy
navigation from source code to structure is a second promising
direction of work.

From the perspective of this thesis, two points are important
to be outlined. First, HEB layouts, by themselves, do not form a
solution. To become one, they have to be complemented by ad-
ditional mechanisms for data storage, data filtering, fact extrac-
tion, automatic configuration, and additional views. Develop-
ing these mechanisms requires significant effort: Looking at our
SVA toolset, the HEB implementation accounts for roughly 10%
of the source code. This is important to remember for studies
which wish to evaluate the effectiveness of HEBs in industrial
program comprehension. Secondly, we have however seen that
HEBs form a key ingredient to the success of our SVA toolset.
As such, our conclusion is that HEB methods can be an effective
program comprehension instrument in the real world, as long
as they are seamlessly integrated in a production-grade toolset.

This chapter is based on:

Dennie Reniers, Lucian Voinea, Ozan Ersoy, and Alexandru Telea. The Solid*

Toolset for Software Visual Analytics of Program Structure and Metrics Compre-

hension: From Research Prototype to Product. Science of Computer Programming,

Elsevier (2012).

5I M A G E - B A S E D E D G E B U N D L E S

abstract: In the previous chapters, we have shown that graph bundling is a po-

tentially useful technique for understanding large graphs in program comprehension

ranging from academic to industrial contexts. However, we also have shown that graph

bundling techniques tend to generate complex visual structures when applied to very

large graphs. In this chapter, we present a new approach aimed at simplifying the visual

structure of bundle visualizations. For this, we combine an aggregation, or clustering,

of the graph data with an image-based technique that renders clustered edges as sim-

ple compact shaded shapes, at a user-selected level of detail. We show how our shapes

can be generated efficiently and automatically from a given bundled layout using a

combination of image processing techniques such as distance transforms, splatting, and

skeletonization. Next, we show how luminance, saturation, hue, and shading can be set

to encode edge density, edge types, and edge similarity. Finally, we add brushing and a

new type of semantic lens to help navigation where local structures overlap. We illus-

trate the proposed method on several real-world graph datasets with a focus on program

comprehension.

5.1 introduction

A s discussed in Chapters 3 and 4, hierarchically bundled
edge (HEB) layouts are an effective instrument for vi-
sualizing large compound graphs for program compre-

hension, both in academic research and industrial contexts.
Separately, as we have outlined in Chapter 2, node-link lay-

outs can produce significant visual clutter, which shows up as
overlapping edges or nodes. Clutter impairs tasks such as find-
ing the nodes that a given edge (or edge set) connect, and at a
higher level, understanding the coarse-scale graph structure. As
we have seen in Chapter 3, such clutter is also present in EBL
visualizations, albeit in a different form: While, for node-link
layouts, we cannot distinguish the coarse-level structure of the
graph, in EBL layouts it is hard to disambiguate between several
bundles which overlap at a given spatial position.

Several approaches exist to reduce clutter in graph visualiza-
tions. First, the graph can be simplified prior to visualization,
e.g. by extracting structures such as spanning trees or strongly
connected components. Secondly, the layout of nodes and/or
edges can be adjusted. Both methods can be applied globally,

75

76 image-based edge bundles

based on clutter estimation metrics, or locally, based e.g. on user
interaction [219, 216].

When node positions encode information, they should not
be changed. Also, clutter is related most often to edge cross-
ings [137, 76]. Recent research targets clutter reduction and struc-
ture emphasis by geometrically grouping, or bundling, edges
that follow close paths. Edge-bundling layouts (EBLs) exist for
general graphs [39, 80, 133], circular layouts [68], hierarchical
digraphs [78], and parallel coordinates [117, 225].

In this chapter, we approach the goal of visualizing the coarse-
scale structure of an EBL and clarifying edge clutter caused by
bundle overlaps. Given a bundling layout, which we do not
change, we hierarchically cluster edges seen as similar from the
viewpoint of the layout and, optionally, underlying attribute
data. Next, we construct simple shapes that encode both geo-
metric attributes of clusters (form, position, topology) and un-
derlying edge data (spatial density and attributes). We render
these shapes with an image-based technique that maps their
attributes to shading and color on one or more scales. While
keeping EBL advantages, our simplified visualization clarifies
coarse-scale bundle overlaps by explicitly drawing each bundle
as a separate shape, and assists the task of finding nodes con-
nected by a bundle. The simplification level is user controlled.
Finally, we add interaction to further clarify overlaps in desired
areas and to offer details on demand.

This chapter is structured as follows. Section 5.2 introduces
our EBL simplification technique. Section 5.3 presents several
results focusing mainly structure-and-dependency graphs from
software domain. Section 5.4 discusses our proposal. Section 5.5
concludes the chapter with future work directions.

5.2 method

We aim to simplify a bundled edge visualization by empha-
sizing the coarse-level bundle structure to help users to visu-
ally trace such bundles to the nodes they connect. For this, we
make bundles a first-class visualization object using splatting
and shaded cushions, hence the name of our method: Image-
Based Edge Bundles (IBEB). We use a six-step approach, as fol-
lows (see also Fig. 5.1).

1. We apply a given edge bundling layout (Sec. 5.2.1).

5.2 method 77

input

graph

edge bundle layout L clusters Ci splats Si

shaded images Ii interaction

Figure 5.1: Image-based edge bundle (IBEB) visualization pipeline

2. We explicitly group laid out edges into a cluster hierar-
chy, using a distance that reflects edge positions and data
attributes (Sec. 5.2.2).

3. We choose a set of clusters from the hierarchy at a user-
selected level of detail. For each cluster, we create a com-
pact shape around its edges (Sec. 5.2.3).

4. For each shape, we construct a cushion-like shading pro-
file that also encodes data attributes (Sec. 5.2.4).

5. We render all shapes in a suitable order to minimize oc-
clusion (Sec. 5.2.5).

6. We add a new semantic lens method to help visual explo-
ration (Sec. 5.2.7).

These steps are detailed next.

5.2.1 Layout

We start with an edge bundling layout L : G → R2 for the
input graph G(V ,E). The next steps (Sec. 5.2.2 and further) are
fully independent on this layout. The only assumptions made
are that

1. each edge ei ∈ E is mapped to a set of points pij ∈ R2;
different edges can have different amounts of points;

78 image-based edge bundles

2. the layout does create edge bundles;

As an example, we use the HEB layout [78]. Yet, we use ab-
solutely no hierarchical information beyond the layout. Other
bundling layouts can be readily used (Sec. 5.3).

5.2.2 Clustering

As a pre-processing step to produce our simplified visualiza-
tion, we explicitly group related edges. Each edge e = {pj}

|e|
j=1 is

modeled as a feature vector v = {x1,y1, . . . , xN,yN, t1, . . . , tT } ∈
R2N+T . The first 2N elements of v are regularly sampled points
along the polyline {pj}. N should be large enough to capture
complex edge shapes. N ∈ [50, 100] gives good results on differ-
ent EBLs and datasets, in line with [80, 78, 68]. Some layouts do
not encode semantic edge similarity into positions (assumption
2, Sec. 5.2.1): The HEB groups edges solely on their ends’ hier-
archy position; the FDEB uses solely edge points’ positions. In
some cases, e.g. visualizing a software system graph, we want to
distinguish edge types (e.g. inheritance, call, uses) [81, 205]. To
separate edges of different types t ∈N, we add v2N+1 = t. Mul-
tiple type dimensions can be encoded in t1, . . . , tT , although in
our experiments so far we have used a single type component
(T = 1).

Next, we cluster all edges ei with a well-known clustering
framework for gene data [40]. Intuitively, we replace genes by
our vectors v. We have tested several algorithms: Hierarchical
bottom-up agglomerative (HBA) using full, centroid, single, and
average linkage; and k-means clustering, both with Euclidean
and statistical correlation (Pearson, Spearman’s rank, Kendall’s
τ) distances. HBA with average or full linkage and Euclidean
distance d(v,w) =

∑N+T
i=1 ‖vi −wi‖2 give the best results, i.e.

clusters with edges being close both geometrically and type-
wise. To keep edges of different types separated, we bias tj ∈ v
with a large value k = maxe,e′∈E

∑N
i=1 d(e, e

′). Similar tech-
niques are used to handle gene components with different se-
mantics, which also allows users to set weights to the differ-
ent feature vector components [40]. However, mixing positions
and types in one distance metric could in some cases lead to
undesired results, e.g. having one kind of data dominate the
other, depending on the values of N, T, and value ranges of po-
sition and type attributes. If we want to allow that only edges
of the same type get clustered together, we define d(v,w) =

5.2 method 79

∑N
i=1 ‖vi −wi‖2 if vj = wj, ∀j ∈ [N+ 1,N+ T], else d(v,w) = k.

Implementing this in [40] is straightforward.
HBA delivers a dendrogram T = {C} with the edge set E as

leaves and distances d(C) decreasing from root to leaves. We
now select a partition P = {Ci} of E so that

⋂
Ci,Cj∈P = � and⋃

Ci∈P = E. For example, a similarity-based P contains all clus-
ters with a d(C) < duser below a user-given value. Larger duser
values give more numerous, and more similar, clusters. Smaller
duser values give less, more dissimilar, clusters. Other methods
can be used, e.g. select P for a given cluster count.

We stress that the clustering method choice is not the core
of this chapter, but only a tool to create explicit edge groups.
Any clustering can be used, as long as it groups edges logically
related from an application viewpoint and spatially close. For
example, the ink-minimizing clustering in [68] is a good option
if the aim is to generate tight bundles which never cross and use
a circular layout. The hierarchical clustering in [32], although
proposed for tensor fibers, may also deliver good results. Also,
it is very important to note that our partition is just a single
level, or ‘cut’, in the graph, which we subsequently visualize.

5.2.3 Shape construction

Given a user-selected partition P (Sec. 5.2.2), we now construct
a shape to visualize each edge set C = {ei} ∈ P. Due to bun-
dling and clustering, ei typically follow a small set of directions
(paths).

a) edge layout b) splatted image c) binary shape

Figure 5.2: Shape construction. Edge bundles (a) are splatted into a
density image (b), next thresholded into a binary shape (c).

We use splatting to show bundles in a compact way (Fig. 5.3).
We convolve each edge e ∈ C with a kernel k which linearly de-
creases from a maximum K to zero at a distance δ from the edge,
and accumulate results, similar to [199]. For this, we sample k in

80 image-based edge bundles

a 64x64 pixels alpha texture and additively blend textured poly-
gons along all pi ∈ e ∈ C (GL_SRC_ALPHA, GL_ONE). We tried both
radial and linear profiles for k (Fig. 5.3 bottom-right). Radial
profiles are splatted centered at pi. Linear profiles are splatted
on two polygon strips built by offsetting edge segmenst pipi+1
in vertex normal directions ni,−ni with δ, like stream ribbons
in flow visualization. Linear profiles are better: they allow freely
choosing the edge resolution (number of pi) and splat size δ,
while these values must be carefully tuned for radial profiles to
avoid splatting gaps.

Figure 5.3: Splatting algorithm details

Splatting yields an edge density D(x) =
∑
p∈e,e∈C k(p− x)

(Fig. 5.2 b). Next, we threshold D to obtain a binary shape I
(Fig. 5.2 c)

I(x) =

{
1, D(x) > τ

0, D(x) < τ
(5.1)

For illustration simplicity, Fig. 5.2 shows a single cluster (the
tree root). In practice, we create one shape Ii for each cluster
Ci in the user-selected partition P. Each Ii is, by construction,
compact, and surrounds the edge bundle(s) in Ci, with a max-
imal offset δ(K− τ)/K. In practice, we always set τ = 0.7K and
K = 0.2. The quantity δ is user-controlled, ranging between 1%
and 5% of the viewport (see Sec. 5.2.4).

Additionally, we modulate δ to thin shapes half-way between
their ends. For this, we use, at each point pi, i ∈ [1,N], a value

δi = δ
(
ε
∣∣∣ i−N/2N/2

∣∣∣+ 1− ε), i.e. shrink shapes from δ at their
ends to (1− ε)δ in the middle. Good values for ε range around
0.5, which was used for the examples in this paper. Shrinking
reduces bundle overlaps, as we shall see next in Sec. 5.2.5.

5.2 method 81

5.2.4 Shading

For each binary image I created from clustered edge bundles,
we now create a shaded shape that compactly conveys the un-
derlying bundle structure. Following the original bundle meta-
phor, we want to encode several aspects in a shape:

• bundling: The shape should suggest the branching struc-
ture of a set of bundled curves in a simplified way;

• structure: Finer-level groups of edges, or even individual
edges, should be visible;

• density: High edge-density regions should be visible. These
are cues for strong couplings, relevant to many applica-
tions;

• data: The shape should be able to encode bundle attributes,
e.g. edge types.

For this, we generalize rectangular shaded cushions [200] to
our more complex shapes I, as follows. We compute the skele-
ton Sk(I) of each shape I. Sk(I) is a 1D structure locally centered
with respect to the shape’s boundary ∂I

Sk(I) = {x ∈ I|∃p ∈ ∂I,q ∈ ∂I,p 6= q, ‖x− p‖ = ‖x− q‖}

Next, we compute a shading profile

H =
1

2

[
min

(
DT(∂I)

DT(Sk)
, 1
)
+ max

(
1−

DT(Sk)

DT(∂I)
, 0
)]

(5.2)

where DT(∂I) and DT(Sk) are the distance transforms of the
boundary ∂I and skeleton Sk respectively. We compute both
DT and Sk using the implementation described in [179]. For
any shape topology or geometry, H smoothly varies between
0 on ∂I and 1 on Sk(I), as shown for a different application
in [146]. Figure 5.4 b,c show Sk and H (the latter on a blue-to-
red colormap) of the shape given by splatting Fig. 5.4 a.

We now set the hue, saturation, value, and transparency h, s,
v, a at each pixel of I using the profile H, splatting density D
(Sec. 5.2.3), and edge types, following the aims listed earlier in
this section. We set v = Hα, with α = 0.5. This darkens shapes
close to their border and brightens them close to the skeleton.
The factor 0.5 smooths out H (Eqn. 5.2), creating a look akin to
classical shaded cushions [200]. Next, we map edge types to hue

82 image-based edge bundles

a) edge layout b) shape I and skeleton Sk c) height profile H

d) convex shading

(large splat size)

e) convex shading

(small splat size)

f) convex shading

(thin shapes)

Figure 5.4: Shading pipeline (Sec. 5.2.4). Edges in a cluster (a) and
their binary shape I and skeleton Sk (b) and shading profile
H (c). Convex shading with shape thickness as function of
the splat size (d,e) and shading profile thresholding (f).

h. Two options were explored: each shape has a different hue,
or hues map edge types. The second option is relevant when
clusters contain only same-type edges (Sec. 5.2.2). Finally, we
use s and a to create different visual styles (Table 5.1).

The convex style renders opaque shapes dark and saturated
at the border and bright and white in the middle (Fig. 5.4 d). In
contrast to Phong shading H as a true height signal, as in [200,
25], this style emphasizes the skeletal structure (branching pat-
tern). We see now the effect of the splat size δ (Sec. 5.2.3). Higher

Style s a

Convex 1-H 1

Density-luminance 1−HD 1

Density-saturation HD 1

Cores H 1−H3

Outline 0 1−HD

Table 5.1: Shape shading styles (see Secs. 5.2.4,5.2.5)

5.2 method 83

values yield thicker, simpler, shapes (Fig. 5.4 d). Smaller val-
ues yield thinner shapes with individual edges better visible
(Fig. 5.4 e). We can further emphasize a bundle’s branching
structure by using max[0, (H−Hmin)/(1−Hmin)] instead of H
in Table 5.1. H’s isolines continuously change from the shape’s
boundary to its skeleton, being halfway at H = 0.5 (see Fig. 5.4 c
and [146]).Hmin = 0.5 yields shapes which are thinner and also
further emphasize the bundle structure, as in Fig. 5.4 f.
The last four shading styles in Table 5.1 are effective when visu-
alizing several clusters, as discussed next.

5.2.5 Rendering

For a given clustering partition P, we now render one shape
I for each cluster in back to front order, i.e. sorted on shape
size (foreground pixel count |I|). Placing small shapes in front of
larger ones reduces occlusions and makes small bundles visible.

a) b) c)

d) e) f)

Figure 5.5: Rendering styles: convex shapes (b), density-luminance (c),
density-saturation (d), bi-level (e), and outlines (f).

Fig. 5.5 illustrates this. Image (a) shows a dependency graph
of 419 nodes and 988 relations extracted from a C# software
system, laid out with the HEB. Nodes are .NET assemblies,
packages, classes, and methods. Several bundles show up, but it
is hard to determine (even with interaction) which subsystems
they connect. Overlaps make it hard to visually follow a bundle
end-to-end. Image (b) shows the result of our method, on a level-

84 image-based edge bundles

of-detail with 18 clusters, using the convex style (Sec. 5.2.4).
For illustration only, clusters were given different random hues
from a hand-crafted colormap. Using a gray rather than white
background emphasizes the coarse-scale bundles. Image (c) pres-
ents the density-luminance style (Table 5.1). Brightness empha-
sizes clusters with many edges. Fig. 5.5 d serves the same goal,
but uses saturation: High-density areas are colorful, low-density
areas are gray. Image (d) shows the cores style. Areas close to
bundle skeletons are opaque, the rest is transparent. This re-
duces overlaps and stresses graph structural aspects, similar in
aims to the opacity bands in clustered parallel coordinates [66].

Figure 5.6: Bundle visual separation using halos

To better visually separate overlapping bundles, we can use
a halo effect conceptually similar to the technique presented
in [58] for tensor fibers. For every bundle shape I, we create a
white, opaque border of fixed size σ (a few pixels) around I. Do-
ing this is simple: all pixels x in the halo band are characterized
by DT(∂I) 6 σ. Since DT is computed in pixel space, the halos
will be the same width σ, in pixels, regardless of the bundles’
widths. If we desire halos of width proportional to the bundles
thicknesses, we can use H instead of DT . An advantage of using
H is that halos are guaranteed to never ‘erase’ very thin bundles
completely. Figure 5.6 shows H-based halos, with a zoomed-in

5.2 method 85

detail in the inset. Halos are most effective for images showing a
limited number of bundles. Denser images, e.g. Fig. 5.5, benefit
less from halos as these always take a certain amount of screen
space.

Figure 5.5 f shows the outline style. Here, we modulate alpha,
to create transparent outlined tubes (Table 5.1). To reduce clutter
caused by transparency, we use grayscale images. Although less
salient than the previous styles, outlines are a useful visual cue
of overall structure, especially when combined with interaction
techniques.

Finally, we explored the possibility to add more visual detail
to a bundle. For a user-chosen level dmin and partition P = {C},
we first compute H as in Sec. 5.2.4. Next, we re-partition C

(Sec. 5.2.2) for a higher d′min = µdmin, where µ = 1.2 gives
good results. Third, we add the profiles H′ of each C′ in its
refined partition P′i, scaled to a lower range [0,h], to the coarse-
scale Hi. We normalize the result H +

∑
C′∈P′ hH′ and use it

for shading (Sec. 5.2.4). Finer-scale bundles create luminance
ridges within their parent clusters. From discussions with the
users, we noted that bi-level images are perceived as more sug-
gestive than single-level ones, as the second level acts as a detail
texture suggesting the bundled edges, and also eliminate the un-
desired luminance peaks created by skeleton branches reaching
to the corners of the bundle shapes (compare Figs. 5.5 (c) and
(e)). However, our thin and long shapes preclude adding more
levels to actually show bundle hierarchies like e.g. in cushion
treemaps.

5.2.6 Directional bundles

We can modify IBEB to also generate textures which show di-
rection, as follows (see also Fig. 5.7).

1. Given a bundle shape I, computed by distance threshold-
ing as shown in Sec. 5.2.3, we define an arc-length pa-
rameterization u : ∂I → [0, 1] of its boundary I. Such
a parameterization is actually already computed by the
distance-transform and skeletonization technique we use
in our method [179, 167];

2. We define a periodic sawtooth-like function s : [0, 1] →
[0, 1] as

u(x ∈ [0, 1]) = x mod L (5.3)

86 image-based edge bundles

where L is the period of the sawtooth signal, or length
of one of its pulses. Good values for L are in the range of
0.02..0.05, i.e. a small fraction of the length of the boundary
∂I;

3. Given any point x ∈ I, we now compute the luminance at
x as

H′(x) = H(x)s(H(x) + λu(FT(x))), (5.4)

where FT(x) is the so-called feature transform of ∂I evalu-
ated at point x defined as

FT(x) = argmin
y∈∂I

‖x − y‖, (5.5)

and H is the original cushion-like shading pattern defined
by Eqn. 5.2;

4. Finally, we use the shading signal H′ instead of our origi-
nal signal H in rendering the bundles, as described earlier
in this chapter.

Let us explain the results. Our shading profile H′ equals the
sawtooth (dark-bright-dark) signal u along the shape’s bound-
ary ∂I. As we advance inside the shape, i.e. H increases, this
sawtooth pattern gets shifted parallel to the boundary with an
angle between the pattern and boundary controlled by the pa-
rameter λ. For instance, when λ = 1, the created V-shape pat-
terns form an angle of 45 degrees with the boundary (Fig. 5.7).
Setting λ to negative values locally inverts the direction of the
patterns. The created patterns meet precisely at the local center
of the shape, i.e. on its skeleton, since H is locally normalized
between 0 on the boundary and 1 on the skeleton.

The results shown in Fig. 5.7 show that this technique can
generate directional V-like patterns which smoothly follow the
shapes of the bundles, meet in the shape’s local center, and also
naturally split and merge around bundle junctions. However,
we should stress that this technique is just a first step in the
direction of a complete solution for visualizing directions for
edges in a bundle. The key problem, yet to be solved, is how to
set the value of the parameter λ so it conveys the local direction
of edges in a bundle. Two possibilities exist here. First, we can
precompute a single (dominant) direction for an entire bundle.
If this is possible (and desirable for the type of insight to be con-
veyed in a concrete application), then λ can be globally set as a

5.2 method 87

Figure 5.7: Directional edge bundles: V-like patterns show the domi-
nant edge direction in a bundle.

fixed value for the entire bundle, and we can apply the above
algorithm with the effects illustrated in Fig. 5.7. However, there
may be cases when this edge-direction aggregation cannot be
done or does not make sense, e.g. in cases when a bundle con-
tains edges with different directions along its several branches.
In such cases, setting the local value of λ as a function of the lo-
cal distribution of edge directions is a more complex challenge.
We leave such challenges for future work.

5.2.7 Interaction

By construction, EBLs favor edge overlaps, so occlusion can-
not be fully avoided. We alleviate this by several interaction
techniques. First, we use classical brushing to render pixel-thin
edges in the shape under the mouse. This shows the nodes
linked by a given bundle, even if only a small part of the bundle
is visible. Clicking on a shape brings it to front, sends it to back,
or hides it. This helps bringing bundles of interest into focus.

We add a new interaction tool to further explore overlapping
bundles: the digging lens. Given a focus point x (the mouse

88 image-based edge bundles

pointer), and a pixel p within the lens radius R, ‖p − x‖ <
R, we upper threshold the profiles H(p) with Hmin = t[1 −

(‖p− x‖/R)2] for all visible shapes, where t = 0.8 gives the max-
imal thinning in the lens center. This smoothly shrinks shapes
closer to the lens center, along the idea shown in Fig. 5.4 f
(Sec. 5.2.4). We set the shapes’ saturation to 1 in the lens and
0 outside. As the lens moves, shapes inside it get thinner (thus
have less overlap) and also colorful (thus easy to focus on with-
out distraction from outside shapes). As the user moves the
mouse inside the lens, we automatically bring to front the shapes
touched by the mouse.

A B

N
1

N
2

N
3

Figure 5.8: The digging lens is used to interactively explore areas
where shapes overlap. Insets show zoomed-in details.

Figure 5.8 shows the digging lens. At the thin circle location
(a), we see bundle overlaps. This cue triggers further explo-
ration. For example, we want to see what is behind the blue bun-
dle (A, inset). Activating the lens (by pressing Control) shows
eight clusters, made distinct by shrinking and coloring (b). Mov-
ing the mouse over e.g. the red bundle (B, see inset) brings it to
front, so we now see that it connects the node groups N1,N2
and N3 (c). The entire process takes a few seconds and requires
one key and one mouse click. Although useful, the digging lens
cannot fully handle all possible overlaps: Where long bundles
of same thickness overlap nearly completely, the lens will shrink
them equally, and thus not reveal the hidden bundles. The lens
is effective in places where bundles overlap but have slightly
different directions and/or thicknesses.

5.3 results

Figure 5.9 shows the IBEB applied to the software dependency
graph from Sec. 5.2.5. As a use-case, we consider analyzing type
usage, i.e. inheriting from a class or using its type (functionality)
in client code. This is one of the hardest kinds of dependencies

5.3 results 89

a)

d)

b)

c)

A

B

A

B
1

A
1

A
2

B
2

B

Figure 5.9: Software dependency graph exploration with IBEB (see
Sec. 5.3).

to refactor in software. To analyze different coupling types, we
first use the HEB with type-colored edges (calls = yellow, class
member reads/writes = blue, type usage = red) (Fig. 5.9 a). We
see a thick red bundle that links subsystems A and B. However,
without iterative node selection, we cannot see which parts of A
connect to which parts of B. Also, edge color blending makes it
hard to see edge types at overlaps (arrow in the figure).

Next, we use the IBEB with convex shading and bi-level ren-
dering (Fig. 5.9 b). Clusters contain only same-type edges (Sec.
5.2.2) and are colored on this type. We see now that member
read/write relations form localized bundles not extending a-
cross classes (small light blue bumps, see e.g. the light blue ar-
row in (b)). This is a good sign for information hiding. Also, two
red bundles appear. With two clicks, we bring these to front (b).
We now see two separate subsystems in A connected to two
separate subsystems in B. For illustration, we click on one of
the two bundles (A1B1) and change its color to blue (Fig. 5.9 c).

90 image-based edge bundles

We have now split the original red bundle into two relation sets:
A1B1 and A2B2. Fig. 5.9 d shows further insight in the cluster-
ing: all bundles colored with different hues and overlaid with
the actual pixel-thin edges. Albeit brief for space limitations,
this example illustrates one main point: Classical edge bundles,
like HEB, effectively show coarse-scale subsystem connections,
but do not expose the finer-scale coupling structure within bun-
dles. IBEB further reveals this structure, by showing where ac-
tual edges that ‘enter’ the bundle will ‘exit’.

IBEB can be used with other layouts than the HEB. Figure 5.10

shows its usage with the FDEB on the US migrations graph
from [80] (9780 edges). As a small addition to the edge splat-
ting (Sec. 5.2.3), we now splat two extra radial profiles on both
endpoints of an edge. This yields nicely rounded (capped) bun-
dle shapes.

Compared to the original FDEB (Fig 5.10 a), IBEB exposes
several bundles, e.g. the green one (West Coast migrations), yel-
low one (coast-to-coast migrations), a high-density small pur-
ple one (East Coast NY area), and an interesting high-density,
high-coherence blue one (NY area to midwest migration). Fig-
ure 5.10 c uses the alternative thin shapes technique (cf. Sec. 5.2.4
Fig. 5.4 f) to further emphasize coarse graph structure. Here,
we brought the coast-to-coast bundle (purple) in front. Finally,
Fig. 5.10 d uses the cores style to emphasize structure and also
reduce occlusion. All in all, we argue that the IBEB helps expos-
ing coarse-scale bundle patterns, and seeing which nodes these
bundles connect, while the original FEB is better at exposing
fine-scale details in regions with little or no overlaps.

b)

d)

a)

c)

Figure 5.10: Image-based visualization of force-directed edge bun-
dling (FDEB) layouts

5.3 results 91

To further understand the IBEB strong and weak points, we
performed a formative user study. Twenty 3rd year CS students
at the Univ. of Groningen, the Netherlands, were given the IBEB
implemented atop of the SolidSX software analysis tool using
the HEB [159], described in more detail in Chapter 4. The
tool imports dependency graphs (inheritance, class field usage,
function calls, and containment hierarchy) from Visual C++,
.NET/C#, and Java. The C# software discussed earlier was pro-
vided by the tool developers as an interesting use-case. Partic-
ipants were asked to find dependencies between several indi-
cated modules; list the four most important call and field usage
paths in the system; and comment on the overall system modu-
larity. Search, filter, and node selection (available in the original
tool) were disabled, so the tasks had to be completed mainly
focusing on edges. One week was given to familiarize with the
tool (which has a detailed manual) and execute the tasks. Effec-
tive usage time was 5 to 8 hours. The images in Fig. 5.9 come
from this study.

Besides the actual answers, the following points were men-
tioned by all users (except two who did not complete the study):

• Classical HEB is very effective when (a) there are few bun-
dle overlaps, or (b) one does not need to visually deter-
mine which parts of a large bundle go to which specific
node groups;

• Although overlap exists, IBEB reveals several end-to-end
(node-to-node) coarse-scale bundles which are not visible
with classical HEB;

• The digging lens is effective in locally unraveling occluded
bundles at a location of interest;

• The IBEB has an ‘organic’ look which is pleasing and in-
vites exploration.

Overall, the IBEB combines the advantages of HEB with an
easier understanding of dense bundles. In the traditional HEB, a
thick, dense, bundle is seen as such but one cannot directly see
whether there is finer-level structure, e.g. the bundle actually
consists of several sub-bundles which connect different node
groups, like in Fig. 5.9. This can be done by a trial-and-error
selection of individual nodes to see if their edges indeed pass
through the bundle of interest. Such selection is easily done in
the HEB, but harder in layouts that draw nodes as small points,
e.g. the FDEB. In contrast, IBEB makes bundles explicitly, and

92 image-based edge bundles

individually, visible, so users can easier relate bundles to the
nodes they connect. The fact that IBEB shows less fine-scale de-
tail than the HEB does not seem to be a major problem, as indi-
vidual edges are mainly explored once one has decided which
few node(s) one wants to inspect. When this is known, both the
HEB and IBEB are equally effective - in IBEB, brushing over a
node and/or bundle highlights its edges, drawn as individual
lines, just like in the HEB. For the several selection and brushing
features we support, we refer to [159].

Our users also mentioned several desirable additions. First,
even though shading and back-to-front rendering were seen as
effective, overlaps still exist. The digging lens helps to analyze
overlaps, but only locally. Secondly, edge direction cues are re-
quired. We tried several methods for this, e.g. luminance or sat-
uration modulation of our bundle shapes (see Section 5.2.6), but
this was found to darken images too much. Further work in this
area is needed.

5.4 discussion

We next discuss several technical aspects of our method.
Generality: The only assumption made is that of a graph layout
that delivers points along edges, and that edges are spatially
bundled in a meaningful way. The layout and/or input graph
do not need to obey other constraints, e.g. to be hierarchic or
acyclic.
Parameters: The user has to set only a few values: level of detail
dmin (Sec. 5.2.2), splatting radius δ (Sec. 5.2.3), and rendering
style (Sec. 5.2.4). Here, only the level of detail does not have, so
far, a preset usable for most datasets.
Performance: We ran the IBEB, implemented in C++ and Open-
GL 1.1, on several systems running Windows Vista/XP, 1.5 to
3.5 GHz, and 2 GB to 4 GB RAM. The clustering used [40]
handles 10..20K edges in under 0.1 seconds. Splatting, shading,
rendering, and interaction (OpenGL-based) run in real-time on
consumer graphics cards. We obtained real-time response even
with Windows Remote Desktop rendering, which uses software-
only OpenGL. Skeletonization, whose complexity is N logN for
a binary shape I of N pixels (Sec. 5.2.4), takes 90% of the en-
tire time. For simplicity, we used a software-only implementa-
tion [179] which takes 0.1 seconds/shape at 8002 resolution, i.e.
1..2 seconds for a typical full frame. If desired, OpenGL-based
skeletonization [167] can be readily used, which would deliver

5.4 discussion 93

subsecond/frame speed. Memory needs are around 100 MB for
e.g. a graph with 10K edges discretized to a total 200K points.
Image-based vs geometric implementation: After edge clus-
tering, IBEB works fully image-based. We also implemented
a point cloud-based (geometric) version. We build the shapes
I (Sec. 5.2.3) as alpha shapes from points pij on all edges ej
in a cluster Ci, using the CGAL library [29], similarly to [32].
We compute distances for the shading profiles H (Sec. 5.2.3)
with a fast spatial search structure [6]. Speed is similar to the
image-based variant. However, the alpha value (of alpha shapes)
is hard to control [50]: High values fill in all gaps between
bundle branches, low values yield holes inside what would
be a compact branch. Resulting alpha shapes are rendered as
shaded triangulated meshes. To yield the level-of-detail in I and
H achieved by the image-based variant, we need a very high
mesh resolution. All in all, we thus prefer the image-based ap-
proach.
Visual metaphor: The IBEB convex rendering style resembles the
shaded edge bundles in illustrative parallel coordinates (IPC)
[117], with some differences. Our shapes have a much higher
variability, depending on the EBL used. We use hierarchical ag-
glomerative clustering, while IPC uses k-means. We use skele-
tons in shading to emphasize the bundles’ branching structure,
to reduce overlaps (shrink shapes globally or locally by the dig-
ging lens), and for the cores rendering style. IPC uses different
shapes and a shading style that mainly emphasizes line density.
Open points: The IBEB’s main limitation is visual scalability. Us-
ing 10..30 shapes shows the coarse graph structure. More shapes
create too many overlaps. However, we aim to provide a simpli-
fied view, not a full-blown replacement for bundled edges.
A useful result implies meaningful bundle shapes. This implies
an edge bundling layout (EBL) that spatially groups related
edges, and a clustering method (and edge similarity metric d)
that yields meaningful edge clusters. The EBL and clustering
used are generic, e.g. the HEB or FDEB (layout) and hierarchical
agglomerative or k-means (clustering). However, d is applica-
tion and task dependent. So far, we only considered edge types
in d. Attributes such as edge weights or node types are open to
exploration.
Finally, we stress that we select the visualization level-of-detail
globally, and, so far, use only a single ‘cut’ in the cluster tree,
purely based on similarity (Sec. 5.2.2). Locally refining bundles
of interest, e.g. on user input, thus changing the shape of the
cut, is a direction of further study. Here, we can draw inspi-

94 image-based edge bundles

ration from the interactive navigation techniques from [5] for
exploration of graphs structured along multiple hierarchies.

