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A B S T R A C T

Meshes are a powerful means to represent objects and shapes both in
2D and 3D. Nowadays, meshes are typically regarded as having trian-
gular or quadrilateral elements. In addition, there can be restrictions on
how these elements can be arranged, i.e. on topology. Even for higher
order methods, such as splines, a regular topology is the norm. Meshes
of arbitrary topology inevitably contain extraordinary vertices, vertices
surrounded by an arbitrary number of faces, and/or extraordinary faces,
faces with an arbitrary number of sides. Unfortunately, the traditional
spline techniques cannot be applied directly to such topologies. Arbi-
trary topology meshes, and especially higher-order ones, have many
interesting applications in geometric design and (vector) graphics, and
can give designers more freedom in designing complex objects. This is
exactly where our main contributions lie, as follows.

In computer aided design (CAD), objects are commonly represented
as an arrangement of regular spline patches. These patches do not �t
nicely together, but are rather arranged in such ways that parts of the
surfaces are trimmed o� where two or more surfaces intersect. Prob-
lems occur in these areas as the exact trimming curve cannot in general
be determined, but only approximated. This leads to gaps or overlaps in
the surface or the object in these areas. By converting the spline patches
into Clough-Tocher elements, the spline patches can be approximated
and made watertight at their boundaries. We improve on this conver-
sion method by further ensuring tangent-plane continuity of CAD mod-
els by careful boundary curve and normal management, and the use of
Shirman-Séquin macro-elements near the trimmed edges. For this we
propose three di�erent variants which di�er in locality, approximation
ability, and visual quality.

B-splines are a powerful surface representation, but in general only
admit regular topologies in terms of their control net. We propose a
generalisation of the B-spline construction that extends bi-degree uni-
form B-spline patches to extraordinary regions. The construction is an
extension of the generalised Bézier patch that incorporates uniform B-
spline basis functions. For this we create special B-spline ribbon sur-
faces which use extended B-spline basis functions. The resulting smooth
multisided patches connect smoothly to other regular or multisided
patches. The surfaces visually improve on arbitrary degree subdivision
surfaces, but in some con�gurations might show shape defects, which
we alleviate using special basis functions. We also show how to ef-
�ciently render multisided patches using the existing triangular and
quadrilateral pipeline.
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abstract

Gradient meshes are powerful vector graphics primitives, which have
the ability of representing detailed and scalable images. They are tra-
ditionally de�ned as strictly quadrilateral meshes with a rectangular
topology. Recent works have extended them to polygonal meshes us-
ing subdivision surfaces and generalised barycentric coordinates. We
create two additional formulations of the polygonal gradient meshes
using generalised Gregory patches. These patches are adjusted from
their original 3D setting to the setting of smooth colour interpolation.
We compare the existing and new techniques in terms of visual qual-
ity, performance, continuity and editability. The Gregory patches com-
pare favourably to the existing techniques, in terms of rendering perfor-
mance and quality. The expressive power of gradient meshes is limited
to the colours that are assigned at vertices of the mesh. We pair pro-
cedural noise functions with gradient meshes to create noisy gradient
meshes. We couple three di�erent noise functions, Perlin, Worley, and
Gabor noise to the mesh through the use of a shared parametrisation
domain. In addition, we create parameters that locally and globally in-
�uence the noise by specifying these at vertices and interpolating these
along with the geometry. Designers are then able to create spatially
varying noise patterns using a very sparse mesh. Additionally, we show
how the approach can be extended to displacement mappings applied
to regular surface meshes.

The conversion of raster images into vector graphics has been a long
standing problem. Past solutions have not seen wide adoption due to
various issues such as rendering performance, reproduction quality, ed-
itability of the representation or its generality. We present a vectorisa-
tion method that proceeds in three steps: feature extraction, mesh gener-
ation, and colour transfer. The extracted hard (edges) and soft (shading)
image features are vectorised into spline curves, which are in turn used
as constraints for the generation of a curved triangular mesh. Colour
is represented using mesh colours, a compact way to describe textures
on a per-patch basis and an e�cient method to transfer colour infor-
mation to the mesh colours is devised. The combination of triangular
patches and mesh colours can be rendered in real-time on commodity
hardware. This leads to an e�cient vectorisation pipeline that is able to
handle a variety of input images such as drawings, designs, paintings,
and natural images.
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G E A R F E T T I N G

Mesken (Ingelsk: meshes) binne in krêftige manier om foarmen en
objekten foarm te jaan yn 2D en 3D. Hjoed-de-dei lykje mesken
foaral te bestean út trijehoekige en fjouwerkante eleminten. Der
binne lykwols ek beheiningen op ’e manieren wêrop de ferskate el-
eminten regele wurde kinne, mei oare wurden har topology. Sels foar
metoaden fan hegere oarder, lykas splines, is in reguliere topology de
noarm. It is faaks unûntkomber dat mesken mei willekeurige topology
besteane út bûtengewoane hoekpunten, hoekpunten omjûn troch in
willekeurich oantal �akken, en/of bûtengewoane �akken, �akken mei
in willekeurich oantal kanten. Spitigernôch is it net mooglik om tradis-
jonele splinetechniken direkt te brûken op sokke topologyen. Mesken
fan willekeurige topology, en foaral dy fan hegere oarders, hawwe yn-
teressante tapassingen yn geometrysk ûntwerp en (fektor)grafyk, en
kinne ûntwerpers mear frijheid jaan by it ûntwerpen fan komplekse
objekten. Dit is krekt wêr’t ús haadbydrage leit.

Yn Computer-aided design (CAD) wurde objekten normaal fertsjin-
twurdige as in regeling fan reguliere splinelappen. Dizze lappen passe
net strak byinoar, mar binne sa arranzjearre dat bepaalde dielen fan ’e
�akken ôfsnijd wurde wêr’t twa of mear �akken elkoar krúse. Dizze ge-
bieten binne problematysk, om’t meastentiids de krekte ôfsnijkromme
net bepaald wurde kin, allinnich mar by benadering. Dit liedt ta gat-
ten of oerlappende dielen yn it objekt. Troch de splinelappen te kon-
vertearjen yn Clough-Tocher-eleminten, kinne de orizjinele splinelap-
pen benadere wurde en wetterticht makke oan ’e rânen. Wy ferbetterje
dizze konvertearmetoade troch te soargjen dat sels de ynterfaasen kon-
tinu binne troch foarsichtich te wêzen mei de omstannichheden om ’e
rânekromme en de normale dêr en troch it brûken fan Shirman-Séquin-
makro-eleminten om ’e snijde dielen hinne. Foar dit doel binne noch
trije farianten betocht dy’t ferskille yn lokaliteit, benader- en �suelek-
waliteit.

B-splines binne in krêftige manier om �akken te fertsjintwurdigjen,
mar se binne oer ’t algemien allinnich de�nieare foar in regelmjittich
kontrôlenet. Wy stelle in generalisaasje foar fan ’e B-spline-konstruksje
dy’t unifoarme bi-graad B-splinelappen útwreidet nei bûtengewoane ge-
bieten. De konstruksje is in útwreiding fan ’e generalisearre Bézierrûnte
dy’t unifoarme basisfunksjes omfettet. Hjirfoar meitsje wy spesjale B-
spline lint�akken dy’t útwreide basisfunksjes brûke. Dit resultearret yn
glêde mearsidige lappen dy’t soepel rinne yn oare reguliere en mear-
sidige lappen. De lappen ferbetterje �sueel op ’e willekeurige graad ûn-
derferdielings�akken (Ingelsk: subdivision surfaces), mar yn guon kon-
�guraasjes kinne der wat defekten sichtber wêze, dy’t wy ferbetterje
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gearfetting

troch de basisfunksjes oan te passen. Wy litte ek sjen hoe mearsidige
lappen e�sjint werjûn wurde kinne troch de besteande trijehoekige en
fjouwerkante tessellatie piipline.

Gradientmesken binne primitiven fan fektorgra�ka dy’t de moog-
likheid hawwe om ôfbyldings op in detaillearre en skaalbere manier te
fertsjintwurdigjen. Tradysjoneel binne se de�niearre as fjouwerkante
mesken mei in rjochthoekige topology. Resint wurk hat sjen litten dat
dizze struktuer ek útwreide wurde kin nei polygonale mesken troch
ûnderferdielings�akken en generalisearre barysintryske koördinaten.
Wy meitsje twa ekstra formulearringen foar polygonale gradientmessen
basearre op generalisearre Gregory lappen. Dizze lappen binne oanpast
fan har orizjinele 3D -omjouwing nei de omjouwing fan glêde kleuryn-
terpolaasje. Wy fergelykje besteande en nije techniken op it gebiet fan
�suele kwaliteit, prestaasjes, kontinuiteit en oanpasberens. De Gregory
lappen ferbetterje besteande techniken yn termen fan werjeftesnelheid
en �suele kwaliteit.

De ekspressiviteit fan gradiëntmesken is beheind ta de kleuren
pleatst op ’e hoekpunten fan’e mesk. Wy kombinearje prosedurelerûs-
funksjes mei gradientmesken om rûsige gradiëntmesken te meitsjen.
Wy kombinearje trije ferskillende funksjes, Perlin, Worley, en Gabor-
rûs troch in dield parameterisaasjedomein. Wy meitsje ek parameters
dy’t de rûs lokaal en globaal beyn�oedzje troch se te spesi�searjen op
’e hoekpunten en de wearden te ynterpolearjen gelyk mei de geometry.
Untwerpers hawwe dan de mooglikheid om romtlik wikseljende rûspa-
troanen te meitsjen mei in tinferspriede mesk. Fierder litte wy sjen dat
ús oanpak ek wurket foar ferpleatsingstawizing (Ingelsk: displacement
mapping) fan reguliere �akmesken.

It konvertearjen fan rasterôfbylden nei fektorgrafykôfbylden is in
al lang besteand probleem. Besteande oplossingen binne noch net wi-
idferspraat fanwegen ferskate problemen lykas werjeftesnelheid, re-
produksjekwaliteit en it oanpasbarheid fan ’e fertsjintwurdiging. Wy
presinteare in fektorisaasjemetoade dy’t bestiet út trije stappen: ken-
merkekstraksje, meskgeneraasje en kleurfer�er. De ekstrahearde hurde
(rânen) en sêfte (skaad) ôfbyldingskenmerken wurde fektorisearre yn
splinekrommen, dy’t op har beurt brûkt wurde foar it generearjen
fan in kromme trijehoekig mesk. Kleur wurdt fertsjintwurdige troch
meskkleuren, in kompakte manier om tekstuer per-lap te beskriuwen
en in e�sjinte metoade foar it oerdragen fan de kleuren is betocht. De
kombinaasje fan trijehoekige lappen mei meskkleuren kin yn realtime
werjûn wurde op hardware fan konsuminten. Dit liedt ta in e�sjinte
fektorisaasjepipeline dy’t de mooglikheid hat om in ferskaat oan yn-
�erôfbylden te behanneljen, lykas tekeningen, ûntwerpen, skilderijen
en foto’s.
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S A M E N VAT T I N G

Mazen (Engels: meshes) zijn een krachtige manier om objecten en vor-
men in 2D en 3D vorm te geven. Tegenwoordig worden mazen vooral
gezien te bestaan uit driehoekige en vierkante elementen. Er zijn echter
ook nog restricties in de manieren waarop de verschillende elementen
kunnen worden gerangschikt, met andere woorden hun topologie. Zelfs
voor methoden van hogere ordes, zoals splines, is een reguliere topolo-
gie de norm. Het is vaak onvermijdelijk dat mazen met willekeurige to-
pologie bestaan uit extraordinaire hoekpunten, een hoekpunt omringd
met een willekeurig aantal vlakken, en/of extraordinaire vlakken, een
vlak met een willekeurig aantal kanten. Helaas is het niet mogelijk om
traditionele spline technieken direct te gebruiken op zulke topologieën.
Mazen van willekeurige topologie, en in het speciaal die van hogere
ordes, hebben interessante toepassingen in geometrisch ontwerpen en
(vector)gra�ek, en kunnen ontwerpers meer vrijheid geven in het ont-
werpen van complexe objecten. Dit is precies waar onze hoofdbijdrage
ligt.

In computerondersteund ontwerp worden objecten normaliter gere-
presenteerd als een arrangement van reguliere spline lappen. Deze lap-
pen passen niet goed op elkaar, maar zijn zo gearrangeerd dat bepaalde
delen van de vlakken worden afgesneden waar twee of meer vlakken
elkaar snijden. Deze gebieden zijn problematisch omdat gewoonlijk de
exacte afsnijdkromme niet kan worden vastgesteld, maar slechts kan
worden benaderd. Dit leidt tot gaten of overlappende delen in het ob-
ject. Door de spline lappen in Clough-Tocher elementen te converteren
kunnen de originele spline lappen worden benaderd en kunnen deze
waterdicht worden gemaakt bij de randen. Wij verbeteren deze conver-
siemethode door te zorgen dat zelfs de raakvlakken continu zijn door
voorzichtig met de condities rond de randkromme en de normaal daar
om te gaan en door het gebruik van Shirman-Séquin macro-elementen
rond de afgesneden gedeelten. Voor dit doel hebben wij nog eens drie
varianten die verschillen in lokaliteit, benader- en visuelekwaliteit.

B-splines zijn een krachtige manier om vlakken te representeren,
maar ze zijn in het algemeen alleen gede�nieerd voor een regulier con-
trolenet. Wij stellen een generalisatie voor van de B-spline-constructie
die uniforme bi-graad B-spline lappen uitbreidt tot extraordinaire gebie-
den. De constructie is een extensie van de gegeneraliseerde Bézierlap
die uniforme basisfuncties incorporeert. Hiervoor creëren we speciale
B-spline lintvlakken die uitgebreide basisfuncties gebruiken. Dit resul-
teert in gladde meerkantige lappen die soepel overlopen in andere regu-
liere of meerkantige lappen. De vlakken verbeteren visueel gezien op de
willekeurige graad onderverdeel vlakken (engels: subdivision surfaces),
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samenvatting

maar in sommige con�guraties kunnen er enkele defecten te zien zijn,
die we vere�enen door de basisfuncties aan te passen. We laten ook zien
hoe meerkantige lappen e�ciënt kunnen worden weergegeven door de
bestaande driehoekige en vierkante tessellatie-pijplijn te gebruiken.

Gradiëntenmazen zijn primitieven voor de vectorgra�ek die het ver-
mogen hebben om een afbeelding op een gedetailleerde en schaalbare
manier te representeren. Traditioneel zijn ze gede�nieerd als vierhoe-
kige mazen met een rechthoekige topologie. Recent werk heeft laten
zien dat deze structuur ook tot polygonalemazen kan worden uitgebreid
door middel van onderverdeelvlakken en gegeneraliseerde barycentri-
sche coördinaten. Wij creëren nog eens twee additionele formuleringen
voor polygonalegradiëntenmazen gebaseerd op gegeneraliseerde Gre-
gory lappen. Deze lappen zijn aangepast van hun originele 3D omge-
ving naar de omgeving van gladde kleurinterpolatie. We vergelijken de
bestaande en nieuwe technieken op het gebied van visuele kwaliteit,
prestatie, continuïteit en bewerkbaarheid. De Gregorylappen verbete-
ren op bestaande technieken op het gebied van weergavesnelheid en
visuele kwaliteit.

De expressiviteit van gradiëntenmazen is gelimiteerd tot de kleuren
die worden geplaatst op de hoekpunten van de maas. Wij combineren
procedureleruisfuncties met gradiëntenmazen om ruisige gradiënten-
mazen te creëren. We combineren drie verschillende functies, Perlin,
Worley, en Gabor ruis door middel van een gedeelde parametrisatie do-
mein. Tevens creëren we parameters die globaal en lokaal de ruis be-
ïnvloeden door deze te speci�ceren op de hoekpunten en de waarden
te interpoleren met de geometrie. Ontwerpers hebben dan de mogelijk-
heid om spatieel variërende ruis patronen te maken met een dunver-
spreide maas. Verder laten we zien dat onze aanpak ook werkt voor
verplaatsingstoewijzing (Engels: displacement mapping) en reguliere-
vlakmazen.

Het converteren van rasterafbeeldingen naar vectorgra�ekafbeeldin-
gen is een al lang bestaand probleem. Bestaande oplossingen zijn nog
niet wijdverbreid door verschillende problemen zoals weergavesnel-
heid, reproductiekwalitieit en de bewerkbaarheid van de representa-
tie. Wij presenteren een vectorisatiemethode die uit drie stappen be-
staat: kenmerkextractie, maasgeneratie en kleurenoverzetting. De ge-
ëxtraheerde harde (randen) en zachte (arcering) afbeeldingskenmerken
worden gevectoriseerd tot splinekrommen, die naderhand worden ge-
bruikt voor het genereren van een gebogen driehoekigemaas. Kleur
wordt gerepresenteerd door maaskleuren, een compacte manier om tex-
tuur de beschrijven op een per-lap basis en een e�ciënte methode om
de kleuren over te zetten is bedacht. De combinatie van driehoekige lap-
pen met maaskleuren kan worden weergegeven in echte tijd op consu-
mentenhardware. Dit leidt tot een e�ciënte vectorisatiepijpleiding die
het vermogen heeft om een verscheidenheid aan invoerafbeeldingen te
hanteren, zoals tekeningen, designs, schilderijen en foto’s.
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1I N T R O D U C T I O N

The mesh is a concept that is ubiquitous in computer graphics. The sim-
ple concept of connecting points in space to form edges and in turn to
connect the edges into loops to form faces is a simple means to represent
shape. A collection of connected faces conveys the shape of an object or
surface as a discretised set of simple (�at) surfaces. Although the de�ni-
tion of a mesh does not put any restrictions on the valency, the number
of edges or sides of a face, a mesh in computer graphics is commonly
understood to be either a collection of triangles or quadrilateral faces.
Naturally, there are good reasons for this.

The triangle is the simplest polygon one can create and render. Con-
nect any three points in space and a triangle will be the result. The
simplicity of this primitive has also seen its use in rendering, where
graphics hardware is optimised for rasterising many such triangles. For
this reason triangle-based meshes are primarily used in the gaming in-
dustry.

The quadrilateral does not in general generate a �at shape when con-
necting all four points, but it can be trivially triangulated (there are at
least two ways to do this) and rasterised afterwards. The main advan-
tage of using quadrilaterals to model surfaces is that it gives designers
intuitive control over the shape of the surface. The edge �ow of a mesh
is a topological property of a mesh where the main lines of curvature
can be easily inferred from the topology of the mesh, and is a handy
guide-line for designers to create nice surfaces. The use of quadrilateral
elements is also standard procedure in the animation industry. Here sub-
division surface algorithms such as Catmull-Clark subdivision [CC78]
are the standard and work best for quadrilateral based meshes.

Most spline de�nitions, like Bézier patches and B-splines surfaces, are
also given by triangular or quadrilateral elements. This poses restric-
tions in how meshes with such elements can be de�ned as the topology
has to adhere to certain conditions. Only a certain number of faces can
be constructed around a vertex or else they cannot be de�ned well or
be smoothly joined together at the vertex. Control point meshes that
contain extraordinary vertices, vertices with arbitrary valency, or ex-
traordinary faces, faces with any number of sides, cannot be handled
well. This poses restrictions on where these splines can be used and ap-
plied, or the way that designers interact with them. Using faces with an
arbitrary number of sides in meshes or spline surfaces is not commonly
done. Handling such elements comes with a few problems that can com-
plicate traditional rendering and processing pipelines. The rendering of
such faces is non-trivial. The faces could be triangulated, but there is a
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multitude of ways to do so. For many spline patches there is no gener-
alisation to meshes with arbitrary topology, a mesh with vertices with
any valency and faces with any number of sides.

The detail that a mesh can express is often times a function of the
number of vertices and faces of the mesh. For highly detailed objects it
is required that a lot of vertices are needed to convey a �ne amount of
detail. This complicates the way objects are designed as all those individ-
ual vertices have to be de�ned. In addition the density of the mesh cre-
ates a higher memory footprint, decreasing rendering performance and
increasing storage cost. The parametrisation of meshes allows to eval-
uate functions on the surface of the mesh. This allows for techniques
such as texture mapping, where an image or texture is mapped onto
a surface, or displacement mapping where the surface is perturbed ac-
cording to a displacement function.

Objects or scenes of objects can also be represented by their projec-
tion on a �at plane commonly known as an image. Digital raster images
are represented using a regular raster of pixels, or colour samples. The
�delity of the depicted objects is relative to the resolution, or number
of pixels, of the image. Vector graphics provides an alternative repre-
sentation of images, where it is built out of a collection of arbitrarily
placed geometrical entities. The mesh can also be applied in this setting,
where in addition to geometrically de�ning the object, it is also tasked
with providing a function describing the colour of the image. Again, the
same problems arise here. Dense triangular or quadrilateral meshes are
able to convey high-frequency image detail, but are hard to manipulate
e�ectively. Again, splines can bridge the gap here, where sparse meshes
can be created to model image regions. Splines are commonly used to
model geometry, but they just as well can be used to model colour or
colour surfaces. In any case meshes potentially provide a scale indepen-
dent way to model images.

There are thus restrictions and limitations that are inherent to using
meshes with only triangular or quadrilateral elements or splines with
only rectangular topology. This limits the freedoms and work�ows
designers can use to create objects using these elements. Or it can
complicate the downstream tasks that can be performed on such
meshes such as simulation and analysis. The use of arbitrary topology
meshes seems to o�er apparent advantages over traditional structures.
We thus want to answer the following question:

RQ1: How do arbitrary topology mesh structures aid, and improve
upon, the de�nition of objects in geometric design and vector graphics?

Transferring techniques from the original regular setting to arbi-
trary topology meshes is not easy. Arbitrary topology meshes contain
regions that complicate the de�nition of splines or create situations
where smoothness cannot be guaranteed. These regions, known as
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extraordinary regions, are areas of a mesh that contain extraordinary
vertices or extraordinary faces. In quad meshes, extraordinary vertices
are vertices with valencies other than four and extraordinary faces are
non-quadrilateral faces. The inclusion of such elements can be seen
to divide the mesh into several regular regions. Then extraordinary
vertices are the meeting place of several regular regions, meeting in
such a way that their parametrisations are incompatible. Extraordinary
faces can be surrounded by regular regions, but often times are built
out of extraordinary vertices themselves, complicating the situation
even further. These areas pose challenging problems to solve. We
summarise this in the following question:

RQ2: How can we adjust existing techniques to work in arbitrary
topology situations?

In their most basic form, meshes represent the surface of an object,
but the mesh can be used to do more than that. Traditional techniques
such as texture mapping or displacement mapping already allow the
evaluation of a texture function or displacement function, respectively.
However, the mesh structure could be used to store even more data
than just that. We therefore also ask ourselves:

RQ3: How can we use traditional mesh structures to generate complex
geometry or colour surfaces?

These research questions are answered by the following contribu-
tions.

1.1 contributions of this thesis

This thesis examines the use of arbitrary topology meshes in geometric
design and vector graphics. We examine ways in which existing spline
techniques can be used in combination with arbitrary topology meshes
to create smooth surfaces in di�erent settings. We tackle arbitrary topol-
ogy B-splines surfaces by creating multisided patches that can be �t into
otherwise regular surfaces whilst preserving smoothness. We also look
at arbitrary topology NURBS-based B-rep models that have been con-
verted to triangular spline surfaces, and devise means to connect them
smoothly. In addition, we look for the best ways in which colour can
be interpolated smoothly over �at polygonal meshes. We also examine
how ordinary surfaces or mesh representations can be augmented with
additional data so that complex geometry or colour surfaces can be gen-
erated. This is used to create a new vector graphics primitive that can ef-
�ciently vectorise images and that adds extra expressivity to traditional
gradient meshes.
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1.2 contents and structure

This thesis is divided into two parts, but is preceded by a preliminary
Chapter 2 which covers many of the building blocks and theory that
is common to the two parts of the thesis. Then in the �rst Part I, we
cover geometric design algorithms for arbitrary topology meshes. The
problems of this part of the thesis are introduced in Chapter 3. We then
cover the conversion of arbitrary topology B-rep CAD models into tan-
gent plane continuous triangular spline surfaces in Chapter 4. Then, in
Chapter 5, we show how to extend uniform bi-degree B-splines to span
patches over extraordinary regions in meshes.

In Part II, we look at how arbitrary topology and augmented meshes
can be used in vector graphics. First a brief introduction is given on vec-
tor graphics and vectorisation in Chapter 6. After which, we �rst look
at how procedural noise functions greatly increase the expressivity of
standard gradient meshes in Chapter 7. Then we explore di�erent forms,
existing and newly created, of polygonal gradient meshes in Chapter 8.
Lastly, we investigate an e�cient image vectorisation pipeline in Chap-
ter 9. Finally, the thesis is concluded in Chapter 10 and in addition a few
recommendations for future work are given.
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2P R E L I M I N A R I E S

In this chapter we set out and explain many of the building blocks, un-
derlying theory and algorithms used in the chapters throughout this
dissertation. The dissertation is split into two parts, but this does not
mean that there is no overlap in the used constructions. Both the vector
graphics and geometric design part make use of parametric curve and
surface techniques discussed here.

2.1 parametric curves and surfaces

At the core of many of the techniques used in this thesis are parametric
functions. A parametric function is a function

y = f (u),

where y ∈ Rn and u are parametric values in Rm . Special cases of these
are curves in 2D or 3D withm = 1 andn = 2,n = 3 respectively. Surfaces
are de�ned as m = 2 and n = 2 or n = 3. We will concern ourselves
mostly with surfaces in 3D and 2D.

A parametric curve is often represented as a combination of basis
functions Bi (t) and some vector valued coe�cients pi

c(t) =
n∑
i=0

Bi (t)pi .

The coe�cients pi are often called control values, or control points
when considering values in R2 and R3.

For surfaces we need at least two separate parameter variables. Still,
we can specify the surface as a combination of basis functions, now
parametrised by u or v , for example

S(u,v) =
n∑
i=0

n∑
j=0

pi jBi (u)Bj (v).

This last formulation is known as a tensor product surface. Through-
out this thesis we will use many di�erent forms of parametric surfaces
which are parametrised in various ways. The most common parametri-
sations will use the bilinear parametrisation u ∈ [0, 1] and v ∈ [0, 1] or
the barycentric parametrisation [u,v , 1−u−v], whereu+v+(1−u−v) = 1
and u,v ∈ [0, 1].
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C−1 C0 C1

Figure 2.1: Joining two curves, c0 and c1 with di�ering levels of continuity at c0(1)
and c1(0).

2.1.1 Parametric Continuity

When working with parametric functions to de�ne a curve or surface it
is often useful to talk about the continuity of the object as a whole. Usu-
ally, objects that are represented by parametric functions are made of
many individual curve pieces and surface pieces or patches. The pieces
are stitched together and collectively form the whole object. When say-
ing something about the global smoothness or continuity of the object
requires to examine the object at the sections where the pieces join to-
gether. Of less importance, but not irrelevant, is the continuity of the
pieces themselves. This is usually determined by the degree and smooth-
ness of the basis functions it consists of.

To give a sense of di�erent levels of continuity we will �rst examine
the univariate case, of curves, and then go on to surfaces. Given two
curves c0(t0) and c1(t1)with t0, t1 ∈ [0, 1]we want to join them together
at c0(1) and c1(0). We can de�ne the continuity Cd as follows

• C−1, discontinuous, the curves are not connected i.e. c0(1) , c1(0)

• C0, continuous, the curves are connected i.e. c0(1) = c1(0)

• C1, the �rst derivative is continuous i.e. ∂
∂u c0(1) = ∂

∂u c1(0) and
they are C0

• Cn , then-th derivative is also continuous i.e. ∂n

∂un c0(1) = ∂n

∂un c1(0)
and the curves are Cn−1

One must note that when two curves areCn continuous they are also
Cn−1 continuous. Using this notation we can make statements about the
continuity of a collection of curves as a whole.

As with the univariate case we can examine the continuity at a part
where the two surfaces are to be stitched together. However, in this case
we have to take into account that the patches can be continuous in mul-
tiple ways. We can distinguish two types of continuity: versal and trans-
versal. Versal continuity is ‘trivially’ satis�ed by making the common
side of the surfaces coincide positionally or better said make them C0

continuous. Consider two bilinearly parametrised surfaces Φa(u,v) and
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Figure 2.2: Three di�erent top curves that all connect with G1 continuity to the
bottom curve.

Φb (u,v). On the common boundary Γ(u), u ∈ [0, 1], of the two surfaces
Φa(u,v) and Φb (u,v) one can �nd the versal derivative ∂k

∂ku Γ(u) along
the boundary curve and the transversal, or cross-boundary, derivatives
∂k

∂kv Γa(u) on patch Φa(u,v) and ∂k

∂kv Γb (u) on patch Φb (u,v).

• C0, the patches are connected i.e. Φa(u, 0) = Φb (u, 0)

• C1, the �rst derivative is continuous i.e. ∂
∂vΦa(u, 0) = ∂

∂vΦb (u, 0)

• Ck , the k-th derivative is also continuous i.e. ∂k

∂uk Φa(u, 0) =
∂k

∂uk Φb (u, 0).

2.1.2 Geometric Continuity

Another useful class of continuity is geometric continuity commonly
denoted by the symbol Gk . This allows for connecting curves with-
out requiring that they are parametrically smooth, but only geometri-
cally. In other words it is a continuity class that is independent of the
parametrization. This means that curves can appear smooth, but when
travelling from one curve to another there can be a di�erence between
magnitudes of derivatives. However, when displaying curves it is often
not important how fast one travels along the curve as it is displayed in
one piece. Of course, the curves can also be made parametrically smooth
by reparametrising the curves, i.e. �nding another function f (t) that
makes a curve c(t)with geometric continuityGk parametrically smooth
by setting c(f (t)), i.e. increasing the speed of t increases the magnitude
of the derivative. It should be noted that the class of curves and surfaces
that are geometrically smooth contains the class of splines that is para-
metrically smooth, up to pathological cases with vanishing derivatives.
It is thus typically less restrictive. Figure 2.2 shows an example where
three sets of curves are all connected with G1 continuity. They are all
smooth, but connect slightly di�erently to the bottom curve.

Two curves are Gk continuous if there exists a regular parametrisa-
tion that such that they becomeCk continuous. Thus in the curves case,
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the derivatives di�er only in magnitude, but their direction is the same.
For surfaces, bilinearly parametrised Φa and Φb , a su�cient and neces-
sary condition forG1 continuity is the co-planarity of the three tangent
vectors ∂Γ(u), ∂Γa(u) and ∂Γb (u) along Γ(u), i.e.,

det(∂Γ(u), ∂Γa(u), ∂Γb (u)) = 0, u ∈ [0, 1].

This condition can be expressed in terms of scalar-valued functionsα(u),
β(u) and γ (u) such that

α(u)∂Γ(u) + β(u)∂Γa(u) + γ (u)∂Γb (u) = 0. (2.1)

Here, α , β and γ are functions that can aid in satisfying the conditions.
Intuitively this means that the derivatives are co-planar and that the
surfaces are tangent plane continuous. There exist ways to create con-
ditions for G2 continuity [Kah83], but we will mostly restrict ourselves
to G1 continuity in this thesis.

Naturally, the mathematical notation for continuity is convenient,
but there exist also other terms that convey the same meaning. Water-
tightness is another means to refer toC0 continuity. Surfaces and curves
are touching and should be able to hold a body of water. Tangent plane
continuity is another way of stating that the surface is at least G1 or
even C1 continuous.

We now detail the many parametric curves and surfaces that are used
throughout this thesis. We will start with Bézier curves and several of
the algorithms that can be applied to them and next to their extension
to surfaces and of their variants. Then we will look at B-splines and
their generalisations. Finally, we will detail generalised barycentric co-
ordinates and in particular highlight two of their forms which are used
throughout this thesis.

2.2 bézier curves

The Bézier curve is one of the fundamental building blocks of this thesis.
It returns in both the geometric design and vector graphics parts of this
thesis. They were �rst described by Pierre Bézier at Renault in the 1960s
as a means of describing in a mathematical way the body of cars. They
have since seen their use in many other areas and have subsequently
taken his name.

The Bézier curve is a degree d parametric curve of the form

B(t) =
d∑
i=0

Bdi (t)Pi , (2.2)

where t is a parameter value 0 ≤ t ≤ 1. Here, Pi are the control points
generally viewed as either points in R2 or R3. The collection of all con-
trol points are often denoted by drawing straight lines segments be-
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t

1

0 1

Figure 2.3: Left: cubic Bézier curve, with control polygon. Right: cubic Bernstein
polynomial functions.

tween them. This creates a polygon which is named the control polygon
of the curve. Bdi (t) are the Bernstein polynomials

Bdi (t) =

(
d

i

)
(1 − t)d−it i . (2.3)

The Bernstein polynomials are powerful basis functions and allow
smooth blending of the control points. Figure 2.3, right, shows the four
basis functions associated with a cubic Bézier curve. The basis func-
tions partition unity, i.e.

∑d
i=0 B

d
i (t) = 1; this makes the curves a�ne

invariant. A Bernstein polynomial of degree d can be written as a linear
combination of polynomials of degree d − 1

Bdi−1 =
d − 1 − i
d − 1

Bd−1
i (t) +

i + 1
d − 1

Bd−1
i+1 (t).

Similarly, the derivative can be written as the di�erence between two
lower degree polynomials

∂

∂t
Bdi−1(t) = d(B

d−1
i (t) − B

d−1
i+1 (t)).

In Figure 2.3 we show both a cubic Bézier curve in R2 and the asso-
ciated Bernstein polynomials.

Bézier curves interpolate the �rst P0 and last control point Pd , in addi-
tion the curve will always be tangent to the line segment connecting the
�rst and second control point and the ultimate and penultimate control
point. This allows them to be used to approximate general functions,
by sampling function values and derivatives and provides an intuitive
means for designers to shape the curves in whatever way they want.

2.2.1 Derivatives and Continuity

The way Bézier curves can be joined together can be determined
by looking at their derivatives. A degree d Bézier curve has a �rst-
derivative of the form

∂

∂t
Bd (t) = d

d−1∑
i=0

Bd−1
i (t)(Pi+1 − Pi ). (2.4)

9



preliminaries

This means that the derivative of a degree d Bézier curve is yet another
Bézier curve of which the degree is naturally d − 1 and the control
points are the scaled di�erences between subsequent control points of
the initial curve. The derivatives are thus only dependent on the control
polygon of each curve. Therefore, assuring continuity amongst Bézier
curves involves the process of determining positions of control points
so that continuity conditions are satis�ed. We examine the conditions
between two degree d curves b0(t) and b1(t)with control points Qi and
Ri respectively.

• C0 continuity requires that the end point of C1 must be equal to
the begin point of C2 i.e. Qd = R0.

• C1 continuity requires that �rst derivatives match i.e.Qd−Qd−1 =

R1 − R0

• C2 continuity requires that second derivatives match i.e. Qd −

2Qd−1 + Qd−2 = R0 − 2R1 + R2

• Ck continuity requires that k-th derivatives match i.e.∑k
i=0(−1)i

(k
i

)
Qd−i =

∑k
i=0(−1)i

(k
i

)
Ri .

It is easy to smoothly join a Bézier curve to an existing curve by pro-
gressively assuring higher order continuity conditions starting from the
C0 condition. However, joining a curve in between two other curves
requires a separation of control points. This is because the continuity
conditions at start and endpoint might be con�icting. In these cases a
linear curve is enough forC0 continuity and a cubic curve is enough for
C1. For joining a curve with Ck continuity to two prescribed curves in
general a curve of degree 2k + 1 is needed.

Naturally, we can also join Bézier curves with geometric continuity.
The �rst notable example of this is G1 continuity, as G0 also entails
continuity in position. Consider again two curves b0(t) and b1(t) and
their associated control points. We can join them with G1 continuity
by requiring that (Qd − Qd−1) = α(R1 − R0), where α > 0. This also
reveals why the geometry of the curves is smooth, even though they
are not parametrically smooth. As shown before the tangent vectors
at endpoints of Bézier curves are determined by the �rst two and last
two control points. In this case the tangents vectors at the start and end
points are in the same direction, but they only di�er by a scaling factor
α .

2.2.2 Degree Elevation

Using the property of the Bernstein polynomials that a lower degree
polynomial can be expressed as linear combination of higher degree
polynomials allows also to express a lower degree Bézier curve as a
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Figure 2.4: The same exact Bézier curve expressed as cubic (white control points),
quartic (red control points) and quintic curve (blue control points).

higher degree one. Consider a Bézier curve with degree d and control
points Pi which we want to degree elevate to degree d +1. This reduces
to �nding linear combinations of control points

Qi =
i

d + 1
Pi−1 +

d + 1 − i
d + 1

Pi ,

where 0 < i ≤ d . The degree elevation property is often useful as it al-
lows for expressing a curve with additional control points. For instance
we can degree elevate a cubic curve to quartic, adding an extra control
point in the middle of the control polygon, which can be freely manip-
ulated without ruining the G1 continuity conditions at the end points
of the curve. In Figure 2.4 we show the e�ect of degree elevating a cu-
bic curve to several higher degree curves. As can be seen the control
polygon changes, but the curve does not.

