
M E D I A L D E S C R I P T O R S F O R 3 D S H A P E S E G M E N TAT I O N ,
R E C O N S T RU C T I O N A N D A NA LY S I S

JAC E K Ł U K A S Z K U S T R A

.

Cover: Medial Point Cloud Rendering of Author’s face

Medial Descriptors for 3D Shape Segmentation, Reconstruction and
Analysis

Jacek Łukasz Kustra
Thesis University of Groningen

ISBN 978-94-6259-649-8 (printed version)
ISBN 978-94-6259-654-2 (electronic version)

Medial Descriptors for 3D Shape
Segmentation, Reconstruction and Analysis

P H D T H E S I S

to obtain the degree of PhD at the
University of Groningen
on the authority of the

Rector Magnificus Prof. E. Sterken
and in accordance with

the decision by the College of Deans

This thesis will be defended in public on

Monday 18 May 2015 at 12.45 hours

by

JAC E K Ł U K A S Z K U S T R A

born on 31 May 1981
in Częstochowa, Poland

Supervisor
Prof. A. C. Telea

Co-Supervisor
Dr. A. C. Jalba

Assessment committee
Prof. W. Hesselink
Prof. A. Falcão
Prof. F. Leymarie

T H E S I S S U M M A RY

Three dimensional shape analysis is an important component in several
applications such as path planning, shape matching, or shape segmen-
tation. Most methods in this area use, as input, a representation of the
shape boundary or surface. However, such representations present sev-
eral limitations when we are interested to reason about global shape
properties. An alternative shape representation was proposed in 1967 by
Harry Blum, and is known under the names of medial representation,
medial axis, or skeleton. Medial representation describe shapes in terms
of their symmetry set, and allow a natural way to reason about both lo-
cal and global shape properties. Such representations have been used in
many 2D shape analysis problems. However, their extension to large and
complex 3D (polygonal) shapes is far from trivial and poses several con-
ceptual and computational challenges.

This thesis addresses several of the above challenges for computing
3D shape skeletons and next using these skeletons to support a range of
shape analysis applications. We present a new robust, fast, and accurate
method to extract multiscale medial representations from large polygo-
nal models, and also explore the relationship between 3D skeletons and
2D skeletons of projections of the same shape. Next, we show how we
can enrich and adapt our medial representations with additional informa-
tion, such as the relationships between medial points and surface points,
to support a wide range of applications, including skeleton reconstruc-
tion, shape reconstruction, edge detection, and shape simplification and
segmentation. We demonstrate our methods on a large collection of real-
world 3D shapes.

v

S A M E N VAT T I N G

Driedimensionale shapeanalyse is een belangrijk element in applicaties
zoals path planning, vorm matching en vormsegmentatie. De meeste me-
thodes op dit gebied gebruiken, als invoer, een representatie van het
vormoppervlak. Dergelijke representaties zijn echter beperkt wanneer
men wil redeneren over globale vormeigenschappen. Een alternatieve
vormrepresentatie is geïntroduceerd in 1967 door Harry Blum en is be-
kend onder de naam van mediale representatie, mediale as, of skelet. Me-
diale representaties beschrijven vormen via hun symmetriestructuur en
bevorderen een natuurlijke manier om te redeneren over lokale en glo-
bale vormeigenschappen. Dergelijke representaties zijn gebruikt bij veel
2D vormanalyseproblemen. Hun uitbreiding naar grote en complexe 3D
(polygonale) vormen is echter ver van triviaal en brengt meerdere con-
ceptuele en computationele uitdagingen met zich mee.

Dit proefschrift beantwoord een aantal van de bovenstaande uitdagin-
gen in het berekenen van 3D skeletten en het gebruiken ervan in een
aantal vormverwerkingsapplicaties. Wij introduceren een nieuwe, snelle,
en robuuste methode voor het extraheren van multischaal mediale repre-
sentaties uit grote polygonale modellen en uitleggen de relatie tussen 3D
skeletten en 2D skeletten van projecties van dezelfde vorm. Vervolgens
laten wij zien hoe deze mediale representaties verrijkt met extra informa-
tie, zoals de relatie tussen mediale punten en oppervlampunten, kunnen
worden, en ook toegepast kunnen worden voor applicaties zoals skeletre-
constructie, vormreconstructie, randdetectie, vormsimplificatie, en vorm-
segmentatie. We illustreren onze methodes op een grote verzameling van
realistische 3D vormen.

vi

To Mahsa

All our dreams can come true,
if we have the courage to pursue them

– Walt Disney –

C O N T E N T S

1 I N T RO D U C T I O N 3
1.1 Shapes 3
1.2 Shape Representation 4
1.3 Shape Processing 4
1.4 Medial Representations 5

1.4.1 Types of medial representations 6
1.4.2 Applications of medial representations 7
1.4.3 Medial representation challenges 9

1.5 Structure of this Thesis 12

2 M E D I A L R E P R E S E N TAT I O N S O F O B J E C T S 15
2.1 Introduction to shape representations 15

2.1.1 Volumetric representations 16
2.1.2 Boundary sampling representations 18

2.2 Medial Representations 21
2.2.1 Definitions 23
2.2.2 Classification of Medial Points 27

2.3 An overview of skeletonization techniques 30
2.3.1 Volumetric Methods 30
2.3.2 Boundary sampling methods 34
2.3.3 Curve skeleton methods 36
2.3.4 Regularization Methods 38

2.4 Conclusions 41

3 E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G -
O N A L S H A P E S 43
3.1 Introduction 43
3.2 Medial Surface Computation from large Polygonal

Shapes 47
3.2.1 Surface skeleton extraction 47
3.2.2 Numerical Parallelization of Skeleton computa-

tion 47
3.2.3 Graphics Processing Unit (GPU) paralleliza-

tion 49
3.3 Medial Surface Regularization 51

3.3.1 Shortest and straightest geodesics 52
3.3.2 Efficient Straightest Geodesic computation 52
3.3.3 Performance and accuracy of SSG tracing 53

3.4 Image-based surface reconstruction 56
3.4.1 Surface skeleton reconstruction 58

3.5 Medial surface comparison 60

ix

Contents

3.5.1 Direct and inverse correspondence 62
3.6 Curve skeleton extraction from the surface skeleton 64

3.6.1 Detecting candidate curve skeleton points 65
3.6.2 Regularization of candidate curve-skeleton points 66
3.6.3 Curve skeleton reconstruction 67
3.6.4 Comparison 67

3.7 Curve skeleton extraction from projections 69
3.7.1 View-based curve skeletonization 70
3.7.2 Accurate probability volume computation 71
3.7.3 Robust 2D skeletonization 71
3.7.4 Accurate correspondence matching 73
3.7.5 Probability sharpening 78
3.7.6 Results 79

3.8 Discussion 81
3.8.1 Regularized surface skeleton extraction 82
3.8.2 Curve skeleton extraction 83

3.9 Conclusion 85

4 M U LT I S C A L E M E D I A L C L O U D A N A LY S I S M E T H -
O D S 87
4.1 Introduction 87
4.2 Noisy point cloud segmentation into manifolds 89

4.2.1 Introduction 89
4.2.2 Related work 90
4.2.3 Method 91
4.2.4 Applications 98

4.3 Discussion 108
4.4 Conclusions 112

5 M E D I A L P O I N T C L O U D D E N S I T Y A N A LY S I S 115
5.1 Introduction 115
5.2 Application context 116
5.3 Method 118

5.3.1 Surface curvature vs skeleton density 118
5.3.2 Mean shift clustering 121
5.3.3 Seed point detection 123
5.3.4 Segmentation transfer to surface 123

5.4 Results 123
5.5 Discussion 124
5.6 Conclusions 126

6 R E F I N E D A B S T R AC T I O N S F O R M E D I A L P O I N T C L O U D S 129
6.1 Introduction 129

6.1.1 Motivation 130
6.2 Computing refined medial features 131

6.2.1 Medial points classification 132

x

Contents

6.2.2 Surface skeleton decomposition 136
6.3 Applications 140

6.3.1 Surface edge detection 141
6.3.2 Patch-based segmentation 142
6.3.3 Medial sheet mapping segmentation 143

6.4 Discussion 144
6.5 Conclusions 146

7 D I S C U S S I O N A N D C O N C L U S I O N S 147
7.1 Computing 3D skeletons 147

7.1.1 Robustness to noise 148
7.1.2 Scalability 148
7.1.3 Genericity 150

7.2 Manifold extraction for shape analysis 150
7.3 Feature extraction from medial surfaces 151
7.4 Limitations 151
7.5 Future work 152

B I B L I O G R A P H Y 153

L I S T O F P U B L I C AT I O N S 169

AC K N O W L E D G E M E N T S 171

A B O U T T H E AU T H O R 173

xi

L I S T O F F I G U R E S

Figure 1.1 2D and 3D shape (brain) boundary representa-
tion (a, b) and its corresponding medial repre-
sentation (c, d) 6

Figure 2.1 Medial cloud classification into different point
types. 29

Figure 3.1 3D skeletonization pipeline: (A) skeleton-
cloud extraction, (B) regularization, (C) shape
reconstruction, (D) curve-skeleton extraction,
and (E) surface-skeleton mesh reconstruc-
tion. 46

Figure 3.2 Ball shrinking algorithm. Gray arrows indi-
cate how balls shrink (from gray to blue to
pink). 49

Figure 3.3 Uniform skeleton sampling for different δ val-
ues (see Sec. 3.2.1). Colors show angles of fea-
ture vectors (θ -SMA detector). 51

Figure 3.4 Skeleton cloud regularization by geodesic im-
portance. Red points are the most important.
Blue points correspond to small surface fea-
tures (see Sec. 3.3). 53

Figure 3.5 Accuracy comparison: FMM vs SSG geodesic
tracing (see Sec. 3.3.3). 56

Figure 3.6 Skeleton splatting for surface image-based re-
construction. 57

Figure 3.7 Comparison of surface rendering (top row) and
skeleton image-based surface reconstruction
(middle row). Insets show details. 58

Figure 3.8 Anatomic shapes: point clouds (a,c) and sur-
face skeletons (b,d). 59

Figure 3.9 Delaunay method (a,g; details d,f,j,l; simpli-
fied clouds (m-r) and per-manifold method
(b,h,s; details c,e,i,k) for skeleton reconstruc-
tion (Sec. 3.4.1). 60

Figure 3.10 Comparison of PCS and DSA methods (Sec. 3.5
). Skeleton parts wrongly added/missed by
DSA are shown in red. Green-marked details
are shown in the insets below. 61

xiii

List of Figures

Figure 3.11 Surface-skeleton to shape mapping: Using the
feature transform FT∂Ω, values computed on
the medial surface S∂Ω can be transferred to
the surface. a) Polygonal surface (gyrus bone);
b) medial point cloud; c) point cloud with per-
point thickness values; d) Shape surface show-
ing local thickness. 63

Figure 3.12 Tangent vector field T (shown with directional
color-coding). 65

Figure 3.13 Curve skeleton extraction: our method (top
row), voxel-based method [135] (middle row),
and mesh collapse method [7] (bottom row). 68

Figure 3.14 Curve-skeleton probability computational pipeline. 71
Figure 3.15 Skeleton regularization. Top row: Importance-

based method [183] for three different thresh-
old values ρ0. Bottom row: Salience-based
method [177] for three different threshold val-
ues σ0. 72

Figure 3.16 Correspondence matching for curve-skeleton
reconstruction. A camera pair (a,b). Recon-
structed 3D points when using full pairing
(c) and when using our depth-based pairing
(d). Depth-based pairing and triangulation
(e) 75

Figure 3.17 Curve-skeleton probability point-cloud. (a)
original method [99]. (b) Cloud in (a) displayed
with lower opacity. (c) Effect of depth-based
pairing. (d) Effect of depth culling. (e) Effect
of sharpening (see Sec. 3.7.5). 77

Figure 3.18 Curve-skeleton probability point-clouds for
several models (see Sec. 3.8). 80

Figure 3.19 Comparison with related methods: (a) our
method; (b) [99]; (c) [183]; (d) [7]; (e) [37];
(f) [183]; (g) [135] (see Sec. 3.8) 81

Figure 4.1 (a-e) Algorithm steps (see Secs. 4.2.3.1-4.2.3.8
for details). (f) Three manifolds are extracted
from a noisy point cloud. 92

Figure 4.2 Manifold labeling, 2D sketch: (A) assignment
of IDs 0..3 to seed points x1..x4; (B) patch-
level flood fill yielding matrix B, (C) construc-
tion of manifolds, and (D) final manifolds (see
Sec. 4.2.3.7). Overall, from the four seed points
(marked in red), we extract two manifolds with
labels 02 and 13, and one intersection point
with label 0123. 97

xiv

List of Figures

Figure 4.3 Labeling of manifolds intersecting at acute an-
gles. 98

Figure 4.4 Manifold clustering: Our algorithm (right) vs
K-manifolds (left). Top row: clustering results.
Bottom row: One selected manifold from the
clustering, displayed separately for illustration
purposes. Input clouds are similar to examples
in [161]. 99

Figure 4.5 Noise removal from manifold clouds. Noisy
shapes (top) are denoised with SOR [142],
TV [105], and our method. Zoom-ins show de-
tails marked in blue. TV: red markers show in-
correctly removed points; green markers show
not removed noise. 100

Figure 4.6 Percentage of removed points in excess of
added noise points for different noise amounts,
averaged for the models in Figure 4.5 Blue line:
our method; red line: SOR method [142]) 101

Figure 4.7 Medial surface reconstruction: (a-d) High-
accuracy ground truth [181]. (e-h) Our method
(noise points removed). (i-l) Our method, (de-
tected noise rendered in black). (m-p) Isotopic
reconstruction [39]. (q-t) Tensor voting recon-
struction [105]. 102

Figure 4.8 Difference-of-normals (DoN) segmentation [70]
applied to two point clouds (compare with re-
sults in Figure 4.10 b,d). 105

Figure 4.9 Shape reconstruction comparison for noisy
point clouds with intersecting manifolds. From
top to bottom, rows: our method, isotopic re-
construction [39], ball pivoting [12], Poisson
reconstruction [77], and tensor voting [105].
Zoom-ins show point cloud details of selected
model areas, for getting insight into the sam-
pling distribution. 106

Figure 4.10 Shape segmentation examples. (a-c) Medial
surfaces. (d) Structured light acquisition. (e,f)
Shape with inner surfaces. (g,h) Mechanical
shapes. (i,j,k,l) Mix of different structures with
varying sampling density. 107

Figure 4.11 Effect of parameters dmax and δmax on manifold
extraction results. 108

xv

List of Figures

Figure 5.1 Algorithm workflow: A shape is transformed
into the medial domain. Its skeleton is next
segmented by a mean-shift approach. The seg-
mentation is transferred back to the original
shape. 118

Figure 5.2 Relationship between local surface curvature
and medial cloud density. Top: Concept sketched
in 2D. Bottom: High-density point clusters are
formed inside positive-curvature 3D surface
areas (front teeth). 119

Figure 5.3 Algorithm steps: Input shape (top row). Surface
skeletonization (second row). Medial cloud
regularization (third row). Medial cloud seg-
mentation and segments’ transfer to the input
surface (bottom row). 121

Figure 5.4 Mean shift clustering: (a) A seed point (black
dot) is shifted to the centroid of its skeleton-
cloud neighborhood density until convergence
(red dot). (b) Final convergence points for den-
tal cast. (c) Segment IDs assigned to skeleton
points. 122

Figure 5.5 Segmentation results for different dental casts
(a-e) and other shapes (f-k). 124

Figure 6.1 Refined skeletal features computed from me-
dial point clouds (top row) and subsequently
enabled applications (bottom row). 132

Figure 6.2 Skeleton point classification based on fuzzy
FTτ analysis. The figure is drawn for the
case of 2D skeletons, for illustration simplic-
ity. 133

Figure 6.3 Skeleton regularization. (a) Rounded spleen
shape with feature vectors shown for A3 points.
(b) Skeleton regularized by filtering A3 points. 135

Figure 6.4 Medial sheet computation: a) Distance function
δ , illustrated in 2D. b) Sparse distance matrix,
used as an input for hierarchical point cluster-
ing. c) Medial sheets found for a palatine bone
shape (see Sec. 6.2.2.1). 137

Figure 6.5 Medial sheet extraction: (a) Method of [132];
(b,d,e,g,h) Method of Chapter 4; (c,f,i) our
method. For the method in Chapter 4, one of its
parameters, the number of nearest neighbours
NN, is indicated. 138

Figure 6.6 Y-network extraction with Y-curve points col-
ored green. 139

xvi

List of Figures

Figure 6.7 Compact medial sheets computed for several
anatomical models (Sec. 6.2.2.3). 140

Figure 6.8 Soft edge detection on surfaces using curvature
estimation [176] (a); skeleton method of [134]
(b); our method (c-f). 141

Figure 6.9 Patch based segmentation (Sec. 6.3.2). 142
Figure 6.10 Medial sheet mapping segmentation (Sec. 6.3.3). 144

xvii

L I S T O F TA B L E S

Table 1 Performance of our skeleton extraction algo-
rithm on both CPU and GPU (see Sec. 3.2.1).
48

Table 2 Timings for computing the geodesic impor-
tance. 54

Table 3 Accuracy and timing comparison for geodesic
tracing methods (FMM, SE, and SSG for dif-
ferent numbers of directions M). 55

Table 4 Timing comparison of PCS and DSA skele-
tonization methods. 62

Table 5 Curve-skeleton extraction timings. 67
Table 6 Timings for models shown in this chapter

(N=model with added noise (see Figure 4.5);
MS=medial surface (see Figure 4.7)) 111

Table 7 Segmentation timings. 125

1

1I N T RO D U C T I O N

I don’t pretend we have all the
answers. But questions are
certainly worth thinking about.

Arthur C. Clarke

1.1 S H A P E S

We live in a world which, through our senses, we perceive as three di-
mensional. At this level of perception, a basic property of everything that
surrounds us is its shape. Shape determines the way we identify objects
and interact with our surroundings. It is an intrinsic dynamic property
of virtually everything that we perceive, therefore its understanding is of
extreme importance. Furthermore, as our visual and tactile perception of
an object is often limited to its boundary, i.e. the outer interface between
the object and the space surrounding it, our visual interpretation of an
object is driven by the way we perceive its boundary.

Given the above, it is natural that many computer applications have
been developed in the last decade to represent, manipulate, and an-
alyze 3D shapes. Such applications range from classical computer
graphics and virtual reality (which use shapes to depict realistically-
looking 3D environments), augmented reality (which add computer-
generated shapes to images and video capturing a real-world environ-
ment), computer-aided medicine (which use shapes extracted from 3D
scans to depict and analyze various parts of the human body), to data vi-
sualization (which use 2D and 3D synthetic shapes to depict phenomena
captured by large amounts of spatial or non-spatial data).

To be able to deal with 3D shapes, a computer needs ways to repre-
sent these shapes and to measure and determine its properties. Briefly
put, any software application that is concerned with such shapes needs
two main components: a shape representation part, which deals with the
actual storage of the shape and its properties, and a shape processing part,
which deals with the operations that the application wishes to execute on
the shape representation. These two components, which parallel the fun-
damental data structures and algorithms in any computer program, are
outlined next.

3

I N T RO D U C T I O N

1.2 S H A P E R E P R E S E N TAT I O N

The first step towards reasoning about a shape is having a convenient
way of representing it. The representation choice is dependent on several
factors such as the type of sensor used to acquire the shape and the type
of analysis one wants to perform on the representation. In practice, such
representations can be classified as continuous or discrete. Continuous
representations are able to faithfully capture all details of a shape, and al-
low in principle any type of analysis to be performed thereon without loss
of precision. However, they are not practical or often not even feasible,
as we cannot (easily) construct them for all but simple shapes. Discrete
representations have the key advantage of allowing one to capture prac-
tically any type of shape in existence by a number of relatively simple
data structures. While they typically cannot represent all details of any
shape, they allow a controlled trade-off between representation size and
complexity (on one hand) and representation costs and accuracy (on the
other hand). As such, discrete shape representations are predominant in
most computer-based shape processing applications.