5.5 conclusions

We have presented an image-based simplified visualization for
edge bundles (IBEB). Given a layout that creates spatially close
edge bundles, we visualize bundles using shaded overlapping
compact shapes. We reduce the visual complexity of classical
bundle visualizations, emphasize the coarse-scale structure, and
help navigating from bundles to the connected nodes. We make
bundle overlaps explicit, and add interaction to locally disam-
biguate these. Level-of-detail techniques help to select the visu-
alization granularity and further explore overlaps.

Many extensions are possible. Different shading and edge
clustering strategies can be used to address additional use cases,
e.g. emphasize connections of particular types and/or topolo-
gies in a graph. New techniques can be designed to convey
additional edge data such as direction or metrics atop of our
metaphor. Finally, the IBEB can be extended to other fields, such
as flow or tensor visualization. We plan to explore these avenues
in future work.

acknowledgements

We are grateful to Dennie Reniers and Lucian Voinea for the
code of the SolidSX tool [159], datasets, and use-cases, and to
Danny Holten for the force-directed bundling layout data (Sec.
5.3) and many insightful comments.

This chapter is based on:

Alexandru Telea and Ozan Ersoy. Image-Based Edge Bundles: Simplified Vi-

sualization of Large Graphs. Computer Graphics Forum 29, 843-852 (2010) (2nd

Best Paper Award, EuroVis’10).

6S K E L E T O N - B A S E D E D G E B U N D L I N G

abstract: In Chapter 5, we have shown that image-based techniques, in particu-

lar distance transforms and shape skeletons, can be used to simplify the rendering of

large bundled layouts as a post-processing step to existing bundling algorithms. In this

chapter, we take the image-based idea a step further, and show how we can use similar

image-based techniques to actually bundle large graphs which come with or without

hierarchical information. As layout cues for bundles, we use medial axes, or skeletons,

of edges which are similar in terms of position information. We combine edge cluster-

ing, distance fields, and 2D skeletonization to construct progressively bundled layouts

for general graphs by iteratively attracting edges towards the centerlines of level sets

of their distance fields. Apart from clustering, our entire pipeline is image-based with

an efficient implementation in graphics hardware. Besides speed and implementation

simplicity, our method allows explicit control of the emphasis on structure of the bun-

dled layout, i.e. the creation of strongly branching (organic-like) or smooth bundles. We

demonstrate our method on several large real-world graphs.

6.1 introduction

A s we have discussed in Chapter 2, when the number of
nodes and edges of a graph increases, node-link graph
visualizations become challenged by clutter, i.e. unorga-

nized groups of nodes and edges onto small screen areas. To
reduce clutter, and also address use-cases which focus on sim-
plified depiction of large graphs with an emphasis on graph
structure, several methods have emerged. Specifically, edge bun-
dling layouts (EBLs) are an interesting alternative for classical
node-link metaphors. Bundling typically starts with a given set
of node positions, either present in the input data, or computed
using a layout algorithm. Edges found to be close in terms of
graph structure, geometric position of their endpoints, data at-
tributes, or combinations thereof, are drawn as tightly bundled
curves. This trades clutter for overdraw and produces images
which are easier to understand and/or better emphasize the
graph structure.

As we have seen in Chapter 5, bundling visualizations can
be further enhanced in terms of reducing visual clutter by us-
ing image-based techniques. Specifically, we show how distance
transforms and two-dimensional shape skeletons can be used to

95

96 skeleton-based edge bundling

visually ‘cluster’ edges which are part of the same bundle into
a single shaded shape. Rendering such shapes, instead of the
original fine-grained edges, effectively simplifies the bundled
visualization and allows one to focus on its coarse-level struc-
ture.

In this chapter, we take the image-based approach outlined
above a step further. Specifically, we use two-dimensional shape
skeletons for actual edge bundling rather than simplifying an
existing EBL. In detail, we combine edge clustering, distance
fields, and 2D skeletonization to construct bundled layouts by
iteratively attracting edges towards the centerlines of level sets
of their distance fields. Apart from clustering, our pipeline is
image-based, which allows an efficient implementation in graph-
ics hardware. Besides speed, our method allows users to explic-
itly control the emphasis on bundle structure, i.e. create strongly
branching (organic-like) or smooth bundles which always have
a tree structure. This type of control can be helpful in appli-
cations where one is interested to see how several edges ‘join’
together into, or split from, main structures, for example when
exploring the structure of a network. Instances hereof are ex-
amining the local hierarchy of traffic connections in a road or
airline network, or identifying the number and size of branches
(fan in/out patterns) in software structures.

The structure of this chapter is as follows. Section 6.2 presents
our bundling algorithm. Section 6.3 details implementation. Sec-
tion 6.4 presents applications on large real-world graphs. Sec-
tion 6.5 discusses our method. Section 6.6 concludes the chapter
and outlines future work directions.

6.2 algorithm

The inspiration behind our method relates to a well-known fact
in shape analysis: given a 2D shape, its skeleton is a curve lo-
cally centered with respect to the shape’s boundary [37]. Skele-
ton branches capture well the topology of elongated shapes [101,
156]. Hence, if we could create such shapes from sets of edges
in a graph, their skeletons could be suitable locations for bun-
dling. This observation is also supported by the image-based
edge bundling (IBEB) method presented in Chapter 5: Skele-
tons are there used to construct simplified bundle renderings,
and distance fields induced by these skeletons are used to con-
struct the shading of such bundles (bright in the middle of the

6.2 algorithm 97

bundle, close to the skeleton, and dark away from the bundle’s
middle).

clustering
distance

transform
skeletonization

feature

transform
tip detection

path

computation
attraction

relaxation &

smoothing
rendering

Shape construction Edge bundling Postprocessing

cluster set shapes Ω skeletons SΩ image data skeleton tips skeleton paths bundled edges smooth bundles final

image
input

graph

δ ω

ρ

α,β

γs,γr

I iterations

bundled edges

end user

Figure 6.1: Skeleton-based edge bundling pipeline. End user parame-
ters are marked in green. System preset parameters are in
red

To this end, we propose a skeleton-based edge bundling meth-
od, as follows (see Fig. 6.1):

1. we cluster edges into groups, or clusters, Ci which have
strong geometrical and optionally attribute-based similar-
ity;

2. for each cluster C, we compute a thin shape Ω surround-
ing its edges using a distance-based method;

3. for each shape Ω, we compute its skeleton SΩ and feature
transform of the skeleton FTS;

4. for each cluster C, we attract its edges towards SΩ using
FTS;

5. we repeat the process from step 1 or step 2 until the de-
sired bundling level is reached;

6. we perform a final smoothing and next render the graph
using a cushion-like technique to help understanding bun-
dle overlaps.

We start with an unbundled graph G = (V ,E) with nodes V
and edges E. We assume that we have node positions vi ∈ R2,
either from input data, or from laying out G with any exist-
ing method e.g. spring embedders [192]. Edges ei ∈ E are sam-
pled as a set of points connected by linear interpolation; other
schemes such as splines work equally well. The start and end
points of an edge, denoted esi and eei respectively, are the po-
sitions of the nodes the edge connects. Edge points may come
from input data, e.g. when we bundle a graph which has ex-
plicit edge geometry. If no edge positions are available, we ini-
tialize the edge points by uniformly sampling the line segments
(esi , eei) with some small step. Our bundling algorithm itera-
tively updates these edge points. Its output is a bundled layout

98 skeleton-based edge bundling

of G which keeps node positions intact and adjusts the edge
points to represent bundled edges.

The six steps of our method are explained next.

6.2.1 Clustering

To obtain elongated 2D shapes, needed for our bundling (de-
scribed next in Sec. 6.2.3), we first cluster edges using a similar-
ity metric which groups same-direction, spatially close, edges,
using the clustering method described in Chapter 5. We have
tested several clustering algorithms: hierarchical bottom-up ag-
glomerative (HBA) clustering using full, centroid, single, and
average linkage, and k-means clustering, both with Euclidean
and statistical correlation (Pearson, Spearman’s rank, Kendall’s
τ) distances. HBA with full linkage and Euclidean distance given
by

d(ei, ej) =

√√√√ N∑
k=1

‖eik − ejk‖2 (6.1)

where eik,k∈1,N are uniformly spaced sample points along the
edges, with N ∈ [50, 100], gives the best results, i.e. clusters
with geometrically close edges which naturally follow the graph
structure. Using the same N for all edges removes edge length
bias. HBA delivers a dendrogram D = {Ci} with the edge set E
as leaves and similarity (linkage) values d(C), equal to the full
linkage of cluster C based on the distance metric in Eqn. 6.1, in-
creasing from root to leaves. We select a ’cut’ in D, or partition,
P = {Ci ∈ D|d(Ci) < δ} of E based on a similarity value δ, set
by our algorithm as explained further in Secs. 6.2.5 and 6.3. If
desired, d in Eqn. 6.1 can be easily adapted to incorporate edge
data attributes, as outlined in Chapter 5 (see Sec. 5.2.2).

6.2.2 Shape construction

Clustering delivers sets of spatially close edges, i.e., the bun-
dling candidates. Given such a cluster C = {ei}, we consider its
drawing ∆(C) ⊂ R2, e.g. the set of polylines corresponding to
its edges ei if we use the default linear edge interpolation. We
construct a compact 2D shape Ω ⊂ R2 surrounding ∆(C), as

6.2 algorithm 99

follows (see also Fig. 6.2). Given any shape Φ ⊂ R2, we first
define its distance transform DTΦ : R2 → R+ as

DTΦ(x ∈ R2) = min
y∈Φ
‖x − y‖ (6.2)

a)

d)

b)

c)

Figure 6.2: Shape construction: a) ∂Ω and S; b)DTS; c) FTS; d) bundling
result (see Secs. 6.2.2-6.2.4 for details).

Given a distance value ω, we next define our shape Ω as

Ω = {x ∈ R2|DT∆(C)(x) 6 ω} (6.3)

where DT∆(C) is the distance transform of the drawing ∆(C) of
C’s edges. The shape’s boundary ∂Ω is the level set of value ω
of DT∆(C) (see Fig. 6.2 a). This is equivalent to inflating ∆(C)
with a distance ω in all directions. In practice, we set ω to a

100 skeleton-based edge bundling

small fraction (e.g. 0.05) of the bounding box of G. Efficient com-
putation of distance transforms is detailed further in Sec. 6.3.

6.2.3 Shape creation

Given a shape Ω computed from an edge cluster drawing as
outlined above, we next compute its skeleton SΩ defined as

SΩ = {x ∈ Ω|∃y, z ∈ ∂Ω, y 6= z, ‖x− y‖ = ‖x− z‖ = DT∂Ω(x)}

(6.4)

i.e. the set of points in Ω which admit at least two different so-
called feature points on ∂Ω, at distance equal to the distance
transform of ∂Ω (Fig. 6.2 a).

Given S, we now compute its so-called one-point feature trans-
form FTS : R2 → R2, defined as

FTS(x) = {y ∈ S|DTS(x) = ‖x − y‖} (6.5)

i.e. one of the feature points of x. Figure 6.2 b,c show the DTS
and FTS of a skeleton. Gray values in Fig. 6.2 b indicate the
DTS value (low=black, high=white). Colors in Fig. 6.2 c indicate
the identity of different feature points: same-color regions corre-
spond roughly to the Voronoi regions of the skeleton branches
[179]. The skeleton is the identity set of FTS, i.e. ∀x ∈ S, FTS(x) =
x. Note that, in Eqn. 6.5, we use the distance transform DTS
of the skeleton S, and not the distance transform DT∂Ω of the
shape. Also, note that the one-point feature transform is simpler
than the so-called full feature transform

FTfullS (x) = argmin
y∈S

‖x − y‖ (6.6)

which records all feature points of x [37].
In practice, we compute distance transforms, one-point fea-

ture transforms, and skeletons in discrete image (screen) space.
This allows efficient implementation (see Sec. 6.3) and also fur-
ther processing of the skeleton for edge bundling, as described
next.

6.2.4 Edge attraction

Using the skeleton S and its feature transform FTS, we now bun-
dle the edges ei ∈ C by attracting a discrete representation of

6.2 algorithm 101

each edge towards S. This idea is based on the following obser-
vations. First, given the way we combine clustering and edge
bundling, a cluster contains only edges having close trajecto-
ries; the reasons for this are detailed in Sec. 6.2.5. By construc-
tion, the skeleton S of a cluster is locally centered with respect
to the (similar) edges in that cluster, i.e. a good candidate for
the position to bundle towards. Secondly, FTS(x) − x gives, for
each point x ∈ R2, the direction vector from x to the closest
skeleton point to x, i.e. the direction to bundle towards. We use
these observations to bundle ei as follows.

First, we compute all branch termination points, or tips, T =

{ti} of S. Given that S is represented in image space, we use a
simple and efficient 3× 3 pixel template-based method [96] to
locate ti. Next, we compute all skeleton paths Π = {πi ⊂ S}

between any two tips ti and tj. The paths are represented as
pixel chains and are found using depth-first search from each ti
on the skeleton pixel-adjacency-graph. We next use these paths
to robustly attract the edges towards the skeleton.

For each ei ∈ C with start and end points esi and eei respec-
tively, we select a path passing through the feature points of
both edge end points π(ei) ∈ Π so that {FTS(e

s
i), FTS(e

e
i)} ⊂

π(ei), i.e. a skeleton path. If there are several such paths in Π,
we pick any one of them, the particular choice having no influ-
ence on the algorithm.

We now use π(ei) to bundle ei along the skeleton, as follows.
Consider a point x ∈ ei located at arc-length distance λ(x) from
esi . We move x towards FTS(x) with a distance which is large if x
is far away from FTS(x) and/or close to the middle of the edge:

xnew =

[
1−αφ

(
λ(x)
λ(eei)

)]
x +αφ

(
λ(x)
λ(eei)

)
FTS(x) (6.7)

Here, α ∈ [0, 1] controls the tightness of bundling: Large val-
ues bring the edge closer to the skeleton, whereas small values
bundle less. The function φ : [0, 1]→ [0, 1] defined as

φ(t) = [2 min(t, 1− t)]K (6.8)

modulates the motion amount so that the edge’s end points esi
and eei do not move at all, points close to these end points move
less, and points around the middle of the edge move most. This
produces the curved edge profile we require for bundling, and
also keeps edge end points fixed to their node locations. The
parameter K controls how smoothly edges twist, or curve, from

102 skeleton-based edge bundling

their nodes to reach their bundled location. Higher K values pro-
duce more twists, and low K values produce smoother twists.
Values of K ∈ [3, 6] give very similar results to known bun-
dling methods e.g. [78, 80, 103]. Also, for any x ∈ S, FTS(x) = x
(Sec. 6.2.3), so for such points we have xnew = x (Eqn. 6.7), i.e.
points which have reached the skeleton, the extreme bundling
location, do not move any longer.

Equation 6.7 is equivalent to advecting edge points x in the
gradient field −∇DTS. Distance transforms of any shape except
a straight line have div ∇DTS 6= 0 [157]. Hence, our attraction
typically shortens and/or lengthens edges, since these get im-
mediately curved after one application of Eqn. 6.7. We compute
the edge points x used in Eqn. 6.7 by uniformly sampling edges
in arc-length space with a distance equal to a small fixed frac-
tion (0.05) of the layout’s bounding box. This removes points
where the edge contracts (div ∇DTS < 0) and inserts points
where the edge dilates (div ∇DTS > 0) as needed, thus ensur-
ing a uniform edge sampling density.

6.2.4.1 Attraction singularities

As explained, Eqn. 6.7 is equivalent to advecting x in the field
−∇DTS. This field is smooth everywhere in R2 except on points
x where ‖FTfullS (x)‖ > 1, i.e. points located on the skeleton of
the skeleton’s complement, or Voronoi diagram of S, S = SR2\S.
Intuitively, S corresponds in Fig. 6.2 c to color discontinuities.
Although this singularity set is small, i.e. a set of curves in
2D, we need special treatment for such situations. If we were
to directly advect a curve using Eqn. 6.7 with no further pre-
caution, singularities would appear where the curve crosses S,
since ∇DTS has a high absolute divergence, i.e. changes direc-
tion rapidly, in such areas [157]. Such singularities appear as
sharp kinks in the curve, which defeats our purpose of creat-
ing smooth bundles. For example, attracting the blue edge e
in Fig. 6.3 a towards the Y-shaped skeleton yields the red line
which shows two kinks, where e crosses S (dotted line) at points
a and b. The problem is made only more complex by the fact
that we use a sampled edge representation, so x may be close,
but not on, S.

We solve such situations by an implicit regularization of the
advection field determined by FTS. First, we enforce the con-
straint that points x ∈ e can only be advected to points on the
edge’s path π(e). This ensures that, during advection, parts of
e cannot be attracted towards other skeleton branches than the

6.2 algorithm 103

skeleton S

skeleton S
_

skeleton S

curve to bundle

curve to bundle

desired result

undesired result

special points σ

ei0

eiN

eiN

ei0

FTS(ei0)

FTS(eiN)

FTS(ei0)

FTS(eiN)

σstart

σend

a

b

a)

b)

skeleton S
_

skeleton S

curve to bundle

undesired result

eiN

ei0

FTS(ei0)

FTS(eiN)

ac)

skeleton S
_

skeleton S

curve to bundle

desired result

eiN

ei0

FTS(ei0)

FTS(eiN)

ad)

skeleton S

β

_

regularization

regularization

x

path fragment [FTS(σ
start),FTS(σ

end)]

xmap

Figure 6.3: Attraction singularities. Naive solution (a,c) and corre-
sponding solutions with regularization (b,d). Final bundled
curve is shown in red. Voronoi regions of the branches of S
are shown in different hues

set of contiguous branches which form π. Intuitively, Eqn. 6.7
should not pull e towards non-connected skeleton branches. We
achieve this constraint as follows (see Fig. 6.3 b). For each x ∈ e,
we evaluate its FTS(x). If FTS(x) ∈ π(e), we attract the ’reg-
ular’ point x using Eqn. 6.7, else we mark x as special case.
Special points along e (yellow in Fig. 6.3 b) form compact sets
σi, which are preceded and followed on e by regular points
σstarti and σendi respectively, whose feature points belong to
π(e) by construction. We next map each special point x to a

104 skeleton-based edge bundling

corresponding point xmap on π(e) using arc-length interpo-
lation along both σi and their corresponding path fragments
[FTS(σ

start
i), FTS(σendi)] ⊂ S (dark green in Fig. 6.3 b), and

use xmap in Eqn. 6.7 instead of FTS(x). This ensures that both
special and regular points are attracted to the same path π(e),
and thus, since π(e) is a compact curve, that the motion of e is
smooth.

However, the above regularization does not eliminate all the
sharp kinks in the advection of an edge: Consecutive points of
the edge can ’see’ points on the same skeleton path π, and still
be separated by a singularity (see point a in Fig. 6.3 c). As ex-
plained, advecting such points a using Eqn. 6.7 would produce
undesirable bends. Since the feature-point of a is located on the
same path π(e) as those of a’s neighbors on the edge, we cannot
find a using the path-based detection criterion outlined above.
We solve this problem by using an angle-based criterion: Given
our discrete edge representation e = {xi}, we test if the feature
vectors FTS(xi) − xi and FTS(xi+1) − xi+1 of consecutive edge
sample points xi and xi+1 form a large angle β. If β exceeds
a user-defined value βmax, we mark xi as a special point and
treat it as explained earlier for the path-based detection crite-
rion. In practice, βmax = π/4 has given good results for all
graphs we tested. The overall effect is that sharp edge angles
are eliminated and edges are advected smoothly towards the
skeleton (Fig. 6.3 d). As a more complex example of our regu-
larization, Fig. 6.2 d shows the bundling of a set of edges (green)
close to the skeleton in Fig. 6.2 a.

Our angle criterion is a one-dimensional version of the di-
vergence-based Hamilton-Jacobi skeleton detector of [157]. It
subsumes the path-based criterion. In theory, it would be suffi-
cient to use the angle criterion to achieve smooth motion. How-
ever, the path-based criterion is more numerically robust as it
involves no angle estimation or thresholding. Since its applica-
tion is equally fast (we need paths anyway to regularize the
attraction in both cases), we use it when applicable to reduce
any chance for numerical instabilities.

6.2.5 Iterative algorithm

For a given graph layout, one application of the clustering, shape
construction, and edge attraction steps outlined above yields a
new layout whose edges are closer to their respective cluster
skeletons. To achieve full bundling, we repeat this process itera-

6.2 algorithm 105

tively until a user-specified number of iterations I is reached.
More iterations yield tighter bundled edges. This process is
strictly monotonic, i.e. edges can only get closer to their clusters’
skeletons (hence to each other) by construction, as explained
below (see also Fig. 6.4).

iteration 1 iteration 2

iteration 12iteration 10

iteration 4 iteration 7

Figure 6.4: Iterative bundling of the US migrations graph. Colors indi-
cate edge clusters (see Sec. 6.2.5)

First, let us explain why clustering needs to be repeated dur-
ing the iterative process. For the first clustering, we use a high
similarity threshold δ in order to guarantee elongated, thin, clus-
ters regardless of the edge spatial distribution in the input graph
(Sec. 6.2.1). This is essential for getting the initial bundling un-
der way. Indeed, if we had weakly coherent clusters, these would
contain edges that intersect each other at large angles, hence
the shapes surrounding them, and their skeletons, would be
meaningless as bundling cues. For subsequent iterations, we de-
crease δ and recluster the graph each few (3to5) iterations. This
produces fewer, increasingly larger, clusters, which allows fine-
scale bundles to group into coarse-scale ones. However, these
large clusters are locally elongated, since they contain already
partially bundled edges. Hence, coarsening the clustering will
not group unrelated edges. The overall effect is bottom-up bun-
dling: First, the closest edges get bundled, yielding fine-scale lo-
cal bundles, followed by increasingly coarser-scale bundle merg-
ing.

Similarly, we decrease α during the iterative process. Initial
large α values yield strongly coherent initial bundles, needed

106 skeleton-based edge bundling

for clustering stability as explained above. Subsequent relaxed
α values allow edges in more complex, larger, bundles to adjust
themselves. Concrete values for δ and α are given in Sec. 6.3.2.

6.2.6 Postprocessing

6.2.6.1 Relaxation and smoothing

The output of our bundling algorithm has a strong branch-like
structure (see e.g. Fig. 6.6 b). This is the inherent effect of using
skeletons as bundling cues. Indeed, skeleton branches asymp-
totically meet at large angles [134]. This visual signature of our
bundles may be desirable for use-cases where one is interested
to see the branching structure of a graph. However, often the
fact that two bundles join at some point in a thicker bundle is
irrelevant, and should not be over-emphasized. We offer this
possibility by performing a final postprocessing on the bundled
layout. Here, two variations are proposed. First, we apply a sim-
ple Laplacian smoothing filter along the edges γs times, much
like [80].

This removes sharp bundle turns, which by construction ap-
pear precisely, and only, where skeleton branches meet. Indeed,
as known from medial axis theory, a skeleton branch is always a
smooth curve; the only curvature discontinuities along a skele-
ton appear at branch junctions [134]. A second postprocessing
we found useful is to interpolate linearly with a value γr ∈ [0, 1]
between the bundled graph and its initial layout. This relaxes
the bundling, which is desirable when users want to see the in-
dividual edges within a bundle and/or where these come from
in the initial layout. The effect is similar to the spline tightness
parameter in [78].

Figure 6.5 a,b show the effect of smoothing on a graph whose
nodes use a radial layout. Smoothing (b) removes the strong
branching effect visible in (a) at the locations indicated by ar-
rows. The result is very similar to the HEB layout [78]. How-
ever, it is important to stress that we obtain our bundling with
no graph hierarchy information. Figures 6.6 a,b show the effect of
smoothing and relaxation on the well-known US airlines graph,
whose bundled layout is shown in Fig. 6.9 f. Smoothing removes
the ’skeleton effect’ from the bundles, while relaxation makes
these thicker with less effect on their curvature. As such, the
two effects serve complementary goals.

6.2 algorithm 107

a) no relaxation or smoothing b) smoothing

c) relaxation and shading d) translucency

Figure 6.5: Layout postprocessing on a graph with radial layout. Edge
smoothing (a vs b). Cushion shading (c), half-transparent
detail (d).

6.2.6.2 Rendering

Finally, we propose a simple but effective rendering technique
for easier visual following of the rendered bundles (Fig. 6.5 c,d).
The principle follows [178]: We render each bundle in back-to-
front order, decreasingly sorted by skeleton pixel count |S|, as if
they were covered by a 3D cushion profile bright at the bundle’s
center and dark at its periphery. This helps following a given
bundle, especially in regions where several bundles cross. In
contrast to [178], we use a much simpler technique (see Fig. 6.7).
Edges are rendered as alpha-blended polylines. We modulate
the saturation S and brightness B of each polyline point x based

108 skeleton-based edge bundling

a) smoothing

b) relaxation

Figure 6.6: Layout postprocessing on US airlines graph. Edge smooth-
ing (Fig. 6.9 f vs a). Edge relaxation (Fig. 6.9 f vs b).

on its distance to the skeleton d(x) = DTS(x), which is already
computed for the attraction phase (Sec. 6.2.3). For this, we use

S(d) =
√
1− d/δS (6.9)

B(d) = 1−
√
d/δB (6.10)

This yields thin, specular-like, white highlights in the middle
of the bundles (where the skeleton is located) and darkens the
edges as they get further from the skeleton. The parameter δB
is the local thickness of the bundle. For an edge point x ∈ Ω,
δB(x) = DTS(FT∂Ω(x)), i.e. the distance of the closest point on
the shape boundary ∂Ω to the shape’s skeleton. This does not re-
quire any extra computations, since we anyway compute FT∂Ω
and DTS as part of the shape construction (Sec. 6.2.2, see also
Sec. 6.3 for implementation details). The parameter δS < δB con-
trols the highlight thickness and is set to a small fraction (e.g.
0.2) of δB. This technique has several differences as compared
to splatting-based shading techniques for bundles in [103, 178].
First, our rendering does not change the screen-space thickness

6.2 algorithm 109

of a bundle, which is determined by the bundling layout – thin
bundles stay thin. In contrast, splatting techniques tend to make
thin bundles relatively thicker, which consumes screen space
and increases occlusion chances. Secondly, if we relax the bun-
dling as described earlier, individual edges become visible but
still show up as a coherent whole due to the cushion shading.
Figure 6.5 d shows this. To better illustrate the effect, we de-
creased here the overall opacity of the edges. The inset shows
how bundles appear as shaded profiles even though they are
not, technically speaking, compact surfaces. Thirdly, although
we could use a physically correct shading model (like [103]), we
found our pseudo-illumination adequate in terms of our goal of
understanding overlapping bundles.

B

DTS

S

1 1

δΒ δS < δΒ

bundle local width

skeleton S

δΒ

δShalo

DTS

Figure 6.7: Cushion shading for bundles (Sec. 6.2.6.2)

6.2.6.3 Interaction

We have experimented with several types of interactive explo-
ration atop of our method. In particular, our image-based pipe-
line and explicit representation of edge clusters allows us to
easily brush or select groups of edges showing up as bundles
or branches thereof. Three types of selection were found use-
ful, as follows (see also Fig. 6.11 a-c and example discussed in
Sec. 6.4). Given the mouse position x, we first select all bundled
edges within a disc of small radius r centered at x by computing
the feature transform of the bundled edges and then selecting
all edges which contain feature points in the disc. This query
is useful for basic edge brushing and for building the next two
queries. Secondly, we want to select all edges in the most promi-
nent bundle, or bundle branch, passing through the disc. We re-
peat the basic selection, count the number of selected edges hav-
ing the same cluster id, and retain the ones having the cluster id
for which the most edges were found. This selects the thickest
bundle branch close to the mouse, since edges within any bun-

110 skeleton-based edge bundling

dle branch always have the same cluster ids, by construction.
Finally, to select an entire cluster, we do the basic selection and
return all edges in the cluster whose id is the one for which the
most edges were found.

6.3 implementation

Several implementation details are crucial to the efficiency and
robustness of our method, as follows.

6.3.1 Image-based operations

We compute shapes, skeletons, skeleton tips, and distance and
feature transforms in an image-based setting. First, we render
all edges using standard OpenGL polylines. Next, we use a
Nvidia CUDA 1.1 based implementation of exact Euclidean dis-
tance-and-feature transforms [28]. We extended this technique
to compute robust skeletons based on the augmented fast march-
ing method (AFMM) in [179]. In brief, we arc-length parame-
terize the shape boundary ∂Ω and detect SΩ as pixels whose
neighbors’ feature points subtend an arc on ∂Ω larger than a
given value ρ. The value ρ indicates the minimal detail size
on ∂Ω which creates a skeleton point. Since ∂Ω is a level-set
of a distance transform at value ω of a set of smooth curves
(edges), it only contains ’sharp’ details at the curve end points.
Hence, setting ρ = πω, i.e. half the perimeter of a circle of radius
ω, guarantees that skeleton tips correspond to edge end points.
The skeletonization method choice is essential: the AFMM guar-
antees that no spurious branches appear due to boundary per-
turbations, which in turn guarantees stable bundling cues. How-
ever, even if all skeleton tips correspond to edge end points, this
does not mean that all edge end points correspond to skeleton
tips. Short edges within a large cluster do not produce skeleton
tips. This is another reason for using the displacement function
φ (Eqn. 6.8) to guarantee that no edge end points move during
bundling.

The original CPU-based AFMM [179] is too slow for our task.
Table 6.2 show the inflation (Eqn. 6.2) and skeletonization times
(Eqn. 6.4), the latter also including the skeleton feature trans-
form, on a 2.8 GHz quad-core Windows PC (Sec. 6.4) for sev-
eral graphs at an image size of 10242. Table 6.1 gives statis-
tics on these graphs, including the (decreasing) number of clus-
ters at several iterations. On the average, the time needed by

6.3 implementation 111

Graph Nodes Edges Clusters/iteration Total (GPU)

I = 1 I = 5 I = 10 (sec.)