2.2.3 Splitting

Bézier curves can have any degree and this in turn increases the number
of control points, and in some sense the expressiveness of the curves.
However, the e�ect that changing the positions of these control points
(save for the �rst and last) is not major, especially when considering
higher degree curves. To get more control over the shape of the Bézier
curve it is often better to split the curve so that it becomes a composite
curve or spline. Then changing the control points of the spline directly
has a much more direct e�ect on the shape of the curve than it would
when changing a control point of a higher degree curve.

Figure 2.5: Evaluation of a Bézier curve using De Casteljau’s algorithm. The inter-
mediate points generated also constitute two cubic Bézier curves that
join together with G∞ continuity.
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The splitting of the Bézier curve follows the process of de Casteljau’s
algorithm. This algorithm is another, numerically stable, way to evalu-
ate Bézier curves and was developed by Paul de Casteljau at Citroën in
1959 [dC59]. The process is quite simple and elegant. Given a parame-
ter t and a control polygon with control points Pi , i ∈ 0, . . . ,d it can be
formalised as the following recurrence iteration

P0
i = Pi , i = 1, . . .d

Pji = (1 − t)P
j−1
i + tPj−1

i+1 , i = 1, . . .d − j, j = 0, . . . ,d

After d iterations of this recurrence the point Pd0 will be the point
on the curve at parameter value t . Figure 2.5 shows the evaluation of a
Bézier curve and the intermediate points that are generated.

The intermediate points generated during the recurrence are not
without meaning and a subset of these can actually be used as control
points of two curves c0(t0) and c1(t1) which cover the domains [0, t]
and [t , 1] of the original curve respectively. The curves have control
points P0

0, . . . , Pd0 and Pd0 , . . . , P0
d respectively. The curves connect with

G∞ continuity and can be reparametrised to have C∞ continuity.

2.3 bézier surfaces

Bézier curves can be generalised to surfaces and inherit some of their
favourable properties. Like the curves, surfaces consist of a combination
of control nets of control points and associated basis functions, which
are combinations of Bernstein polynomials. There are many variations
of the Bézier surface, all of which share the use of the Bernstein-basis
and control points.

Figure 2.6: The control net of a bicubic Bézier patch (left) and the control net of a
cubic triangular Bézier patch (right).
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2.3.1 Quadrilateral Bézier Patches

The simplest type of Bézier surface is the quadrilateral Bézier patch,
which is also known as the tensor-product Bézier patch. Like the Bézier
curve it possesses a simple control structure of control points, but this
time it is not a control polygon but rather a grid of points Pi ,j which
is known as the control net. Figure 2.6, left, shows the control net of
a bicubic Bézier patch. It is parametrised bilinearly by two parameters
u ∈ [0, 1] and v ∈ [0, 1] that are used with the Bernstein polynomials
Bni (t). The de�nition of the patch is

Bn,m(u,v) =
n∑
i=0

m∑
i=0

Bni (u)B
m
j (v)Pi ,j . (2.5)

The equation can be interpreted in various ways. First it can be in-
terpreted as evaluatingm degree n Bézier curves in the u direction and
subsequently using the evaluated points as control points of a degreem
Bézier curve in thev directions. Like the Bézier curve it can also be eval-
uated through De Casteljau’s algorithm by taking linear combinations
of four control points at a time. The combination of Bernstein polynomi-
als in the u and v direction can be seen as assigning a special combined
basis function per control point. Like the Bézier curve it passes through
some of the control points, in this case the four control points at the
corners. The boundaries of the patches are Bézier curves.

2.3.2 Triangular Bézier Patches

Another generalisation from curves to surfaces can be achieved by us-
ing barycentric coordinates and triangular control nets. Barycentric co-
ordinates are coordinates u,v , andw , here u +v +w = 1, u,v ,w ∈ [0, 1].
Then a degree d Bézier triangle is de�ned as

Bd (u,v ,w) =
∑

i+j+k=d ,i ,j ,k≥0
Bdi jkPi jk ,

where Bdi ,j ,k (u,v ,w) =
( d
i ,j ,k

)
uiv jwk are the multinomial expansion

of the Bernstein polynomials using barycentric coordinates. Like the
quadrilateral version, the boundaries of the patch are Bézier curves,
and the patch passes through the three corner vertices. Figure 2.6, right,
shows the control net of a cubic triangular Bézier patch.

Like Bézier curves, Bézier patches can be degree elevated by generat-
ing the control points for a higher degree patch

Qi =
1

n − 1
(i0Pi+e0 + i1Pi+e1 + i2Pi+e2 ).

Here i is a multi index i , j,k and ei are unit vectors along the i-th di-
mension. Then, the patch can be expressed using the degree elevated
control points and basis functions
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a3vi+1

Φb Φa

Figure 2.7: A schematic view of the boundary conditions between the basis patch
Φb and the actual patch Φa . The points created by the method of
Chiyokura are depicted in red.

∑
i+j+k=d ,i ,j ,k≥0

Bdi jkPi jk =
∑

r+s+t=(d+1),r ,s ,t ≥0

Bd+1
r st Qr st .

2.3.3 The Method of Chiyokura and Kimura

The method of Chiyokura and Kimura [CK83] joins two Bézier patches
smoothly by ensuring G1 continuity at shared edges by taking into ac-
count only shared positional and normal data. The method is applied to
the common cubic boundary curve of two adjacent Bézier patches. Each
boundary curve is de�ned by a control polygon, which can be used to
determine positions of the inner control points of a patch.

Equation 2.1 is used to determine control points so that a cubic patch
can be joined smoothly to an auxiliary patch known as a basis patch.
Consider the situation depicted in Figure 2.7, where an actual patch Φa
is connected to a basis patch Φb . Vectors ci constitute the edges of the
cubic control polygon on the common boundary, and ai and bi belong
to Φa and Φb , respectively. a0 and a3 are unit vectors orthogonal to c0
and c2, respectively, and lie in the tangent plane of the normal de�ned
at the vertices vi and vi+1, respectively. In case of the actual patch being
triangular, the �rst row of control points from the boundary are quartic
control points obtained by degree elevation. Equation 2.1 is then rewrit-
ten in terms of scalar functions k(u) and h(u):

∂

∂v
Γa(u) = k(u)

∂

∂v
Γb (u) + h(u)

∂

∂u
Γ(u),

so that the actual patch is joined with G1 continuity to the basis patch.
To solve this equation, �rst express a0 and a3 as

a0 = k0b0 + h0c0, a3 = k1b3 + h1c2, k0,k1,h0,h1 ∈ R,

and set

k(u) = (1 − u)k0 + uk1, h(u) = (1 − u)h0 + uh1.
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It is then assumed that ∂Γb (u) on the basis patch is only quadratic and
that vectors b1 and b2 can be determined by linear interpolation b1 =
2
3b0 +

1
3b3, b2 =

1
3b0 +

2
3b3. Finally, vectors a1 and a2 can be determined

as

a1 = (k1−k0)
b0

3
+k0b1+2h0

c1

3
+h1

c0

3
, a2 = k1b2−(k1−k0)

b3

3
+h0

c2

3
+2h1

c1

3
.

The connection to a basis patch can be done without having explicit
knowledge of all control points of adjacent patches; the construction
relies only on data from the common boundary. The method is applied
to both sides of the boundary individually such that there are two basis
patches, one on either side of the boundary. The control points deter-
mined for the actual patches are positioned in such a way that the actual
patches join withG1 continuity with the adjacent basis patches. The ba-
sis patches themselves join each other withC1 continuity and therefore
the actual patches join each other with G1 continuity, as desired.

2.3.4 Gregory Patches

The Gregory patch is a generalisation of Gregory’s ideas [Gre74] to ten-
sor product Bézier surfaces [Chi86]. Consider the control point layout
of Figure 2.8, left. The method of Chiyokura and Kimura is applied to
all four boundary edges to obtain 8 inner control points (shown in red),
one pair per corner. Here, each pair of control points (possibly) denotes a
di�erent twist vector. This is known as the twist compatibility problem
and rational blending functions can be used to solve it. The functions
blend the four pairs of inner control points so that they are interpolated
along straight line segments. In particular,

b11,v0
b11,u0

b22,u1

b22,v1
b21,u1b21,u0

b12,u1
b12,v0

b211,uv

b211,uw

b121,uv b121,vw

b112,vw
b112,uw

Figure 2.8: The control net of a quadrilateral Gregory patch (left) and the control
net of a triangular Gregory patch (right). The diamonds are quartic con-
trol points obtained by degree elevating cubic control points. Red points
are the inner control points as constructed by the method of Chiyokura
and Kimura.
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b11 =
vb11,u0 + ub11,v0

u +v
, b21 =

(1 −v)b21,u0 + ub21,v1

(1 −v) + u
,

b12 =
vb12,u1 + (1 − u)b12,v0

v + (1 − u)
, b22 =

(1 −v)b11,u0 + (1 − u)b11,v0

(1 − u) + (1 −v)
.

These blending functions are designed such that the blended control
points are in the correct position when the patch is evaluated on an
edge and thus the correct cross-boundary derivative is maintained.

The same ideas can be extended also to triangular Bézier patches
[Lon85] such that a triangular Gregory patch is constructed. Consider
the layout in Figure 2.8, right, of a triangle with cubic boundary curves,
and the 6 points (shown in red) generated by using the method on
the boundary curves after degree elevation from cubic to quartic. The
degree elevation step is required to match the cubic cross-boundary
derivative, corresponding to a quartic triangular Bézier patch, con-
structed by the method. These points describe the three inner con-
trol points of a quartic Bézier triangle. Again, pairs of these points are
blended rationally:

b211 =
(1 −w)vb211,uv + (1 −v)wb211,uw

(1 −w)v + (1 −v)w
,

b121 =
(1 −w)ub121,uv + (1 − u)wb121,vw

(1 −w)u + (1 − u)w
,

b112 =
(1 − u)vb112,vw + (1 −v)ub112,uw

(1 − u)v + (1 −v)u
.

Both techniques contain simple singularities in the parametrisation
at the vertices, but they can easily be handled by analysing the param-
eter values.

2.3.5 Generalised Bézier Patches

Generalised Bézier patches [VSK16], or GB patches, are multisided
control structures that combine trans�nite and control-point-oriented
structures. Generalised barycentric coordinates (see Section 2.5) are
used to de�ne local parameters and blending functions. The resulting
patches and structure are loosely similar to tensor product Bézier sur-
faces and they inherit many of their properties.

The patch is a combination of n Bézier ribbons. On each side of the
patch a degree d Bézier ribbon is de�ned by taking into account l rows
of d +1 control points with l = (d +1) mod 2. For each ribbon, bivariate
tensor-product Bernstein polynomials are used:

Sdi (si ,hi ) =
d∑
j=0

l∑
k=0

µijkb
i
jkB

d
jk (si )B

d
jk (hi ).
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i

i − 1

i + 1

bi01

bi00
bi10

bi20

bi11
bi21

bi30

bi31 i

i − 1

i + 1

bi01

bi00
bi10

bi20

bi11

bi−1
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bi21 b
i+1
11

bi30

bi31

Figure 2.9: The control net of a cubic generalised Bézier patch. The labelling of
the control points corresponding to one side is given, the rest is labelled
analogously.

For ribbon i of a patch, which corresponds to the edge spanned from
vertex vi−1 to vi , local parameter functions can be de�ned using gener-
alised barycentric coordinates ϕ:

si =
ϕi

ϕi + ϕi−1
, hi = 1 − ϕi − ϕi−1,

where si is known as the side parameter and hi as the distance param-
eter. They are constructed so that they have the same behaviour as or-
dinary bilinear coordinates. si varies from 0 to 1 on side i , and hi is 0
exactly on side i but increases on the interior of a patch and linearly on
sides i + 1 and i − 1. bijk are the control points as oriented from side i .
The labelling of control points of a single ribbon is given in Figure 2.9.
The control points of the remaining sides are labelled analogously and
control points in the corners are shared between ribbons. µijk is a scalar
function that serves the purpose of assuring locality of the in�uence
of each side, as well as blending control points which are shared by
multiple sides such that they are weighted by a linear combination of
Bernstein polynomials. It is de�ned for d ≤ 3 as

µijk =


hi−1

hi+hi−1
j < 2

1 2 ≤ j ≤ d − 1
hi+1

hi+hi+1
j > d − 1

. (2.6)

For higher degrees, these functions have to deal with certain other con-
straints [VSK16].

Adding all contributions results in a patch de�nition that is not nec-
essarily a�ne invariant, meaning that the weighted Bernstein polyno-
mials of all the sides may not sum to unity. This can be easily �xed by
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Figure 2.10: A simple 2× 2 gradient mesh smoothly interpolating colours and gra-
dients de�ned at the vertices vi j of the mesh. Gradient handles are de-
noted by line segments emanating from their corresponding vertices,
which are denoted as white circles.

augmenting the patch structure with another central control point C
and its associated blending function

Bd0 = 1 −
n∑
i=1

l∑
k=1

d∑
j=0

µijkB
d
jk (si )B

d
jk (hi ).

2.3.5.1 Generalised Gregory Patches

The Gregory generalised Bézier patch [HK18] or generalised Gregory
patch is a simple extension of the ordinary GB patch that generalises
the quadrilateral Gregory patch (Section 2.3.4). The boundary curves
and ribbons are given as cubic Bézier curves and surfaces, respectively.
It removes the need for twist-compatibility of the adjacent Bézier rib-
bons within a patch such that the patches can join with tangent-plane
(G1) continuity around a vertex with any valency. It does so by removing
the requirement that adjacent tangent ribbons explicitly share their in-
ner control points in the �rst row from the boundary. By allowing this,
the patches are able to express di�erent twist vectors at the vertices,
and the blending functions µijk then ensure that the control points in
patch corners are blended much like the rational blending found in the
original quadrilateral version of the Gregory patch [CK83].

2.3.6 Gradient Meshes

The gradient mesh primitive is a vector graphics primitive which is
used to smoothly interpolate colours de�ned at the vertices of a regular
quadrilateral mesh. Gradient handles de�ned at vertices can be used to
distort the boundary curves of each of the patches of the mesh into the

18



2.4 b-splines curves and surfaces

desired shape. Since colour is interpolated along with the geometry, the
gradient handles dictate the spread of colour inside the patches.

Traditionally, a Ferguson patch [Fer64] is the underlying geometric
primitive used for a gradient mesh. However, since it is a bicubic patch
we can also represent each (quadrilateral) patch as a bicubic Bézier
patch instead; see [BLHK18] for an in-depth discussion. The vertices
vi j are de�ned as the quintuple (x ,y, r ,д,b), where the �rst two com-
ponents represent position, and the last three control its (RGB) colour.
The edges of each patch are given by cubic Bézier curves. In the case of
the Bézier patch, the gradient handles and the inner control points in-
herit the colour value (r ,д,b) of the logically closest vertex. In this way,
colour is interpolated along with the geometry, and, most importantly,
the interpolated colour values will not traverse out of the colour gamut.
A simple gradient mesh consisting of 4 patches interpolating colours
and gradients is shown in Figure 2.10.

2.4 b-splines curves and surfaces

B-splines refer to a family of piecewise polynomial functions. A B-spline
is a function consisting of multiple polynomial pieces that join each
other at knots. Although constructed out of multiple pieces the func-
tions are very smooth. A degree d B-spline is in general d − 1 smooth.
The use of B-splines in parametric functions creates a very powerful
means to de�ne curves and surfaces. The high smoothness of the ba-
sis functions creates parametric representations that are just as smooth.
Like the Bézier variants, they are de�ned in terms of control points and
basis functions.

The B-spline basis functions can be constructed using the following
recurrence relation [Cox72]

Bi ,0(t) =


1 ti ≤ t ≤ ti+1

0 otherwise

Bi ,k (t) =
t − ti

ti+k − ti
Bi ,k−1(t) +

(
1 −

t − ti+1

ti+1+k − ti+1

)
Bi+1,k−1(t),

where ti are the knot values which determine the foot points of the
basis functions and [t0, . . . , tn] is the knot sequence. In this thesis we use
mostly uniform knot sequences where B-splines are considered. When
the relative spacing between knots is irregular the B-splines are known
as non-uniform B-splines. Uniform B-splines have knot vectors with
equidistant nodes and for brevity we omit the speci�cation of them from
now on.

Looking at function B0,d we have de�ned a single B-spline function or
basis function. Other functions like B1,d are simply shifted copies of the
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same function. Figure 2.11, left, shows di�erent degree B-spline basis
functions on the unit interval. As can be seen the support of the func-
tions increases with the degree. The basis functions have some useful
properties

• A degree d basis function has d − 1 vanishing derivatives at the
ends of their support.

• A degree d basis function can be decomposed into d + 1 polyno-
mial pieces.

• A degree d basis function has Cd−1 continuity at non-multiple
knots tj .

• The functions partition unity everywhere on a knot span [tj , tj+1].

A B-spline curve is de�ned by blending many kernels, which are at-
tached to control points, together. Consider the control points P0, . . . Pn .
We can attach a B-spline basis function Bi ,d (t) to each of the control
points Pi to de�ne the curve

Cd (t) =
n∑
i=0

Bi ,d (t)Pi ,

where t ∈ [0,n]. From the properties of the B-spline basis functions we
can �nd that the curve has the following properties

• The curve is piecewise smooth polynomial and Cd−1 at knots ti .

• The curve lies in the convex hull of all Pi .

• Control point Pi has in�uence on the spline at interval [ti , ti+d ].

Like the Bézier curve, the B-spline curve has a simple de�nition us-
ing only basis functions and control points. The di�erence between the
Bézier curve and a B-spline curve is that it does not in general inter-
polate any of the control points. Still it remains intuitive to manipulate
the curve through manipulation of the control points. B-spline curves
require less control points to de�ne a much smoother curve, but do not
provide intuitive control over tangents. The control points only locally
in�uence the shape of the curve as determined by the degree of the basis
functions, whereas adjusting control points of a Bézier curve in�uences
the whole curve, up until the endpoints.

A tensor product surface can also be created using B-spline basis func-
tions

S(u,v) =
n∑
i=0

m∑
j=0

Bi ,d (u)Bj ,d (v)Pi ,j .

This allows for de�ning smooth surfaces through a grid of control
points, which inherit the properties from the B-spline curves.
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Figure 2.11: From top to bottom, the constant, linear, quadratic and cubic B-splines.
Left: B-spline basis functions, right B-spline curves constructed with
their respective basis functions using the same control polygon.

2.4.1 Subdivision Surfaces

Subdivision curves and surfaces are generated by an iterative re�ne-
ment process that creates a smooth surface from an initial coarse poly-
gon or polyhedron. They provide an alternative means to evaluate B-
spline surfaces, but generalise them also to surfaces of arbitrary topol-
ogy, meaning that they are able to generate surfaces from control
meshes that contain extraordinary faces and extraordinary vertices. The
structure of subdivision algorithms, the process of generating a surface
from an initial control mesh, is derived from the knot insertion algo-
rithm for B-splines. The knot insertion algorithm shows how to insert
new control points in the control polygon or mesh without changing the
actual curve or surface that it generates. The relations between newly
generated points and existing points can then be generalised to encom-
pass situations wherein the control mesh is not regular. This is the place
where subdivision surfaces truly shine, as they are capable of generat-
ing smooth surfaces in these areas.

Doo and Sabin [DS78] provided one of the �rst of such schemes that
generalised biquadratic B-splines to surfaces of arbitrary topology. In
the same year also a generalisation of bicubic B-splines was created
by Catmull and Clark [CC78], which we detail in the next subsection.
Both these techniques generalise from quadrilateral elements to arbi-
trary topology, but it can also be done for triangular based B-splines.
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Figure 2.12: Three steps of Catmull-Clark subdivision applied to an arbitrary
topology object containing both extraordinary faces (pentagons) and
extraordinary vertices (vertices of valency 3).

Loop-subdivision [Loo87] generalises quartic box-splines [DBHR93] to
arbitrary triangular meshes.

2.4.1.1 Catmull-Clark

Catmull-Clark subdivision is arguably one of the most famous and
widely used subdivision surface algorithms. It has been the standard
of the animation industry [DKT98] for displaying high quality surfaces
that can be easily animated. Catmull-Clark subdivision generalizes uni-
form cubic B-splines to surfaces of arbitrary topology. The evaluation
of the subdivision surface is done through a simple recursive algorithm

• Face points fi are inserted as the centroids of the faces.

• Edge points ei are inserted as the average of the midpoints of the
edge and the average of the two adjacent face points.

• Existing vertex vi points are updated to be F+2E+(n−3)vi
n , where

F and E are the average of all n face points and n edge points,
respectively, surrounding the vertex.

In the limit this process will converge to a smooth surface. The pro-
cess of four subdivision steps is shown in Figure 2.12. For regular re-
gions this reproduces uniform cubic B-splines and is C2 continuous. In
irregular regions the surface will beG1 at extraordinary points. The pro-
cess of subdivision is a global process, but there are means to speed it up
by evaluating the regular regions as bicubic B-spline surfaces and the
approximating the irregular regions with bicubic Bézier patches [LS08a]
or Gregory patches [LSNC09].

2.4.1.2 Arbitrary Degree Subdivision

Catmull-Clark subdivision generalises only uniform cubic B-splines.
The generalisation of arbitrary degree subdivision surfaces to arbitrary
topology can be achieved by restating the subdivision surfaces in terms
of a Lane-Riesenfeld split-averaging scheme [LR80].

For surfaces the split operation is generalised into linear subdivision,
edges and faces are split at their midpoints and connected and the dual
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Figure 2.13: The arbitrary degree subdivision process. The original cube (left) is
linearly subdivided (middle) and subsequently, either the dual is com-
puted (right top) to obtain a quadratic subdivision steps from which
higher degrees can be obtained by more applications of the even
smoothing step, or the linear subdivision is twice odd smoothed (right
bottom) to result in a cubic subdivision step.

mesh operation, whereby the centroid is created for each face and new
faces are created by connecting all centroids surrounding original ver-
tices, serves as an averaging step. By applying the linear subdivision
step followed by d − 1 dual mesh operations, any d degree B-spline
surface can be reproduced and applied to regions or arbitrary topology
[ZS01]. This iterative process works, but can be simpli�ed computation-
ally as the dual mesh operation is quite a heavy operation, due to the
changes in topology.

Therefore, Stam [Sta01] simpli�ed the averaging operation by cre-
ating an odd smooth and even smooth steps that do not topologically
change the current mesh. The odd smooth step updates positions by
a weighted average of surrounding vertex positions, that in the regu-
lar case reproduces B-spline stencils. Odd-degree B-spline surfaces then
are reproduced by one linear subdivision step followed by (d −1)/2 odd
smoothing steps. The even smooth step replaces each vertex position
with the average of the surrounding face centroids. Then even degree
subdivision surfaces are reproduced by a linear subdivision step and a
dual mesh operation followed by (d − 2)/2 even smoothing steps. This
means that Doo-Sabin subdivision is already reproduced after the lin-
ear and dual mesh operations. Figure 2.13 shows the steps involved in
arbitrary degree subdivision for both the odd-degree and even-degree
situations.

2.5 generalised barycentric coordinates

Parametrisation is useful for many di�erent tasks. It allows you to de-
�ne functions over domains or to interpolate values over regions. Trian-
gular elements are easily parametrised by barycentric coordinates, and
for quadrilateral elements a bilinear coordinate system su�ces. This
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parametrisation su�ces to interpolate between three or four samples,
such as over triangles or quadrilaterals. For polygons with more ver-
tices than three or four, there exists the option to subdivide the face
into triangular or quadrilateral elements, but this complicates the prob-
lem of smoothly interpolating over the original polygonal domain. The
generalisation of barycentric coordinates to polygons of any valency
provides a better mechanism to do this.

A generalised barycentric coordinate system provides a way to ex-
press a point on a planar polygon as a weighted combination of the poly-
gon’s vertices. Consider a planar polygonω with vertices vi , i = 1, . . . ,n
and a point p on ω, see Figure 2.14. Then barycentric coordinate func-
tions ϕi (or ϕi (p)) can be determined such that they have the following
properties.

• Non-negativity: ϕi ≥ 0

• Partition of unity:
∑n

i=1 ϕi = 1

• Linear reproduction:
∑n

i=1 ϕi (p)vi = p

• Lagrange property: ϕi (vj ) = δi j , where δi j is the Kronecker delta.

• Linearity on the boundary: ϕi = 1 − ϕi+1 on vivi+1

In the rest of the thesis we will denote with ϕ the vector(
ϕ1, . . . , ϕn

)
of generalised barycentric coordinates. For triangles

the coordinates are uniquely de�ned. This does not hold for polygons
with higher valencies, leading to multiple ways of computing gener-
alised barycentric coordinates from a point in the polygon. In this the-
sis we use two well known forms of generalised barycentric coordinates,
Wachspress coordinates and mean value coordinates.

2.5.1 Wachspress Coordinates

Wachspress coordinates were developed by Wachspress [Wac75] and
were arguably the very �rst form of generalised barycentric coordi-
nates. Wachspress coordinates are de�ned using signed triangle areas
constructed from p and three subsequent vertices

ϕi =
wi (p)∑
j w j (p)

, (2.7)

where wi (p) is de�ned as:

wi (p) =
A(vi−1, vi , vi+1)

A(vi−1, vi , p)A(vi+1, vi , p)
, (2.8)
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vi−1 vi

vi+1

p

αi−1
αi

Figure 2.14: The di�erent triangles constructed with respect to p and vi on a sector
of a polygon.

Figure 2.15: The isolines for ϕ1 = j/10, j = 1, . . . , 10 on a regular pentagon,
hexagon and heptagon. The top row shows Wachspress coordinates
and the bottom row mean value coordinates.

where A(vi , vj , vk ) describes the signed area of the triangle vivjvk . It
can be seen in Figure 2.14 how the di�erent triangle areas are con-
structed. Thewi are normalised to obtain the �nal generalised barycen-
tric coordinates. The coordinates have limited use because they only
work well for convex polygons. However, as we shall see in the rest
of this thesis most arbitrary polygons, even those in 3D, can be e�ec-
tively parametrised using an equivalent regular domain. For this pur-
pose Wachspress coordinates are very e�ective as they can be computed
very e�ciently.

2.5.2 Mean value coordinates

Mean value coordinates were developed by Floater [Flo03]. They are
well de�ned for a wide range of polygon shapes, most notably for poly-
gons which are not convex [HF06]. Mean value coordinates are also con-
structed from three consecutive vertices of the polygon. The weights
per vertex are this time calculated with:
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Figure 2.16: The isolines for ϕi = j/10, j = 1, . . . , 10 on a non-convex octagon for
vertices vi

wi =
tan(αi/2) + tan(αi−1/2)

‖p − vi ‖
, (2.9)

where αi and αi−1 are the angles as shown in Figure 2.14. The weight of
the vertex is then dependent on the angle between the point relative to
the polygon vertices. The advantage over Wachspres coordinates is that
mean value coordinates are well de�ned outside the polygon and they
are even smooth over polygon edges, but not at vertices. However, non-
convexity of the polygon means that some of the coordinate functions
ϕi might become negative. Figure 2.16 shows several of the isolines of
the coordinate functions of the vertices of a non-convex octagonal poly-
gon.

2.6 conclusion

Some of the techniques described in this chapter are still only de�ned
for triangular or quadrilateral elements, like gradient meshes or B-
spline surfaces, with only regular topology. In these cases we are unable
to use them with arbitrary topology meshes as they are either not able to
be smoothly de�ned or cannot even be de�ned at all. Many of such tech-
niques can be extended to work as multisided versions through the use
of generalised barycentric coordinates. In this thesis we will show how
we can extend the gradient mesh from a quadrilateral rectangular topol-
ogy into a polygonal arbitrary topology. Likewise B-spline surfaces are
extended so that they can be spanned over extraordinary regions.

26



Part I

Geometric Design
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3I N T R O D U C T I O N

Geometric design or modelling is the study of how shapes can be de-
�ned mathematically. There are many ways to de�ne a three dimen-
sional shape or object. The most basic way to de�ne an object is through
point clouds (Figure 3.1, top left). A collection of individual points in
space, that when viewed as a whole convey an object. There is no ap-
parent relation between the points, but the overall object could be easily
determined by human inference when viewed from the right perspec-
tive. The shape of the object is not well represented as it is represented
discontinuously (C−1).

The concept of images can be extended to higher dimensions to ob-
tain a voxel-based representation of shapes (Figure 3.1, top right). Like
the pixel variant, a voxel-based representation can convey a shape fairly
well when the resolution is high enough, but high resolutions voxel rep-
resentations require a lot of storage as the whole volume needs to be
described, even the empty space.

A polygon mesh provides a simple way to state where an object ex-
ists and also how the points on its surface are related to each other. The
mesh is a collection of vertices, faces and edges, that collectively de-
�ne the shape. A dense enough polygonal mesh is able to de�ne high
amounts of detail and convey a surface that appears smooth (Figure 3.1,
bottom left). However, handling and designing such dense meshes re-
quires a lot of work. Manipulating a mesh by moving a single vertex at
a time will take tremendous time to edit a surface. Modern manipulation
and design work�ows such as sculpting [Spe11] can manipulate dense
meshes more e�ectively through 3D brushes that manipulate a group
of vertices at a time. Although a polygonal mesh is able to approximate
smooth surfaces, it remains only aC0 discretisation of that surface. The
individual polygons remain �at.

Splines are a practical way to de�ne an object. Instead of having a
very dense representation containing a large number of surface samples,
such as with dense polygonal meshes or voxel representations, the sur-
face is represented by a mesh of control points (Figure 3.1, bottom right).
Most of the control points do not actually lie on the surface that they de-
�ne, but they in�uence a region of the surface of the object. The surface
can be generated from the control points by various procedures, such as
iterative re�nement or using parametric surfaces. The resulting spline
surfaces are smooth or piecewise smooth surfaces and provide a com-
pact way to do so. Designing by means of spline surfaces is e�ortless as
a control point in�uences a large part of the surface. By manipulating
the control points a surface can be bent and twisted into shape.
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Figure 3.1: Four di�erent representations of the same surface. Top left: point cloud,
Top right: voxels , Bottom left: triangle mesh, Bottom right: Bézier patch
with control mesh.

Visualisation of splines is usually achieved through rendering a
polygonal representation that was obtained through a discretisation
procedure. This procedure samples the spline surface at a large num-
ber of points and in turn connects them into a polygonal mesh. By hav-
ing a dense enough sampling, a smooth surface can be approximated
almost exactly. The surface could be visualised through other means
such as raytracing, but the higher-order parametric nature of splines
makes ray-surface intersections a costly endeavour [BS93].

Spline surfaces can easily de�ne smooth surfaces, but most are re-
stricted in that they can only exist in a few topologies. Spline surfaces
themselves are regular surfaces and to e�ectively model an object it is
often necessary that it should be de�ned as a collection of spline patches.
This poses a couple of challenges, as the spline surfaces have to be �t to-
gether. The problem of joining together spline surfaces smoothly might
seem simple, but it is deceptively hard. Each of the spline surfaces has
its own parametrisation and when arranging multiple of these surfaces
together their parametrisations might not align. The challenge exists
in using just enough of the data that is shared between neighbouring
patches to create smooth transitions.

This part of the thesis investigates two di�erent ways of joining
splines surfaces together. In Chapter 4, we look at how arbitrary topol-
ogy NURBS models, that initially are not evenC0, can be converted into
triangular splines that subsequently can be joined together smoothly.
Then in Chapter 5, we show how B-spline surfaces of arbitrary topol-
ogy can be constructed by creating multisided spline patches and how
general multisided surfaces can be rendered e�ciently.
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4C O N V E R T I N G B - R E P C A D M O D E L S I N T O TA N G E N T
P L A N E C O N T I N U O U S S P L I N E S

Parts of this chapter have been published as

• Gerben J. Hettinga, and Jiří Kosinka. "Conversion of B-rep CAD
models into globally G1 triangular splines".
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converting b-rep cad models into tangent plane continuous splines

Existing techniques that convert B-rep (boundary representation)
patches into Clough-Tocher splines guarantee watertight, that is C0, con-
version results across B-rep edges. In contrast, our approach ensures global
tangent-plane, that is G1, continuity of the converted B-rep CAD models.
We achieve this by careful boundary curve and normal vector manage-
ment, and by converting the input models into Shirman-Séquin macro-
elements near their (trimmed) B-rep edges. We propose several di�erent
variants and compare them with respect to their locality, visual quality,
and di�erence with the input B-rep CADmodel. Although the same global
G1 continuity can also be achieved by conversion techniques based on sub-
division surfaces, our approach uses triangular splines and thus enjoys full
compatibility with CAD.
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4.1 introduction

4.1 introduction

Traditionally computer aided design (CAD) systems present CAD mod-
els in terms of their outer shells rather than as solid geometry. These
models are called boundary representations or B-reps for short. The rep-
resentation of the boundary is done using non-uniform ration B-splines
or NURBS [PT95]. A NURBS curve is a rational B-spline which can have
non-uniform knots:

Cd (t) =

∑n
i=0wiBi ,d (t)Pi∑n
i=0wiBi ,d (t)

and can be extended to surfaces by using a tensor-product surface struc-
ture and two sets of knots for each parametric direction. NURBS are
capable of exactly representing a range of shapes such as conic arcs in
the curve case and quadric patches when considering bivariate tensor-
product NURBS surfaces. This tensor product structure of the surface
only allows NURBS to model a small set of shapes that are topologically
equivalent to disks, cylinders or tori. To create more complex geometry,
multiple NURBS patches have to be stitched together.

It can often be di�cult or impossible to arrange multiple NURBS
patches together to form a watertight representation. Usually CAD
models are made through the application of several Boolean operations
on an initially simple object. The simple objects can be represented ex-
actly as NURBS, but after Boolean operations only certain sections of
the original surface remain. The patch can be said to have been trimmed,
the excess parts have been cut o� and only the relevant part of the sur-
face is used. The process of trimming is done in the parameter space
of the patches. Consider a tensor product NURBS patch F (u,v), we can
trim the patch along the the trimming curveCt (u,v) de�ned on theu,v
parameter space of the NURBS patch. Then only the part of the surface
which is in the region denoted by the trimming curve is used. Figure 4.1
shows the process of trimming and the e�ect it has on the patch.

Trimming allows to create arbitrary shapes out of an otherwise rect-
angularly de�ned patch by imposing trimmed shapes on the parameter
domain. One can for instance draw any polygonal shape or curve in the

u

v

Figure 4.1: The trimmed uv parameter space (left) of the B-spline patch (right).
The trimming curve divides the surface into a trimmed and untrimmed
portion.
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parameter domain. The freedom in de�ning the shape of the patches
does not make it easier to compose them together. That is why often
the trimming curve is the result of the computed intersection of two or
more NURBS patches. Again, this process is not trivial, as the intersec-
tion curve of two NURBS patches is not, in general, a NURBS curve. The
intersection curve can be approximated, which leads to two trimming
curves in the parameter domains of the individual patches. The approxi-
mation of the trimming curve leads to non-watertightness, i.e., not even
C0 continuity is easily achieved. The resulting gaps can be kept below
well-chosen small tolerances and pose no major problems in the manu-
facturing process of CAD models. However, for analysis and simulation
it may lead to major issues [MH18].

A solution often taken in the �nite element �eld is to process the
NURBS patches as a piecewise linear and watertight approximation.
However, the rapidly progressing �eld of isogeometric analysis (IgA)
[CHB09] leverages the exact geometry domain of the patches and uses
the same basis functions to describe the geometry to also span the so-
lution space. Over time there have been various geometric conversion
methods to turn CAD models into higher-order analysis-suitable rep-
resentations. However, existing conversion methods su�er from one of
the following two shortcomings. The resulting global continuity is not
better than C0 [KC15, MvSE18], or the representation of choice is not
directly CAD compatible [SKSD14, SKSD16].

Our approach converts B-rep CAD models into globally tangent-
planeG1 continuous triangular splines. Our triangular splines are based
on Clough-Tocher [CT65] and Shirman-Séquin [SS91] macro-elements,
and lead to CAD compatible converted surfaces as it is only de�ned us-
ing cubic and quartic Bézier triangles. Visually our approach does not
increase substantially on theC0 method of the [KC15], our approach has
the added advantage of exact G1 smoothness. The resulting converted
surfaces can be used in downstream applications such as analysis and
simulation, a concrete example being enhanced �nite element methods
[SFMH11].