Besides the above, shape representations can be classified into surface
or volumetric ones. Surface, or boundary, representations capture only
the form of the shape’s surface or interface that separates the inner part
of the shape from its surroundings. They are useful in cases when we
are interested to reason only about the shape boundary or in cases when
we only have information on this boundary, and not on the shape’s in-
terior. Discrete boundary representations can be readily acquired by e.g.
laser scanners or constructed by modeling tools, and consist typically
in a point-sampling of the object surface, with optional additional con-
nectivity. These two representations are also known under the names of
unstructured point clouds and polygonal meshes, respectively. Volumet-
ric representations capture both the shape’s surface and its interior. They
can be acquired from 3D volumetric scanners, such as CT and MRI scan-
ners, or constructed synthetically, e.g. by using field-based methods. Dis-
crete volumetric representations usually consist of an uniform sampling
of the shape’s interior on a regular grid, i.e., of a collection of voxels
whose values indicate the distinction between shape interior and exterior
and, optionally, the value(s) of one or more measured properties inside
the shape. In contrast to boundary representations, volumetric represen-
tations require more memory and computing power to handle.

1.3 S H A P E P RO C E S S I N G

Both boundary and volumetric representations outlined above are essen-
tially anchored in the R3 (three-dimensional) space in which the shape
is embedded. However, this is not the only space in which shapes can
be represented. For instance, shapes can be represented in the Fourier
domain. This allows certain shape processing operations, such as e.g.

4

1.4 M E D I A L R E P R E S E N TAT I O N S

smoothing, matching, or filtering, to be implemented in simpler and/or
more efficient ways than in the spatial domain. Conversely, the spatial
domain supports better other types of shape processing, such as analyses
pertaining to metrology or topology.

Shape processing operations encompass a huge spectrum of manip-
ulations, such as matching, compression, simplification, denoising and
smoothing, segmentation, and rendering. As outlined above, different
shape representations support different types of processing operations
better (or worse) in terms of simplicity, accuracy, robustness, and compu-
tational scalability. As such, the quest of the best match between specific
processing operations and existing (or new) shape representations is an
important evolving field of research.

1.4 M E D I A L R E P R E S E N TAT I O N S

As outlined in Section 1.2, the boundary and volumetric representations
are not the only spatial representations of 3D shape known. Although
these are arguably the most convenient representations for shape acqui-
sition and display, other representations can offer important advantages
for specific shape processing operations.

This thesis focuses on one such alternative spatial representation for
3D shapes: the medial representation. This representation, first proposed
by Blum in 1967 [15], encodes a (2D or 3D) shape into the collection
of the medial loci of the maximally inscribed (2D or 3D) balls inside
the shape’s boundary. For 2D shapes, medial axes (also called 2D skele-
tons), consist of a collection of 1D curves. For 3D shapes, several medial
representations are known, as follows: Medial surfaces, also called sur-
face skeletons, consist of a (complex) collection of 3D manifolds with
boundaries (Figure 1.1). They provide a full representation of the entire
shape boundary, but are relatively complex to compute. Curve skeletons,
in contrast, consist of a (relatively simple) collection of 3D curves. They
can be computed relatively easily, but only capture the topological char-
acteristics and main geometry characteristics of the shape.

Medial representations, also called medial descriptors, are very effec-
tive in supporting shape processing applications which focus on analyz-
ing, or manipulating, the topological and symmetry-related properties of
a shape. Intuitively put, medial descriptors capture the essential ‘branch-
ing structure’ or part-in-whole structure of a shape, as well as its sym-
metry characteristics. As such, they are often used in applications where
such properties are important, such as shape matching, simplification,
part-in-whole segmentation, and recognition.

In this thesis, we explore the usage of 3D medial descriptors for
supporting a range of shape analysis and processing operations. Hence,
we next overview the different types of medial representations (Sec-
tion 1.4.1), applications that such representations can support (Sec-

5

I N T RO D U C T I O N

tion 1.4.2), and outline the key challenges that medial representations
face when supporting such application (Section 1.4.3).

1.4.1 Types of medial representations

a) b)

c) d)

Figure 1.1: 2D and 3D shape (brain) boundary representation (a, b) and its corre-
sponding medial representation (c, d)

As briefly outlined above, several types of medial representations have
been proposed for several types of shapes and shape-processing appli-
cations. For 2D shapes, the widest-used medial representation directly
follows the maximally inscribed ball definition outlined earlier. This rep-
resentation has also been the most explored (and used) in practice, due to
its simple and efficient computation. Currently, many algorithms exist for
computing 2D skeletons, e.g. [45, 118, 122, 155, 183]. Such algorithms
are able to robustly deliver accurate 2D skeletons of large and com-
plex shapes, represented either as pixel images or polygonal contours,
at interactive-frame rates. As such, 2D skeletons are frequently used in
many applications on 2D shape matching, simplification, retrieval, recog-
nition, and analysis (Figure 1.1).

For 3D shapes, curve skeletons are the widest-used medial represen-
tation, as these are relatively simple and efficient to compute and ana-
lyze. Similar to the 2D skeleton case, many curve-skeleton extraction
algorithms have been proposed for both polygonal and volumetric shape
representations, e.g. [7, 16, 64, 172, 174, 181, 192]. Such algorithms
can efficiently extract accurate curve skeletons of large and complex 3D
shapes, and have been used in applications such as 3D shape recognition
and matching, path planning, and virtual navigation.

However, as already outlined, curve skeletons cannot fully capture the
entire geometry and topology of a 3D shape. As such, they are most
effective in describing shapes which have a locally tubular structure,

6

1.4 M E D I A L R E P R E S E N TAT I O N S

such as blood vessel networks or plants. In contrast, medial surfaces do
capture all topological and geometric information present on the bound-
ary of a 3D shape. As such, they enable more complex shape process-
ing applications, such as shape reconstruction and simplification, de-
noising, and smoothing. Several methods exist for extracting 3D me-
dial surfaces from both volumetric and polygonal shape representations,
e.g. [43, 50, 59, 101, 119, 126, 135]. However, most if not all such meth-
ods are considerably more complex, slower, and less scalable than 2D
skeleton or 3D curve-skeleton extraction methods. As such, 3D surface
skeletons have been used considerably less often in shape processing ap-
plications than their other two counterparts.

1.4.2 Applications of medial representations

Medial representations have been used for a wide range of analysis
and processing operations involving both 2D and 3D shapes. Below we
overview a number of important applications where such descriptors
have been used, without the claim of being exhaustive.

Path planning and navigation: Given a (2D or 3D) shape, the skeleton
thereof represents the locus of points which are locally centered with
respect to the shape boundary. This implies that such points are, also,
locally at maximal distance from the shape’s boundary. As such, the
skeleton can be used to construct a navigation path for a vehicle that
moves inside the respective shape and avoid colliding with the shape’s
boundary. Following this idea, skeletons have been used for path plan-
ning applications in both 2D map-like contexts [24, 54, 55, 109, 166] and
3D contexts, such as navigating a virtual camera inside tubular organs
such as arteries, bronchies, or the colon [79, 97, 192]. For 3D applica-
tions, curve skeletons have been mainly used, given that the desired path
planning involved tube-like structures.

Segmentation: Given a (2D or 3D) shape, the branches of its skeleton
correspond to protrusions (convex bumps) of the shape’s boundary. As
such, the natural idea arose to segment these protrusions from the main
shape body or rump, by cutting the shape around points corresponding
to the branch junction points or around points located on the skeletal lig-
ature branches. This leads to so-called part-based segmentations, which
work well for natural objects. Examples of part-based segmentation us-
ing skeletons include [147] for 2D shapes and [129] for 3D. In both
examples, skeletons consisting of 1D structures (i.e., 2D skeletons and
3D curve skeletons) are used.

Surface skeletons can be also used to segment shapes, leading to a
different class of so-called patch-based segmentations, where segments
represent quasi-flat shape surface areas separated by sharp creases. Ex-
amples of patch-based segmentations using surface skeletons are shown

7

I N T RO D U C T I O N

in [130].

Both part-based and patch-based segmentation approaches are further
explored in Chapters 4 - 6.
Shape matching and retrieval: Skeletons represent the geometry and
topology of a shape in a compact manner, i.e., in a space which is typ-
ically of lower dimension than the given shape. As such, they can be
used in shape retrieval and matching contexts. The overall idea is simple:
The skeleton is reduced to an attributed graph, where nodes represent
skeleton branches and edges represent skeleton junctions where several
branches meet. Using this compact descriptor, shapes can be searched
or matched following a top-down comparison process based on graph
distances. Examples of such applications include [9, 60, 169, 196]. Sim-
ilar to the segmentation case, in most current applications 2D skeletons
and 3D curve skeletons are used, as surface skeletons are deemed too
complex and/or computationally expensive for this context.

Shape analysis: Shape analysis concerns itself with finding specific fea-
tures on the surface of 3D shapes, such as edges, corners, or concave or
convex regions. Such regions can be often found easier by analyzing the
shape skeleton, and using known connections between the skeleton and
shape to locate them on the shape surface. For example, convex curvature
maxima (ridges and corners) of 3D shapes can be found by locating the
surface skeleton, respectively curve skeleton, boundaries [134]. Similar
approaches can be used for 2D shapes, leading to enhanced descriptors
for shape classification [8]. Compared to classical curvature-based shape
analysis methods, skeletal methods have the advantage of enhanced ro-
bustness in the presence of small-scale surface noise.

Shape simplification: Shapes can be simplified by using their skeletons.
Applications include removing small-scale surface noise and/or accen-
tuating the important sharp edges thereof. The main idea here follows
the fact that the boundary of a shape can be reconstructed from its skele-
ton. By applying suitable skeleton simplification techniques, the shape
reconstructed from the simplified skeleton can thus emphasize certain
important details and remove other irrelevant ones. Examples of such
techniques include [41, 62, 175, 177]. Among other applications, this
process leads to the production of a multiscale representation of shapes,
based on progressively simplified skeletons thereof. However, as for the
applications mentioned above, 3D curve skeletons and 2D skeletons are
the main tools used here, the 3D surface skeletons being rarely used. Be-
sides simplification of shapes represented by their boundaries, skeletons
also have been used to simplify other types of spatial datasets, such as
2D grayscale and color images [199].

8

1.4 M E D I A L R E P R E S E N TAT I O N S

Mesh construction: Since the medial axis can be seen as the ‘symmetry
locus’ of a boundary, it offers a useful instrument to construct a parti-
tioning of the shape that links ‘opposite’ boundary parts. This property
is instrumental in producing quad-dominant meshes from both 2D and
3D domains [5, 48, 137, 143]. Creating such quad meshes is of great
importance for highly-accurate and efficient numerical simulations of
complex phenomena, such as air flows around road vehicles and planes.
Such meshing methods based on medial descriptors have also found
their way into state-of-the-art commercial products [187].

Information visualization: As mentioned above, medial descriptors
compactly capture the symmetry locus, or symmetry set, of a complex
boundary. As such, they can encode the ‘essence’ of complex boundaries
using more spatially compact shapes than the boundaries themselves.
This property is useful, among others, in information visualization ap-
plications, where one design goal is to squeeze as much information as
possible in a limited screen space – the so-called ‘space filling’ design
approach [163]. In this context, medial axes have been used for the vi-
sualization of large graphs, by simplifying the drawing of such graphs
using an edge-bundling approach [44, 179].

1.4.3 Medial representation challenges

For a medial descriptor to be useful and usable in practice, it should
meet several conditions. Globally put, these conditions regard two activ-
ities: the computation of the medial descriptor from an input shape; the
interpretation of the medial descriptor in terms of supporting relevant
shape processing operations. We discuss these two aspects below.

Medial computation: The extraction of medial representations, spe-
cially for 3D surface skeletons, is a challenging proposal. For a medial
extraction method (also called skeletonization method) to be usable, it
has to meet several desirable properties, as follows:

• accurate: The computed medial descriptors have to match the
skeleton definition (locus of maximally-inscribed balls) as well as
possible, subject to the inherent limitations of the sampling resolu-
tion used to capture both the input shape and the output descriptor.
Even small inaccuracies can lead to significant errors in the ensu-
ing shape processing applications, such as wrong classifications
or incorrect smoothing.

• scalable: Medial descriptors should be computable for large and
complex 3D shapes, such as the ones produced by modern 3D
scanners or modeling applications. These can easily have millions
of polygons (for boundary representations) or billions of voxels

9

I N T RO D U C T I O N

(for volumetric representations). Additionally, the speed of com-
puting such medial descriptors has to be high – seconds or even
less for such complex shapes, in case we want to support interac-
tive applications.

• robust: Skeletonization methods should be able to produce ‘clean’
medial descriptors from shapes having different sampling densi-
ties and/or variable amounts of sampling noise. By this, we mean
that the resulting descriptors should not be strongly affected by the
input sampling or noise characteristics.

• generic: Skeletonization methods should be able to handle shapes
of a wide variety in terms of geometry and topology, e.g. closed
or open boundaries, shapes of genus 0 or higher, and shapes repre-
senting smooth (natural) objects or shapes having a faceted struc-
ture (e.g. man-made objects). This way, such methods can be used
for the largest possible class of applications.

While many 3D skeletonization methods exist, very few, if any, fully
comply with all above requirements. For instance, thinning methods
working on volumetric representations are simple and scalable, but are
not very accurate [43, 119, 126]. Curve skeletonization methods are
relatively scalable and robust, but are not generic [31, 32, 37, 64, 172].
Surface skeletonization methods are generic and accurate but relatively
slow and less robust [108]. Without complying with all above require-
ments, the applicability of 3D skeletonization methods in real-world
shape processing applications will be inherently limited.

Medial interpretation: Producing a ‘raw’ skeleton from a 3D shape is
only the first step to actually using the skeleton for shape processing. In-
deed, one further needs to extract information from the skeleton which is
relevant to the specific processing operations we aim to support. This pro-
cess is also known as computing higher-level medial features. Examples
of such features are the feature points (contact points of each skeletal
point with the input shape’s boundary), local thickness (distance from
each skeletal point to the closest input shape point), skeleton importance
(a metric that encodes the relevance of each skeletal point to the descrip-
tion of the input shape), skeletal components (the distinct manifolds or
branches that form the skeleton), junctions (the intersection points or
curves where the skeletal manifolds meet), skeleton topology (the graph
formed by the manifolds and their intersections), skeleton boundary (the
skeletal points which appear on the border of the skeleton itself). Such
features can be, in turn, refined to compute higher-level features, which
support more advanced analysis and processing operations on the input
shape. For example, the skeleton boundary and junctions can be further
classified to detect convex and concave parts of the input shape; the skele-
ton importance can be analyzed to remove small-scale noise details of

10

1.4 M E D I A L R E P R E S E N TAT I O N S

the input shape; skeletal boundaries can be used to detect (sharp) edges
on the shape; and feature points can be analyzed to detect so-called liga-
ture branches that correspond to protrusions, or convex parts, of the input
shape.

As for skeletonization itself, several techniques have been proposed
to compute higher-level features from 3D curve and surface skeletons.
However, many such methods suffer from the same accuracy, scalability,
robustness, and genericity problems outlined above for the skeleton ex-
traction. As computing refined skeletal features is, thus, hard, using such
features to support shape processing applications is inherently limited.
On the other hand, the difficulty of computing refined skeletal features
has made it hard to explore new ways by which such features could be
used to support existing shape processing applications.

Research question: Based on the above points, we can state that com-
puting 3D curve skeletons and their respective features is a relatively
well developed field, including many applications. In contrast, we find a
major challenge in the practical computation of 3D surface skeletons and
their relevant higher-level features, and in the usage of such features to
support shape processing applications. As such, the actual usability and
usefulness of 3D surface skeletons in practice is still an open question
that needs to be answered. Separately, we see that the costs of handling
volumetric representations of 3D shapes (and their skeletons) appear to
be intrinsically higher than the comparative costs involved by boundary
representations.

Given this context, we can now formulate our first research question:

How can we compute 3D surface skeletons and related refined fea-
tures accurately, scalably, robustly, and generically for a wide set of 3D
shapes encoded by a discrete boundary representation?

To answer this question, we explore the development of novel skele-
tonization methods for surface skeletons, and validate them in practice
by using them to compute such skeletons from a wide range of 3D
shapes and several shape processing applications. This leads us to our
second research question:

How can we use refined skeletal features extracted from 3D surface
skeleton to efficiently support shape processing applications?

To answer this question, we will study how the refined skeletal fea-
tures computed by the methods developed under the scope of our first
question can be used to capture relevant aspects of 3D shapes, such as
curvature, parts, and edges. Next, we will use the identified feature-to-
shape-characteristic mappings to implement several shape processing
operations, such as shape classification and shape segmentation. Finally,

11

I N T RO D U C T I O N

we will compare the results of our shape processing with results of
established methods in the same class. Thereby, we will validate the
usefulness and effectiveness of 3D surface skeletons (and their extracted
features) for these applications.

Content-wise, with respect to the above two research questions, this
thesis has two contributions:

• Theory: The usage of new or existing surface-skeletal features to
support various shape processing applications highlights connec-
tions between shapes and their surface skeletons which have not
been explored so far (partly due to the practical inability of com-
puting such skeletons and features). We expect this will strengthen
the interest of researchers in exploring additional skeletal features
and their use in similar or different applications.

• Practice: The creation of efficient and effective 3D surface-
skeletonization algorithms will support the practical applicability
of surface skeletons in real-world applications. Slightly simplify-
ing the discourse, one of the aims of this work is to show that
surface skeletons can be made to be as easy and efficient to use in
practice as the better-known curve skeletons.

1.5 S T RU C T U R E O F T H I S T H E S I S

In line with the two main research questions stated above, this thesis has
the following structure:

C H A P T E R 2 provides an overview of 3D shape representations and in-
troduces several skeleton-related concepts and definitions which
will be used on all subsequent chapters. Additionally, it provides
an overview of existing skeletonization methods and methods for
computing related skeletal features, with a focus on 3D surface
skeletons. Related work which is, by its nature, more specific to
individual chapters is addressed next in the context of the respec-
tive chapters.

C H A P T E R 3 presents a method for the fast, robust, and scalable extrac-
tion of 3D surface and curve skeletons from large and complex 3D
shapes represented as point clouds and polygonal meshes. Addi-
tionally, we present how the proposed method can compute related
skeleton features such as feature-points and skeleton importance
values, used further for skeleton regularization. We also present
how the resulting surface skeletons can be used to efficiently recon-
struct the input shape, and how to reconstruct compact (meshed)
representations of the surface skeletons from a skeleton point
cloud. Given the scalability and accuracy of the presented method,

12

1.5 S T RU C T U R E O F T H I S T H E S I S

this method will form the backbone for our subsequent work on ex-
tracting refined skeletal features and using such features in shape
processing applications in the following chapters. Separately, we
present here a different method that extracts curve skeletons from
2D views of 3D shapes. Similar to our surface-skeletonization pro-
posal, this method is accurate, scalable, robust, and generic, and
can handle complex and large shapes represented by point clouds
or polygons. Globally, the two skeletonization methods presented
in this chapter address the issues of scalability, robustness, and
ease of computation of 3D surface and curve skeletons raised by
our research questions.

C H A P T E R 4 dives deeper into the challenges presented by the analy-
sis of surface skeletons represented by point clouds, such as pro-
duced by our method proposed in Chapter 3. Two challenges are
addressed here: (1) the extraction of smooth surfaces from noisy
point clouds, which enables the use of our surface skeletonization
methods directly on such point clouds; and (2) the extraction of
the separate manifolds that compose a surface skeleton, which is
an important type of refined skeletal feature. To underscore the
added-value of our method, we also show its application for the
denoising, segmentation, and extraction of meshed surfaces from
general point clouds apart from skeletal ones. As such, this chapter
partially answers the question of extracting refined features from
3D surface skeletons – in this context, these are skeletal manifolds.

C H A P T E R 5 investigates the density properties of a 3D surface-skeleton
point cloud. By exploring and exploiting these properties, unique
to this type of skeleton representation (in contrast to e.g. voxel
based representations), we show next how we can support shape
segmentation in contexts where known segmentation methods fail
to produce good results. We demonstrate our proposal by a prac-
tical application for the segmentation of orthodontic dental casts.
This chapter thus targets our second research question by showing
how the skeletal point-cloud density is instrumental in supporting
segmentation applications.

C H A P T E R 6 extends our quest for the computation of refined skele-
tal abstractions. We show how we can compute features such as
edges, medial sheets, sheet-intersection curves, and skeleton point
classifiers from the surface-skeleton point clouds delivered by our
method proposed in Chapter 3. Next, we show how such features
can be effectively and efficiently used to support applications in
shape classification and segmentation, and compare our results
with traditional techniques in these areas. As such, this chapter
addresses both the first research question (extracting higher-level

13

I N T RO D U C T I O N

skeletal features) and the second research question (using the ex-
tracted features to support shape processing applications).

C H A P T E R 7 concludes this thesis by discussing our answers to the two
main research questions stated in Section 1.4.3 and outlines poten-
tial directions for future work in the area of using surface skeletons
for additional shape processing applications.