US airlines 235 2099 90 15 9 6.3

US migrations 1715 9780 57 14 7 4.1

Radial 1024 4021 94 30 24 7.4

France air 34550 17275 207 40 26 29.2

Poker 859 2127 86 28 23 5.2

Table 6.1: Graph statistics for datasets used in this chapter

Graph Tips Points Inflation Holes Skel. Paths Attraction

(I = 5) (ms) (ms) (ms) (ms.) (ms)

US airlines 22 8388 77 120 314 98 20

US migrations 28 9780 78 134 339 170 77

Radial 14 21580 80 96 357 45 17

France air 34 23759 81 148 374 222 88

Poker 28 2385 64 117 238 146 13

CUDA implem. 2 8 2 < 12 3

Table 6.2: SBEB performance. Figures are averages for all clusters at
iteration I = 5 for different graphs. First rows show CPU
timings. Last row shows CUDA-based timings (which are
uniform for the tested graphs).

the AFMM to process a cluster sums up to 0.4 seconds (in
line with [179]). For a graph with 200 clusters (Fig. 6.8 a,b),
this yields 80 seconds/iteration. The AFMM is O(δ|C| log(δ|C|))
where |C| is the number of pixels on all edges in a cluster C,
since the AFMM computes within a band of thickness δ around
its input shape, i.e. |Ω| = O(δ|C|). In contrast, our CUDA imple-
mentation takes 4 milliseconds per distance, feature transform,
and skeletonization for the same image on a Nvidia GT 330M
GT card, in line with performance reported in [28], i.e. 0.8 sec-
onds per iteration for the graph in Fig. 6.8 a,b. Graphs with
fewer clusters require proportionally less time, since the speed
of the CUDA method is O(N) for an image of N pixels, thus
image-size-bounded. Overall, the CUDA solution is roughly 100

times faster than the CPU-based AFMM.
The complexity of the skeleton path computations (Sec. 6.2.4)

is discussed next. Following earlier comments on the distance-

112 skeleton-based edge bundling

level-set nature of ∂Ω, the number of skeleton tips |T | for a
shape is O(|∂Ω|/(πω)). Since we set ω to a fixed fraction of
the image size (0.05, see Sec. 6.2.2), we get on the average a few
tens of tips per skeleton, regardless of the number of edges in
a cluster (Tab. 6.2 (Tips)). AFMM guarantees 1-pixel-thin skele-
tons [179], so all nodes in the skeleton pixel-adjacency-graph
are of degree 2, except skeleton junctions which are O(|T |) in
number. The length of the skeleton of a shape ∂Ω is O(|∂Ω|).
Hence, the depth-first-search finding of skeleton paths between
tips (Sec. 6.2.4) is O(|T |2|∂Ω|) using a brute-force method. Ta-
ble 6.2 (Paths) shows the costs for the graphs in this chapter
using quad-core multithreading with one depth-first-search per
thread. The same implementation on CUDA reduces the costs to
12 milliseconds (or less for skeletons with fewer tips) as more
cores are available. This cost could be reduced further, if de-
sired, by using the same depth-first search on the much sim-
pler graph whose nodes are skeleton tips and skeleton branch
junctions and edge weights given by skeleton branch lengths,
or faster all-pairs shortest path algorithms at the expense of a
more complex implementation [91].

The attraction step is linear in the number of edge discretiza-
tion points, i.e. tens of thousands for large graphs (Tab. 6.2
(Points)). Edges are attracted independently to their cluster skele-
ton, so CUDA parallelization of this step is immediate.

Inflating edges can produce shapes of genus > 0, i.e. with
holes. Technically, this is not a problem, as skeletonization, path
computation, and attraction can handle this. However, we no-
ticed that such holes are rarely meaningful. Holes create loops
in the skeleton and thus loops in a single bundle, which is sup-
posed to be a tight object. To remove this, we fill all holes in
our shapes prior to skeletonization using an efficient CUDA-
based scan fill method, as follows: Given a background seed
pixel outside the image Ω, e.g. the pixel (0, 0), we mark it with
a special value v. Next, we fill horizontal scan line segments
of background value from each v-valued pixel in parallel, one
scan line per thread. We repeat alternating horizontal with ver-
tical scan line passes until no pixel is filled any more. Check-
ing the stop condition requires only non-synchronized writing
to a global boolean variable, set to false before each pass. This
parallelizes more efficiently than classical scan line or flood fill.
Marking all non-v pixels as foreground fills all holes in Ω. The
entire fill takes under 20 scan iterations for all images we exam-
ined. CUDA filling adds around 8 milliseconds/image of 10242

pixels in comparison with around 0.15 seconds/image for clas-

6.3 implementation 113

sical CPU flood fill (Tab. 6.2 (Holes)) up to a total of roughly 25

milliseconds per cluster per iteration. Note that, due to filling,
all skeletons, and thus the created bundles, become trees rather
than graphs. Although we do not use this property now, it may
enable future interaction work such as user manipulation of the
layout by means of bundle handles.

Clustering using HBA is fast. The CPU implementation in [40]
constructs the complete dendrogram of a graph of 10K edges
in 0.1 seconds on our considered machine. We next added the
GPU-based clustering in [30], which is roughly 10 to 15 times
faster. Note that only a few clustering passes are needed for a
complete layout (Sec. 6.2.5). Also, we do not need to construct
the entire dendrogram, but only the bottom-most part thereof,
until we reach the cut value δ (Sec. 6.2.1) at which we extract
the clusters to bundle further.

Finally, postprocessing (Sec. 6.2.6) poses no performance prob-
lems, so we implement it in real-time using standard OpenGL
polyline rendering and CPU-based smoothing and relaxation.
All in all, the CUDA-based bundling takes 5 to 30 seconds for
producing a final layout for the graphs we tested (Tab. 6.1, right
column), i.e. 25 milliseconds per cluster times the total num-
ber of clusters processed during the I = 10 iterations plus the
clustering time. In terms of memory, our method is scalable:
we only need a few 10242 images (distance and feature trans-
forms and skeletons) and discard these once a cluster is pro-
cessed; all paths between skeleton tips for the current cluster;
and the graph edge polylines. For all graphs presented here,
this amounts to under 100 MB total application memory require-
ments per graph.

6.3.2 Parameter setting

Our entire method has a few parameters: the clustering simi-
larity threshold δ, edge advection factor α, total number of it-
erations I, and smoothing and relaxation amounts γs and γr.
These parameters allow covering a number of different scenar-
ios, as follows.

Clustering similarity threshold δ: This parameter specifies the
granularity level at which we cut the cluster dendrogram to ob-
tain sets of edges to bundle at the current iteration (Sec. 6.2.1).
We set δ as a linearly decreasing function on the iteration num-
ber t ∈ [1, I] from δ(1) = 0.95 to δ(I) = 0.7. This yields strongly

114 skeleton-based edge bundling

coherent clusters in the first iteration, regardless of the initial
edge position distribution, and also locally strongly coherent
clusters in the subsequent iterations (Sec. 6.2.5).

Edge advection factor α: The advection value α ∈ (0, 1) controls
how much edges approach the skeleton at one iteration. This
implicitly controls the bundling convergence speed. Too high
values yield tight bundles and convergence after the first few it-
erations, which is fine for graphs which already have relatively
grouped edges, but limits the freedom in decluttering complex
graphs. Too low values allow the iterative process to adapt itself
better to newly discovered clusters as the edges approach each
other, but convergence requires more iterations. In practice, we
set α as a linearly decreasing function of the iteration number
from α(0) = 0.9 to α(I) = 0.2.

Number of iterations: In practice, after I ∈ [10, 15] iterations,
we obtain tight bundles of a few pixels in width for all graphs
we worked with. This is expectable, given that (1−α)I becomes
very small for α < 1, I > 10. In practice, we always set I = 10

and then use smoothing and relaxation to interactively adjust
the result as desired.

Smoothing: The smoothing amount γs ∈ N describes the num-
ber of Laplacian smoothing steps executed on the bundled lay-
out (Sec. 6.2.6). Values γs ∈ [3, 10] give an optimal amount of
smoothing which keeps the structured aspect of the layout but
eliminates the skeleton-like look. Larger values make our lay-
out look similar to the force-directed method of [80]. In prac-
tice, we noticed that the smoothing amount strongly depends
on the task at hand: In some cases, users attach semantics to
the branching structure, i.e. want to clearly see which groups of
edges get merged together, so no smoothing is needed. In the
general case, however, the exact bundle merging events are not
relevant, so we use by default γs = 5.

Relaxation: The relaxation amount γr ∈ [0, 1] controls the in-
terpolation between the fully bundled layout and original one
(Sec. 6.2.6). Relaxation is most conveniently applied interactively,
after a bundled layout has been computed. Values γr ∈ [0, 0.2]
give a good trade-off between bundling and overdraw.

Overall, the entire method is not sensitive to precise parameter
settings. For the graphs in this chapter and other ones we in-

6.4 applications 115

a)

c)

b)

d)

Figure 6.8: Air traffic graph (a: original, b: bundled). Poker graph (c:
original, d: bundled). Colors in (a-d) indicate clusters (dis-
played for method illustration only).

vestigated, we have obtained largely identical bundled layouts
with different parameter settings in the ranges indicated above.
We explain this by the stability of the inflated shape skeletons to
small local variations of the positions of edges, and the smooth-
ing effect of the entire iterative process on the layout. As such,
the only two parameters we expose to users are γs and γr, the
others being set to predefined values as explained above.

6.4 applications

We now demonstrate our skeleton-based edge bundling (SBEB)
method for several large, real-world, graphs. Statistics on these
graphs are shown in Tab. 6.1.

116 skeleton-based edge bundling

a) b)

c) d)

e) f)

Figure 6.9: US migrations graph (a: FDEB, b: GBEB, c: WR, d: SBEB).
US airlines graph (e: FDEB, f: SBEB). Colors in (d,f) indicate
clusters (displayed for method illustration only)

Figure 6.8 and Figure 6.9 illustrate the SBEB and compare it
with several existing bundling methods. Note that in all images
here generated with our method, we used simple additive edge
blending only, as our focus here is the layout, not the rendering.
Fig. 6.8 a,b show an air traffic graph (nodes are city locations,
edges are interconnecting flights). Fig. 6.8 c,d show a graph of
poker players from a social network. Edges indicate pairs of
players that played against each other. The node layout is done
with the spring embedder provided by the Tulip framework [9,
10]. Given the average node degree and node layout algorithm
used, related nodes tend to form relatively equal-size cliques.
Bundling further simplifies this structure; here, bundles can be
used to find sets of players which played against each other.

Fig. 6.9 a-d show the US migrations graph bundled with the
WR, GBEB, FDEB, and our method (SBEB) respectively. Overall,
SBEB produces stronger bundling, due to the many iterations
I = 10 being used), and emphasizes the structure of connections
between groups of close cities (due to the skeleton layout cues).
If less bundling is desired, fewer iterations can be used (Fig. 6.4).
Adjusting the postprocessing smoothing and relaxation param-
eters, SBEB can create bundling styles similar to either GBEB
(higher bundle curvatures, more emphasis on the graph struc-
ture) or FDEB (smoother bundles). Finally, Fig. 6.9 e,f show the
US airlines graph bundled with the FDEB and SBEB respec-

6.4 applications 117

tively. SBEB generates stronger bundling (more overdraw) but
arguably less clutter. Note also that SBEB generates tree-like
bundle structures which is useful when the exploration task at
hand has an inherent (local) hierarchical nature, e.g. see how
traffic connections merge into and/or split from main traffic
routes.

a) b)

c) detail of (a) d) detail of (b)

Figure 6.10: Bundling of airline trails (a,b) and details (c,d).

Figure 6.10 and Figure 6.11 show further examples. Fig. 6.10

a,b show flight paths within France, as recorded by the air traffic
authorities [83]. Edge endpoints indicate start and end locations
of flight records. The original edges are not straight lines, but
actual flight paths (polylines). Note that this dataset is not a
graph in the strict sense, since only very few edge endpoints
are exactly identical within the dataset. This has to do with the
fact that flight monitoring systems record flights (trails). How-
ever, edge endpoints are spatially grouped since flights typically
start and end in geographically concentrated locations such as
airports. Given this, our method is able to create a bundled
layout of this dataset with the same ease as for actual graphs.
Bundling puts close flight paths naturally into the same clus-
ter. The bundled version emphasizes the connection pattern be-
tween concentrated take-off and landing locations, which are

118 skeleton-based edge bundling

a) b) bundle selection

c) topic selection

volume

rendering

spreadsheets

virtual worlds world wide web

UI design

!sheye views

automated design

algorithm

animation

treemaps

graph

drawing

graph

drawing

graph

drawing

treemaps

Figure 6.11: Bundling of citations graph (a). Selected bundle (in dark
blue) shows citations involving two topics (b). Citations
to a selected topic (c). In (b,c), node labels indicate edge
direction (citing papers=green,cited papers=blue)

naturally the airports. The zoom-in details (Fig. 6.10 c,d) show
the organic effect achieved by bundling.

Fig. 6.11 a-c show a citations graph (433 nodes, 1446 edges).
Nodes are InfoVis papers, laid out according to content similar-
ity: close nodes indicate papers within the same, or strongly re-
lated, topics. The layout algorithm used for the nodes is multidi-
mensional scaling with least-square projection [132]. Paper sim-
ilarity is measured using cosine-based distance between term
feature vectors [147]. Topics were added as annotations to the
image to help explanation. Bundling exposes a structure of the
citations between topics. We use the bundle-based selection (Sec.
6.2.6.3) to highlight one of the bundles, which becomes now
dark blue (Fig. 6.11 b). It appears that this bundle connects pa-
pers related to the Graph drawing and Treemap topics. The
direction of edges is indicated by node label colors: citing pa-

6.5 discussion 119

pers are green, cited papers are blue. Green and blue labels are
mixed within this bundle, which is expected, since papers in
these two topics typically cross-reference each other. Fig. 6.11 c
shows a selection of all edges which end at nodes within the
ball centered at the mouse cursor. Concretely, we highlighted
here all papers citing papers in the Graph drawing topic. Note
that this selection is a purely node-based one, i.e. it does not
use bundles for choosing the edges. However, bundles have
now another use: they allow highlighting specific edges in the
graph without increasing clutter, since these edges follow the
already computed bundles. Also, note that for this type of node
layout, our clustering-based bundling makes sense: edges will
be grouped in the same bundle if they have similar positions,
meaning start/end from similar topics; if the node layout ef-
fectively groups nodes into related topics, then bundles have a
good chance to show inter-topic relations in a simplified man-
ner.

6.5 discussion

In comparison to existing bundling techniques, our method has
the following advantages and limitations:

Generality: Our method can treat directed or undirected graphs.
By default, we assume the graph is directed, so edges running
between the same sets of nodes in opposite directions will be-
long to different clusters, hence create different bundles. For
undirected graphs, we only need to symmetrize the edge simi-
larity function (Eqn. 6.1).

Structured look control: Users can control the ’structured look’
of a bundled layout, ranging between smoothly merging bun-
dles and bundles meeting at sharp angles, by manipulating a
single parameter (smoothing γs, Sec. 6.2.6). This implicitly al-
lows removing sharp ramifications when these are meaningless.
Other methods, with the exception of HEB, do not allow explicit
control of this aspect, since there is no explicit hierarchy aspect
in the bundles. In our case, hierarchy is modeled by the cluster
skeletons (at fine level) and by the progressively simplified clus-
ter structures (at coarse level).

Robustness: Our method operates robustly on all graphs we ex-
perimented on, i.e. yields a set of stable skeletons and bundles

120 skeleton-based edge bundling

progressively converging towards an equilibrium state. This is
explained by the regularization of the feature transform (Sec.
6.2.4) and the inherent robustness of the skeletonization method
used (Sec. 6.2.3). Briefly put, adding or removing a small num-
ber of nodes or edges will not change the bundling since the
distance-based shapes are robust to small changes in the input
graph and so are their skeletons too.

Speed and simplicity: Due to the CUDA implementation of its
core image-based operations, our method is considerably faster
than [80] and slightly faster than [103]. However, we should
note that it is not clear if the timings reported in [103] include
also the cost of computing the Voronoi diagram underlying the
grid graph. The only faster bundled method we are aware of
is the MINGLE method [70], which takes 1 second for the US
migrations graph and 0.1 seconds for the US airlines graph, in
contrast to our 4.1 seconds and 6.3 seconds respectively. MIN-
GLE and SBEB share some resemblance in bottom-up aggrega-
tion of edges, but also have some differences. MINGLE com-
pares edges essentially based on end point positions, whereas
we use the entire edge trajectory (which may allow us to bundle
graphs with curved edges better). The complexity of MINGLE
is O(|E|log|E|) for a graph with E edges, whereas SBEB is es-
sentially O(|C|) where C is the average cluster size. By using
a better cluster selection than our current iso-linkage cut in the
cluster tree (Sec. 6.2.1), it is possible to reduce |C| and thus make
SBEB faster.

Apart from this, our method works entirely image-based, rath-
er than manipulating a combination of hierarchical image-based
and mesh-based data structures. The CUDA-based image pro-
cessing code used by our method is available at [176].

Apart from the above, there are several other differences be-
tween our method and recent edge bundling techniques. In
contrast to force-directed bundling [80] which bundles pairs
of edges iteratively, in a point-by-point manner, we bundle in-
creasingly larger groups of edges (our clusters) along their com-
mon center in one single step, using skeletons. In the limit, our
method can behave like the force-directed bundling, i.e. if we
were to treat, at each iteration, only the most cohesive leaf clus-
ter. However, this is practically not interesting, as it would arti-
ficially increase the computational cost without any foreseeable
benefits. Further, while Lambert et al. [103] use shortest paths in
a node-based grid graph to route edges, in our method edges
bundle themselves using only edge information. As such, there

6.6 conclusion 121

is no relation between the Voronoi diagrams used in [103] and
our skeletons (which, formally, can be seen as a Voronoi dia-
gram in which inflated edges are the sites). Distance fields and
skeletons are also used in [178], but in different ways; first, an
edge distance field is computed using a considerably less accu-
rate quad-splat-based method, whereas the distance transform
we use here is pixel-accurate. Secondly, skeletons are used as
shading cues and not for layout, whereas here we use skeletons
to actually compute edge layouts. In comparison to [133], where
bundles split in exactly two sub-bundles, our bundle splits can
have in general any degree, as implied by the underlying skele-
tons. Also, our method can handle general graphs.

Limitations: There is no fundamental reason why a skeleton-
based layout should be preferable to other bundling heuristics,
apart from the intuition that a skeleton represents the local cen-
ter of a shape. Hence, the quality of our layouts (or any other
bundled layout) is still to be judged subjectively. Moreover, any
bundling inherently destroys information: edges are overdrawn,
so cannot be identified separately; and edge directions are dis-
torted. Hence, bundling should be used for those applications
where one is interested in coarse-scale connectivity patterns and
when one cannot apply explicit graph simplification e.g. due to
the lack of suitable node clustering guidelines and metrics. If de-
sired, SBEB can be modified to incorporate additional bundling
constraints e.g. maximal deformation of certain edges - the skele-
tons provide only bundling cues but the attraction phase can de-
cide whether, and how much, to bundle any given edge. In the
longer run, it is interesting to use shape perception results from
computer vision [37, 101] to quantitatively reason about the
quality of a bundled layout. Here, our image-based approach
may prove more amenable to quantitative analysis than other
bundling heuristics which are harder to describe in terms of op-
erators having well-known perceptual properties. However, this
is a challenging task and requires further in-depth study.

6.6 conclusion

We have presented a new method for creating bundled layouts
of general graphs. We exploit the known property of 2D skele-
tons of being locally centered within a shape to create elongated
shapes from a graph with given node positions, and use skele-
tons as guidelines to bundle similar edges. To guarantee the

122 skeleton-based edge bundling

stability and smoothness of the bundled layout, we regularize
the feature transforms of 2D skeletons to eliminate singularities.
Using an iterative process, our layout amounts to a sequence
of edge clustering and image processing operations. We present
a CUDA-based implementation which achieves comparable or
higher performance than existing edge bundling methods, but
keeps implementation simple. Finally, we present a simple and
efficient scheme to emphasize edge bundles using shaded cush-
ion techniques computed directly on the bundled edges.

In future work, the geometric properties of 2D skeletons could
be further exploited to generate bundled layout variations. Mod-
ifying the Euclidean distance metric, we could create constrained-
angle skeletons leading to layouts similar to cartographic dia-
grams [167]. Apart from that, bundle-to-bundle and bundle-
to-node distance fields could be used to globally optimize the
layout of different edge bundles in order to maximize readabil-
ity and allow for the introduction of spatial constraints such as
labels, bundle crossing minimization, and node-edge overlap re-
duction. Such an application is presented next in Chapter 7. In
the longer run, a promising work direction would be to study
the optimality criteria of bundled layouts by using existing re-
sults from shape perception in computer vision which are di-
rectly applicable to our skeleton-based layout method.

This chapter is based on:

Ozan Ersoy, Christophe Hurter, Fernando V. Paulovich, Gabriel Cantareira, and

Alexandru Telea. Skeleton-Based Edge Bundling for Graph Visualization. IEEE

Transactions on Visualization and Computer Graphics, 17(12), 2364-2373 (2011).

7G R A P H B U N D L I N G B Y K E R N E L D E N S I T Y
E S T I M AT I O N

abstract: In Chapter 6, we have shown that graph bundling can be formulated as

an image processing problem by the use of distance transforms and 2D skeletons. Bun-

dling is defined as the process of iteratively moving edges to the local maxima of their

spatial density, which is computed using shape skeletons. In this chapter, we further

refine this observation and reformulate the graph bundling problem as an iterative edge-

density sharpening process. To this end, we present a fast and simple method to compute

bundled layouts of general graphs. For this, we first transform a given (straight-line)

graph drawing into a density map using kernel density estimation. Next, we apply an

image sharpening technique which progressively merges close height maxima by moving

the convolved graph edges into the density gradient. Our technique can be easily and

efficiently implemented using standard graphics acceleration techniques and produces

graph bundlings of similar appearance and quality to state-of-the-art methods at a frac-

tion of the cost. Additionally, we show how to create bundled layouts constrained by

obstacles and use shading to convey information on the bundling quality. We demon-

strate our method on several large graphs and networks.

7.1 introduction

I n Chapter 5, we have presented a first application of image-
based operations such as distance functions and shape skele-
tons for the simplification of edge bundling layouts (EBLs).

In Chapter 6, we have taken this process a step further, by show-
ing how similar operations can be efficiently and effectively
used for the creation of EBLs from a given straight-line graph.

In this chapter, we take our image-based bundling approach
a step further. Specifically, we exploit the observation on which
the work in Chapters 5 and 6 is based, i.e. that bundles are cen-
tered structures within the drawing of a straight-line graph. As
such, we now propose to construct EBLs directly from such
a drawing, without the need for an additional image segmen-
tation and skeletonization step, as we did describe in Chap-
ter 6. Also, in contrast to the techniques presented in Chapters 5

and 6, we now work entirely image-based: Given a graph draw-
ing, we first convolve the edges with a special kernel to con-
struct a density map. Next, we advect edges in the gradient of
this map and iterate the process for a few steps with decreasing

123

124 graph bundling by kernel density estimation

kernels. This delivers a layout with well separated and smooth
bundle structures. Separately, we modify our density map to
obtain bundles which avoid user-specified obstacles of arbitrary
sizes and shapes. Finally, we propose a new shading technique
which conveys the bundling quality in an easy to interpret way.
Our contributions are as follows:

• a bundling technique for general graphs which is robust,
simple to implement, and up to one order of magnitude
faster than state-of-the-art techniques;

• a technique to generate bundled layouts that smoothly
avoid obstacles of arbitrary shape and position;

• a way to visually convey bundling quality via shading.

The structure of this chapter is as follows. Section 7.2 presents
our new bundling method. Section 7.3 details implementation
and shows results on real-world graphs. Section 7.4 presents
our obstacle-driven bundling and bundling quality visualiza-
tion. Section 7.5 discusses our method. Section 7.6 concludes
the chapter.

7.2 algorithm

Most general-graph bundling methods (Chapter 2) use edge-to-
edge neighborhood information: Given a graph drawing G ⊂
R2 and a point x ∈ G, we can think of bundling as an operator
B : R2 → R2 which displaces x based on the spatial information
in G ∩ νε(x) where νε(x) is a small neighborhood centered at
x. The result B(G) is a new layout whose edges are gathered
in dense groups (bundles) separated by low edge-density areas
(white space) to minimize drawing ink. Intuitively, we can see B
as an image processing function which sharpens the local spatial
density ρ of edge points.

We model ρ using kernel density estimation (KDE) meth-
ods [158]: Given a graph drawing G = {ei}1<i<N consisting
of edges ei ⊂ R2, we can estimate ρ : R2 → R+ as

ρ(x) =
N∑
i=1

∫
y∈ei

K

(
x − y
h

)
(7.1)

where K : R2 → R+ is a density kernel of bandwidth h > 0. Typ-
ical kernel choices are Gaussian and Epanechnikov (quadratic)

7.2 algorithm 125

functions. The density map ρ can be computed by convolving
G with K, or building an accumulation map of K over G.

The density map ρ reflects the local edge density. A graph
drawing with uniformly distributed edges yields a flat map.
Large ρ values are zones of high edge density. More interest-
ingly, local maxima of ρ are located roughly in the middle of
local edge agglomerations. In Chapter 6, we have shown that
these are good positions for placing edge bundles, and compute
these points as the medial axes, or skeletons, of the Euclidean
distance transform of G thresholded at a small value τ > 0. In
contrast, here we define bundling centers as the local maxima
of a continuous density map computed with nonlinear kernels.
As we shall see later, this implies several differences and advan-
tages for our method.

Given the density map ρ, we next define our kernel density
estimation edge-bundling (KDEEB) operator B as the solution
of the following ordinary differential equation

dx
dt

=
h(t)∇ρ(t)

max(‖∇ρ(t)‖, ε)
(7.2)

for all points x in the graph drawing, with initial conditions
given by the input graph. The density gradient ∇ρ is normal-
ized in a regularized manner – the ε = 10−5 denominator value
takes care of zero gradients. Normalizing ∇ρ constrains the
movements ‖dx‖ to the kernel bandwidth h(t). Since h(t) de-
creases in time (as explained next), this stabilizes the advection
process. Eqn. 7.2 is solved by Euler integration, i.e. we construct
B(G) by iteratively computing the density map ρ and advecting
the points x ∈ G in the direction of ∇ρ. The effect of Eqn. 7.2
is to sharpen the density ρ starting with the (typically straight-
line, unbundled) input graph G and ending with a tightly bun-
dled graph whose density map asymptotically reaches bundle-
aligned Dirac impulses.

The choice of the kernel K and bandwidth h are discussed
next. We use an Epanechnikov kernel K(x) = 1−‖x‖2, which op-
timally approximates the ρ in a minimal variance sense [54, 86].
At each step i of the numerical integration, we decrease h by a
geometric series hi = λihmax, where hmax is the initial ker-
nel bandwidth, set to the average inter-edge distance in the
input graph G, and λ is a kernel bandwidth reduction factor.
Setting λ ∈ [0.5, 0.9] yields a kernel size which follows the av-
erage edge density. The initial value hmax creates a smooth
density ρ where any edge point is influenced by at least one

126 graph bundling by kernel density estimation

a) iteration 0

b) iteration 3

c) iteration 6

d) iteration 10

Figure 7.1: Evolution of density map and corresponding bundling for
the US migrations graph.

other edge and also avoids density overestimations. During in-
tegration, edges get closer, so we decrease the kernel hi to avoid
density overestimation. Decreasing hi also decreases the advec-
tion speed, which stabilizes the process as the signal ρ is in-
creasingly ’sharpened’. In other words, edges converge towards
the local density maxima instead of jumping from one side to
the other of such maxima. More advanced methods for estimat-
ing the kernel bandwidth, such as data-based adaptive selectors
can be used, if desired [154, 86]. However, we do not need an
exact density estimation for graph bundling since we only use
the density’s gradient and recompute the density iteratively, so
our simple heuristic suffices.

Figure 7.1 shows several iterations of the density map, drawn
as a height plot (normalized in height for display) and corre-
sponding bundled layouts for the US migrations graph [80, 55].
The density map gets sharper during the iterative solving of
Eqn. 7.2. This bundles edges along the density local maxima.
As the density map gets sharper, the average distance between

7.3 implementation 127

local maxima increases, so bundles get tighter and separated by
more white space.

Figure 7.2: Density map (left) and corresponding bundling for non-
normalized advection (compare to Fig. 7.1)

Figure 7.2 shows iteration 10 of bundling the same graph,
this time without gradient normalization (Eqn. 7.2). Compared
to Fig. 7.1, the local maxima vary more, i.e. edge density non-
uniformities in the input graph get amplified during the bun-
dling. Edges close to the high peak top-right in Fig. 7.2 get bun-
dled strongly, while other edges converge very slowly.

7.3 implementation

An efficient implementation of our method uses a GPU image-
based approach, as follows (see also Fig. 7.3).

splatting
gradient

estimation

edge

advection
rendering

density

map

gradient

map

bundled

graph

final

image

input

graph

n iterations

Laplacian

smoothing

edge

resampling

smooth

bundles

sampled

edges

Figure 7.3: KDE edge bundling pipeline.

7.3.1 Graph representation

First, we discretize all edges ei of the input graph into sets of
points xij, by using a small sampling step δ equal to roughly
1% of the size of the graph’s bounding box, similarly to other
methods [80, 78, 55, 103]. This typically yields several tens of
sample points per edge on average.

128 graph bundling by kernel density estimation

7.3.2 Density computation and gradient estimation

To compute the density map ρ (Eqn. 7.1) and gradient ∇ρ, we
can splat the kernel K, precomputed into an OpenGL 2D lumi-
nance texture, at all edge sample points xij, and accumulate
results into a floating-point buffer by additive blending. Max-
imal efficiency is achieved by drawing OpenGL point sprites
scaled by the bandwidth hi (Sec. 7.2). The accumulation buffer
size matches the screen size. From this accumulation map, we
compute ∇ρ by finite differences. A more accurate way is to
precompute ∂K/∂x and ∂K/∂y as two separate luminance tex-
tures and accumulate the two components of ∇ρ by splatting
the two textures separately. The two approaches are identical
speed-wise: The former uses two passes (accumulate, compute
gradient); the latter uses a single pass but creates two separate
accumulation maps.

A better approximation of the kernel density estimation (Eqn.
7.1) is obtained if we use edge-aligned kernels. For this, we use
elliptical kernels aligned with the edge segments (xij, xij+1),
i.e. draw rectangles textured by the radial kernel K centered at
the edge sample points, aligned with the edge segments, and of
size h (across the edge) and equal to the average of ‖xij− xij+1‖
(along the edge). Another option is to use one-dimensional half-
kernels stored as 1D textures and drawn as rectangles tangent
to the edge segments. In Chapter 5, we used the latter method,
with a different (distance) kernel, to create distance profiles.
Edge-aligned kernels allow a lower edge sampling rate, since
kernels are scaled separately along and across edges, thus in-
crease splatting speed without decreasing the KDE quality.

7.3.3 Advection

After obtaining the gradient of our edge density map, we advect
each edge by Euler integration of Eqn. 7.2 on the edge sample
points xij. Edge endpoints are kept fixed. Since we first com-
pute the gradient map and then advect all edge points, integra-
tion is explicit, which parallelizes easily. After each advection
step, we resample the edges (Sec. 7.3.1). This is needed since
div ∇ρ 6= 0 and edge endpoints are fixed, so advection stretches
and/or shrinks edges, which can lead to edge self-intersections
or subsampled edge fragments.

7.3 implementation 129

7.3.4 Smoothing

After each iteration, we do 5..10 Laplacian smoothing iterations
of the advected edges with a kernel of fixed size, roughly 8δ,
similar to [80]. This removes the small-scale advection artifacts
caused by the imprecise estimation of the density map ρ which
is due to errors in the kernel bandwidth estimation (Sec. 7.2), on
the one hand, and to discretization errors in the finite edge sam-
pling and finite kernel splat texture resolution (Sec. 7.3.2), on
the other hand. Artifacts show up as small-scale undulations in
the density map, which cause extra divergence points, i.e. slight
rotations, of ∇ρ. In turn, gradient imprecisions cause edges
to become jagged during advection, thus yield slight zig-zags
in the final bundles. Laplacian smoothing completely removes
this problem and generates smooth bundles. Our smoothing is
equivalent to anisotropically filtering the density map, prior to
gradient estimation, with a kernel aligned with the map’s cur-
vature minor eigenvector, i.e. along its ridges [211]. However,
this type of image filtering is considerably more expensive, and
more complicated, than our Laplacian edge smoothing.

7.3.5 Iterative bundling

For all tested graphs, 8..10 iterations of gradient computation,
advection, and smoothing yields a stable layout. The process is
monotonic: edges move in a single direction rather than back-
and-forth. This is due to the structure of the density map gra-
dient: If two edge points x, y ∈ G are within each other’s band-
widths at an iteration, both are equally advected towards the
midpoint (x+y)/2, since we use the same kernel size and shape
at all points.