4.2 related work

The handling of CAD models that are represented using trimmed and
stitched NURBS patches has prompted a lot of investigations overtime
because of the di�culty of handling the trimmed regions [MH18]. This
has led to many di�erent representations and conversion techniques.

These conversions are either exact, meaning that the geometry re-
mains intact but also non-watertight, or approximate. The former class
of exact techniques is represented by untrimming [EK14, MvSE18].
While this ensures that the converted patches are no longer trimmed,
the continuity of the CAD model inevitably does not change.
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P300 P030

P003

P210 P120

P201

P102

P021

P012

P111

P̄012

P̄111

P̄210

Figure 4.2: The control net of a cubic triangular Bézier patch P with control point
labels. A section of the control net of an adjacent C0-connected patch
P̄ is also shown; control points P003, P012, P021, and P030 are shared.

The latter class of approximate techniques necessarily modify the
input geometry, but the resulting conversion error is typically con-
trollable and often con�ned to regions near the B-rep edges (trim-
ming curves). Existing techniques include conversion to Catmull-Clark
[SKSD14] and Loop [SK16] subdivision surfaces. An improved variant
in which regions away from the trimming curves can be kept unmod-
i�ed was recently presented in [SKSD16]. These techniques o�er glob-
allyG1 approximations, but are not directly CAD-compatible due to the
lack of closed-form representations in irregular regions. A closely re-
lated method converts CAD models into T-splines [SFL+08], but again,
T-splines rely on subdivision or approximate G1 conditions near irreg-
ular regions.

A promising approach to tackle the trimming problem is based on
watertight Boolean operations [UMC+19]. While it produces watertight
models, the placement of extraordinary points and feature lines in the
method remains a manual task.

CAD models can be converted into collections of curved triangles.
This approach was taken in [XQ17], which also o�ers a volumetric coun-
terpart. However, their construction is based on the Clough-Tocher-
Hsieh split [CT65] and parametric continuity, and thus produces glob-
ally only C0 results. An earlier technique based on Clough-Tocher
splines appeared in [KC15]. This o�ers CAD-compatible patches, but in
general results in only C0 continuity across but also near B-rep edges.

To remedy this, we present a technique based on polynomial Bézier
triangles and the Shirman-Séquin construction [SS91] to enhance exist-
ing Clough-Tocher techniques such that globally tangent-plane contin-
uous models are obtained.

4.3 preliminaries

We start by introducing basic concepts such as the continuity condi-
tions between Bézier triangles (see Section 2.3.2). Then we discuss the
Clough-Tocher construction and the Shirman-Séquin construction.

35



converting b-rep cad models into tangent plane continuous splines

4.3.1 Continuity Conditions

Consider the situation sketched in Figure 4.2. The C1 continuity condi-
tions between two cubic Bézier triangles P and P̄ and their respective
triangles in parameter space T (v0, v1, v2) and T̄ (v1, v3, v2) are, along
with the trivial C0 conditions of shared edge control points, given by

P̄012 = τ0P102 + τ1P012 + τ2P003,
P̄111 = τ0P111 + τ1P021 + τ2P012,
P̄210 = τ0P120 + τ1P030 + τ2T021,

(4.1)

where (τ0,τ1,τ2) are the barycentric coordinates of v3 with respect to
T , i.e., v3 = τ0v0 + τ1v1 + τ2v2. In other words, the three quadrilater-
als (P102, P012, P̄012, P003), (P111, P021, P̄111, P012), and (P120, P030, P̄210, P021)

have to be planar and of the same a�ne shape as the quadrilateral
(v0, v1, v3, v2) in parameter space.

4.3.2 Triangulation of B-rep Patches

The B-rep patches are triangulated through a triangulation of the para-
metric domain of the patch. The triangulation of the parametric do-
main maps to a corresponding triangular mesh de�ned on the B-rep
where the 3D vertex positions lie exactly on the B-rep patch. There are
many methods that can be used to construct this triangulation such as
[TOC98, BDL09, SBAD16]. The triangulation can be tuned so that it
meets certain criteria such tolerances on the triangle shape and approx-
imation quality. All example models used in this chapter were created
using the CAD�x product [Int19], that creates the triangulation from
an imported CAD model. The CAD�x triangulation process is similar
to the approach taken in [KBT04], which incrementally creates a tri-
angulation based on a constrained Delaunay triangulation where the
constraints are the trimming curves of each patch.

The triangulation has vertex positions Pi in 3D and a corresponding
parametric position vi in 2D of the B-rep patch p. In addition also the
gradient ∇Pi at Pi with respect to the parametrisation of p is given.

4.3.3 The Clough-Tocher Construction

Similar to [KC15] we convert parts of the B-rep patches into collec-
tions of Clough-Tocher patches. A Clough-Tocher patch consists out
of a macro-triangle, which in turn are made up out of three micro-
triangles. The construction, which generates a cubic triangle over each
micro-triangle, is generated in three distinct steps.

First, the vertices of the macro-triangle are set according to the Pi
sampled from the B-rep patch. In other words the corners of the macro-
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patches lie on the patches p. Using the notation of Figure 4.3, left, ac-
cording to

Ti j = Pi +
1
3
∇Pi · (vj − vi )

the sides of the macro-triangles are de�ned. This creates a cubic curve
on each side of the macro-triangle. Then, taking into account C1 conti-
nuity conditions of Equation 4.1, we compute

Ii1 =
(
Pi + Ti ,i+1 + Ti ,i−1

)
/3, (4.2)

with the index i ∈ {0, 1, 2} understood cyclically (modulo 3).
From here, we can set the positions of the micro-patch central con-

trol points Q01, Q12, and Q20. There are varying options for settings the
positions of these points according to the many variants of the Clough-
Tocher construction. [KC15] gives an overview of the di�erent options.
In this chapter we use two variants. One of them augments the input
data with additional gradients sampled at the midpoints of edges [KC15,
Section 3.6], and the original Clough-Tocher variant [CT65], [KC15, Sec-
tion 3.1] as speci�ed below.

Lastly, the control point positions of the remaining points can be de-
termined from the C1 continuity conditions

Ii2 =
(
Ii1 + Qi ,i+1 + Qi−1,i

)
/3,

and the macro-patch center point

S = (I02 + I12 + I22) /3.

Because all control points are set according to the C1 conditions
we maintain this continuity across micro-patch boundaries as well as
micro-patch boundaries. In addition the Clough-Tocher patch interpo-
lates positions and gradients of the input B-rep patch. This leads to a
good approximation of the patches given a suitably generated triangu-
lation.

Because the construction of Clough-Tocher patches relies on the
parametrisation, it does not work for arbitrary manifold topology sur-
faces in that without a common parametrisation it is unable to ensure
C1 continuity. When B-rep patches with distinct parametrisations meet
at a common B-rep edge, for instance constructed from an intersection
curve of the two patches, their gradients will not in general match. In
addition to not being able to ensure continuity of gradients, it is also
not even possible to ensureC0 continuity at the seam. [KC15] remedied
this by moving some of the control points so that they align with the
B-rep edge. However, ensuring watertightness sacri�ces the C1 conti-
nuity of macro-triangles and micro-triangles that lie on the boundary
of the patches. There is no simple way of adjusting the control points
to remedy this, not even for lowering the continuity to G1.

In our approach we use a di�erent construction to obtainG1 continu-
ity near B-rep edges.
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Figure 4.3: A Clough-Tocher macro-element composed of three cubic Bézier trian-
gles.
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Figure 4.4: The Shirman-Séquin construction showing a combination of ‘cubic’
(squares) and ‘quartic’ (diamonds) control points.

4.3.4 The Shirman-Séquin construction

The Shirman-Séquin construction [SS91, SS87] is another split triangle
scheme that is similar to the original Clough-Tocher construction. How-
ever the construction of the Shirman-Séquin patches is fully geometric
and uses quartic Bézier triangles on micro-triangles instead of the cubic
triangles of Clough-Tocher patches. The geometric construction allows
it to overcome the parametric and topological restrictions implied by
the Clough-Tocher splines. In essence, the construction is a combined
construction that uses the method of Chiyokura & Kimura for macro-
patch G1 connections and Farin’s method [Far82] to create G1 joins at
micro-edges of the macro-elements.

To construct a G1 join between macro-triangles the construction
makes use of the Chiyokura-Kimura method (CK-method) [CK83] (see
Section 2.3.3). The original construction takes as input a triangle with
normal vectors de�ned at vertices. Then the macro-triangle boundary
curves are generated to conform to the tangent plane de�ned by the nor-
mal and uses that data for the CK-method. In our context, it is assumed
that all cubic edges incident with a mesh vertex meet there with a shared
tangent plane, as de�ned by the gradients of the sampled patches. So

38



4.4 preprocessing

like the Clough-Tocher construction the patches will interpolate posi-
tions and gradients.

The patch layout of a Shirman-Séquin patch is shown in Figure 4.4.
Generally the positions Ti j are set similar to the Clough-Tocher con-
struction, except in special situations which we will detail later. Simi-
larly, the positions of Ii1 are set according to Equation 4.2. From this
cubic boundary data the control points for the quartic patches are gen-
erated according to process of degree elevation Îi1 = (Pi + 3Ii1) /4
(not shown in the �gure), and used in the CK-method to determine all
Li ,i+1 and Ki ,i+1. The construction is then completed by computing con-
trol point positions from a combination of ‘cubic’ and ‘quartic’ control
points

Ii2 =
(
Pi − 3Ii1 + 4Ki ,i+1 + 4Li−1,i

)
/6,

Ni ,i+1 =
(
−Ii1 − Ii+1,1 + Ii−1,1 + 4Ii2 + 4Ii+1,2 − 3Ii−1,2

)
/4,

and again the macro-triangle split point

S = (I02 + I12 + I22) /3.

Then all quartic control points are generated to create a fully degree
raised quartic Bézier triangle on each one of the micro-triangles.

The Shirman-Séquin patch is the main ingredient that allows us to
construct globallyG1 triangular splines. We will cover the details in the
following sections.

4.4 preprocessing

To be able to generate a globally G1 spline surface from an input CAD
model we �rst preprocess certain parts of it. Consider a CAD model that
consists out of one or more (trimmed) B-rep patches. As described in
Section 4.3.3 we create a suitable triangulation through an error-driven
process to turn the CAD model into a C−1 collection of C1-continuous
triangular splines [KC15], where each triangular spline has its own pa-
rameter domain.

The B-rep edges are also an important part of the conversion process
and are approximated as aC1-connected cubic Bézier spline. At the end-
points the individual curve pieces coincide with the polyline approxi-
mations that were used as constraints for the triangulation. Thus the
boundary vertex positions of the triangulation coincide with the B-rep
edges. The Bézier curves of the B-rep do not necessarily coincide with
the cubic edges of the Clough-Tocher splines that lie on the boundary,
as shown in Figure 4.5, left.

In addition we equip each B-rep edge with information that conveys
whether it is a sharp edge, i.e. an edge withC0 continuity across it, or a
smooth edge, which should be constructed withG1-continuity across. If
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no such information is provided we attempt to heuristically determine
these two classes. With this we rely on normal vector information of
the B-rep patches which are incident with that B-rep edge. We look if
the angle between normals of the incident patches is below a certain
threshold. If it is we deem that vertex to be considered smooth, and
sharp otherwise.

Leveraging the most of the Clough-Tocher construction and keeping
most of the triangles of the lowest possible degree, we leave the internal
Clough-Tocher patches intact. Then we only apply the Shirman-Séquin
construction near the B-rep edges. For smooth edges, the boundary data
sampled from the CAD model needs to be adjusted to allow the construc-
tion to e�ectively be applied.

4.4.1 G1-compatible Boundary

In Section 4.3.3 we mentioned that the Clough-Tocher method is only
capable of guaranteeing C0 continuity at B-rep edges. Even after the
adjustments to control of micro-triangles near the edges proposed by
[KC15]. Even in the case that the gradients at the B-rep span the
same tangent plane it is not possible to guarantee C1 continuity as the
parametric domains of the B-rep patches are di�erent. The Shirman-
Séquin is able to create a tangent plane continuous-join regardless of
the parametrisation, but requires that tangents planes are equal on both
sides of the B-rep edge.

Therefore, we must ensure that along the shared B-rep edge we ob-
tain common tangential data. Having the same tangential data trans-
lates to the requirement of having a common normal vector de�ned at
vertices of the B-rep edge. To this end we create a procedure that assures
equal normal vectors. It proceeds in two steps that �rst determine an
adjusted normal vector for all shared vertices on the B-rep edge and sub-
sequently a step that assures that all curves terminating at such a vertex
respect this normal. Di�erent con�gurations of B-rep edges can occur,
but we will �rst cover the case of two patches meeting at a common
B-rep edge, other cases such as junctions are covered in Section 4.4.2.

The situation of two B-rep NURBS patches meeting at a common
boundary curve is sketched in Figure 4.5. A vertex P, Figure 4.5, right
(shown in grey), has two corresponding positions P1 and P2 on the two
B-rep patches. The two gradients ∇P1 and ∇P2 are in general not equal
and with that correspond to di�ering tangent-planes and normal vec-
tors n1 and n2. A simple averaging step lets us compute a normal vec-
tor n0, but naturally this normal vector does not have to agree with
the B-rep edge at P in that it is not perpendicular to the tangent of the
curve. Another simple projection onto the tangent plane de�ned by the
tangent of the curve at P lets us create normal vector n that is perpen-
dicular to the tangents of the curve. Even though two B-rep patches
meeting at a sharp B-rep edge do not require a common normal vector,
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Figure 4.5: Left: Two NURBS B-rep patches,N1 andN2, intersecting along a curve.
The true intersection curve (dotted) cannot, in general, be represented
as a NURBS curve and is thus approximated by a NURBS B-rep edge
(grey). But as this B-rep edge does not, in general, lie on either of the
two patches, it is in turn approximated by two trimming curves (red
and blue), one on either patch. Right: The situation at a vertex P of the
B-rep edge (grey). Due to the (unavoidable) inexactness of the trimming
curves (red and blue), P corresponds to two, in general distinct, points,
P1 and P2, one on either of the patches N1 and N2. The smaller grey
control points are determined using the derivative of the original B-
rep edge at P, and similarly for the red and blue control points along
the two trimming curves. The other red and blue points come from the
constrained triangulations of the two patches and the Clough-Tocher
construction on both sides. As the patch normals n1 and n2 at resp. P1
and P2 do not, in general, agree mutually or with the B-rep edge, they
need to be adjusted to n.

we still apply the projection step to the individual normals n1 and n2.
In this case no averaging needs to happen beforehand.

We can easily ensure C0 continuity across the edge by adjusting all
red and blue points aligned with the B-rep edge onto the grey points.
This is marked as the dotted ellipse in Figure 4.5, right. This exact pro-
cedure is also used by [KC15]. However, now that we also have a com-
mon tangent plane at boundary vertices P we can further adjust control
points of all edges emanating from P to conform to the adjusted tangent
plane. This procedure is easily achieved by projecting the topologically
edge-connected control points onto the plane de�ned by P and n. This
is a small adjustment in that it respects the original gradients as the
projected control points are an a�ne transformation of this gradient.
Having done this second step the surfaces are alreadyG1 continuous at
all vertices P along the common B-rep edge and we can now apply the
Shirman-Séquin construction to also guaranteeG1 continuity along the
whole edge.

41



converting b-rep cad models into tangent plane continuous splines

4.4.2 Other Vertex Con�gurations

Other con�gurations arise in special cases where multiple B-rep edges
meet at a vertex P. In these cases the normal adjustment has to proceed
di�erently and needs to conform to multiple B-rep edges. For instance
at T-junctions or at X-junctions the normal vector is uniquely de�ned
by the crossing edges, as taken as the perpendicular direction of the
incident B-rep directions.

For smooth B-rep vertices that have higher valency, no such unique
normal exists. We can still create a common tangent plane by determin-
ing a normal n by a least squares �t. However, this has the e�ect that
all B-rep edges emanating from this vertex have to be adjusted, by pro-
jecting the tangents onto the tangent plane de�ned by n.

4.5 conversion to shirman-séqin splines

Now that the normal vectors at the boundary of the patches have been
adjusted we have correctly prepared all the data forG1 interpolation, or
C0 for non-smooth vertices or edges. We can now apply the Shirman-
Séquin construction on triangles at the boundary. It is also possible to re-
place all Clough-Tocher triangles, but this would be unnecessarily com-
putationally intensive, as the degree of the patches is increased.

However, we still have a few choices of where to apply the construc-
tion. We have distinguished three separate strategies of applying it to
the triangles at the boundary. Consider the situation as sketched in Fig-
ure 4.7. We can categorise the triangles incident with B-rep edges into
two groups. 2-connected triangles, are those triangles with two (or more
vertices) on the boundary. triangles with only one vertex on the bound-
ary are dubbed 1-connected triangles. All other non-boundary triangles
remain as piecewise cubic triangles as constructed from the Clough-
Tocher construction.

Here we make the observation that all 1-connected triangles can po-
tentially remain as Clough-Tocher macro-elements. The normal adjust-
ment step does not ruin their internal C1 continuity. For 2-connected
triangles the situation is di�erent as in this case we are dealing with
the topological limitations of the technique and we can only resort to
the Shirman-Séquin technique. However, this technique cannot also be
applied naïvely either, the CK-method only works if both sides of a com-
mon edge are constructed using the basis patch technique for determin-
ing a cross-boundary derivative. For all 1-connected triangles the cross-
boundary derivative is already determined partly by the sampling and
fully by the subsequent Clough-Tocher construction. On top of that the
cross-boundary derivative of a Clough-Tocher patch is in general di�er-
ent than the one constructed using the CK-method.

Regardless of being either 2-connected or 1-connected, the construc-
tions all take the following initial steps. The boundary of each macro-
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Figure 4.6: The alternative G1 method to connect to an existing cubic Bézier tri-
angles. The arrows show the vectors involved in the computation. The
points marked by diamonds are ‘quartic’ control vertices obtained by
degree elevation.

triangle is constructed similarly to the Clough-Tocher construction.
This constructs a cubic Bézier curve control polygon for each of the
three sides of a macro-triangle. Similarly the control points Ii1 (see
Equation 4.2) are computed. Having de�ned these parts of the control
nets of the patches we are able to �ll the rest in using the Shirman-
Séquin construction. However, to join these macro-patches to Clough-
Tocher patches we cannot rely on the basis patch construction of the
CK-method. Instead we have to devise an alternative method to achieve
G1 continuity.

4.5.1 An Alternative G1 Method

Consider the situation as sketched in Figure 4.6, where an incomplete
patch is to be joined to a fully de�ned cubic Bézier triangle B. Here
the patch B is that master in a ‘master-slave’ situation. With the �rst
two rows of control of B a cross-boundary derivative ∂ΓB (v) is de�ned
along Γ(v). We freely choose a direction of the derivative transversal
with respect to the edge, but do so in a manner that is independent to
vertex indexing and a�ne reparametrisation. To this end we take the
direction from the parametric midpoint of shared edge (vi + vj )/2 and
the opposite vertex in parameter space vk of the parametric triangle
vivjvk . Using this direction we obtain a quadratic transversal derivative
given by three control vectors, which we denote by d0, d1, and d2.

We can then use the linear condition of Equation 2.1, which gives the
necessary condition for tangent plane continuity between two patches,
to obtain

α(v)
3∑
i=0

B3
i (v)ai = β(v)

2∑
i=0

B2
i (v)di + γ (v)

2∑
i=0

B2
i (v)ci , (4.3)

where B2
i (v) and B3

i (v) are the univariate quadratic and cubic Bernstein
polynomials, respectively. We choose the functions β and γ to be linear
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Figure 4.7: A schematic view of the 1-connected (light and dark blue) and 2-
connected (light and dark red) macro-triangles. The control points of
the cubic Bézier curves forming the approximated B-rep edge are also
shown.

polynomials, and set α(v) ≡ 1. Then we determine the coe�cients β0, β1
and γ0,γ1 by solving Equation 4.3 with v = 0 and v = 1, i.e., by solving
a0 = β0d0 + γ0c0 and a3 = β1d2 + γ1c2.

The sought-after vectors a1 and a2 can then be found via

a1 =
1
3
(β1d0 + γ1c0) +

2
3
(β0d1 + γ0c1),

a2 =
2
3
(β1d1 + γ1c1) +

1
3
(β0d2 + γ0c2).

This in turn gives the quartic control points, shown as diamonds in Fig-
ure 4.6, of A, such that it connects to B with G1 continuity.

Note that it is in general impossible to obtain A as a cubic patch. In-
deed, modifying the left-hand side of Equation 4.3 to α(v)

∑2
i=0 B

2
i (v)ai

admits no solution for generic input data as then only a1 remains as an
over-constrained freedom when a0 and a2 are given.

Now having the ability to connect with G1 continuity to a Clough-
Tocher macro patch it becomes apparent that there are two distinct op-
tions near B-rep edges. A ‘full-strip’ strategy where both 2-connect and
1 connected triangles are converted to a Shirman-Séquin spline strip.
The other option is to convert only the 2-connected triangles, which cre-
ates a saw-tooth-like pattern and is thus dubbed ‘saw-tooth’. Figure 4.7
illustrates this. The full-strip pattern contains both blue and red trian-
gles, whereas saw-tooth only contains the red triangles. We will now
describe the details of both of these constructions, which assume the
boundary adjustment has prepared the data for the G1 conditions.

4.5.2 Full-strip

All 2-connected triangles are constructed as complete Shirman-Séquin
patches. Thus the CK-method is used on all three macro-edges of each
triangle, especially the side incident to the B-rep edge. As this same step

44



4.5 conversion to shirman-séqin splines

is applied to the patch on the other side of the edge, and if the normal
data is shared, G1 continuity is ensured.

For the remaining 1-connected triangles we have to proceed di�er-
ently because we have to join to the ‘inner‘ Clough-Tocher macro-
elements of the patch next to the strip. We can use degree elevation to
our advantage to degree elevate the boundary data of micro-triangles
that connect to these inner macro-elements. In each 1-connected trian-
gle there is one micro-triangle (denoted in dark blue in Figure 4.7) for
which we compute the control points according to the Clough-Tocher
construction up to the part of the midpoints Qi ,i+1 (see Section 4.3.3).
This data determines a C1 cross-boundary derivative which we can de-
gree elevate to quartic, preserving the establishedC1 continuity. In prin-
ciple it is also possible to use the alternative G1 method instead, how-
ever this will lower the continuity to G1. For the light-blue triangles
in Figure 4.7 the inner control points are computed according to the
CK-method, as they are adjacent to the 2-connected triangles.

4.5.3 Saw-tooth

We can observe that the 1-connected triangles lie on the boundary with
one vertex, but the adjustments made in the boundary adjustment step
do still let us complete de�ne a Clough-Tocher element. This is because
the adjustments respect the gradient at the boundary vertex, only alter-
ing it by an a�ne transformation. In addition, we would like to minimise
the number of quartic triangles used and thus only convert 2-connected
triangles into Shirman-Séquin patches. Thus all 1-connected triangles
emanating from the same boundary vertex are still connected with C1

continuity.
In this strategy the alternative G1 method comes into play, as the 2-

connected triangles have a light-red micro-triangle adjacent to a light-
blue micro triangle which is de�ned according to the Clough-Tocher
construction. We therefore use the method of Section 4.5.1 to construct
all inner control points of the light-red micro-triangles. For the dark-
red micro triangles the CK-method is used as we are connecting over
an actual patch boundary.

We can push this saw-tooth option further, by insisting that only the
2-connected micro-triangles (dark red) are quartic, all other remain cu-
bic. This is possible by performing a secondary split, and we discuss it
brie�y now for the sake of completeness.

4.5.4 Saw-tooth: Secondary Split

In this option, instead of replacing a whole triangle with a Shirman-
Séquin element, we �rst construct a Clough-Tocher element and then
replace the boundary micro-triangle with a Shirman-Séquin element. To
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converting b-rep cad models into tangent plane continuous splines

Figure 4.8: The full conversion process and results. From left to right: Input trian-
gulation of B-rep model, the control net after conversion to a composite
Clough-Tocher and Shirman-Séquin triangular spline using the saw-
tooth technique, smooth shading and re�ection lines on the result, and
a visualisation of the error with respect to the original B-repmodel (blue
is zero error and red is global error maximum of 1.8168e−4 relative to
the unit bounding box diagonal.). The colour of the control nets signi-
�es the method used to calculate the control data. Purple corresponds to
the Clough-Tocher method, blue to the method of Chiyokura & Kimura,
and red to the alternative G1 method presented in Section 4.5.1.

this end we do not perform the adjusting step of the boundary control
points to conform to those of the B-rep edge, and construct a Clough-
Tocher element. Once constructed we perform the boundary adjustment
and afterwards replace the boundary micro-triangle with a Shirman-
Sequin element similarly to the ordinary Saw-tooth strategy. In this
case we use the alternative G1 method to join to the light-red micro
triangles of the Clough-Tocher element and again the CK-method for
the connection across the B-rep edge.

In the corner cases when a macro-triangle is adjacent to two B-rep
edges, i.e. a 3-connected triangle, or two 2-connected micro-triangles,
then the common micro-triangle boundary also use the CK-method.
This behaviour can be clearly observed in the corners of the two dif-
ferent sphere octants depicted in Figure 4.9, fourth column, and is de-
scribed in Section 4.6.1.

4.6 results

We summarise once again the pipeline of the conversion of B-rep CAD
model into globallyG1 splines in Figure 4.8. In this section we compare
and contrast the di�erent strategies and the capabilities of the conver-
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Clough-Tocher full-strip saw-tooth secondary split

Figure 4.9: A comparison on a simple model composed of two sphere octants hav-
ing separate parametrisations. Both octants have been uniformly sam-
pled using 16 triangles. In the top row we show Phong shading and
Bézier control nets, and in the bottom row we show the re�ection lines
on the octants after conversion. The colour of the control nets signi�es
the method used to calculate the control data. Purple corresponds to
the Clough-Tocher method, blue to the method of Chiyokura & Kimura,
and red to the alternative G1 method presented in Section 4.5.1.

sion method. To this end we employ simple examples to illustrate our
method, but also use more complicated CAD models to measure the
e�ectiveness in more elaborate situations.

4.6.1 Sphere octants

We start with a simple example that is constructed out of two patches.
The patches are the connected octants of a sphere, and because of this do
not have to worry about the boundary adjustment step as this already
guarantees a shared tangent plane at sampled vertices of the common
edge. Even though the tangent planes are shared and the octants are
fully symmetrical, their gradients at the edge do not agree. In this case
the Clough-Tocher based method of [KC15] would yield onlyC0 results,
even after the edge control point adjustment, as can be seen clearly from
the broken re�ection line renderings. In that case a maximum normal
deviation is observed of approximately 2.65 degrees; meaning that the
conversion does not meet the 0.1 degree tolerance of standard CAD
systems.

With our conversion method we are able to globally obtain a G1 re-
sults, using any of the conversion variants discussed in Section 4.5. We
can observe now that there are no broken re�ection lines as is expected
of G1 continuity as seen in the bottom row of Figure 4.9.
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Figure 4.10: Re�ection lines on a trimmed NURBS patch (part of a car model) con-
verted to a triangular spline using the Clough-Tocher variant with
additional gradients sampled at edge midpoints. Top row, left to right:
The input triangulation of the trimmed NURBS patch, Clough-Tocher
patches, Clough-Tocher patches with the boundary adjustment of
[KC15]. Note the jumps in re�ections lines, indicating that the ad-
justment ruined some of the internal C1 continuity. Bottom row, left
to right: Full-strip, saw-tooth and secondary split; fully G1 variants
of our conversion method.

4.6.2 Boundary adjustment

The boundary adjustment (see Section 4.4) is a necessary step to achieve
G1 continuity, but it has the e�ect of changing the geometry near B-rep
edges. We will now investigate the e�ects of the adjustments step on
the conversion process.

We will �rst look at how the adjustment step lets us preserve internal
G1 continuity within a single B-rep patch whilst also allowing B-rep
edge interpolation. A single patch of a complicated CAD car model is
shown in Figure 4.10, and is compared to the C0 strategy of Kosinka &
Cashman [KC15].

First of all in our method C0 continuity is guaranteed by the adjust-
ment step of the control point positions of the macro-patch boundary
edges, that make them coincide with the control points of the B-rep
edge. We �rst perform the boundary normal adjustment step and as-
sure that the tangent plane of the triangular spline also contains the
tangent of the B-rep edge. In this way,C0 is achieved whilst not distort-
ing the tangent plane at the B-rep edge vertices, which happens with
the simpler adjustment step of [KC15]. Now a valid tangent plane is de-
�ned at boundary vertices and it allows us to still create G1 continuity
joins internally.

Figure 4.10 shows a single trimmed NURBS patch converted into a
Clough-Tocher spline using the extra sampled mid-edge gradients vari-
ant [KC15, Section 3.6]. We compare the C0 adjustment of [KC15] and
our three di�erent Shirman-Séquin based methods visually. In this case
a visual improvement is observed at the boundaries of macro-elements
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Figure 4.11: Re�ection lines on two trimmed NURBS patches (part of a car model)
converted to a triangular spline using the standard Clough-Tocher
method. Top row, left to right: A smooth rendering of the trimmed
NURBS patches, Clough-Tocher patches with the boundary adjust-
ment of [KC15], Clough-Tocher patches with boundary adjustment
of [KC15] and triangulation showing the di�erence in normal vector;
blue indicates no deviation in normal vector and red indicates high
deviation. Note the jumps in re�ections lines, indicating that the ad-
justment ruined internalC1 continuity. Bottom row, left to right: Full-
strip, saw-tooth and secondary split; fully G1 variants of our conver-
sion method.

Figure 4.12: Visualisation of the di�erence between normal vectors of neighbour-
ing triangles of the spline surfaces along their shared edges. From left
to right, top to bottom: Clough-Tocher with control point adjustment,
Clough-Tocher with control point adjustment and normal adjustment,
saw-tooth Shirman-Séquin and saw-tooth Shirman-Séquin with nor-
mal adjustment. The original Clough-Tocher construction was used in
these examples.

which lie on the boundary. The re�ection lines remain unbroken, show-
ing a continuous tangent plane at the rather large triangles connected
to the boundary.
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We turn our investigation at the situation of two (or more) trimmed
patches that ought to join smoothly at along a shared edge. Figure 4.11
we show the back of a car model where patches meet. Along this partic-
ular edge the tangent plane of the sampled surfaces do not agree with
each other. This leads to G1-discontinuities when applying the adjust-
ment of Kosinka & Cashman [KC15]. By applying our normal adjust-
ment step along the common edge, we create a shared tangent plane
for both spline surfaces on each side of the edge, which can then be
used by the Shirman-Séquin macro- and micro-elements to ensure G1

continuity.
We want to emphasise the necessity of the normal adjustment step

by visualising the angle di�erence between the normal vectors along a
common edge of neighbouring triangles in the converted surfaces with
and without the normal adjustment and are shown in Figure 4.12. Even
with C0 methods there is a decrease in normal error when applying
the normal adjustment. Without the boundary adjustment theG1 meth-
ods are unable to remove the normal error and there are still defects
present around B-rep edges. When applying the normal adjustments
this is �xed in nearly all situations. In this case there are errors around
the T-junctions where the two emanating B-rep edges express di�er-
ent tangent planes. In Section 4.4.1 we have talked about means to also
smooth these situations, but this necessitates the adjustment of B-rep
edges themselves. In Figure 4.12 we have chosen not to apply this step
and, thus give rise to sharp corners.

More complicated situations arise when we want to guarantee G1

continuity at places where several trimmed patches meet. In Figure 4.13

Table 1: The approximation error between a (densely triangulated) CAD model
(not shown) and its approximation with triangular splines (top row), us-
ing di�erent methods at B-rep edges. All models have been scaled to unit
bounding-box diameter.

Torus Wing F1
B-rep patches 1 4 90
Macro-triangles 64 586 3371
Clough-Tocher 3.46e−3 8.10e−4 1.52e−3
Full-strip 4.23e−3 6.90e−4 1.52e−3
Saw-tooth 4.23e−3 6.90e−4 1.52e−3
Secondary split 4.23e−3 8.10e−4 1.54e−3
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Figure 4.13: A challenging example: Re�ection lines over a meeting point of sev-
eral trimmed NURBS patches which have been converted to triangu-
lar splines using the Clough-Tocher variant with additional gradients
sampled at edge midpoints. Top row, left to right: The smooth ren-
dering of the trimmed NURBS patches, Clough-Tocher patches with
the boundary adjustment of [KC15] and triangulation showing the
di�erence in normal vector. Bottom row, left to right: The full-strip,
saw-tooth, and secondary-split variants of our method.

we show the situation around a B-rep vertex where several di�erent
trimmed NURBS patches meet. All the shown B-rep edges are marked as
smooth and subsequently the boundary normal adjustment technique
was used to create a common tangent plane for all patches meeting an
an edge.

In Figure 4.13, the di�erent strategies show varying levels of preser-
vation of the originalC1 Clough-Tocher spline. Visually it is hard to ar-
gue that some of the surfaces actually improve, even though they have
exact G1 continuity, on the approximate C0 equivalent. Especially in
the case of the secondary-split saw-tooth technique they shows rapidly
varying re�ection lines around the central vertex. The other two tech-
niques show better results and compare favourably to theC0 technique
especially the re�ection lines running across the B-rep edges.

Finally, Figure 4.8 shows the result of applying our conversion pro-
cess to a full CAD model, in this case that of a car composed of 42 B-rep
patches. Note that for the generation of the images in this �gure the
saw-tooth variation was used.

4.6.3 Approximation error

As mentioned before, the normal adjustment step alters the geometry
around B-rep edges. We therefore need to investigate the e�ect this has
on the approximation error that is incurred during this process. We com-
pare the maximum error between a densely triangulating representa-
tion of the input CAD model and the di�erent conversion strategies. In
Table 1, we list the results for various CAD models featured in this chap-
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Table 2: The approximation error between a (densely triangulated) CAD model
and its two spline approximations di�ering in triangle counts, using di�er-
ent methods at B-rep edges. All models have been scaled to unit bounding-
box diameter.

B-rep patches 13 13
Macro-triangles 532 1420
Clough-Tocher 0.00050614754 0.00017790225

Full-strip 0.00050614754 0.00018168288
Saw-tooth 0.00080641346 0.00018168288

Secondary split 0.00050174044 0.0001821653

ter. The base triangulation of the sphere octant and the torus model is
very minimal with only 64 triangles each. The complex Formula 1 front
wing model has genus 18 and contains as many as 14 small trimmed
bolt holes (see inset, last column) and several �llet patches.

We observe that the approximation error remains approximately the
same even when using the G1 conversion methods. In some cases we
observe an even lower maximum approximation error than compared
to the method of [KC15]. This could have many reasons that are not
readily apparent, but could be because of the increased continuity in-
ternally. At the vertices of non-smooth edges the tangent planes of the
Shirman-Séquin macro-elements are co-planar with the actual sampled
gradients of the underlying NURBS patches, which in turn increases the
approximation quality at these vertices with respect to theC0 technique
of [KC15].

By increasing the number of sample points or similarly the density
of the triangulation we observe the expected decrease in approximation
error. Table 2 shows the approximation errors obtained using two dif-
ferent triangulations of the same B-rep model. We observe a decrease
of the approximation error when using each of the three new construc-
tions, and the error remains approximately the same as when using the
ordinary Clough-Tocher method.

4.6.4 Performance

The increased degree of the micro-elements of Shirman-Séquin macro-
elements, quartic instead of the cubic elements of the Clough-Tocher
construction, and the necessary steps taken to construct them might
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increase the computation time needed in the spline conversion process.
We have explored the trade-o� between continuity and visual quality
with respect to theC0 methods of [KC15]. However, the di�erent strate-
gies of constructing a globally G1 spline also a�ect the e�ciency of
the methods. For instance the full-strip strategy and the secondary-split
strategy are fully local as they can be determined on a per-triangle basis
and can thus be constructed fully in parallel.

For the saw-tooth strategy, the Shirman-Séquin elements cannot be
constructed concurrently with the Clough-Tocher elements as their con-
struction depends on their neighbouring macro-elements, as they use
the alternative G1 method. It is still possible to construct them fully lo-
cally by supplying parametric data of adjacent triangles. However, in
that case many of the control points are computed twice to be able to
independently compute the cross-boundary tangent function.