14

2M E D I A L R E P R E S E N TAT I O N S O F O B J E C T S

Symmetry is what we see at a
glance

Blaise Pascal

2.1 I N T RO D U C T I O N T O S H A P E R E P R E S E N TAT I O N S

S H A P E noun the external form, contours, or outline of someone or
something.

According to the above definition, taken from the Oxford Dictionary,
shape is an intrinsic property of just about everything which we perceive
as an individual object separated from its surroundings. However, shapes
can also be abstract mathematical representations, not necessarily repre-
senting some entity of what we call the real-world – consider, for in-
stance, an m-dimensional hypersurface embedded in n > m dimensions.
The focus of the work presented in this thesis is to enable the use of
medial representations to perform analysis of shapes of objects that we
typically find in three dimensions.

To be able to analyze a shape computationally, we need some math-
ematical representation thereof. For instance, we can describe a shape
by an explicit or implicit function; as being the solution of an equation;
or by a (dense enough) set of sample points taken on its surface or its
interior. In this sense, we can classify mathematical shape representa-
tions into analytic representations and discrete representations. Analytic
representations follow the examples of the implicit/explicit function or
equation solution listed above. They have the significant advantage of
offering a way to exactly reason about the described shape – as long,
of course, as the mathematical representation we use accurately captures
the shape of interest. However, they also have the crucial disadvantage of
being impractical: It is very hard to describe any possible (3D) shape in
compact analytic form; moreover, even in cases where such an analytic
representation may exist, it is not evident how to create it for a given
shape.

Discrete representations offer an efficient and effective trade-off for
the above problems. They essentially represent a shape as a dense-
enough set of sample points taken either on the surface ∂Ω of the shape,
or in the interior Ω of the shape. The key advantages of this representa-
tion are simplicity and generality: Given a dense-enough set of sample

15

M E D I A L R E P R E S E N TAT I O N S O F O B J E C T S

points, we can represent any desired shape up to a given accuracy level,
by a single, relatively simple, model: a set of sample points.

Many types of discrete (or sampled) representations of shape exist.
They differ in terms of what is sampled (e.g., the boundary ∂Ω or the
interior of the shape Ω); the so-called interpolation functions used to
construct a (piecewise) continuous representation of the shape from its
samples; the distribution of the sample points within the sampled object;
and storage schemes for the sample points. In the following subsections,
we provide a brief overview of a number of popular discrete representa-
tions of shape.

2.1.1 Volumetric representations

Discrete volumetric representations essentially sample the ‘inside’ of a
shape Ω into a set of sample points xi ∈ Rn, where n is the dimension
of the space in which the shape is embedded (typically 2D or 3D). The
essential information recorded by such a sample point xi, as such, is the
shape property (or properties) recorded at the respective spatial location.

Arguably the best-known, and widest used, sampling scheme for such
volumetric representations is the one using uniform samples. That is,
sample points xi are distributed on a regular lattice covering a com-
pact axis-aligned region of the embedding n-D space. Such samples are
known as pixels (for n = 2) or voxels (for n = 3). The main advantage of
this sampling scheme is its simplicity: Essentially, all we need to store
is an n-D matrix of sample values; the actual sample coordinates can be
next easily inferred from the so-called structured coordinates, or indices,
of a sample (pixel or voxel) inside the dataset. The main disadvantage
of this uniform sampling scheme is its (very) high memory demands:
Essentially, we have a uniform sampling density, thus we need to dedi-
cate the same amount of sample points (per unit of n-D volume) to any
zone. However, some zones may contain more interesting information
than other zones.

Uniform volumetric sampling is used by many shape processing appli-
cations, ranging from the ubiquitously known image viewers that show
images acquired e.g. by digital cameras, to medical imaging applications
that show 3D CT or MRI images acquired by volumetric scanning proce-
dures, that subsequently encode the type, density, or dynamics of tissues
in a 3D spatial region.

2.1.1.1 Binary Volumes

In many cases, we are not interested in representing, or reasoning about,
the internals of a shape Ω, but only about its boundary ∂Ω. Typical ex-
amples include classical 3D computer graphics, where we want to show
a number of surfaces (but usually are not concerned with what lies inside
these surfaces); CAD-CAM applications, where we want first to design

16

2.1 I N T RO D U C T I O N T O S H A P E R E P R E S E N TAT I O N S

the boundary of a 3D shape, but are not concerned (at this stage) about
the internals of the respective shape; or medical applications in which we
want to separate, or segment, a shape having a given morphology (struc-
ture) from its surroundings, such as a tumor from enclosing tissue, a hard
bone from enclosing soft tissue, or an arterial tree from surrounding less-
vascularized tissue; or computer vision applications, where we want to
isolate specific shapes of interest, such as cars or pedestrians, from sur-
rounding landscape. In all these cases, we actually want to reason about
any point x in the embedding space (e.g. R2 or R3) as being inside, on
the boundary, or outside one or several shapes of interest.

A simple and efficient way to encode the above point classification is
to use binary volumetric sampling, or binary volumes. In such a volume,
each sample point essentially has a binary value, indicating whether the
respective point is either inside or outside our given shape(s) of interest.
Points on the boundary between ‘inside’ and ‘outside’, or on the surfaces
∂Ω of our shapes, can be easily found using this binary classification
as e.g. all inner points having at least one outside neighbor point, or
conversely (all outside points having at least one inside neighbor point).

Binary volumes provide a straightforward way of representing a seg-
mentation in a volume. Each voxel is classified in a binary fashion an
the marked voxels usually represent the voxels belonging to the seg-
mented structure. The key disadvantage of this representation, is that
the segmentation resolution is limited to the resolution of the volume.
However, since voxel volumes in itself sample the space, the actual con-
tours lie somewhere in between the voxel volumes. Implicit surfaces pro-
vide means to overcome this limitation. The analysis of digital volumet-
ric shapes, or digital images, is the focus of a specific field of research,
called digital geometry [80].

2.1.1.2 Implicit surfaces

Although binary volumetric representations offer a way to identify sur-
faces separating the inside of our shapes of interest from surrounding
space, they present a key disadvantage: The represented surface is lim-
ited in resolution to the grid used to represent the binary function. In
many cases, we have datasets, where representing a surface in this way,
results in loss of accuracy. In addition, the representation accuracy is af-
fected by transformations to the original data, such as rotation, scale or
translation. Consider for example a 3D CT scan: This is essentially a
3D volume of points xi whose scalar values s(xi) ∈ R represent some
shape property, such as e.g. tissue density. Although the acquired data is
sampled at the discrete positions xi, the boundaries of the various organs
typically lie in between these positions. A binary voxel surface represen-
tation cannot capture such boundaries, thereby generating potential prob-
lems for the further interpretation and/or processing of such surfaces.

17

M E D I A L R E P R E S E N TAT I O N S O F O B J E C T S

Implicit surfaces offer an alternative representation. Consider again
our example of a 3D CT scan represented as a volume of points xi whose
scalar values s(xi)∈R represent some shape property, such as e.g. tissue
density. We can now define an entire family of surfaces S j ⊂ R3 having
the tissue density equal to some user-given value τ j ∈ R. These are also
often called isosurfaces, contours, or level-set surfaces of the function
s [146]. To define such isosurfaces, we must first be able to interpolate
the sampled values s(xi) to all positions x in our volume. This is typically
done by using trilinear interpolation of the sampled values s(xi) at the
vertices of cubic cells defined by the sample points xi. Having the inter-
polation s(x) at any point x, we can now define S j = {x ∈R3|s(x) = τ j}.

Implicit surfaces are a particular class of isosurfaces. Given a 3D
shape, consider that we can define a so-called scalar indicator function
f : R3 → R, so that f is negative inside the shape, and positive outside
this shape. In this case, and assuming that f varies continuously, the ac-
tual surface of the shape is represented by the isosurface for scalar-value
zero, or the zero level-set, of the indicator function. Indicator functions
can be represented using a sampled voxel representation.

Implicit surfaces and isosurfaces can be extracted efficiently from a
sampled volume s using e.g. marching cubes or dividing cubes algo-
rithms [100]. The resulting implicit surfaces represent a piecewise-linear
(polygonal mesh) approximation of the surface of our shape of interest.
Several shape operations such as union or intersection can be easily com-
puted using implicit representations, as they map to arithmetic and/or log-
ical operations on the respective indicator functions. Other advantages of
implicit representations are the ease of generation of a meshed surface
representation (convenient for further processing and/or visualization),
easy handling of surfaces having complex shapes and/or topologies, and
guaranteed orientability and water-tightness of the resulting surfaces. Im-
plicit representations are very popular among medical image segmenta-
tion algorithms [113].

2.1.2 Boundary sampling representations

Unlike the binary or implicit surface representations, which require an
underlying voxel volume to represent the surface, boundary sampling
representations encode the shapes surface explicitly, i.e. the boundary
positions are directly encoded. In case we know that we want to repre-
sent, and next reason about, a single surface of our shape (rather than e.g.
a family of surfaces, or the varying material properties of the interior of
a volume), the only information we need to encode is the shape of the
respective surface.

There exist several ways to represent such surfaces, as follows. Note
that, for the sake of simplicity, we next consider only surfaces embed-
ded in R3. The same reasonings apply to surfaces embedded in other
dimensions.

18

2.1 I N T RO D U C T I O N T O S H A P E R E P R E S E N TAT I O N S

2.1.2.1 Point cloud representations

A point cloud representation of a surface S ⊂ R3 is essentially a point
sampling of this surface; in other words, it is a collection of points xi ∈
S ⊂ R3. Such point sets, also called point clouds, can be acquired by
computing points on an implicit surface; by computing points on the
interface between inner and outer voxels in a binary volume represen-
tation; or, more interestingly, by using 3D scanning techniques which
acquire points on the visible surface of a set of given 3D objects using
a laser scanner or a time-of-flight camera [49, 104]. The key advantage
of such point cloud representations is their compactness: we can easily
encode high detail present on complex 3D surfaces up to sub-millimeter
precision in point clouds having a few million samples with significantly
lower cost that encoding the same information in binary voxel volumes.
In many cases, such as the use-case outlined above of recording the vis-
ible surfaces of 3D natural objects, it is much easier (and cheaper) to
construct a surface point cloud (using scanning techniques) than acquire
a true volumetric representation of the same object e.g. using CT or MRI
scanning techniques. A third advantage of point clouds is that they nat-
urally support non-uniform spatial sampling schemes: We can distribute
the 3D cloud points any way we want; in contrast, in a typical volumetric
sampling, the sample points are organized in a regular lattice or uniform
grid. Thus, 3D point clouds are significantly more flexible in recording
3D shapes having a highly non-uniform spatial variation, by e.g. allocat-
ing more sample points to high-detail or high-frequency areas than to
low-frequency, uninteresting, areas.

However, a major limitation of point cloud representations is that they
essentially only encode a set of samples on our surface of interest, but
not the shape of the surface as such. In other words, point clouds do
not (explicitly) say, or model, what happens between the samples. To
have such information, we need to interpolate the sample information
in-between. This is the area covered by the representations and methods
discussed next.

2.1.2.2 Polygonal representations

Polygonal shape representations extend the point cloud surface represen-
tation by adding connectivity information to the points. From a practical
(and historical) perspective, polygonal surface representations are prob-
ably the oldest, best known, and most frequently used representations of
3D surfaces. From a theoretical perspective, polygonal representations
extend point cloud sample-sets by adding an interpolation mechanism
that estimates the surface between sample points, using linear basis func-
tions or interpolants. In simpler terms, this amounts to adding a mesh
representation atop of a point cloud that describes a set of polygons (typ-
ically triangles) whose vertices lies at the sample point positions, whose
union represents our surface of interest, and which do not intersect –

19

M E D I A L R E P R E S E N TAT I O N S O F O B J E C T S

thus, they form a partition of the desired surface. Such mesh represen-
tations are computationally inexpensive, compact in terms of memory
usage, and simple to implement. As such, the vast majority of applica-
tions representing or processing 3D surfaces use polygonal representa-
tions. To give just an example, the marching cubes implicit-surface ex-
traction algorithm mentioned earlier represents implicit surfaces by tri-
angle meshes.

If a polygonal representation can be constructed for a given point
cloud, numerous surface analysis and processing operations can be easily
performed on it, e.g. normal estimation (by averaging polygon vertices
at sample points); smooth shading (using either the linear Gouraud in-
terpolation of shading computed at sample points or the slightly more
complex Phong interpolation of surface normals at each surface pixel);
surface curvature estimation [176]; surface segmentation [26], and many
others. Fundamentally, many of these operations become possible due
to the partition of the surface of interest offered by the polygonal repre-
sentation, and the subsequently easy construction of interpolation mech-
anisms on this polygonal representation.

We should note that the need for an interpolation mechanism on a
surface S that (in turn) interpolates or approximates our point cloud sam-
ples xi does not directly and always require the construction of a polyg-
onal interpolation (mesh) from xi. Mesh-less, or grid-less methods have
been proposed. Such methods essentially provide most of the shape pro-
cessing operations targeted by mesh representations, by creating differ-
ent sets of basis functions than the classical bilinear ones that live on
mesh triangles. Examples are constructing local point couplings by using
nearest-neighbor projections to local tangent planes [27, 28, 133]. Such
couplings essentially define a stiffness matrix, which next enables the
direct application of many processing methods to take place on the ‘im-
plicit’ surface defined by the couplings, e.g. anisotropic diffusion, denois-
ing, texture generation, inpainting, or simplified rendering. While the
coupling estimation using local tangent planes strongly resembles meth-
ods used for reconstructing meshed surfaces from point clouds [1, 195],
such mesh-less methods do not explicitly deliver a manifold representa-
tion of a surface. As such, mesh-less shape processing methods are less
attractive than methods that extract an explicit mesh surface from a point
cloud and deliver it to any subsequent processing task.

However, given just a raw point cloud of positions xi ∈ R3, comput-
ing a polygonal representation of a surface that interpolates (or approxi-
mates) these points is far from trivial. To be useful in subsequent surface
processing and/or analysis operations, such a polygonal surface should
meet several criteria, e.g. be free of self-intersections; contain only cells
(polygons) having a non-zero area and good aspect ratio; be orientable;
contain a simple manifold structure; or even be watertight (describe a
closed volume in R3 without boundaries). The class of methods aiming
at creating such surfaces from 3D raw (or unstructured) point clouds,

20

2.2 M E D I A L R E P R E S E N TAT I O N S

known also under the name of surface reconstruction methods, is briefly
outlined next.

2.1.2.3 Surface reconstruction

Given the usefulness of polygonal surface representations outlined
above, and the prevalence of ‘raw’ surface representations in terms of
unstructured point clouds, many method have emerged that aim to create
polygonal surfaces from such point clouds, satisfying various quality
criteria for the generated polygonal mesh (such as polygon aspect ra-
tio, manifoldness, orientability, and watertightness). Such methods are
globally known under the name of surface reconstruction methods.

Globally speaking, surface reconstruction methods can be classified
into (1) approximation and (2) interpolation methods. Given a point
cloud {xi} ∈ R3, approximation methods generate a surface S that is
globally as close as possible to the points xi, and also meets a number
of global quality criteria, such as the ones stated at the beginning of this
section. The degree of freedom of not having to pass precisely through
the sample points gives some additional room for optimizing desirable
surface properties, such as smoothness, orientability, or polygon size.
A salient example of approximation methods is the Poisson surface
reconstruction technique of Kazhdan et al., which computes the approx-
imating surface S by minimizing a global distance function between S
and the sample points xi subject to certain smoothing assumptions [77],
or similar global functionals [138]. As it will be discussed later in this
thesis, this technique works well for certain point-sampling distributions,
but creates unwanted results for highly non-uniform point distributions.
Interpolation methods generate a surface S that is guaranteed to pass
through the sample points xi. This creates an overall better control of
the result, but imposes implicit constraints on global surface properties.
For instance, if {xi} contains (many) noisy samples, interpolation will
necessarily create a noisy surface with limited smoothness. Methods in
this class involve 3D Delaunay triangulations and variants thereof, such
as the power crust and variations [2, 3]; the ball pivoting method [12]; or
local triangulations based on the point cloud covariance matrix [27, 96].
We examine the extraction of surfaces having desirable properties from
point clouds, e.g. smooth self-intersecting manifolds with boundaries
embedded into sampling noise, further in Chapter 4.

2.2 M E D I A L R E P R E S E N TAT I O N S

In the previous sections, we discussed several representations that en-
code a shape Ω (or, alternatively, its boundary ∂Ω) by various ways of
sampling and reconstruction of the respective surface from data samples.
In this section, an alternative shape representation is introduced – the
medial representation. As we shall see, this representation offers several

21

M E D I A L R E P R E S E N TAT I O N S O F O B J E C T S

important advantages compared to more traditional volumetric or bound-
ary representations; however, at the same time, additional challenges are
brought on, which have to be addressed.

The medial approach, first introduced by Harry Blum in 1967 [15],
captures the boundary ∂Ω of a shape Ω in terms of its so-called
‘symmetry-set’ or ‘symmetry locus’. That is, instead of explicitly en-
coding the points on the shape boundary, we encode points which are (in
some sense) symmetric with respect to this boundary.

The basic concept underlying the medial representation is, in terms
of intuition, quite simple: The shape boundary ∂Ω is represented as the
locus of the centers of maximally inscribed discs (R2) or spheres (R3)
located inside the shape Ω (that is, maximal disks or spheres fully lo-
cated inside Ω). Together with the centers pi of these disks, we can store
their respective radius values ri ∈ R+. The set {(pi,ri)} is known under
many names – skeleton, medial axis, and medial axis transform. We will
use next these terms interchangeably, pointing out to relevant differences
in respective contexts. For a more formal definition of these terms, see
e.g. [154].

Several alternative definitions (and, subsequently, computation meth-
ods) have been proposed for the medial axis. One of the most popular
is the grassfire analogy [94]. Here, one assumes an isotropic (uniform)
grass field covering the extent (interior) of our shape Ω. Next, we assume
that the full boundary is set on fire at the exact same time t0, and that the
grass burns next with equal speed in all directions and along all points
in Ω. The grass points where the fire front clashes at some given time
time t > t0 represent the medial axis. As we shall see next, this model
can be used to derive several computation techniques for the medial axis,
having their intrinsic strengths and limitations. Alongside this definition,
alternative definitions exist for the medial axis, each having in turn their
advantages and limitations. Such definitions and computation methods
are discussed in Section 2.3.

However, the medial axis definition (and, subsequently, computation
methods thereof) is not free from problems: Small perturbations on the
boundary ∂Ω lead to large variations on the medial axis. Such issues are
discussed in Section 2.3.4.

A separate aspect to mention at this moment is the goal behind me-
dial axis computations. While, theoretically, computing medial axes is
an interesting (mathematical) problem, the main practical aim we see is,
ultimately, using such medial axes to enable the implementation of rel-
evant shape processing operations with a clear practical relevance. As
such, we do not see the medial axis as an ultimate goal, or product, of
our work. Rather, the medial axis should be a simple, efficient and robust
to compute, descriptor or tool that allows us to either perform relevant
shape processing operations, or compute derived higher-level shape fea-
tures that ultimately enable us to perform such operations. We shall cover
the computation of such derived features and their use to perform useful

22

2.2 M E D I A L R E P R E S E N TAT I O N S

shape analysis operations in Chapters 5 and 6. In this sense, a (loose)
analogy could be made between medial vs boundary representations and
time vs frequency representations of signals: Both representations in the
above-mentioned pairs encode the exact same information in a differ-
ent format and the usability of each representation is dependent on the
application. Additionally, since we can convert between representations
(boundary vs medial axis transform, or space vs frequency respectively),
we can choose to use whichever representation suits us best for the de-
sired processing operations in a given domain. Our shapes, or input sig-
nals, can be always transformed into the other domain as needed.

2.2.1 Definitions

Let us next present the formal definitions of medial structures we will be
using in the context of this thesis.

2.2.1.1 2D skeletons and surface skeletons

Given a 2D or 3D binary shape Ω⊂Rn∈{2,3} with boundary ∂Ω, we first
define its Euclidean distance transform DT∂Ω : Ω→ R+ as

DTY (x ∈Ω) = min
y∈Y
‖x−y‖ (2.1)

For all definitions in the context of this thesis, Y is set to ∂Ω. For text con-
ciseness purpuses, the DT∂Ω notation is used. DT∂Ω is called Euclidean
distance transform as it is based on the Euclidean distance metric ‖ · ‖
between points. Other distance metrics induce different distance trans-
forms, see e.g. [166]. However, in the context of this thesis, we will use
only the Euclidean distance transform, as this is the most used metric for
computing medial descriptors in practice.