7.3.6 Examples

Figure 7.4 and Figure 7.5 compare our KDEEB with recent bun-
dling methods: FDEB [80], GBEB [39], SBEB [55], and WR [103].
Overall, we produce tighter bundles than FDEB and GBEB, and
smoother bundles than SBEB. While SBEB requires an edge pre-
clustering on similar directions and positions (Fig. 7.4 a,c,f and
Fig. 7.5 a), we obtain similar or better results, i.e. tight, smooth,
well-separated bundles, with no clustering at all. If edge clusters
are provided, we can use these by bundling each cluster sepa-
rately. For example, in Fig. 7.4 (a,b), which shows a software

130 graph bundling by kernel density estimation

a) SBEB

c) SBEB d) KDEEB

b) KDEEB

f) KDEEBe) SBEB

Figure 7.4: Bundling examples. Radial graph (a,b); Poker graph (c,d);
France airlines (e,f). Colors mark different edge clusters.

dependency graph with edges grouped by structural similar-
ity, KDEEB delivers better separated bundles, than SBEB. Also,
compare Fig. 7.5 a (US migrations graph, pre-clustered on edge
similarity, bundled with SBEB) with KDEEB where we bundle
each cluster separately (Fig. 7.5 b). Our result is more simi-
lar to bundlings which do not use clustering (e.g. our method,
Fig. 7.5 d or WR, Fig. 7.5 f) than to SBEB. This indicates that our

7.3 implementation 131

a) SBEB b) KDEEB

c) FDEB d) KDEEB

e) GBEB f) WR

Figure 7.5: Bundling examples. US migrations, clustered
(a,b); US migrations, unclustered (c,d,e,f); Colors
mark different edge clusters. More examples at
www.cs.rug.nl/svcg/Shapes/KDEEB

method could be used in cases where we want to bundle parts
of a graph separately, e.g. interactive exploration or online graph
bundling. Per-cluster bundling does not decrease the speed of
our method, since its complexity is O(EI/δ) for a graph with E
edges, I bundling iterations, and an edge sampling step δ. Fig-
ure 7.6 shows the US airlines graph bundled by FDEB, SBEB,
MINGLE, and our method. Again, our results are tighter and
arguably less cluttered than other methods.

a) b)

c) d)

Figure 7.6: Bundling examples. US airlines (FDEB (a), SBEB (b), MIN-
GLE (c), KDEEB (d)).

132 graph bundling by kernel density estimation

7.4 additions

We describe next two visual additions for bundled graphs that
are easily added atop of our bundling method: obstacle-con-
strained bundles and visualizing bundling quality.

7.4.1 Obstacle-constrained bundles

Often, a layout needs to avoid some areas in the embedding
space, e.g. labels, icons, or other zones of interest. Although
many methods for laying out graphs with spatial constraints
exist, this use case has not been studied, to our knowledge, for
bundled layouts. We next present such an approach.

Given a set of 2D obstacles Ω16i6B ⊂ R2, we want to cre-
ate a bundled layout which (a) follows the general paradigm
of bundling close edges into smooth and tight bundles, and (b)
routes bundles around obstacles without creating sharp bends
or lengthening the bundles needlessly. Obstacles are shapes of
arbitrary geometry and topology, e.g. can have dents, protru-
sions, or holes, and can be placed freely. We model such shapes
as binary images, with foreground pixels (Ω) inside the shape
and background pixels (Ω) outside.

c) d)

a) b)

Figure 7.7: Obstacle-constrained bundling without endpoint displace-
ment (a,c) and with endpoint displacement (b,d).

7.4 additions 133

To constrain bundles, we modify the density ρ used by our
method. Instead of the density ρ in Eqn. 7.1, we use now

ρobs = ρ−DT
(
T
(
DT

(
∪Bi=1Ωi

)
, τ
))

(7.3)

where DT(Ω) : Ω → R+ is the distance transform (DT) of
the shape’s boundary ∂Ω [37], computed on the foreground,
and T(·, τ) is the lower thresholding of a DT with a value τ.
Hence, we subtract from ρ the DT of an inflated versionΩinfl =
T(DT(Ω), τ) of our obstacle Ω with a distance τ. Since the gra-
dient ∇DT(Ω) is a vector that points from each point x ∈ Ω
to the closest point on ∂Ω to x, by using ρobs instead of ρ in
Eqn. 7.2, we force edges that cross obstacles to move in the short-
est direction towards the obstacles’ boundaries, i.e. route edges
outside obstacles with minimal stretching. Once edges exit an
obstacle, this repelling effect ceases, since DT(Ω) = 0 outside
obstacles. For shapes with sharp convex corners, ∇DT(Ω) is
not a smooth field: ∇DT(Ω) has discontinuities along the skele-
ton of ∂Ω, which in turn has one separate branch for each such
corner [37, 179]. However, such discontinuities create no kinks
or sharp bends in the advected edges, for several reasons. First,
outside obstacles, edges are only influenced by the smooth C∞
component ρ. Secondly, since we use inflated obstacles Ωinfl,
any corners are rounded out, so edges never get sharp bends
when following the obstacles’ contours. This matches our goal
of smooth obstacle avoidance. The parameter τ (10..20 pixels)
controls how much corners are smoothed, and also creates a
thin halo-like band between the routed edges and the obstacles,
which helps better separating the former from the latter.

This method has one singular case. Consider a rectangle Ω
crossed by an edge which is parallel to, and far from, its short
sides. The edge is parallel with ∇DT(Ω), so it only gets shifted
tangentially by ρobs. Laplacian smoothing (Sec. 7.3) eliminates
tangential shifts, so the edge never exits Ω.

We solve this problem as follows (see Fig. 7.8). For each edge
e that crosses an inflated obstacle Ωinfl, we compute the inter-
section points {pi} = e ∩ ∂Ωinfl. For simplicity, we next con-
sider that there are only two such points p1 and p2; the method
works the same for more intersection points. We compute the
shortest pixel path γ ⊂ ∂Ωinfl between p1 and p2. If there
are two such paths, we take any of them. Next, we replace the
edge segment e ∩Ω inside the obstacle with γ. This pushes e
outside Ωinfl with a minimal deformation. Finally, we apply

134 graph bundling by kernel density estimation

Laplacian smoothing on e (Sec. 7.3.4), but forbid the smoothed
points to re-enter Ωinfl. This effectively rounds concave corners
made by e as it follows ∂Ωinfl. Since convex corners are already
rounded off by using the inflated version of Ω, we obtain edges
that smoothly avoid obstacles.

obstacle Ω

inflated

obstacle Ωinfl

τ

original

edge

shortest path γ

re-routed edge

DT(Ω)

DT(Ω)
_

p1

p2

a)

b)

shortest path γ1

shortest path γ2

medial axis S(Ω)

p2

p1

Sc

bundle passing

through Sc

Figure 7.8: a) Obstacle-constrained bundling refinement; b) Bundle
splitting singularity. The background shows the shape’s dis-
tance transform for illustration (Sec. 7.4.1).

Figure 7.7 shows several obstacle-constrained bundles. Im-
ages (a,b) show our method on the France airlines graph (Sec.
7.5.2), with and without endpoint displacement. Icons show
cities close to large flight endpoint agglomerations. Images (c,d)
show obstacle avoidance on the US airlines graph (Sec. 7.5.2).
Edges starting or ending inside an obstacle are routed straight
to the obstacle boundary, after which they follow the bundle
they are part of. If we allow node displacement, endpoints in-
side obstacles are moved too. The technique works both with
our new bundling (Sec. 7.2, images (a,b)), but also on graphs

7.4 additions 135

bundled by other methods, e.g. Fig. 7.7 c,d whose bundling was
generated by SBEB presented in Chapter 6.

Finally, we present a different type of obstacle avoidance: glob-
al whole-area avoidance, or outward bundling. In this use-case,
we want to create a bundled layout where bundles are routed,
if possible, outside the entire area where nodes are placed. This
frees up space close to and/or between nodes which can be
used to show other information e.g. maps, annotations, or dif-
ferent types of (unbundled) edges. In contrast to obstacle avoid-
ance, this is a global process, as we now want to avoid an en-
tire, large, area rather than isolated obstacles. We achieve this
by shifting the splat kernels (Sec. 7.3.2) slightly along the vec-
tor between the barycenter of the graph node positions and the
position of the current splatting point. This effectively offsets
the kernels outside the edges, and thus pulls the edges glob-
ally away from the graph center. Edges which connect nodes
radially, i.e. in directions roughly leading to the barycenter, will
stay unchanged. Bundles which connect nodes at relatively sim-
ilar distances from the graph center will, however, be repelled
further from this center. Figure 7.10 b shows this technique on
the France airlines graph. We see that, even though the bundle
constraints are large, bundles stay coherent but get routed out-
side the nodes’ agglomerations, if possible. The inner space thus
freed can be used for additional visualizations. Implementation-
wise, this technique is trivial, as it requires only shifting the
splatting locations in a given direction when evaluating Eqn. 7.1.

Obstacle avoidance is simple to implement: We compute the
obstacles’ distance transforms, inflations, and shortest bound-
ary paths using the AFMM method [179] on images up to 10002

pixels in subsecond time. If higher speed is needed, a CUDA
version hereof can be used, which takes under 10 milliseconds
on modern graphics cards [55].

Obstacle avoidance can be done during, or after, bundling. In
the former case, obstacles affect bunding: different edges may
get bundled than when no obstacles are used. In the latter case,
same-bundle edges get re-routed together on the same side of
an obstacle, which keeps bundled edges together except in the
rare case when a bundle intersects the center of the obstacle’s
medial axis S(Ω) (Fig. 7.8 b). In this case, edges which intersect
S(Ω) on different sides of Sc are re-routed to the two different
shortest paths along the obstacle’s boundary (blue and green
curves γ1 and γ2 in Fig. 7.8 b). This creates a natural bundle
’flow’ around the obstacle.

136 graph bundling by kernel density estimation

7.4.2 Visualizing bundling quality

a) b)

Figure 7.9: Bundling quality visualized by shading. Shaded colorful
structures indicate dense bundles. Outlier edges are white.
Radial graph (a), France airlines (b)

Given any bundling method, how to measure its quality? One
can measure the results’ fitness for a given task e.g. by user
studies. Secondly, one can measure the quality of the produced
images by some given image metrics. For the latter approach,
little work exists so far. We use here the second approach: We
model a graph’s bundling strength by measuring how densely
packed its edges are. Areas with high edge density, separated
by areas with zero density, indicate strong, clearly delimited,
bundles, and minimize ink [70]. Low edge density areas indicate
spurious edges which could not be bundled. These are either
limitations of the bundling method or actual data outliers, i.e.
edges with no other similar-direction edges in their proximity.

We address the above as follows. We compute our density
map ρ, we compute its normal n, and next its Phong shading,
with diffuse color set to a user-chosen ’graph material’ color
and specular strength inversely proportional to the density ρ.
This creates two effects. First, strong bundles appear as shaded
cushions in the graph’s color, similar to [178, 55]. Secondly, out-
lier edges appear as strongly specular (e.g. white). Edges are
rendered as lines with classical alpha blending and shading ap-
plied at the edge sample points xij. Technically, this method is
simpler than the image-based shading in [178]: We only need
to apply Phong lighting to the edge sample points, whereas
in [178] we construct 2D shaded bundle images by means of
splatting, thresholding, and skeletonization. Thin (outlier) edges
appear clearly in our shading here, whereas in Chapter 5 we

7.5 discussion 137

only shade bundles having a minimal thickness of several pix-
els.

Figure 7.9 shows two examples. The first graph (a) encodes
software dependencies i.e. nodes are functions and edges are
function calls. Shaded red structures show strong bundles in-
dicating groups of functions i.e. software subsystems calling
each other. These are clearly separated from outlier, unbundled,
edges (white). We see that many edges are not bundled. In
Fig. 7.9 b (France airlines graph), most edges are well bundled,
as there are very few white outliers. Note that the above visual-
ization is just an aid to reflect on the bundling strength and not
a self-contained bundled graph visualization technique in itself:
To be effective, it should be combined with suitable shading
showing edge types, directions, and nodes.

7.5 discussion

7.5.1 Comparison

Several differences are visible between our method vs existing
methods (Fig. 7.4 and Fig. 7.5): We produce smoother, less twist-
ing, bundles than GBEB and SBEB, and tighter bundles than
FDEB and MINGLE. Figure 7.10 a shows the effect of edge-
aligned kernels (Sec. 7.3.1): The obtained bundling (US migra-
tions graph) resembles now more the style of GBEB (Fig. 7.5 e)
than the smooth style of FDEB or WR (Fig. 7.5 c,f).

Figure 7.10 c shows bundling of a synthetic graph of 100K
edges with nodes randomly placed in a square. The result is a
set of well structured, smooth, bundles, with little clutter. There
is no semantic associated to such bundles, since our graph was
random. However, this shows that KDEEB can effectively de-
clutter and bundle very dense graphs.

Our bundling (Eqns. 7.1 and 7.2) shares some aspects with
FDEB [80] and SBEB [55]. As FDEB, we move edge points close
to each other, but we do not need any additional edge compat-
ibility metrics ([80], Sec. 3.2). As SBEB, we move edges close
to their local center. While SBEB computes this center explic-
itly as medial axes of thresholded distance functions of similar-
direction edges, we move edges towards their implicit local cen-
ter via the density map gradient. Eqn. 7.2 resembles solving
the Eikonal equation [179], as we move edges with equal speed
along a radial kernel gradient, which resembles the gradient of
an Euclidean distance map. However, we recompute this gradi-

138 graph bundling by kernel density estimation

a)

b) c)

Figure 7.10: Additional examples. GBEB-style layout (a); Outward bun-
dling (b); Random 100K edge graph bundling (c).

ent at each step, while [179] uses a fixed motion direction given
by an explicit initial boundary.

GPU image-based techniques based on a density map com-
puted from a graph drawing are also used by [64]. However, the
aim is different: We ’concentrate’ the density signal, and keep
nodes fixed, to bundle edges, while [64] works in the opposite
direction, spreading nodes towards less dense areas in order to
declutter a given layout.

7.5.2 Performance and simplicity

Our entire bundling code is under 1000 lines of C#, and consists
of four simple steps: density computation (Sec. 7.3.2), edge ad-
vection (Sec. 7.3.3), and edge smoothing (Sec. 7.3.4). Compared
to other bundling methods whose implementations we could
study [80, 103, 55], our pipeline is simpler, e.g. we do not re-
quire graph clustering, skeletons, Voronoi diagrams, or spatial
search structures. We only use OpenGL 1.1 as compared to the
more complex CUDA or pixel shader code in [103, 55].

7.6 conclusion 139

Graph Nodes Edges Edge Bundling time (sec.)

samples 8800 GTX GeForce 580

US airlines 235 2099 86K 1.4 0.5

US migrations 1715 9780 220K 3.6 1.5

Radial 1024 4021 290K 4.5 1.5

France air 34550 17275 330K 3.8 1.8

Poker 859 2127 50K 0.8 0.4

Random 200K 100K 4.8M 43 18

Table 7.1: Graph statistics for datasets used in this chapter.

Table 7.1 shows running times on two Nvidia cards, both on
a 3.3 GHz Core i5 PC, for 10 iterations. The Edge samples col-
umn shows the number of sample points on all graph edges.
Advection, resampling, and smoothing are done in C# on 4

threads, which takes about 40% of the entire time, the remain-
der being OpenGL-based splatting. These steps can be easily
accelerated further with e.g. vertex shaders or CUDA. However,
even without this extra boost, KDEEB is much faster than sim-
ilar approaches - on average for the tested graphs, 16 times vs
FDEB [80], 6 times vs GBEB [39], 5 vs than SBEB [55], and 4 vs
WR [103]. The only faster bundling method we know is MIN-
GLE [70]: 2..3 times faster than KDEEB for graphs up to 2000

edges, and about the same speed for larger graphs. The lower
performance of KDEEB for small graphs is due to the relatively
large amount of work done in C# on the CPU for these graphs,
which gets dominated by GPU computations for larger graphs.
Also, MINGLE arguably produces more cluttered, less bundled,
layouts (Fig. 7.6 c vs Fig. 7.6 d), as it uses only the start and
endpoints of edges to bundle these, whereas we use the entire
edge paths.

Memory-wise, we only need to store three frame buffers equal
to the screen size (density map and its two gradient compo-
nents). This means practically zero data overhead atop of the
edge samples which describe the bundled layout.

7.6 conclusion

We have presented a new method for creating bundled layouts
of general graphs. Our approach offers a simple, (GPU) par-
allelizable method which is several times faster, and arguably

140 graph bundling by kernel density estimation

simpler to implement, than comparable methods. Our method
produces bundled graph layouts with tight and smooth struc-
tures, robustly handles graphs of widely variable complexity
and size, and requires no complex user parameter settings. We
show how to constrain bundling to avoid arbitrary-shaped ob-
stacles placed in the embedding space at user-selected positions,
and also a way to globally route bundles outside the nodes’
position area. Our approach, which follows an image sharp-
ening technique, opens new ways for analyzing and refining
graph bundling based on well understood image processing
techniques.

Compared to the skeleton-based edge bundling (SBEB) tech-
nique presented in Chapter 6, we outline several similarities and
differences. At a technical level, we also use the density map of
the edges of the input graph to compute the bundling locations.
At a conceptual level, we also construct bundles at the centers
of shapes inferred from this density map. The key difference is
that, while SBEB constructs these centers epxplicitly, by first clus-
tering the graph edges (to construct separate groups) and next
computes the shapes corresponding to these groups by density
thesholding, and their respective centers by skeletonization, we
now determine the shapes and their centers implicitly, as the lo-
cal maxima of the density map. This makes our current method
considerably simpler and faster, as we do not need to cluster
edges, threshold the density graph, and compute shape skele-
tons.

Several future work directions exist. Speed-wise, our method
can directly use a fully-parallel (e.g. CUDA) optimization. Sec-
ondly, by modifying the splat kernels, different bundling styles
could be obtained e.g. orthogonal layouts. Last but not least,
our image sharpening technique may have direct applications
in image processing and simplification, beyond the confines of
information visualization.

This chapter is based on:

Christhophe Hurter, Ozan Ersoy, and Alexandru Telea. Graph Bundling by Ker-

nel Density Estimation. Computer Graphics Forum 31, 865-874 (2012) (cover image

on Proc. EuroVis 2012).

8S M O O T H B U N D L I N G O F L A R G E S T R E A M I N G
A N D S E Q U E N C E G R A P H S

abstract: In the previous chapters, we have shown that we can efficiently and ef-

fectively bundle large graphs using several image-based techniques. In this chapter, we

extend the scope of our work one dimension further by considering time-dependent, or

dynamic, graphs. Dynamic graphs are increasingly pervasive in modern information

systems. We present here two techniques for simplified visualization of dynamic graphs

using edge bundles. The first technique applies to streaming graphs, and naturally ex-

tends the kernel-density edge bundling in Chapter 7 by letting the iterative bundling

run in parallel with the actual graph time information. The second technique applies

to discrete graph sequences, and incorporates additional graph-to-graph correspondence

data to emphasize structural changes between such graphs. We illustrate our methods

with examples from real-world large dynamic graph datasets from flight traffic control

and software evolution.

8.1 introduction

I n the previous chapters, we have presented several applica-
tions of edge bundling layout (EBL) methods, and also intro-
duced two new methods for constructing EBLs using image-

based techniques. However effective in reducing visual clutter
and efficiently computing EBLs, the above mentioned methods
were only used for static graphs. In this chapter, we explore
the usage of image-based EBLs for dynamic (time-dependent)
graphs. Dynamic graphs pose their own understanding chal-
lenges. The data volumes are far larger than for static graphs.
Users are interested in spotting changes in the overall graph
structure, while maintaining limited clutter. Bundling methods,
a promising option to compactly depict dynamic graph changes,
have however been mainly used for static graphs.

In this chapter, we present two types of techniques for vi-
sualizing dynamic graphs using edge bundles. The first tech-
nique considers streaming graphs, i.e. temporally ordered, un-
structured, edge-sequences with start and end lifetime moments
(for the definition of streaming raphs, we refer to Sec. 2.3). For
this use-case, we extend a recent fast and clutter-free static-
graph bundling method. The second technique considers graph
sequences, i.e. a discrete set of graphs between which higher-

141

142 smooth bundling of large streaming and sequence graphs

level correspondences can be inferred (for their definition, we
refer again to Sec. 2.3). For this use-case, we exploit additional
edge-correspondence information to further highlight events of
interest such as the appearance, change, and disappearance of
edge groups, and show results based on different underlying
static bundling algorithms. We present efficient GPU implemen-
tations of both our techniques which scale to large dynamic
graphs, ensure spatial and temporal continuity, and are simple
to implement. We demonstrate our techniques on real-world
dynamic graphs from the air-traffic and software engineering
application domains.

The structure of this chapter is as follows. Section 8.2 details
a first visualization method for streaming graphs. Section 8.3
presents a second visualization method for graph sequences.
Section 8.4 discusses the two methods in terms of desirable fea-
tures. Section 8.5 concludes the chapter.

8.2 visualizing streaming graphs

Given a graph G, which includes (2D) node positions, we can
think of (2D) bundling as an operator B : G → R2 which cre-
ates a drawing B(G) which maps edges that are close in G

to close spatial positions (bundles) as explained in Chapter 7.
Different bundling algorithms propose different ways to model
edge closeness in G: tree-distance of edge end-nodes in a hier-
archy [78], closeness of edges in a straight-line drawing of G as
seen in [80, 55, 84], or the more general combination of graph-
theoretic and image-space distances [126].

Consider now a streaming graph (Eqn. 2.1), the “instanta-
neous" graph G(t) = {e ∈ G|t ∈ [tstart(e), tend(e)]} and its
bundling B(t) = B(G(t)) by some bundling operator B. Ide-
ally, we want that B(t) (a) varies continuously, or smoothly, in
time with respect to the input G(t) and also (b) keeps the spa-
tial properties of the underlying bundling operator B, i.e., puts
close edges in tight bundles.

Property (b) is readily satisfied by using a “good” bundling
algorithm B that guarantees that for any input graph, the result
will be (strongly) bundled, such as e.g. [70, 103, 39, 55, 84], or
to a lesser extent [78, 80], as we shall see. Property (a) means
that, when G(t) changes only slightly, then B(G(t)) should also
change only slightly, so graph structures which are stable in
time are also stable in the final visualization. Conversely, if there
is an abrupt change in the graph, then there should be a visi-

8.2 visualizing streaming graphs 143

ble change in the animation. However, even in the presence of
such large changes in the input, discontinuous bundle jumps in
the animation should be avoided, since visually tracking such
jumps is hard.

A partial answer to (a) can be achieved by reducing the dy-
namics of G(t), e.g. by applying a low-pass filter to G(t). In
other words, the bundling result shown at moment t is B(G̃(t))
where G̃ is the filtered graph. This is the solution proposed
by StreamEB, who pioneered bundled layouts for streaming
graphs [126]. They use a sliding window technique (finite-sup-
port box filter) to compute G̃ as all edges alive in [t, t+∆t].

However, this approach has two limitations. First, the smooth-
ness of the final animation depends strongly on the variation
rate of G̃. If graphs for two consecutive time moments G̃(t)
and G̃(t + ∆t) differ too much, e.g. there are too many edges
added or deleted per time unit, or the filtering time-window
is too small, then there is no guarantee that the correspond-
ing bundlings B(G̃(t)) and B(G̃(t + ∆t)) are spatially close. If
this is not the case, users notice a disruptive visual jump from
t to t + ∆t. Secondly, the computational efficiency of the ap-
proach in [126] strongly depends on the scalability of the under-
lying static bundling operator B. Algorithms which ensure good
spatial stability, e.g. [80, 39] are also quite expensive, roughly
O(|Ẽ|2) for |Ẽ| edges in G̃(t). Faster bundling algorithms [70, 55,
103] cannot ensure continuity, i.e., a small change in the input
graph may generate a large change in the bundled image, so are
less suitable for stream bundling.

8.2.1 Algorithm

We address the above challenges by exploiting the properties
of a recent bundling method for large graphs: kernel-density
estimation edge bundling (KDEEB) [84], which was presented
in detail in Chapter 7. Let us recall that, given a graph drawing
G = {ei}1<i<N, KDEEB estimates the spatial edge density ρ :

R2 → R+

ρ(x) =
N∑
i=1

∫
y∈ei

K

(
x − y
h

)
(8.1)

144 smooth bundling of large streaming and sequence graphs

where K : R2 → R+ is an Epanechnikov kernel of bandwidth
h. KDEEB iteratively moves each point x of each edge upstream
along ∇ρ following

dx
dt

=
h(t)∇ρ(t)

max(‖∇ρ(t)‖, ε)
(8.2)

where ε is a small normalization constant. After a few Euler it-
erations for solving Eqn. 8.2, during which one decreases h and
recomputes ρ, edges converge into bundles. A final 1D Lapla-
cian smoothing pass is done on edges to remove small wiggles.
Full details are given in [84]. Upon a closer analysis, one can see
that this process is nothing else but performing the well-known
mean-shift algorithm [34] on the drawn edges. In other words,
the bundled graph is a clustering of the graph drawing based on
edge similarity. This observation is important, since smoothness,
noise robustness, and stability results proven for mean shift [34]
can be readily extrapolated to KDEEB.

Core to KDEEB is the fast computation of the density map ρ.
This is done by splatting the kernel K, encoded as an OpenGL
texture, into an accumulation map. This allows bundling graphs
of tens of thousands of edges in a few seconds on a modern
GPU.

Our main idea for bundling streaming graphs is now to let the
KDEEB iterations vary in sync with the stream time t. The prin-
ciple is simple (see also Algorithm 1): We move a sliding win-
dow [t, t+∆t] over the entire time range of the input streaming
graph, compute ρ(t) from the graph G̃(t), and advect edges fol-
lowing Eqn. 8.2. There are two key advantages to this approach.
First, ρ(t) can be very efficiently computed by the underlying
KDEEB algorithm, which is O(|Ẽ|), i.e. proportional to the edge
count in the current graph G̃. Secondly, and most importantly,
the original KDEEB required I = 5..10 iterations for a single
static graph to be bundled. We remove this iterative process
by letting G̃ bundle while sliding the time-window. This makes
sense since (a) if G̃ changes very slowly, advancing the stream
time t is nearly equivalent to performing iterations for a fixed
t, so we obtain a strongly bundled G̃, which is what we want
to see. If (b) G̃ changes rapidly, then our process has less time
to bundle, and thus we see looser bundles, which conveys us
precisely the dynamics of G̃. More details on performance and
parameter settings are given in Sec. 8.4.2.

Intuitively, our dynamic bundling method can be thought of
as a process where edges continuously track the local density

8.2 visualizing streaming graphs 145

1 t← 0
2 while stream not ready do
3 ρ← 0
4 Elive ← {e ∈ E|[tstart(e), tend(e)∩ [t, t+∆t] 6= ∅}

5 foreach e ∈ Elive do
6 splat e into ρ ; //Splat live edges (Eqn. 8.1)
7 end
8 foreach e ∈ E|tend(e) ∈ [t− δt, t] do
9 relax e towards its original position ; //Vanishing

edges
10 end
11 foreach e ∈ Elive do
12 advect e one step ; //See Eqn. 8.2
13 apply 1D Laplacian smoothing on e ;
14 draw e in the visualization ;
15 end
16 t← t+ δt ; //Advance sliding window
17 end

Algorithm 1: Bundling streaming graphs with KDEEB

maxima of a dynamically-changing graph. Since at each advec-
tion step edges move with a bounded amount h (line 12, Alg. 1),
and since advection is done while advancing the stream time t,
the maximal amount an edge-point can move at any time is h
(Eqn. 8.2). Hence, the bundles move smoothly on the screen.

For disappearing edges, we can perform an additional step:
We interpolate these edges from their current (bundled) posi-
tion towards their original (unbundled) position they had in
the input stream (line 9, Alg. 1). This makes the animation sym-
metric: New edges progressively bundle as times goes by, while
disappearing edges relax, or unbundle, towards their original
positions after exiting the sliding time-window. To further em-
phasize this effect, we modulate the edges’ transparencies in a
similar fashion. We note that this effect is optional. If left out,
disappearing edges will exit silently, without relaxation. The
choice of using relaxation or not depends on whether users
want to edge vanishing events or not.

An important goal of animated visualizations is to help users
detect deviations from regular patterns [194, 207]. We support
this by shading bundles to convey their speed of change, using a
simple and fast image-based method: We compute the density
moving-average ρ̃(t) over [t, t+ ∆t], and color bundles by the

146 smooth bundling of large streaming and sequence graphs

Day 1, 14:32 UTC

Day 3, 14:32 UTC

Day 2, 20:30 UTC

Day 4, 20:30 UTC

Day 3, 08:20 UTC

Day 6, 08:20 UTC

(night)

(night)(afternoon)

(afternoon)(morning)

(morning)

Figure 8.1: Streaming visualization for 6-days US airline flight dataset
(Sec. 8.2.2)

normalized difference |ρ(t) − ρ̃(t)|/ρ̃(t) using a white-to-purple
colormap. Results hereof are shown next.

8.2.2 Applications

Figure 8.1 shows several frames from a streaming visualization
of US flights [165] (6 days, 41K flights). The streaming graph
contains flights with start and end date-and-time and geograph-
ical locations. The resulting flight-trail bundles are smooth, clut-
ter-free, and exhibit a continuous variation in time. From the
stills, we see that same time-of-day flight patterns are quite sim-
ilar for several days. However, they vary strongly over a day:
During the evening, the East coast has the most intense traf-
fic. During the afternoon, the entire US is quite uniformly cov-
ered with flight routes. During the night, flights linking the two
coasts dominate.

Figure 8.2 shows a similar visualization for flights over France
(7 days, 54K flight trails). Similar to the US dataset, bundles
are smooth and clutter-free in both space and time. Colors indi-
cate the bundles’ speed of change (white=stable, purple=rapid
changes, see Sec. 8.2.1). Red dots show the first and last posi-
tions when a plane was monitored. Dots inside France are actual
airports. Dots outside the French territory indicate international
flights which enter/exit the French airspace. We see that, over-
day, the main “backbone” flight pattern is quite stable over dif-
ferent days, and contains mainly north-south routes, with Paris
as a key hub (Fig. 8.2 top row). A different pattern, also quite
stable, appears at night (Fig. 8.2 bottom row): A salient vertical
bundle shows Southern flights bound to Paris. We also see more
purple, which shows that night-time flight paths are much less
stable than overday flight paths.

8.3 visualizing graph sequences 147

Day 1, 16:30 CET Day 3, 16:30 CET Day 5, 16:30 CET

Day 3, 04:30 CET Day 5, 04:30 CET Day 6, 04:30 CET

Paris

Paris

international �ights
bound to Paris

Figure 8.2: Streaming visualization for 7-days France airline flight
dataset (Sec. 8.2.2)

For the US dataset, a qualitative comparison of our results
with those produced by StreamEB framework [127] shows that
using KDEEB produces stronger bundles and an overall smooth-
er animation. This can be explained by the different properties
of the two underlying bundling algorithms (KDEEB can easily
produce bundles with many inflexion points, while FDEB has
a smoothing factor built in its edge compatibility metric that
discourages such shapes); by the finer-grained time sampling
that we use; but most importantly by the built-in smoothness of
our algorithm which bundles edges as they arrive in the input
stream.

8.3 visualizing graph sequences

Graph sequences Gi (Sec. 2.3) exhibit different properties from
streaming graphs, as follows. First, streams allow defining an
infinity of “instantaneous” graphs G(t) = (V , {e ∈ E|tstart <
t < tend}),∀t ∈ R (see Sec. 8.2.1). Some of these graphs may
not have a direct meaning or usefulness. In contrast, graph se-
quences contain a finite set of graphs which have been explicitly
computed in specific ways, e.g. for particular time moments, e.g.
(major) revisions of a software system. Secondly, keyframe cor-
respondences add higher-level, edge-centric, information, e.g.
the fact that two files f1, f2 share a common piece of text in ver-

148 smooth bundling of large streaming and sequence graphs

sion 1, and next f1 shares the same text with a file f3 in version 2.
In contrast, streaming graphs (Eqn. 2.1) only specify how edges
appear and disappear in time, but do not necessarily encode
logical connections between edges at different time moments.
Thirdly, graph sequences do not necessarily come with birth
and death moments for individual edges. Finally, keyframes in
graph sequences must be wholly available before processing,
whereas edges in a streaming graph can be, in most cases, ana-
lyzed “online" as they appear. All in all, the above make a case
for treating graph sequences differently from graph streams.

tti ti+1ti-1

ei-1 ei Ø

ei ei+1

edge lives on edge disappears

edge appears edge lives on

color blending

ti-1+Δt/2 ti+Δt/2

α blending

color blendingα blending

AAAAA BBBBBBB

CCCCC DDDD

Ø

c(ei)=Øc(ei-1)=ei

c(ei-1)=Ø c(ei)=ei+1

Figure 8.3: Interpolation for graph sequence visualization

8.3.1 Algorithm

For graph sequences, we propose the following bundling meth-
od: For each keyframe Gi, we compute its bundled layout Bi =
B(Gi), using a given bundling algorithm B. Next, we interpo-
late these layouts between a keyframe i and the previous and
next keyframes i− 1 and i+ 1 respectively using the correspon-
dence data (see Fig. 8.3). Consider a time axis t along which we
place keyframes e.g. at moments ti = i∆t (any other definition
of ti can be easily used, if available). For each edge e ∈ Gi, if
c(e) = ei+1 ∈ Ei+1, we linearly interpolate Bi(e) to Bi+1(ei+1)

8.3 visualizing graph sequences 149

over the interval [ti, ti+1] (Fig. 8.3D). If c(e) is the empty set,
i.e. e has no correspondence in Ei+1, we interpolate Bi(e) to the
line segment L(e) = (nstart(e),nend(e)) over the same time
interval (Fig. 8.3B). Symmetrically, if c−1(e) = ei−1, we inter-
polate from Bi−1(ei−1) to Bi(e) over [ti−1, ti] (Fig. 8.3A), else
we interpolate from L(e) to Bi(e) over the same time interval
(Fig. 8.3C).