To make statements about the relative performance we have mea-
sured the performance of the full conversion process using all consid-
ered strategies. The performance measurements were captured with re-
spect to the car mesh from Figure 4.8) consisting of 42 B-rep patches. In
all cases the B-rep patches have been triangulated into a total of 3233
triangles which determine the topology of the triangular spline surface.
On average the construction of the ordinary Clough-Tocher spline sur-
face took 0.09235 seconds, whereas 0.121, 0.108, and 0.123 seconds were
the averages recorded for the full-strip, saw-tooth, and secondary split
techniques, respectively. Although the newG1 methods may seem com-
plex in their constructions, they do not have any signi�cant overhead
with respect to only using Clough-Tocher macro-elements.

4.7 discussion

Although we o�er the ability to create a smooth join between adjacent
patches through the use of the boundary adjustment step, we still need
the input CAD models to satisfy certain smoothness conditions. The
boundary adjustment only ‘slightly’ adjusts the models. It is expected
that when an edge is marked as smooth that the normal vectors on
either side of the edge already approximately match the G1 conditions,
in that they are di�erent only up to a tolerance o�ered by the CAD
system of choice.

The visual and error-wise improvement over the C0 method of
[KC15] is only slight. However, our method creates a globally G1 tri-
angular spline at little increased computational cost. Our splines are
directly usable in isogeometric analysis and only o�eringG1 continuity
at patch boundaries is not an obstacle [GP15].

As alternative to the Shirman-Séquin macro-element we have consid-
ered the triangular Gregory patch [Lon85]. However, the patches pro-
vided no direct advantages. These patches are rational as some of the ba-
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sis functions are rational polynomials, which complicates computation
of derivatives. One advantage is that there is no splitting needed as each
triangle can directly be turned into a Gregory patch. Moreover, accord-
ing to our experiments, they are visually nearly indistinguishable from
the Shirman-Séquin macro-elements as their boundary conditions are
also set using the method of Chiyokura & Kimura. With this they could
be used with the same saw-tooth and full-strip strategies presented in
this chapter.

Naturally, the full-strip conversion strategy causes the biggest vi-
sual changes with respect to the Clough-Tocher approach, as more
triangles are converted to Shirman-Séquin elements and their cross-
boundary data is constructed using the CK-method. In the case of saw-
tooth variants most of the original cross-boundary derivatives, from
the Clough-Tocher constructions, are kept intact. There are possible set-
tings wherein the full-strip produces a noticeably worse quality surface
or a better quality one. In general the full-strip strategies have more no-
ticeable changes in directions in their re�ection line visualisation, be-
cause of the increased patch degree. The secondary-split technique can
show even more rapid changes in the re�ection lines, especially near
B-rep edges, as can be seen in Figure 4.9. These changes are con�ned to
the converted micro-triangles, which are relatively small, compared to
surrounding triangles, and the higher quartic degree of the patches and
the fact that there is yet another split, leads to rapidly changing surface.
In theory the micro-triangle could be split yet again, but this increases
these problems even further. The normal saw-tooth strategy provides
the most balanced results out of all three strategies. It respects the orig-
inal (internal) C1 Clough-Tocher approximation, and at the same time
remains visually reasonable, whilst being able to create G1 continuity
over the patch boundary.

The triangulation of the B-rep patches is an important factor in con-
version process. The results heavily depend on this initial triangulation.
We did not investigate the e�ect of the triangulation on the conversion
process, but rather focused on creating a construction that would al-
low for G1 continuity between patches of an arbitrary topology model.
There are some other choices that might a�ect the quality of the con-
version process, which is the choice of the split-point of the (macro-)
triangles. And of course which variant of the Clough-Tocher variant
to use. We made our approach agnostic of the variant of the Clough-
Tocher scheme and we have experimented with di�erent variants. With
that our �nds were in line with those in [KC15]. In any case, no matter
which combination is used, it will lead to globally G1 results.
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4.8 conclusion

We have investigated and presented several methods and strategies to
improve existing conversion techniques for converting trimmed CAD
models into triangular spline surfaces. Our solutions convert the models
into a G1-continuous triangular splines that are mostly C1 continuous
except for areas near B-rep edges. The results are analysis-suitable and
compatible with CAD systems.

We require an intermediate preprocessing step that adjusts the
boundary normal of B-rep patches that are required to join smoothly.

We have presented three di�erent strategies of employing Shirman-
Séquin macro-elements at B-rep patch boundaries. These are used either
on a full-strip of 1- and 2-connected boundary triangles, or exclusively
on 2-connected triangles, or even only on 2-connected micro-triangles.
The three techniques have varying levels of preservation of theC1 con-
tinuity created by the original Clough-Tocher conversion. The full-strip
variant is the most invasive, followed by the replacement of 2-connected
macro- and micro- triangles. The three techniques are e�cient, as they
are only applied near B-rep edges and do not require a lot more e�ort to
compute than the ordinary Clough-Tocher techniques, whilst o�ering
comparable approximation quality, even after the boundary adjustment
step.
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5M U L T I S I D E D B - S P L I N E PAT C H E S

Parts of this chapter have been published as

• Gerben J. Hettinga, Pieter J. Barendrecht and Jiří Kosinka. "A Com-
parison of GPU Tessellation Strategies for Multisided Patches."

• Gerben J. Hettinga, and Jiří Kosinka. "A multisided C2 B-spline
patch over extraordinary vertices in quadrilateral meshes."

• Gerben J. Hettinga, and Jiří Kosinka. "Multisided B-spline patches
over extraordinary regions"
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We propose a generalised B-spline construction that extends uniform bi-
degree B-splines to multisided patches spanned over extraordinary regions
in arbitrary topologymeshes.We show how the structure of the generalised
Bézier patch introduced by Várady et al. can be adjusted to work with uni-
form B-spline basis functions as well as how they can be spanned over
extraordinary faces and vertices. We create ribbon surfaces based on B-
splines using special basis functions. The resulting multisided surfaces are
Cd−1 continuous internally and connect with Gd−1 continuity to adjacent
regular and other multisided B-spline patches. We visually assess the qual-
ity of these surfaces by comparing them to Catmull-Clark limit surfaces
on several challenging geometrical con�gurations. We design several spe-
cialised functions that increase the visual quality of the patches, in both
the extraordinary vertex and face settings.
In addition we create an augmentation of the traditional tessellation

pipeline with several di�erent strategies that e�ciently render multisided
patches through the use of generalised barycentric coordinates. The strate-
gies involve di�erent subdivisions of the polygon and the use of textures. In
addition, we show that adaptive tessellation techniques naturally extend
to some of these strategies whereas others need a slight adjustment. The
technique of Loop et al., commonly known as ACC-2, is extended to mul-
tisided faces to illustrate the e�ectiveness of multisided techniques. A per-
formance and quality comparison is made between the di�erent strategies
and remarks on the techniques and implementation details are provided.
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5.1 introduction

Arbitrary topology meshes introduce problems in the de�nition of B-
spline surfaces due to the extraordinary regions on which ordinary B-
splines cannot be applied. Dealing with these regions has been a long
standing problem in computer graphics and geometric design, and re-
cently also in (isogeometric) analysis. Extraordinary vertices and faces
do not posses a regular structure for which tensor-product B-splines are
well-de�ned. This leads to problems on how to de�ne smooth basis func-
tions at these regions. Many solutions have been proposed that try to
create basis functions or other smooth surfaces over the extraordinary
regions, most of which focus on quad-dominant meshes.

Subdivision surfaces (see Section 2.4.1) tackle the problem in an it-
erative manner where the smooth surface at extraordinary regions is
obtained by a re�nement process. This process reproduces B-spline sur-
faces in regular regions, but still there is no closed-form representation
in extraordinary regions. [Sta98] provides a way to evaluate the surface
at an arbitrary parametric position, but only in areas with restricted
topology of the control mesh. In whatever way subdivision surfaces
are de�ned they are typically only G1 at extraordinary vertices, and
can introduce other undesirable artefacts around this region, especially
when considering high-valency vertices or faces. Finding a subdivision
scheme that provides both good shape, global continuity higher than
G1 and that remains simple has not been found (yet) [RS19].

The generalised Bézier patch [VSK17] (see Section 2.3.5) generalises
the tensor-product Bézier patches to a face with an arbitrary number
of sides. It has the ability to interpolate positions and derivatives and
can be smoothly joined to other (multisided) Bézier patches. The sim-
ple structure remains as intuitive as ordinary Bézier surfaces and is
composed out of a combination of ribbons, partial Bézier surfaces. The
simple structure of these patches motived us to �nd means to alter the
structure of the patch and the basis functions so that they can be used in
combination with B-spline surfaces or integrated into existing B-spline
surfaces.

In this chapter we show how we can change the structure of the gen-
eralised Bézier patch to incorporate B-spline basis functions, so that
we can use them to create surfaces over extraordinary regions in B-
spline surfaces. In addition, we show how multisided generalised Gre-
gory Bézier patches can be used to approximate Catmull-Clark surfaces
over extraordinary regions using a multisided ACC2 [LSNC09] variant.
Finally, we show how multisided surfaces can be rendered e�ciently
using the GPU hardware tessellation pipeline.
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5.2 related work

There are many strategies that solve the related problem of using mul-
tiple quadrilateral elements around extraordinary vertices, so that they
join smoothly with surrounding (B-spline) regions and to each other.
However, for extraordinary faces there exists no such special setting
without reducing it to the extraordinary vertex case by splitting the
face. Catmull-Clark subdivision surfaces have been approximated by
Gregory patches [LSNC09], to create G1 smooth surfaces. For higher-
continuity, such asG2, higher degree patches have been used such as the
biseptic patches of [LS08b] and bi-sextic of Karčiuaskas & Peters [KP16].
[Pet19] provides an overview of such constructions.

Our approaches use a single parametric patch instead of a multitude
of patches. Over time there have been many di�erent multisided patch
structures. The aforementioned generalised Bézier patch is just one of
many. Recently an adjusted generalised Bézier patch has been devel-
oped that uses B-splines as boundary curves [Vai21]. However, when
joining this patch to adjacent B-spline regions the control points of the
ribbons have to be determined in Bézier format to guarantee G2 con-
tinuity. Our approach only uses adjusted B-spline basis functions so
that the original control points of the control mesh can be used. The
S-patch [LD89] is a Bézier patch constructed using a multinomial ex-
pansion of the Bernstein basis functions. However, it is not trivial to
include these patches in B-spline surfaces. Loop & DeRose [LD90] cre-
ated a means to include S-patches in special B-spline surfaces such that
they join with G1 continuity to biquadratic and bicubic regions. The
patches are of high-degree and have an extremely large number of con-
trol points. The corner interpolator patches of Gregory [GLZ90] are able
to interpolate arbitrary curves, derivatives and second derivatives, by
de�ning a patch as n blended corner surfaces. These surfaces have been
used to create arbitrary topology cubic B-spline surface [ZZZS05a] by
�rst using a number of Catmull-Clark subdivision steps. A related ap-
proach generalised biquadratic B-spline surfaces [ZZZS05b] with mul-
tisided Zheng& Ball patches [ZB97], but can only be applied to patches
with a limited number of sides.

More complicated constructions rely on the theory of manifold sur-
faces to generalise B-spline surface of arbitrary degree for arbitrary
topology meshes [YZ04, NG00]. A partition of unity combines overlap-
ping special charts associated with each element of the mesh. Although,
the extraordinary regions can be changed, this technique also inadver-
tently in�uences the surrounding regular regions.

5.3 multisided b-spline construction

For the multisided B-spline construction we �rst look at how we can
generalise uniform cubic B-splines to multisided regions. First we will
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Figure 5.1: Left: The control net of a pentagonal cubic generalised B-spline patch
with control point labels with respect to Γi . Right: The distribution of
blending functions for side Γi is shown.
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Figure 5.2: The extended basis functions used in the construction of the multisided
B-spline patch. Both E3

0(u) and E3
1(u) are simply the continuation of

the uniform B-spline kernel. E3
2(u) is a combination of a cubic and a

quintic function.

look at the regions around extraordinary vertices and their one-ring
neighbourhood. For an extraordinary vertex with valency n, a single
multisided patch is created, covering the one-ring neighbourhood. The
multisided B-spline patch is a combination of n ribbons. The ribbons
represent a composite B-spline surface with specially constructed ba-
sis functions, which we detail later. The control net for a cubic mul-
tisided cubic B-spline surface is shown in Figure 5.1. Regular bicubic
patches will leave a multisided hole where each side is adjacent to two
regular regions. Therefore, the ribbons of the multisided face must con-
nect smoothly to two patches at the side. Moreover, the patch should be
smooth by itself. For this we need to construct appropriate basis func-
tions.

5.3.1 Extended Cubic Basis Functions

We want to use B-spline basis functions for the ribbon surfaces, but sim-
ply interchanging the Bernstein functions for B-spline functions leads
to a few problems. First of all, all ribbons represent now a composite
surface and need to extend smoothly towards the inside of the patch. If
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not, discontinuities will be created within the patches, along the centre
of the patch running outwards towards the edges of the patch. More-
over, unlike the Bernstein basis functions, some of the standard B-spline
basis functions have non-zero values and derivatives at certain knots.
With the composite ribbons we are dealing with an increased interval
over [0, 2] with three knots. Therefore, we need to adjust the standard
B-spline basis functions to be C2 everywhere inside the patch and re-
produce the B-spline basis functions at certain other values within the
extended interval, and also vanish at the ends of the interval.

We create the functions E3
j (u) over the extended interval [0, 2] so that

they cover the domain of the B-spline ribbon. They are positive every-
where in the interval and remain within the range [0, 1]. In addition, on
[0, 1] they are equal to the standard uniform cubic B-spline basis func-
tions, i.e., E3

j (u) ≡ N 3
j (u) for u ∈ [0, 1]. Here N 3

j (u) is the j-th uniform
cubic B-spline basis function (see Section 2.4). With this we make sure
that these basis functions connect smoothly to the standard B-spline ba-
sis functions at the start of the interval and we inherit their favourable
shape properties. Then, we we also want to guarantee that the contri-
bution of a ribbon Γi vanishes on the distant sides Γi+2, · · · , Γi−2. This
means that it does not contribute positionally E3

j (2) = 0. In addition
the derivatives should also vanish meaning that the �rst and second
derivative should vanish at u = 2, too.

Unfortunately, merely extending the standard cubic basis functions
to have an extended support only partly satis�es the conditions, as only
some of the endpoint conditions are met. As the functions Ej are �ne
on the interval [0, 1], we only need to �nd suitable extensions to [1, 2]
that assure the listed conditions forG2 continuity. However, having this
piecewise representation of Ej adds additional constraints. As we do not
want to have lower thanC2 continuity at any point on the interval, care
must be taken to create a C2 continuous join at u = 1.

With these constraints we can start to design our basis functions. We
need to ensure G2 continuity with adjacent (regular) B-spline regions
for each B-spline ribbon. This means that each ribbon needs at least
three rows of control points and therefore also three basis functions.
In Figure 5.4 we show our three extended cubic basis functions. The
�rst and second basis functions are simply E3

0(u) ≡ N 3
0 (u), and E3

1(u) ≡
N 3

1 (u) with u ∈ [0, 2]. As these functions both vanish at u = 2 up to
second derivative, they satisfy all properties that we need to guarantee
smoothness of the ribbons. The third basis function does not vanish at
the end of the interval and we have to create a custom piece on [1, 2] as
a quintic polynomial:
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E3
2(u) =


N 3

2 (u), u ∈ [0, 1];
2
3 (2 − u)

5 + 2
3 5(2 − u)4(u − 1)

+ 17
30 10(2 − u)3(u − 1)2

u ∈ [1, 2].

It is impossible to create a cubic function that reproduces up to the sec-
ond derivative that of N 3

2 (u) at u = 1 and also has vanishing derivatives
up to order two at u = 2. Therefore, a quintic function is needed to join
smoothly to N 3

2 (u) on [1, 2]. The quintic function connects to the cubic
B-spline function withC2 continuity and at the endpoint of the interval
it vanishes along with its �rst and second derivative. The coe�cients
for the quintic function were obtained by solving the system


1 0 0
−3 3 0
6 −12 6



c0

c1

c2

 =


N 3
2 (1)

∂N 3
2 (u)
∂u

���
u=1

∂2N 3
2 (u)

∂2u

���
u=1

 ,

where ci are the coe�cients for a univariate quintic Bézier polynomial
over [0, 1]. We only need to determine the �rst three coe�cients c0, c1, c2,
as the other three coe�cients, c3, c4, c5, can simply be set to 0 to let all
of the necessary derivatives vanish. Finally, the piece is shifted from the
interval [0, 1] to [1, 2].

Having de�ned the extended basis functions, we are now ready to
de�ne the B-spline ribbons.

5.3.2 B-spline Ribbons and Patch

The de�nition of the multisided B-spline patch is very similar to that
of the generalised Bézier patch (see Section 2.3.5). It is also a combina-
tion of B-spline ribbons. The local ribbon parameters si and hi are con-
structed from generalised barycentric coordinates, and are continuously
de�ned over the whole patch. We scale the parameters so that they span
the interval [0, 2]: we set s̄i (ϕ) = 2(1 − ϕi − ϕi−1) and h̄i (ϕ) =

2ϕi
ϕi+ϕi−1

.
Then we use the standard uniform cubic B-spline basis functions along
s̄i and the extended basis functions along h̄i .

Next, we have to make sure that control points which are used in
multiple ribbons are blended correctly. The distribution of the blending
functions for a single ribbon is shown in Figure 5.1, right. All control
points have at least one attached blending function and the middle col-
umn has two because that column of control points is shared with the
B-spline ribbons on Γi−1 and Γi+1. Each ribbon has at least three rows of
control points to be able to join with G2 continuity to adjacent regions,
and thus the overlap is necessary. We can now complete the ribbon def-
inition:
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Ri (u,v) =

∑3

j=0
∑2

k=0 υ
i
jbjkN

3
j (u)E

3
k (v) u ∈ [0, 1),∑6

j=3
∑2

k=0ω
i
jbjkN

3
j−3(u − 1)E3

k (v) u ∈ [1, 2],

with v ∈ [0, 2]. Here, N 3
j are the uniform cubic B-spline basis functions

and E3
k are extended cubic basis functions as de�ned above. The distri-

bution of the blending functions is governed by

υij =


α3
i j < 3;

α3
i β

3
i j = 3;

, ωi
j =


α3
i β

3
i j = 3;

β3
i j > 3.

The ribbon blending functions are similar to the one used in the (en-
hanced) generalised Bézier patch [VSK17], but instead of squared terms
they are cubed. This is necessary to let the right derivatives vanish as
we will show in Section 5.5.

The cubic B-spline ribbon is a piecewiseC2 surface where the pieces
join at u = 1. The blending functions introduce removable singularities
in the corners of the patches, due to a zero denominator. These corners
correspond exactly with the limit positions, which can be found by ap-
plying the regular limit stencil

1 4 1
4 16 4
1 4 1

 /36

to the one-ring of vertices of the control mesh around the corner ver-
tices, for example bi11 and bi31, surrounding the extraordinary vertex.

The ribbons can be combined into the �nal surface:

S3(ϕ) =
n∑
i=0

Ri (s̄i , h̄i ).

Similarly to the generalised Bézier patch, this patch can be made a�ne
invariant either by normalisation by dividing it by the sum of basis and
blending functions:

f (ϕ) =
∑n

i=0 ri (si ,hi ), where

ri (u,v) =

∑3

j=0
∑2

k=0 µ
i
jN

3
j (u)E

3
k (v) u ∈ [0, 1),∑6

j=3
∑2

k=0 µ
i
jN

3
j−3(u − 1)E3

k (v) u ∈ [1, 2],

(5.1)

or by introduction of an additional point that takes care of the excess or
de�cient weight in the basis functions as is done with the generalised
Bézier patch.

64



5.4 multisided b-spline patches

The structure of the generalised B-spline patch is simple and requires
only the control points of the B-spline control net. This is in contrast
to other methods like [ZZZS05b] or [Vai21] that �rst need to extract
the Bézier control points. The surfaces are a�ne invariant, preserve the
convex hull property, and edits to the control mesh have local in�uence.
The internal continuity of the patch isC2 as the ribbons themselves are
piecewise surfaces.

5.4 multisided b-spline patches

Having seen the example of the cubic generalised B-spline patches we
can now generalize this structure to B-spline patches of arbitrary degree
and also to use the same structure to also create patches over extraordi-
nary faces. Extraordinary vertex and face patches need to be processed
slightly di�erently as the control nets of the latter are slightly larger.

As we saw in the cubic case, a number of subdivision steps are needed
to separate extraordinary regions and to create a su�cient regular re-
gion around them to be able to de�ne the ribbons correctly. For bi-
degreed B-splines, a separation of at leastd−1 regular vertices is needed.
However, we want our subdivision step to be compatible with the de-
gree of the B-splines we are trying to create. Therefore we employ arbi-
trary degree subdivision [Sta01] (see Section 2.4.1), until extraordinary
regions are separated su�ciently.

5.4.1 Extraordinary Vertex Patches

We can generalize the structure of the multisided B-spline patches to
other degree B-spline surfaces. We will skip the trivial bilinear B-spline
case and consider the next simplest case of biquadratic B-spline surfaces.
The main di�erence with the cubic case is that each ribbon is just a
single B-spline surface. They consist of a control net of 3 × 2 control
points. Again, we use mostly standard uniform quadratic B-spline basis
functions except for the last row of control points. Thus E2

0(u) = N 2
0 (u),

but for the second row we need to again create a custom basis function
that vanishes at the end of the interval. In this case we only need that
the basis functions connect withC1 continuity at the start of the interval
and vanish positionally and up to the �rst derivative at the end. For this
a simple cubic function is su�cient

E1
2(u) =

1
2
(1 − u)3 +

5
2
(1 − u)2u.

The distribution of the blending functions α2
i and βi is also analogous,

in that they overlap in the middle column of control points for each
ribbon. The degree of each term in the blending functions needs to be
just quadratic.
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Figure 5.3: The control point layout for extraordinary vertex patches up to quartic
patches for a pentagonal patch (valency �ve). The red area denotes the
control points used in a quadratic patch and the green for a cubic patch,
the rest of the control points are used in quartic patches. The black areas
enclosed by their respective degrees denote the control points used in a
single ribbon.

A biquartic generalisation would have to be created from B-spline
ribbons which consist of three pieces each. Each ribbon consists of four
rows of control points with seven columns each. This time the �rst three
rows of control points can be used with standard uniform quartic B-
spline basis functions. Again we need to extend the interval and can do
so by scaling our local parameters s̄i = 3si and h̄i = 3hi . For the last row
we need to again determine an extended basis function that joins with
C3 continuity at the start of the interval and vanishes up to the third
derivative at u = 3. We need a septic function to be able to do so.

The generalisation follows a pattern where increasing the degree re-
quires both more pieces per ribbon surface as well as scaling the para-
metric domain. With this comes the increased separation between ex-
traordinary vertices. Using this we can develop a general formulation
of a multisided B-spline of arbitrary degree.

The extraordinary vertex patch ribbons are piecewise surfaces com-
posed out of d − 1 polynomial pieces. Each piecewise surface has d − 1
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rows and d columns of control points, totalling d × (d + 1) points. Then
the ribbon de�nition is

Rdi (u,v)=



d+0∑
j=0

d−1∑
k=0

υijkb
i
jkN

d
j−0(u−0)Edk (v) u ∈ [0, 1),

...
...

d+e∑
j=e

d−1∑
k=0

υijkb
i
jkN

d
j−e (u−e)E

d
k (v) u ∈ [d−2,d−1],

where e = d − 2 and v ∈ [0,d − 1]. The functions Edd−1 restricted to the
last knot-interval [d−2,d−1] can be represented as Bézier polynomials
of degree 2d − 1 for which the �rst d − 1 coe�cients ci can be found by
solving the system PQx = b, where

P =



1
1∏
i=1
(2d − 1 − i)

. . .
d−1∏
i=1
(2d − 1 − i)


,

Q =


1

(−1)1
(1
0
)
(−1)2

(1
1
)

...
. . .

(−1)1
(d−1

0
)

· · · (−1)d
(d−1
d−1

)


and

x =


c0
...

cd−1

 , b =


N 2d−1
d−1 |u=d−2

...
dd−1N 2d−1

d−1
dud−1 |u=d−2

 .

Again, the remaining coe�cients can be set to zero so that all deriva-
tives vanish at the end of the interval and �nally the function needs to
be shifted by d − 1 intervals. In the quadratic case, the extended basis
function is E2

1(u) =
1
2 (1−u)

3 + 5(1−u)2u, and in the quartic case we get

E4
3(u) =


N 4

3 (u), u ∈ [0, 2),
11
24 (1 −v)

7 + 7 65
168 (1 −v)

6v+

21 103
336 (1 −v)

5v2 + 35 383
1680 (1 −v)

4v3
u ∈ [2, 3],

where v = (u − 2). Naturally, Epj (u) ≡ N
p
k (u),∀p ∈ [0,d − 2]. Figure 5.4

shows the extended basis functions for quadratic, cubic and quartic
patches.
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u0 1 2 3

Figure 5.4: The quadratic (green), cubic (blue) and quartic (magenta) extended
basis functions used in the construction of the multisided B-spline EV
patches.

A patch of bi-degree d needs to blend d − 1 rows and columns of
its control mesh functions, and thus the following blending function
distribution is applied

υijk =


αdi j < d ,

αdi β
d
i j = d ,

βdi j > d .

The complete patch de�nition is then

Sd (ϕ) =
n∑
i=0

Ri ((d − 1)si , (d − 1)hi ).

Internally the patches areCd−1 continuous, and connect withGd−1 con-
tinuity to adjacent B-spline patches (see Section 5.5).

5.4.2 Extraordinary Face Patches

We can use the same ideas to span patches over extraordinary faces.
However, we have to take into account some key di�erences. First of
all the patches are composed out of an increased number of pieces com-
pared with the vertex patches. This does not have to be a downside as
this increased separation leads to an increased parametric interval lead-
ing to all the �rstd basis functions having vanished at the end of it. This
means we attach the standard uniform B-spline basis functions for all
control points of the patch. An extraordinary face B-spline ribbon con-
sists out of d pieces and has d rows and 2d columns of control points.
Figure 5.5 shows the control net for these patches for quadratic up to
quartic degrees. The ribbon de�nition is
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bi00
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bi00
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bi73

Figure 5.5: The control point layout for extraordinary face patches up to quartic
patches for a pentagonal patch (valency 5). The red area denotes the
control points used in a quadratic patch and the green for a cubic patch,
the rest of the control points are used in quartic patches. The black areas
enclosed by their respective degrees denote the control points used in a
single ribbon.

Rdi (u,v)=



d+0∑
j=0

d−1∑
k=0

ωi
jkbjkN

d
j−0(u−0)N d

k (v) u ∈ [0, 1),

...
...

d+c∑
j=c

d−1∑
k=0

ωi
jkbjkN

d
j−c (u−c)N

d
k (v) u ∈ [d − 1,d],

with c = d − 1 and v ∈ [0,d]. The ribbons use the (same) blending
functions

ωi
jk =


αdi j ≤ d ,

βdi j > d ,

but this time there is no overlap in the blending functions of the centre
column of control points. For a degree d patch the extraordinary faces
should be separated by at least d − 1 layers of regular faces. This time
the local parameters si and hi need to be scaled by d to encompass the
extended intervals, resulting in the patch de�nition

Sd (ϕ) =
n∑
i=0

Ri (dsi ,dhi ).
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quadratic cubic quartic

Figure 5.6: Re�ection lines visualisations at an octagonal extraordinary vertex (top
row) and face patches (bottom row) for di�erent degrees of multisided
B-spline patches.

5.5 continuity

The d-degree multisided B-spline patches are Gd−1 continuous with re-
spect to neighbouring regular regions and other multisided B-spline
patches. This can easily be seen from the construction of the B-spline
ribbons and their associated blending functions. We want to show that
the only ribbon that contributes positionally and di�erentially towards
the patch on the boundary Γi is Ri . Let us examine a control point to-
wards the left side of ribbon Ri , which is shared with Ri−1, and its asso-
ciated basis function:

αdi B(si ,hi ) + β
d
i−1C(si−1,hi−1), (5.2)

where
B(u,v) = N d

j (u)E
d
k (v) of Ri and

C(u,v) = N d
d−k (u − 1)Edj (v) of Ri−1.

The blending functions αdi and βdi have the following properties on Γi

αdi
��
Γi
= 1, ∂jαdi

��
Γi
= 0, ∀j > 0,

βdi−1
��
Γi
= 0, ∂jβdi−1

��
Γi
= 0, ∀j > 0,

where the derivative is taken in some direction not parallel to si . By
taking thep-th derivative ∂p of (5.2) in a particular direction not parallel
to si on Γi , we thus obtain

∂p (αdi )B(si , 0) + αdi ∂
p (B(si ,hi ))|hi=0 + ∂

j (βdi−1)C(1,hi−1)+

βdi−1∂
j (C(si−1,hi−1))|si−1=1

=0 · B(si , 0) + 1 · ∂p (B(si ,hi ))|hi=0 + 0 ·C(1,hi−1)+

0 · ∂j (C(si−1,hi−1))|si−1=1

=∂p (B(si ,hi ))|hi=0.
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This is exactly the p-th derivative of the basis functions of the ribbon
Ri , which is what we set out to show. This shows that only the ribbon as-
sociated with Γi contributes to this side, and that the multisided patches
will reproduce the derivatives of their input B-spline ribbons. This pro-
cess also happens analogously with respect to Ri+1, and therefore the
patches connect with Gd−1 continuity. Internally the patches are Cd−1

because the B-spline ribbons they are constructed from areCd−1 contin-
uous.

5.6 results

This section shows various comparisons with existing techniques and
explores avenues to decrease some of the de�ciencies of the proposed
multisided constructions.

5.6.1 Challenging Cases

As Catmull-Clark subdivision surfaces are one of the most used repre-
sentations for B-splines surfaces of arbitrary topology we want to look
at how our multisided cubic patches compare to them. In Figure 5.7,
we show several challenging extraordinary vertex settings. Each one of
these geometries requires a single Catmull-Clark subdivision step to be
able to generate a cubic multisided patch, which is then surrounded by
a strip of regular cubic patches. We compare the resulting patches with
the limit surface obtained through subdivision. Internally, our patches
are smooth and show no unexpected changes in the re�ection lines, es-
pecially around the extraordinary region. In this region we can also
see the main di�erence with respect to the Catmull-Clark limit surface,
which is only G1 in that region and shows a pinching artefact that is
noticeable in the re�ection lines. Our patches are C2 everywhere and
connect with G2 continuity to the surrounding regular regions.

5.6.2 Arbitrary Topology Meshes

The ability of our patches to create smooth B-splines surfaces is shown
for di�erent surface with multiple extraordinary vertices and faces in
Figure 5.8. The multisided patches are even able to be joined to each
other with expected smoothness given the underlying degree of the B-
spline scheme used.

5.6.3 E�ect of Normalisation

Like the generalised Bézier patch, we use normalisation to create
patches that are a�ne invariant. However, the normalisation has some
e�ect on the shape of the inside of the patches. This is mainly due to the
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Figure 5.7: Several di�erent mesh geometries with an extraordinary vertex for
which a multisided generalised B-spline patch is generated. From top
to bottom: Control mesh, shaded multisided B-spline patch and sur-
rounding regular patches, shaded Catmull-Clark limit surface, re�ec-
tion lines on the multisided B-spline patch and surrounding regular
patches, re�ection lines on the Catmull-Clark limit surface, mean cur-
vature of the multisided B-spline patch (from red (negative curvature)
via green to blue (positive curvature)). Observe that our construction
does not su�er from pinching artefacts near the extraordinary points.

di�erence in total weight sum throughout the patches. In Figure 5.6 we
show and highlight the e�ect that normalisation has on the centre of
octagonal patches of varying degree. We can observe in the quadratic
case that the patches tend to �atten o� towards the centre of the patches.
For higher degree patches it becomes less prominent, but still notice-
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Figure 5.8: Left: Shading and control mesh. Middle left: Shading with patch bound-
aries. Middle right: Re�ection lines and patch boundaries. Right: De-
tail of re�ection lines and patch boundaries. Top to bottom: 12 trian-
gles, 64 quadrilaterals, 12 pentagons; 8 triangles, 248 quadrilaterals, 8
hexagons; 84 triangles, 1656 quadrilaterals, 42 pentagons, 18 hexagons,
2 heptagons; 16 triangles, 64 quadrilaterals, 2 octagons.

able. The e�ect is more stringent for extraordinary face patches, as can
be seen from the bottom row of Figure 5.6.

To reason about why this happens we have to look at the distribution
of the weights f (ϕ) (see Equation (5.1)) over the inside of the patch. In
Figure 5.9 we show the sum of weights f (ϕ) for all points of the patches.
We can notice two things, the de�cient weight increases both with va-
lency and with degree for EV and EF patches. The de�cient weight is
a major factor that in�uences the shape of the patches and it seems
that the shape of the patches, or at least the �atness, can be improved
by having improved weight functions. Using this observation, we have
investigated and designed several special basis functions that strive to
improve the shape of the patches.

73



multisided b-spline patches

0 1 1.2
Figure 5.9: Weight de�ciency/excess for triangles, and pentagons up to oc-

tagons. Left to right column: the quadratic, cubic and quartic case.
Each image shows the sum of weights for EV patches on the left and
EF patches on the right.

5.6.4 Shape Adjusted Basis Functions

The extended basis functions have to adhere to a few requirements, such
as the joining withCd−1 continuity at the start of their interval and van-
ishing up to the d − 1-th derivative at the end. They remain positive ev-
erywhere and internally are also Cd−1. With these constraints in mind
we can design di�erent functions that increase the weight at the centre
of the interval. In this way we can increase the contribution of di�er-
ent control points throughout the patch and can tune the shape of the
patches, without losing any of the continuity properties internally and
externally. As before these adjusted functions are only attached to the
hi parameter of each ribbon, changing only the surface following the
parametric direction going towards the inside the patch.

As quadratic patches have only few functions to adjust and the e�ect
of the normalisation is the most prominent, we start with them. We have
created a parametrised function that uses ρ, to control added weight
to the patch. With certain settings of the parameter it can even lead
to excess weight. The centre function for a quadratic EV patch is a C1

piecewise cubic function on [0, 1] (see Figure 5.12), de�ned as

V 2
1 (u) =


1
2
(1 − 2u)3 + 4(1 − 2u)2u + 3ρ(1 − 2u)(2u)2 + ρ(2u)3 u ∈ [0, 1

2 ],

ρ(2 − 2u)3 + 3ρ(2 − 2u)(2u − 1) u ∈ [ 12 , 1].
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Figure 5.10: Top row: A quadratic octagonal EV patch. Bottom row: An object with
several valency 3 and 5 quadratic EV patches. From left to right: Stan-
dard extended basis functions, with centre functions with ρ = 3

4 , and
with ρ = 1.

Figure 5.11: Re�ection line renderings of a quadratic EF patch. Left: with standard
extended basis functions. Right: using F 2

0 (u) and F
2
1 (u).

In Figure 5.11, we show the e�ect of using our hand-crafted functions
and varying the values of ρ. We can see that by increasing the parameter
value of ρ we can improve the fullness of the quadratic extraordinary
vertex patches. Increasing the weight of a function towards the centre of
the interval seems like a good means to alleviate �atness. To this end we
have also created adjusted functions for higher degree than quadratic
extraordinary vertex and faces patches. Again some of these functions
are parametrised to adjust the functions at will.

We �rst de�ne

B[a0,a1, . . . ,ad ](u) =
d∑
i=0

aiB
d
i (u)

with Bdi (u) the Bernstein polynomials of degree d . In other words, the
sequence [a0,a1, . . . ,ad ] are the control values of the polynomial in the
Bernstein-Bézier form.
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u0 1

Figure 5.12: The proposed cubic function V 2
1 (u) attached to the central control

point in quadratic EV patches. The original N 2
1 (u) is shown in green,

the adjusted function with ρ = 3
4 in black, and the adjusted function

with ρ = 1 in blue.

We create the following basis functions for quadratic extraordinary
faces patches:

F 2
0 (u) =


B[ 12 , 5

6 ,b,a](u) u ∈ [0, 1],

B[a, 2a − b, 0, 0](u − 1) u ∈ [1, 2],

and

F 2
1 (u) =


B[ 12 , 1

2 , b̄, ā](u) u ∈ [0, 1],

B[ā, 2ā − b̄, 0, 0](u − 1) u ∈ [1, 2].

We chose the parameters a = 0.6,b = 0.8 and ā = 0.1, b̄ = 0.23. No mat-
ter what values are chosen for a and b, the functions are alwaysC1. The
functions are this time attached to not only the centrally placed control
points, but rather all extended basis functions in the hi direction are
replaced by these new expressions. The functions are shown in Figure
5.13.