Intuitively, the distance transform gives us, for each point inside the
shape Ω, the minimal distance to any point on the shape’s boundary ∂Ω.
From the definition, we already see that the distance transform is a posi-
tive scalar field which assumes increasingly large values as the point x is
deeper situated in Ω with respect to its boundary ∂Ω. Also, we see that
DT∂Ω takes zero values on the entire boundary ∂Ω. As we shall see next,
DT∂Ω is an important ingredient in defining (and computing) the medial
axis of Ω.

The skeleton of Ω is next defined as

S∂Ω = {x ∈Ω|∃ f1, f2 ∈ ∂Ω, f1 6= f2,

‖x− f1‖= ‖x− f2‖= DT∂Ω(x)}, (2.2)

23

M E D I A L R E P R E S E N TAT I O N S O F O B J E C T S

where f1 and f2 are two of the contact points with ∂Ω of the maximally
inscribed disc in Ω centered at x. The mapping

FT∂Ω(x ∈Ω) = argmin
y∈∂Ω

‖y−x‖ (2.3)

also called the feature transform (FT) of the boundary ∂Ω [66, 166],
contains all boundary points y that are at minimal distance from any
interior point x. These points y are also called feature points. The vectors
y− x are also called spoke vectors, in analogy to the spokes of a wheel
(whose circumference is represented by the boundary ∂Ω) [164, 165].

Note that FT∂Ω is multi-valued – or, in other words, its co-domain is
the power set of R3. Indeed, an inscribed ball can have at least two, but
potentially many more, contact points with ∂Ω, depending on the actual
position of the ball center x∈Ω. For instance, if Ω is a disk, the value for
FT∂Ω for the circle center will be the entire circle boundary ∂Ω. As we
shall see next in Chapter 6, the cardinality of FT∂Ω allows us to reason
about the (local) variations of the boundary ∂Ω.

Skeletons defined by Equation 2.2 have an interesting intrinsic relation
to the dimension n of the space embedding our shape Ω. That is, if n = 2,
skeletons will be sets of 1D curves; these are called 2D skeletons (with
reference to the embedding dimension n = 2), medial axes, or even sim-
pler, skeletons. If n= 3, skeletons will be sets of 2D manifolds (surfaces).
Such skeletons are typically called surface skeletons or medial surfaces.
Note that in the trivial case n = 1 (our shapes are compact 1D line seg-
ments), skeletons will be sets of isolated points. As such, the skeleton
dimension is one less than the dimension of the space embedding Ω. For
n = 3, this already highlights an inherent problem concerning the accu-
rate and efficient computation and analysis of such skeletal descriptions,
which are sets of complex 2D manifolds. Obviously, the complexity of
such skeletons will only increase with the size of the dimension n. Since
the case n = 3 is challenging enough, this thesis will not focus on skele-
tons of shapes in higher dimensional spaces such as given by n > 3.

The skeleton defined by Equation 2.2 is homotopic to the input shape
Ω – that is, it preserves the topological elements of the input shape [126,
154, 168]. For instance, if the input shape is of genus g, then the skeleton
also has to be of genus g. The definition results in a connected skeleton,
as long as the input shape Ω consists of a single connected surface. In
the case that Ω consists of multiple disconnected components, the so-
lutions presented for computing the the skeletons still hold, however the
discussion of homotopy becomes implicitly more complex[185][186]. In
the context of this thesis, unless explicitly expressed otherwise, the input
shape Ω is considered to consist of one and only one connected compo-
nent.

Having the skeleton of a shape, the medial axis transform (MAT) M∂Ω

of a shape Ω can be next defined as a function that associates, to each
skeletal point x, the minimal distance of x to the boundary ∂Ω. This

24

2.2 M E D I A L R E P R E S E N TAT I O N S

distance is equal to the value of the distance transform DT∂Ω at point x.
Thus, we can define the MAT as

MAT∂Ω(x ∈ S∂Ω) = (x,DT∂Ω(x)). (2.4)

An important property of the MAT is that it provides a full encoding of
the shape described in ∂Ω. Indeed, given the MAT of a shape embedded
in Rn, we can reconstruct the respective shape Ω as being the union of
n-dimensional balls centered at the MAT points and having as radii the
distance values provided by the respective MAT points. In other words

Ω =
⋃

x∈S∂Ω

B(x,DT∂Ω(x)). (2.5)

Here, B(x,ρ > 0) denotes an nD ball centered at x and of radius ρ . Sub-
sequently, given the reconstruction of the shape Ω, we can easily find its
boundary ∂Ω, if so desired.

This equivalence of a shape with its medial axis transform is an impor-
tant element for the work presented in this thesis. In brief, it suggests that
shape analysis and processing operations that are traditionally defined on
a surface ∂Ω can be adapted to work on the medial axis transform repre-
sentation MAT∂Ω. As we shall see, this transposition is possible, and can
lead to several interesting insights and practical advantages.

2.2.1.2 Curve Skeletons

As we have seen above, surface skeletons are relatively complex shapes
consisting of a set of intersecting manifolds with boundaries. Both re-
searchers and practitioners have since long recognized many of the com-
putational and practical challenges of using such skeletons in real-world
applications, where the input shapes are embedded in 3D. We discuss
several such challenges next in Section 2.3.

As such, other simpler and thus more practical descriptors of ‘cen-
trality’ for 3D shapes have been proposed. One such descriptor type is
formed by curve skeletons. Topologically speaking, curve skeletons C∂Ω

are sets of 1D curves. Given their lower dimensionality as compared
to surface skeletons, curve skeletons are simpler to represent, analyze,
and use. However, in contrast to the formal definition of surface skele-
tons (Eqn. 2.2), curve skeletons know several definitions in the literature.
Apart from their dimensionality (sets of 1D curves), such definitions
have in common the idea that curve skeletons should be ‘locally’ cen-
tered within the shape Ω, in analogy to the local centeredness of surface
skeletons. However, there are many ways in which one can define curves
that are locally centered within a shape. As such, many curve skeleton
definitions and computation methods have emerged. Since there is no
uniquely accepted formal definition of curve skeletons, researchers have

25

M E D I A L R E P R E S E N TAT I O N S O F O B J E C T S

tried to characterize these by a number of qualitative ‘desirable proper-
ties’ [32, 158]. Such properties include

• centeredness: Each point x ∈C∂Ω should be centered with respect
to a neighborhood of points y ∈ ∂Ω that is close to x;

• thinness: Curve skeletons C∂Ω of 3D shapes are sets of 1D curves;

• topology: The topology of curve skeletons C∂Ω should capture the
topology of the input shape Ω. More specifically, C∂Ω should be
homotopic to Ω;

• transformation invariance: Given an isometric transformation T :
R3 → R3, such as translation, scaling, or rotation, the skeleton
should be invariant to it. That, is CT (∂Ω) = T (C∂Ω), for any such
T .

Other desirable properties of curve skeletons are mentioned such as com-
putational stability in the presence of noise on the input shape, compu-
tational efficiency, and minimal thickness. While important, such addi-
tional properties are related to choices involving space discretization and
computation algorithms, and therefore not key to our discussion here on
the definition of curve skeletons. Separately, note that all above desirable
properties apply as well to 2D medial axes and 3D surface skeletons.

From a definition viewpoint, two additional noteworthy approaches
should be mentioned. One of the first formal and explicit definitions of
curve skeletons is the locus of points x ∈ Ω which admit at least two
(equal-length) shortest paths, or geodesics on ∂Ω, between their fea-
ture points [37, 125, 135]. This definition is equivalent to stating that
the curve skeleton of a shape Ω is the ridge set, or local maxima in at
least one dimension of the so-called medial geodesic function MGF :
R3 → R+, defined as the length of the shortest path on ∂Ω determined
by any two feature points of the point x. By definition, MGF can be only
computed on the surface skeleton S∂Ω, since points x /∈ S∂Ω have a sin-
gle feature point, thus cannot allow constructing the above-mentioned
shortest paths. This leads to the implicit additional property that curve
skeletons are contained in the surface skeletons of the respective shapes,
or C∂Ω ⊂ S∂Ω. This observation has been further exploited in a second,
separate, definition of curve skeletons as the ridge set of the distance
transform DT∂S∂Ω

, which measures the shortest (geodesic) distance from
any point x ∈ S∂Ω to the boundary ∂S∂Ω of the surface skeleton [181].
Several relations between curve and surface skeletons, as computed by a
number of recent methods, are discussed in [159].

Due to their simple structure, curve skeletons are useful in a variety of
applications such as shape matching, shape registration, path planning,
3D metrology, and virtual navigation [32]. In particular, curve skeletons
are effective shape descriptors for tubular objects, i.e. objects which can
be well described by the extrusion of a (near) circular contour along a set

26

2.2 M E D I A L R E P R E S E N TAT I O N S

of 3D curves. Such objects occur in many applications, e.g. blood vessel
trees obtained from CT or MRI scanning techniques, intestine or colon
structures obtained by similar scanning procedures, or plant branches or
roots, measured by laser scanning or vision techniques. However, com-
pared to surface skeletons, curve skeletons do not admit the definition
of a MAT that would allow the perfect reconstruction of the input shape
Ω. As such, it is arguable that many surface analysis and processing op-
erations can not be fully translated to a shape representation involving
only curve skeletons, but require the richer surface skeletons. This is an
additional justification for the subsequent focus of this thesis on surface
skeletons.

2.2.2 Classification of Medial Points

As outlined earlier, 2D skeletons are formed by sets of 1D curve seg-
ments that intersect at a number of points (also called junctions); 3D me-
dial surfaces are formed by sets of 2D surface manifolds with boundaries,
that intersect along several curves (also called Y-intersection curves [23,
34, 93]; and curve skeletons are formed by sets of 3D curve segments
that intersect at a number of junction points. As such, we can say that
skeletons (of all types discussed so far) exhibit a high amount of struc-
ture. Computing and understanding this structure and its relationships
with the input shape Ω is of great use in analyzing and processing shapes
by using their medial descriptors. We give below a brief overview of sev-
eral definitions and results in this direction. For additional information,
we refer to [23, 34, 93, 154].

In two dimensions, the medial axis S∂Ω of a shape ∂Ω consists, in
the generic case, of a collection of 1D curve segments. Each such seg-
ment has thus two end points. These can be next classified as ‘termi-
nal’ points, also called tip points or tips; and intersection points, or junc-
tions. Tips are end points which are shared by a single skeleton branch.
They form, thus, the boundary ∂S∂Ω of the medial axis. It can be next
shown that tips map, by means of the feature transform, to fragments of
the boundary ∂Ω where this boundary exhibits local curvature maxima.
These correspond to convex areas, or ‘cusps’, on the shape boundary. For
instance, consider a 2D rectangle shape: Its skeleton has four tip points,
which precisely map, via the feature transform, to the four corners of
the rectangle. If we consider the same rectangle, but slightly ‘round off’
its four corners, e.g. by replacing each boundary fragment centered at
a corner by a small quarter-circle, the resulting skeleton will still have
four tips. However, these tips will now map, via the feature transform, to
four quarter-circle fragments on the boundary ∂Ω, capturing the bound-
ary regions represented by the rounded corners. Junctions are points
where three or more curve fragments of S∂Ω meet. They correspond, in-
tuitively, to points where several distinct parts of the shape Ω get joined
together. Overall, 2D skeletons S∂Ω can be thus represented as graphs

27

M E D I A L R E P R E S E N TAT I O N S O F O B J E C T S

whose nodes encode the separate skeleton curve segments (or skeleton
branches), and edges represent the adjacency relations of branches meet-
ing at a junction point (or conversely). Node and/or edge weights can be
added to represent geometric properties measured on the shape elements
corresponding to the respective skeleton fragments or junctions, such as
(average) distance-to-boundary, curvature, or length. Such graphs thus
represent a compact, though not lossless, encoding of the main proper-
ties of the analyzed shape. They are frequently used to implement shape
retrieval and shape matching operations in terms of graph comparison
operations [42, 102, 169].

In three dimensions, understanding the structure of medial surfaces
becomes a considerably more complex problem. One way to tackle this
higher complexity is to classify the medial points x ∈ S∂Ω based on the
so-called order of contact of maximally inscribed spheres centered at
these points with the boundary ∂Ω. This is, loosely speaking, equiv-
alent to studying the values that the feature transform FT∂Ω(x) takes
at such points. Giblin and Kimia proposed such a classification, where
each medial point is denoted as being of type An

k is introduced, where
n corresponds to the number of different k-fold tangencies and k to the
contact order [58]. Note that this classification is equivalent to analyz-
ing the number n of disjoint groups that FT∂Ω(x) consists of, and the
dimensionality k of each such group respectively.

Following this classification, a medial surface S∂Ω can be decomposed
into the following point types:

S H E E T S
Medial sheets characterize the two dimensional elements of a me-
dial surface – thus, each medial sheet is a manifold with bound-
aries. For typical shapes (excluding spheres and tubular shapes),
the vast majority of medial points are located on medial sheets.
Medial sheets contain A2

1 medial points, i.e. are the locus of max-
imally inscribed spheres which touch the surface ∂Ω at exactly
two different points. In other words, these medial points have each
a feature transform consisting of exactly two different points on
∂Ω.

C U RV E S
Curve points are located on the boundaries of the medial sheets.
Two types of curve points can be next identified, depending on
the boundary types. First, we have curves characterized by A3
points. These curves are the locus of maximally inscribed spheres
which have a single contact zone with ∂Ω, which represents a sur-
face fragment of ∂Ω. Such curves represent the ‘open’ boundary
of sheets. Their union creates the boundary ∂S∂Ω of the surface
skeleton. The points on ∂Ω to which such boundary curves map
correspond to the maxima of the surface curvature of ∂Ω – or,
more informally, to convex edges of ∂Ω. A3 points are thus the 3D

28

2.2 M E D I A L R E P R E S E N TAT I O N S

Unclassi�ed Medial Cloud
A

3
points A4 points

A2

points A3

points

1

1 1

Figure 2.1: Medial cloud classification into different point types.

analogon of tip points for 2D skeletons. Secondly, we have curves
characterized by A3

1 points. These are thus the locus of centers of
maximally inscribed balls which have three distinct tangent points
with ∂Ω. These curves occur at the intersection of three medial
sheets, and are thus also called sometimes Y-intersection curves.
They are the 3D equivalent of junction points of 2D skeletons. In
other words, these curves contain points whose feature transform
yields three distinct points on ∂Ω.

P O I N T S
The medial curves defined above can be further characterized by
studying their end points. Two types of curve end points can be
defined, as follows. First, A4

1 points are defined as the intersection
of four A3

1 curves meet. These are thus centers of maximally in-
scribed spheres which have four different contact points with ∂Ω.
Loosely put, we can think of them as the ‘internal corners’ of the
medial sheets. Secondly, A1A3 points are defined as the intersec-
tion of an A3 and an A3

1 curve – or alternatively, the end points
of A3 curves. They are the centers of maximally inscribed spheres
having one regular tangency point and one higher-order tangency
contact zone with ∂Ω. They can be loosely seen as the ‘external
corners’ of the medial sheets. These points map, by means of the
feature transform, to corners of ∂Ω, where several surface edges
meet.

The above point classification of medial surfaces has many important
uses. First, it allows us to decompose (and reason about) the complex
structure of a medial surface in terms of simpler separated elements
and relationships thereof. For instance, the set of A3

1 curves forms the
so-called Y-network of a surface skeleton, which defines how different
shape parts (characterized by A2

1 sheets) are joined together. More gen-
erally, the entire set of sheets, curves, and curve endpoints, and the rela-

29

M E D I A L R E P R E S E N TAT I O N S O F O B J E C T S

tions between them, can be described by a graph structure, also called the
medial scaffold [93]. Analyzing this graph structure supports a number
of important operations such as shape segmentation [23]. In Chapter 6,
we shall show how such point classifications can be efficiently computed
for large surface skeletons represented as point clouds, and how they can
be subsequently used to support a variety of shape analysis and process-
ing operations.

2.3 A N OV E RV I E W O F S K E L E T O N I Z AT I O N T E C H N I Q U E S

In the previous sections, we have provided an overview of the main defi-
nitions and concepts associated with medial descriptors. Separately, Sec-
tion 1.4.2 presented several classes of applications where such descrip-
tors are useful.

However, to make medial descriptors – that is, both the ‘raw’ skele-
tons and their derived properties such as feature transforms, MATs, and
skeletal point classifications – useful and usable in practice, we need
efficient and effective ways to compute such descriptors from a given
shape representation. Methods that compute medial descriptors given an
input shape are called medial representation extraction methods, or more
briefly, skeletonization methods. In this section, we provide a compact
overview of the main classes of skeletonization methods known in the
literature, together with several example algorithms in each class.

In line with the shape representation models discussed earlier in Sec-
tions 2.1.1 and 2.1.2, we can classify skeletonization methods into vol-
umetric ones and boundary-based ones. These two classes of methods
are discussed next in Sections 2.3.1 and 2.3.2 respectively. In these sec-
tions, we focus on the extraction of skeletons which follow the canon-
ical definition given by Equation 2.2, i.e., 2D medial axes and 3D sur-
face skeletons. 3D curve skeletons represent a particular case, due to
the strong dependence between the extraction method and the underly-
ing curve-skeleton definition that the respective method aims to support
(see Section 2.2.1.2). As such, we discuss such methods separately in
Section 2.3.3. A separate important computational concern is the prob-
lem of regularization, or elimination of unwanted details and/or noise
from the extracted skeletons. Since regularization can be seen as a cross-
cutting concern for virtually all skeletonization methods, we discuss it
separately in Section 2.3.4.

2.3.1 Volumetric Methods

As suggested by their name, volumetric (or voxel-based) methods start
with a voxel representation of the input shape Ω. Typically, this comes as
a binary volume, with foreground voxels describing locations inside Ω,
and background voxels describing locations outside Ω respectively. Note

30

2.3 A N OV E RV I E W O F S K E L E T O N I Z AT I O N T E C H N I Q U E S

that, in this discussion, we use the term ‘voxel’ mainly because our inter-
est is in computing 3D surface skeletons. However, our characterization
of volumetric methods also coves the 2D case, where the equivalent term
is ‘pixel’. To represent the computed skeleton S∂Ω, we also have two op-
tions: use a voxel representation (analogously to the one capturing the
input shape), or use other representations, such as boundary sampling.
Most, though not all, methods that use a voxel-based representation of
Ω will subsequently also use a voxel-based representation for S∂Ω. This
has the advantage of simplicity – a single shape representation is used
throughout the computational pipeline. However, as we shall see, this in-
troduces several practical and conceptual challenges. In contrast, meth-
ods that use a voxel-based representation for Ω but a boundary-sample
representation for S∂Ω avoid such challenges. However, they are more
complex to implement, as the computational pipeline has now to deal
with both volumetric and boundary-sampling representations.

Volumetric skeletonization methods can be in turn broadly divided
into two categories: Morphological thinning and distance field based
methods. These two categories are discussed next. For a recent overview
of volumetric skeletonization methods, we refer to [159].

2.3.1.1 Morphological thinning

Morphological thinning approaches are among the first known skele-
tonization methods. Their idea is simple: Given a shape Ω represented
by the set of foreground voxels, the method iteratively removes so-called
boundary voxels (foreground ones which have at least one 4-connected
(in 2D) or 6-connected (in 3D) background voxel). Thereby, the shape
Ω is effectively ‘thinned’, until we obtain its skeleton S∂Ω. During this
process, two elements are essential: First, voxels should be removed in
an order which ensures that the resulting skeleton is centered within the
shape Ω, thereby satisfying the definition given by Equation 2.2. Sec-
ondly, voxel removal should stop at some point – otherwise, we obtain
S∂Ω =∅. The stopping criterion has to accommodate further constraints:

• the skeleton is a ‘thin’ n− 1 dimensional subspace of the space
Rn in which the input shape Ω is embedded (see Section 2.2.1).
If we use a volumetric representation for S∂Ω, the skeleton should
be as thin as possibly allowed by this representation, e.g., a one-
pixel-thick curve for n = 2, respectively a one-voxel-thick surface
for n = 3. Thus, thinning should not stop too early, otherwise we
obtain a ‘thick’ skeleton.

• the skeleton is homotopic to the input shape Ω (see Section 2.2.1).
Thus, thinning should stop early enough, otherwise we may dis-
connect the skeleton, thereby altering the homotopy property.