We emphasize appearing and disappearing edges by shading:
the edges that have correspondences between two keyframes i
and i + 1 are blue and thick. Edges that disappear from i to
i+ 1 get a color linearly interpolated between blue (at ti) and
green (at tmid =

ti+ti+1
2), followed by a transparency (alpha)

value decreasing from opaque (at tmid) to fully transparent (at
ti+1). Edges that appear from i− 1 to i get an alpha increasing
from fully transparent (at ti−1) to opaque (at tmid), followed
by a color interpolated from red (at tmid) to blue (at ti). Hence,
edges appear by fading in to red (highlights their incoming),
then smoothly merge in a blue bundle, and disappear by un-
bundling, becoming green (highlights their vanishing), and fad-
ing out. Examples next explain the color choice.

8.3.2 Applications

We illustrate our sequence-graph visualization with two datasets
from software engineering. The first dataset contains 22 releases
of Mozilla Firefox [123]. For each revision, we extracted the code
hierarchy (folders and files), and also the so-called clones, or
code duplicates, using the freely available clone detector Solid-
SDD [145, 161]. Hence, for each revision, we obtain a compound
hierarchy-and-associations graph where two files are linked by
an edge if they share a code duplicate. If a code fragment is
cloned in several files, then all these files are pair-wise linked
by associations.

Figure 8.4 shows snapshots from SolidSDD’s HEB visualiza-
tion for such graphs. Node colors show duplication amount
(red=high, green=low). Seeing how subsystems share clones is
useful in perfective maintenance, where one needs to plan code
clone removal with minimal impact on system architecture. It
is also important to assess how much, and where, did adaptive
maintenance (i.e. adding new features) introduce new clones,
and how much, and where, did perfective maintenance succeed
to remove clones in the past [131]. For this, we need to easily

150 smooth bundling of large streaming and sequence graphs

revision 0.8 revision 3.0 revision 3.5

revision 10.0 revision 11.0

Figure 8.4: Small multiples visualization for clones in Mozilla Firefox
for five selected revisions (Sec. 8.3.2)

compare the clone evolution patterns. This is hard to do using
such small-multiple visualizations.

To support such a task, we proceed as follows. First, we create
a so-called union hierarchy containing all graph nodes in the
analyzed releases [15]. This contains 13856 file and folder nodes.
Next, we build correspondences between clones in consecutive
releases: Two clone relations ei and ei+1 correspond if they link
the same files, i.e. files having the same fully qualified names,
in Gi and Gi+1. Other ways to find correspondences, e.g. using
the actual text content of the clones [131], can be readily used
too, if desired. The above steps deliver a graph sequence Gi in
the sense described in Sec. 2.3.1. This sequence contains 5687

unique edges (that is, when counting corresponding edges as
one) and 48591 edges in total.

We now use our graph-sequence visualization method to an-
alyze this sequence. Fig. 8.5 shows several frames from this an-
imation. The second and fourth rows show results produced
using KDEEB as underlying bundling method. Disappearing
edges are green (removing clones is good); appearing edges are
red (introducing new clones is bad). Additionally, we color hier-
archy nodes as follows: Nodes which contain a changing clone
count are colored by the clone count change, using red for pos-
itive values and green for negative values. Nodes where the
clone count stays constant are colored blue. In all cases, we use
saturation to indicate absolute values (saturated=high, desatu-
rated=low values).

8.3 visualizing graph sequences 151

We note several events of interest. First, there is a relatively
stable “core" clone-structure that lives for a long time (blue bun-
dles). These can be hard to remove clones, or clones that main-
tainers were not aware of, e.g. if no clone detector was actively
used on this system during perfective maintenance. We also
spot several moments when major clone-pattern changes oc-
cur, e.g. from revision 2.0.0.10 to 3.0, many green edges appear,
so many clones are removed (Fig. 8.5 d). Node coloring helps
spotting high-clone-density subsystems. For instance, from re-
visions 3.6.10 on, we see two such dark-blue groups (dotted
circles in Fig. 8.5 fourth row, e-h). Since these groups stay vis-
ible in several revision, they indicate “stubborn” clones which,
for several reasons, could not be removed for a long time. Al-
though this information is encoded in the bundles too, finding
such patterns on nodes is easier than visually following bundles.
In other words, node colors help finding aggregated patterns,
e.g. high-clone-density systems during the evolution, while bun-
dle changes help seeing which particular subsystems share such
clones. We also see a red spot in revision 2.0.0.10 (Fig. 8.5 c): This
is a subsystem where many intra-system clones have been added.
Seeing such clones without node coloring would be hard, since
their (bundled) edges are very short.

The transition between revisions 7.0 and 8.0 shows an interest-
ing event: First, several “stubborn” clones are removed (green
edges shown after passing revision 7.0) Next, clones between
the same files are added back again (red edges shown when ap-
proaching revision 8.0). This typically happens when one modi-
fies related code in two subsystems e.g. by rewriting it by inde-
pendently applying twice the same given design pattern. How-
ever, developers were likely not aware of the clones, otherwise
we would expect the clone to be removed during such a per-
fective refactoring. Finally, comparing the first and last frame
shows that the core clone pattern did not change significantly.
Also, the bundle pattern shows that clones connect unrelated
subsystems, i.e. nodes in the radial icicle plot that are not close
to each other, hence not in the same parent system. This is a neg-
ative sign for code quality, since removing such clones requires
system-wide understanding and refactoring.

As a second example, we extracted a compound digraph with
folders, files, and functions (forming the hierarchy) and func-
tion calls (forming the associations) from 14 revisions of the
Wicket open-source software [214]. Next, we build the same
union hierarchy as in the first example (8799 nodes), and com-
pute correspondences based on the fully qualified signatures of

152 smooth bundling of large streaming and sequence graphs

(at revision 0.8)
shows clones in rev. 0.8

a

0
.8

2
.0

2
.0

.0
.4

2
.0

.0
.1

0

3
.0

3
.6

3
.6

.1
0

7
.0

8
.0

1
1

.0

(passing 2.0)
clones `removed in 2.0.0.4

b

0
.8

2
.0

2
.0

.0
.4

2
.0

.0
.1

0

3
.0

3
.6

3
.6

.1
0

7
.0

8
.0

1
1

.0

(approaching 2.0.0.10)
clones added in 2.0.0.10

c

0
.8

2
.0

2
.0

.0
.4

2
.0

.0
.1

0

3
.0

3
.6

3
.6

.1
0

7
.0

8
.0

1
1

.0

(passing 2.0.0.10)
clones removed in 3.0

d

0
.8

2
.0

2
.0

.0
.4

2
.0

.0
.1

0

3
.0

3
.6

3
.6

.1
0

7
.0

8
.0

1
1

.0
(approaching 3.6.10)

clones added in 3.6.10

e

0
.8

2
.0

2
.0

.0
.4

2
.0

.0
.1

0

3
.0

3
.6

3
.6

.1
0

7
.0

8
.0

1
1

.0

(passing 7.0)
clones removed in 8.0

f

0
.8

2
.0

2
.0

.0
.4

2
.0

.0
.1

0

3
.0

3
.6

3
.6

.1
0

7
.0

8
.0

1
1

.0

(approaching 8.0)
clones added back in 8.0

g

0
.8

2
.0

2
.0

.0
.4

2
.0

.0
.1

0

3
.0

3
.6

3
.6

.1
0

7
.0

8
.0

1
1

.0

(at revision 11.0)
shows clones in rev. 11.0

h

0
.8

2
.0

2
.0

.0
.4

2
.0

.0
.1

0

3
.0

3
.6

3
.6

.1
0

7
.0

8
.0

1
1

.0

‘stubborn’
clones

intra-system
clones‘core’

clones

H
E

B
K

D
E

E
B

H
E

B
 (

c
o

n
t’

d
)

K
D

E
E

B
 (

c
o

n
t’

d
)

Figure 8.5: Sequence-based visualization for clones in Firefox (8
frames). First and third row: HEB bundling. Second and
fourth row: KDEEB bundling. (Sec. 8.3.2)

(caller, callee) pairs. We obtain 11953 unique edges and 92810

total edges. Figure 8.6 shows several frames from the graph-
sequence visualization. To better illustrate the animated transi-
tions, we focus here on a short period (three revisions). This vi-
sualization helps reasoning about the system’s (change of) mod-
ularity, a challenging task in program comprehension [15]. The
interpretation is as follows: The stable pattern (blue bundles)
shows the stable control-flow logic of the system, i.e. calls that
do not change much across versions. We see that this pattern
is quite complex, i.e. connects many subsystems in different
hierarchy parts, so the overall modularity of this software is
and stays relatively low. In more detail, we see that in version

8.3 visualizing graph sequences 153

1.4.18, a significant coupling is added between systems A and
B (large red bundle A-B, Fig. 8.6 c). Interestingly, at the same
moment (1.4.18), many calls are removed between the same
systems (large green bundle A-B, Fig. 8.6 f). This indicates a
refactoring of the A-B system interaction – note the similarity
with the clone insertion-and-deletion pattern, and interpreta-
tion thereof, discussed above for the Firefox dataset.

1
.3

.7

1
.4

1
.4

.1

1
.4

.9

1
.4

.1
0

1
.4

.1
6

1
.4
.1
7

1
.4
.1
8

1
.4

.1
9

1
.5

.0

1
.5

.1

1
.5

.2

1
.5

.3

1
.6

(halfway 1.4.17-1.4.18)
1.4.17 with removed calls

1
.3

.7

1
.4

1
.4

.1

1
.4

.9

1
.4

.1
0

1
.4

.1
6

1
.4
.1
7

1
.4
.1
8

1
.4

.1
9

1
.5

.0

1
.5

.1

1
.5

.2

1
.5

.3

1
.6

1
.3

.7

1
.4

1
.4

.1

1
.4

.9

1
.4

.1
0

1
.4

.1
6

1
.4
.1
7

1
.4
.1
8

1
.4

.1
9

1
.5

.0

1
.5

.1

1
.5

.2

1
.5

.3

1
.6

1
.3

.7

1
.4

1
.4

.1

1
.4

.9

1
.4

.1
0

1
.4

.1
6

1
.4
.1
7

1
.4
.1
8

1
.4

.1
9

1
.5

.0

1
.5

.1

1
.5

.2

1
.5

.3

1
.6

(approaching 1.4.18)
calls added to 1.4.17...

(approaching 1.4.18)
bundle A-B emerging...

(approaching 1.4.18)
bundle A-B visible

a b c d

system A

system B

1
.3

.7

1
.4

1
.4

.1

1
.4

.9

1
.4

.1
0

1
.4

.1
6

1
.4
.1
7

1
.4
.1
8

1
.4

.1
9

1
.5

.0

1
.5

.1

1
.5

.2

1
.5

.3

1
.6

1
.3

.7

1
.4

1
.4

.1

1
.4

.9

1
.4

.1
0

1
.4

.1
6

1
.4
.1
7

1
.4
.1
8

1
.4

.1
9

1
.5

.0

1
.5

.1

1
.5

.2

1
.5

.3

1
.6

1
.3

.7

1
.4

1
.4

.1

1
.4

.9

1
.4

.1
0

1
.4

.1
6

1
.4

.1
7

1
.4
.1
8

1
.4
.1
9

1
.5

.0

1
.5

.1

1
.5

.2

1
.5

.3

1
.6

1
.3

.7

1
.4

1
.4

.1

1
.4

.9

1
.4

.1
0

1
.4

.1
6

1
.4

.1
7

1
.4
.1
8

1
.4
.1
9

1
.5

.0

1
.5

.1

1
.5

.2

1
.5

.3

1
.6

(at revision 1.4.18)
shows all calls in 1.4.18

(passing 1.4.18)
calls removed from 1.4.18

(passing 1.4.18)
removed calls link A-B...

(halfway 1.4.18-1.4.19)
1.4.18 with removed calls

e f g h

bundle A-B

system A

system B

S
B

E
B

K
D

E
E

B
S

B
E

B
 (

c
o

n
t’

d
)

K
D

E
E

B
 (

c
o

n
t’

d
)

Figure 8.6: Sequence animation – Wicket call graphs (8 frames around
release 1.4.18). First and third row: SBEB bundling. Second
and fourth row: KDEEB bundling. (Sec. 8.3.2)

154 smooth bundling of large streaming and sequence graphs

8.4 discussion

8.4.1 Streaming vs sequence graphs

In Sections 8.2 and 8.3 we have presented two techniques for vi-
sualizing streaming and sequence graphs. One question is: Can
we use the streaming algorithm for a sequence graph, and/or
conversely? Why do we need two techniques? Below we analyze
this aspect.

8.4.1.1 Streams with sequence-based visualization

For the first experiment, we convert our France air-traffic stream-
ing graph (Sec. 8.2.2) to a sequence graph of 7 keyframes. For
this, we divide the 7-days stream into 7 one-day periods. Edges
are assigned to keyframes based on start time. Next, we add cor-
respondences between edges in consecutive keyframes (days)
whose geographic start and end locations are very similar and
flight IDs are identical. We obtain a 7-keyframe sequence, with
8811 unique edges (when counting corresponding edges as one),
and 54K edges in total.

In sequence-based visualization of this dataset, we observe
that bundled patterns are much less structured, and their change
is harder to follow. This is not too surprising, since the stream-
to-sequence conversion quantized the fine-grained time infor-
mation. Hence, while the streaming-based visualization uses
this information to continuously bundle edges as they appear,
the sequence-based visualization only bundles at keyframes, and
uses edge interpolation in between. Additionally, visualizing
streams as graph sequences involves delicate data modifications,
e.g. cutting the stream at possibly irrelevant moments into dis-
junct chunks, and adding edge-correspondences that may not
be meaningful. When such a transformation is not evident, and
when fine-grained time data is important for comprehension,
one should not visualize graph streams as graph sequences.

8.4.1.2 Sequences with stream-based visualization

For the second experiment, we convert our Wicket graph se-
quence (Sec. 8.3.2) to a streaming graph, by inserting 100 u-
niformly-spaced time moments between each two consecutive
keyframes. Figure 8.7 shows three frames from the resulting an-
imation, taken between revisions 1.5.0 and 1.5.1. The sequence
method (top row) clearly shows a stable core indicating un-

8.4 discussion 155

revision 1.5.0 passing 1.5.0... approaching 1.5.1...

calls

removed
calls

added

Figure 8.7: Streaming visualization of graph sequence (3 frames
around revision 1.5.0, Wicket software dataset)

changing call patterns (blue bundles), and also outlines the re-
moved calls (green) and added calls (red). The streaming method
(bottom row), although doing a good job in creating a smooth
and stable bundling, cannot emphasize such additions and re-
movals, since it has no correspondence data to separate the treat-
ment of stable and (dis)appearing edges.

8.4.2 Scalability

The streaming graph visualization 8.2.1 has a complexity of
O(|Ẽ|) per animation frame, where |Ẽ| is the average number
of edges in any time-window of size ∆t at any moment t in the
stream. This is so since we run the bundling process in sync
with the stream time, as explained in Sec. 8.2.1. In other words,
there is a single density-splat and advection step for each edge
present in a frame. In comparison, the method in [126] isO(|Ẽ|2)
per frame. We implemented our graph streaming and sequence
visualizations in C# using the KDEEB algorithm which is itself
written in C# using OpenGL 1.1, and run them on a 2.3 GHz
PC with 8 GB RAM and an NVidia GT 480 card. On this plat-
form, producing one streaming-animation frame took 0.05 sec-
onds for the US dataset (|Ẽ| = 2K edges on average) and 0.17

seconds/frame for the France dataset (|Ẽ| = 15K edges on aver-
age). Per frame, we are roughly 10 times faster than the original
KDEEB ([84], Tab. 1), which is expected, as we do only one it-

156 smooth bundling of large streaming and sequence graphs

eration per frame (see Sec. 8.2.1). In contrast, if we were to use
FDEB, we would need, for the US dataset, 19 seconds/frame
on comparable hardware ([80], Sec. 4.2), or 6 seconds/frame for
a graph of |Ẽ| = 900 edges on a 1.7 GHz PC ([126], Fig. 12).
Of course, the total time needed for a stream depends on the
stream’s length.

The sequence graph visualization 8.3.1 has a complexity of
O(BN) for a sequence of N graphs, and an underlying bun-
dling algorithm of complexity B. This is basically the same cost
as in [126], modulo the fact that our algorithm B is faster, as al-
ready explained. However, note that our visualization is differ-
ent, since we (a) emphasize appearing and disappearing edges
and (b) smoothly interpolate consecutive bundled layouts by us-
ing edge correspondences.

8.4.3 Bundling algorithm choice

For streaming visualizations, KDEEB is arguably a very good
solution: KDEEB works for general graphs, produces bundles
with little clutter even for very complex graphs, and is robust
and simple to use. However, the most important point is that
KDEEB’s design allows to incrementally update the graph during
the bundling. In contrast, most other bundling layouts require
a full recomputation of the bundling when the input graph
changes. This is due to various technical factors, e.g. use of spa-
tial search data structures and compatibility metrics that need
reinitialization upon graph changes [55, 39, 70], or encoding the
bundle polylines separately from the input graph’s straight-line
edges [70, 103, 150]. FDEB comes closest to KDEEB in flexibility,
as it represents (partially) bundled edges as a set of unstruc-
tured polyline curves, so it can be used for incremental smooth
bundling upon input graph changes. However, KDEEB’s linear
complexity in the input graph size makes it more suitable than
FDEEB which is quadratic in the same input size.

For sequence visualizations, any bundling algorithm can be
technically used. However, here KDEEB also proved better than
alternatives. Figure 8.5 shows the differences between using
HEB (first and third rows) vs KDEEB (second and fourth rows).
As visible, HEB produces less structured and compact bundles.
A similar effect can be seen in StreamEB [126]. Figure 8.6 shows
the differences between using SBEB (first and third rows) vs
KDEEB (second and fourth rows). Here, SBEB produces actu-
ally too much structure – the bundles have too many branches.

8.4 discussion 157

KDEEB produces less clutter than SBEB, but more structure
than HEB, thereby offering a good visual balance.

8.4.4 Parameters

Our streaming-based visualization uses the same edge sampling,
kernel size, smoothing, and density-map resolution parameters
as KDEEB [84]. The parameters added by our streaming method
are the size of the time-window ∆t and time-step δt for sliding
this window (see Alg. 1). ∆t controls how much one sees in
one animation frame: Larger ∆t values show more (bundled)
edges, but inherently smooth out the dynamics of the anima-
tion. Smaller values show more of the instantaneous graph G(t),
but make short-lived edges (dis)appear faster. In our examples,
we used a ∆t corresponding to a 5% change in the number of
edges in G̃, so that animation goes faster over uninteresting time
periods, similarly to [126]. δt controls the ratio between the an-
imation speed and the stream’s own speed and also the bun-
dling tightness. Large δt values subsample the stream, i.e. make
the animation go faster and show less tight bundles, since, as
outlined in Sec. 8.2.1, bundling occurs in sync with the stream
time. Smaller δt values supersample the stream, i.e. make the
animation go slower and also create tighter bundles. In practice,
getting tight bundles with KDEEB requires roughly I = 5..10 it-
erations [84]. Hence, we set δt to 1/I of the average edge lifetime
in the stream. A good side-effect of this setting is that bundling
reflects the edge lifetime: Short-lived edges, likely outliers, do
not strongly bundle. Long-lived edges, which contribute to the
coarse-scale structure of the graph, get strongly bundled. Apart
from ∆t and δt, our algorithm has no other parameters.

8.4.5 Limitations

Currently, we showed that we can bundle graph streams and
sequences in a fast, smooth, and clutter-free manner, and that
such animations help assessing connection stability and spot
fast-changing bundles (Secs. 8.2.2 and 8.3.2). However, the ani-
mation and visual mapping metaphors, i.e. speed, shape, tight-
ness, and shading of bundles, would need to be adapted to sup-
port seeing finer-grained events of interest such as bundle split-
ting, or merging; similar bundles in far-apart time frames; and
separating bundles based on additional edge attributes. Also, a

158 smooth bundling of large streaming and sequence graphs

quantitative and qualitative measurement of the effectiveness of
animated bundles is needed.

8.5 conclusion

In this chapter, we have presented two algorithms for the ani-
mated visualization of graph streams and sequences. By exploit-
ing the smoothness, stability, speed, and incremental nature of
our KDEEB image-based bundling algorithm (Chapter 7), we
succeed in creating streaming graph animations which exhibit
the same desirable properties. Next, we use the same algorithm
to generate sequence-based graph visualizations where edge ap-
pearance and disappearance events are emphasized. We apply
our techniques on four large datasets, and present evidence that
supports our choice for KDEEB as underlying layout.

Future work can address animation, visualization, and inter-
action refinements to find and emphasize finer-grained events
of interest, such as bundle merging and splitting, and support
tasks such as detecting graph patterns that match problem-spe-
cific patterns of interest. Furthermore, multilevel refinements
can be proposed to emphasize such patterns and events on sev-
eral scales in a single animation. At a more conceptual level,
the parallel drawn between graph bundling and the mean shift
prcess used in image processing [34] could be further analyzed
in order to gain a better theoretical understanding of graph bun-
dling.

This chapter is based on:

Christhophe Hurter, Ozan Ersoy, and Alexandru Telea. Smooth Bundling of

Large Streaming and Sequence Graphs. Proc. PacificVis, 2013 (Honorable Mention

Paper Award)

9A N AT T R I B U T E - A N D - S T R U C T U R E S E M A N T I C
L E N S F O R L A R G E E L E M E N T P L O T S

abstract: In previous chapters, we have presented a range of edge bundling meth-

ods for static and dynamic graphs. Bundled images, by definition, trade clutter for over-

draw, therefore making it hard to reason about individual attributes of edges in a given

bundle. In this chapter, we present a set of interaction techniques that help exploring

the edge information which is usually aggregated during the bundling process. For this

purpose, we introduce MoleView, a novel technique for interactive exploration of mul-

tivariate relational data. Given a spatial embedding of the data, in terms of a scatter

plot or graph layout, we propose a semantic lens which selects a specific spatial and

attribute-related data range. The lens keeps the selected data in focus unchanged and

continuously deforms the data out of the selection range in order to maintain the con-

text around the focus. Specific deformations include distance-based repulsion of scatter

plot points, deforming straight-line node-link graph drawings, and as varying the sim-

plification degree of bundled edge graph layouts. Using a brushing-based technique, we

further show the applicability of our semantic lens for scenarios requiring a complex

selection of the zones of interest. Our technique is simple to implement and provides

real-time performance on large datasets. We next demonstrate how our technique can

be applied also to other datasets than graphs, such as 2D images and 3D volumetric

datasets.

9.1 introduction

I n recent years, the amount of data which information visu-
alization techniques are confronted with has increased mas-
sively, whereas display sizes have remained largely identi-

cal. Infovis techniques address this challenge in two main ways.
First, datasets are simplified by clustering or subsampling, so
they deliver manageable data amounts with respect to avail-
able screen size. Secondly, mapping techniques maximize the
amount of information displayed per screen space area, or in-
formation density.

However effective, techniques of the second type create addi-
tional challenges to explorative user interaction. Consider the
case of dense node-link layouts or multivariate datasets dis-
played as scatterplots or parallel coordinates, such as the edge
bundling layouts (EBLs) presented in Chapters 3-7. Such tech-
niques create significant amounts of overlap between the drawn

159

160 an attribute-and-structure semantic lens

elements (points or edges). This simplifies the resulting visual-
ization by reducing the number of perceived elements. However,
overlaps make it harder to explore the dataset: In typical 2D vi-
sualizations, it is hard or even impossible to see what is hidden
‘under’ the front-most elements, even when using transparency.
Hidden elements cannot be easily selected and/or brushed over
without additional interaction effort. We have the situation of a
compact visualization (desirable from the viewpoint of scala-
bility and, optionally, clutter reduction) which is suboptimal for
interactive exploration. Finally, there are use-cases when a given
dataset may be best understood by using several layouts, one for
each aspect being examined. Displaying one layout in separate
linked views of all layouts can be suboptimal as it increases the
effort required from the user to correlate between the different
views.

In this chapter, we present MoleView, a framework for inter-
active exploration of large element-based plots, which are sets of
discrete data elements, each with several data and/or position
(layout) attributes, which are visualized using a single, rather
than multiple, views. Examples thereof are node-link layouts,
(multidimensional) scatter plots, and images. Our contributions
are as follows. First, we extend the well-know semantic lens
with a range-based attribute filter to select a ’data layer’ at a
user-defined point, i.e. a set of data elements falling within the
lens’ position and attribute filter values. Instead of hiding the
elements in the lens which fail passing the attribute filter, we
use a dynamic re-layouting technique to smoothly push these
away from the lens, or pull them back, hence the name of our
technique. Second, we extend our data-driven deformation idea
to explore bundled graphs. Given a bundled and unbundled
version of the same graph, we use the MoleView to control the
bundling strength and which edges get bundled at a certain loca-
tion. In this way, users can explore bundled graphs (e.g. dig into
a bundle to extract edges of interest based on attribute value)
or, conversely, interactively simplify a given layout by bundling
uninteresting edges. Finally, we extend the semantic lens con-
cept for the task of exploring a dataset by the smooth animated
interpolation between two completely different layouts of the
same data, using as example the exploration of two-dimensional
scalar images. Our technique has just a few parameters which
are simple to control by end users, can be efficiently imple-
mented to provide real-time interaction on large datasets, and
can be easily incorporated in existing Infovis data exploration
applications.

9.2 moleview principle 161

For related work on interaction techniques with a focus to
element-based plots in general and node-link graph drawings
in particular, we refer to Sec. 2.4. Following this work, in Sec-
tion 9.2, we describe the principle of the MoleView technique
and its three different modes on utilization (elements, bundles,
and dual-layout), and illustrate our technique in practice on a
range of real-world datasets. Section 9.3 discusses the presented
technique. Finally, Section 9.4 concludes this chapter with future
work directions.

The ‘digging lens’ presented in Chapter 5 partially addresses
this problem by thinning overlapping bundles at the focus loca-
tion to allow one to see and/or select bundles obscured due to
the inherent overdraw.

9.2 moleview principle

The principle of MoleView is as follows (see also Fig. 9.1). As
input, we consider a dataset D = {si} consisting of a set of
data elements si which all have 2D layout positions L = {pi =

(xi,yi) ∈ R2}. Examples thereof are scatter plots, where si are
data points; images, where si are pixels with color information;
and node-link graph drawings, where si are nodes, edge control
points, entire edges, or entire edge bundles. Any other dataset
can be considered as long as it provides 2D position informa-
tion. Within the given layout, the positions of different elements
can overlap, e.g. in the case of (bundled) graph drawings (in
which case clutter and overdraw are an issue), or not e.g. in the
case of images. Each si can have an application-specific attribute
vector vi = {vij}. For simplicity, we next consider only numeri-
cal attributes vij ∈ R. However, the MoleView principle applies
equally well for other attribute value types.

When exploring a 2D rendering of D, users first define a so-
called focus zone Z ⊂ R2. Our central goal is to support tasks
which involve exploration of the spatial structure and data at-
tribute distribution of elements si ∈ D within the focus zone
(i.e. pi ∈ Z). The provided support is offered in terms of a se-
mantic lens applied on the zone of interest. Our lens combines a
flexible, easy to use, animation-based mechanism for specifying
the focus zone, containment of data elements in the focus zone,
and attribute values to explore, and also the type of spatial de-
formation applied to the data elements in and/or outside the
lens.

162 an attribute-and-structure semantic lens

Sets of individual elements

 - position

 - attributes

Graphs

 - position (bundled, unbundled)

 - attributes

Element-based exploration

MoleView lens

 - focus zone

 - attribute !lter

Bundle-based exploration

user interaction

Dual-layout exploration

Images

 - pixel positions

 - piel colors

Input dataset

Figure 9.1: MoleView interactive exploration pipeline

We guide the design of our lens by the following:

• exploration should use a single view rather than linked
views;

• the zone and attribute range of interest should be easily
specifiable by simple mouse-driven operations;

• the lens should address the overdraw problem in dense
visualizations by allowing users to ’see’ behind the front-
most elements;

• the lens should provide a focus-and-context metaphor on
the dataset D. Changes to the layout L of D should be
smooth so that users maintain their mental map when us-
ing the lens;

The general mechanism proposed is as follows. First, we se-
lect the set of data elements DZ ⊂ D which are spatially within
Z. Spatial containment is determined by the desired effect and
type of data elements, e.g. points or curves. Secondly, we fil-
ter DZ to a subset of data elements Dsel which are within
the attribute range of interest A. Like for spatial containment,
attribute selection can involve different types of filters for dif-
ferent tasks. We call the set Dfilt = DZ \Dsel the set of fil-
tered elements, i.e. elements that fall in the lens spatially but not
data-wise. The most important step is the third one: We apply a
smooth, time-animated, spatial deformation ∆ : R2 ×R+ → R2

from the original layout Lfilt = {pi ∈ R2|si ∈ Dfilt} of the
elements in Dfilt to yield a new layout Lfiltnew = ∆(L, t). The
time parameter t > 0 controls the animation of the deforma-
tion, i.e. morphs in both directions between Lfilt and Lfiltnew as

9.2 moleview principle 163

the lens is activated, respectively deactivated. Suitable choices
of the deformation function ∆ allow us to perform decluttering,
selective fisheye-like exploration on specific data elements, bun-
dled graph exploration, and also correlation of data elements
between different layouts.

We next detail three different instances of the MoleView lens
principle outlined above: element-based exploration (Sec. 9.2.1),
bundle exploration (Sec. 9.2.2), and dual-layout exploration (Sec.
9.2.3).

9.2.1 Element-based exploration

In this mode, we consider the exploration of a dataset D whose
elements si have the minimal amount of information: position
pi and an attribute value vi. We first define the zone of interest
Z as a distance field DZ(P) : R2 → R2. The distance field DZ is
defined using a so-called control set P ⊂ R2, as follows. First, we
compute the distance transform DTP : R2 → R+ [37]

DTP(x ∈ R2) = min
y∈p
‖x− y‖ (9.1)

Given DTP, Z is simply the level set of DTP at a user-specified
distance δ > 0. Hence, we select all data elements spatially
falling within Z as

DZ = {si ∈ D|DTP(pi) 6 δ} (9.2)

If P is a compact set, then Z is also be compact. However, this
is not a constraint – the set P can be any collection of points,
lines, or surfaces in 2D. ComputingDZ is simple, no matter how
complex the the data element shapes are: We render a shape
and apply the point-in-region test (Eqn. 9.2) when visiting each
rendered pixel, an operation efficiently supported by graphics
hardware.

Given DZ, we next select the elements Dsel ⊂ DZ which
are within the zone of interest and also have attribute values of
interest. In this chapter, we use attribute-range selection

Dsel = {si ∈ DZ|vi ∈ [vmin, vmax]} (9.3)

Other attribute tests can be substituted easily without affecting
the implementation or ease of use of our method. The spatial
and attribute tests (Eqns. 9.2 and 9.3) can be done in a single
rendering pass.

164 an attribute-and-structure semantic lens

The element-based exploration works now as follows. The
user specifies the control set P by direct interaction, i.e. brush-
ing in the visualization using the mouse. In the simplest case,
one selects one or more screen points which will form P, sim-
ilar to [219]. In this case, DTP is a superposition of point ra-
dial distance functions. The size of the zone of interest δ is via
the mouse wheel with a modifier key (Control). More complex
interactive specifications of P, yielding more complex distance
transforms DTP, are described in Sec. 9.2.4. Apart from P, the
user also specifies an attribute filter to select elements based on
their data values. For the filter in Eqn. 9.3, we specify the range
[vmin, vmax] by moving the mouse wheel.