We created the following expression for the adjusted extended basis
function as a piecewise quintic Bézier function with coe�cients for cu-
bic EV and EF patches respectively:

V 3
2 (u) =


B5[ 16 , 4

15 , 5
12 , 55

100 , 4
5 , 6

5 ](u) u ∈ [0, 1],

B5[ 65 , 12
5 −

4
5 , 12

5 −
55
100 , 0, 0, 0](u − 1) u ∈ [1, 2],

and

F 3
2 (u) =


D3

2(u) u ∈ [0, 1],

B5[ 23 , 2
3 , 17

30 , 2
5 , 2

5 , 2
5 ](u − 1) u ∈ [1, 2],

B5[ 25 , 2
5 , 2

5 , 0, 0, 0](u − 2) u ∈ [2, 3].

The functions are shown and compared to the normal extended basis
functions in Figures 5.14 and 5.15, respectively.
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u0 1 2

F 2
0 (u)

F 2
1 (u)

Figure 5.13: Adjusted extended basis functions for the centrally placed control
points of quadratic EF patches: F 2

0 (u) (blue) and F
2
1 (u) (green).

u0 1 2

V 3
2 (u)

E3
2 (u)

Figure 5.14: Adjusted extended basis function for the central control point of cubic
EV patches. V 3

2 (u) (green) and E
3
2(u) (red).

u0 1 2

F 3
2 (u)

E3
2 (u)

Figure 5.15: Adjusted extended basis function for the ring of central control points
of cubic EF patches. F 3

2 (u) (green) and E
3
2(u) (red).

Naturally, the same process can be done for higher-degree patches as
well. However, as their extended basis functions consist out of more in-
dividual polynomial pieces, the functions have a more complicated def-
inition, due to a higher number of derivatives that have to be matched.
Furthermore, the shape of the functions must be considered carefully,
as oscillating or otherwise poorly shaped functions will also show clear
changes in the resulting patches.

In Figure 5.11, we show the di�erence between using the standard ex-
tended basis functions or using our hand-picked ones for quadratic EF
patches. And Figure 5.16 shows the di�erence between the standard ex-
tended cubic basis functions and our adjusted ones. In all cases the �at-
ness towards the centre is alleviated and improved fullness is achieved.
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Figure 5.16: Re�ection line renderings of, top row: octagonal extraordinary vertex
patch, bottom row: octagonal extraordinary face patch. Left column:
without adjusted centre basis functions and, right column, with ad-
justed centre basis functions.

5.7 discussion

We have seen that it is possible to create functions that can adjust the
shape of the patches internally without ruining the continuity with re-
spect to adjacent patches or internally. However, even with these func-
tions weight de�ciency remains an issue, as the �atness can never be
alleviated perfectly, without having small undulations or other pertur-
bations in the surface. Creating these special functions requires careful
consideration, and do not provide a uni�ed best setting. In some geo-
metrical settings an adjusted basis function might provide a pleasing
surface whereas in other it does not do so. The designer would have to
carefully tune parameters to get the best result. This ruins the simplicity
of the patches, which we believe should remain as intuitive and simple
as standard tensor-product B-spline patches. The use of Bézier functions
and a smaller interval for the ribbons of [Vai21] might provide better
shape properties than our approach with extended basis functions. Our
designed functions provide only one of the possibles choices for these
functions. As mentioned in Section 5.6, as long as the functions vanish
at the end of the interval and they connect with su�cient smoothness
at everywhere else, they are valid functions. By tuning all functions
carefully it might be possible to minimise the weight de�ciency for all
positions on the patch, but this can become a challenging task, due to
large number of parameters involved.
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Usability of our patches might also be limited by the topological con-
straints we set for the input meshes, as these require a certain separation
of extraordinary regions. Of course, this is simply �xed by applying a
few initial steps of general degree subdivision, but may provide to be
counter-intuitive whilst designing meshes.

5.8 rendering multisided patches

We have seen that splines provide a very useful means to represent and
edit curves and surfaces. An important part in working with these sur-
faces for designers is the ability to instantly manipulate these surfaces
through adjusting their parameters. With this it becomes important to
be able to e�ciently render these surfaces. The parametric nature of
splines allows them to be evaluated e�ciently, because many paramet-
ric positions on the spline can be evaluated in parallel and afterwards
can be connected topologically into a linear approximation of the spline,
such as a triangulation. The spline can be said to be tessellated into lin-
ear triangles

This embarrassingly parallel workload has led to dedicated hardware
components on the GPU that generate points e�ciently and in paral-
lel. This process is known as hardware tessellation, and is a powerful
tool for evaluating parametric curves and surfaces. It has been used in
game engines through the techniques of Phong Tessellation [BA08] and
PN-triangles [VPBM01]. These techniques augment the standard ren-
dering pipeline, where vertices and normals are sent to the GPU, and
Bézier patches are constructed and evaluated on-the-�y. In this way,
richer geometry is created without adding any additional data which
may congest the CPU-GPU bus. Other ways in which hardware tessel-
lation may help in creating richer geometry is through displacement
mapping [SKU08], where a smooth normal �eld is displaced according
to some function (see Section 7.3, where we apply procedural noise func-
tions with displacement functions) or through height values stored in a
texture [NL13].

The tessellation pipeline of modern GPUs is fully programmable,
meaning that tessellation is only de�ned in an abstract manner. It is pos-
sible to tessellate three di�erent abstract patch types which are triangles,
quadrilaterals and isolines and this is re�ected in which type of paramet-
ric coordinates are supplied by the GPU. These are either barycentric co-
ordinates, for triangles, or (bi)linear coordinates for quadrilaterals and
isolines. Tessellation happens in between the vertex and fragment shad-
ing stages of the rendering pipeline. There are two parts to tessellation
the control stage (TCS) and the evaluation stage (TES), each with their
respective shaders. In the Direct3D pipeline these stages are called the
hull- and domain-shading stages and are equivalent to their OpenGL
counterparts. Typically, the control stage is used to set up a patch, e.g.
set up the control points in a set order so that the patch can be evaluated
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easily. In addition, the tessellation levels are set. These levels determine
the number of generated points for each of the individual edges and the
inside of the patch. Then the tessellation primitive generation, a �xed-
function stage, will generate points on the patch and connect them into
primitives, such as triangles and lines. Each of the generated points is at
that point in the pipeline only a parametric position on the patch. The
parametric position is the input of the evaluation stage along with the
created patch of the control stage. Then a position on a patch, through
for instance the de Casteljau algorithm can be computed and output to
the fragment shader stage along with anything else that needs to be
output. In this sense the tessellation stage of the rendering pipeline is
versatile, but it is only geared for those few abstract patch types. For
multisided patches, no such abstract patch type is available.

The multisided B-spline patches of the preceding chapters have good
visual quality and continuity properties, but if they are not able to be
rendered e�ectively they are of little use. This also holds for other in-
teresting multisided patch schemes that have been developed in the
past [LD89] and recent years [VSK16]. Even though, there have been
many such techniques, multisided patches have not seen wide adoption,
which might in part be due to the inability to render them e�ectively.
Over time, various methods have been proposed to render multisided
patches. Instancing and geometry shaders were used to render a spe-
cial 5-sided patch called the Pm patch [MNP08]. Similarly, geometry
shaders were combined with transform feedback to render multisided
patches [LWZ11]. However, it is known that geometry shaders do not
scale well, due to them not being able to be scheduled e�ectively and ru-
ining parallelism. Phong Tessellation and PN-polygons have been gen-
eralised to multisided patches using a simple triangulation of a regular
domain polygon and the tessellation pipeline.

This section (Section 5.8) proposes several strategies (see Figure 5.18)
to augment the existing graphics pipeline with the ability to e�ciently
render multisided polygons and parametric patches. In Section 5.8.1 an
in-depth explanation of the proposed strategies is given, including how
they can be used e�ciently in the rendering pipeline. In Section 5.8.2,
adaptive tessellation for multisided polygons is discussed. After this, in
Section 5.8.3, visual and performance comparisons of the strategies are
made, and a multisided generalisation of ACC-2 [LSNC09] is given as
an application of our methods.

5.8.1 Tessellation Strategies

Rendering multisided polygons and multisided parametric patches re-
quires a few steps. First of all we need to de�ne or generate generalised
barycentric coordinates for the multisided polygon. Now this is gener-
ally only possible when the polygon is planar. For this we create ω as
the planar parametrisation domain of an arbitrary (possibly non-planar)
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Texture

TES (u ,v ,w ) Regular polygon Multisided surface patch

GBCs

TES (u ,v)

(Bi-)linear
interpolation

Figure 5.17: Our tessellation process. Bilinear or barycentric coordinates are used
to �nd a position on a texture or on a regular polygon. From these
positions generalised barycentric coordinates (GBCs) can be retrieved
or calculated.

polygon Ω with vertices vi , i = 1 . . .n. ω has 2D vertices wi , i = 1 . . .n.
We can then de�ne a point p ∈ ω for which we can create generalised
barycentric coordinates ϕ. Then we can evaluate a position on Ω using
q =

∑n
i=1 ϕi (p)vi .

The parametrisation domain should be subdivided into polygons that
can be processed by the tessellation pipeline. This means either trian-
gulating or quadrangulating the parameter domain, so that each mul-
tisided patch can be rendered as a collection of patches. Each one of
these sub-polygons can be tessellated through the standard tessella-
tion pipeline, using the regular barycentric or bilinear coordinates to
do so. However, this would only create a piecewise approximation to
the multisided- polygon or patch. Instead, we use the parametric coordi-
nates to compute a point on a sub-polygon of a regular parametrisation
domain and then compute generalised barycentric coordinates for this
point using the whole domain, see Figure 5.17. For the subdivision step
we created two di�erent pairs of subdivisions, each pair consisting of a
triangulation and a quadrangulation. This subdivision step is not done
explicitly, but only implicitly through the use of instanced rendering. In-
stanced rendering allows to render the same geometry data multiple
times. Then by using the index of the currently rendered instance, we
can determine which sub-polygon of the subdivision we are on.

The �rst strategy is a fanning subdivision of the polygon. This was al-
ready described [HK17] for the triangular case. It creates triangles from
the �rst vertex of the polygon towards the other to create n − 2 trian-
gles. For polygons with even valencies, such as hexagons or octagons,
we can de�ne a fanning quadrangulation so that n/2 − 2 quadrilaterals
are created. The second strategy makes use of the barycentre to create
a symmetrical subdivision around the centre of the parametrisation do-
main. In this way n triangular sectors or, in the case of a polygon with
even valency,n/2 quadrilateral sectors are created. A triangular sector is
created by connecting two consecutive vertices on the parametrisation
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Figure 5.18: Di�erent tessellation strategies applied to a non-planar octagon. Top
row: fanning quadrangulation, fanning triangulation. Bottom row:
symmetric quadrangulation, symmetric triangulation.

domain with the centroid. The quadrilateral case is similar, but takes
three consecutive vertices.

As said before we use instancing and the instance index k to deter-
mine which sub-polygon should be evaluated. When calculating the
generalised barycentric coordinates it means determining the vertices
of the sub-polygon using the instance k . When considering triangular
subdivisions we can get three vertices of the parametrisation domain
using w(k+i)modn , i = 1, 2 and w1 as either the origin of the fan, or the
barycentre in the symmetric strategy. For quadrilaterals we can do the
same w(2k+i)modn , i = 1 . . . 3 and either w1 or the barycentre, for the
fanning or symmetric strategies, respectively.

The symmetric subdivision strategy has an added advantage, which
makes it possible to use textures to store pre-computed generalised
barycentric coordinates. Since our parametrisation domain is a regu-
lar polygon, it makes the coordinate functions n-fold symmetric. Thus
by computing all coordinates for one sector of the polygon, we can de-
termine coordinates on other sectors by shifting coordinate functions.
To e�ciently store and retrieve these coordinates we make use of 3D
textures. Each layer of the texture storing a single coordinate function
where a sector is mapped onto the (u,v)-domain of the texture. For tri-
angular sectors this means mapping to the lower part of the domain
where u + v ≤ 1. With this approach is becomes possible to also use
more computationally intensive types of generalised barycentric coor-
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dinates, such as harmonic coordinates [JMD+07]. However, since the
parametrisation domain is only regular Wachspress coordinates will
also work great. Then we can again determine the correct order of co-
ordinate functions using the instance number k . We can determine the
correct coordinate using ϕ(i+k )modn .

Unfortunately, it is not possible to have a variable number of input
vertices to the tessellation stage. This means we need to create a sep-
arate shader program for each valency n of polygon we are rendering.
We create a shader for each valency n and store them in an array. Then
to e�ciently render a model with polygons of di�erent valency we �rst
batch together all vertices of a valency and render these in batches so
that we keep the overhead of the switching shaders to a minimum. We
do not have to hard-code the parameters valencies into the shader, and
allow shaders to be created on demand by replacing valency �ags in the
shaders when a shader is needed.

5.8.2 Adaptive Tessellation

Adaptive tessellation is an additional step one can take to speed up ren-
dering by only tessellating in areas where it will show an actual bene�t.
Think of the contours of a piecewise linear approximation of a sphere
where the individual triangles can clearly be seen, but at the center of
the sphere the shading will create a much better illusion of good quality
geometry. Techniques such as Phong tessellation and PN-triangles can
arti�cially in�ate the geometry through tessellation of Bézier patches,
and will be most e�ective when used around those contours. There are
di�erent ways to apply adaptive tessellation to a 3D model. Most often
the tessellation factor is determined from the ways vertices, edges, or
faces project onto the screen. A commonly-used strategy computes tes-
sellation levels by calculating the projected length of a polygon’s edges
in screen space [Can11]. This can be used to match the tessellation level
with the number of pixels an edge projects to. Other techniques that aim
to improve contours of objects can look at the angle between the nor-
mal of a vertex and the viewing direction [BA08]. In this way faces that
are facing almost away from the viewer are tessellated more densely.

For adaptive tessellation of multisided patches we can use the same
principles, but need to proceed di�erently considering the intermediate
subdivision of the patches. Cracks will be generated in the surface by
having di�erent tessellation levels for patches that meet at a common
edge. Care must be taken that such edges are assigned the identical tes-
sellation levels. For multisided patches this is automatically guaranteed
for the boundary edges of the polygon, but not for the spokes of the sym-
metric subdivision strategies. In that case there exists no centre vertex,
as this is implicitly de�ned by the generalised barycentric coordinates,
the subdivision and the patch itself. Therefore we approximate the po-
sition of the centre of the multisided patch, by averaging the n vertices

83



multisided b-spline patches

Figure 5.19: A dodecahedron model using the symmetric triangulation strategy
is adaptively tessellated and the wireframe is shown with shading.
Di�erence in tessellation density can be observed, but there are no
gaps in the tessellation.

of the polygon. For higher-order patches, such as the generalised Bézier
patch, we can approximate it by taking the average of the most centrally
placed control points. It is also possible to evaluate the exact midpoint
of a patch. However, at the stage where tessellation values are deter-
mined, the control shader stage, it might be di�cult to have easy access
to all control points of a patch and care should be taken to make them
available.

5.8.3 Results & Performance

To investigate the quality of the tessellation generated by the four dif-
ferent strategies of subdivision we have computed the discrete mean
curvature of the resulting triangulation. In Figures 5.18 and 5.20 we
can already see that the two symmetric strategies provide a tessella-
tion that is more uniform. During the calculation of the discrete mean
curvature, artefacts are created in regions where the density of the tri-
angulation rapidly changes. This is due to the more variable size of the
sub-polygons in the fanning strategies.

performance Although the tessellation pipeline is usually very
fast, we introduce more overhead to the rendering process due to the
necessity of having to switch shaders between rendering each batch of
polygons of the same valency. However, we are still able to render poly-
gons with good performance. In Figure 5.21 we show a performance
comparison for the rendering of a complex model containing di�erent
multisided polygons. The performance captures were done on a PC with
an Intel Core i7-4770K CPU and an NVIDIA GeForce GTX 770 with 4GB
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fanning

symmetric

quadrangulation triangulation

Figure 5.20: Discrete mean curvature [MDSB03] visualised on a non-planar oc-
tagon with respect to the di�erent subdivision methods, cf. Fig-
ure 5.18. Note that the fanning subdivisions lead to artefacts when
estimating discrete mean curvature due to uneven tessellation den-
sities.

of memory running NVIDIA drivers for Ubuntu Linux using OpenGL
4.5. For all captures the maximum tessellation level of 64×64 was used to
render the object, no adaptive tessellation was used. As we can see the
object is able to be rendered in realtime for all the di�erent strategies.

We would like to examine now how the performance of the di�erent
techniques stack up to each other. First of all the results indicate that a
substantial performance gain can be achieved when using the texture-
based approach of retrieving pre-calculated generalised barycentric co-
ordinates. Secondly the symmetric subdivision of the parametrisation
domain performs better than the fanning triangulation. Worst perfor-
mance is observed when using the fanning triangulation. Naturally, the
cause of this di�erence in performance seems to be caused by the num-
ber of generated triangles, which is in turn related to the number of
sub-polygons in the subdivision. The symmetric triangulation creates a
lot more triangles than the other technique, but is still able to rendered
e�ciently, especially considering the texture-based approach.

acc-2 To illustrate the power of multisided patches coupled with
tessellation, we have extended the approximate Catmull-Clark scheme
ACC2 [LSNC09] to polygonal meshes of arbitrary topology. The origi-
nal ACC2 scheme approximates Catmull-Clark subdivision surfaces in
irregular regions by triangular and quadrilateral Gregory patches. The
technique is an e�cient means to approximate subdivision surfaces as
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Figure 5.21: Performance comparison in FPS and number of generated triangles:
Rendering a model (right) containing 60 quads, 12 pentagons and 750
hexagons using di�erent tessellation strategies at the maximum tes-
sellation level of 64 × 64.
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the di�erence between the Catmull-Clark limit surfaces is slight and
it can be e�ciently evaluated using tessellation shaders. The scheme
can easily by extended to higher valency faces by using multisided Gre-
gory patches (see Section 2.3.5.1). The calculation of the vertex, edge
and face points remains the same as in the original scheme. Each side
of the multisided patches is interpreted as being from a quadrilateral
Gregory patch and because of this, G1 connections can be made in ir-
regular regions. The use of multisided patches removes the need for
an extra global Catmull-Clark subdivision step as extraordinary faces
can now directly be �tted with approximating multisided patches. Fig-
ure 5.22 shows several examples of surfaces that can be generated e�-
ciently that contain many irregularities and extraordinary faces.

5.9 conclusion

The augmentation of the generalised Bézier structure with extended B-
spline basis functions have allowed us to generalise it into a multisided
B-spline construction for surfaces of arbitrary bi-degree. The surfaces
are able to be spanned over extraordinary vertex and also extraordinary
faces, by extending the number of intervals used in the cosntruction of
the B-spline ribbons. These patches join with Gd−1 continuity to adja-
cent regular and other multisided regions and are Cd−1 smooth inter-
nally. The control nets of the patches necessitate the use of a number
of steps of arbitrary degree subdivision. The structure of the patches re-
mains true to the their tensor-product counter parts. The patches may
�atten o� towards the centre of the patches, but we have shown several
ways in which the basis functions can be manipulated to create more
fullness within the patches. The functions we have determined have
only partly alleviated this problem and improving this shape defect re-
mains a challenging problem for future research.
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Figure 5.22: Simple shapes rendered using (generalised) ACC-2 patches where
patches have been grouped by colour based on valency. From top to
bottom: input mesh, ACC-2 with patch structure, and ACC-2 with
Phong shading.

Multisided patches, such as the aformentioned generalised B-spline
patches, can now be e�ciently rendered using the existing hardware tes-
sellation pipeline. We have explored di�erent tessellation strategies that
subdivide a multisided patch into sub-polygons that can be processed
through the modern rendering pipeline. The symmetric techniques cre-
ate a few more sub-polygons, but are more uniformly tessellated. The
fanning techniques present a minimal subdivision of the polygon, but
su�er from less uniform geometry. Textures can be used to pre-compute
coordinate functions that can be e�ciently retrieved during the tessella-
tion process, and improve the speed of it. With this, methods that were
previously only de�ned for traditional patch types such as triangles and
quadrilaterals, can be easily extended to multisided patches. We have
seen that the ACC-2 technique can be extended to multisided patches
and can be rendered in real-time using the modern graphics pipeline.
The viability of rendering multisided patches e�ciently increases the
attractiveness of including multisided faces in polygonal models. This
creates freedom for designers and programmers to use such patches in
geometric design and even in vector graphics as we will see in Chap-
ter 8.
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6I N T R O D U C T I O N

This part of the thesis is about vector graphics. This introduction will
�rst introduce the di�erence between di�erent ways to represent im-
ages, either in raster or vector format. Then we will introduce the prob-
lem of converting from raster image format to vector graphics format,
and all the requirements and trade-o�s associated with it.

6.1 raster images

Most existing digital images are stored in the so-called raster format.
Here the image is de�ned as a grid of picture elements (pixels) [Smi95]
where each pixel has a colour. These images can express highly detailed
imagery provided that the number of pixels is great enough. An image
is reconstructed from the pixels by applying an image reconstruction
�lter. The most common �lters include the nearest-neighbour �lter, or
linear or cubic �lters. There are many di�erent types of digital image
formats, but they just provide di�erent ways to encode the raster of
pixels.

6.2 vector graphics

An alternative to these types of images are vector graphics images,
which de�ne images in a completely di�erent way. Vector images are
represented as a collection of abstract shapes like lines, colour gradi-
ents, and other more complex mathematical objects. These objects are
called primitives, as they are the building blocks of vector graphics im-
ages. The vector primitives are de�ned relative to a two dimensional
Cartesian coordinate system and a colour space. This leads to a resolu-
tion independent representation, as for example a line segment can be
de�ned using just two points.

The use of vector graphics is not something new and actually pre-
dates wide spread use of digital raster images. Early computer monitors
were vector displays or X-Y displays. At the heart of these monitors
was the cathode-ray tube (CRT), which could be pointed at desired XY-
coordinates of the screen. A ray would �re an electron from the tube
and hit the screen on which a �uorescent phosphor-based coating was
placed. This coating would then remain lit for a certain time, creating
shapes when the beam was moved fast over the screen. By controlling
the position of the beam, simple shapes constructed from dots and lines
could be drawn. This type of vector display was used to display the pi-
oneering Computer Aided Design (CAD) application called Sketchpad
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[Sut64] which was created by Ivan Sutherland for his PhD thesis. The
vector display was the favoured display choice up until the mid 1980s,
because raster formats where still too expensive to be stored in com-
puter memory at that time. Vector display also saw its use in games,
most notably in the arcade game industry. The Vectrex [MB07] was a
home video game console with a vector display where people could play
an Asteroids-clone (Atari, Inc, 1979) called MineStorm. Most of the ar-
cade games of the time featured vector displays, but the vector display
ultimately gave way to the more versatile raster display [Rub98]. Al-
though the CRT was still used it was now used to scan along the screen
in a horizontal fashion instead of visiting arbitrary locations.

Vector graphics did not die out with the demise of the vector display.
On the contrary, it lived on as the 2D variant of computer graphics, but
it did require an intermediate step for displaying images on a raster-
based display called rasterisation. Rasterisation is the process of scan-
converting vector primitives so that they can be displayed on a raster.
For example rasterising lines entails �nding which pixels of the screen
correspond to the line segment, but it will generate a jagged represen-
tation when the line is placed diagonally.

Vector graphics saw its use in the speci�cation of digital documents
and most notably in the de�nition of fonts. These fonts use curves to
de�ne the outline of the font, most notably the TrueType uses quadratic
Bézier curves and OpenType uses cubic Bézier curves [Cor20]. The let-
ters you are reading right now are de�ned using the TrueType represen-
tation and depending on whether you are reading this in digital format
or not you could try and zoom in to check whether the fonts retain the
same quality.

Fonts are not the only popular application of vector graphics nowa-
days. Vector graphics are used everywhere in the graphical design in-
dustry because of the aforementioned advantages. The primitives are
easy to manipulate and thus facilitate easy editing of images, making
them suitable for use by artists, and easy to reuse. The use of these
primitives has the advantage that the image can be de�ned very com-
pactly and the image can be ’scaled’ to any resolution. Vector graphics
images can be rendered into a raster format at any size, such that high
quality images can be retrieved at any resolution. This makes the format
very suitable for use in media which have to be printed and displayed
at various sizes.

vectorisation The vector graphics image format is well-suited
to model many di�erent types of image. Unfortunately, there are no
cameras available that can capture reality in a vector graphics format
and therefore images encountered in the wild are predominantly raster
images. A process is needed that converts between a raster based image
and a vector image.
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The process of conversion from a raster image format to a vector im-
age format is known as image vectorisation. A vector image format is
very loosely de�ned, unlike the raster image which is just a raster of
discrete pixels each having a location and a colour. Vector graphics are
made up out of vector primitives, and thus vectorisation can be said to
be the process of determining a set of vector primitives such that they
represent the original image well. Again, the way an image is repre-
sented well is also up for debate. There are di�erent degrees and dimen-
sions where we can classify di�erent vectorisations and they depend on
what is required of the vectorisation. If we look at the use cases where
vector graphics are commonly used we can easily set up requirements
for image vectorisation.

Vector graphics should be able to be rendered at any resolution with-
out loss of quality. This is commonly known as resolution independence,
and is one of the main advantages of vector graphics over raster im-
ages. When displaying a raster image at larger resolution than its base
size, the underlying raster structure of the image will become apparent.
The use of more advanced image reconstruction �lters than simple box-
�lters [Smi95] might be able to cover some ground, but ultimately they
are not able to correctly reconstruct elements such as diagonal lines and
curved lines and contours.

Sparseness of the representation is also another factor that comes
into play when vectorising images. The sparseness of a vector image can
be expressed in the number of primitives needed to represent a raster
image. A red disk is easily represented as a position, a radius and a
colour whereas the raster version of this image would have to at least
cover all red pixels and the pixels not covered by the disk but which are
in the bounding rectangle. A vector image is thus deemed to be sparse
when it is able to determine the colour of large swathes of pixels of the
original image. Sparseness also has e�ect on other ways in which vector
images are an attractive alternative to raster images. The sparseness
of the representation in�uences the �le size of the image, making it
much more economical to use vector images for example in web-related
technologies.

The strength of vector graphics also lies in the ways in which the
vector representation can be edited. Take the disk example again, where
we can edit the image easily by varying one of the parameters of the
disk, e.g. translating the disk or changing its radius. The same operation
in the raster version is not easily done and the user is best left to create
an entirely new image. It can be important to be able to edit the vector
image resulting from a vectorisation. The editability of the vector image
is dependent on the number of primitives and how they are ordered
with respect to each other. For instance, a pixel curve that is vectorised
as a polyline is much harder to edit e�ciently than that same curve
represented as a B-spline.
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Naturally, it is important that the vectorisation captures the likeness
of the raster image it tries to represent. This is an important part in as-
sessing the quality of the vectorisation. Due to the complexity of mod-
elling a natural image with vector graphics primitives this can be a hard
problem to solve. In the past, due to the limitations of the available vec-
tor primitives, shortcuts were taken where parts of images were simply
modelled with a single solid colour. This still captures the main pieces of
the image, but foregoes on modelling the details of the image. Modelling
those would sacri�ce the simplicity of the vectorisation as a multitude
of small primitives are needed to model tiny image details, jeopardising
the sparseness and editability requirements of the vectorisation.

Another important factor in vectorisation is the ability to render the
vector image with reasonable performance. A vector image is not an im-
age like a raster image is, and rendering them is often not as straightfor-
ward as rendering a raster image. For raster images there exist dedicated
texture mapping units on the GPU that make rendering, or mapping
them onto objects through texture mapping, very e�cient. For vector
graphics primitives there exists no such pathways and primitives often
have to be approximated through geometric primitives such as triangles,
lines and points. It remains important to be able to render the primitives
e�ciently so that vector images can be used in di�erent forms of media.
A vector representation that captures all of the above requirements, but
is not able to be rendered e�ciently is of little use in interactive environ-
ments. With this the performance of the vectorisation process itself is
important too. The speed of the process of going from an input raster im-
age to some vector representation can make a method attractive. When
this processing time is short it becomes possible to batch vectorise im-
ages. In any case the process should not take too long so that vectorised
images can quickly be loaded into vector graphics editing software and
altered further.

The hard part of vectorisation is combining all these requirements
together, as ultimately you are left with a trade-o�. A sparse represen-
tation can never model all details of an image and similarly a faithfully
captured image through the use of a large number of primitives can
never be easily edited.

6.3 contents

In this part of the thesis we �rst look at how existing vector graphics
primitives can be extended to be more expressive. In Chapter 7 we ex-
tend the gradient mesh primitive to interpolate additional parameters
for procedural noise functions. Then in Chapter 8 we compare and con-
trast di�erent versions of polygonal gradient meshes. Then �nally, an
e�cient image vectorisation pipeline is described in Chapter 9.
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Parts of this chapter have been published as

• Gerben J. Hettinga, Rowan van Beckhoven and Jiří Kosinka.
"Noisy gradient meshes: Augmenting gradient meshes with pro-
cedural noise". In: Graphical Models, 103.
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We extend the gradient mesh vector graphics primitive with procedural
noise functions. Speci�cally, we couple Perlin, Worley, and Gabor noise to
the gradient mesh. We allow local parameters controlling the noise func-
tions to be de�ned at the vertices of the mesh. The parameters are inter-
polated along with the geometry similarly to how colour is interpolated
in an ordinary gradient mesh, allowing for spatially varying noise pat-
terns. These noisy gradient meshes facilitate a sparse representation of
high frequency regions along with underlying smooth colour gradients.
The meshes are easy to edit and e�cient to evaluate on graphics hard-
ware, making them a suitable candidate for inclusion in modern vector
graphics authoring tools. We demonstrate the utility of our method on gra-
dient meshes with added noise functions. Additionally, we show that the
approach can be used in combination with regular surface meshes where
noise functions are used to govern their displacement mapping.
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7.1 introduction

Vector graphics are excellent means for representing images that con-
tain smooth colour gradients and composite objects which are con-
structed out of simpler shapes which in turn are made out of constant
colour or linear gradients. These primitives work great for vectorising
image regions that feature constant or slowly changing colour gradi-
ents. However, much of the regions depicted in natural images do not
conform to this and are instead quite noisy. Many primitives have to be
generated to model these regions with some accuracy. This complicates
the design or vectorisation process and vector image due to number of
primitives needed to manually adjust. A simple primitive which takes
care of the main shape of the object and which allows intuitive control
over the high-level details within the object is not available.

Procedural noise functions have long been a staple in the computer
graphics world to easily add more realism through adding of arbitrary
details to simply shaded objects. They have been used to create proce-
dural textures, that model terrain, or to drive displacement mapping, to
create a rocky surface [EMP+03]. Most procedural noise functions are
easy to de�ne, and require only few parameters to change. In addition,
they can be scaled arbitrarily and are thus a great combination with
the scalable nature of vector graphics. Procedural noise functions have
been combined with vector graphics primitives before. This can be any-
thing from �lling a (pathed) region with a procedural noise function or
letting procedural noise functions drive blending of primitives. Explicit
control for varying the parameters of noise functions over images was
approached before [JCW11] where di�usion curves [OBW+08] were
used to di�use parameters of Gabor noise. Likewise di�usion curves
were used to smoothly vary parameters for fractal noise [HGA+10] in
a terrain generation setting.

In this chapter we combine gradient meshes with procedural noise
functions by letting the noise alter the smooth colour gradient gener-
ated by the mesh. We also let the meshes smoothly interpolate param-
eters of di�erent procedural noise functions so that the noise function
is smoothly varied over the mesh. This has the advantage that gradient
meshes can express arbitrary detail whilst remaining simple geometry-
wise. We distinguish local and global parameters, where the local pa-
rameters can be varied over the mesh and are assigned to vertices.

The remainder of the chapter is organised as follows. We brie�y de-
scribe the essentials of a few di�erent procedural noise functions Sec-
tion 7.1.1. Then, in Section 7.2, we detail the construction of gradient
meshes with procedural noise functions. We describe which parame-
ters we use and how they are interpolated. Results of gradient meshes
and also of general displacement mapping on surfaces are shown in Sec-
tion 7.3. In Section 7.4, we discuss limitations and applications. Finally,
the chapter is concluded in Section 7.5.
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Perlin Worley Gabor

Figure 7.1: The three di�erent procedural noise functions considered in this paper.
Each gives rise to a distinctive noise pattern.

u0 1

Figure 7.2: Left: The lattice involved in Perlin noise has pseudo-random gradient
vectors de�ned at lattice points. A point to be evaluated is shown. Right:
the quintic function that is used to smooth noise over the edges of the
cell.

7.1.1 Procedural Noise Functions

We are going to pair the gradient mesh primitive with three di�erent
types of procedural noise functions, Perlin, Worley, and Gabor noise.
We chose these three noise functions because they have been mostly
standardised, are well-known, have interesting parameters and can all
be easily implemented into the fragment shader stage of modern graph-
ics pipelines. Naturally, other noise functions are available [LLC+10],
but with these three di�erent types of noise functions we have already
covered a lot of what is possible. In Figure 7.1 we show the character-
istics of each of these di�erent types of noise function. We now detail
how these noise functions are constructed and with that expose some
of the parameters which can be useful later.
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Figure 7.3: The lattice involved in Worley noise has a feature point within each
cell. The pattern created by computing the distance to the closest point
is shown with dashed lines (points which are outside the grid have been
omitted).

7.1.1.1 Perlin Noise

One of the �rst true procedural noise functions to be introduced was
Perlin noise [Per85], named after its inventor Ken Perlin. It was devel-
oped to create a less "machine-like" look for the science �ction movie
Tron [Lis82]. The noise function is based on a lattice which is imposed
on the uv-plane. For each point of the lattice a pseudo-random noise
vector is determined. Figure 7.2 shows a lattice where 2D vectors are
shown at lattice points. The process of evaluating the noise function is
then done as follows. For each point to be evaluated it is determined
which cell of the lattice it resides in. From the cell its four surrounding
lattice points and pseudo-random vectors are retrieved. Then the inner
product between each gradient vector and a vector pointing from the lat-
tice points towards the evaluated position (the red vectors in Figure 7.2)
is computed. These four values are interpolated by a biquintic function
(Figure 7.2, right) to createC2 smooth transitions to neighbouring cells.
The frequency of the noise can be increased globally by scaling the uv
space of the lattice.

7.1.1.2 Worley Noise

Worley noise [Wor96] creates a cellular pattern which is visually simi-
lar to Voronoi cells, see Figure 7.1, middle. Although it is a procedural
function, it is not exactly a noise function, but rather a texture basis
function [LLC+10]. Like Perlin noise it makes use of a lattice, but stores
a feature point in each cell instead of a vector at lattice points. Figure 7.3
shows such a lattice with a single feature point per-cell. The placement
of feature points in cells happens randomly although a more regular
placement of points can be achieved by lowering the jitter rate. The
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Figure 7.4: A Gabor noise kernel (see Equation 7.1), which is a Gaussian function
multiplied with a 2D cosine function.

number of feature points can also be varied, but one feature point per-
cell is enough to create good looking texture. The basis function Fk are
de�ned as a scalar value based on the k nearest feature points and a dis-
tance metric. Figure 7.3 shows the result of F0 as the dashed contours
where F0 = F1. Di�erent types of shaped textures can be constructed
by changing the k value, although the higher the k the more similar the
patterns will be. Combinations of di�erent Fk can be used to create even
more interesting patterns.

7.1.1.3 Gabor Noise

The last type of procedural noise function we are going to cover is Ga-
bor noise [LLDD09]; see Figure 7.1, right. Gabor noise is similar to Wor-
ley noise as feature points are also placed arbitrarily into the cells of
a lattice. Each feature point is a Gabor kernel and the noise is evalu-
ated as the weighted sum of the kernel functions. Thus the noise in a
cell is determined by the kernels in the eight neighbouring cells. The
Gabor noise kernels have several useful parameters that in�uence the
appearance of the noise. In addition the parameters can be controlled
in ways that in�uence the statistical properties of the noise allowing it
to reproduce di�erent textures [JCW11, GLLD12].

The Gabor noise kernel is a Gaussian kernel multiplied with a 2D
cosine function

G(u,v) = Ke−πa
2(u2+v2) cos(2π f (u cosω +v sinω)), (7.1)

where K is the magnitude, a is the inverse width of the Gaussian func-
tion, f is the frequency, and ω is the orientation of the cosine function.
Each of these parameters can be varied over the image plane, leading
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for instance to varying frequency of the cosine function. We can change
the isotropy ι of the noise by letting the valueω have increased arbitrary
deviations, i.e.ω = (1− ι)ω+ ι(ω+R), where R ∈ [0, 2π ] is some random
angle.