Many thinning methods exist which enforce the above desirable cri-
teria in various ways. Tools from mathematical morphology [145] were

31

M E D I A L R E P R E S E N TAT I O N S O F O B J E C T S

among the first used to compute curve skeletons by thinning. The residue
of openings, based on Lantuéjoul’s formula [92], usually leads to discon-
nected skeleton branches. Methods based on homotopic thinning trans-
formations yield thin and connected skeletons [13, 107, 119, 120]. This
is typically done by using suitable local filters, or templates, that check
whether the removal of a voxel does not change the thinned shape’s topol-
ogy. Such templates are typically very small in size, e.g. 3n up to 5n

voxels. Centeredness can be helped by removing boundary voxels in the
order given by their distance-to-boundary value, i.e., in terms of the dis-
tance transform DT∂Ω [4, 126, 171].

Thinning approaches present several advantages based on their algo-
rithmic simplicity: They are relatively simple to implement and are rel-
atively fast when compared to alternative methods (further explored be-
low): Although naive thinning algorithms visit the volume at each itera-
tion, resulting in expensive implementations, approaches based on sorted
queues cut the timings to O(N) where N represents the number of voxels.
Also, they can readily accommodate the computation of all three skele-
ton types discussed so far (2D medial axes, 3D surface skeletons, and
3D curve skeletons), by suitable choices of the local thinning filters be-
ing used. However, they have a key challenge: The skeleton S∂Ω is repre-
sented on the same volumetric grid as the input shape Ω. As such, there
are situations when this grid is unable to capture locations that are at
equal distance from two boundary points. For instance, consider a simple
example of a 2D axis-aligned rectangle of width equal to an even pixel
count: There is no pixel-grid location which is at equal distance from
both the left and right vertical rectangle edges. As such, thinning meth-
ods typically have to somehow relax the skeleton centeredness (thus, re-
lax the definition in Equation 2.2), or alternatively compute skeletons
which are not pixel or voxel thin. As a consequence of this, skeletons
computed by thinning can be sensitive to isometric transformations such
as rotation, translation or scaling.

2.3.1.2 Field-based skeletonization

Field-based skeletonization methods find S∂Ω as the singularities of a
given scalar or vector field f : Rn defined over the shape Ω. As such, they
work by first computing a (typically volumetrically-sampled) representa-
tion of f over Ω, and next detecting the desired singular points to form
the skeleton. The main differences between sub-methods in this class
amount to the specific choice of field and type of singularity to compute.

The arguably simplest field-based method detects S∂Ω as the ridge
points of the distance transform scalar field DT∂Ω. These correspond, in-
deed, to centers of maximally inscribed disks in the shape. Intuitively,
if we consider the n = 2 case, and visualize the graph of DT∂Ω as a
height plot, then S∂Ω corresponds to the ridges of this graph; these are
precisely the locations where fire fronts originating at different bound-

32

2.3 A N OV E RV I E W O F S K E L E T O N I Z AT I O N T E C H N I Q U E S

ary points would meet, following the grassfire analogy. One advantage
of this method is that computing DT∂Ω can be done very efficiently
in both 2D or 3D. For this, we can use e.g. the fast marching method
(FMM) [146], which finds DT∂Ω as the solution of the Eikonal equation
‖∇DT∂Ω‖ = 1 with boundary conditions DT∂Ω(x ∈ ∂Ω) = 0. The com-
plexity of this method is roughly O(‖Ω‖log‖∂Ω‖), where ‖ · ‖ indicates
number of voxels in the respective structure. Distance transforms can be
also computed with O(‖Ω‖ cost [106]. Such algorithms can be efficiently
parallelized on graphics processing units (GPUs) [20, 40, 40, 166]. How-
ever, detecting ridges of DT∂Ω can be a very sensitive process. In the best
case, fronts meeting at such ridges come from opposite directions, so the
ridge angle (90 degrees) is easy to detect, e.g. by using an edge detector
on the distance image. In a similar setting, Stolpner et al. find skeleton
voxels as the points where the gradient of the shape’s distance transform
is multi-valued [164, 165]. However, in all the above approaches, we can
see that fronts can meet at arbitrarily low angles along a so-called liga-
ture skeleton branch, yielding thus very low ridge angles which are hard
to find [57, 78]. Missing such points will thus disconnect the detected
skeleton into multiple fragments.

One solution to this problem is to explicitly find the skeleton as the
locus of points where the feature transform (Equation 2.3) has more
than a single boundary-point as value. As discussed above for thinning
methods, this should be done with care, since we are essentially testing
distance-to-boundary equality to capture a singularity (the skeleton) on a
fixed grid. One way to relax the issues induced by the fixed grid is to com-
pute so-called tolerance-based distance and/or feature transforms [128].
These amount to replacing the strict equality relations present in the right
hand sides of Equations 2.2 and 2.3 by distance comparisons within the
range of a (small) user-given tolerance value τ > 0. Tolerance-based fea-
ture transforms are used to compute surface skeletons as voxels in Ω

that have at least two different feature-points on ∂Ω [135]. A different
approach that detects skeletons by using interval arithmetic to evaluate
Equation 2.2 by the so-called integer medial axis (IMA) [66]. The IMA
can be efficiently computed with O(‖Ω‖) cost. A third solution is to
use a different field than the distance transform, so that singularities
of that field can be found more robustly. Many such fields have been
proposed, e.g. second-order moments [140] or divergence-based detec-
tors [139, 155]. While such methods can alleviate some of the difficulties
of using the distance transform as ‘raw’ detector, they also use relatively
smoother fields, and introduce the question of finding the right threshold
that detects skeleton points, which make voxel-precise skeleton localiza-
tion harder. To tackle this issue, one can detect a conservative skeleton
detection [168]: first, we find a superset of points S∂Ω ⊂ X that contains
the skeleton and in the same time is reasonably close to the exact skele-
ton location; next, the exact skeleton is found by homotopical thinning
of X , using one of the thinning methods discussed earlier.

33

M E D I A L R E P R E S E N TAT I O N S O F O B J E C T S

Overall, field-based methods are less sensitive to local decisions than
comparable thinning methods, and have a comparable computational
complexity. Also, depending on the field being used, they are less sensi-
tive to isometric transformations than thinning methods. However, they
suffer from the same centeredness issues implied by the fixed discretiza-
tion grid. They also introduce issues related to detection sensitiveness
to noise and/or small details. The latter type of issues is discussed sepa-
rately in the context of regularization (Section 2.3.4).

2.3.2 Boundary sampling methods

In contrast to the volumetric approaches discussed in Section 2.3.1,
boundary-sampling approaches represent the input shape Ω by a sam-
pling of its boundary ∂Ω. This follows the techniques discussed earlier
in Section 2.1.2 for representing contours in 2D and surfaces in 3D: The
boundary ∂Ω is represented either as a point cloud (possibly includ-
ing per-point surface-normal information), or, more generally, as a 3D
unstructured mesh. The resulting skeleton S∂Ω can be represented, just
as in the case of volumetric methods discussed earlier, by a boundary
sampling (thus, using the same representation as for the input shape), or
by a volumetric model (thus, using a different representation than the
input shape). If both the input shape and its skeleton are represented as a
boundary sampling, this leads to two important advantages (as opposed
to volumetric-only or volumetric-boundary mixed representations): (1)
The memory requirements of such a representation are significantly
lower than for any other representation (see [159]; (2) Space can be
freely sampled, i.e., we can place sample points for both the input
surface and resulting skeleton at any desired location and/or with any
desired density (up to the machine precision of floating-point numbers).

We overview next several subclasses of skeletonization methods based
on boundary-sampling representations.

2.3.2.1 Voronoi-related methods

The methods in this class are based on the key observation that, given a
set of points xi ∈ Rn, which are supposed to (densely) sample a shape
boundary ∂Ω ⊂ Rn, the skeleton S∂Ω is a subset of the n-dimensional
Voronoi diagram of the points {xi}. Thus, to compute skeletons, we need
to (a) compute a Voronoi diagram, and (b) have a procedure to select
relevant subsets of this Voronoi diagram.

For (a), many methods exist for both the 2D and 3D cases, see e.g. [11,
153]. These methods require a mesh version of the input shape and de-
liver the Voronoi diagram thereof also as a mesh, thus, fall within the
class of boundary-sampling methods discussed here. For (b), one of the
best known approaches is the power crust method [2], which finds skele-
tons as the subset of Voronoi-diagram elements which correspond to

34

2.3 A N OV E RV I E W O F S K E L E T O N I Z AT I O N T E C H N I Q U E S

balls located (deeply) inside the surface described by {xi}. In 2D, a
method to compute medial axes from Voronoi diagrams was presented
by Ogniewicz and Kubler [118] – this method is discussed in more detail
in the context of skeleton regularization in Section 2.3.4. Other related
methods use edge collapses [95], starting from a mesh segmentation [76],
or sphere sweeping [112].

Voronoi-based methods have the large appeal of being able to use ex-
isting formalisms (and technology) to compute skeletons atop of Voronoi
diagrams. Several works have shown that, as the sampling density of
∂Ω increases, the resulting skeletons converge to the true skeletons of
∂Ω [2, 144]. Separately, the centeredness problems discussed in the con-
text of volumetric methods are largely inexistent for Voronoi-based meth-
ods, since we can place both input-surface points and output-skeleton
points at any location in R3 up to machine precision. However, Voronoi-
based methods also come with several challenges. First, computing an
accurate Voronoi diagram for a large and complex 3D shape is challeng-
ing both from computational and implementation viewpoints. Computa-
tional geometry algorithms involved are far from trivial. To give just a
simple example, the C code of the 2D Voronoi algorithm in [153] is about
14K lines, whereas the code required to implement 2D IMA [66] is under
500 lines. Limit cases, e.g. involving nearly-identical or nearly collinear
points can cause significant algorithmic trouble. Separately, such algo-
rithms are far harder to parallelize than volumetric algorithms discussed
earlier [167].

2.3.2.2 Point-cloud approaches

An alternative proposed to tackle the computational and implementation
complexity of Voronoi-based approaches is to directly apply the skeleton
definition (Equation 2.2) to the point cloud representing the sampling of
the input surface ∂Ω. Putting it simply: If we are able to determine the
centers xi of maximally inscribed balls in the volume Ω, we have been
able to compute a point-sampling of the skeleton S∂Ω. If this can be
done (a) avoiding the heavy implementation costs of computing com-
plex Voronoi diagrams and next selecting suitable subsets thereof, and
(b) keeping the sampling advantages of boundary-based representations,
then we have simple, efficient, and accurate methods to compute skele-
tons. Additionally, if we represent ∂Ω by a simple point cloud (rather
than a mesh), then many subsequent implementation complexities would
arguably disappear.

Interestingly, there are very few methods that we are aware of in this
class. One salient method in this class was presented by Ma et al. [101].
Given an oriented point-cloud sampling of ∂Ω, they compute, for each
input point, a maximally inscribed ball. Key to this computation is the
efficient search of a maximally inscribed ball tangent at the search point,

35

M E D I A L R E P R E S E N TAT I O N S O F O B J E C T S

which translates to an efficient nearest-neighbor search on the input point
cloud.

One major advantage of this computational scheme is the per-point in-
dependence of each medial ball computation, meaning that medial points
can be computed in parallel. This makes the proposed method highly par-
allelizable. A parallelization solution involving GPUs is presented. Yet,
the per-input-point costs for determining maximally inscribed balls can
largely differ. This in turn causes serious performance issues in a SIMD
(single instruction, multiple datastream) parallelism model, such as the
one offered by typical modern GPU programming platforms (OpenCL
or CUDA). These issues are well known under the name of ‘thread diver-
gence’ in GPU programming.

A second issue with point-cloud approaches is that they provide only
an unstructured point sampling of S∂Ω. While this representation may
be sufficient for performing certain tasks, such as shape metrology or
visual reconstruction (as we shall next see in Chapter 3), performing
more complex analyses or operations that involve reasoning about the
skeleton-point connectivities is not possible using just a point cloud. We
examine the issue of recovering such missing information in Chapters 3
and 6.

2.3.3 Curve skeleton methods

As outlined in Section 2.2.1.2, 3D curve skeletons do not have an univer-
sally accepted definition. Therefore, many algorithms exist for comput-
ing them. Interestingly, each such algorithm implicitly provides its own
definition of what a curve skeleton is. Therefore, the task of deciding
what is the ‘right’ curve skeleton for a given 3D shape (and next, how to
compute it) is far from trivial.

Early methods compute curve skeletons by thinning, or eroding, a
voxel representation of the input shape Ω in the order of its distance
transform, until a connected 1D voxel curve is left [10, 119]. Thinning
can also be used to compute so-called meso-skeletons, i.e. a mix of sur-
face skeletons and curve skeletons [98]. Curve skeletons can also be com-
puted as an intersection of 2D medial axes computed from axis-aligned
slices of a 3D voxel shape – thereby reducing the problem of curve skele-
tonization to a 2D mexial axis extraction [182]. In a volumetric setting,
other methods involve finding and connecting the local maxima of the
input shape’s distance transform, with explicit restrictions that the result-
ing object should be a curve [14, 192].

For mesh-based models, alternative techniques collapse the input
mesh describing ∂Ω along its surface normals under various constraints
required to maintain its quality [7]. The result captures a point-sampling
of the curve skeleton of Ω. Hassouna et al. present a variational tech-
nique which extracts the curve skeleton by tracking salient nodes on the
input shape Ω in a volumetric cost field that encodes centrality [64]. As

36

2.3 A N OV E RV I E W O F S K E L E T O N I Z AT I O N T E C H N I Q U E S

such, this method can be seen as a hybrid between volumetric methods
(used to compute the centrality metric) and boundary-representation
methods (used to describe the structure of the resulting curve skeleton).
Tagliassacchi et al. compute curve skeletons as centers of point-cloud
projections on a cut plane found by optimizing for circularity [172].
Similarly, the ROSA method finds curve-skeleton points as the centers
of local point-cloud projections of ∂Ω under a constraint for circularity
optimization [172]. An extensive comparison of curve skeletonization
methods is presented in [158].

Curve skeletons can also be extracted by collapsing a previously com-
puted surface-skeleton towards its ‘center’ using different variants of
mean curvature flow [19, 174, 181]. This class of methods builds upon
the assumptions that (a) the curve skeleton is a subset of the surface
skeleton; and (b) the curve skeleton can be seen as a‘local center’ of
the surface skeleton with respect to a distance metric between a surface-
skeleton point and the surface-skeleton boundary ∂S∂Ω. As such, these
approaches see the computation of curve skeletons as a ‘recursive’ skele-
tonization operation: First, we compute the surface skeleton from the in-
put shape Ω; next, we compute the curve skeleton as the skeleton of the
surface-skeletion (under the same distance metrics, albeit defined over a
different space). The main strength of these approaches is precisely their
recursive approach: Given a boundary, space, and distance metric, skele-
ton definitions are the same (for surface and curve skeletons). The main
practical problem of these approaches is implementation complexity: To
reason about e.g the curve skeleton of a shape, we need to (a) have a ro-
bust and efficient way to compute the boundary ∂S∂Ω of a surface skele-
ton (i.e., the union of curves of A3 points described in Section 2.2.2); and
(b) have a robust and efficient way to compute shortest paths (geodesics)
over S∂Ω from any internal point to its boundary.

Curve skeletons can also be defined directly based on a representation
of ∂Ω. A pioneering method in this direction is presented in [37]. As
outlined in Section 2.2.1.2, they define the curve skeleton of a shape ∂Ω

as the locus of points in S∂Ω which maximize the length of the medial
geodesic function (MGF), defined as the length of the longest shortest-
path between any two feature points. The MGF metric is next evalu-
ated using a mixed volumetric and boundary-sampling approach to yield
curve skeletons. Based on this idea, an improvement is proposed in [135],
in a pure volumetric setting, to compute curve skeletons as the locus
of surface-skeleton points that admit two equal-length longest shortest-
paths between all pairs of their feature points. Both above approaches
are remarkable as they (a) compute curve skeletons which visually agree
with curve-skeletons computed by completely different methods; (b) pro-
vide a formal definition of curve skeletons, rather than saying that curve
skeletons are the output of a given (iterative) algorithm; but (b) cannot
provide a formal reason of why the commonly used geodesic metric is a
‘good’ criterion for detecting curve skeletons.

37

M E D I A L R E P R E S E N TAT I O N S O F O B J E C T S

2.3.4 Regularization Methods

We have seen that both volumetric and boundary-representation methods
(for both the input shape Ω or its skeleton S∂Ω) are inherently sensitive,
up to various degrees, to sampling resolution. As such, the practical ques-
tion of skeleton-computation stability arises.

We can refine this question on both theoretical and practical grounds.
On the theoretical ground, assume we have to shapes ∂Ω1 and ∂Ω2
which are very similar. More formally, we can quantify the shape sim-
ilarity using e.g. the Haussdorff distance between the two shapes [11].
The question is then: Would similar shapes (under the above-defined dis-
tance metric) yield similar skeletons (under the same distance metric)?

The answer is, unfortunately, negative. Consider the operator, or func-
tion, S that, given a shape ∂Ω computes its skeleton S∂Ω. We can easily
argue that the function S is not continuous in the definition of Cauchy
(or Weierstrass) continuity, also called the ε− δ criterion. Indeed, if S
were continuous at any point c in the definition domain (thus, any pos-
sible shape), then we would have that for any real value ε > 0, however
small, there exists some real value δ > 0 such that for all x in the do-
main of S (thus, shapes) with ‖x− c‖ < δ , the value of S (x) satisfies
‖S (x)−S (c)‖ < ε . Here, ‖ · ‖ denotes distance between two shapes
embedded in the same space, e.g., the Haussdorff distance. The above
ε − δ assumption is, however, not happening over the space of consid-
ered shapes. Consider, for instance, a perfectly 2D rectangle c. Consider
now an infinitesimally small ‘bump’ added to any of the rectangle edges
– that is, shifting the edge outwards with a small distance. Obviously,
the Haussdorff distance ε = ‖x− c′‖ between the ‘pure’ rectangle c and
‘perturbed’ rectangle c′ can be made as small as desired. However, such
a (small) bump on c′ will cause the appearance of a skeleton branch in
S (c′) whose length is not a function of the bump size ε – indeed, the
length of this branch, or in other words the value δ = ‖S (c′)−S (c)‖,
is not in any way bounded by ε . Thus, the function S is not Cauchy con-
tinuous. Note that this fact is not dependent on sampling issue related to
the shape or the skeleton, such as sampling density or sampling model
(volumetric or boundary-based).

This inherent discontinuity of the skeletonization function, or operator
S , is often seen in the literature under various (empirical) names such as
sensitivity to noise, generation of ‘spurious’ artifacts, or instability. Be-
yond the theoretical discontinuity issue pointed above, this phenomenon
causes relevant practical problems: For instance, we cannot guarantee
that we obtain ‘similar’ skeletons (under a Haussdorff distance metric
or similar) even if our input shapes are similar. Therefore, subsequent
uses of skeletons, e.g. in shape processing or matching applications, are
difficult at best.

This long-known issue in skeletonization has been addressed by a so-
called regularization process. In detail, the aim is to either pre-process

38

2.3 A N OV E RV I E W O F S K E L E T O N I Z AT I O N T E C H N I Q U E S

the shapes to be skeletonized, or post-process their skeletons, in a way
that Cauchy-Weierstrass continuity is ensured – thus, practically, we can
ensure that small changes of a shape result to small changes of its com-
puted skeleton.

Several such regularization method exist, as follows:

2.3.4.1 Input preprocessing

The intuition behind these methods is that skeleton branches (details)
are inherently created by curvature maxima on the input shape boundary
∂Ω (see Section 2.2.2. As such, if we are able to decrease the curvature
range of ∂Ω, we will in turn decrease the variability (and in the end,
discontinuity) of the skeletons of Ω. This can be done by applying a
wide range of smoothing filters on ∂Ω, see e.g [176]. The problem with
this approach is that we need to carefully control the filter parameters
to make sure that ‘relevant’ shape details are kept, whereas ‘irrelevant’
details are removed. While we could do this from the strict perspective of
the shape ∂Ω, is is not evident how smoothing operations on this shape
will affect its skeleton.