The MoleView comes now into action: We keep the points
Dsel which fall spatially and data-wise in the lens at their origi-
nal locations pi and define the layout Lfilt for the filtered points
Dfilt so as to push them away from the exploration focus (see
Fig. 9.2). For this, we move the points pi ∈ Dfilt in the gradi-
ent field −∇DTP with a speed |v| which decreases as points get
close to the lens border and further from the control set P. In
detail, the motion field v : R2 → R2 is defined by

v(x) = −∇DTP(x) λ
(
DTP(x)

δ

)
(9.4)

Figure 9.2: MoleView element-based exploration mode

9.2 moleview principle 165

The function λ : [0, 1] → [0, 1], λ(0) = 1, λ(1) = 0 lowers the
speed, i.e. decelerates points, as they get close to the lens border.
In practice, exponential decaying profiles give smooth anima-
tion results. The advection implicitly yields a deformation ∆(t)
which gradually pushes points away from P and slows them
down at the lens border. Different speed profiles as function of
the distance to P can be easily substituted.

The advection in Eqn. 9.4 is applied when the lens is activated
by mouse clicking and is done as long as the mouse button
is kept pressed. During this period, we continuously update
the position of the points in Dfilt and redraw them, thereby
creating a smooth animation. As the user changes the control
set by moving the mouse, points keep moving as they enter into,
or exit from, the zone of interest. When the lens is deactivated
by mouse button release, we change v to an attraction field V,
defined at the current location of the displaced points pdispi as

V(pdispi) = pi − p
disp
i (9.5)

where pi are the point positions before displacement. The effect
is that the displaced points smoothly go back to their original
positions with decelerating speed, thus reversing the lens effect.

For additional cues, we change the rendering of the displaced
elements pi using DTP(pi) by linearly interpolating their trans-
parency between a low value αmin at DTP = 0 and a maximal
value αmax = 1 at DTP = δ, i.e. on the border of Z.

Point dataset example: We first consider a 2D point plot of
a multivariate dataset using multidimensional scaling (MDS)
[132]. The points are text documents placed on the 2D plane
so as to reflect the similarity of topics they contain. Document
similarity is computed using a cosine-based distance between
term vectors extracted from the documents’ text [147]. Docu-
ment topics, found by the classification algorithm underlying
the MDS layout, are saved as point data attributes. Due to over-
draw, it is hard to see which are the point topics within a given
spatial region. This insight is important for MDS plot users, e.g.
to detect data points which are close to a topic classification bor-
der, and for MDS algorithm designers, to assess the algorithm
ability to separate different topics.

Figure 9.3 shows the element-based lens applied to this data-
set. The selected attribute range-of-interest matches the purple-
colored topic. When the lens is activated, points outside this
topic are smoothly pushed towards the lens periphery, while

166 an attribute-and-structure semantic lens

Figure 9.3: Element-based exploration of an MDS plot for text docu-
ments. Colors are document topics. Points outside the range
of interest are gradually pushed to the lens border

points within the topic stay unchanged. By changing the at-
tribute range with the mouse wheel, we can browse through
the topics overlapping at a given location. Points are pushed or
attracted with respect to the lens center as they exit, respectively
enter, the range of interest, yielding a sequence of smooth tran-
sitions, which helps understanding the image.

Trail dataset example: Our second example dataset is a set of
trajectories (trails) whose end points indicate airport locations
in France. Trails are flight routes between airports, recorded by
air traffic authorities (17275 flight routes) [83]. Each trail is a se-
quence of points with geographical and altitude data at the re-
spective location. Altitude is visualized by color mapping. Note
that this dataset is not, strictly speaking, a graph since trails do
not always share start and end points.

a b

Figure 9.4: Flight trails dataset (a) and element-based MoleView lens
(b)

Rendering the entire trail set with altitude-colored edges pro-
duces an image of very limited usefulness, given the high data

9.2 moleview principle 167

occlusion and clutter (Fig. 9.4 a). An important task here is to
find flights with a certain altitude, or altitude variation, over a
given spatial region, e.g. high-altitude flights, or take-off and/or
touch-down flight segments [83]. We could use the technique of
Niels et al. [215] to reduce clutter, but this would not address
the specific task of emphasizing specific flight segments. Also,
the method in [215] uses blending to eliminate overdraw, which
makes it hard to see individual flight routes.

Figure 9.4 b shows the element-based MoleView on the flight
dataset. We select a circular zone of interest by moving the lens
to the desired location. Next, we tune the radius and altitude
range for the zone of interest using the mouse wheel. The se-
lected altitude range [vmin, vmax] is shown by the colored bar
on the lens’s periphery, which moves around the center as the
mouse wheel is turned. As we change these two parameters,
flight routes are dynamically pushed to the lens periphery or
brought back to their original position. The edge control points
are moved smoothly the gradient field of DTP, which yields a
smooth visualization, allowing to follow how edges are filtered
in or out from the lens. Overall, edges continuously move in
or out of the lens as parameters are changed. Edges which are
selected in the lens stay unmoved, which makes them easy to
spot. The obtained effect reminds of a mole pushing earth (data
elements) around as it digs at several locations, hence the name
for our technique.

Bundled graph example: We next show element-based explo-
ration for bundled graphs. Data elements si are individual con-
trol points of the bundled edges. Figure 9.5 a shows the graph
in Fig. 9.4 bundled by the skeleton-based edge bundling (SBEB)
method presented in Chapter 6. Any other bundling methods
can be used equally well, e.g. [80, 39, 103]. Compared to the un-
bundled view (Fig. 9.5 a), bundling reduces clutter and allows
us to spot groups of close flight routes. However, we now cannot
see the altitudes of these flights, e.g. if flight connection patterns
captured by the bundles are similar or different for different
altitudes, given the inherent overdraw. With the MoleView, we
select a zone of interest around an agglomeration and push con-
trol points for edges in that area matching our altitude filter
outside of the bundle. The effect is similar to locally bundling
edges within the desired attribute range. Figure 9.5 b-d show
this for three altitude ranges (low, medium, and high) at the
same location. We additionally emphasize the selection effect
by rendering selected elements Dsel with their colors as set by

168 an attribute-and-structure semantic lens

a b

c d

Figure 9.5: Bundled flight trails (a). Attribute-based MoleView lens for
three altitude levels (b-d)

the original visualization and desaturate the elements in Dfilt.
We now see that the bundling patterns of these flights are dif-
ferent, i.e. plane routes group differently on altitude. The explo-
ration above is useful in answering questions such as whether a
certain group of flights (bundle) contains flights of a specific al-
titude range. If the graph would encode a software system struc-
ture, like the one in Fig. 9.10 (discussed further), the question
addressed would be whether a given system-to-system connec-
tion contains dependencies of a given type.

Image data example: Figure 9.6 shows the element-based lens
applied to image data. The elements of our dataset D are pix-
els in an image. A pixel with image (x,y) coordinates is at-
tributed by its grayscale or color value. Images (a-c) show the
lens applied to an ultrahigh-resolution angiography image of
the human eye [107]. The attribute filter was selected to retain
the bright pixels corresponding to important blood vessels and
push the darker pixels away from the focus of interest. The three
images show how filtered pixels are pushed away, revealing the

9.2 moleview principle 169

blood vessels in context. Images (d-f) show the lens applied to
a color-coded image of the traffic in Lisbon at night [38]. Green
hues show relatively slow moving vehicles. This time, the at-
tribute filter was set to work on hues, retaining the green range.
The three frames reveal the slow motion traffic close to the fo-
cus of interest. However, the spatial map context is preserved,
as filtered pixels are gradually pushed away from the focus (or
brought back in, when releasing the mouse). In contrast, tradi-
tional value-based filtering would not preserve the context but
abruptly eliminate elements out of the attribute range of interest
from the visualization.

a b c

d e f

Figure 9.6: Element-based MoleView applied to grayscale angiography
image (a-c) and color-mapped traffic speed image (d-f)

9.2.2 Bundle-based exploration

Our second scenario, called bundle-based exploration, considers
the more specific case of a dataset D representing a bundled
graph. Data elements si are now either individual edge con-
trol points, entire edges, or entire bundles. Such datasets can
be obtained using one of the many available bundling meth-
ods [78, 39, 80, 103]. As explained in Chapter 2, bundled lay-
outs provide simplified visualizations of large graphs but also
increase overdraw. This makes it difficult to understand which
edges exactly are part of a given bundle, unless the bundling is
data-driven, which is not the case in all examples we are aware
of. For instance, hierarchical edge bundles (HEBs) used in soft-
ware visualization have proved of limited success beyond as-

170 an attribute-and-structure semantic lens

sessing the overall modularity of a system [78, 79]. Such edges
are annotated with data attributes e.g. type of dependency (call,
uses, inherits, includes, reads, writes, owns), or number of times
and moment when a function gets called. Real-world software
comprehension tasks such as reverse-engineering, architecture
quality assessment, and performance assessment need to un-
derstand how such attributes are distributed over the edges in
a bundle.

Given a control set and zone of interest defined by the user
(Sec. 9.2.1), we consider a bundled layout Lb and an unbundled
layout Lu of the explored graph . We now apply our seman-
tic lens pipeline (Sec. 9.2) by setting the original and deformed
layouts L and Lfilt to the bundled and unbundled layouts Lb

and Lu respectively. The deformation ∆ smoothly interpolates
between the two layouts rather than moving points away from
the zone of interest as for the element-based exploration (see
Fig. 9.7):

∆(t,pi) = λ(t)Lb + (1− λ(t))Lu (9.6)

Figure 9.7: MoleView bundle-based exploration mode

Just as for the distance-field-based deformation (Eqn. 9.4), dif-
ferent speed profiles λ can be used to control the animation. The

9.2 moleview principle 171

attraction term V (Eqn. 9.5) is identical to the element-based
exploration. When the lens is deactivated, displaced elements
snap back smoothly from the positions in one layout to the po-
sitions in the second layout.

Figure 9.8: Bundle-based exploration (Sec. 9.2.2). Local unbundling
(left). Local bundling (right)

Point-level exploration: Figure 9.8 left shows the bundle-based
lens for the flights graph. Compared to Fig. 9.5, filtered elements
are now moved towards their unbundled locations rather than
being pushed towards the lens periphery, yielding a smooth
local transition between the bundled and unbundled layouts for
the selected edge portions. Since the lens uses both position and
attribute values, this is different than simply unbundling the
entire bundle in the zone of interest. The reverse scenario where
selected elements are moved towards their unbundled layout
is obtained by applying the deformation (Eqn. 9.6) on the set
Dsel rather than on Dfilt (see Fig. 9.8 right). In this case, the
lens supports the task of locally showing selected elements in
their original spatial context, and filtered elements using the
simplified bundled view.

By swapping the layouts Lb and Lu in Eqn. 9.6 and applying
the lens on an unbundled graph, we obtain two complemen-
tary effects, i.e. we can locally bundle selected elements while
leaving all filtered elements at their original locations, or locally
bundle filtered elements leaving all selected ones at the origi-
nal locations. These scenarios are useful when the user wants to

172 an attribute-and-structure semantic lens

keep the original context (unbundled graph) and wants to apply
the structural simplification (bundling) on the focus zone. Fig-
ures 9.8 illustrate the above scenarios.

Edge-level exploration: We can also apply our lens on entire
edges. Elements si of our dataset D are now whole edges rather
than edge control points. The method stays the same, but we
now apply the deformation (Eqn. 9.6) to all control points of
edges in the lens rather than to points in the lens. The lens
has now bundles (or unbundles) an entire set of selected edges
(Fig. 9.9). Here, flights through the Paris area are smoothly bun-
dled, while other flights are drawn at their original locations.
This is useful when one wants to explore a set of trals in detail,
i.e. see them in their entirety in their original positions, rather
than applying unbundling to a spatially confined region.

a b c

Figure 9.9: Smooth bundling of entire flight paths within a zone of in-
terest. The original unbundled dataset (a) is gradually bun-
dled within the zone of interest (b), finally yielding the bun-
dled dataset (c)

Bundle-level exploration: At the coarsest level, we can apply
our lens on entire bundles. For this, we need explicit bundle iden-
tities as groups of edges. Given a bundled layout, we compute
such edge groups, or clusters, using the bottom-up hierarchical
agglomerative clustering scheme based on Euclidean distance
between edge control points presented in Chapter 5. This gives
a partition C = {ci} of the edge set in the input graph into
clusters which contain edges which we visually perceive as a
bundle. Other edge clustering schemes can be used, if desired.

Given such a partition C of the edge set, we can now di-
rectly use our lens on entire bundles by considering a whole
bundle as a data element si in any of the exploration modes
described above. The advantage is now that users can brush a
single branch of a bundle and directly explore the entire bundle.
Figure 9.10 shows this for a radial layout depicting the structure

9.2 moleview principle 173

of a software system (nodes are software entities, while edges
are dependencies). Bundles are explicitly identified using edge
clustering and assigned different colors (a). Alternatively, this
can be done by clustering edges relating specific coarse-scale
subsystems, if a software containment hierarchy is available. Lo-
cal unbundling reveals the structure of a specific zone of inter-
est (b). This can be useful e.g. if edges are colored on another
attribute than the one used for bundling, e.g. edge type, as it
allows one to explore the different types within a bundle, with-
out modifying the overall bundled layout. If we consider entire
edges as elements, the lens can be used to unbundle one or
more entire bundles under the lens (b). Finally, we can com-
bine the local and whole-edge unbundling effects to achieve a
two-stage unbundling effect (c). When animated, this gives ad-
ditional cues as to the identities of the bundles brushed by the
lens, but keeps clutter minimal within the lens area. This is use-
ful e.g. when we do not use colors to show bundle identities and
users are interested in seeing all edges within a certain bundle
passing through a spatial region.

9.2.3 Dual-layout exploration

Our third scenario, called dual-layout exploration, considers a
datasetDwhich is explored via two completely different spatial
layouts. An example thereof are images, seen either as pixels ar-
ranged according to a Cartesian layout or histogram layout. The
two layouts serve different purposes: the Cartesian one allows
finding specific shapes; the histogram shows data value distri-
butions. Typical visualizations interested in above aspects use
two views linked via brushing and/or selection. However, as
outlined earlier, a two-view mode is suboptimal as it requires
users to explicitly correlate two images. This applies even more
so if correlation is needed only at certain zones of interest.

We can use our semantic lens (Sec. 9.2) to address the cor-
related exploration of datasets which use different layouts for
different views on the data. To illustrate this, we consider two
layouts of an image: the inherent Cartesian layout LC of pixels
in the image, and a polar coordinate plot LP with hue mapped
to the angular axis and saturation mapped to the radius. Value
(luminance) plays the role of the attribute values vi of our data
elements which are affected by the attribute filter.

To apply the semantic lens, we define a time-dependent de-
formation ∆(t) which links the positions of corresponding data

174 an attribute-and-structure semantic lens

a b

c d

Figure 9.10: MoleView applied at bundle level on a software depen-
dency graph using a radial layout. Original bundled graph,
with bundles colored by bundle id (a). Local unbundling
effect (b). Whole-edge unbundling (c). Combined local and
whole-edge unbundling (d).

elements (pixels) pCi and pPi in the two layouts LC and LP re-
spectively

∆(t,pi) = λ(t)pCi + (1− λ(t))pPi (9.7)

Compared to the element-based exploration mode, our goal is
now different: We wish to correlate the spatial distribution of
data elements in two layouts rather than filter away elements
having a certain attribute range. For this, we apply our seman-
tic lens on all elements falling within the zone of interest, i.e.
Dsel = DZ.

Figure 9.11 and Figure 9.12 illustrate the dual-layout on a sim-
ple image containing the full color spectrum. Fig. 9.11 uses a
HSV polar layout LP in which the zero hue value, red, is at the
top (as shown by the arrow). When applying the dual-layout

9.2 moleview principle 175

Figure 9.11: Dual-layout lens applied to a simple image. Origin on the
angle axis is indicated by the arrow.

lens, pixels are smoothly advected in the deformation field ∆(t)
(Eqn. 9.7) from their location in the Cartesian layout LC, i.e. orig-
inal image to their location in the HSV polar coordinate layout
LP. This allows the user to locally query an image and see the
hue and saturation distribution over that zone of interest. If we
draw the points in LP using alpha blending, we effectively ob-
tain a histogram of the hues and saturations of the pixels in the
zone of interest.

Figure 9.13 and Figure 9.14 show the dual-layout lens ap-
plied to two color-mapped scalar fields. The first field (Fig. 9.13))
shows the frequency of lightning occurrences on the surface of
the Earth with a heat colormap (cold colors = low frequency, hot
colors = high frequency) [124]. Using the dual-layout lens, we
see that zones in the geographical areas (b) and (c) have a simi-
lar distribution of lightning occurrences: the pixel pattern in the
HSV space within the lens is nearly identical. This is not evident
from the original image, since the pixels in the two indicated

176 an attribute-and-structure semantic lens

Figure 9.12: Dual-layout lens applied to the same simple image in
Fig. 9.11, with a different rotation of the HSV space. Origin
on the angle axis is indicated by the arrow.

regions have relatively complex color patterns. In contrast, the
zone under the lens in figure (d) shows a different pixel color
distribution than the zones (b) and (c) – the green-blue ’tail’ of
the shape we see in the lens in (b) and (c) is now missing. This
indicates that this geographical zone has no lightning frequen-
cies corresponding to these value ranges. Again, the original
image (a) does not show this – the pixel color patterns in the
three regions are looking relatively similar.

The second scalar field (Fig. 9.14) shows a 3D skeleton, or me-
dial axis, of a cow model. The skeleton is computed using the
voxel-based method in [144]. Skeleton voxels are colored with
their so-called importance with a blue-to-red rainbow colormap.
Less important skeleton points (blue) correspond to small-scale
object features, e.g. the horns or hoof tips. Most important points
(yellow and red) correspond to large-scale object features, like
the rump. Skeleton importance can be used to simplify the ob-

9.2 moleview principle 177

a b

c d

Figure 9.13: Dual-layout lens applied to a color-coded scalar field im-
age: Lightning frequency on the surface of the Earth (heat
colormap).

ject by pruning away less important points. The skeletonization
method in [144] conjectures, but does not rigorously prove or dis-
prove, that the importance of skeleton points varies smoothly
over small, connected, areas of the skeleton.

We use our dual-layout lens to investigate this hypothesis. Im-
age (b) shows the lens applied to the head region. We see here
a continuous blue-to-green curve, which shows that voxels in
this region have, indeed, importances which compactly cover
the low-to-medium range. Applying the lens to the back rump
region (c) shows, as expected, a broader color spectrum, since
points in this area have importances spanning from very low
(blue) to highest in the model (red). However, this curve is not
continuous, but broken in the yellow range. This indicates that
there are no voxels here with medium-high importance values,
which raises questions on the validity of the conjecture in [144].
Applying the lens to the front rump region (d) shows a sim-

178 an attribute-and-structure semantic lens

a b

c d

Figure 9.14: Dual-layout lens applied to a color-coded scalar field im-
age: 3D skeleton color-coded by importance (rainbow col-
ormap).

ilar curve as in region (c). Again, we see small interruptions
of the curve, which strengthen our supposition that the conjec-
ture may not be valid. Moreover, we see a red portion in the
curve, showing that there are high-importance voxels in this
area. Manual direct inspection of the model from different view-
points such as the one shown in (a), however, does not show
such voxels, which potentially may lead analysts to the conclu-
sion that the model’s highest-importance region is only located
in the back rump region. Given that we worked with this 3D
skeletonization method and this specific model for about a year
in a different project, this was an unexpected result, which we
only discovered using the MoleView lens. Close examination re-
vealed the answer: the front rump region does, indeed, contain
high-importance voxels, but these are hidden from virtually any
viewpoint, as they are located precisely at the intersection of sev-
eral 3D skeletal manifolds which meet in that region, so they are
hardly visible from the outside. Hence, standard examination of
the 3D color-coded voxel set did not reveal these outliers, but
application of the MoleView lens did.

9.2 moleview principle 179

9.2.4 Specification of the zone of interest

The exploration modes described in the previous sections use
a simple selection of the zone of interest as one, or several,
radial regions determined by user-specified points or foci. Al-
ternatively, whole edges or entire edge bundles that intersect
such regions can be selected. However, in more complex sce-
narios, users are interested to specify zones of interest on a
finer-grained, more flexible, level. For example, in the flight vi-
sualization, one can be interested to unbundle, or emphasize
attribute-based edges, which are part of a given geographical
area.

Figure 9.15: Interactively painting zones of interest (see Sec. 9.2.4)

We achieve this by allowing the user to ’paint’, or brush,
the control set P directly on the screen using the mouse (see
Fig. 9.15), by recording the mouse path on the screen, and using
this path as control set P. The remainder of our entire method
stays identical, as we can directly compute distance transforms
of such pixel paths in exactly the same way we do it for individ-
ual points (Sec. 9.2.5).

Figure 9.16 illustrates the specification of zones of interest
for the flight dataset. Here, the user is interested in seeing low-
altitude flights that pass over geographical zones located close

180 an attribute-and-structure semantic lens

a b c

Figure 9.16: Interactive specification of a zone of interest (see Sec. 9.2.4).
Flight visualization without lens (a). Focus on low-altitude
flights in areas around the main airports (b). Free-form
painting of the zone of interest (c). Distance transform pro-
files are shown in gray

to some main airports in France. Air traffic controllers are partic-
ularly interested in such flight patterns for planning purposes
as flight routes can get readily crowded in such zones. In Fig.
9.16 b, the user has painted the areas of interest directly on
the visualization. Using the element-based exploration lens (Sec.
9.2.1) smoothly pushes away the mid-to-high altitude uninter-
esting flights (green), revealing the low altitude critical flights
(purple). The distance transform profiles for the brushed zones
are shown in grayscale (black=high distance, white=low dis-
tance to the control set). Using the same mechanism, arbitrarily
complex zones of interest can be easily painted, see e.g. Fig-
ure 9.16 c for a freehand example.

9.2.5 Implementation

The MoleView lens can be efficiently and easily implemented
atop of any existing visualization metaphor consisting of several
discrete, data-attributed, elements with 2D spatial positions, as
follows.

First, we compute the distance transform DTP of the control
set (Eqn. 9.1, Sec. 9.2.1) using augmented fast marching method
(AFMM) [179]. The shape on which the AFMM is computed is
identical to the control set P, which is interactively drawn by the
user, as explained previously. Besides the distance transform,
the AFMM also delivers the feature transform of its input shape
FTP : R2 → R2 defined as

FTP(x ∈ R2) = argminy∈P‖x− y‖ (9.8)

9.3 discussion 181

Since |FTP | = −∇DTP [179], we can obtain in this way the gra-
dient field we need for deformation with no numerically sensi-
tive operations such as differentiation, regardless of the com-
plexity of the input image. The AFMM efficiently computes
the distance and feature transform of an image of 8002 pix-
els in roughly 0.25 seconds on a typical 2.5 GHz modern PC.
The complexity of the AFMM is O(N log N) for an image of
N pixels. If desired, a significantly faster CUDA-based imple-
mentation of distance and feature transforms can be used [176],
which provides O(N) complexity and treats images of 8002 pix-
els on 0.02 seconds per image on a Nvidia GT 330M. Perfor-
mance is important when specifying user-drawn zones of in-
terest (Sec. 9.2.4), since such zones may have arbitrarily com-
plex shape, as compared to the simple set of points shown in
Secs. 9.2.1 and 9.2.2. Using the above, our entire method can
be implemented to achieve real-time frame rates on a typical
modern PC for datasets having hundreds of thousands of data
elements. For large datasets, implementing the displacements
(Eqns. 9.4, 9.6 and 9.7) on the GPU using CUDA is straightfor-
ward, as these are independent, simple, point operations.

9.3 discussion

Animation is a key element to the effectiveness of MoleView:
by continuously (and smoothly) changing the position of the
points affected by the lens, users can brush through a dataset
and obtain a continuous, smooth, change of the visualization.
The continuous effect is also present when the lens is toggled
between activated and deactivated states: points smoothly move
as affected by the lens at activation, or move back to their orig-
inal position as the lens is deactivated. This type of motion al-
lows the creation of a focus-and-context effect. As opposed to
other techniques, this is realized by position changes in time,
rather than just spatial distortions. Hence, even when the user
does not move the lens, the visualization changes smoothly. The
same holds for situations when the lens is moved.

The MoleView and the bubble variant of EdgeLens [219] pro-
duce similar results in particular cases. Specifically, this hap-
pens if the control set is a set of discrete, relatively widely
spaced, points, and we do not apply the attribute filter. How-
ever, there are several differences, as follows. First, MoleView
is not specifically limited to decluttering edges in node-link di-
agrams, but can be applied essentially to any set of discrete

182 an attribute-and-structure semantic lens

elements which have data and 2D position. Examples shown
here demonstrate this for bundled and unbundled graphs, scat-
terplots, and images. For this, the usage of a general advection
field, rather than controlling edge shapes using Bézier curves as
in EdgeLens, is essential. In particular, the field used to morph
an image to its pixel color histogram, is computed by using
the two layouts of the image and HSV histogram respectively
(Sec. 9.2.3). Another important ingredient of MoleView is the
ability to select the attribute range to act upon. This allows one
to explore based on data and spatial position rather than spatial
position only as in EdgeLens. As such, MoleView and EdgeLens
address overlapping, but not identical, use-cases.

Our control set (Sec. 9.2) is a general subset P ⊂ R2, specified
e.g. by direct painting in the visualization. The lens shape, and
its repulsion vector field computed using the feature transform
FTP, yield very different deformation patterns than displacing
a set of control points under the influence of a few discrete
foci as in EdgeLens. Specifically, FTP yields a locally smooth
field wherever the control set P does not have strong curvature
discontinuities, as known from medial axis theory [156]. Practi-
cally, if the user draws P a a set of lines, this field will always be
smooth if the lines do not intersect. At intersection points, there
is only a null set of discontinuities corresponding to the feature
points of the branching points of the skeleton SZ of the zone of
interest Z [179, 156]. For example, if the user draws P asn lines
which intersect exactly in the same point, we will have n such
discontinuities. This poses no robustness or quality problems in
practice when advecting elements in FTP, since these are moved
away from SZ.

An attractive aspect of the MoleView set of techniques is that
they can be added with minimal intrusion to existing visualiza-
tions in a postprocessing phase, e.g. without having access to the
actual engines which compute multidimensional scaling layouts
or bundled edge layouts. In particular, for image data the dual-
layout exploration presented in Sec. 9.2.3 can be used directly
on 2D image data generated by other applications, without ac-
cess to the actual underlying data points or, for the application
in Fig. 9.14-b-d, the 3D voxel data.

Strictly speaking, the bundle-based exploration lens (see Sec-
tion 9.2.2) can be seen as a particular case of the more general
dual-layout exploration lens, where the two layouts Lu and Lb

co-exist in the same conceptual space. The difference is that the
dual-layout lens propose a more aggressive semantic change – it
changes the meaning of the space within the lens from a Carte-

9.4 conclusion 183

sian (RGB) plot to a polar (HSV) plot. In contrast, the meaning
of both the bundled and unbundled layouts is less different. As
such, we choose to allow bundled and unbundled data elements
to co-exist in the lens area, whereas in the image use-case the
lens are shows only one of the RGB or HSV layouts.

9.4 conclusion

In this chapter, we have presented MoleView, a set of interac-
tive lens techniques for the exploration of large datasets ren-
dered as sets of 2D objects. The principle of the MoleView is
based on a combination of attribute-based filtering with local
displacements of the data points in a force field determined by
the zone of interest and dataset layout values. Three exploration
modes are presented. The element-based mode repels filtered
data points in a distance field, thus unearthing specific data val-
ues which may be obscured due to overdraw. The bundle-based
mode locally deforms a bundled layout into an unbundled one
or conversely, thus helping users to dig into the structure of
tight bundles for edges having specific data values. This mode
can be applied to any edge bundling layout (EBL), such as the
HEB [78], the image-based edge bundling (IBEB) method pre-
sented in Chapter 5, the skeleton-based edge bundling method
(SBEB) presented in Chapter 6, or other EBLs mentioned in
Sec. 2.2.2. Finally, the dual-layout mode smoothly interpolates
point positions between two different layouts which highlight
different data aspects allowing the user to correlate between
the two data views. From this perspective, the interaction tech-
niques presented here alleviate one of the core problems of EBLs
mentioned in Chapter 2, i.e. the inherent trade-off between clut-
ter and overdraw. Specifically, overdraw is locally, and interac-
tively, eliminated to uncover details of the bundled edges, while
the global context is still left bundled, thus rendered with low
clutter.

The set of interaction techniques presented in this chapter can
be further extended with additional use-cases. For example, the
attribute filter can be made to operate on a histogram of the
data values in the lens rather than the values themselves, allow-
ing users to select data outliers from a large mass. Secondly, the
dual-layout exploration lens principle can be applied to other
layouts than Cartesian RGB plots and HSV polar plots, e.g. to
smoothly interpolate between completely different graph lay-
outs for graph exploration or between different 2D plots which

184 an attribute-and-structure semantic lens

show pairs of dimensions in a multivariate dataset in a single
view.

This chapter is based on:

Christophe Hurter, Ozan Ersoy, and Alexandru Telea. MoleView: An Attribute

and Structure-Based Semantic Lens for Large Element-Based Plots. IEEE Trans-

actions on Visualization and Computer Graphics, 17(12), 2364-2373 (2011).

10D I S C U S S I O N & C O N C L U S I O N S

In this final chapter, we revisit our initial research questions,
stated in Section 1.2, and compare our obtained results against
these questions. We reflect on the completeness of our results,
and further outline possible directions for future work.

First let us revisit our research questions:

1. Is edge bundling an effective instrument for the understanding of
large graphs as compared to more classical node-link graph visualiza-
tion techniques?

To answer this question, we use the formative user evaluation
performed in a research context presented in Chapter 3, and the
analysis of utilization results of the SolidSX toolset in research
and the IT industry, presented in Chapter 4. Our comparison
in Chapter 3 of straight-line node-link layouts with hierarchi-
cal edge bundles (HEBs), performed on several compound soft-
ware dependency graphs ranging from small ones (hundreds to
thousands of edges) up to large ones (hundreds of thousands
of edges), emphasize several points. First, node-link layouts are
dominated by visual clutter for graphs larger than a few hun-
dred edges. In contrast, we can read coarse-scale dependency
groups (bundles) on HEBs relatively easily even for the larger
graphs. Secondly, we see that the readability of HEBs decreases
with size, due to the inherent edge overlap built in the HEB
method. Finally, we see that the effectiveness of HEBs cannot
be judged in isolation from the other parts of the embedding
software visual analytics (SVA) pipeline.

The studies presented in Chapter 4 refine and strengthen the
last point noted above. We present several program comprehen-
sion scenarios in the IT industry where HEBs play a key role.
We see that the initial observations emerging from our research-
context study (Chapter 3) only get strengthened in this context.
Most importantly, we see that the perceived end-to-end effective-
ness of HEBs, in the eyes of their users, crucially depends on the
design and implementation of the entire SVA pipeline in which
they are embedded. Interestingly, most criticism voiced by our
tools’ users was not on the HEB method itself, but on other
aspects of the SVA pipeline, such as completeness and ease-of-
automation of fact extraction, ease of configuration, scalability,

185

186 discussion & conclusions

applicability to multiple programming languages, and interop-
erability. Although such observations have been made earlier by
several other researchers in software visualization [143, 99, 31],
their implications seem, in our eyes, to be minimalized by many
current evaluation studies on the effectiveness of software vi-
sualization techniques which focus on evaluating a technique
independently on its end-to-end usage context.

The studies presented in Chapters 3 and 4 also outline one
important limitation of edge bundling layouts (EBLs) for large
graphs: The difficulty of visually following bundles to their
end-nodes. In Chapter 5, we present image-based edge bundles
(IBEB), a technique which simplifies the rendering of a given
EBL to emphasize its main, coarse-level, bundles. Although IBEB
cannot show the fine-grained structure of an EBL, it succesfully
solves the issue of showing the graph’s main connectivity pat-
tern on a coarse scale, even in the presence of many bundle
overlaps.