7.1.1.4 Fractal Noise

Gabor noise has a lot of parameters that in�uence the noise functions.
Perlin and Worley noise do not o�er as many freedoms or parameters
that can be freely varied over the image plane. Therefore, we use fractal
Brownian motion, or more commonly known as fractal noise, in combi-
nation with the noise functions. Fractal noise combines several octaves
of a noise function, by iteratively scaling the noise and diminishing the
in�uence of it. Scaling a noise function leads to an increase in frequency.
The persistence value p is used to regulate the prevalence of the succes-
sive frequencies of noise. Higher persistence values lead to an increase
of visibility of higher frequency components. Figure 7.5 shows the ef-
fect of varying the persistence value over a quadrilateral element with
Perlin noise, with di�erent numbers of octaves. This parameter was also
varied over the image plane in [HGA+10], by di�using the p value de-
�ned at di�usion curves.

7.2 noisy gradient meshes

An important step in creating a noisy gradient mesh is to create a
parametrisation that can be used to evaluate the procedural noise func-
tions. This parameter domain than contains the lattice for the noise
functions. The gradient mesh is a regular rectangular mesh and we can
straightforwardly assign texture coordinates to the vertices of the mesh.
When considering a gradient mesh ofm×n quadrilateral elements with
vertices vi ,j , i = 0, . . . ,m and j = 0, . . . ,n. We can make this correspond
to anm × n subdivision of a unit square to obtain a parametrised mesh.
Thus, the texture coordinates of vi ,j are simply ui = i and vj = j, which
creates a uniform texture space. In this manner the mesh can be glob-

Figure 7.5: Basic Perlin noise (left). Five (middle) and ten (right) octaves are as-
signed to the top right vertex of the mesh.
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ally re�ned without having to reassign texture coordinates and linear
interpolation of texture coordinates maintains a continuous parameter
domain. The combination of the texture space with the gradient mesh
already allows spatial deformation of the noise �eld. As the noise �eld
now follows the parametric direction of the mesh, changing tangent
handles will in�uence the shape to the patches internally.

To be able to alter the noise �eld further we expose three local param-
eters to the user that are de�ned per vertex of the gradient mesh. Global
parameters such as the base frequency of the noise can still be altered
by the user, but make no sense on a local scale as they cannot freely be
altered over the mesh without artefacts. Three main local parameters
are:

• Persistence: As mentioned in Section 7.1.1.4, the persistence pa-
rameter p regulates the prevalence of higher octaves of noise. By
varying this parameter from low to high, an increasing amount
of high frequency noise becomes apparent; see Figure 7.5.

• Opacity: The opacity value α simply handles the local blending
of the noise �eld with the colour �eld.

• Distortion: We use several secondary functions which manipu-
late the parameter domain or alter the noise �eld. The distortion
parameter d locally regulates the amount of the applied distor-
tion.

The parameters are attached to the vertices vi j so that we obtain the
tuple (x ,y, r ,д,b,p,α ,d); cf. Section 2.3.6. The handling of the additional
parameters happens in the same way as with the colour components of a
tradition gradient mesh. The values of the edge and inner control points
inherit the value of their logically closest vertex in the bicubic Bézier
patch. In this way the noise parameters are also interpolated with C1

continuity. It is still possible in our case to have sharp transitions also
in the noise parameters. The values can be assigned to edges to have a
di�erent value for each corner of a surrounding patch.

Figure 7.6: A noisy gradient mesh (4 patches) showing the e�ect of varying the
anisotropy and orientation values for Gabor noise over the mesh.
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The Gabor noise kernels allow for even more parameters to be in-
terpolated. We give the user control over the frequency f and the di-
rection of the kernel ω, see Section 7.1.1.3. The latter can be used to
create interesting customisations of the noise �eld. As the anisotropy
value ι is decreased, the noise direction can be more clearly directed
with the variable ω on a vertex level. Figure 7.6 show an example of
this where the noise �eld creates patterns reminiscent of vector �eld
visualisations [VW91]. In the simple 2× 2 mesh the centre vertex has a
higher anisotropy value than the surrounding vertices. The outside ver-
tices have lower anisotropy and are angled towards the centre vertex.

The noise functions are evaluated using the interpolated parameter
values and the interpolated (u,v) textured coordinates and one of the
three procedural noise functions. The number of octaves of fractal noise
can be set for the entire mesh. Worley noise allows also to set the dis-
tance metric and which Fk or combinations thereof to use. Again, the
noise can be scaled globally by scaling the uv-domain, resulting in vi-
sually smaller lattice cells. A global setting for Gabor noise changes the
density of kernels in each cell of the lattice, and the width of the kernels.
A simple value ranging in [0, 1] is used to control the distortion amount.
We experimented with three types of distortion; see Figure 7.8. We use
simple coordinate distortions, where theuv parametrisation is distorted
by another (noise) function. We can also distort the noise values using
the sine or another trigonometric function such that a wave-like char-
acteristic is imposed on the noise �eld.

Figure 7.7 shows the e�ect of varying the di�erent local parameters
extremely to show how the interpolation a�ects the noise �eld. As can
be seen in the �gure, the noise smoothly varies from low to high fre-
quency noise (left), and also from high amounts of distortion to no dis-
tortion at all (right).

Additionally, we allow the noise �eld to be �ltered using standard
low-, band- and high-pass �lters. We can map colour to the noise val-
ues which can additionally be blended using traditional colour blending
techniques. In Figure 9.2, we show how the di�erent post-processing ef-
fects o�er yet another possibility to increase the expressiveness of noisy
gradient meshes. In this case, the Perlin noise �eld values are distorted
by a sine function, and a band-pass �lter is applied to decrease the width
of the marble texture.

.

7.3 results

The power of the noisy gradient mesh technique is that the mesh can
remain simple and the noise function handles the high-frequency de-
tails. In Figure 7.9 we show a few such meshes, modelling various ob-
jects. The procedural noise functions create tremendously detailed im-
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Figure 7.7: Two noisy gradient meshes showing varying Perlin noise �elds. Left:
Varying persistence values. Right: Varying distortion amounts. In both
examples, the values/amounts are high in the middle, and low at the
top and bottom.

agery that cannot be feasibly modelled with ordinary gradient meshes
alone. The detail is also varied over the mesh creating interesting pat-
terns. The meshes can be rendered at any resolution, which would not
be possible with (high resolution) raster textures and ordinary texture
mapping without showing pixel artefacts. As said before, the noise �eld
follows the geometric directions of the mesh. This can be seen on the
dark green bands of the watermelon (Figure 7.9) or on the pattern on
the vase (Figure 9.2). This is di�erent that just applying noise on top of
the gradient mesh using the evaluated xy position on the mesh as input
for the noise function. This would be the same as having a region of a
solid noise [LLC+10] which is undesirable. In Figure 7.10, we explicitly
show the e�ect of altering the geometry of the gradient mesh (vertices
and gradient handles) on the resulting blended noise and colour �eld.
As can be seen in the �gure, the pattern on the top wings is naturally
in�uenced by the change of geometry.

displacement mapping We can apply the same principles to gen-
erate a noise �eld that in�uences the colour of a gradient mesh to
in�uence the geometry of 3D parametric spline patches through dis-
placement mapping. For our base patch we use uniform cubic B-spline
patches as the geometry patch, and convert them into a Bézier represen-
tation. In this way we can interpolate the parameters in the same way
as with gradient meshes. Then the noise parameters are interpolated

Figure 7.8: Three di�erent types of distortion applied to the same Perlin noise �eld.
Distortion by a secondary noise �eld, sine distortion, and wood-like
distortion.
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Flower Watermelon Leaf Banana

Figure 7.9: Simple gradient meshes with di�erent types of noise. Top row: Ordinary
gradient meshes (with sharp colour transitions). Bottom row: Noisy gra-
dient meshes. The �ower model (16 patches) makes use of Worley noise,
banana (9 patches) and watermelon (4 patches) meshes make use of
Perlin noise, and Gabor noise was used on the leaf (16 patches) mesh.

Figure 7.10: Left: An artistic depiction of a butter�y based on Worley noise. Right:
The geometry (i.e., vertex positions and gradients) has been edited to
modify the shape of the wings. Note that the noise pattern, whose pa-
rameters have not been altered, naturally follows the transformation.

and are C1 smooth over the spline, whereas the geometry is C2 con-
tinuous. The interpolation could be relaxed and the noise parameters
could also be approximated using the B-spline basis functions, leading
toC2 continuity in parameter values as well. In Figure 7.11 we vary the
persistence component over the meshes and the evaluated noise value
is used to displace the surface along the normal direction. This creates
interesting surface patterns and could for instance be used as a way to
control the generation of arbitrary terrains based on a sparse represen-
tation of the base geometry. Naturally, other algorithms such as bump
mapping or varying characteristics for specularity or transparency can
be regulated through the noise �elds.
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Figure 7.11: A B-spline surface composed of 16 patches (top row) and a B-spline
torus composed of 64 patches (bottom row), both without displacement
(left column) and with procedural displacement (right column). The
�nal ‘noisy’ surfaces are colour-coded according to their normal �elds.

7.4 discussion

We have presented several straightforward ways to manipulate noisy
gradient meshes, but there are many possibilities to explore. Every pa-
rameter that in�uences the noise function can be interpolated, but it
depends on the nature of these parameters whether it leads to results
that can be intuitively manipulated, or that are usable visually. Node
based interfaces or block shaders [AW90] could be used to forge even
more complex textures, such as combining di�erent types of procedural
noise functions.

We make use of programmable shaders to evaluate the gradient mesh
primitives, that handle interpolation of geometry, colour and noise pa-
rameters. Fragment shaders are used to evaluate the procedural noise
functions, based on those interpolated parameters. This makes our
noisy gradient meshes very e�cient and they can thus be manipulated
in real-time through interactive editing of geometry, colour or local or
global noise parameters. We evaluated the performance on a PC with
a NVIDIA GTX Titan V graphics card. We can still observe sub-25 mil-
lisecond frame times for a full HD pixel-dense rendering of a large gradi-
ent mesh, containing 3600 primitives, using Gabor noise with a kernel
density of 20. It should be noted that Gabor noise is not continuous
when evaluating it using a fragment shader as the Gaussian kernels,
with in�nite support, are truncated by the lattice boundaries. For Per-
lin and Worley noise this becomes even sub-10 millisecond rates, for 10
octaves of fractal noise.

The approach can be readily extended to locally re�nable gradient
meshes [BLHK18] as this still providesC1 continuity across T-junctions
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and the parametrisation will stay intact. It cannot easily be extended to
gradient meshes with arbitrary topology [LKSD17] as this requires a
more elaborate assignment of texture coordinates to the mesh as this
cannot be done through a rectangular subdivision of the uv grid. How-
ever, it is still possible to have smoothly varying noise functions if the
geometry has at least C1 continuity.

7.5 conclusion

In this chapter we have presented a simple way to combine procedu-
ral noise functions with gradient meshes. The lattice structure of noise
functions can be mapped with ease onto gradient meshes, which also
have a grid-like structure. By interpolating parameters for the noise
functions over the mesh and linking their parametrisation to the gradi-
ent mesh, creates abilities to distort and manipulate the noise through
the mesh. The user can then create highly detailed and scalable images
using a sparse mesh. The noise functions can be evaluated e�ciently
and can be composed in a multitude of ways through di�erent post-
processing, distortion and colour blending modes.
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Parts of this chapter have been published as

• Gerben J. Hettinga, René Brals and Jiří Kosinka. "Colour inter-
polants for polygonal gradient meshes".
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The gradient mesh is a powerful vector graphics primitive capable of
representing detailed and scalable images. Borrowing techniques from 3D
graphics such as subdivision surfaces and generalised barycentric coordi-
nates, it has been recently extended from its original form supporting only
rectangular arrays to (gradient) meshes of arbitrary manifold topology.
We investigate and compare several formulations of the polygonal gradi-
ent mesh primitive capable of interpolating colour and colour gradients
speci�ed at the vertices of a 2D mesh of arbitrary manifold topology. Our
study includes the subdivision based, topologically unrestricted gradient
meshes [LKSD17] and the cubic mean value interpolant [LJH13], as well
as two newly-proposed techniques based on multisided parametric patches
building on the Gregory generalised Bézier patch and the Charrot-Gregory
corner interpolator. We adjust these patches from their original geometric
3D setting such that they have the same colour interpolation capabilities
as the existing polygonal gradient mesh primitives. We compare all four
techniques with respect to visual quality, performance, mathematical con-
tinuity, and editability.
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8.1 introduction

The interpolation of colour and the handling of colour in general is an
important factor in rendering vector graphics. In essence, interpolat-
ing colour (r ,д,b), triples of red, green and blue values, with geometry,
(x ,y) coordinates of the image plane, is done in a 5-dimensional space.
However, interpolation in colour space is restricted by its gamut. When
going outside of the gamut, colour over�ow or clipping occurs, resulting
in observable sharp transitions or �at patches of colour. The colours that
the user speci�es for vector graphics primitives should be interpolated.
By only approximating the colours a washed-out and bland approxima-
tion of the colours the user speci�ed would be the result instead.

The gradient mesh allows interpolation of colour through a simple
mesh structure, with additional gradients at vertices allowing for addi-
tional shape manipulation. Various vector graphics creation tools such
as Inkscape, Adobe Illustrator and CorelDRAW have adopted the (tradi-
tional) gradient mesh. The mesh is limited to rectangular topology and
adding detail to the mesh is only possibly globally. This means that re-
�nements will propagate throughout the mesh, quickly increasing the
complexity of the mesh. Local re�nement has been made available for
gradient meshes [BLHK18], but still only works for meshes with rect-
angular topology.

The restriction in topology limits the ease of use of the gradient
mesh primitive. The task of �tting a mesh to an arbitrary shaped re-
gion would bene�t from doing so with a mesh of arbitrary topology,
instead of twisting and tweaking a rectangular mesh. There exists solu-
tions for generalising the gradient mesh for polygonal gradient meshes
[LJH13, LKSD17]. Polygonal meshes have some advantages with respect
to the ordinary quadrilateral meshes. They can be sparser as they can
support patches with any number of sides and more patches can meet
at a vertex. Designers have to worry less about the topology of the mesh
and can create a more organic work�ow for creating meshes. It could
also possibly help in image vectorisation, where it helps in �tting to
arbitrary shape regions more easily.

In this chapter we examine and create several di�erent variations
of the polygonal gradient mesh, each using di�erent multisided colour
interpolants, that generalise the attributes of the traditional gradient
mesh. We compare two existing polygonal gradient meshes, namely the
topologically unrestricted gradient mesh [LKSD17] and the cubic mean
value interpolant [LJH13]. In addition we alter the Gregory generalised
Bézier patch [HK18] and the Charrot-Gregory corner interpolator patch
[CG84] for G1 smooth colour interpolation.

In Section 8.2 we describe related work and also the techniques
for topologically unrestricted gradient meshes [LKSD17] and the cubic
mean value interpolant [LJH13] in detail. We also deal with the gen-
eral constructions for the (Gregory) generalised Bézier patch and the
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Charrot-Gregory corner interpolator. Then in Section 8.3 we detail how
to adjust these (multisided) patch constructions for fully local colour in-
terpolation with the help of generalised barycentric coordinates. We dis-
cuss how the method of Chiyokura and Kimura [CK83] can be adapted
to handle colour interpolation and how we increase the utility of these
primitives by allowing non-convex corners. Then in Section 8.5 we com-
pare and evaluate the new and known techniques to each other on a
range of di�erent meshes, and with respect to performance. The chap-
ter is concluded in Section 8.6.

8.2 related work and preliminaries

In this section we describe several existing works and some of the build-
ing blocks of our new solutions for multisided colour interpolation.

8.2.1 Polygonal Gradient Mesh

We want to extend the abilities of the gradient mesh to meshes of ar-
bitrary topology, or polygonal gradient meshes. The traditional gra-
dient mesh has been described in Section 2.3.6. A polygonal gradient
mesh takes some of the key elements of the traditional version and
makes them suitable for polygons with more than four sides. First of all,
the traditional gradient mesh is often constructed as a Ferguson patch
[SLWS07, Ado06]. A Ferguson patch is restrictive in that it only allows
for de�ning single partial derivatives and mixed partial derivatives at a
vertex. This easily creates aC1 smooth colour surface as all four patches
surrounding a vertex will interpolate these constraints. However, it be-
comes hard to ensure the same for more than four patches to meet at a
vertex. Certainly it is possible to de�ne separate partial derivatives for
each patch such that the patches are at leastC0, but the question arises
on how to orient the partial derivatives so that they can intuitively be
manipulated by the user. In this case it becomes bene�cial to convert the
Ferguson patch from the Hermite form to a Bézier patch. Both of these
are bicubic patches and can be converted from one representation to
the other. The resulting Bézier patches de�ne control points which can
easily and intuitively be manipulated, and have the same semantics as
the gradient handles of the gradient mesh. The inner control points of
the Bézier patch are then not exposed to the user. With this it becomes
easy to align multiple patches around a vertex in a C0 manner. The in-
ner control points are then set according to the continuity conditions
which are needed. In essence the data for a polygonal gradient mesh is
thus polygons with vertices vi de�ned as a position and a colour and
tangents ti+1 and ti−1. This data is then used to handle (smooth) colour
interpolation by one of the following techniques set out in this chapter.
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Figure 8.1: Top: cubic B-spline approximation of the data points. Bottom: Cubic-
spline approximation after ternary step applied to the control points.
The resulting curve now goes through the original control points.

8.2.2 Topologically Unrestricted Gradient Meshes

The ability of subdivision surfaces to create smooth surfaces from
arbitrary topology meshes can also be used to smoothly interpolate
colour. The topologically unrestricted gradient mesh [LKSD17] ap-
plies Catmull-Clark subdivision (see Section 2.4.1.1), after a mesh pre-
processing step, on colours and geometry at the same time. The pre-
processing step is a ternary subdivision step, meaning that it divides
the edges into three pieces, geometrically. For colours the values of the
nearest vertices are assigned to the newly created positions. In Figure
8.1 the ternary subdivision process for a single colour channel is shown
for a 1D example, and contrasted with simple cubic B-spline interpola-
tion using only the end points. It can be seen that now the curve passes
through the control points and remains within the gamut, whereas the
cubic spline only approximates the values. If these were colour values
the resulting colours would be washed out representations of the orig-
inals and therefore the ternary step is necessary to ensure interpola-
tion. Figure 8.2 shows the ternary step applied to a gradient mesh patch
consisting out of vertices, gradients and colour data. A ring of vertices
around each vertex vi is constructed from its respective outgoing gra-
dient handles ti ,j at vi and the centroids ck of incident faces Fk . A new
vertex is created for each incident edge by simply putting it at the end
of the associated tangent handle, vji = vi + ti ,j , where ti ,j is the gradient
vector along the edge between vertices vi and vj . The face points f ik
are constructed by taking into account the adjacent vertices (labelled as
vi−1 and vi+1 in Figure 8.2, left) of the current vertex vi with respect to
the incident face Fk :

f ik = (1 − d1)(1 − d2)vi + d1d2ck + (1 − d1)d2di−1 + d1(1 − d2)di+1,

where dj = 2 | |ti ,j | |
| |vi−vj | |

, dj = vi +
| |(vi+vj ) | |

2 t̂j , t̂i ,j is ti ,j normalised, and ck
is the centroid of face Fk .

The ternary step does create a �at colour spot at areas correspond-
ing to the control vertices of the control mesh due to the one-ring of
vertices inheriting the colour value of the centre vertex. Yet, it is the
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vi

vi−1 vi+1

Fk

ti ,i−1 ti ,i+1

f ik

vi+1
ivi−1

i vi
Figure 8.2: Left: The input data given to the topologically unrestricted gradient

mesh (one face, Fk , is shown): vertices and gradients for each edge.
Middle: The construction of the new vertices from the data proceeds
via a modi�ed linear ternary subdivision step. Notice that the new ver-
tices inherit the colour value of their logically closest original vertex;
this ensures colour interpolation. Right: Subsequently, Catmull-Clark
subdivision, run in R5 to accommodate position and colour, is used to
obtain the �nal image.

only way to simply guarantee interpolation of colour for subdivision
surfaces, as after this step the resulting mesh can be further subdivided
using ordinary Catmull-Clark subdivision, without losing the interpola-
tion property. Thus the generated geometry and colour surface will be
C2 in regular regions andG1 at extraordinary regions. Repeated applica-
tion of Catmull-Clark subdivision of the mesh after ternary subdivision
gives rise to several surfaces with denser and denser geometry. By alter-
ing these intermediate representations a means for hierarchical editing
of the surface is obtained [VK18]. Position and colours of vertices at
any subdivision level can be edited, but require that the mesh should be
subdivided to at least the level in which the edits are placed.

8.2.3 Cubic Mean Value Coordinates

Generalised barycentric coordinates can help in interpolating values de-
�ned on arbitrary polygons, but cannot easily interpolate other values
such as gradients. The cubic mean value coordinates [LJH13] can be
used to interpolate positional data, associated function values and their
gradients. It is based on a closed-form version of the Hermite inter-
polant [FS08], which is in turn based on mean value coordinates [Flo03]
(see Section 2.5).

The main components of the interpolant are values fi de�ned at ver-
tices vi and their gradients f +i and f −i which are aligned along its out-
going edge. In addition outgoing normal derivatives h−i and h+i are used
as cross-edge derivatives. The resulting n-sided interpolant

f =
n−1∑
i=0

ai fi +
n−1∑
i=0

∑
s ∈{−,+}

bsi f
s
i +

n−1∑
i=0

∑
s ∈{−,+}

csi h
s
i .
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is a weighted sum of its control values and derivatives. The exact forms
of weight functions ai , bi and ci are complicated and can be found in
the paper [LJH13], which provides freely available code that computes
them. The interpolant is piecewise cubic on edges as determined by the
derivatives f {−,+}

i . These derivatives can take on the role of gradient
handles as is done with the traditional gradient mesh and can thus in-
terpolate colour values cubically.

With this the interpolant becomes useful for gradient mesh-like ma-
nipulation as the tangent vectors can be speci�ed in such a way that the
polygon’s edges become cubic Bézier curves. The polygons can become
non-convex and can cover highly irregular regions with ease through
manipulation of vertex positions or gradients. The gradient handles de-
�ne both the derivatives f +i and f −i and their outward normal compo-
nents h−i and h+i . The colour components of the gradients are set equal
to their respective vertices so that a �at colour �eld is created at ver-
tices. In this way smooth colour transitions are guaranteed when an
arbitrary number of patches meet at a shared vertex. However, the in-
terpolants are only C0 at these extraordinary points as each outgoing
edge speci�es an independent gradient. This could be �xed by �nding
a best �tting gradient to all gradient constraints, but this will involve
changing the user-speci�ed gradients at minimal visual di�erence.

The cubic mean value gradient mesh primitive has been used to sim-
plify dense quadrilateral gradient meshes. Gradient mesh patches are
merged on the condition that the resulting cubic mean value patch re-
produces the original patches up to some threshold. A greedy approach
to merging the patches can be used to coarsen a quadrilateral gradient
mesh into many high-valency patches containing possible non-convex
regions. For non-convex regions the involved coordinates may become
negative and thus the resulting interpolated colour should be clamped
to remain within the gamut; see also [LKCOL07].

8.2.4 Gregory Generalised Bézier Patches

The generalised Bézier patch (see Section 2.3.5) is able to interpolate
n boundary curves and their tangents. In addition a smooth surface is
obtained over the polygon. This patch could thus be used easily to ex-
tend the traditional gradient mesh to patches with any number of sides.
However, to be able to include it into a polygonal mesh with extraor-
dinary vertices it should be able to smoothly connect in those regions.
To this end the Gregory generalised Bézier patch (see Section 2.3.5.1)
is more suitable, as it is able to create multisided patches that connect
with G1 continuity to adjacent patches. However, for smooth colour in-
terpolation using the constraints given by the polygonal gradient mesh
data the way to assure G1 continuity must proceed slightly di�erently,
as we will see in Section 8.3.1.
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ui−1

ui ui+1

x

di+1

di

ui

vi

vi−1

vi

vi+1
pi (1 −v)

ti (1 −v)

pi+1(u)

ti+1(u)

Figure 8.3: Left: The (regular) polygonal parameter space of the Charrot-Gregory
patch with distances to edges used to establish local coordinate systems
at each corner. Right: A corner interpolator ci corresponding to vi is
given by adjacent (cubic) edges and associated cross-tangent �elds.

While (Gregory) GB patches blend edge interpolators (ribbons), it
is also possible to approach the problem of constructing multisided
patches by making use of corner interpolators, as described in the next
section.

8.2.5 The Charrot-Gregory Corner Patch

The Charrot-Gregory corner interpolation patch [CG84] is an n-sided
parametric patch which blends n corner interpolator functions. Con-
sider a multisided patch bounded by (cubic) curves pi (u), u ∈ [0, 1]
connecting vertices vi−1 and vi . Each curve is associated with a di�er-
entiable vector function ti (u),u ∈ [0, 1]which expresses the transversal
tangent �eld along pi (u); see Figure 8.3. At their endpoints, these tan-
gent �elds are assumed to agree with their adjacent curves, i.e.,

ti (0) = − ∂
∂u pi−1(u)|u=1,

ti (1) = ∂
∂u pi+1(u)|u=0.

(8.1)

The Charrot-Gregory corner interpolator combines two adjacent
curves pi (u) and pi+1(u), i.e., pi (1) = pi+1(0) = vi , and their transversal
tangent �elds ti (u) and ti+1(u) into the corner interpolator

ci (u,v) = −pi+1(0) −vti+1(0) −uti (0) + pi+1(u) +vti+1(u) + pi (1 −v)

+ uti (1 −v) − uv
v ∂

∂v ti (v)|v=1 + u
∂
∂u ti+1(u)|u=0

u +v
,

which interpolates pi (u) and pi+1(u) and their respective tangent �elds.
The vectors ∂

∂v ti (v)|v=1 and ∂
∂u ti+1(u)|u=0 signify the twist vectors at

vi , which are rationally blended to resolve the twist-compatibility con-
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dition. To complete the patch de�nition, each corner patch is weighted
by

wi (x) =

∏
j,i ,i+1 d

2
j∑n−1

k=0
∏

l,k ,k+1 d
2
l

, (8.2)

where x is a point in the (regular) polygonal domain of the patch anddm
is the perpendicular distance from x to the polygon’s edge correspond-
ing to pm(u), as shown in Figure 8.3. In turn, each corner interpolator is
supplied with local variables ui (x) = di

di+di+2
and vi (x) = di+1

di−1+di+1
. The

�nal patch de�nition then becomes

n−1∑
i=0

wi (x)ci (ui (x),vi (x)),

which interpolates the supplied boundary data positionally and tangen-
tially. We modify this de�nition in the next section to make the patch
suitable for polygonal gradient mesh colour interpolation.

8.3 local G1 colour interpolation

The topologically unrestricted gradient mesh and the cubic mean value
interpolant already create smooth interpolation of colour. The construc-
tion of Gregory generalised Bézier patches and the Charrot-Gregory
corner interpolation patches needs to be adjusted slightly in order to fa-
cilitate smooth interpolation. In these cases we aim for a colour surface
with at leastG1 continuity and the construction should only depend on
the local data of each polygonal patch. In this way we can process these
patches e�ciently in parallel so that they can be rendered using the
modern graphics pipeline (see Section 5.8). As is done in the construc-
tion of traditional quadrilateral gradient meshes, the colour component
of the gradient handles is de�ned by their respective vertex.

For the construction of the patches we need to de�ne the Bézier rib-
bons of the multisided patches. For both patches this proceeds in the
same way, as the Bézier ribbon provides a cross-boundary tangent func-
tion along the edges of the patch. Thus the control net of the ribbon also
de�nes the tangent functions needed for the corner interpolators. The
ribbons are constructed using the method of Chiyokura and Kimura, as
is usual with Gregory patches. The ribbons are constructed fully locally
using only the data of a single patch.

8.3.1 The Method of Chiyokura and Kimura for Colour Interpolation

The method of Chiyokura and Kimura [CK83] (see Section 2.3.3) is able
to join together two Bézier patches with tangent plane continuity by
only considering shared positional data. We extend this approach so
that it also can be used in the setting of colour interpolation.
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a0
a1 a2

a3
c0

c1 c2

b0
b1 b2

b3

Φa

Φb

Γ(u)

Figure 8.4: A schematic view of the boundary conditions between the basis patch
Φb and the actual patch Φa . The colour components of the control
points are visualised.

Consider two adjacent quadrilateral gradient mesh patches Φa(u,v)
and Φb (u,v) with a shared cubic Bézier boundary curve Γ(u), u ∈ [0, 1],
with cross-boundary derivatives ∂Γa(u) and ∂Γb (u) along Γ(u), respec-
tively. Similar to the control points of the patches, the derivatives also
live in R2+3.

The task now is to satisfy the su�cient condition forG1 continuity as
described in Equation 2.1 and solve it with the method of Chiyokura and
Kimura (see Section 2.3.3). In the original method, an auxiliary patch Φb
is used, and called the basis patch. This patch is constructed from the
common boundary data so that a G1 connection across Γ(u) can be de-
termined fully locally; see Figure 8.4. In the original 3D setting, the basis
patch is constructed with the help of normal vectors at the endpoints of
Γ(u). However, in the colour interpolation setting, the ‘normal’ vector
should be determined in R2+3. In this case the normal vector is the one
pointing inwards (or outwards) of the screen as the colour components
are all equal and the associated vectors are de�ned in the image plane.
Consequently, the basis patch vectors b0 and b3 can be determined sim-
ply by rotating the vectors c0 and c2 by ninety degrees in the image
plane. We can then express the given vectors of the actual patch Φa as
a0 = k0b0 + h0c0 and a3 = k1b3 + h1c2, which determines the values of
k0,k1 and h0,h1.

We then proceed by completing the de�nition of the basis patch (or
rather its ribbon at Γ(u) only), by assuming that b1 and b2 can be deter-
mined by linear interpolation b1 =

2
3b0+

1
3b3, b2 =

1
3b0+

2
3b3. Finally, the

missing ribbon vectors a1 and a2 of the actual patch Φa are computed
as

a1 = (k1−k0)
b0

3
+k0b1+2h0

c1

3
+h1

c0

3
, a2 = k1b2−(k1−k0)

b3

3
+h0

c2

3
+2h1

c1

3
.
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It is hardly surprising that patches in the plane can be connected with
tangent plane continuity at their shared edge, but in our setting of vec-
tor graphics, the important part is the colour component, especially that
of the internal control points of Φa (white squares in Figure 8.4). Since
the colour component of the gradients at vertices is zero, the method
can be simpli�ed. All the colour components of vectors c0, c2, and a0, a3
are zero. Therefore the only vector that weighs in the calculation of the
colour component of the internal control points is c1, the middle control
polygon leg of Γ(u). However, c1 is simply the di�erence between the
colours at the end points of Γ(u). This leads to

ac1 = 2h0
cc1
3

, ac2 = 2h1
cc1
3

in colour space (signi�ed by the superscript c), which enables us to
smoothly join together arbitrary gradient mesh patches.

8.3.2 Quadrilateral Gregory Gradient Patches

The previous method for establishing colour continuity across edges al-
ready has some uses in non-polygonal gradient meshes. The adjusted
method of Chiyokura and Kimura for G1 colour connection makes
quadrilateral Gregory patches suitable for use in strictly quadrilateral
Gradient meshes, which can have extraordinary vertices. In addition it
becomes possible to independently de�ne gradient handles around ver-
tices without sacri�cing colour smoothness, i.e. the co-linearity prop-
erty of gradient handles in the traditional gradient meshes does not
need to hold. Moreover, an arbitrary number of patches are now able to
meet smoothly around vertices while still guaranteeing a smooth colour
surface. This increases the versatility of the gradient mesh primitive and
allows the designers to more freely de�ne meshes.

We compare the Gregory gradient mesh with the traditional gradient
mesh in a setting where we do not enforce co-linear gradients. Figure 8.5
shows a mesh consisting out of two adjacent quadrilateral patches. The
gradient vectors create a curve network which is onlyC0 at the vertices.
For the traditional gradient mesh it is impossible to create a smooth
join between the patches. The Gregory gradient mesh is able to create
such a smooth join, even when the gradients are not co-linear. This is
because the gradients do not have to be co-linear for Gregory patches,
but only co-planar in the R2+3 combined geometry and colour space.
The smoothness is highlighted by the visualised colour bands that show
the isolines of the individual colour channels. For the Gregory patch
these are clearly G1 smooth whereas the traditional patches show only
C0 continuity.
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Figure 8.5: A simple gradient mesh composed of two quads. Left: A traditional gra-
dient mesh (based on Ferguson/Bézier patches) results in non-smooth
transitions at the shared edge, which is due to the three (linearly) inde-
pendent gradient handles at the shared vertices. Right: In contrast, the
Gregory gradient mesh produces a smooth image over the entire mesh.
The insets highlight the di�erence in colour transitions, where in the
left image the colour isolines are only C0 at the common edge of the
two patches whereas on the right they are smooth (G1).

8.4 multisided colour interpolants

To be able to model any polygonal region and thus increase the us-
ability of the polygonal gradient we want to support both convex and
non-convex polygons. We have seen before in this thesis that we can
use a regular parametrisation domain for an arbitrary polygonal do-
main. In this case we can choose to use the actual polygonal domain for
parametrisation through generalised barycentric coordinates. However,
for non-convex polygons Wachspress coordinates, a standard form of
generalised barycentric coordinates, are not well-de�ned. Mean-value
coordinates [Flo03] provide a way to parametrise the domain for arbi-
trary planar polygonal patches. We use this both for generalised Gre-
gory patches and Gregory corner interpolator patches.

We could also use harmonic coordinates instead [JMD+07, SV18], but
this would complicate the processing of polygonal meshes in two ways.
These coordinates do not have a closed-form solution and require dis-
cretisation of the polygonal domain by either rasterisation or triangula-
tion. In addition, this process would be unique for each shape and would
require a complicated parametrisation process for each individual poly-
gon.

Mean-value coordinates provide an e�cient means to handle any sim-
ple polygonal shape. However, these coordinates can become negative
in concave polygons, as already mentioned in Section 8.2.3. To remedy
this we simple clamp the value of the negative coordinate to 0 for colour
interpolation (geometry interpolation proceeds as normal), in the calcu-
lation of the local parameters. This leads to a contour of C0 continuity
at the areas where the o�ending barycentric weight becomes negative.
To show the e�ect of this we have visualised the e�ect of the clamped
coordinate in Figure 8.6 on a concave patch. Although some of the coor-
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1

0−0.04

Figure 8.6: Left to right: Input gradient mesh (non-convex polygon), mean value
barycentric coordinate function of the bottom right vertex visualised
on-top of a GB patch, and the resulting colour interpolation of the GB
patch with non-convex adjustment, and also with colour banding. Neg-
ative values in the coordinate visualisation have been scaled to increase
their visibility, and the zero-contour is highlighted in grey.

dinates become negative in di�erent parts of the polygon, the resulting
colour surface still appears as smooth.

Using mean-value coordinates in the de�nition of the generalised
Gregory patches does not have to provide severe problems. However,
the patches will fold-over when the gradient handles at a vertex make
it concave. This occurs when the outward normal components of the
gradients lie in the same half-circle. Salvi and Várady [SV18] describe a
method that can alleviate the problem. By reversing the direction of the
gradients in certain individual ribbons, the surfaces of the ribbons can
be made to go into the patch. This technique can even be applied to the
end point vectors a0 and a3 in the method of Chiyokura and Kimura by
having a common direction (into the patch) for both of them. We can do
this fully locally, by �ipping the tangent vectors as follows. Consider the
tangent vectors ti ,i−1 and ti ,i+1 of some vertex vi . We can compare the
outward normal component ni ,i−1 of the tangent vector ti ,i−1 with ti ,i+1
to determine the sign of ti ,i−1 to be used in the method of Chiyokura and
Kimura by checking whether ni ,i−1 · ti ,i+1 > 0. We also employ the sug-
gestion of Salvi and Várady [SV18] to adjust the blending functions µijk
of (2.6) to use squared terms to increase the smoothness of the surface.

Non-convex domains pose additional problems for the Gregory cor-
ner interpolator patch, as this patch constructs its local parameters from
a radial sweep-line construction [CG84]. In addition, orthogonal dis-
tances are used in the parametrisation of the patch. These parametrisa-
tion are not compatible with concave domains as the weighting function
and the construction of local parameters (Section 8.2.5) introduce singu-
larities throughout the patch. This can be seen clearly in Figure 8.7, left.
Alternative formulations have been suggested previously [VRS11], but
are computationally intensive, making them unsuitable for real-time
purposes. We propose to construct both weights and local parameters
from mean-value coordinates.