A different approach to input preprocessing is to apply a global oper-
ation to all points of ∂Ω, in such a way that this operation is guaranteed
to remove unwanted skeleton details. Such an operation is proposed by
the so-called scale axis transform [59, 108]. Intuitively, this operation
inflates the boundary ∂Ω isotropically in normal-to-boundary directions,
thereby making small-scale boundary perturbations either smooth out or
disappear.This is indeed expected, since this inflation is very similar to
computing level-sets (isocontours) of the boundary’s distance transform
DT∂Ω at increasingly higher isovalues. As the isovalue increases, such
contours are increasingly closer to a ball, thus to a shape of constant cur-
vature, or a shape whose skeleton is simpler (in the limit, the skeleton
of a perfect ball is a single point). While this method works very well in
practice (see e.g. [108]), the setting of the inflation factor is not evident
for an end-user. That is, it is not obvious how much to inflate a given
shape if we want a certain amount of its skeletal detail to be removed.
Moreover, by changing the input shape this way, we cannot guarantee
that certain important shape properties, such as topology, are preserved.

2.3.4.2 Local Metrics

In contrast to input preprocessing, local metrics take a different approach:
The input shape Ω is kept as is, and its skeleton S∂Ω is computed by any
desired skeletonization method. Next, a regularized, or simplified, skele-
ton Sτ

∂Ω
is computed, subject to a user-supplied simplification parameter

τ .
The key aspect of local simplification metrics, i.e. functions that com-

pute Sτ

∂Ω
from S∂Ω subject to a given τ , is that they act locally. That is,

the value of Sτ

∂Ω
(x) depends only on the immediate neighborhood of the

39

M E D I A L R E P R E S E N TAT I O N S O F O B J E C T S

point x of the skeleton. Local measures include the angle between the fea-
ture points and distance-to-boundary [2, 50], divergence-based [16, 155]
and first-order moments [140]. Leymarie and Kimia topologically sim-
plify point-cloud skeletons to capture Y-intersection curves and skeleton
sheet boundaries in medial scaffolds, and next apply similar local skele-
ton detectors [93].

The main advantage of such regularization approaches is their sim-
plicity and computational efficiency: Indeed, if the cost of regularizing a
point x depends only on a fixed-size spatial neighborhood of x, it means
that the cost of regularizing an entire skeleton S∂Ω is linear in the size
(e.g., number of sample points) of this skeleton. Moreover, the regular-
ization procedure can work, ideally, in parallel, since every point x∈ S∂Ω

is treated independently.
However, such metrics have the fundamental problem of not being

able to distinguish between locally-identical, yet globally-different, con-
texts (see e.g. [135], Figure 1). As such, thresholding local metrics can
disconnect skeletons; reconnection needs extra work [103, 122, 155,
168]. This also makes skeleton simplification, also called skeleton prun-
ing, and makes pruning, less intuitive [148].

2.3.4.3 Global Metrics

In contrast to the local regularization metrics discussed earlier, global
regularization metrics pose the problem differently: Given a point x ∈
S∂Ω on an unsimplified, raw, skeleton, how can we measure the overall
importance of x to the shape Ω?

A key development in this direction has been the work of Dey et.
al [37], similar to earlier work of [125]. Although the key motivation
behind this work has been the exact definition of a curve skeleton in
three dimensions, their results can (and have been) used to globally regu-
larize skeletons. In detail, given a ‘raw’ skeleton point x∈ S∂Ω, the MGF
metric assigns to x the longest shortest-path distance, over ∂Ω, between
the any two feature points of x. As shown by numerous works [37, 129–
131, 135], the MGF metric assigns a ‘natural’ importance which is lower
for skeleton points x created by minute local variations of the shape sur-
face ∂Ω, and larger for more important variations. More interestingly, for
the vast majority of shapes, the MGF measure seems to increase mono-
tonically from the skeleton boundary ∂S∂Ω to the surface-skeleton cen-
ter. The observation of this phenomenon has been consistently verified in
practice on a large number of different shapes (e.g. [37, 131, 134, 135].
As such, the MGF metric allows an easy way to compute a so-called
multiscale skeleton representation Sτ

∂Ω
, simply by upper-thresholding all

points of the full skeleton S∂Ω whose MGF value exceeds τ . If the MGF
metric is indeed monotonically increasing from ∂S∂Ω to the center of
S∂Ω, for any shape Ω, this means that the above thresholding will deliver
increasingly smaller and simpler, and in the same time connected, skele-

40

2.4 C O N C L U S I O N S

tons. Interestingly, the same MGF metric has been also used to extract
multiscale curve skeletons [135].

An important analogy with the MGF metric can be found in the 2D
case. Here, much earlier than studying the 3D case, a very similar regu-
larization principle has been proposed for 2D medial axes. Interestingly,
the same 2D regularization principle has been proposed independently
by several researchers for both voumetric-sampled or boundary-sampled
shape descriptions [33, 118, 183]. This principle can be compactly de-
scribed as follows: Consider a 2D skeleton point x. By definition, x will
have at least two feature points on the boundary ∂Ω of its correspond-
ing input shape. The shortest distance (along the boundary ∂Ω) between
such feature points gives a natural and intuitive ‘importance metric’ or
value for the skeleton point x. By upper-thresholding this importance
metric by some user define value τ , we can obtain a 2D skeleton where
all boundary details longer than τ are captured. As such, reconstructing
the input shape from the simplified skeleton Sτ

∂Ω
guarantees that we ob-

tain a shape Ωtau where all details of Ω whose length was smaller than
τ have been replaced by circle arcs. For the 2D case, the monotonicity
of the importance metric (from the 2D skeleton tips to its center) can
be easily proven. As such, thresholding this metric delivers nested and
connected skeletons. Intuitively, the above metric can be thought as as-
signing to each point x∈Ω the amount of mass, or boundary length, that
would collapse to x if advected in a flow field determined by ∇DT∂Ω.
The same intuition is mentioned – though not formally argued – be-
hind the 3D MGF metric by Reniers [135]. Variations of this so-called
‘collapsed boundary length’ metric are known, e.g. [177]. These vari-
ations ensure that simplified skeletons accurately capture spatially im-
portant 2D boundary corners, while neglecting unimportant ones. Using
the shape-from-skeleton reconstruction process outlined in Section 2.2.1,
these techniques are competitive alternatives to anisotropic smoothing
methods which keep ‘salient’ shape features sharp, while fully remov-
ing less salient features. While this so-called saliency metric (essentially
the 2D MGF metric divided by the value of distance-to-boundary) works
convincingly well in 2D, no equivalent is known for 3D shapes.

2.4 C O N C L U S I O N S

In this chapter, we have presented a (necessarily limited) overview of
the theory and current practice regarding computing 2D and 3D medial
descriptors. As we have seen, computing (and using) such descriptors
in practice is challenged by both theoretical and practical issues, On the
theoretical side, we have the major issue of global (monotonic) regular-
ization, i.e. the computation of a multiscale of medial descriptors that
can guarantee the incremental capture of details of an input shape sub-
ject to a user-defined metric and metric threshold value. On the practical
side, we see challenges in the fast and robust computation of medial sur-

41

M E D I A L R E P R E S E N TAT I O N S O F O B J E C T S

faces (and, partially, the computation of curve skeletons) for large and
complex 3D shapes. Additionally, we see challenges, but also interesting
possibilities, in computing derived skeletal properties that help us to eas-
ily and robustly analyze and process such 3D shapes. Having now set the
context, and having outlined the above-mentioned issues, the remainder
of this thesis will focus on addressing these issues.

42

3E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M
P O LY G O NA L S H A P E S

I do not fear computers. I fear
the lack of them.

Isaac Asimov

3.1 I N T RO D U C T I O N

Given the potential of medial representations for several shape anal-
ysis operations (Section 1.4.2), the extraction of medial descriptors has
been a research field on its own ever since the introduction of such de-
scriptors by Blum [15].

The medial-representation extraction operation, also called skele-
tonization, is the starting point for any subsequent utilization of medial
descriptors in shape analysis and processing operations. Thus, to be use-
ful and usable, a skeletonization algorithm has to comply with a number
of requirements (see also Sections 1.4.3 and 2.2.1).

As we have seen in Section 2.3, many skeletonization methods exist
that comply, in various ways and up to various extents, with our com-
plete set of desirable properties. Globally put, we have seen that several
methods exist that cover well skeletonization for 2D shapes. As such, we
next will focus our attention on 3D skeletonization only.

Let us now consider skeletonization from the perspective of a client,
or user, application, rather than a provider algorithm. From this view-
point, the user requires that a skeletonization method (as proposed by a
given algorithm) is useful and usable for the specific goals that the user-
application has. This strengthens but also extends the internal require-
ments that a skeletonization algorithm has (e.g. centeredness, thinness,
homotopy with the input shape, connectedness, rotational invariance)

This chapter is based on the following papers:

1. A. Jalba, J. Kustra, and A. Telea. Surface and curve skeletonization of large 3D
models on the GPU. IEEE TPAMI, 35(6):1495–1508, 2013

2. J. Kustra, A. Jalba, and A. Telea. Probabilistic View-based Curve Skeleton Com-
putation on the GPU. In 8th International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications, VISAPP 13, 2013

43

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

with a number of external requirements We identify below three such
important additional requirements:

Target operations: These requirements define the class of operations
that our computed skeletons should enable us to perform on the input
shape. For instance, if we are only interested in shape genus identifica-
tion, then computing a 3D curve skeleton is sufficient. Curve skeletons
are also sufficient for a range of shape matching applications, or for
applications where we only treat tubular shapes such as blood vessels.
However, applications such as reconstruction of general shapes, edge
detection, or patch-based segmentation require the computation of the
more complex 3D surface skeleton.

Shape properties: These requirements define which types of proper-
ties of the input shape should be captured by the computed skeletons,
and which can (or even should) be neglected. For instance, consider a
shape whose surface has details occurring at various geometric scales,
such as bumps, creases, or indentations. Some of these details may
be important to our further shape processing, while some others may
be considered less important or even, in the extreme case, irrelevant
(e.g. noise). Separately, consider how a skeletal representation is in-
fluenced by the sampling decisions taken to represent the input shape
(e.g., sampling-point density or sampling noise, see Section 2). In most
real-world applications, we will encounter both above concerns: Shapes
may have irrelevant details and will be sampled within some resolution
and/or accuracy limits. As such, a skeletonization method should provide
effective and easy-to-use regularization means to let users control how
such aspects influence (or not) the resulting skeletons (Section 2.3.4).

Computational resources: Recent advances in modeling tools and scan-
ning technology made it possible to create high-detail representations of
shapes having e.g. millions of surface points (for boundary representa-
tions) or billions of voxels (for volumetric representations). If we want
to use skeletons in real-world applications, we should be able to com-
pute such skeletons efficiently for such shapes. Here, efficiency regards
both computational costs (time required to extract a skeleton given a
certain amount of computing power) and representation costs (memory
required to implement skeletonization algorithms). The large majority of
3D skeletonization algorithms being proposed so far follows a relatively
simple single-instruction, single-datastream (SISD) [47], or ‘serial’,
computation model. However, even for algorithms that have an optimal
linear complexity in the size of the input shape (e.g. [66], the SISD model
does not scale well to cope with the sizes of current 3D shape models. In

We can see the internal vs external requirements of a skeletonization method as being
roughly analogous to the well-known classification of software-engineering requirements
into functional vs non-functional.

44

3.1 I N T RO D U C T I O N

recent years, an increase of parallel computer architectures in personal
computers, in terms of powerful graphics processing units (GPUs), has
made the development of parallel algorithms significantly more attrac-
tive, with many applications in the shape processing domain too [53, 75].
The single-instruction multiple-datastream (SIMD) computation model
offered by GPUs has led to an entire new application field called general-
purpose computing on graphics processing units (GPGPU) [52]. Parallel
programming languages, such as Nvidia’s CUDA [117], made the de-
velopment of GPGPU applications significantly cheaper and easier for
mainstream programmers. However, so far only very few skeletonization
algorithms have exploited GPGPU capabilities. This is due to the inher-
ent sequential nature of certain skeletonization algorithms, but also to
the complexity of some other algorithms, which makes their conversion
to parallel code difficult.

Summarizing the above, we believe that the efficient (parallel) and
scalable computation of 3D surface skeletons from large and complex
shapes, with easy-to-use regularization, is still an open (and important)
issue to make such skeletons useful and usable in practical applications.
Zooming in on the scalability requirement, we next choose to focus
on boundary representations (for both the input shapes and their sur-
face skeletons), as such representations are significantly more scalable
in terms of memory than volumetric ones (Section 2.1.2). Given this
refined context, let us note that we are not the only ones having been
interested in the above-described skeletonization problem. Recently, Ma
et al. proposed arguably the fastest method to extract surface skeletons
from oriented point clouds [101]. Although their GPU-based method is
arguably the fastest available medial surface extractor, its usability has
been limited. As the authors note, their method produces medial point
clouds as an output, which causes difficulties for applications which re-
quire a compact surface-skeleton description or a curve skeleton. More-
over, their method does not offer a robust way for regularizing generic
surface skeletons without creating disconnections.

Following the above directions, this chapter introduces several skele-
tonization methods targeted at boundary sampling representations (point
cloud and polygonal meshes). Our algorithms tackle the combined set of
requirements regarding computational complexity, scalability, and regu-
larization discussed earlier. For this purpose, we introduce first a gen-
eral 3D surface skeletonization and regularization method (Section 3.2).
Our method allows the accurate computation of point-cloud or meshed
skeletons from 3D point clouds. If input shape connectivity is also pro-
vided (in the form of a surface mesh), we show how to efficiently and
robustly regularize these skeletons (Section 3.3). Our entire proposal
is parallelized, using either CPU or GPU multithreading. Overall, our
method enables the computation of regularized surface skeletons from
large shapes (over 106 sample points) a matter of seconds or less on a

45

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

modern GPU – this being a small fraction of the time required for sim-
ilar computations by existing skeletonization methods. Additionally, we
show how we can reconstruct accurate representations of the input 3D
shapes using only the surface skeleton point clouds, by using a novel
GPU image-based method (Section 3.4). Finally, we show how to extend
our method to extract 3D curve skeletons as a subset of the related 3D
skeletons (Section 3.6). The above steps are depicted in Figure 3.1 (A-
E). The last step (E) of this pipeline, i.e., the reconstruction of separate
polygonal surfaces for the various manifolds of a 3D surface skeleton, is
explored in more detail next in Chapter 4.

Separately from the above directions (that work fully in 3D space),
we also present an approach for the extraction of 3D curve skeletons that
uses a set of 2D silhouettes of a 3D shape, rather than a full 3D shape rep-
resentation (Section 3.7). Besides proposing an efficient GPU implemen-
tation, this approach also further explores a number of unknown relation-
ships between 3D curve skeletons and 2D medial axes of corresponding
shape projections.

input shape skeleton cloud regularized skeleton reconstructed

skeleton mesh

extraction regularization skeleton

reconstruction

reconstructed surface

surface

reconstruction
surface

reconstruction

A B

C C

curve skeleton

curve skeleton

extraction

D

E

simpli!cation

level

Figure 3.1: 3D skeletonization pipeline: (A) skeleton-cloud extraction, (B) reg-
ularization, (C) shape reconstruction, (D) curve-skeleton extraction,
and (E) surface-skeleton mesh reconstruction.

From a practical perspective, the work presented in this chapter shows
how one can easily and efficiently compute regularized 3D surface and/or
curve skeletons from large and complex 3D shapes. As such, the meth-
ods and algorithms presented here serve as a basis for the subsequent
chapters in this thesis, where methods to refine such 3D skeletons and
use them for shape processing applications are discussed (Chapters 4, 5
and 6).

46

3.2 M E D I A L S U R F AC E C O M P U TAT I O N F RO M L A R G E P O LY G O N A L S H A P E S

3.2 M E D I A L S U R F AC E C O M P U TAT I O N F RO M L A R G E P O LY G -
O N A L S H A P E S

3.2.1 Surface skeleton extraction

We extract a skeleton point-cloud from an oriented point-cloud model
C = {(pi,ni} of the input shape ∂Ω. At its core, our method is based on
the ball shrinking algorithm of Ma et al. [101], which works as follows.
For each point p ∈C, a (large) ball B(s,r0)|s =−r0n+p, tangent at p, is
created. By definition, f1 ≡ p is the first feature point of s. The algorithm
shrinks B by searching the closest feature point f2 to s and iteratively
moving s so that B passes through f1 and f2 until s converges. At that
moment, B is maximally inscribed, and its center s yields a new skeleton
point with inscribed radius rins = ‖s− f1‖ = ‖s− f2‖. We next propose
two performance improvements for this algorithm.

3.2.2 Numerical Parallelization of Skeleton computation

In their work, Ma et al. first proposed an efficient sequential CPU imple-
mentation. Key to this is a heuristic that sets the initial radius r0 for a ball
B(s,r0) being shrunk to the radius of a skeleton point already found for
a surface point p̃ close to p. This largely reduces the number of shrink-
ing steps ([101], Sec. 3). However, this requires sequential processing of
the cloud C in a global distance-based ordering, computed by in-order
visiting a kd tree containing C.

This idea is paralellized as follows. A single global value r0 is used,
initially set to 2. Next, C is divided into N equal-sized chunks (with-
out any point ordering) and processed one chunk per thread. When a
thread finds a new value rins, r0 is set to (r0 + rins)/2, i.e. adapt r0
in a moving-average fashion. Additionally, the shrinking of the ball is
stopped when two consecutive center positions differ by a value less than
an user-specified value τ . Finally, an approximate nearest-neighbour
(NN) scheme is used based on kd trees [114] to search for the closest
point f2 to s with precision ε .

Table 1 shows our skeleton extraction timings t and average number
k of kd-tree searches per point for different τ and ε values, on several
models, on a 4-core 2.4 GHz CPU with N = 8 threads. The first three
models are also used by Ma et al. Smaller τ values need more iterations;
larger τ values yield less accurate skeletons quicker. It can be observed
that k is quite stable for all models. For a skeleton centeredness precision
τ = 10−3, the proposed method is roughly four times faster than the
sequential method of Ma et al. which use also a 2.4 GHz CPU. Given
our 4-core CPU, this implies a very efficient parallelization. Relaxing
ε slightly accelerates this search (Tab. 1, column ε = 10−3) with little
accuracy loss.

47

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

Table
1:Perform

ance
ofourskeleton

extraction
algorithm

on
both

C
PU

and
G

PU
(see

Sec.3.2.1).

M
odel

Points
Points

C
PU

tim
ings

(tseconds,k
iterations)

G
PU

tim
ings

(surface)
(skeleton)

τ
=

10 −
4,

ε
=

0
τ
=

10 −
3,

ε
=

0
τ
=

ε
=

10 −
3

M
a

etal.
O

urm
ethod

M
a

etal.

k
t

k
t

t
[101]

τ
=

10 −
3,

ε
=

0
[101]

A
rm

adillo
106289

106289
5

1.29
3

0.87
0.87

4.20
0.21

0.39

D
ragon

437645
436439

5
6.53

2
5.46

5.44
20.23

1.21
2.64

H
orse

48485
48485

5
0.77

3
0.58

0.58
1.62

0.09
0.29

C
ow

185882
185703

5
3.63

3
2.82

2.77
0.64

B
ird

46866
46862

5
0.44

3
0.35

0.34
0.03

H
orse

2
193934

193887
5

7.51
3

5.77
5.77

1.32

A
siandragon

231574
230964

4
2.83

2
2.19

2.19
0.22

A
siandragon

2
954027

951010
5

[19.03]
3

[14.41]
[13.67]

1.57

H
and

197245
196920

4
3.32

2
2.50

2.50
0.51

E
lephant

50485
50422

5
0.62

3
0.48

0.48
0.05

B
uddha

543652
541762

4
6.76

3
5.47

5.37
1.42

M
ouse

403652
402301

6
5.61

3
3.07

3.02
0.34

Pig
225282

224539
5

7.48
3

4.21
4.17

1.47

A
rm

adillo
2

172974
172955

6
3.29

3
1.86

1.86
0.47

R
abbit

124998
123811

6
1.31

3
0.85

0.83
0.06

48

3.2 M E D I A L S U R F AC E C O M P U TAT I O N F RO M L A R G E P O LY G O N A L S H A P E S

Ball-shrinking yields a surface-skeleton cloud S = {(s, f1, f2)i} with
two feature points f1, f2 per skeleton point s (see Figure 3.4). The local
density of S is proportional with the input cloud density times the shape
curvature [154]. Thus, we get more skeleton points where the surface
changes rapidly and/or is finely sampled.

Since polygonal surface flat patches can be represented using only
the polygon vertices, the skeleton computation would only compute the
points corresponding to the the polygon vertices. To obtain skeleton
points corresponding to the inside of the polygons, these should be re-
sampled on the surface, and the surface is recomputed. In practice, sev-
eral surface re-sampling techniques are readily available such as the
Yams package [51]. This allows a control over the skeleton density by
sub-sampling the input surface. Similarly, for less points, we uniformly
sub-sample S by removing all points closer to each skeleton point than
some distance δ . Figure 3.3 shows the skeleton of a cow model for four
different δ values.