2. How can we design edge bundling techniques which computation-
ally scale to handle large graphs?

To answer this question, we follow the path opened in Chap-
ter 5. Namely, we cast the EBL problem as an image processing
problem, and construct EBLs by manipulating two-dimensional
images rather than working on the discrete graph structure.
This is a fundamentally different approach to graph bundling as
compared to earlier methods, for several reasons. From a com-
putational aspect, this allows us to scale the EBL computation in
two directions – namely, by using a higher or lower image res-
olution, in line with the available computational resources; and
by using the massive parallelism offered by modern graphics
cards (GPUs). From the more interesting theoretical aspect, we
believe that our image-based approach to EBL computation rep-
resents an important paradigm shift in graph visualization, for
the following reasons. First, we re-cast the graph bundling prob-
lem using the formal, well understood, framework provided by
distance functions and shape skeletons (Chapter 6). Secondly,
we show that graph bundling is equivalent to the well-known
mean-shift image processing technique [34] (Chapter 7). These
observations allow to efficient EBL algorithms, and also incor-
porate complex constraints such as avoiding obstacles of any
shape (Chapter 7). Furthermore, these observations allow us to
reason formally and quantitatively about the robustness, con-
vergence, and complexity of our proposed EBL algorithms, by
reusing known results from image and shape processing.

10.1 future work 187

Our image-based analogy to graph bundling further allows
us to easily extend EBL to the realm of dynamic graphs (Chap-
ter 8). For streaming graphs, the extension is trivial, amounting
simply to identifying the bundling iteration count to the graphs’
time stamp. For sequence graphs, we solve the dynamic bun-
dling problem by adding correspondence information between
edges in subsequent graphs. In both cases, the inherent high
scalability of our bundling methods ensures that we can bun-
dle large dynamic graphs at interactive rates without additional
(implementation) effort.

3. How can we complement edge bundling techniques with rendering
and interaction techniques to simplify the resulting images, and also
add more contextual information, for a better understanding?

We address this question at two different levels. First, we pro-
pose a number of rendering techniques which both simplify a
computed EBL and also add supplementary information to it.
In Chapter 5, we show how we can shade simplified bundles
to emphasize the coarse-level graph structure, using the well-
known shaded cushions metaphor [200]. In Chapter 6, we show
how a similar effect can be achieved by using computationally
simpler mechanisms which operate at the level of a single edge.
In Chapter 7, we show how outlier edges, which cannot be
grouped into bundles, can be additionally emphasized in the
graph rendering. Finally, in Chapter 8, we show how bundle
stability (or the lack thereof) can be encoded into hue and trans-
parency. Secondly, we recognize that, for large graphs, the in-
herent overdraw caused by EBLs prevents showing edge-level
details for each edge. We address this issue in Chapter 9 by
a set of focus-and-context interactive techniques which locally
disentangle a given EBL to show more information, while in
the same time keeping the global simplified context offered by
EBLs. Apart from demonstrating these interactive techniques
on EBLs, we show how they can be used also for other types of
element-based plots, such as 2D or 3D images.

10.1 future work

The results presented in this thesis can lead to future research
in a number of directions. According to our insights, these di-
rections are as follows, in decreasing order of impact for the
information visualization community:

188 discussion & conclusions

1. Bundling theory: Our parallels between graph bundling and
image-processing operations such as distance transforms, skele-
tons, and mean shift segmentation, open an interesting new di-
rection for (quantitatively) reasoning about edge bundling. So
far, many EBL algorithms have been proposed in the literature.
However, a formal definition of what an EBL is, and which are
its measurable properties, lacks. Further refining the analogy
between EBLs and the aforementioned image-processing opera-
tions could lead to such a formal definition, and also to ways to
quantify, and formally reason about, the desirable properties of
an EBL. A first (and simple) example hereof is the analogy be-
tween graph bundling and image density sharpening presented
in Chapter 7.

2. Bundling customization: Recasting the bundling problem in an
image-based setting allows us to define global and local bun-
dling constraints in a very flexible manner. An example is the
bundle obstacle avoidance described in Chapter 7. Pursuing this
path can lead to the design of efficient and effective EBL meth-
ods that incorporate more constraints, such as constrained bun-
dle directions for diagram-like drawings.

3. Visualizing attributes: The inherent overdraw caused by bun-
dling makes it fundamentally hard to show individual edge
attributes within a bundle. When edges have more than one
attribute, or when these attributes change in time, the problem
becomes only harder. The image-based techniques presented in
Chapters 5 and 6 could be extended to construct colored, tex-
tured, and shaded shapes which aggregate such attributes at a
pixel level to convey detailed insight on the information present
in the bundled edges. A major advantage of image-based tech-
niques here is that such techniques can synthesize the color of
each image pixel separately, and thus offer fine-grained levels
of control of what, and how, is shown at each such pixel.

4. Bundling applications: Our current applications have been, for
practical constraints, been limited to graphs emerging from soft-
ware engineering and flight data analysis. However, bundling
has a high potential to be effective in simplifying other types of
relational-and-spatial structures. One salient example we think
of is the simplified visualization of neural fiber tracts computed
using tractography techniques from 3D diffusion tensor mag-
netic resonance imaging (DT-MRI) scans [58]. Showing the sim-
plified structure of such datasets using image-based bundling

10.1 future work 189

has a high potential. One additional major challenge, as com-
pared to our information visualization context, is that spatial
positions along the edges is highly significant. Hence, new re-
search is needed to study ways to limit the impact of the inher-
ent deformation produced by bundling, while at the same time
offering the structural simplification that EBLs offer.

B I B L I O G R A P H Y

[1] J. Abello, F. van Ham, and N. Krishnan. AskGraphView:
A large graph visualisation system. IEEE TVCG, 12(5):
669–676, 2006.

[2] AbsInt Inc. aiSee graph layout software, 2010. www.aisee.
com.

[3] N. Andrienko and G. Andrienko. Exploratory analysis of
spatial and temporal data: a systematic approach. Springer,
2006.

[4] D. Archambault, T. Munzner, and D. Auber. Grouse:
Feature-based and steerable graph hierarchy exploration.
In Proc. EuroVis, pages 67–74, 2007.

[5] D. Archambault, T. Munzner, and D. Auber. Grouse-
Flocks: Steerable exploration of graph hierarchy space.
IEEE TVCG, 14(4):900–913, 2008.

[6] S. Arya and D. Mount. Approximate nearest neighbor
searching. In Proc. ACM Symp. on Discrete Algorithms,
pages 271–280, 1993.

[7] AT&T. The graphviz package, 2010. www.graphviz.org.

[8] D. Auber. Visualization of large graphs in the Tulip sys-
tem, 2003. PhD thesis, U. of Bordeaux, France.

[9] D. Auber. Tulip graph visualization framework, 2011.
tulip.labri.fr.

[10] D. Auber, D. Archambault, R. Bourqui, A. Lambert,
M. Mathiaut, P. Mary, M. Delest, J. Dubois, and
G. Melançon. The tulip 3 framework: A scalable software
library for information visualization applications based
on relational data. Technical report RR-7860, INRIA, 2012.

[11] Zs. Balanyi and R. Ferenc. Mining design patterns from
C++ source code. In Proc. ICSM, pages 305–314. IEEE,
2003.

[12] M. Balzer, O. Deussen, and C. Lewerentz. Voronoi
treemaps for the visualization of software metrics. In Proc.
ACM SOFTVIS, pages 165–172, 2005.

191

www.aisee.com
www.aisee.com
www.graphviz.org
tulip.labri.fr

192 bibliography

[13] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.
Clone detection using abstract syntax trees. In Proc. ICSM,
pages 368–377, 1998.

[14] I. Baxter, C. Pidgeon, and M. Mehlich. DMS: Program
transformations for practical scalable software evolution.
In Proc. ICSE, pages 625–634. IEEE, 2004.

[15] F. Beck and S. Diehl. On the impact of software evolu-
tion on software clustering. Empirical Software Engineering,
2012. DOI: 10.1007/s10664-012-9225-9.

[16] Bell Labs. CScope, 2007. cscope.sourceforge.net.

[17] F. Bertault and M. Miller. An algorithm for drawing com-
pound graphs. In Proc. Graph Drawing, pages 197–204,
1999.

[18] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton,
S. Hallem, C. H. Gros, A. Camsky, S. McPeak, and D. En-
gler. A few billion of lones of code later: Using static
analysis to find bugs in the real world. Comm. of the ACM,
53(2):66–75, 2010.

[19] E. Bier, M. Stone, K. Pier, W. Buxton, and T. DeRose. Tool-
glass and magic lenses: The see-through interface. In Proc.
ACM SIGGRAPH, pages 137–145, 1993.

[20] E. Bier, M. Stone, and K. Pier. Enhanced illustration using
MagicLens filters. IEEE CG & A, 17(6):62–70, 1997.

[21] D. Binkley and M. Harman. A survey of empirical results
on program slicing. Adv. Comput., (62):105–178, 2004.

[22] C. Binuccia, U. Brandes, G. Di Battista, W. Didimo,
M. Gaertler, P. Palladino, M. Patrignani, A. Symvonis, and
K. Zweig. Drawing trees in a streaming model. Inform.
Process. Lett., 112(11):418–422, 2012.

[23] F. Boerboom and A. Janssen. Fact extraction, querying
and visualization of large C++ code bases. MSc thesis,
Faculty of Math. and Computer Science, Eindhoven Univ.
of Technology, 2006.

[24] I. Boyandin, E. Bertini, and D. Lalanne. A qualitative
study on the exploration of temporal changes in flow
maps with animation and small-multiples. Comp. Graph.
Forum, 31(3):1005–1014, 2012.

bibliography 193

[25] D. Bruls, C. Huizing, and J. J. van Wijk. Squarified
treemaps. In Proc. IEEE VisSym, pages 33–42, 2000.

[26] M. Burch and S. Diehl. TimeRadarTrees: Visualizing dy-
namic compound digraphs. Comp. Graph. Forum, 27(3):
823–830, 2008.

[27] M. Burch, F. Beck, and S. Diehl. Timeline trees: Visualizing
sequences of transactions in information hierarchies. In
Proc. AVI, pages 75–82, 2008.

[28] T. Cao, K. Tang, A. Mohamed, and T. Tan. Parallel band-
ing algorithm to compute exact distance transform with
the GPU. In Proc. ACM SIGGRAPH Symp. on Interactive
3D Graphics and Games, pages 134–141, 2010.

[29] CGAL. CGAL library, 2009. http://www.cgal.org.

[30] D. Chang, M. Kantardzic, and M. Ouyang. Hierarchical
clustering with cuda/gpu. In Proc. ISCA, pages 130–135,
2009.

[31] S. Charters, N. Thomas, and M. Munro. The end of
the line for Software Visualisation? In Proc. IEEE Vissoft,
pages 27–35, 2003.

[32] W. Chen, S. Zhang, S. Coreia, and D. Ebert. Abstractive
representation and exploration of hierarchically clustered
diffusion tensor fiber tracts. Comp. Graph. Forum, 27(3):
1071–1078, 2008.

[33] M. L. Collard, H. H. Kagdi, and J. I. Maletic. An XML-
based lightweight C++ fact extractor. In Proc. IWPC, pages
134–143. IEEE Press, 2003.

[34] D. Comaniciu and P. Meer. Mean shift: A robust approach
toward feature space analysis. IEEE TPAMI, 24(5):603–619,
2002.

[35] T. Corbi. Program understanding: Challenge for the 1990s.
IBM Systems Journal, 28(2):294–306, 1999.

[36] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. van
Wijk, and A. van Deursen. Understanding execution
traces using massive sequence and circular bundle views.
In Proc. ICPC, pages 49–58. IEEE, 2007.

[37] L. Costa and R. Cesar. Shape analysis and classification: The-
ory and practice. CRC Press, 2000.

http://www.cgal.org

194 bibliography

[38] P. Cruz. Boundaries in information visualization – to-
wards information aesthetics, 2010. MSc Thesis, U. Coim-
bra, Portugal.

[39] W. Cui, H. Zhou, H. Qu, P. Wong, and X. Li. Geometry-
based edge clustering for graph visualization. IEEE
TVCG, 14(6):1277–1284, 2008.

[40] M. de Hoon, S. Imoto, J. Nolan, and S. Myiano. Open
source clustering software. Bioinformatics, 20(9):1453–1454,
2004.

[41] Hayco de Jong and Paul Klint. ToolBus: The next gen-
eration. In F. de Boer, M. Bonsangue, S. Graf, and
W. de Roever, editors, Formal Methods for Components and
Objects, pages 220–241. Springer LNCS, 2003.

[42] M. Dickerson, D. Eppstein, M. Goodrich, and J. Meng.
Confluent drawings: Visualizing non-planar diagrams in
a planar way. In Proc. Graph Drawing, pages 1–12, 2003.

[43] S. Diehl. Software Visualization Visualizing the Structure, Be-
haviour, and Evolution of Software. Springer, 2007.

[44] D. Dobkin, E. Gansner, E. Koutsofios, and S. North. Imple-
menting a general-purpose edge router. In Graph Drawing,
pages 262–271. Springer, 1997.

[45] E. Duala-Ekoko and M. Robillard. Tracking code clones
in evolving software. In Proc. ICSE, pages 367–375, 2007.

[46] S. Ducasse and O. Nierstrasz. On the effectiveness of
clone detection by string matching. Intl. J. on Software
Maintenance and Evolution, 18(1):37–58, 2006.

[47] T. Dwyer and L. Nachmanson. Fast edge-routing for large
graphs. In Graph Drawing, pages 147–158. Springer, 2010.

[48] T. Dwyer, K. Marriott, and M. Wybrow. Integrating edge
routing into force-directed layouts. In Proc. Graph Drawing,
pages 8–19, 2007.

[49] Eclipse project. Eclipse CDT framework for C/C++, 2010.
www.eclipse.org/cdt.

[50] H. Edelsbrunner and E. Mücke. Three-dimensional alpha
shapes. ACM Trans. Graph., 13(1):43–72, 1994.

www.eclipse.org/cdt

bibliography 195

[51] S.G. Eick, J.L. Steffen, and E.E. Sumner. Seesoft - a tool for
visualizing line oriented software statistics. IEEE Trans.
Soft. Eng., 18(11):957–968, 1992.

[52] G. Ellis and A. Dix. An explorative analysis of user eval-
uation studies in information visualisation. In Proc. AVI
Workshop on Beyond Time and Errors: Novel Evaluation meth-
ods for information visualization, 2006.

[53] G. Ellis and A. Dix. A taxonomy of clutter reduction for
information visualisation. IEEE TVCG, 13(6):1216–1223,
2007.

[54] V. A. Epanechnikov. Non-parametric estimation of a mul-
tivariate probability density. Theory of Probability and its
Applications, 14:153–158, 1969.

[55] O. Ersoy, C. Hurter, F. Paulovich, G. Cantareira, and
A. Telea. Skeleton-based edge bundles for graph visual-
ization. IEEE TVCG, 17(2):2364 – 2373, 2011.

[56] C. Erten, S. Kobourov, V. Le, and A. Navabi. Simultane-
ous graph drawing: Layout algorithms and visualization
schemes. In Proc. Graph Drawing, pages 437–449, 2004.

[57] M. Ettema and E. Vast. Dependency evolution analyzer,
2010. www.cs.rug.nl/svcg/SoftVis/DepEvol.

[58] M. Everts, H. Bekker, J. Roerdink, and T. Isenberg. Depth-
dependent halos: Illustrative rendering of dense line data.
IEEE TVCG, 15(6):1299–1306, 2009.

[59] J. D. Fekete, D. Wang, N. Dang, A. Aris, and C. Plaisant.
Overlaying graph links on treemaps. In Proc. InfoVis
(poster), pages 82–83, 2003.

[60] N. Fenton and S. Pfleeger. Software Metrics: A Rigorous and
Pracical Approach. Chapman & Hall, 1998.

[61] R. Ferenc, A. Beszédes, M. Tarkiainen, and T. Gyimóthy.
Columbus – reverse engineering tool and schema for C++.
In Proc. ICSM, pages 172–181. IEEE, 2002.

[62] D. Forrester, S. Kobourov, A. Navabi, K. Wample, and
G. Yee. Graphael: A system for generalized force-directed
layouts. In Proc. Graph Drawing, pages 454–464, 2004.

www.cs.rug.nl/svcg/SoftVis/DepEvol

196 bibliography

[63] A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive lay-
out algorithm for undirected graphs. In Proc. DIMACS’94,
pages 388–403. Springer LNCS, 1994.

[64] Y. Frishman and A. Tal. Uncluttering graph layouts using
anisotropic diffusion and mass transport. IEEE TVCG, 15

(5):777–788, 2009.

[65] Y. Frishman and Ayellet Tal. Online dynamic graph draw-
ing. In Proc. EuroVis, pages 75–82, 2007.

[66] Y. Fua, O. Ward, and E. Rundensteiner. Hierarchical par-
allel coordinates for exploration of large datasets. In Proc.
IEEE Visualization, pages 43–50, 1999.

[67] G. Furnas. Generalized fisheye views. In Proc. ACM CHI,
pages 16–23, 1986.

[68] E. Gansner and Y. Koren. Improved circular layouts. In
Proc. Graph Drawing, pages 386–398, 2006.

[69] E. Gansner, Y. Koren, and S. North. Topological fisheye
views for visualizing large graphs. In Proc. InfoVis, pages
175–182, 2004.

[70] E. Gansner, Y. Hu, S. North, and C. Scheidegger. Multi-
level agglomerative edge bundling for visualizing large
graphs. In Proc. PacificVis, pages 187–194, 2011.

[71] Gccxml Team. The Gccxml C++ parser, 2011. www.gccxml.
org.

[72] M. Ghoniem, J. D. Fekete, and P. Castagnola. A com-
parison of the readability of graphs using node-link and
matrix-based representations. In Proc. IEEE InfoVis, pages
17–24, 2004.

[73] S. Grivet, D. Auber, J. P. Domenger, and G. Melancon. Bub-
ble tree drawing algorithm. In Proc. Intl. Conf. on Comp.
Vision and Graphics, pages 633–641, 2004.

[74] D. Harel and Y. Horen. Graph drawing by multidimen-
sional embedding. In Proc. Graph Drawing, pages 388–393,
2002.

[75] N. Henry and J. D. Fekete. NodeTrix: A hybrid visual-
ization of social networks. IEEE TVCG, 13(6):1302–1309,
2007.

www.gccxml.org
www.gccxml.org

bibliography 197

[76] I. Herman, G. Melancon, and S. Marshall. Graph visu-
alization and navigation in information visualization: a
survey. IEEE TVCG, 6(1):24–43, 2000.

[77] R. Holt, A. Winter, and A. Schurr. GXL: Towards a stan-
dard exchange format. In Proc. WCRE, pages 162–171,
2000.

[78] D. Holten. Hierarchical edge bundles: Visualization of
adjacency relations in hierarchical data. IEEE TVCG, 12

(5):741–748, 2006.

[79] D. Holten and J. J. van Wijk. Visual comparison of hi-
erarchically organized data. Comp. Graph. Forum, 21(4):
759–766, 2008.

[80] D. Holten and J. J. van Wijk. Force-directed edge bundling
for graph visualization. Comp. Graph. Forum, 28(3):670–
677, 2009.

[81] H. Hoogendorp, O. Ersoy, D. Reniers, and A. Telea. Ex-
traction and visualization of call dependencies for large
C/C++ code bases: A comparative study. In Proc. ACM
VISSOFT, pages 137–145, 2009.

[82] M. Huang, P. Eades, and J. Wang. On-line animated vi-
sualization of huge graphs using a modified spring algo-
rithm. JVLC, 9(6):623–645, 1998.

[83] C. Hurter, B. Tissoires, and S. Conversy. FromDaDy:
Spreading data across views to support iterative explo-
ration of aircraft trajectories. IEEE TVCG, 15(6):1017–1024,
2009.

[84] C. Hurter, O. Ersoy, and A. Telea. Graph bundling by
kernel density estimation. Comp. Graph. Forum, 31(3):435–
443, 2012.

[85] Z. Jiang, A. Hassan, and R. C. Holt. Visualizing clone
cohesion and coupling. In Proc. APSEC, pages 130–137,
2006.

[86] M. Jones, J. Marron, and S. Sheather. A brief survey of
bandwidth selection for density estimation. J. American
Stat. Assoc., 91(433):401–407, 1996.

[87] E. Juergens, F. Deissenboeck, and B. Hummel. CloneDe-
tective - a workbench for clone detection research. In Proc.
ICSE, pages 98–107. IEEE, 2010.

198 bibliography

[88] T. Kamiya. CCfinder clone detector home page, 2010. www.
ccfinder.net.

[89] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A mul-
tilinguistic token-based code clone detection system for
large-scale source code. IEEE TSE, 28(7):654–670, 2002.

[90] I. Kaplan. Implementing graph pattern queries on a re-
lational database. In Technical Report LLNL-TR-400310.
Lawrence Livermore National Laboratory, USA, 2008.

[91] G. Katz and J. Kider. All-pairs shortest-paths for large
graphs on the GPU. In Proc. Graphics Hardware, pages
208–216, 2008.

[92] Rick Kazman, Steven Woods, and Jeromy Carriere. Re-
quirements for integrating software architecture and
reengineering models: CORUM II. In Proc. WCRE, pages
154–163, 1998.

[93] H. Kienle. Building Reverse Engineering Tools with Software
Components. PhD thesis, Univ. of Victoria, Canada, 2006.

[94] H. Kienle and H. A. Müller. Requirements of software vi-
sualization tools: A literature survey. In Proc. IEEE Vissoft,
pages 92–100, 2007.

[95] H. Kienle and H. A. Müller. Rigi—an environment for
software reverse engineering, exploration, visualization,
and redocumentation. Science of Computer Programming,
75(4):247–263, 2010.

[96] R. Klette and A. Rosenfeld. Digital geometry: Geometric
methods for digital picture analysis. Morgan Kaufmann,
2004.

[97] KOffice Team. KOffice software repository, 2010. www.

koffice.org.

[98] E. Korshunova, M. Petkovic, M. van den Brand, and
M. Mousavi. Cpp2XMI: Reverse engineering for UML
class, sequence and activity diagrams from C++ source
code. In Proc. WCRE, pages 297–298, 2006.

[99] R. Koschke. Software visualization in software mainte-
nance, reverse engineering, and re-engineering: a research
survey. J. Soft. Maint. and Evol., 15(2):87–109, 2003.

www.ccfinder.net
www.ccfinder.net
www.koffice.org
www.koffice.org

bibliography 199

[100] R. Koschke, R. Falke, and P. Frenzel. Clone detection us-
ing abstract syntax trees. In Proc. WCRE, pages 253–262,
2006.

[101] I. Kovacs, A. Feher, and B. Julesz. Medial-point descrip-
tion of shape: A representation for action coding and its
phychophysical correlates. Vision research, 38:2323–2333,
1998.

[102] L. Kwakman. Automatically reducing code duplica-
tion. MSc thesis, Univ. of Groningen, the Nether-
lands, Sept. 2010. www.cs.rug.nl/~alext/PAPERS/MSc/

kwakman10.docx.

[103] A. Lambert, R. Bourqui, and D. Auber. Winding roads:
Routing edges into bundles. Comp. Graph. Forum, 29(3):
432–439, 2010.

[104] A. Lambert, R. Bourqui, and D. Auber. 3D edge bundling
for geographical data visualization. In Proc. Information
Visualisation, pages 329–335, 2010.

[105] M. Lanza. CodeCrawler - polymetric views in action. In
Proc. ASE, pages 394–395, 2004.

[106] M. Lanza and R. Marinescu. Object-Oriented Metrics in
Practice - Using Software Metrics to Characterize, Evaluate,
and Improve the Design of Object-Oriented Systems. Springer,
2006.

[107] H. Lawrence and Y. Kulkarni. Anterior segment and
fundus photography, 2011. emedicine.medscape.com/

article/1228681-overview.

[108] A. Lienhardt, A. Kuhn, and O. Greevy. Rapid prototyping
of visualizations using Mondrian. In Proc. IEEE Vissoft,
pages 67–70, 2007.

[109] Y. Lin, R. C. Holt, and A. J. Malton. Completeness of a
fact extractor. In Proc. WCRE, pages 196–204. IEEE, 2003.

[110] T. Littlefair. C and C++ code counter, 2007. sourceforge.
net/projects/cccc.

[111] LLVM Team. Clang C/C++ analyzer home page, 2010.
clang.llvm.org.

www.cs.rug.nl/~alext/PAPERS/MSc/kwakman10.docx
www.cs.rug.nl/~alext/PAPERS/MSc/kwakman10.docx
emedicine.medscape.com/article/1228681-overview
emedicine.medscape.com/article/1228681-overview
sourceforge.net/projects/cccc
sourceforge.net/projects/cccc
clang.llvm.org

200 bibliography

[112] G. Lommerse, F. Nossin, L. Voinea, and A. Telea. The Vi-
sual Code Navigator: An interactive toolset for source code
investigation. In Proc. InfoVis, pages 24–31. IEEE, 2005.

[113] J. Looser, R. Grasset, and M. Billinghurst. A 3D flexible
and tangible magic lens in augmented reality. In Proc.
ISMAR, pages 254–262. IEEE, 2007.

[114] Lua Team. The Lua programming language, 2011. www.

lua.org.

[115] A. Ludwig. Recoder java analyzer, 2010. recoder.

sourceforge.net.

[116] A. Marcus, L. Fend, and J. I. Maletic. 3d representations
for software visualization. In Proc. ACM SoftVis, pages
27–36, 2003.

[117] K. McDonnell and K. Mueller. Illustrative parallel coordi-
nates. Comp. Graph. Forum, 27(3):1031–1038, 2008.

[118] S. McPeak. Elkhound: A fast, practical GLR parser gener-
ator, 2002. Tech. report UCB/CSD-2-1214.

[119] S. McPeak. The Elsa C++ static analyzer, 2010.
scottmcpeak.com/elkhound/sources/elsa.

[120] T. Mens and S. Demeyer. Software Evolution. Springer,
2008.

[121] S. Moreta and A. Telea. Multiscale visualization of dy-
namic software logs. In Proc. EuroVis, pages 11–18, 2007.

[122] T. Moscovich, F. Chevalier, N. Henry, E. Pietriga, and J.-D.
Fekete. Topology-aware navigation in large networks. In
Proc. ACM CHI, pages 320–329, 2009.

[123] Mozilla. Firefox repository, 2012. http://www.mozilla.

org/en-US/firefox/fx.

[124] NASA Team. Earth lightning map, 2011. thunder.msfc.

nasa.gov/data.

[125] P. Neumann, S. Schlechtweg, and M. S. Carpendale. Arc-
Trees: Visualizing relations in hierarchical data. In Proc.
EuroVis, pages 53–60. IEEE, 2005.

www.lua.org
www.lua.org
recoder.sourceforge.net
recoder.sourceforge.net
scottmcpeak.com/elkhound/sources/elsa
http://www.mozilla.org/en-US/firefox/fx
http://www.mozilla.org/en-US/firefox/fx
thunder.msfc.nasa.gov/data
thunder.msfc.nasa.gov/data

bibliography 201

[126] Q. Nguyen, P. Edges, and S.-H. Hong. StreamEB: Stream
edge bundling. In Tech. Report TR-689, Univ. of Sydney, July
2012, ISBN 9781742102801, 2012. Also to appear in Proc.
Graph Drawing.

[127] Q. Nguyen, P. Edges, and S.-H. Hong. StreamEB re-
sults, 2012. http://rp-www.cs.usyd.edu.au/~qnguyen/

streameb.

[128] O. Nierstrasz, S. Ducasse, and T. Gîrba. The story of
moose: an agile reengineering environment. In Proc. ACM
ESEC/FSE, pages 1–10, 2005.

[129] NSIS Team. NSIS installer, 2012. nsis.sourceforge.net.

[130] OINK. The oink C++ static analyzer, 2008. www.cubewano.
org.

[131] J. R. Pate, R. Tairas, and N. A. Kraft1. Clone evolution:
A systematic review. J. Soft. Maint. Evol. Res. Pract., 2012.
DOI:10.1002/smr.579.

[132] F. Paulovich, L. Nonato, R. Minghim, and H. Levkowitz.
Least square projection: A fast high-precision multidimen-
sional projection technique and its application to docu-
ment mapping. IEEE TVCG, 14(3):564–575, 2008.

[133] D. Phan, L. Xiao, R. Yer, P. Hanrahan, and T. Winograd.
Flow map layout. In Proc. IEEE InfoVis, pages 219–224,
2005.

[134] S. Pizer, K. Siddiqi, G. Szekely, J. Damon, and S. Zucker.
Multiscale medial loci and their properties. IJCV, 55(2-3):
155–179, 2003.

[135] M. Poppendieck and T. Poppendieck. Lean Software Devel-
opment: An Agile Toolkit for Software Development Managers.
Addison-Wesley, 2006.

[136] Prefuse. The Prefuse information visualization toolkit,
2010. prefuse.org.

[137] H. Purchase. Which aesthetic has the greatest effect on
human understanding? In Proc. GD, pages 248–261, 1997.

[138] H. Qu, H. Zhou, and Y. Wu. Controllable and progressive
edge clustering for large networks. In Proc. Graph Drawing,
pages 399–404, 2006.

http://rp-www.cs.usyd.edu.au/~qnguyen/streameb
http://rp-www.cs.usyd.edu.au/~qnguyen/streameb
nsis.sourceforge.net
www.cubewano.org
www.cubewano.org
prefuse.org

202 bibliography

[139] D. Quinlan. ROSE: Compiler support for object-oriented
frameworks. In Proc. Conf. Parallel Compilers (CPC), pages
81–90, 2000. see also www.rosecompiler.org.

[140] M. Raitner. Visual navigation of compound graphs. In
Proc. Graph Drawing, pages 403–413, 2004.

[141] R. Rao and S. Card. The table lens: Merging graphical and
symbolic representations in an interactive focus+context
visualization for tabular information. In Proc. CHI, pages
222–230. ACM, 1994.

[142] Redgate Inc. Reflector .NET API, 2010. www.red-gate.

com/products/reflector.

[143] S. Reiss. The paradox of software visualization. In Proc.
IEEE Vissoft, pages 59–63, 2005.

[144] D. Reniers, J. J. van Wijk, and A. Telea. Computing mul-
tiscale skeletons of genus 0 objects using a global impor-
tance measure. IEEE TVCG, 14(2):355–368, 2008.

[145] D. Reniers, L. Voinea, O. Ersoy, and A. Telea. The
Solid* toolset for software visual analytics of program
structure and metrics comprehension: From research
prototype to product. Sci. Comput. Program., 2012.
doi:10.1016/j.scico.2012.05.002.

[146] M. Rumpf and A. Telea. A continuous skeletonization
method based on level sets. In Proc. IEEE VisSym, pages
151–160, 2002.

[147] G. Salton. Developments in automatic text retrieval. Sci-
ence, 253:974–980, 1991.

[148] G. Sander. Graph layout through the VCG tool. In Proc.
Graph Drawing, pages 194–205. Springer, 1994. see also
rw4.cs.uni-sb.de/~sander/.

[149] SciTools, Inc. Understand for C/C++, 2010. www.scitools.
com.

[150] D. Selassie, B. Heller, and J. Heer. Divided edge bundling
for directional network data. IEEE TVCG, 19(12):754–763,
2011.

[151] M. Sensalire, P. Ogao, and A. Telea. Classifying desir-
able features of software visualization tools for corrective
maintenance. In Proc. ACM SOFTVIS, pages 87–90, 2008.

www.rosecompiler.org
www.red-gate.com/products/reflector
www.red-gate.com/products/reflector
rw4.cs.uni-sb.de/~sander/
www.scitools.com
www.scitools.com

bibliography 203

[152] M. Sensalire, P. Ogao, and A. Telea. Evaluation of software
visualization tools: Lessons learned. In Proc. IEEE Vissoft,
pages 156–164, 2009.

[153] M. Sensalire, P. Ogao, and A. Telea. Model-based anal-
ysis of adoption factors for software visualization tools
in corrective maintenance. Tech. report svcg-rug-10-2010,
Univ. of Groningen, the Netherlands, 2010. www.cs.rug.

nl/~alext/PAPERS/Sen10.pdf.

[154] S. Sheather and M. Jones. A reliable data-based band-
width selection method for kernel density estimation. J.
of the Royal Statistical Society, B53(3):683–690, 1991.

[155] B. Shneiderman. Treemaps for space-constrained vi-
sualization of hierarchies, 2010. www.cs.umd.edu/hcil/

treemap-history.

[156] K. Siddiqi and S. Pizer. Medial Representations: Mathematics,
Algorithms and Applications. Springer, 1999.

[157] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. Zucker.
Hamilton-Jacobi skeletons. IJCV, 48(3):215–231, 2002.

[158] B. Silverman. Density estimation for statistics and data
analysis. Monographs on Statistics and Applied Probability,
26, 1992.

[159] SolidSource. SolidSX software explorer,
2009. http://www.solidsourceit.com/products/

SolidSX-source-code-dependency-analysis.html.