To this end, we make use of the same functions that construct the lo-
cal parameters for the generalised Bézier patch. In particular, we are in-
terested in the parameterhi = 1−ϕi −ϕi−1, where the ϕi are mean value
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Figure 8.7: Left: The original parametrisation of the Charrot-Gregory patch that
uses perpendicular distances to edges applied to a non-convex polygon.
Right: Our technique that uses ‘distance’ functions based onmean value
coordinates provides a better parametrisation.

coordinates, replacing the edge-distance functions used in the original
construction. The functions are zero on the edge vivi−1, and increase
linearly on edges vi−1vi and vi+1vi+2, as desired.

We replace thedi functions in (8.2) with the functionshi . For the local
parametersui andvi , we substitute the functions si and hi , respectively.
This new weight function and local parameters have the same proper-
ties as the original functions, i.e.,G1 continuity is still maintained across
adjacent patches, but are now suitable for non-convex domains, as illus-
trated in Figure 8.7.

Unfortunately, we have found that the same adjustment to the tan-
gent vectors cannot be applied to the corner interpolater patches. Flip-
ping directions of these tangents directions will violate a necessary con-
dition (8.1) on the tangent �elds along the edge curves. This reduces the
usability of the corner interpolator as a gradient mesh primitive, as the
internal angle of the tangent vectors must always remain under 180 de-
grees. Still, the polygonal domain itself can be non-convex as Figure 8.7
and Figure 8.11 (bottom row, second column) show. A full investigation
into the injectivity of the resulting planar patches is beyond the scope
of this thesis.

8.5 results and discussion

The di�erent forms of the polygonal gradient mesh all interpolate
colours in their own way and we would like to compare their properties
in a range of ways. This includes their ability of interpolating colours
over convex and concave domains. We look at visual �delity of the re-
sulting colour surfaces and their computational and rendering statistics.
Finally we look at the editability of the gradient primitives from a user’s
perspective.
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Input mesh GG CG CMVC Subdivision based

Figure 8.8: A polygonal gradient mesh (far left) consisting of convex faces of var-
ious valencies. Top row: Colour interpolation. Bottom row: Iso-bands
of the individual channels of the interpolants. From left to right: Gre-
gory gradient mesh (GG), Charrot-Gregory gradient mesh (CG), cubic
mean value coordinate gradient mesh (CMVC), and subdivision-based
topologically unrestricted gradient mesh.

8.5.1 Colour Interpolation on Convex Patches

Figure 8.8 shows a simple gradient mesh consisting only of convex poly-
gons with di�ering valencies. This mesh cannot be modelled with an
ordinary gradient mesh, but can easily be used with any of the four
di�erent techniques considered in this chapter.

Both the generalised Gregory patch and the Gregory corner interpo-
lator provide visually similar results. This is because they use the same
technique for creating G1 smooth colour transitions between patches
and they only di�er in how the colour is interpolated throughout the
middle of the patches. Even though they only provide a G1 colour sur-
face, it is still of high visual quality as evidenced from the colour iso-
band visualisations. These iso-bands are comparably smooth to those
of the much smoother subdivision based technique.

The cubic mean-value interpolant shows the sharpest turns in the
colour bands. This could be because the gradient constraints are not
C1 compatible and introduce small visual artefacts around the vertex
regions of the polygonal mesh. At these points the continuity is only
C0 because of the inconsistent gradient directions. Nevertheless, along
edges the transitions in colours are still smooth. It should be mentioned
that the C1 discontinuity at extraordinary points can be �xed through
changing the gradient handles so that they express a common gradient
at the vertex. However, this would change these gradient handles and
this would diminish the freedom a designer has in the de�ning them.
This trade-o� is not present in any of the other considered methods.

If we assess the visual quality of the interpolation methods by the
inability to see the underlying mesh structure (a criterion typically em-
ployed also in the 3D geometry setting), then it is clear that the topolog-
ically unrestricted gradient mesh performs this task in the best manner.
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Input mesh GG CG CMVC Subdivision

Figure 8.9: A polygonal gradient mesh (far left) consisting of convex faces of var-
ious valencies, but with one relatively smaller hexagon (central poly-
gon). Top row: Colour interpolation. Bottom row: Iso-bands of the indi-
vidual channels of the interpolants. From left to right: Gregory gradient
mesh (GG), Charrot-Gregory gradient mesh (CG), cubic mean value co-
ordinate gradient mesh (CMVC), and subdivision-based topologically
unrestricted gradient mesh.

The increased degree of smoothness, it isC2 almost everywhere, of the
colour surface of this technique removes visual cues that other tech-
niques show around edges.

The introduction of smaller sized polygons into the gradient mesh
should not a�ect the interpolation of colour in a counter-intuitive way.
To investigate the e�ect of di�erent sized polygons we have created a
gradient mesh (see Figure 8.9), where a smaller hexagonal polygon is
surrounded by larger polygons. In this case both the Gregory GB patch
and the subdivision-based gradient meshes perform well, as they do not
reveal the underlying mesh. The Gregory-Charrot mesh also performs
well although the colour interpolation around the vertices of the central
hexagon show sharper transitions in colour as evidenced by the sharper
corners in the colour isolines. The cubic mean value interpolant shows
the most diverging behaviour as it introduces unexpected colours with
non-intuitive propagation in the interior of the polygons as well as sec-
tions which reveal the underlying mesh.

8.5.2 Colour Interpolation on Concave Patches

When designing a polygonal gradient mesh, it is not unthinkable that
concave faces might occur inside the mesh. Automatic image vectori-
sation or gradient mesh simpli�cation is also likely to create concave
faces [LJH13]. In Figure 8.10 we assess the abilities of the di�erent in-
terpolants with respect to concave faces.

It is not surprising that the Charrot-Gregory gradient mesh and the
subdivision based gradient mesh do not perform well in non-convex
cases. Their de�nition does not allow them to tackle such cases. They
fold over the non-convex regions in increasing manner depending on
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Input mesh GG CG adj. GG CMVC Subdivision

Figure 8.10: A simple gradient mesh (far left) consisting out of two pentagonal
faces, one of which is concave. Top row: Colour interpolation. Bottom
row: Iso-bands of the individual channels of the interpolated colours.
From left to right: Gregory gradient mesh (GG), Charrot-Gregory gra-
dient mesh (CG), Gregory gradient mesh with non-convexity adjust-
ments (adj. GG), cubic mean value coordinate gradient mesh (CMVC),
and subdivision-based topologically unrestricted gradient mesh.

the concave angle of the edges. The same can be said for the gener-
alised Gregory gradient mesh, but with the non-convexity adjustments
to the gradient vectors it is able to successfully handle non-convex cor-
ners. The cubic mean value coordinate gradient also performs well in
this setting. Looking at the generated iso-bands for both of these tech-
niques we can see that these remain smooth even in the areas where
the other patches fold-over. The cubic mean value coordinate gradient
mesh creates slightly smoother results, but again they are only C0 at
extraordinary vertices. This shows that these two gradient mesh types
have comparable abilities when it comes to colour interpolation on con-
cave faces.

Table 3: Performance evaluation of rendering a gradient mesh with 65 faces of var-
ious valencies (far right). Build time refers to the time it takes to create
and gather the data to push it to GPU bu�ers, whereas render time refers
to the time it takes to render the data on screen (using OpenGL) at 1080p
resolution. All the gradient meshes were rendered at approximately equal
triangulation density except for the last two columns that use the maxi-
mum tessellation level of 64 × 64.

Method Build Render #4
Gregory GB 1 ms 0.52 ms 343541
Charrot-Gregory 1 ms 1.20 ms 343541
CMVC 491 ms 1.05 ms 281600
Subdivision 590 ms 1.20 ms 330624
Gregory GB 1 ms 1.09 ms 1148928
Charrot-Gregory 1 ms 2.41 ms 1148928

125



colour interpolants for polygonal gradient meshes

Input mesh CG GG CMVC Subdivision

Figure 8.11: A single hexagonal patch and the e�ect of translating one of the ver-
tices so that the patch transitions from a convex shape (top row) to a
concave shape (bottom row).

The manipulation of a gradient mesh by manipulating the gradient or
vertices is a common operation. The e�ect of geometrically altering the
mesh should not have adverse e�ects on the colour interpolation, i.e. the
spread of colour should be more or less proportional to the polygonal
patch. In Figure 8.11 we show an example of a gradient mesh consist-
ing out of a single hexagonal patch. In this example we manipulate the
polygon by dragging a vertex around so that an initially convex patch
becomes concave. For the subdivision based gradient mesh we can see
that the colour spread around vertices remains constant. However, the
colour region around the translated vertex does get ‘thinner’. For the
Charrot-Gregory patch and the Gregory GB patch the colours remain
constant even when the polygon becomes concave. For the cubic mean-
value based method di�erent colours start to appear and disappear in
the interior of the patch as the vertex is moved. This e�ect is increased
even more when one of the edges is shorter than the other edges in
the polygon, or due to translating vertices to create such an e�ect. This
e�ect even happens when the gradients at the vertex are shortened ac-
cordingly.

8.5.3 Performance

Gradient meshes are often used interactively e.g. they can be the results
of a vectorisation that the user manipulates or created from scratch by
creating a polygonal mesh. In these cases it is important to have imme-
diate feedback and it is therefore important that the resulting rasteri-
sation can be generated quickly. That is not only important for editing
meshes, but for inclusion in webpages or other documents so that it
can be displayed with ease at any resolution. We therefore weigh the
rendering performance of the di�erent polygonal gradient mesh tech-
niques against each other.
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We evaluate the performance of the techniques based on the time it
takes to create the mesh structure and the time it takes to actually ren-
der the mesh on the screen. For all techniques the basic gradient mesh
structure is contained in a half-edge mesh data structure. In this struc-
ture all data for vertex positions, and gradient positions and colours are
stored as well as the main connectivity of the mesh. This base structure
is used as input to each of the techniques.

For the generalised Gregory patch and the Gregory-Charrot corner
interpolator patch we use the multisided tessellation technique set out
in Section 5.8. We can extract the data for each patch individually and
batch them together according to valency. We then render them e�-
ciently using the GPU tessellation pipeline. One problem occurs when
using ‘highly‘ concave faces. The triangulation strategies covered in
Section 5.8, might not be adequate when considering multiple concave
corners of a high valence polygon and may cover areas which lie out-
side the domain polygon. These patches have to be evaluated on the
CPU side.

For evaluating the cubic mean value interpolant-based method we
used the publicly available implementation of the authors of [LJH13].
We evaluate it fully on the CPU side, but take advantage of the locality
of the patches and construct them fully in parallel. Potentially, the same
tessellation mentioned above can be used to evaluate cubic mean value
patches, but attempts to port the provided code to be GPU friendly have
been unfruitful; instead we used OpenMP parallelisation.

The subdivision-based approach of the topologically unrestricted gra-
dient mesh requires the heaviest computation as both the operations of
the ternary step (discussed in Section 8.2.2) and the subsequent Catmull-
Clark subdivision operations are fully global. Any adjustment the user
makes to gradient mesh structure leads to the full mesh needing to be
subdivided again from the ground up, including the ternary subdivision
step. At least a few subdivision steps are needed to provide a reason-
ably smooth colour surface and thus higher subdivision levels lead to
decreased performance.

We conducted a test to check the viability of all the techniques in the
event of interactively editing a mesh. In this context, interactively edit-
ing the mesh is understood as dragging vertices or tangent handles to
change the geometry of the gradient mesh, or modifying colours. This
is a use-case any designer would go through many times when design-
ing a gradient mesh. We conducted the performance comparison on a
computer with two Intel Xeon E5-2630 processors (@2.3 GHz) and an
NVIDIA Titan V graphics card with 12 GB of video memory. Our results
are reported in Table 3.

We can see that the two newly proposed gradient meshes are very
e�cient, both in rendering and in the time it takes to transfer their data
to the GPU. We rendered them at two di�erent densities, one such that
the level of detail is comparable to the other methods and once using
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s = 0.0 s = 1.0 s = 2.0 s = 3.0, s = 1.0

Figure 8.12: The same Gregory gradient meshes with di�erent values for the pa-
rameter s for the common edge of the two quadrilateral faces rendered
with showing the iso-bands of the individual colour channels. Top row:
Our scaling method. Bottom row: The scaling approach of [SS90].

the maximum tessellation rate of 64 × 64 (current hardware limit). The
performance of the Gregory gradient mesh is approximately twice as
fast as that of the Charrot-Gregory gradient mesh. It shows the viabil-
ity of using these new primitives in vector graphics authoring software,
as they greatly improve the performance with respect to the other meth-
ods. With the new primitives, polygonal gradient meshes can be modi-
�ed in real time, giving the user instant feedback at every step during
design. The performance could be increased even further by employing
adaptive tessellation strategies [SNK+14] (and see Section 5.8.2).

8.5.4 Editability

As already shown all the discussed techniques have comparable capa-
bilities when it comes to smooth colour interpolation when concerning
convex polygons, and convex vertices, as shown above. Smooth transi-
tions are clearly important but can only model a range of di�erent sit-
uations. To model sharp edges in the colour surface with only smooth
transitions requires many patches in close proximity to each other so
that the colour surface changes colour fast. This quickly increases the

Figure 8.13: A simple gradient mesh with 2 pentagons and 3 quads showing sharp
colour transitions rendered using Gregory GB gradient meshes with
the non-convexity adjustment. Notice how the sharp colour transitions
blend back into smooth colour transitions along the (hard) edges.
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Figure 8.14: Three meshes rendered using generalised Gregory gradient meshes
with the non-convexity adjustment (face model: 101 faces in total, 12
triangles, 61 quads, 24 pentagons and 4 hexagons; shoe model: 166
faces in total, 20 triangles, 115 quads, 29 pentagons and 2 hexagons;
heel model: 195 faces in total, 22 triangles and 173 quads).

complexity of the mesh, whereas we are after as sparse as possible a
representation.

The ability to model sharp features was already mentioned in relation
with subdivision gradient meshes [LKSD17] through the use of semi-
sharp creases [DKT98]. Semi-sharp creases allow for the user to tag
certain edges or chains of edges with a sharpness value. Then depend-
ing on the sharpness value, sharp subdivision rules for subdivision are
used until the sharpness value, which is decremented in each iteration,
is zero where after normal subdivision rules are used. By applying this
only to the colour component of the surface creases in the colour sur-
face are obtained. For in�nitely hard colour transitions it requires the
topological separation of the colour attributes of edges.

Hard transitions are easily modelled by the other variants of gradi-
ent meshes. However, semi-sharp creases are much harder to model as
it requires mostly altering the meshes geometrically. We determined a
simple way to o�er a similar ability in the Gregory gradient mesh. The
tangent vectors involved in individual Bézier ribbons can be scaled arbi-
trarily. Salvi et al. [SV18] have shown that there is no apparent restric-
tion on the orientation of the tangent vectors used in the ribbons. The
same thing applies to the magnitude of the tangent vectors, as the con-
nection between patches is only G1-smooth. Therefore, we can scale
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the vectors a0 and a3 used in determining the inner control points of
the Bézier ribbon by an arbitrary constant factor s > 0 to increase or
decrease the in�uence a ribbon has on local colour propagation into
the patch. The manipulation of the two middle vectors b1 and b2 was
proposed earlier by Shirman & Sequin [SS90] for quadrilateral Gregory
patches. The generalised Gregory patches use blending functions for all
control points of a ribbon and thus more freedom is available to vary
these.

We have investigated the e�ect of the parameter s by varying its value
for a connection between two quadrilateral Gregory gradient mesh
primitives. Figure 8.12 shows that by manipulating the magnitude of
s we can in�uence the spread of colour near the tagged edge. Note that
manipulating the magnitude in the case of only using the centre vectors
of the basis patch changes the extent in the centre of the ribbon, whereas
our adjustment changes it for a wider region of the ribbon. The e�ect
is still quite subtle, but it is possible to see that we can get sharper tran-
sitions for s = 0 as our method also scales the endpoint vectors of the
basis patch. Increasing the parameter value increases the extent and �at-
ness of the colour transition over the boundary. Increasing the extent
too much for adjacent edges then leads to fold-overs.

We can also model hard transitions simply by allowing vertices
to have multiple colours, one per incident face [BLHK18, VK18]. Fig-
ure 8.13 shows a simple polygonal gradient mesh where a sharp tran-
sition is created for one of the middle vertices of the mesh. It clearly
shows a sharp transition in colour along the user-speci�ed hard edges
emanating from this vertex. The sharp colour transition blends back
into a smooth colour transition at the end of the sharp edges. This proce-
dure is easily used also for the cubic mean value and corner interpolator
variants.

Topological editing of the mesh structure is supported for all mesh
types. Adding, removing, and arbitrarily splitting faces and edges can
be achieved without loss of smoothness for all the techniques, with the
possible exception of cubic mean value coordinates meshes due to the
gradient incompatibility issue. The hierarchical editing of topologically
unrestricted gradient meshes [VK18] is not easily matched by any one
of the other techniques.

Nevertheless, it is possible to create a transition of high detail areas to
low detail areas with non-hierarchical methods. For instance, this can
be achieved by turning a quadrilateral face into a pentagonal face by
subdividing one of its edges. One can see many such situations arising in
the realistic gradient meshes in Figure 8.14 rendered using Gregory GB
gradient meshes. Notice the complicated topology introduced around
the eyes of the ‘face’ mesh and around the shoelaces of the ‘shoe’ mesh.
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8.6 conclusion

We have modi�ed the generalised Gregory patch and the Gregory-
Charrot corner interpolator patch to make them suitable for colour in-
terpolation in the context of polygonal gradient meshes. The patches
can interpolate colour over polygonal meshes similar to how a tradi-
tional Ferguson patch can do over gradient meshes with rectangular
topology. The patches can be constructed from local data through the
use of the adjusted method of Chiyokura and Kimura that now takes
into account colour components. The range of polygons that can be
modelled has been extended by parametrisation through mean value
coordinates, so that also concave faces are able to be used and allow
for smooth interpolation of colour. The generalised Gregory gradient
mesh has an advantage over the corner interpolator patch as the indi-
vidual ribbons can be adjusted to allow for concave corners and avoid
fold-overs in these areas.

We have compared the patches to the existing cubic mean value inter-
polant and the topologically unrestricted gradient mesh. We found that
in terms of visual quality they are comparable to the subdivision based
topologically unrestricted gradient mesh even though the continuity of
the colour surface is onlyG1. The new techniques are also very e�cient
as they can be directly rendered using hardware tessellation methods,
and are much more e�cient than the existing two methods as they re-
quire only minimal mesh data. In the case of simple geometric editing
of an existing gradient mesh, they behave optimally for interactivity.
The new polygonal gradient mesh primitives are good alternatives to
the two existing techniques, and increase the viability of the use of arbi-
trary manifold topology gradient meshes in existing and future vector
graphics authoring software.
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9I M A G E V E C T O R I S AT I O N W I T H M E S H C O L O U R S

Parts of this chapter awaits publication as

• Gerben J. Hettinga, J.I. Echevarria and J. Kosinka. "E�cient Image
Vectorisation using Mesh Colours", STAG 2021.

133



image vectorisation with mesh colours

Image vectorization methods proposed in the past have not seen wide
adoption due to performance, quality, controllability, and/or generality is-
sues. We present a new method using mesh colours as a new vector primi-
tive for image vectorisation. We show that mesh colours have clear bene�ts
for rendering performance, texture detail, and editing capabilities. Due to
their �exibility, they also enable a simpli�ed and more e�cient generation
of meshes of curved triangular patches, which are in our case constrained
by our new image feature extraction algorithm. The proposed method fol-
lows a standard pipeline where each step is e�cient and controllable, lead-
ing to results that compare favourably with those from previous work. We
show results over a variety of input images including photos, drawings,
paintings, designs, and cartoons.
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9.1 introduction

Image vectorisation is a hard problem and the main problems faced
when vectorising an image were already set out in the introductory sec-
tion of this part of the thesis. With image vectorisation a raster image
is represented as a vector image by de�ning the image as a collection
of primitives. Manual vectorisation of a raster image is a painstaking
process especially when trying to vectorise highly detailed input such
as natural images obtained from photographs. It requires expertise and
knowledge about the abilities of the vector graphics primitive and im-
mense amounts of time [YCZ+16]. There is thus a need for solutions
that automatically vectorise images.

There have been many attempts and solutions at automatic image
vectorisation. With this many di�erent types of primitives have been
used as means through which vectorisation is done. However, the meth-
ods have not seen wide adoption. This is mainly due to the vectorisation
lacking in terms of conversion e�ciency and/or rendering performance,
quality or controllability issues. The limitations of vectorisations have
turned into artistic styles of their own like Adobe’s Live Trace [Ado19b].
Automatically creating complex and realistic looking vector graphics
from an arbitrary input image still remains a challenge.

Our proposed automatic image vectorisation method strikes a bal-
ance between the requirements for a good vectorisation. We create a
vectorisation that is adaptive to the contents of the image, creating a
sparse representation in certain areas while increasing detail in others.
The adaptivity of the representation and the sparseness makes it possi-
ble to easily edit the created representation. Our vectorisation method
is agnostic of the contents of the image, but generally is able to create
highly accurate vectorisations and can do so on a wide range of inputs,
including natural images and stylised design graphics. The method is
fast and we have taken careful design decisions in our pipeline to opti-
mally vectorise an image and to be able to e�ciently render the image
on screen.

The pipeline of our approach follows three main steps: image feature
extraction, curved mesh generation and colour �tting/texture transfer.
Each step has been designed with quality, performance and control in
mind. We use a new and intuitive method for extracting soft image fea-
tures and use standard techniques to obtain sharp image features. Our
mesh generation step then faithfully traces and leverages the extracted
features and uses recent advances in mesh generation to create a curved
triangular mesh. Likewise, new methods for texture representation are
used to create a versatile vector graphics primitive to which we can
automatically transfer texture information on a per-triangle basis. Ad-
ditionally, using the proposed rendering method, our vectorised images
can be rendered in real-time on a wide range of hardware, including ex-
tra control over the level of detail for the more constrained use cases.
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Figure 9.1: Example of an input image (a) and our vectorized result (b). Our
method follows an e�cient and controllable pipeline where we initially
compute hard (red) and soft (green) image features (c, top). These fea-
tures are then used to build a curved triangular 2D mesh (c, bottom),
where each triangle is equipped with mesh colours (d, top) that can be
rendered e�ciently in real-time (d, bottom). Insets (e, f), coming from
(a, b), show how our method keeps the sharpness around hard features
(like the folds), while interpolating colour smoothly everywhere else.
Results of this quality can be achieved in just a few seconds with the
proposed method.
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In summary, the main contributions of our method are:

• The introduction of mesh colours as an image vectorisation prim-
itive, with an e�cient strategy for the automatic �tting of mesh
colours;

• A novel way to extract texture information and soft features from
the input image;

• An e�cient image vectorisation method.

We start with an overview of related work in vector graphics and
image vectorisation (Section 9.2). Then we provide an overview of our
vectorisation method (Section 9.3), which is followed by a detailed de-
scription of its stages: image feature extraction (Section 9.4), mesh gen-
eration (Section 9.5), and texture transfer (Section 9.6). To demonstrate
the utility of our method, we show the results of applying our pipeline
on several types of raster images, edits to our vector images, and com-
pare with previous works (Section 9.7). Finally, we discuss our method
before concluding the chapter (Section 9.9).

9.2 related work

Early attempts at image vectorisation were mostly limited to the vec-
tor graphics primitives of that time. A basic vector graphics primitive
is a pathed region, i.e. a region enclosed by curves. The regions can
be �lled in with �at colour or linear or radial colour gradients. The
limited range of these primitives created a stylised representation of
the original image. The ArDeco system [LL06] divides the image into
polygonal regions with little or no colour variation, to which �at or lin-
ear colour gradients are �tted. Similarly, through colour quantisation
the quantised iso-curves can be vectorised into paths and the colour
of the enclosed region can be grouped and a best �tting colour can be
determined for the whole region [Ado19a, LLGRK20]. This simpli�es
the details of the image and expressiveness as a whole, but is a simple
procedure that works reasonably well for natural images depending on
the results of the quantisation step. Interactive user guidance has been
explored for a means to better preserve salient semantic boundaries of
objects in the image [XWLS17, RLMB+14, FLB17].

Images usually feature more complex colour gradients than only lin-
ear or radial ones and di�erent primitives have been developed over
time to better model these gradients. The gradient mesh primitive
which we have seen before (see the previous two chapters in this thesis)
is one such primitive. The traditional form of the gradient mesh has fea-
tured in several attempts at automatic image vectorisation, where the
main di�culty lies in the generation of a mesh for an arbitrary region.
Early attempts have used it in combination with (pre-)segmented re-
gions which are embellished with a quadrilateral parametrisation. The
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Figure 9.2: An overview of the steps in our method. Top row from left to right:
The input raster image, banded grayscale image to extract soft edges
from, extracted hard (red) and soft (green) image features which are
vectorised into Bézier curves, Bottom row from left to right: generated
curved triangular mesh, mesh colours with colours �tted, and �nal ras-
terized result.

parametrisation is then used to progressively subdivide the patches un-
til they adequately approximate the underlying image region. Finding
an optimal position for all the vertices in a gradient mesh is hard to
do and requires a lot of tweaking and adjusting. For this purpose auto-
matic means to optimise an existing gradient mesh, both geometrically
and colour wise were explored [SLWS07]. A di�erent optimisation ap-
proach has been determined with capabilities to �t a gradient mesh to
a segmented region with holes [LHM09]. Recently a fully automatic
pipeline that generated a gradient mesh for an arbitrary image used
frame-�eld computed from image gradients which is used to create a
quadrangulation was presented [WZG+19].

Another primitive able to convey complex colour gradients are di�u-
sion curves [OBW+08]. Di�usion curves describe an image by a set of
curves each of which de�ne a sharp transition in colour. The colours of
the curve are then di�used over the rest of the image plane. Di�usion
curves provide a straightforward way to vectorise images. By detecting
edges in images and subsequently representing them as smooth curves
the only parameter that needs to be determined is the colours on either
side of the edge. Over time some extensions of the di�usion curve have
been suggested and di�erent ways they could be used in a vectorisa-
tion setting. Hierarchical di�usion curves [XSTN14] are generated from
a scale-space feature extraction process and images augmented with
depth values have led to depth-aware image vectorisations [LJD+19].
An iterative process of vectorising images has been proposed by �tting
di�usion curves on the image residual [ZDZ18]. Di�usion curves and
their generalisations are powerful means to represent an image using a
sparse set of curves, but their evaluation is expensive as the di�usion
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of the colours over the image either involves solving a large linear sys-
tem [OBW+08] or other complicated methods [BLW11].

The use of subdivision surfaces for vectorisation was approached
in combination with triangular meshes. The �rst such representation
[LHFY12] simpli�es a pixel level triangulation which conforms to de-
tected edges. The simpli�ed triangulation is �t colours so that the sub-
sequent evaluation using Loop subdivision minimises the colour with
respect to the input image. A similar approach is taken by [ZZW14],
but in this case the mesh is generated using a polyline representation
of the detected edges. Both these approaches are able to generate good
results using a fully automatic pipeline, but the evaluation of subdivi-
sion surfaces is costly and they do not in general interpolate colours
assigned to mesh vertices [VK18]. Both gradient meshes and subdivi-
sion surfaces can only de�ne colours at the vertices of their respective
meshes, and thus in image areas with high-frequency changes in colour
a large number of vertices are needed.

Attempts at tackling this problem have led to the use of a combination
of thin-plate splines with cubic Bézier triangles. In [XLY09] a curved tri-
angular mesh is generated by simplifying a pixel-dense triangular mesh,
which is then further optimised into Bézier triangles, through a com-
plicated non-linear untangling process. Then each patch is equipped
with a thin-plate spline to best �t the underlying image colours. The
mesh is able to be su�ciently sparse and the thin-plate splines capture
the underlying texture well, but are unable to be smoothly joined to
other patches and care must be taken to minimize the discrepancy. The
evaluation of the spline is also costly and a special CUDA based algo-
rithm is designed to be able to do so with reasonable e�ciency. Chen et
al. [CLL+20] create a more e�cient kernel to evaluate the splines and
pair it with gradient meshes that are generated from a rough manual
segmentation of the image. Although, the splines are stated to be able
to be rendered in real-time their evaluation is complex and on top of
that the splines are not able to preserve sharp features other than those
preserved by the segmentation.

In our approach we also create Bézier triangles for our mesh, but di-
rectly from detected image edges and soft features. We represent colour
inside each Bézier patch as mesh colours [MSY19]. This allows to rep-
resent textures in a detailed way and in addition provides a cheap, yet
accurate representation of the original image.

9.3 overview

Our vectorisation method automatically converts an input image into a
vector image. We pose no restrictions on the content and the images can
have varying types, from natural images to design graphics. We want
to create a vector representation that is editable, which can be rendered
e�ciently and which is a sparse representation. For this purpose we
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design our pipeline so that it can extract image features that capture
representative geometry, shading and texture. These features are vec-
torised into 2D splines and remain as handles for high-level edits. The
vectorised features are used as constraints for our mesh generation step,
and in the interest of sparsity, we insert curved constraints directly so
that a curved triangular mesh exactly encompasses them. The mesh gen-
eration step is to remain e�cient, but yet creates a good topology that
is sparse enough for the user to edit geometrically. Each triangle is then
equipped with a mesh colour patch, which is of higher density than the
cubic triangles, so that each triangle can capture a lot of texture detail.
We �t the mesh colours automatically, using a new automatic texture
transfer process. Our vector representation is rasterised e�ciently in
real-time using tessellation shaders and the e�cient evaluation of the
mesh colour patches.

Figure 9.2 visually depicts the steps in our pipeline. First, the main
features of the image are extracted (Section 9.4). We then generate a
mesh (Section 9.5), which is followed by colour �tting of mesh colours
(Section 9.6). Figure 9.1 shows the same intermediate steps for a more
complex input. In the following we detail the individual steps of our
pipeline.

9.4 feature extraction

We want to extract those image features that represent geometry, shad-
ing and texture from the input raster image. These are the features that
should be preserved and are the key to successful image vectorisation.
We aim to tackle most image content, but we do not want and are not
able to make any assumptions about their content. We want our vectori-
sation to be able to correctly preserve edges of the original image, but
also to be able to correctly model the shading and colour gradients in
between those regions. To this end we de�ne two types of features: hard
and soft edges. Hard edges are the results of colour discontinuities and
capture contours, texture and salient shapes, and should be preserved as
much as possible and remain sharp. Soft features do not need to be pre-
served as sharp, but should preserve shading of the image as best as pos-
sible. Detecting such features is still an active topic even after decades
of research into edge detection [MA09]. Recent neural approaches have
seen increasingly good performance at inferring salient edges at the ob-
ject level [XT15, LCH+17, HZY+20]. However, these methods are not
that well suited to surfacing progressive texture detail.

edge extraction For image vectorisation purposes the edge de-
tection procedure as set out by Canny [Can86] has been su�ciently apt
to capture hard image features [XLY09, CLL+20]. We typically set the
low and high thresholds to 15 and 100 with respect to the range [0, 255],
respectively. However, while Canny is good at detecting hard edges, it
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Figure 9.3: Top Row: Original image and the quantized grayscale image with the
extracted hard (red) and soft (green) edges overlayed on top. Bottom
row: Our vectorised version without using soft edges (left) and with
soft edges (right). Note that soft edges help capturing more detail and
to avoid artifacts on the re�ections of the statue and in the background.

fails to pick up soft edges and shading: lowering the thresholds brings
in too much noise and/or unwanted texture detail. Too much noise will
impact the subsequent steps of the pipeline negatively, as the mesh gen-
eration step needs to incorporate all of the detected features. Thus, we
propose a new simple procedure to extract soft edges to complement
the hard ones found by Canny.

When vectorising images using only hard edges we noticed that the
missing soft edges are typically orthogonal to the smooth colour gra-
dients present in the image. Such features are easily exposed using an
image quantisation or banding step. We take a greyscale version of the
image and quantise it into separate levels (we use 20 by default), and
trace the discontinuities of the di�erent bands. This is similar in spirit
to the iso-contours used to vectorise brushstrokes in [BDF14] and to the
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posterisation strategy to vectorisation as used by popular vectorisation
algorithms. We do not directly use the traced iso-contours, but process
them further.

edge filtering Hard and soft edges may overlap in areas where
image gradients change quickly. This mostly occurs near hard image fea-
tures and in those areas there is little room left between contours of the
banding. Again this would negatively a�ect the mesh generation step
(Section 9.5) as many triangles would need to be generated. For this pur-
pose we �lter the soft edges around the perimeter of neighbouring hard
edges. This e�ectively removes them from areas where hard edges are
already present. In practice we achieve this by creating a distance trans-
form of the previously extracted hard edges and �ltering the extracted
soft features based on their distance to the nearest hard edge. Figure 9.3
shows the result of quantising the greyscale image, and the subsequent
soft features extracted from them (Figure 9.3, top right). These features
help us better capture soft image details, such as all the blurry back-
ground elements in the input image (Figure 9.3, bottom row).

9.5 mesh generation

The goal of the mesh generation step is to create a mesh of cubic Bézier
triangles that incorporates the detected features. First we vectorize the
detected edges by converting them to cubic Bézier splines, subsequently
these splines serve as the constraints for the curved triangulation step.

edge vectorisation The extracted hard edges are traced and
linked into chains of pixels so that they can be easily vectorised into
Bézier splines. The splines help us capture curves and remove aliasing
present on hard edges later on. We enforce C0 continuity and G1 conti-
nuity as needed. The actual vectorisation process is done along the lines
of [Sch90]. We recursively �t the splines to the chains of pixels by �t-
ting to the whole pixel chain. We keep the �t only if the error between
the polyline approximation of the Bézier curve and the pixel chain is
half a pixel. If the error is larger than that, we split the pixel chain at
the point of maximum error and we perform the same �tting step on
the respective halves of the previous pixel chain. We continue until the
whole pixel chain is successfully converted.

We could perform the same process of vectorisation on the pixel
chain obtained from the tracing of the soft edges, but as these do not
represent salient image features there is no need to preserve them as
accurately as the hard edges. Therefore the vectorisation approximates
rather than interpolates the soft edges, meaning that we do not strictly
enforce the start and end points of the individual curves to lie over the
actual pixel-chain positions. Figure 9.3 (top, right) shows the vectorised
edges obtained from the input image. As can be seen, the hard edges are
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Figure 9.4: The curved triangulation algorithm by Mandad & Campen. Top row:
Left: Degenerate triangulation obtained by using constraints naively.
Middle: the initial curves with their guarding triangles intersect. Right:
the largest curve is split and results in two smaller guarding triangles,
one of which still intersects. Bottom Row: Left: The largest guarding tri-
angle is split and yields again two smaller pairs of guarding triangles.
Middle: The curves, as linear constraints, and the guarding triangles
are input to the triangulation algorithm. Right: the triangulation is op-
timised to improve the shape of the faces in the resulting triangulation.

accurate, whereas the soft edges o�er an approximation of the bands
from the quantisation, without a�ecting the quality of the reconstruc-
tion. Hard and soft edges are kept separate to be handled di�erently in
later stages of the pipeline, as they require di�erent smoothing condi-
tions.

curved triangulation The features extracted from the previ-
ous step represent curved edges in the image. We want to generate a
mesh using the curved constraints, but by using standard linear mesh-
ing techniques we would run into trouble. Naively inserting the curves
by their end points as linear pieces and only afterwards curving them
could lead to supporting straight lines segments crossing the curved
ones. In addition two curved segments that do not intersect each other
might intersect each other when considering only the linear segment
connecting their respective start and end points. An example of this can
be seen in Figure 9.4, top left. An option to �x this is to subdivide the
curved segments until the polyline approximation is accurate enough,
but this procedure would quickly increase the number of faces intro-
duced in the subsequent triangulation step. We want to exactly preserve
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the curved constraints, leading to a lower number of faces, and create a
curved triangulation that incorporates them, ensuring that the curved
edges are directly interpolated. Curved triangulations have been used
before in a vectorisation settings [XLY09], but the curved triangulation
is obtained as the result of an untangling of an initially linear mesh. The
generation of our triangular mesh is created in a more e�cient manner,
by �rst examining the relations between individual curves.