At a high level, similarly to Leymarie et al. [93], we regard each in-
put point f1 as a skeleton ’generator’, try to pair it with another point f2,
and test maximality of the resulting balls. However, while [93] explic-
itly compute pairs (f1, f2) and checks for ball maximality using search
strategies based on visibility constraints, we implicitly compute the pairs
while shrinking balls.

p

n

q

f2

rL

d

surface point cloud

rR

Figure 3.2: Ball shrinking algorithm. Gray arrows indicate how balls shrink
(from gray to blue to pink).

3.2.3 Graphics Processing Unit (GPU) parallelization

For an efficient transfer of ball shrinking to GPUs, we need (a) an effi-
cient GPU nearest-neighbor (NN) search and (b) an effective load bal-
ancing between threads.

To these ends, Ma et al. proposed a mixed CPU-GPU approach [101].
For NN search, they use the GPU algorithm in [198]. For load balancing,
they work as follows: Iterations are done in parallel on the GPU; after

49

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

Algorithm 1: Skeleton extraction algorithm (τ=centeredness;
ε=nearest-neighbor precision, see Sec. 3.2.3). The first loop tries to
approximate a skeleton closest point to p on the normal n by repeat-
edly replacing a candidate point s= p−r n by a better approximation
s = p− r′ n such that ‖f2− s′‖ = ‖p− s′‖.. The second loop refines
the skeleton point position using a bisection search approach.

FindSkeletonPoint(Point p, Point s, Point f1, Point f2)
Data: p: input surface point with normal n.
Result: s, f1, f2: output skeleton point s with features f1, f2.

1 rL← 2;rR← rL // initialize search radius
2 f1← p // initialize first feature point
3 while (true) do // shrink ball until ‖p− s‖ ∈ [rL,rR]
4 s← p− rL n // compute ball center
5 f2← search(s,ε rL)
6 if (|rL−‖f2− s‖|< τ) then return; // found f2, done
7 if (f2 = p) then break; // ball is too small
8 rR← rL // shrink the ball

9 rL←− ‖f2−p‖2

2 n·(f2−p)
10 while (rR− rL > τ) do // bisection search to find exact radius
11 r← (rR + rL)/2
12 dr← rR− rL
13 s← p− r n
14 f2← search(s,ε dr)
15 if (f2 = p) then rL← r;
16 else rR← r;
17 return

each iteration, threads ask the CPU whether each ball needs more itera-
tions. If so, the CPU invokes the GPU kernel for the next iteration only
for the not-yet-converged balls. As Ma et al. mention, this achieves good
performance, but cannot use the initial radius heuristic, as that heuristic
was designed for a sequential algorithm.

Our GPU proposal directly parallelizes our CPU algorithm with one
thread per skeleton point. Since our initial radius heuristic works in a
parallel setting, we transfer it directly to the GPU.

In contrast to Ma et al., we use a GPU-only load balancing scheme.
This poses some subtle constraints on the choice of the NN technique
used. For this, we investigated several options. Garcia et al. showed a
GPU brute-force NN algorithm [53], which turned to be 20 to 30 times
slower than our CPU KD-tree search [114]. Cayton’s NN algorithm cov-
ers the input set of N points by a randomly-distributed set of m� N
overlapping balls which are searched in parallel on the GPU [22]. How-
ever, this method cannot do several NN searches in parallel, which we
need to parallelize ball extraction. Left-balanced GPU KD-trees also per-
form poorly. Such trees are rather deep (maximum depth D= logN for N

50

3.3 M E D I A L S U R F AC E R E G U L A R I Z AT I O N

32029 points δ = 0.0169418 points δ = 0.005

185882 points δ = 0 160426 points δ = 0.0001

Figure 3.3: Uniform skeleton sampling for different δ values (see Sec. 3.2.1).
Colors show angles of feature vectors (θ -SMA detector).

input points). Also, the unfavourable distribution of query points (poten-
tial skeleton points having at least two shape points at equal distances)
causes many tree node visits during a NN search, i.e. many random, un-
cached, memory accesses, which seriously degrade GPU performance.

For our special context, a KD-tree with alternating splitting dimen-
sions and median-based pivoting proved best. We limit the tree depth to
a small value (10 to 12). Leaf nodes store more than one point and are lin-
early searched. Linear search performs very well on the GPU [53] (more
cache hits and coalesced memory accesses), yielding a better overall NN
speed.

Table 1 shows the speed of our GPU method on an Nvidia GTX 280.
Since the GPU NN search is exact, these timings should be compared
with CPU timings for ε = 0. Our method is 4 to 10 times faster than its
CPU variant. Compared to the GPU method of Ma et al., we are about
3 times faster, as we do not need CPU-GPU synchronization, and also
as we use an initial radius heuristic, which the GPU method of Ma et al.
does not support.

3.3 M E D I A L S U R F AC E R E G U L A R I Z AT I O N

Skeleton regularization assigns an importance value ρ : S→R+ to skele-
ton points (Sec. 2.3.4). If ρ monotonically increases from the skeleton

51

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

boundary inwards, thresholding ρ yields a connected skeleton which
captures shape details at a given scale. Such measures are proposed
in [37, 125, 135]: for a skeleton point s with feature points f1, f2, ρ(s) is
the length of the shortest path γ on ∂Ω between f1 and f2. Although this
approach has been successfuly demonstrated on a wide variety of input
shapes, the measure monotonicity is not guaranteed. Computing such
paths can be done using Dijkstra’s algorithm [135]; computing the dis-
tance map DTf1 of f1 by the Fast Marching Method (FMM) and then trac-
ing γ in −∇DTf1 from f2 [121], or hybrid search techniques [170, 190].
However, such methods are very slow, as we shall see next.

3.3.1 Shortest and straightest geodesics

We compute the skeleton importance ρ using an approximation of
straightest geodesics on polyhedral surfaces [69, 124], which gener-
alize straight lines to arbitrary manifolds. Given a point p ∈ ∂Ω and
a tangent vector v ∈ Tp at p, the (discrete) straightest geodesic γS is
the unique solution of the (discrete) initial-value problem γS(0) = p,
γ ′S(0) = v [124]. We extend this to define the (discrete) approximate
geodesic γse between two points s,e ∈ ∂Ω, over tangent vectors vi ∈ Ts
at s, as the solution of the discrete boundary-value problem

γS,i(0) = s, γ
′
S,i(0) = vi

γS,i(‖γS,i‖) = e
γse = argmin

i
‖γS,i‖, (3.1)

where ‖γS,i‖ is the length of the discrete geodesic γS,i. Thus, γse is
the shortest among all straightest geodesics between s and e. Solving
Eqns. 3.1 is not easy. Speed-wise, the cost is proportional to the num-
ber of tangent directions vi considered. Also, current algorithms for
computing straightest geodesics [69, 124] estimate γ ′ by evaluating the
(discrete) Gaussian curvature at the mesh vertices visited while tracing.
The tangent vectors to γ may change directions especially when this cur-
vature is not exactly 2π , so geodesics may not reach their endpoints e,
which is critical for our goal. Our proposed approach, which we refer to
as Shortest Straightest Geodesics (SSG) adresses these concerns, by ex-
tending the straightest geodesics with a heuristic which guarantees that
it passes through the two skeleton feature points f1, f2. Next, we further
elaborate on this heuristic and its numerical implementation details.

3.3.2 Efficient Straightest Geodesic computation

For a skeleton point s, we trace M straightest geodesics γS,i, 1 ≤ i ≤M
in parallel on the CPU or GPU between the feature points f1 and f2 of s
on ∂Ω, with starting angles αi = (2πi)/M uniformly spread around the

52

3.3 M E D I A L S U R F AC E R E G U L A R I Z AT I O N

vector f = f1− f2 at f1. For each direction vi, we intersect the edges of
the mesh faces visited while tracing by the plane with normal ni = f×vi.
We next set ρ(s) = mini ‖γS,i‖ i.e. the length of the SSG between f1 and
f2.

We speed up tracing by early termination: we stop tracing a path if
its length exceeds the current ρ(s). For a closed mesh, we consider both
paths from f1 to f2, given by the mesh-plane intersection (closed) curve.
When one of these paths is computed, we stop tracing the other path if
its current length exceeds the first path’s length. For a computed γse, we
also store its tangent vectors ts and te in f1 and f2 respectively, and use ts
as starting direction when tracing SSGs for the next skeleton point. Since
neighbour skeleton points usually have similar geodesics [37, 129], early
termination occurs sooner, which further speeds up tracing.

a) b) c)

d) e) f) g) h) i)

Figure 3.4: Skeleton cloud regularization by geodesic importance. Red points are
the most important. Blue points correspond to small surface features
(see Sec. 3.3).

As shown in Figure 3.4, ρ monotonically increases from the skeleton
boundary (blue) inwards (red). Thresholding ρ removes skeleton points
given by small shape details (Figure 3.4 e,f,h,i). Such details can be sur-
face noise (Figure 3.4 d), but also appear in locally-tubular shapes (Fig-
ure 3.4 f). In contrast, thresholding non-monotonic metrics such as θ -
SMA (Figure 3.3) can lead to the removal of points representing larger
shape features and a disconnection of the skeleton at low threshold val-
ues.

3.3.3 Performance and accuracy of SSG tracing

Table 2 shows the speed of our SSG method on a GTX 280 card vs a
2.8 GHz 4-core PC for M = 20 directions, one thread per SSG, and the
speed-up due to the heuristics in Sec. 3.3.2.

We further discuss our method and compare it with related methods
from the perspective of computational speed, accuracy of the computed
geodesics, and memory requirements.

53

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

Table 2: Timings for computing the geodesic importance.

Model Timing CPU Timing GPU Optimization

(seconds) (seconds) speed-up (%)

Cow 61.7 18.2 67.4

Bird 10.3 3.2 33.4

Horse 78.9 13.6 57.4

Asiandragon 61.5 13.8 60.0

Asiandragon 2 541.2 115.1 57.8

Hand 62.2 3.1 48.1

Elephant 7.1 3.3 57.1

Buddha 327.6 43.4 62.3

Mouse 210.3 52.1 69.0

Dragon 198.3 30.4 57.2

Pig 96.9 24.0 64.5

Armadillo 63.4 11.2 59.3

Rabbit 76.4 10.8 49.2

3.3.3.1 Speed

We compared our GPU SSG to FMM [121], the Dijkstra algorithm with
A∗ heuristics [135], the Surazhky-approximate (SA) and Surazhky-exact
(SE) geodesic tracing [170], and CPU SSG (Sec. 3.3.2). Of these, only
SA and Dijkstra were used to regularize skeletons [37, 135]. GPU SSG is
3 to 10 times faster than CPU SSG (higher speed-ups for larger models,
Tab. 2); 10 times faster than Dijkstra; 100 times faster than FMM; 500
times faster than SA; and thousands of times faster than SE. This is not
surprising: For a n-vertex mesh, Dijkstra is O(n2 logn); FMM computes
one distance field per vertex (O(n logn)) and traces a geodesic in this
field (O(

√
n), proportional to the shape diameter), yielding a complexity

of O(n2 logn+n3/2). SA has the same complexity as FMM. SSG traces
all geodesics for a point in parallel. As we have more GPU cores than M
directions, GPU SSG is O(n3/2).

3.3.3.2 Accuracy

All above methods, except SE, compute approximate geodesics. The
starting angle sampling M (Sec. 3.3.2) means that SSG may miss very
narrow surface dents falling between two consecutive paths γS,i and
γS,i+1, i.e. may overestimate SSG length. Overestimation is not an
issue for skeleton regularization: long geodesics yield anyway high-
importance points which are to be kept (red points, Figure 3.4). Short
geodesics, caused by surface noise which we want to eliminate by impor-

54

3.3 M E D I A L S U R F AC E R E G U L A R I Z AT I O N

tance thresholding (blue points, Figure 3.4), allow only much narrower
concavities to fall between them, and thus are less affected by length
overestimation.

Table 3: Accuracy and timing comparison for geodesic tracing methods (FMM,
SE, and SSG for different numbers of directions M).

Method Relative error (%) Timing (seconds)

Bird Pig Bird Pig

Surazhsky-exact 0 0 11209 426.2

FMM 1.87 0.85 339.6 20.9

SSG (M = 5) 1.90 0.36 0.28 0.05

SSG (M = 10) 0.36 0.07 0.56 0.08

SSG (M = 20) 0.14 0.02 1.04 0.14

SSG (M = 30) 0.08 0.009 1.54 0.22

SSG (M = 50) 0.04 8 ·10−4 2.43 0.32

SSG (M = 100) 0.02 2 ·10−4 4.83 0.62

SSG (M = 500) 0.01 4 ·10−5 23.24 2.95

Figure 3.5 and Table 3 show the median relative error of SSG geodesic-
lengths (for different M values), FMM, and SE. We used down-sampled
versions of bird and pig (11718 and 3522 points, respectively), since SE
is extremely slow. SSG is more accurate than FMM for M > 10, both for
median and maximum errors. For M = 100, SSG practically gets exact
geodesics at a tiny cost vs SE. Comparing median errors with SA, SSG
is more accurate for M ≥ 30, see Tab. 1 in [170] where an upper relative
error bound of 0.1% is used, which means SSG with M = 10 directions
for bird and M = 30 directions for pig. As mentioned, the cost of SA is
the same as FMM, i.e. hundreds of times slower than SSG.

3.3.3.3 Memory

For a single geodesic tracing on a n vertex model, Dijkstra with A∗ is
O(n); FMM is O(n logn); Surazhky et al. is O(n3/2). SSG is O(M).
Verma and Snoeyink improved upon Surazhky et al. by combining Di-
jkstra with A∗ with the original method [190]. This reduces the memory
cost to O(n), yields a speed-up of 8, but overestimates geodesic lengths
by 10% on average. Concluding, our GPU SSG method is a good trade-
off: It is nearly as accurate as exact geodesics, and hundreds of times
faster than approximate geodesic methods.

55

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

bird model

pig model

SSG 100SSG 50 SSG 500SSG 30SSG 20SSG 10SSG 5FMM

SSG 100SSG 50 SSG 500SSG 30SSG 20SSG 10SSG 5FMM

R
e

la
ti

v
e

 e
rr

o
r

(%
)

R
e

la
ti

v
e

 e
rr

o
r

(%
)

Methods:

Methods:

Figure 3.5: Accuracy comparison: FMM vs SSG geodesic tracing (see
Sec. 3.3.3).

3.4 I M AG E - B A S E D S U R F AC E R E C O N S T RU C T I O N

We now present an efficient and simple algorithm for reconstruction of
a model from its skeleton cloud (Figure 3.6): For each skeleton point
si with radius ri, we build a viewplane-aligned quad Q, or billboard, of
world-space edge size 2. We texture Q scaled to (ri,ri,1) with a D×D
texture whose texels T (u,v) encode both depth and shading. If fixed-
point texturing is available, T uses a 32-bit RGBA format: The first
3 bytes of T (u,v) encode the height at (u/D,v/D) of a ball of radius
1 centered at (1/2,1/2,0). The fourth byte (A) encodes the ball color
computed, e.g., with Phong shading. If floating-point textures are avail-
able, we encode the height and shading in the L and A channels of a
luminance-alpha texture, which leaves two channels for future potential
use. The texture size D is set to 512, which yields highly accurate shad-
ing and height encoding for very large balls. For maximal speed, we store
T on log2(D) hand-built mip-map levels.

We render the quads by a simple ARB fragment program shader (7 op-
erations only) which gets the zNDC normalized device coordinate (NDC)
of the current skeleton point si via the current color. The shader computes
the final NDC depth zNDC+h at the current pixel from the incoming zNDC

56

3.4 I M AG E - B A S E D S U R F AC E R E C O N S T RU C T I O N

view plane

viewpoint

resulting pro!le

splat for s
i

splat for s
j

s
i

s
j

r
i

r
j

billboard for s
i

billboard for s
j

z axis

depth

texture

(RGB or L)

shading

texture

(A)

D texels

Figure 3.6: Skeleton splatting for surface image-based reconstruction.

and ball height h (from the current texel). If z+ h passes the depth test,
the current texel’s shading value is copied to the fragment output.

Our method renders shaded models directly from skeleton clouds of
500K points at 15 frames/second on a GT 330M card. If lighting changes,
we only recompute one shading texture. The x,y splat sizes are pixel-
accurate (by OpenGL scaling); depth values are either 24-bit fixed-point
of floating point. This delivers images nearly identical to the original
mesh (Figure 3.7).

Progressive rendering, like the one proposed by the Qsplat method [141],
can be easily done by our method by drawing billboards sorted by a skele-
ton importance metric, e.g. ball radius or our geodesic metric in Sec. 3.3.
If we use the geodesic metric, this always produces compact shapes,
which pure surface splatting like Qsplat cannot guarantee. Progressive
rendering is a useful tool for time-constrained application contexts where
one wants to obtain an as accurate as possible representation (view) of
a shape given a (limited) amount of time, and next refine this represen-
tation gradually as more time becomes available. Although we have not
explored this direction further, our image-based shape representation
using skeleton clouds should be easily able to support such scenarios,
e.g. in contexts where one wants to render a large and/or complex 3D
shape on a low-speed device (such as a smartphone) or render a shape
that is incrementally made available to the renderer (such as rendering
in a web browser where the shape is serially transmitted as a skeleton
cloud).

Union of balls (UoB): Our image-based skeleton splatting delivers the
same result as an UoB model, e.g.. [108, 165]. Our splatting could be
used as drop-in shape reconstruction for any method that delivers an
MST point cloud. As we shall see in Sec. 3.5, our method is roughly
one to two orders of magnitude faster than [108] and over two orders of
magnitude faster than [165].

57

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

surface splats surface splats surface splats

Figure 3.7: Comparison of surface rendering (top row) and skeleton image-based
surface reconstruction (middle row). Insets show details.

3.4.1 Surface skeleton reconstruction

3D skeletons contain many self-intersecting, closely-spaced, manifolds.
Hence, point cloud reconstruction methods for locally smooth and/or
non-intersecting and/or watertight surfaces cannot be used [35, 38, 77].
Reconstruction of open, non-manifold, and self-intersecting surfaces [23,
193] is relatively slow and non-trivial. We present next a method for visu-
ally reconstructing skeleton surfaces from point clouds based on specific
skeleton properties. The presented method – Delaunay based reconstruc-
tion – is suitable for rendering and visualization purposes of the medial
surface. However, the generated surface is complex to use for shape anal-
ysis purposes due to the lack of clean separation between the medial
surface manifolds. Chapters 4 and 6 address this topic in more detail,
and provide more advanced methods for separating the manifolds and
performing a clean pre-manifold surface reconstruction which is directly
usable for medial surface computation purposes.
Delaunay based reconstruction: For each triangle F = {fi} ⊂ ∂Ω, we
use the inverse of the FT computed at skeleton extraction (Sec. 3.2.1)
to gather all skeleton points S(F) having fi as feature points. Next, we
project all points in S(F) on the plane of F , triangulate these 2D pro-
jections [153], and use the resulting mesh patch to connect the points
in S(F). The reason for ’lifting’ the connectivity from 2D into 3D is

58

3.4 I M AG E - B A S E D S U R F AC E R E C O N S T RU C T I O N

Figure 3.8: Anatomic shapes: point clouds (a,c) and surface skeletons (b,d).

that locally planar surface patches (i.e., triangles F) create, by definition,
locally-planar skeleton patches (i.e., triangulation of S(F)). This creates
duplicate skeleton-mesh triangles, since close model faces have common
skeleton points in convex areas. To remove these, we mark all model ver-
tices which map via the FT only to internal triangles, i.e., which do not
have edges on the boundary of a Delaunay triangulation [153], and skip
faces having only marked vertices. The method is O(N) for N skeleton
points, since we triangulate small point sets S(F) of size O(1). This takes
under 3 seconds for all shapes in this chapter. We use only local infor-
mation (skeleton points of a small surface neighborhood), so we can do
out-of-core reconstruction of large skeletons, like [23]. A similar surface
reconstruction method for point-clouds describing a surface in 3D space
was presented in [27]. In contrast to their context, we do not use prin-
cipal component analysis (PCA) to determine the projection plane, but
obtain this plane by using the feature transform. Additionally, we use this
method to reconstruct a polygonal description of the surface skeleton (of
an input shape), rather than the polygonal description of the surface of
that shape (given a point cloud sampling thereof).