[160] SolidSource BV. SolidSX, SolidSDD, SolidSTA, and
SolidFX tool distributions, 2010. www.solidsourceit.com.

[161] SolidSource IT. SolidSDD Clone Detector, 2012. http:

//www.solidsourceit.com.

[162] M. Spindler and R. Dachselt. Exploring information
spaces by using tangible magic lenses in a tabletop en-
vironment. In Proc. ACM CHI (EA), pages 243–248, 2010.

[163] SQLite Team. The SQLite database, 2011. www.sqlite.

org.

[164] T. A. Standish. An essay on software reuse. IEEE TSE, 10

(5):494–497, 1984.

www.cs.rug.nl/~alext/PAPERS/Sen10.pdf
www.cs.rug.nl/~alext/PAPERS/Sen10.pdf
www.cs.umd.edu/hcil/treemap-history
www.cs.umd.edu/hcil/treemap-history
http://www.solidsourceit.com/products/SolidSX-source-code-dependency-analysis.html
http://www.solidsourceit.com/products/SolidSX-source-code-dependency-analysis.html
www.solidsourceit.com
http://www.solidsourceit.com
http://www.solidsourceit.com
www.sqlite.org
www.sqlite.org

204 bibliography

[165] Statistical Computing. US flights dataset, 2012. http://

stat-computing.org/dataexpo/2009/the-data.html.

[166] M. Storey and H. Müller. Manipulating and documenting
software structures using SHriMP views. In Proc. ICSM,
pages 275–284, 1995.

[167] R. Strzodka and A. Telea. Generalized distance trans-
forms and skeletons in graphics hardware. In Proc. IEEE
VisSym, pages 221–230, 2003.

[168] K. Sugiyama and K. Misue. Visualization of structural
information: Automatic drawing of compound digraphs.
Systems, Man and Cybernetics, IEEE Transactions on, 21(4):
876–892, 1991.

[169] SVCG. Scientific visualization and computer graphics
group, Univ. of Groningen, Software Visualization and
Analysis, 2010. www.cs.rug.nl/svcg/SoftVis.

[170] SharpSVN Team. SharpSVN c# library, 2010. sharpsvn.

open.collab.net.

[171] A. Telea. An image inpainting technique based on the fast
marching method. J. of Graphics Tools, 9(1):23–34, 2004.

[172] A. Telea. An open architecture for visual reverse engineer-
ing. In Managing Corporate Information Systems Evolution
and Maintenance (ch. 9), pages 211–227. Idea Group Inc.,
2004.

[173] A. Telea. Combining extended table lens and treemap
techniques for visualizing tabular data. In Proc. EuroVis,
pages 51–58, 2006.

[174] A. Telea. Image inpainting tool source code, 2010. www.cs.
rug.nl/~alext/SQAT/Software.

[175] A. Telea. Software quality assurance and testing (sqat)
course assignment, 2010. Univ. of Groningen, the Nether-
lands, www.cs.rug.nl/~alext/SQAT/Assignment.

[176] A. Telea. CUDA skeletonization and image processing
toolkit, 2011. http://www.cs.rug.nl/~alext/CUDASKEL.

[177] A. Telea and D. Auber. Code Flows: visualizing structural
evolution of source code. Comp. Graph. Forum, 27(3):831–
838, 2008.

http://stat-computing.org/dataexpo/2009/the-data.html
http://stat-computing.org/dataexpo/2009/the-data.html
www.cs.rug.nl/svcg/SoftVis
sharpsvn.open.collab.net
sharpsvn.open.collab.net
www.cs.rug.nl/~alext/SQAT/Software
www.cs.rug.nl/~alext/SQAT/Software
www.cs.rug.nl/~alext/SQAT/Assignment
http://www.cs.rug.nl/~alext/CUDASKEL

bibliography 205

[178] A. Telea and O. Ersoy. Image-based edge bundles: Simpli-
fied visualization of large graphs. Comp. Graph. Forum, 29

(3):543–551, 2010.

[179] A. Telea and J. J. van Wijk. An augmented fast marching
method for computing skeletons and centerlines. In Proc.
IEEE VisSym, pages 251–258, 2002.

[180] A. Telea and L. Voinea. A tool for optimizing the build
performance of large software code bases. In Proc. IEEE
CSMR, pages 153–156, 2008.

[181] A. Telea and L. Voinea. An interactive reverse-engineering
environment for large-scale C++ code. In Proc. ACM
SOFTVIS, pages 67–76, 2008.

[182] A. Telea and L. Voinea. Visual software analytics for the
build optimization of large-scale software systems. Com-
putational Statistics, 26(4):635–654, 2011.

[183] A. Telea, A. Maccari, and C. Riva. An open toolkit for
prototyping reverse engineering visualizations. In Proc.
Data Visualization (IEEE VisSym), pages 67–75. IEEE, 2002.

[184] A. Telea, A. Voinea, and H. Sassenburg. Visual tools for
software architecture understanding: A stakeholder per-
spective. IEEE Software, 27(6):46–53, 2010.

[185] A. Telea, L. Voinea, and O. Ersoy. Visual analytics in soft-
ware maintenance: Challenges and opportunities. In Proc.
EuroVAST, pages 65–70. Eurographics, 2010.

[186] M. Termeer, C. Lange, A. Telea, and M. Chaudron. Visual
exploration of combined architectural and metric informa-
tion. In Proc. IEEE Vissoft, pages 21–26, 2005.

[187] A. Teyseyre and M. Campo. An overview of 3D software
visualization. IEEE TVCG, 15(1):87–105, 2009.

[188] James J. Thomas and Kristin A. Cook. Illuminating the
Path: The Research and Development Agenda for Visual Ana-
lytics. National Visualization and Analytics Center, 2005.

[189] S. Tichelaar, S. Ducasse, and S. Demeyer. FAMIX and XMI.
In Proc. WCRE, pages 296–300, 2000.

[190] S. Tilley, K. Wong, M.A. Storey, and H. Müller. Pro-
grammable reverse engineering. Intl. J. Software Engineer-
ing and Knowledge Engineering, 4(4):501–520, 1994.

206 bibliography

[191] Frank Tip. A survey of program slicing techniques. J. of
Programming Languages, 3(3):121–189, 1995.

[192] I. Tollis, G. Di Battista, P. Eades, and R. Tamassia. Graph
drawing: Algorithms for the visualization of graphs. Prentice
Hall, 1999.

[193] C. Tominski, J. Abello, F. van Ham, and H. Schumann.
Fisheye tree views and lenses for graph visualization. In
Proc. Information Visualisation, pages 202–210, 2006.

[194] B. Tversky, J. Morrison, and M. Betrancourt. Animation:
Can it facilitate? Intl. J. Human Computer Studies, 57:247–
262, 2002.

[195] F. vam Ham. Using multilevel call matrices in large soft-
ware projects. In Proc. InfoVis, pages 227–232, 2003.

[196] M. van den Brand, P. Klint, and C. Verhoef. Reengineering
needs generic programming language technology. ACM
SIGPLAN Notices, 32(2):54–61, 1997.

[197] M. van den Brand, J. Heering, P. Klint, and P. Olivier.
Compiling language definitions: the ASF+SDF compiler.
ACM TOPLAS, 24(4):334–368, 2002.

[198] M. van den Brand, S. Roubtsov, and A. Serebrenik. SQuA-
VisiT: A flexible tool for visual software analytics. In Proc.
CSMR, pages 331–332, 2009.

[199] R. van Liere and W. de Leeuw. Graphsplatting: Visualiz-
ing graphs as continuous fields. IEEE TVCG, pages 206–
212, 2003.

[200] J. J. van Wijk and H. van de Wetering. Cushion treemaps:
Visualization of hierarchical information. In Proc. IEEE
InfoVis, pages 73–80, 1999.

[201] J. J. van Wijk and C. W. A. M. van Overveld. Preset based
interaction with high dimensional parameter spaces. In
F. Post, G. Nielsen, and G. Bonneau, editors, Data visual-
ization - State of the art, pages 391–406. Kluwer, 2003.

[202] J. J. van Wijk, T. Isenberg, J. Roerdink, A. Telea, and
M. Westenberg. Visual analytics evaluation. In Mastering
the Information Age: Solving Problems with Visual Analytics,
chapter 8, pages 131–143. Eurographics, 2010.

bibliography 207

[203] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and
D. Wilkins. A comparison of a graph database and a re-
lational database: A data provenance perspective. In Proc.
ACM SE, pages 68–80, 2010.

[204] L. Voinea and A. Telea. Visual querying and analysis of
large software repositories. Empirical Software Engineering,
14(3):316–340, 2009.

[205] L. Voinea and A. Telea. Case study: Visual analytics in
software product assessments. In Proc. IEEE Vissoft, pages
65–72, 2009.

[206] L. Voinea, A. Telea, and J. J. van Wijk. CVSscan: visual-
ization of code evolution. In Proc. ACM SOFTVIS, pages
47–56, 2005.

[207] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlham-
mer, J.J. van Wijk, J.-D. Fekete, and D.W. Fellner. Visual
analysis of large graphs: State-of-the-art and future re-
search challenges. Comp. Graph. Forum, 30(6):1719–1749,
2011.

[208] VSG Inc. OpenInventor toolkit, 2011. vsg3d.com/

open-inventor/sdk.

[209] VTK Team. The visualization toolkit (VTK) home page,
2010. www.vtk.org.

[210] V. Wahler, D. Seipel, J. W. von Gudenberg, and G. Fischer.
Clone detection in source code by frequent itemset tech-
niques. In Proc. SCAM, pages 128–135, 2004.

[211] J. Weickert. Anisotropic diffusion in image processing, Teuber
Verlag, Stuttgart, 1998. Teuber Verlag, 1998.

[212] R. Wettel and M. Lanza. Program comprehension through
software habitability. In Proc. ICPC, pages 231–240. IEEE,
2007.

[213] R. Wettel and M. Lanza. Visual exploration of large-scale
system evolution. In Proc. WCRE, pages 219–228. IEEE,
2008.

[214] Wicket. Apache Wicket, 2012. http://wicket.apache.

org.

vsg3d.com/open-inventor/sdk
vsg3d.com/open-inventor/sdk
www.vtk.org
http://wicket.apache.org
http://wicket.apache.org

208 bibliography

[215] N. Willems, H. van de Wetering, and J. J. van Wijk. Visu-
alization of vessel movements. Comp. Graph. Forum, 28(3):
959–966, 2009.

[216] N. Wong and S. Carpendale. Using edge plucking for
interactive graph exploration. In Proc. IEEE InfoVis (poster
comp.), pages 51–52, 2005.

[217] N. Wong and S. Carpendale. Supporting interactive graph
exploration with edge plucking. In Proc. IEEE Visualization
(interactive posters), 2005.

[218] N. Wong and S. Carpendale. Supporting interactive graph
exploration using edge plucking. In Proc. SPIE, pages 235–
246, 2007.

[219] N. Wong, S. Carpendale, and S. Greenberg. EdgeLens:
An interactive method for managing edge congestion in
graphs. In Proc. IEEE InfoVis, pages 167–175, 2003.

[220] P. C. Wong and James J. Thomas. Visual analytics. IEEE
CG&A, 24(5):20–21, 2004.

[221] Y. Yang, J. Chen, and M. Beheshti. Nonlinear perspective
projections and magic lenses: 3D view deformation. IEEE
CG & A, 25(1):567–582, 2005.

[222] J. Yi, R. Melton, J. Stasko, and J. Jacko. Dust & mag-
net: Multivariate information visualization using a mag-
net metaphor. J. of Information Visualization, 4(4):542–551,
2006.

[223] K. Zhang. Software visualization - From theory to practice.
Kluwer Academic, 2003.

[224] H. Zhou, X. Yuan, W. Cui, H. Qu, and B. Chen. Energy-
based hierarchical edge clustering of graphs. In Proc. Paci-
ficVis, pages 55–62, 2008.

[225] H. Zhou, X. Yuan, H. Qu, W. Cui, and B. Chen. Visual
clustering in parallel coordinates. Comp. Graph. Forum, 27

(3):1047–1054, 2008.

L I S T O F F I G U R E S

Figure 3.1 Visualizations of the bison call graph us-
ing Tulip 31

Figure 3.2 Visualizations of the bison call graph us-
ing SolidSX 34

Figure 3.3 Call graphs of Mozilla plugins 36

Figure 3.4 Zoom-in on Fig. 3.3 a 37

Figure 3.5 Oink framework: multilevel visualization
of calls 38

Figure 4.1 Toolset architecture (see Section 4.2). 46

Figure 4.2 Database schema (top) for a compound
attributed graph (bottom) and two selec-
tions 48

Figure 4.3 SolidSX views (tree browser, treemap, ta-
ble lens, radial HEB). 53

Figure 4.4 SolidSDD clone visualization using the
HEB view and text view 55

Figure 4.5 Subversion-repository dependency evolu-
tion browser tool interface 58

Figure 4.6 Left: HEB view of a compound software
graph. Right: Simplified view of the same
graph with the IBEB method built atop of
SolidSX (Sec 4.4.2). 59

Figure 4.7 Data collection, hypothesis forming, and
result analysis for a post-mortem software
assessment 60

Figure 4.8 Four SVA tools for structure-and-association
software analysis compared 69

Figure 5.1 Image-based edge bundle (IBEB) visual-
ization pipeline 77

Figure 5.2 Shape construction 79

Figure 5.3 Splatting algorithm details 80

Figure 5.4 Shading pipeline 82

Figure 5.5 Rendering styles 83

Figure 5.6 Bundle visual separation using halos 84

Figure 5.7 Directional edge bundles 87

Figure 5.8 The digging lens 88

Figure 5.9 Software dependency graph exploration
with IBEB 89

209

210 list of figures

Figure 5.10 Image-based visualization of force-directed
edge bundling (FDEB) layouts 90

Figure 6.1 Skeleton-based edge bundling pipeline 97

Figure 6.2 Shape construction 99

Figure 6.3 Attraction singularities 103

Figure 6.4 Iterative bundling of the US migrations
graph 105

Figure 6.5 Layout postprocessing on a graph with
radial layout 107

Figure 6.6 Layout postprocessing on US airlines graph 108

Figure 6.7 Cushion shading for bundles 109

Figure 6.8 Air traffic graph and poker graph 115

Figure 6.9 US migrations graph and US airlines graph 116

Figure 6.10 Bundling of airline trails 117

Figure 6.11 Bundling of citations graph 118

Figure 7.1 Evolution of density map and correspond-
ing bundling for the US migrations graph. 126

Figure 7.2 Density map (left) and corresponding bun-
dling for non-normalized advection 127

Figure 7.3 KDE edge bundling pipeline. 127

Figure 7.4 Bundling examples. Radial graph (a,b);
Poker graph (c,d); France airlines (e,f) 130

Figure 7.5 Bundling examples. US migrations, clus-
tered (a,b); US migrations, unclustered (c,d,e,f) 131

Figure 7.6 Bundling examples. US airlines (FDEB (a),
SBEB (b), MINGLE (c), KDEEB (d)). 131

Figure 7.7 Obstacle-constrained bundling without end-
point displacement (a,c) and with end-
point displacement (b,d). 132

Figure 7.8 a) Obstacle-constrained bundling refine-
ment; b) Bundle splitting singularity 134

Figure 7.9 Bundling quality visualized by shading 136

Figure 7.10 Additional examples. GBEB-style layout
(a); Outward bundling (b); Random 100K
edge graph bundling (c). 138

Figure 8.1 Streaming visualization for 6-days US air-
line flight dataset (Sec. 8.2.2) 146

Figure 8.2 Streaming visualization for 7-days France
airline flight dataset (Sec. 8.2.2) 147

Figure 8.3 Interpolation for graph sequence visual-
ization 148

Figure 8.4 Small multiples visualization for clones
in Mozilla Firefox for five selected revi-
sions (Sec. 8.3.2) 150

list of figures 211

Figure 8.5 Sequence-based visualization for clones
in Firefox (8 frames) 152

Figure 8.6 Sequence animation – Wicket call graphs
(8 frames around release 1.4.18) 153

Figure 8.7 Streaming visualization of graph sequence
(3 frames around revision 1.5.0, Wicket
software dataset) 155

Figure 9.1 MoleView interactive exploration pipeline 162

Figure 9.2 MoleView element-based exploration mode 164

Figure 9.3 Element-based exploration of an MDS plot
for text documents 166

Figure 9.4 Flight trails dataset (a) and element-based
MoleView lens (b) 166

Figure 9.5 Bundled flight trails (a). Attribute-based
MoleView lens for three altitude levels
(b-d) 168

Figure 9.6 Element-based MoleView applied to grayscale
angiography image (a-c) and color-mapped
traffic speed image (d-f) 169

Figure 9.7 MoleView bundle-based exploration mode 170

Figure 9.8 Bundle-based exploration 171

Figure 9.9 Smooth bundling of entire flight paths
within a zone of interest 172

Figure 9.10 MoleView applied at bundle level on a
software dependency graph using a ra-
dial layout 174

Figure 9.11 Dual-layout lens applied to a simple im-
age 175

Figure 9.12 Dual-layout lens applied to the same sim-
ple image in Fig. 9.11, with a different ro-
tation of the HSV space 176

Figure 9.13 Dual-layout lens applied to a color-coded
scalar field image: Lightning frequency
on the surface of the Earth (heat colormap).

177

Figure 9.14 Dual-layout lens applied to a color-coded
scalar field image: 3D skeleton color-coded
by importance (rainbow colormap). 178

Figure 9.15 Interactively painting zones of interest (see
Sec. 9.2.4) 179

Figure 9.16 Interactive specification of a zone of in-
terest 180

L I S T O F A C R O N Y M S

AFMM Augmented fast marching method 100

ASG Annotated syntax graph 25

AST Abstract syntax tree 25

CR Change request 54

DAG Directed acyclic graph 8

DT Distance transform 121

DT-MRI Diffusion tensor magnetic resonance imaging 172

EBL Edge-bundling layout 2

FDEB Force-directed edge bundling 16

GBEB Geometric-based edge bundling 16

GD Graph drawing 2

GLR Generalized Left-Reduce 10

HBA Hierarchical bottom-up agglomerative 72

HEB Hierarchical edge bundle 3

IBEB Image-based edge bundle 53

InfoVis Information visualization 1

IPC Illustrative parallel coordinates 85

KDE Kernel density estimation 114

KDEEB Kernel density estimation edge-bundling 114

LOC Lines-of-code 43

MDS Multidimensional scaling 150

NLD Node-link diagram 24

SBEB Skeleton-based edge bundling 105

SCM Source control management 8

213

214 list of acronyms

SME Software Maintenance and Evolution 51

SoftVis Software visualization 1

SQAT Software Quality Assurance and Testing 51

SVA software visual analysis 1

SVN Subversion 51

VA Visual analytics 1

VSTS Visual Studio Team System 11

WPF Windows Presentation Foundation 62

WR Winding roads 16

P U B L I C AT I O N S

Christhophe Hurter, Ozan Ersoy, and Alexandru Telea. Smooth
Bundling of Large Streaming and Sequence Graphs. Proc. Paci-
ficVis, 2013 (Honorable Mention Paper Award).

Ozan Ersoy, Christophe Hurter, and Alexandru Telea. Mean
shift for graph bundling. Proc. ASCI/IPA/SIKS 2012.

Dennie Reniers, Lucian Voinea, Ozan Ersoy, and Alexandru
Telea. The Solid* Toolset for Software Visual Analytics of Pro-
gram Structure and Metrics Comprehension: From Research
Prototype to Product. Science of Computer Programming, Else-
vier (2012).

Christhophe Hurter, Ozan Ersoy, and Alexandru Telea. Graph
Bundling by Kernel Density Estimation. Computer Graphics
Forum 31, 865-874 (2012).

Christophe Hurter, Ozan Ersoy, and Alexandru Telea. Mole-
View: An Attribute and Structure-Based Semantic Lens for
Large Element-Based Plots. IEEE Transactions on Visualization
and Computer Graphics 17(12), 2600-2609 (2011).

Christhophe Hurter, Ozan Ersoy, and Alexandru Telea. Gener-
alizing Semantic Lenses for Large Element-based Plots AS-
CI/IPA/SIKS 2011.

Ozan Ersoy, Christophe Hurter, and Alexandru Telea. Graph
Edge Bundling by Medial Axes. Proc. ASCI/IPA/SIKS 2011.

Ozan Ersoy, Christophe Hurter, Fernando V. Paulovich, Gabriel
Cantareira, and Alexandru Telea. Skeleton-Based Edge Bun-
dling for Graph Visualization. IEEE Transactions on Visualiza-
tion and Computer Graphics 17(12), 2364-2373 (2011).

Dennie Reniers, Lucian Voinea, Ozan Ersoy, and Alexandru
Telea. A Visual Analytics Toolset for Program Structure, Met-
rics, and Evolution Comprehension. Proc. WASDeTT 10, ed. H.
Kienle, 2010, IEEE.

215

216 publications

Alexandru Telea and Ozan Ersoy. Bundle-Centric Visualization
of Compound Digraphs. ASCI 2010.

Alexandru Telea, Ozan Ersoy, and Lucian Voinea. Visual Analyt-
ics in Software Maintenance: Challenges and Opportunities.
Proc. EuroVAST’10, 2010.

Alexandru Telea and Ozan Ersoy. Image-Based Edge Bundles:
Simplified Visualization of Large Graphs. Computer Graphics
Forum 29, 843-852 (2010) (2nd Best Paper Award, EuroVis’10).

Alexandru Telea, Ozan Ersoy, and Hessel Hoogendorp. Com-
parison of Node-Link and Hierarchical Edge Bundling Lay-
outs: A User Study. Proc. Dagstuhl Seminar 09211 Visualization
and Monitoring of Network Traffic, 2009.

Alexandru Telea, Hessel Hoogendorp, Ozan Ersoy, and Dennie
Reniers. Extraction and visualization of call dependencies for
large C/C++ code bases: A comparative study. Proceedings of
the 5th IEEE International Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT 2009), 81-88 (2009).

S A M E N VAT T I N G

Grote grafen zijn een essentieel element in het begrijpen van
dataverzamelingen zoals onstaan in het veld van programma-
comprehensie in het gebied van software-engineering. In de
laatste jaren, een reeks van technieken zijn onstaat die dit prob-
leem benaderen: edge bundling layouts (EBLs). Deze visualisatie-
methodes tekenen grote grafen door de nadruk te leggen op
het tonen van de versimpelde structuur ervan. Als gevolg, de
finjschalige details van de fraaf, zoals individuele verbindingen
(edges) worden onzichtbaar, en ruimte wordt gemaakt voor het
tone van de grofschalige graafstructuur.

In dit proefschrift onderzoeken wij nieuwe visualisatiemeth-
odes voor het afbeelden van grote hiërarchische grafen door
middel van EBLs. Wij beginnen ons onderzoek door vast te
stellen dat EBLs significante voordelen hebben ten opzichte van
klassieke graafafbeeldingstechnieken (straight-line node-link lay-
outs) in het kader van programmacomprehensie. Wij verfijnen
dit onderzoek door verder te analyseren hoe EBLs belangrijke
onderdelen kunnen zijn van complete oplossingen voor pro-
grammacomprehensie die wordt toegepast in de IT industrie.

Gebaseerd op deze observaties presenteren wij vervolgens
een aantal algoritmes die EBLs efficiënt en effectief kunnen be-
rekenen voor grote grafen. De gemeenschappelijke noemer van
deze algoritmes is het gebruik van image-based technieken – het
omzetten van het graph bundling probleem in een reeks beeldver-
werkingsoperaties zoals afstandstransformaties, skeletonisatie,
en mean shift beeldsegmentatie. In dit kader laten wij eerst zien
hoe grote EBLs versimpeld kunnen worden zodat de hoofd-
structuur van de graaf zichtbaar wordt, zelfs in het geval van
dominante occlusies. Vervolgens laten wij zien hoe het bereke-
nen van EBLs voor hiërarchische en ook algemene grafen gedaan
kan worden met gebruik van image-based technieken. Dit stelt
ons in staal om formeel te rederenen over de robuustheid en
complexiteit van de voorgestelde algoritmes, en ook deze algo-
ritmes efficiënt te implementeren met behulp van parallelisatie
op grafische kaarten (GPUs).

Vervolgens breiden wij ons voorstel voor image-based in twee
richtingen. De eerste is het berekenen van EBLs voor dynamis-
che (tijdsafhankelike) grafen, waarin de schaal van de datasets
en het zichbaar maken van dynamische veranderingspatronen

217

218 samenvatting

de twee belangrijkste uitdagingen vormen. De tweede is het
tonen van aanvullende details over de gebundelde edges op
een lokale schaal, door middel van een reeks van interactieve
technieken. Wij laten ook zien hoe deze interactieve technieken
toepasbaar zijn voor de exploratie van andere types datasets
zoals twee- en driedimensionale beelden.

Wij illustreren onze image-based EBL aanpak met verschillende
voorbeelden voor programmacomprehensie van grote software-
systemen en ook voor datasets afkomstig uit de analyse van
luchtverkeerinformatie.

A C K N O W L E D G M E N T S

F irstly, I would like to thank my supervisor, Alexandru
Telea, for granting me the opportunity to have this PhD
position, and for his great support, guidance and supervi-

sion along the whole PhD period. I have enjoyed our meetings
and long discussions interchanging ideas, and conversations
about various subjects, technical and non-technical. I consider
myself very lucky for being your student, and I learned a lot
from you.

Second, I want to thank all my friends in Groningen, who
made me feel at home. Piray, Can, Ozlem, Leonardo, Volkan,
Olha, Onur, Araz, and Hande Özgen. We shared many good
and bad, happy and sad moments during this PhD period. Thank
you for being my friends, and being part of my life. We will
anyway be always in touch, so I don’t want this sound like a
goodbye message my friends.

Devrim, Orçun, Serra, Turan, Hande Kırbaş, Ercan, Yeliz, and
Utku, my dear friends, as well as my Zernike lunch companions,
I will miss every moment we spent together in Groningen, lunch
breaks, house parties, king (a card game) parties, drinking and
talking. Thanks for being by my side.

Now this is going to be the second time I mention your names
here, but you well deserve it. Orçun and Devrim, yes I mean you.
You have been my very best friends for the past four years, and
undoubtedly you will have an important part in my life in the
future as well.

Murat abi, Serayi abla, Bayram abi and Eric thank you for be-
ing there, for your friendship and for the nice food that helped
me to survive the delicious Dutch cuisine. I am very glad that I
got to know you.

Maarten and Matthew, my officemates and my friends, I want
to thank you for not only making the office an enjoyable place
with your good taste of humor, but also for sharing your life
experiences and your technical knowledge with me. Maarten, I
hope you still remember those few Turkish words you learned.

Next, many thanks to everyone in our research group, namely
Jos Roerdink, Tobias Isenberg, Moritz, Yun, Deborah, Bilkis, Jasper,
Alessandro, and Andre for their friendship and helpful feed-

219

220 acknowledgments

backs. I also want to thank to Esmee, Ineke and Desiree for
their help and support.

Furthermore, I would like to thank my family for support-
ing me through all my education life and for generously giving
their love to me for all of my life.

Last but not least, my dearest Naima, thank you for every
single beautiful thing you brought into my life, your endless
support and companion. I am the luckiest guy in the universe,
because I have you. I can’t wait to spend the rest of my life with
you.

Ozan Ersoy Groningen, <the date>

en taro adun

colophon

This thesis was typeset with LATEX 2ε using Robert Slimbach’s
Minion Pro font. The typesetting is based on the classicthesis style
by André Miede.

http://www.ctan.org/tex-archive/macros/latex/contrib/classicthesis/
http://www.miede.de/

	Dedication
	Contents
	1 Introduction
	1.1 Graph Edge Bundling
	1.2 Contributions of this thesis

	2 Related Work
	2.1 Fact Extraction
	2.1.1 Data modeling
	2.1.2 Data mining

	2.2 Compound Graph Visualization
	2.2.1 Node-link Layouts
	2.2.2 Edge bundling layouts
	2.2.3 Rendering

	2.3 Time-dependent Graphs
	2.3.1 Types of dynamic graphs
	2.3.2 Dynamic graph visualization
	2.3.3 Bundling dynamic graphs

	2.4 Interaction
	2.4.1 Magic lenses
	2.4.2 Semantic lenses, focus and context, and deformation
	2.4.3 Interaction in EBL layouts

	3 Comparison of Node-Link and HEB Layouts
	3.1 Introduction
	3.2 Call Data Extraction
	3.2.1 Location of calls and definitions
	3.2.2 Linking
	3.2.3 Special cases
	3.2.4 Hierarchy

	3.3 Methodology
	3.4 Case study 1: The bison parser
	3.4.1 Node-link visualizations
	3.4.2 Hierarchical edge bundling visualizations

	3.5 Case Study 2: Mozilla Firefox
	3.6 Case Study 3: The oink Framework
	3.7 Discussion
	3.7.1 Usability comparison
	3.7.2 Performance comparison
	3.7.3 Threats to validity
	3.7.4 Availability

	3.8 Conclusions

	4 The Solid* Toolset for Software Visual Analytics
	4.1 Introduction
	4.2 SVA Program Comprehension Toolset: Architecture
	4.2.1 Data architecture
	4.2.2 Visualization architecture

	4.3 Toolset Highlights: SolidSX and SolidSDD
	4.3.1 Toolset Installation and First Usage Steps
	4.3.2 SolidSX: Structural Analysis
	4.3.3 SolidSDD: Clone Inspection

	4.4 Toolset Applications
	4.4.1 Toolset Usage in Education
	4.4.2 Toolset Usage in Developing New Research
	4.4.3 Industrial Usage: Post-Mortem Assessment of a Software Project

	4.5 Discussion
	4.5.1 Should academic tools be of commercial quality?
	4.5.2 How to integrate and combine independently developed tools?
	4.5.3 What are the lessons learned and pitfalls in building tools?
	4.5.4 What are effective techniques to improve the quality of academic tools?
	4.5.5 What is needed to build an active community of developers and users?
	4.5.6 Are there any useful tool building patterns for software engineering tools?
	4.5.7 How to compare or benchmark such tools?
	4.5.8 What particular languages and paradigms are suited to build tools?
	4.5.9 Evolution from research prototype to product

	4.6 Conclusions

	5 Image-based Edge Bundles
	5.1 Introduction
	5.2 Method
	5.2.1 Layout
	5.2.2 Clustering
	5.2.3 Shape construction
	5.2.4 Shading
	5.2.5 Rendering
	5.2.6 Directional bundles
	5.2.7 Interaction

	5.3 Results
	5.4 Discussion
	5.5 Conclusions

	6 Skeleton-based Edge Bundling
	6.1 Introduction
	6.2 Algorithm
	6.2.1 Clustering
	6.2.2 Shape construction
	6.2.3 Shape creation
	6.2.4 Edge attraction
	6.2.5 Iterative algorithm
	6.2.6 Postprocessing

	6.3 Implementation
	6.3.1 Image-based operations
	6.3.2 Parameter setting

	6.4 Applications
	6.5 Discussion
	6.6 Conclusion

	7 Graph Bundling by Kernel Density Estimation
	7.1 Introduction
	7.2 Algorithm
	7.3 Implementation
	7.3.1 Graph representation
	7.3.2 Density computation and gradient estimation
	7.3.3 Advection
	7.3.4 Smoothing
	7.3.5 Iterative bundling
	7.3.6 Examples

	7.4 Additions
	7.4.1 Obstacle-constrained bundles
	7.4.2 Visualizing bundling quality

	7.5 Discussion
	7.5.1 Comparison
	7.5.2 Performance and simplicity

	7.6 Conclusion

	8 Smooth Bundling of Large Streaming and Sequence Graphs
	8.1 Introduction
	8.2 Visualizing streaming graphs
	8.2.1 Algorithm
	8.2.2 Applications

	8.3 Visualizing graph sequences
	8.3.1 Algorithm
	8.3.2 Applications

	8.4 Discussion
	8.4.1 Streaming vs sequence graphs
	8.4.2 Scalability
	8.4.3 Bundling algorithm choice
	8.4.4 Parameters
	8.4.5 Limitations

	8.5 Conclusion

	9 An Attribute-and-Structure Semantic Lens
	9.1 Introduction
	9.2 MoleView principle
	9.2.1 Element-based exploration
	9.2.2 Bundle-based exploration
	9.2.3 Dual-layout exploration
	9.2.4 Specification of the zone of interest
	9.2.5 Implementation

	9.3 Discussion
	9.4 Conclusion

	10 Discussion & Conclusions
	10.1 Future work

	Bibliography
	List of Figures
	List of Acronyms
	Publications
	Publications

	Samenvatting
	Samenvatting

	Acknowledgments
	Acknowledgments

	Colophon