We follow the example of Mandad & Campen [MC20] who describe
an e�cient means to create a curved triangulation which guarantees
that no degeneracies, crossing segments or �ipped triangles, will re-
main. The technique constructs pairs of guarding triangles around each
individual curved segment. The guarding triangles are computed so that
the curve itself and the control polygon are completely contained in the
guarding triangles. The guarding triangles are meant to be inserted as
constraints into a standard constrained Delaunay triangulation proce-
dure. Then by checking intersections of guarding triangles we can de-
termine whether a curve needs to be subdivided further. By subdividing
a curve we will also create two new pairs of guarding triangles for the
introduced curve pieces. These guarding triangles will cover a much
smaller area than the original one. Figure 9.4, top middle, shows a sce-
nario where the two pairs of guarding triangles of two separate curves
intersect. The quickest way to resolve intersections further on is to split
the curve whose guarding triangles have the largest area. Naturally, the
guarding triangle that has the large area can be expected to have the
most intersections, and by splitting this curve (see Section 2.2.3) it we
gain the most. In the case mentioned earlier we split one of the curves,
but one of the resulting guarding triangles still intersects. We again se-
lect the curve with larger area guarding triangles and split those result-
ing into two disjoint sets of guarding triangles. At this point we can
safely triangulate the curves and guarding triangles and the resulting
triangulation will be completely valid, even with the curved segments
included. The triangulation can be improved further, by restricting the
maximum length of a segment and by inserting supporting points reg-
ularly into the empty portions of the image plane.

The procedure is e�cient as it resolves intersection quickly and typ-
ically only needs few subdivision of curves to generate a valid trian-
gulation. We accelerate the intersection testing by creating a bound-
ing volume hierarchy, where we create bounding volumes �rst for the
complete features and then their individual curve pieces. Alternatively,
techniques such as TriWild [HSG+19] could be used to generate the
geometry instead. After the triangulation step we have completely de-
termined the topology of our mesh. We can then �x also the geometry
and parametrisation of each of the faces.

Since all curved pieces are already given as cubic Bézier curves
we can easily convert all supporting straight linear segments to cubic
Bézier curves too. Then using the control points of the edges of each
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Figure 9.5: Left: A cubic Bézier triangle with control points (the central one is in
red). Middle: Resolution 4 patch texture with (4+1)·(4+2)/2=15 mesh
colours mapped on the cubic Bézier triangle. Right: Linearly (top) and
quartically (bottom) interpolated mesh colours.

face we can construct a cubic Bézier triangle (see Figure 9.5, left, or Sec-
tion 2.3.2). The only missing thing is the central control point (red point)
as all blue points are de�ned already. We de�ne the central control point
to be the average of all edge control points. By adding this central con-
trol point the parametrisation of each face is now �xed. Additionally,
we also keep track which of the edges of the triangles are soft or hard
by tagging them. The supporting edges inserted by the triangulation
step are always tagged as being soft.

9.6 texture transfer

The use of Bézier triangles as the vector primitive provides for a way to
evaluate our mesh geometrically, but does not provide us with a way to
handle varying texture detail e�ectively. Assigning colour values to the
control points will not give enough expressibility to model such texture
detail. For this we create a mesh colour patch on each of the triangles
of our mesh. Mesh colours [YKH10] have not been considered before
in the context of image vectorisation, when not counting the base case
of vertex colours or standard linear interpolation on triangles. Mesh
colours provide a convenient means to store colour and texture infor-
mation on a per-patch basis. This removes the need for global texture
coordinates, as the colours are de�ned in the parametric domain of a
mesh patch. Therefore, there is no need for complex UV-maps or un-
wrapping techniques and the generated mesh can be used directly. This
has the advantage that texture evaluation becomes robust to transfor-
mations and edits. The typical work-�ow of using mesh colours is for an
artist to paint on the mesh directly [YLT19], and therefore no standard
ways of transferring image information to mesh colours is available.
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mesh colours We map triangular mesh colours to the cubic Bézier
triangles which were created in the mesh generation step (Section 9.5).
Figure 9.5, middle, shows a schematic view of mesh colours which are
mapped onto the cubic Bézier triangle depicted on the left. Each mesh
colour patch is equipped with a resolution r which handles the total
number R = (r+1)(r+2)

2 of mesh colour vertices ti per patch, where i =
(i , j,k), i + j + k = r and i , j,k ≥ 0. The mesh colour patch depicted in
Figure 9.5 has a resolution r = 4. We follow the procedure of [MSY19]
to evaluate the mesh colour patches using barycentric coordinates. For
clarity of presentation and to prepare the ground for our proposed mesh
colour �tting scheme (Section 9.6.1), in the following we detail the steps
for evaluating a mesh colour patch.

The patches are evaluated using their barycentric parametrisation.
The barycentric coordinates ϕ = (u,v ,w) with respect to a triangle 4
in the mesh are used to determine the three closest mesh colours: ti, tj,
tk. These colours together determine a mesh colour (sub)triangle of 4.
From the coordinates ϕ we determine the local barycentric coordinates
ϕ inside the mesh colour triangle. We can use these local coordinates to
either linearly
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interpolate the mesh colours. The former results in piecewise linearC0

colour interpolation and the latter in piecewise quartic C1 colour inter-
polated. The quartic interpolation is slightly more expensive computa-
tionally and visually seems to drag or �atten out the colour a little more.
Overall there is not a lot of di�erence as can be seen from Figure 9.5,
right column), except in cases where the individual mesh colours vary
extremely.

The resolution r of each patch can be determined on a per-triangle ba-
sis [Yuk16], e�ectively adjusting the amount of texture detail that can be
represented and the storage required for it. Naturally, with an increase
in resolution the approximation ability also increases. In Figure 9.6 we
show a synthetic example where a static mesh, that is not aligned with
image features, approximates the same image with increasing resolu-
tions of mesh colours. Higher resolutions are better able to approximate
the input.
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input r = 2 r = 4 r = 6

Figure 9.6: From left to right: Input image and vectorisations using the same mesh
but di�erent resolution (2, 4, and 6) of mesh colours. In this test example
we made the mesh not to capture the features of the input image cor-
rectly, but as can be seen, increasing the mesh colour resolution leads
to increasingly better approximations of the input image.

9.6.1 Mesh colour Fitting

Using the parametrisations of the patch we can �t mesh colours to them.
Ideally, we would like to �t the whole mesh using a global process, so
that we can automatically create smooth transitions between triangles
over smooth edges. However, solving this in a global least-squares sense
leads to a large system of equations, and would not be practical with
regards to memory and performance. We simplify the problem by �tting
to each triangle individually, then afterwards we smooth mesh colours
across edges at edges that are marked as smooth.

We �rst �t mesh colours to each cubic Bézier triangleT parametrized
over 4 separately. We sample each T in the mesh uniformly to obtain
the pairs (pi ,ϕi ) for every sample position pi in the image with ϕi its
barycentric coordinates in 4, i.e., T (ϕi ) = pi . To e�ectively �t a patch
texture, we need to ensure that the number of samples m satis�es m >
R. Using the image position pi of each evaluated pair, we look up the
bilinearly interpolated colour value I (pi ) = ci in the input raster image
I . Using ϕi , we determine the local barycentric coordinates ϕi of pi in
its mesh colour (sub)triangle. We then minimise the following function
on a per-triangle basis, used once per colour channel:

min
∑
i

(
T c (ϕi ) − ci

)2,

where T c evaluates the colour corresponding to T . This is a standard
least squares problem that we solve for the mesh colours of T . The ma-
trix of the system can be reused for �tting triangles with the same mesh
colour resolution r , since it is independent of the actual image positions
and it uses only parametric positions (expressed in terms of ϕ), which
are generated uniformly for each triangle. We e�ciently perform this
sample pair creation process in parallel for each triangle using GPU
compute shaders.

We can increase the e�ciency or quality of the colour �tting step by
considering di�erent resolutions of mesh colours. We can use di�erent
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resolutions based on the size of the triangle in the original image. We as-
sume that the features extracted during the extraction step are oriented
in such a way that the areas in between only contain slowly varying
colour gradients and highly varying regions of colour are captured by
smaller triangles. Therefore, the smaller the triangle, the less resolution
is needed to be able to represent the textured area of the original image.
Practically this means that we order the triangles based on their pixel
area in the original image into three di�erent bins. The bins correspond
to an increasing resolution of mesh colours r = 1, 2, 4. This bene�ts per-
formance as lower resolution textures require less samples to be gen-
erated, reducing CPU-GPU congestion and improving the speed of the
�tting.

Alternatively we could progressively �t increasing resolutions of
mesh colours based on the error with respect to the underlying image
region. We can start �tting a patch based on resolution r = 1, then de-
pending on the error we could attempt �tting with higher resolutions.
Naturally, this process will converge as the mesh colour resolution at
one point will exceed the actual pixel resolution. This �tting scheme is
less e�cient, as potentially multiple �ttings should be done, but could
be made more e�cient by generating enough samples to do at least
two �ttings with di�erent resolutions. Even this could be accelerated
by generating only the samples not covered by lower resolutions.

Optionally, after �tting the resolution of mesh colours can be in-
creased for lower resolution so that each patch has a uni�ed resolution.
Additional mesh colours can be generated through linear interpolation
of existing mesh colours. This approach allows a uni�ed approach of
handling and rendering triangles later on.

offset sampling Bilinear sampling of colours is useful to not let
noisy input enter the colour �tting procedure and to be able to access
sub-pixel location of the original image. However, sampling near to hard
edges causes incorrect sampling, because the bilinearly sampled colour
can be a combination of colours on either side of the edge. This causes
colour bleeding artefacts to appear on triangles incident to sharp fea-
tures (Figure 9.7, top). We take the same strategy as set out by Liao
et al. [LHFY12], where a one-pixel region around hard edges is padded.
When sampling at hard edges, the sampling is o�set towards the padded
region. In this way we can be sure that the sharp features present in the
raster image are preserved by sampling on the correct side of the edge
(Figure 9.7, bottom). This leads to crisp edges and features without af-
fecting the interpolation on either side of the edge.

colour smoothing Fitting each triangle individually will lead to
small discrepancies between the edge mesh colours on adjacent trian-
gles. Naturally, this is not a problem for hard edges, but soft edges
should be soft in that their interpolation is as smooth as possible. This
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Figure 9.7: Vectorized image without (top) and with (bottom) o�set sampling
around hard edges. Insets show the increased sharpness not only on
silhouettes, but also hard edges coming from other sources like shad-
ing.

increases the �delity of our vectorisation as the underlying mesh is not
able to be seen from the resulting interpolation. We create a simple pro-
cedure where mesh colour values of edges are averaged with respect
to their values on adjacent mesh colour patches. The procedure is only
done for edges which are tagged as being smooth edges, i.e. support-
ing edges from the triangulation step (Section 9.5), or the smooth edges
from the feature extraction stage (Section 9.4). By averaging the mesh
colours on edges we have guaranteed at leastC0 interpolation of colour
across smooth edges. Figure 9.8 shows the di�erence before and after
colour smoothing. Before smoothing, the underlying triangulation is
clearly visible in some regions. After smoothing, these artefacts vanish
and the resulting vector image hasC0 colour interpolation everywhere
except at hard features.

9.6.2 Rendering

The combination of parametric patches to evaluate geometry and a para-
metric representation to also evaluate colour lends itself extremely well
for e�cient rendering. We use tessellation shaders in the modern graph-
ics pipeline to evaluate the cubic Bézier triangles. The mesh colours are
stored in textures as proposed by [MSY19] and we evaluate them using
the process outlined in Section 9.6 through the use of a fragment shader.
Inadvertently this leads to duplication of all mesh colour data stored at
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vertex positions or along edges. For modelling of sharp features this is
of course necessary, but for smooth features there is duplication.

Recently improvements to the mesh colour techniques [Yuk16,
YLT19, MSY20] have been proposed that extend them with increased
�ltering capabilities, such as mipmapping and anisotropic �ltering, and
hardware support for e�cient texture access and �ltering. We have not
focussed our e�orts into improving the �ltering of our representation,
but we see no reasons as to why the aforementioned techniques could
not be applied to our representation.

Due to the uni�cation of the resolution of the di�erent resolutions of
mesh colour patches used in our representation, we are able to render
each vector image using a single draw call. We can increase the perfor-
mance of our rendering even more by employing adaptive tessellation
based on the projected edge length of the triangles. Longer edge length
calls for increased tessellation levels whereas smaller triangles should
not have to be tessellated to such a dense level. By using the edge length
as a metric for our tessellation level, we can guarantee that the resulting
tessellation is gap-free.

Figure 9.8: Top: Input image (left) and our vectorised result (right). Bottom: With-
out smoothing (left) the seams of the mesh become apparent (some ex-
amples are highlighted by the red arrows), something especially unde-
sirable at large magni�cation factors typical for vector graphics. The
proposed smoothing of the mesh colour values of neighbouring mesh
colour patches removes such seams for a more natural and higher qual-
ity result (right).
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Figure 9.9: Left: Input raster images and their corresponding error maps with re-
spect to our rendered vector images (right). Overall, these examples
were vectorised accurately all over the image with a mean squared er-
ror of 2.73, 2.25, 4.69, respectively top to bottom . Insets in the last row
show our increased sharpness (right), plus some extra texture retained
from the input image (left). Bottom artwork by Allison Bamcat.

9.7 results

In this section we show the results which are obtainable through our
vectorisation pipeline. We have already shown several results through-151
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out the chapter. Figure 9.1 shows an intricate vectorisation of a painting.
The intricate detail is nicely preserved by our approach as well as sharp
features, specular highlights and folds (Figure 9.1, f) are preserved. Fig-
ure 9.2 shows a simple logo that turns into a relatively simple vector
image that could be easily edited further to remove the background, for
example. Figure 9.3 shows an interesting combination of sharp and soft
details, which our image features help capturing accurately. Figure 9.7
shows another example of clean stylised graphics faithfully captured by
our representation.

In Figure 9.9 we present an additional set of results that showcase a
variety of di�erent image features and textures. We also depict the er-
rors with respect to the reconstructed image from the vector represen-
tation. As can be seen most of the errors seem to accumulate along the
edges of the original image. This error is mostly likely due to our han-
dling of edges. We vectorise the pixel edges (as mentioned in Section 9.5)
and it is likely that our vectorised representation does not perfectly co-
incide with the pixel edge. In addition, we employ the specialised sam-
pling along hard edges to avoid colour bleeding through the sharp fea-
tures (Section 9.6), this might slightly alter the results along edges.

9.7.1 Performance

The choices we made in the construction of our vectorisation pipeline
leads to the vectorisation process being quite e�cient. In Table 4 we
report the performance of our vectorisation method for several of the
results shown in this chapter. We break down the total time it takes to
vectorise an input image by the intermediate timings of the individual
steps of the pipeline: feature extraction, mesh generation and colour �t-
ting. In addition we also show the rendering times for the rasterisation
of the obtained vector representations of the respective input images.
We ran the method on my own low-end laptop, which has the follow-
ing speci�cations. It has a NVIDIA MX150 GPU with 2GB of VRAM,
8GB of RAM and an Intel i5-8250 CPU.

Our method can vectorise all of the listed images with good perfor-
mance. It takes at most only just a few seconds to go through the whole
vectorisation process. The timings of the individual components are de-
pendent on the content of the image and on each other. The feature
extraction step is dependent on the resolution of the input image and
also of the number of features in the input image. In turn, the mesh gen-
eration step is dependent on the number of extracted features and their
relative positioning to each other. Many small curved features that lie
within close proximity to each other will generate more triangles than
a single curved line. The colour �tting step is then dependent on the
number of generated triangles. However, due to the parallelisation and
the choice of adaptive resolutions of mesh colours this step can be sped
up quite a bit.
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The combination of parametric representations for both geometry
and colour leads to an e�cient means to evaluate our vector represen-
tation through the use of tessellation shaders and fragment shaders.
Even for the results which generate a large number of triangles, we
still achieve real-time rates of performance.

compression Our vectorisation provides a sparse representation
of the original image. To illustrate this further we have provided com-
pression ratios for select images featured in this chapter and mentioned
them in Table 4. We calculated the compression ratio with respect to the
raw image data as is common with other vectorisation papers [CLL+20].
We base the size of our representation by the following. First of all we
consider a di�erence between linear triangles 3 · 2 · 4 = 24 bytes and
curved triangles, a triangle with at least one curved edge, with 9 · 2 · 4 =
64 bytes each. Furthermore, we consider the three di�erent resolutions
which have 3 ·3 = 9, 6 ·3 = 18, and 15 ·3 = 45 bytes each. Then the actual
raw size of our representation is #lineartrianдles ·24+#curvedtrianдles ·
64+ #smallpatches · 9+ #reдpatches · 18+ #larдepatches · 45 bytes. Our
approach is able to achieve comparable compression rates to other vec-
torisation techniques. The raw data could be compressed even further

Table 4: The performance of our vectorisation pipeline on several of the results
featured in this chapter. The time measurements are shown in seconds
except for the rendering time, which is shown inmilliseconds, and are split
over the elements of our vectorisation pipeline: FE = Feature Extraction,
MG = Mesh Generation, CF = Colour Fitting, RT = Rendering Time, CR =
Compression Ratio.

Image Resolution 4·103 FE MG CF Total RT CR
Fig 9.1 854 × 1024 ∼ 38 0.5 0.8 3.0 4.3 ∼ 23 0.72
Fig 9.2 785 × 618 ∼ 2 0.24 0.1 .5 0.9 < 1 0.07
Fig 9.3 bottom left 848 × 1280 ∼ 50 0.5 0.7 4 5.3 ∼ 25 0.78
Fig 9.7 1280 × 1181 ∼ 4 1.7 0.05 1.1 2.9 ∼ 2 0.06
Fig 9.8 441 × 441 ∼ 10 0.03 0.1 1.1 1.3 ∼ 3 0.89
Fig 9.9 top 1920 × 1284 ∼ 22 4.7 0.4 2.7 7.8 ∼ 25 0.18
Fig 9.9 middle 1280 × 853 ∼ 8 0.9 0.7 2.8 4.5 ∼ 10 0.16
Fig 9.9 bottom 1198 × 1198 ∼ 60 0.8 0.9 5.9 7.6 ∼ 17 0.77
Fig 9.10 left 864 × 864 ∼ 147 0.8 18.6 16 35.6 ∼ 33 2.68
Fig 9.10 right 864 × 864 ∼ 20 0.5 1.9 3.5 6 ∼ 16 0.52
Fig 9.14 left 639 × 479 ∼ 22 0.03 0.3 1.8 2.1 ∼ 7 1.24
Fig 9.16 1113 × 1291 ∼ 18 1.5 0.3 2.3 4.1 ∼ 24 0.26
Fig 9.17 441 × 631 ∼ 8 0.1 0.1 1.1 1.3 ∼ 4 0.56
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using standard compression techniques such as zip. In addition, the size
of the representation could be decreased even further, by not optimis-
ing for triangle size, but rather for the content that a triangle depicts.
having lower mesh colour resolution for smoother or constant colour
image regions.

feature parameters The selection of features has a big e�ect on
the resulting vectorisation as it in�uences both mesh generation and
colour �tting steps. To investigate the in�uence we have vectorised an
input image with varying levels of edge detection. Figure 9.10 shows
two di�erent vectorisations of the same input image. On the left we can
see that there is an abundance of detected hard edges in the furry ar-
eas of the depicted animal, by increasing threshold values we are able
to extract a sparser set of features, which is depicted on the right. In
areas that prominently feature small hard features we can see that now
the soft features obtained from colour banding take over. Naturally, this
blurs the features in those regions as their sharpness is no longer pre-
served. Both images are still able to create a good approximation of the
original image as it correctly extracts and preserves the most salient im-
age features. The large number of features also leads to a large number
of generated features, although it is still able to be rendered e�ciently,
it negatively a�ects the compression ratio as seen from 4, rows 8 and 9.

9.7.2 Editing

Due to the sparseness of the mesh it can easily be manipulated through
low-level deformations of the geometric attributes of the mesh. This en-
tails dragging vertex positions and tangent handles of the cubic edges of
the Bézier triangles. Higher-level deformations, like manipulating a sin-
gle curve are also possible. An example of geometrically manipulating
the mesh is shown in Figure 9.11. Even more elaborate manipulations
such as ARAP deformations [IMH05] or grouping of features as pro-
posed in [LHFY12] are also possible, but we did not implement them
in our pipeline. We do not allow the user to manipulate the geomet-
ric locations of the mesh colour vertices as these remain linked to the
parametrisation of the faces of the mesh. Although, in theory these ver-
tices could be displaced too, but it would raise interesting questions on
how to expose such control to the user.

Due to the performance of the pipeline it becomes possible to do inter-
active vectorisations. We have given the user the ability to draw spline
curves on top of a raster image. Like our automatic feature extraction
step, the user is able to mark them either as being a hard or soft feature.
The created curved features are subsequently used as input to the rest
of the pipeline, which generates the mesh and �ts the colours. This pro-
cess is able to be achieved with interactivity as the vectorisation is able
to be generated nearly instantly after the user is done creating curves. In
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5702 features 1048 features

Figure 9.10: Two vectorisation of the same image using di�erent edge detection
parameters. Left: Canny edge detection with low 15 high 100 and right
low 100 high 200.

addition adding curves is a local operation, and a previously generated
mesh can be locally updated and retriangulated and colour be �tted. Fig-
ure 9.12 shows an interactively created vectorisation of a raster image.
This interactive work�ow could be used to clean up automatically vec-
torised images by putting in or �xing features that were not captured
correctly by the feature extraction step.

9.7.3 Comparisons with Previous Work

We compare our method and most importantly our choice of primitive
against some of the best performing primitives used for image vectorisa-
tion to date. These are thin-plate splines (TPS), subdivision-based meth-
ods and di�usion curves. We have strived to make the comparison as
fair as possible, but we were unable to obtain all the exact same input
images or sometimes used an unsegmented version of an image.

Figure 9.13 shows a comparison with the latest TPS-based
method [CLL+20]. As can be seen, their method is great at capturing
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Figure 9.11: Our vector images are easily editable either by moving mesh vertices
or editing the tangent handles of the cubic Bézier triangle edges. From
left to right: One of our vectorised results, the mesh of the vector, the
edited mesh, and the rendered edited image. Please, see the accompa-
nying video for the editing session.

�ne texture detail, but at the same time it scales similarly to a raster im-
age, thus loosing some sharpness around hard edges. In addition, their
vector patches often show seams under magni�cation. In contrast, our
method keeps sharpness around hard edges and does not show texture
seams thanks to our colour smoothing around soft edges. Our texture
detail is a�ected both by the feature extraction step and the patch reso-
lution, obtaining less realistic abstracted looks when not su�cient. Be-
cause our image quality is often comparable to that of [CLL+20], we
chose not to include gradient meshes [LHM09] in our comparisons, as
their limitations when capturing highly detailed textures were already
demonstrated by Chen and colleagues.

Figure 9.16 shows a comparison against a previous TPS-based method
[XLY09], where our simpler and more performant steps achieve compa-
rable results to their more elaborate representation. Figure 9.17 shows
a comparison with an apparently similar approach [LHFY12] that uses
subdivision surfaces. Our decoupling into a spatial 2D mesh and 3D
(RGB) mesh colours allows �ner control over tessellation, capturing
higher level of detail while achieving comparable smoothness and mesh
density.

Figure 9.14 show comparisons with hierarchical di�usion curves
[XSTN14]. We found that their image feature extraction translates into
a global loss of clarity and detail for photos. For designed graphics,
their method extracts cleaner features that produce quality closer to
our method.

Finally, Figure 9.15 shows the generality of our method applied over
images from [FLB17]. While our method is not meant to produce intu-
itive semantic layers, it is still able to retain the sharpness and details
of the input graphics, through a simple mesh structure not di�cult to
edit afterwards (as seen before in Figure 9.11). It is also worth mention-
ing that our precise tracing of hard edges following the contours of the
objects allows straightforward cut-outs to remove image backgrounds.

156



9.8 discussion

Figure 9.12: A user guided vectorisation of a bell pepper. The user created 22 sepa-
rate curve pieces which were used to generate a mesh of 223 triangles.
Left to right: original image, sketched curves, generated mesh and re-
sulting vectorisation.

9.8 discussion

For existing vector graphics primitives, such as the gradient mesh (see
Chapter 8) or di�usion curves, it is often mentioned that it is impor-
tant that the primitive should smoothly interpolate colour. With this
smoothness is meant that it should be at least C1 or preferably higher.
Our vector representation is only C0 smooth, but given our proposed
feature extraction step and the resolution of the mesh colours it is able
to express smooth colour gradients without obvious artefacts appear-
ing. Thus it seems that by careful extraction of features there is no need
for smoother interpolation strategies like subdivision surfaces or thin-
plate splines, which are less e�cient in terms of rendering performance
than our representation.

The vectorisation is only going to be as good as the features that
have been extracted. Although, we use standard techniques for extract-
ing edges from the image this step can easily be changed for another
feature extractor. Our pipeline is in this sense independent of the ways
features have been extracted and potential future improvements in this
area could increase the abilities of our pipeline. Although, our feature
extraction step is able to capture most of the salient features in the im-
age there is still room for improvement. We have not focused on per-
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Figure 9.13: Comparisons between [CLL+20] (left) and our proposed method
(right). Our method seems better at preserving sharpness coming from
geometric discontinuities (petals in the second row, holes in the last
row), which are easily picked up by our extracted image features. How-
ever, ours is not that good at capturing extremely detailed textures like
fur (�rst row). Insets also show the relevance of our colour smoothing
across patches, absent in [CLL+20] (second and bottom rows). Vector-
ized backgrounds were not available from [CLL+20], but we included
them for completeness.

fecting the feature extraction step and leave room there for explorations
with di�erent �ltering mechanisms and perhaps neural models for fea-
ture extraction.

The evaluation of our representation using tessellation shaders pro-
vides great performance, but it is of course still possible to render the
images using only the CPU, or alternatively compute shaders. A piece-
wise linear version of the representation, at the level of the resolution
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Figure 9.14: From top to bottom: Input images, our results, results from [XSTN14],
our extracted image features and the ones from [XSTN14]. When
applied to photos, our method produces sharper and cleaner results
across the whole image (please, zoom in for details). For simpler in-
puts with clearer discontinuities, both methods perform similarly.
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Figure 9.15: From left to right: Input image, our rendered vector image, and the
underlying mesh and image features. Our method does a good job for
such simple objects but with precise shapes and materials, outputting
an intuitive representation not di�cult to edit.

Figure 9.16: From left to right: Input image, our results, results from [XLY09], our
image features and triangle mesh, and the ones from from [XLY09].
The �nal quality is very similar between both methods, including
sharpness around hard edges due to their feature alignment, and our
o�set sampling and mesh colours. Main di�erences lie in the 2D mesh,
with theirs being sparser. However, the complexity of their mesh opti-
mization and the evaluation of their thin-plate splines is higher than
our simpler but more e�cient approach. Note that the vectorized back-
ground was not available from [XLY09], but we included it in our
result for completeness.
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Figure 9.17: From left to right: Input image, our results, results from [LHFY12], our
image features and mesh, image features and mesh from [LHFY12].
While image features and triangle structure look similar, our mesh
colour patches provide extra control to capture more detail, even in
smooth regions such as under the nose. Our hard edges also preserve
sharpness better in important features like the eyes.

of the mesh colours, can be extracted at the expense of additional mem-
ory requirements. This representation could then be used as a bridge
between older vector formats such as PDF [Ado06] that do not directly
support our proposed vector representation.

Our algorithm strives to adaptively create a curved mesh based on
the feature in the input image. Theoretically, we could cover the input
image with just two triangles and create high-resolution mesh colour
patches on them. Conversely, the image could be represented with a low
resolution mesh colour representation that is applied to a pixel-dense
triangulation. A balance should be found between these two extremes,
and we think that our representation is a good contender for this. Ad-
ditional optimisations are still possible, such as iterative feedback be-
tween di�erent steps of the pipeline or a more error-driven approach to
vectorisation.

9.9 conclusion

We have created a fully automatic image vectorisation method that can
vectorise a wide range of input images; from natural images to logos
and cartoons. The vectorisation process is able to be achieved very e�-
ciently and has good reconstruction accuracy. The use of curved trian-
gles creates a sparse mesh that can exactly incorporate extracted hard
and soft image features. The use of mesh colours is then able to e�-
ciently, and faithfully transfer texture detail from the input image to the
curved triangular patches. These patches can be e�ciently rendered on
commodity hardware and because of this it becomes possible to inter-
actively edit the retrieved vector representation. Due to the e�ciency
of the pipeline it is also possible to interactively vectorise images.
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10C O N C L U S I O N

In this chapter the thesis is concluded. We have presented several meth-
ods for dealing with arbitrary topology surfaces in the context of ge-
ometric modelling (Part I) and vector graphics (Part II). We will now
revisit the chapters in order to present their main conclusions and we
will relate them to the research questions posed in the introduction of
this thesis (Chapter 1).

Arbitrary topology B-rep CAD models can be converted into trian-
gular spline surfaces (Chapter 4). These surfaces are able to approxi-
mate the original NURBS surfaces and are able to exactly integrate the
edges of the patches. With the use of Shirman-Séquin patches along the
edges of the patches we are able to create smooth joins between patches
with di�erent parametrisations. Unfortunately, the surface has to be ad-
justed slightly along the edges of the patches, but this allows us to use
the aforementioned patches to join together smoothly. We created three
di�erent variants, where each has varying levels of preservation of the
originally sampled B-rep patch. The use of these triangular patches is
not more invasive than previous triangular conversion methods and be-
cause of the increased smoothness the converted splines can be used
e�ectively for analysis.

B-spline surfaces are powerful spline methods that create smooth sur-
faces from control points and basis functions. The generalised Bézier
patch structure can be easily extended to use B-spline basis functions
instead of Bernstein basis functions created from generalised barycen-
tric coordinates (Chapter 5). The only changes that need to be made
is to extend the domains of individual ribbons so that they have ex-
tended support and thus can use B-spline functions and some of the
basis functions need to be adjusted so that they and their derivatives
vanish at certain values. This procedure can be applied to any degree
B-spline basis functions. The generalised B-spline patch structure can
then be used to create surfaces over extraordinary vertices and faces
by ensuring they are surrounded by regular regions, which can be en-
sured by employing arbitrary degree subdivision. The surfaces are able
to be joined with Gk continuity to adjacent regular regions and other
multisided B-spline patches. Even though the patches are internallyCk

smooth, they still might show some shape defects. We can alleviate the
shape e�ects by adjusting the basis functions to have increased weight
so that the patches become fuller at the centre, but it requires careful
manual adjusting to do so. Multisided patches are not able to be pro-
cessed by traditional tessellation pipelines. Through the use of instanc-
ing and the subdivision of a regular polygon it is possible to e�ciently
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render multisided patches through tessellation. Even though it requires
a few more steps to do so, it is still possible to render models with many
polygonal patches in real-time. We demonstrated the utility of render-
ing multisided patches, by extending existing approximating Catmull-
Clark subdivision schemes so that also models containing extraordinary
faces can be directly approximated without additional subdivision steps.

The use of procedural noise functions with vector graphics is a great
match (Chapter 7). The traditional gradient mesh can only convey as
much details as vertices that are available in the mesh. By parametrising
the mesh and using the parametrisation as the domain of the procedural
noise function we are able to geometrically alter the noise domain by
dragging vertices and tangent handles of the gradient mesh. We can
give the user even more control by smoothly varying parameters for the
noise functions over the mesh by letting the user specify those values at
the vertices. The parameters give precise control of the frequencies of
three di�erent noise types: Perlin, Worley and Gabor noise. The option
to have �ne control gives the user the ability to create elaborate patterns
with a sparse mesh, which would never be possible with an ordinary
gradient mesh.

The extension of traditional gradient meshes to polygonal meshes al-
leviates the strict topology restrictions that traditional gradient meshes
pose (Chapter 8). We created two new versions of a polygonal gradient
mesh by altering the method of Chiyokura and Kimura for colour in-
terpolation. This allows us to smoothly join multisided gradient mesh
patches. We created two di�erent versions, one based on the generalised
Gregory patch and the Gregory-Charrot corner interpolator patch. The
use of mean-value coordinates and special conditions for convex cor-
ners allows us to e�ectively use non-convex patches. We compare the
two new primitives to cubic mean-value interpolants and the subdivi-
sion based topologically unrestricted gradient meshes. Our new rep-
resentations based on the Gregory patch are just as e�ective as cubic
mean-value coordinates in tackling non-convex patches and have com-
parable smoothness to subdivision based representation. Our represen-
tations are faster to render, because they can be rendered e�ciently
using tessellation.

We created an e�cient image vectorisation pipeline that is able to
vectorise a wide range of images, from natural images to design graph-
ics (Chapter 9). We extract hard image features through edge detection
and soft image features through quantisation of image colours. The fea-
tures are vectorised and are embedded into a curved triangulation. On
each curved triangle we create a cubic Bézier triangle on which a mesh
colour patch is created. We e�ciently transfer colour information from
the input raster image to the mesh colour patches. Images can be vec-
torised within seconds and can be e�ciently rendered using hardware
tessellation. Even though the colour surface is only C0 continuous the
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feature extraction step results in a mesh with only slow variation of
colour. The e�ciency of the pipeline also allows us to create interactive
vectorisation strategies, where the user takes over the task of feature
extraction by denoting features by hand. The rest of the pipeline than
proceeds and the user can add or adjust drawn features.

We believe that through our contributions and e�orts we have ad-
vanced the �eld of arbitrary topology shape modelling and represen-
tation, with applications in geometric modelling and vector graphics.
The arbitrary topology setting provides unique challenges to solve. The
nice and regular structures break down and with that the conditions of
multiple regions have to be juggled around in order to satisfy continu-
ity conditions. Our solutions provide means to create smooth surfaces
or colour gradients in such settings. In addition we have presented sev-
eral ways in which the mesh structure, be it regular or arbitrary, can be
used not only to present the object itself but to evaluate functions on
its surface. These functions provide additional creative control for the
designer or can be used to e�ectively represent higher frequency data.
Naturally, further improvements can be made and future work remains,
as discussed in the next section.

10.1 future work

We will now detail several recommendations for future work. The work
set out in this thesis provides a lot of interesting directions to investigate
further. We will give at least one recommendation per chapter, but more
pointers could be found in their respective discussion sections.

The conversion of trimmed NURBS patches into triangular elements
provides the ability to create smooth connections between di�erent
patches (Chapter 4). However, it makes little sense to use triangular ele-
ments in the middle of the patches where the surface can be exactly rep-
resented using quadrilateral elements. The triangular elements could
then be used only at these boundaries and connect smoothly C1 to the
internal patches quadrilateral elements and withG1 continuity to other
patches. Rational methods, such as Gregory patches, could also be ex-
plored, removing the need for triangular elements at all. However, the
rational nature of these patches will complicate the analysis abilities of
this conversion.

The multisided B-splines covered in Chapter 5 are an interesting tech-
nique and provide a means to bridge the gaps in otherwise regular
B-spline surfaces. However, the shape defects of the surfaces as pre-
sented here have not been entirely �xed, merely diminished. The solu-
tion proposed by Vaitkus et al. [VVSS21] may provide better shape and
weight distribution. Their approach uses the B-spline basis along edges
and Bernstein basis functions from the edge towards the inside of the
patches. In practice their patches could be used in the same settings of
ours by computing the Bézier control points from the input polyhedral
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control structure. However, it would be better to somehow preserve the
simple structure of the original B-spline setting. It remains to be seen
whether such a thing is possible to do.

The combination of procedural noise functions with gradient meshes
creates a unique sparse representation of texture (Chapter 7). Gabor
noise has been used before to infer texture from an input image. The
parameters for Gabor noise could thus be inferred in a completely local
way and used in combination with gradient meshes to automatically
vectorise images. Textured portions of images could then be sparsely
represented by a gradient mesh that interpolates the determined Gabor
noise parameters.

The polygonal gradient mesh provides a much more organic way of
modelling meshes to the user than the completely regular gradient mesh
(Chapter 8). It remains to be seen whether this leads to better ways to
vectorise an image. The original regular gradient mesh has been used
frequently for image vectorisation purposes. The increased freedom in
topology and valency of faces would seem to be able to create a sparser
representations than would a strict regular topology. Methods that sim-
plify original gradient meshes could work but will only provide a small
decrease in mesh density. Smart methods that build a mesh with the
topology freedom in mind could be a better solution. However, we sus-
pect that arbitrary polygonal faces in the polygonal gradient do not pro-
vide a clear advantage for vectorisation over using strictly quadrilateral
meshes with extraordinary vertices.

The quality of the image vectorisation is largely dependent on the
features that have been extracted from the input image. This is an area
that can always be improved and will lead to improved vectorisations.
The interactive vectorisation framework we have created uses human
intuition on where to put hard edges and soft features and with this
is able to create a much sparser representation than is currently possi-
ble with automatic feature extraction. In the future machine learning
approaches could be used to better extract semantic meaning from im-
ages leading to improved edge and object detection. This would lead to
a sparser set of features and in turn a sparser mesh and vector represen-
tation.
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