Figures 3.8 and 3.9 show our reconstruction results. All small de-
tails (cow eyes, hooves, horns, and pig snout) create skeletal manifolds.
Noisy skeletons have no ‘stitches’ between close ligature sheets (Fig-
ure 3.9 m,o,q). It is challenging to reconstruct such manifolds only from
point clouds – ligatures match surface concavity pairs [122], so their
cloud density can be arbitrarily small even for densely sampled models
(Sec. 3.2.1). The inverse FT links ligatures to the input surface and thus
reconstructs them well. Simplified skeleton meshes are easily created by

59

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

c) d)

m) n) o) p)

a) b)

g) h) i) j)

e)

k)

f)

l)

q) r) s)

Figure 3.9: Delaunay method (a,g; details d,f,j,l; simplified clouds (m-r) and per-
manifold method (b,h,s; details c,e,i,k) for skeleton reconstruction
(Sec. 3.4.1).

filtering low-importance points, compare Figs. 3.9 n,p,r to the raw skele-
tons in Figs. 3.9 m,o,q.

3.5 M E D I A L S U R F AC E C O M PA R I S O N

We next qualitatively compare our point-cloud surface skeletons (PCS)
with the discrete scale axis (DSA) method [108], one of the best meth-
ods for extracting detailed surface skeletons (Figure 3.10). For similar
skeleton simplification levels, PCS and DSA create similar skeletons
(Figure 3.10 g-h,m-n). Yet, differences exist (Figure 3.10, red marks).
These have two causes: geometry (different skeleton points found) and
topology (same skeleton points found but connected differently). Geom-
etry differences imply topology differences. Note how DSA found many
skeleton points outside the hand model (Figure 3.10 e-f) and connected
these to points inside the hand. In the cow model (Figure 3.10 c-d), skele-
ton points are largely identical, but DSA wrongly connects the tail and
rump skeletons. Such issues, due to strong model concavities, are noted
in [108].

DSA can skip large parts of the skeleton periphery, see e.g. the pig
and cow spine and belly and elephant spine (Figure 3.10 b,d,j). These
parts, found by our PCS, are ligature sheets between the core skeleton
and faraway skeleton points in shallow surface cusps [122]. The reason
hereof is that PCS and DSA use different skeleton scale metrics: PCS
uses geodesic importance (a global metric); DSA computes simplified
skeletons by up-scaling the input shape (a local operation). DSA also
creates many small holes in skeletal sheets, see Figure 3.10 l. These arte-
facts (for a genus 0 shape) are likely due to the numerical degeneracies
listed in [108].

60

3.5 M E D I A L S U R F AC E C O M PA R I S O N

elephant leg (DSA)

a) PCB b) DSA e) PCB

f) DSAc) PCB d) DSA

g) PCB h) DSA i) PCB j) DSA

k) PCB l) DSA m) PCB n) DSA

spurious geometry

and topology

missing ligatures

missing ligatures

missing ligatures

spurious holes

Detail comparison

pig snout (PCB) pig snout (DSA) pig hoof (PCB) pig hoof (DSA) cow head (PCB) cow head (DSA)

cow hoof (DSA)cow hoof (PCB)

elephant trunk (PCB)

elephant trunk (DSA)elephant leg (PCB) scapula (PCB) scapula (DSA)

Figure 3.10: Comparison of PCS and DSA methods (Sec. 3.5). Skeleton parts
wrongly added/missed by DSA are shown in red. Green-marked de-
tails are shown in the insets below.

61

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

Table 4: Timing comparison of PCS and DSA skeletonization methods.

Model PCS (our method) DSA(Miklos et al. [108])

time (sec.) points time (sec.) time (sec.) points

δ = 0.007 δ = 0.005

pig 27.9 224539 485 975 145153

cow 19.4 185703 448 919 64240

bird 3.3 46862 201 421 104140

horse 17.5 193887 369 744 63297

asiandragon 14.9 230964 n/a n/a n/a

hand 4.8 196920 378 778 93301

elephant 3.5 50422 505 1031 166089

armadillo 13.2 172955 426 853 105167

Table 4 shows timing and size statistics for PCS and DSA. For PCS,
we used an accuracy τ = 10−3 (Sec. 3.2.1), and also added regularization
time. For DSA, we used approximation thresholds δ for the mesh to
union-of-balls (UoB) conversion of 0.007 and 0.005 ([108], Sec. 2). Note
that τ = 10−3 for PCS is similar to δ = 10−3 for DSA as for skeleton
accuracy. PCS is up to 100 times faster than DSA. More accurate UoB
settings (smaller δ) make DSA much slower: 45 minutes for a 313K-
point skeleton of a 177K-triangle shape at δ = 0.002 [108]. We could
not test such settings as δ ≤ 0.003 made DSA crash on our models. The
same was true for the asiandragon model, δ = 0.007. If we replace our
SSG regularization by simpler metrics e.g. θ -SMA, PCS becomes much
faster, basically identical to the timings in Tab. 1.

PCS and DSA create skeletons of different sizes. PCS creates one
skeleton point per input point (Sec. 3.2.1). DSA uses a Voronoi diagram,
which has a different point count. Yet, as Figure 3.19 shows, the skeletal
detail created by PCS is similar to DSA.

We also compared PCS with the method of Stolpner et al. [165] which
approximate medial axes as UoB point clouds. On a 3.4 GHz PC, PCS
is over 100 times faster (Tab. 4 vs Tab. 1 [165]).

3.5.1 Direct and inverse correspondence

In our method, each computed medial point cloud has a direct correspon-
dence to two surface points, by construction. This relationship is main-
tained by the feature points (f1, f2). This way, from each point x ∈ S∂Ω

of the surface skeleton of an input shape Ω, we can go back to two of
its closest points f1 ∈ ∂Ω, f2 ∈ ∂Ω. This is essentially a sampled ver-
sion of the feature transform FT∂Ω (Equation 2.3). Of course, this rep-
resentation is limited: For medial points located on the surface-skeleton

62

3.5 M E D I A L S U R F AC E C O M PA R I S O N

boundary (A3 points, see Section 2.2.2), or medial points located on the
intersection of several medial sheets (A3

1 points), we should have more
than two feature points. For implementation simplicity reasons (having
to do with the difficulty of maintaining variable-sized arrays in CUDA),
we only record two such points per surface-skeleton point. We discuss
next in Chapter 6 how this limited medial information can be refined to
correctly classify medial points.

Separately, for each surface point x ∈ ∂Ω, we record all skeleton
points y ∈ S∂Ω that have x as feature point. This essentially delivers us
the inverse link (from input shape to its surface skeleton), or the inverse
FT−1

∂Ω
. In contrast to our implementation decision for the direct feature

transform FT∂Ω, we allow FT−1
∂Ω

to have a variable (unbounded) number
of points. We chose to do this since we compute FT−1

∂Ω
on the CPU and

only after the full surface-skeleton has been extracted (on the GPU). As
such, storing the variable-length arrays inherent to the structure FT−1

∂Ω
is

easy to do.
Overall, the above two feature transforms FT∂Ω and FT−1

∂Ω
allow us to

establish a bidirectional mapping between ∂Ω and S∂Ω. In turn, this lets
us use the best suitable space (shape or its skeleton) to compute desired
properties, and next map these accordingly to the other representation or
space. Figure 3.11 demonstrates this mapping between the two spaces.
Here, we compute, for each medial point x ∈ S∂Ω, the local shape thick-
ness, i.e. the distance from x to any of its feature points. Next, we use the
feature transform FT∂Ω to ‘map’ this thickness field to the input shape
surface ∂Ω. This way, we obtain an easy-to-interpret image that shows
us locally thin shape parts (in red) as opposed to locally-thick shape parts
(in green, Figure 3.11 d). This surface-to-skeleton (or inverse) mapping
is next extensively used in this thesis (Chapters 5 and 6).

a) b) c) d)

Figure 3.11: Surface-skeleton to shape mapping: Using the feature transform
FT∂Ω, values computed on the medial surface S∂Ω can be trans-
ferred to the surface. a) Polygonal surface (gyrus bone); b) medial
point cloud; c) point cloud with per-point thickness values; d) Shape
surface showing local thickness.

63

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

3.6 C U RV E S K E L E T O N E X T R AC T I O N F RO M T H E S U R F AC E
S K E L E T O N

In contrast to surface skeletons, which are 2D manifolds which contain
the loci of maximally- inscribed balls in a shape [154], curve skeletons
are 1D curves which are locally centered in the shape [31]. Compared to
surface skeletons, curve skeletons can only capture the main topologic
properties of a shape, and much less of its geometric properties. As such,
they are less well suited for tasks such as detailed surface simplifica-
tion or accurate reconstruction. However, they are in general simpler to
compute, and well suited for many applications in computer vision, path
planning, robotics, shape matching, and computer animation.

The previous sections focused on the extraction and regularization of
the medial surface from large polygonal shape representations. This sec-
tion focuses on the computation of curve skeletons for the same type
of shapes. Unlike several proposed methods to directly extract a curve
skeleton from an input voxel model, mesh or dense point cloud [7, 19,
37, 101, 135, 172, 174], we propose here to extract the curve skeleton
as a subset of the surface skeleton. By this, we leverage the accurate and
fast computation of surface skeletons proposed in the previous sections.
Moreover, we will show that computing curve skeletons from surface
skeletons guarantees several desirable properties, such as centeredness
and robustness to noise.

The overall idea for extracting curve skeletons is straightforward:
Since the curve skeleton is centered in the shape, a metric defined on the
surface skeleton and which monotonically increases from the surface-
skeleton boundary towards its center, can be used to compute a curve
skeleton subset from the original medial surface.

Curve skeleton points have two or more shortest straight geodesics
between their feature points [37, 135]. The above definition for curve
skeleton points can be quite easily applied to detect such points for voxel-
based models, as shown in [135]. For surface skeletons represented as
point clouds, as in our case, the above criterion cannot be immediately
used, mainly due to the typically non-uniform density of skeleton point
clouds. Therefore, we propose to extract curve skeletons by a method
akin to the technique of Siddiqi et al. [155, 156]. Our proposal is based
on the following observation: In a small vicinity N of a curve-skeleton
point, geodesic tangents, mapped to N , abruptly change directions
(Fig. 3.12). Given this observation, we extract curve-skeleton points by
looking for high-response points of weight-averaged tangent directions
in vicinities around each surface-skeleton point, by a three-step method:
(i) find candidates close to the curve skeleton; (ii) filter and regular-
ize candidates; and (iii) reconstruct the curve skeleton. These steps are
presented next.

64

3.6 C U RV E S K E L E T O N E X T R AC T I O N F RO M T H E S U R F AC E S K E L E T O N

3.6.1 Detecting candidate curve skeleton points

For each surface skeleton point si, we compute the average (projected)
tangent direction of its SSG path, i.e.,

t′s,i = ts,i−Fi(Fi · ts,i)

t′e,i = te,i−Fi(Fi · te,i)

ti =
t′s,i + t′e,i
‖t′s,i + t′e,i‖

(3.2)

where ts,i, te,i are the tangent vectors at its feature points (f1, f2), Fi is
defined as (f1−f2)

‖f1−f2‖
, i.e., the normalized feature vector of si. Projection im-

proves the detector reliability (see below) close to Y-intersection curves,
i.e., where several skeletal manifolds intersect [34]. Tangent vectors ti
span a vector field T over the surface skeleton (Figure 3.12).

Figure 3.12: Tangent vector field T (shown with directional color-coding).

One can evaluate the divergence of T or its more numerically-stable
flux [155]. Points close to the curve skeleton have large positive flux/-
divergence values. However, along with these, this approach may yield
also points close to the Y-intersection curves.

We find candidate curve-skeleton points differently. For each skeleton
point si, let Ni be its set of neighbour skeleton points (we use 10 nearest-
neighbours in practice). We measure the likelihood of si to be a curve-
skeleton point as

I(si) = ρi−ρi

∥∥∥∥∑ j∈Ni wi jt j

∑ j∈Ni wi j

∥∥∥∥ , wi j = |Fi ·F j|e
−

(ρi−ρ j)
2

2σ2
1
−
‖si−s j‖2

2σ2

with ρi ≡ ρ(si). The importance Ii ≡ I(si) averages tangent vectors in
Ni with weights given by a 2D Gaussian kernel and σ1,σ2 set to the
median of the distances ‖si− s j‖ j∈Ni . The weight wi j lowers the impact
of tangent vectors t j of skeleton points s j which: (i) have feature vectors
not parallel to fi, (ii) have geodesics of different lengths (following [37,

65

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

135]), and (iii) are far from si. Points close to Y-intersection curves meet
conditions (i) and (ii), so they contribute weakly to I. In contrast, points
close to the curve skeleton yield large weights, and have tangent vectors
pointing outwards in all directions, see Figure 3.12. Such points have
large I values, so we find the set C of candidate curve-skeleton points by
thresholding I at a small value TI > 0.

3.6.2 Regularization of candidate curve-skeleton points

We assign an importance µi to each point si ∈ C to prune spurious curve
skeleton details. We set µi to the smallest surface area between two SSGs
of nearby skeleton points. This is similar to the metric in [135] which
was computed by a flood-fill on a voxel surface. Our case is more com-
plicated as we have two curves on an unstructured mesh. We efficiently
approximate this area using only the angle between the two geodesics
and the lengths of a few additional straightest geodesics, as follows.

For each candidate si ∈ C , we find a neighbour j? ∈Mi, with Mi a
neighbourhood of si (10 nearest-neighbours), for which

J j = (1+ ti · t j)e
−

(Ii−I j)
2

2σ2
1
−
‖si−s j‖2

2σ2
2 (3.3)

is minimal, i.e., j? = argmin j∈Mi
J j. Since si and s j? are spatially close,

we assume that their feature points coincide, and use si for these. Let
θ = ∠(ti, t j?) ∈ [0,π] be the angle between the tangent vectors of si and
s j? . The pair of SSGs γse,i and γse, j? between the feature points f1,i and f2,i
divide the surface ∂Ω in two parts, the smallest area of which we want to
estimate. For this, we trace P straightest geodesics γS,i,k, 1≤ k ≤ P from
f1,i to f2,i on ∂Ω, with uniformly spread starting angles αk = 2πk/P
around the vector fi = f1,i− f2,i at f1,i. Assuming that each geodesic is
half of an ellipse, with minor axis fi, the ellipse radii ak and bk ≥ ak are
given by a simple approximation formula for an ellipse perimeter, i.e.,
ak = ‖fi‖/2 and bk = (2‖γS,i,k‖− π ak)/2. Next, we approximate ∂Ω

between two consecutive geodesics by an oblate spheroid with radii ak
and ck = (bk + bk+1)/2, so its area is that of an oblate spheroid wedge
with angle β = 2π/P, i.e.,

Sk = β c2
k +

β a2
k

2e
ln

1+ e
1− e

, (3.4)

with e =
√

1−a2
k/c2

k . Assuming that the starting direction α0 = 0 corre-
sponds to the tangent of γse,i, we compute µi as

µi = min

(
∑

k,αk<θ

Sk, ∑
k,αk≥θ

Sk

)
. (3.5)

66

3.6 C U RV E S K E L E T O N E X T R AC T I O N F RO M T H E S U R F AC E S K E L E T O N

Thresholding µ removes short curve-skeleton branches to yield the final
candidate set C ′. We use more paths P = 50 than for the surface skeleton
metric (M = 20, Sec. 3.3) to limit area estimation errors. σ1 and σ2 are
set to the median distance in Mi.

3.6.3 Curve skeleton reconstruction

To get the final curve skeleton CS, we connect points in C ′ by line seg-
ments, by adapting the ball-pivoting method [12]. We start from the point
with largest importance µ , find its neighbour in C ′ within a radius r with
largest µ value, and add a new line segment to CS. Next, we try to ex-
tend CS by searching neighbours of its end vertices ei. To become a new
end vertex, a point x must (i) be within distance r from an ei; and (ii)
the segment (x,ei) must be well-aligned with the curve tangent. When
CS cannot be extended, we backtrack and try to extend from vertices of
previous segments. This captures the curve skeleton branching.

3.6.4 Comparison

Regularization (Sec. 3.6.2) is the costliest step of our curve-skeleton ex-
traction. C is a small subset of the surface skeleton, but tracing P =
50 straightest geodesics γS,i,k per point si ∈ C is still expensive, as no
early termination can be used (Sec. 3.3). Still, we only need to compute
geodesic lengths, which results in a very efficient CUDA mapping (see
Tab. 5).

Table 5: Curve-skeleton extraction timings.

Model Detect Regularize Reconstruct Total

(seconds) (seconds) (seconds) (seconds)

Cow 3.1 3.5 0.8 7.4

Bird 0.5 1.2 0.1 1.8

Horse 2.5 2.6 0.2 5.3

Asiandragon 2.6 3.7 1.7 8.0

Hand 1.3 1.9 0.6 3.8

Elephant 0.5 1.5 0.5 2.5

Buddha 3.3 5.3 0.8 9.4

Mouse 3.0 4.6 0.9 8.5

Dragon 3.5 4.7 0.9 9.1

Pig 2.5 4.0 0.8 7.3

Armadillo 1.8 1.5 0.6 3.9

Rabbit 0.5 1.1 0.5 2.1

67

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

p =
 185K

, t =
 371K

7.4 seconds

p =
 197K

, t =
 394K

3.8 seconds

p =
 193K

, t =
 387K

5.3 seconds

s =
 183K

, v =
 4.6M

376 seconds

s =
 167K

, v =
 3.1M

303 seconds

s =
 214K

, v =
 4.9M

406 seconds

p
 surface vertices

t surface triangles
p =

 225K
, t =

 451K

7.3 seconds

p =
 23K

, t =
 47K

0.9 seconds

s surface voxels

v volum
e voxels

13 seconds
398 seconds

O
u

r
 m

e
th

o
d

R
e
n

ie
r
s
 e

t a
l.

A
u

 e
t a

l.

420 seconds
445 seconds

382 seconds

sharp bend

sharp bend

s =
 23K

, v =
 267K

14 seconds

s =
 180K

, v =
 3.9M

398 seconds

Figure
3.13:C

urve
skeleton

extraction:ourm
ethod

(top
row

),voxel-based
m

ethod
[135](m

iddle
row

),and
m

esh
collapse

m
ethod

[7](bottom
row

).

68

3.7 C U RV E S K E L E T O N E X T R AC T I O N F RO M P RO J E C T I O N S

Figure 3.13 compares our results with Reniers et al. [135] and with
of Au et al. who compute curve-skeletons by shape collapse via Lapla-
cian smoothing [7]. Although our point count is smaller than, or at most
equal to, the surface voxel count of Reniers et al., we find more skeleton
branches, e.g. the cow udder and horns. Our skeletons, unlike Au et al.,
do not have artificial straight-line branches and sharp bends. Au et al.
added these in a ‘surgery’ step to connect disjoint skeleton parts (green
areas, hand and horse model, Figure 3.13 bottom). The skeletons of Au et
al. extend deeper into surface cusps, e.g. the pig’s hooves and snout. Such
branches are shortened by our regularization (Sec. 3.6.2). Our method is
on average 50 times faster than Au et al. and over one order of magni-
tude faster than Reniers et al. Interestingly, the costs of the latter two
are similar, since both methods ’visit’ the entire input volume: Au et al.
while collapsing the mesh, and Reniers et al. while computing its voxel
skeleton detectors.

3.7 C U RV E S K E L E T O N E X T R AC T I O N F RO M P RO J E C T I O N S

As we have seen in Section 3.6, curve skeletons can be extracted from
corresponding surface skeletons. Intuitively, we can say that curve skele-
tons can be seen as the local centers of such surface skeletons, or ‘skele-
tons of skeletons’. In other words, points x on a curve skeleton can be
seen as maximizing the sum of distances from x to the surface ∂Ω of the
input shape [181]. If this observation holds, then we can next think about
the relationship of curve skeletons to the 2D skeletons of 2D projections
of the shape Ω.

In this context, Livesu et al. recently observed that the 2D projections
of the curve-skeleton of Ω (on any projection plane π) are very close to
the 2D skeletons of the projections of Ω (on the same plane π). Following
this observation, they proposed to extract the curve skeleton of Ω from a
(large) set of 2D views of Ω [99]. Key to this computation is the extrac-
tion of a volume which encodes, at each 3D point inside the shape, the
probability that the curve-skeleton passes through that point. The curve-
skeleton is extracted from this volume using a set of post-processing
techniques. This approach has the major advantage that it requires only
a set of 2D views of the input shape, so it can be used when one does
not have a complete 3D shape model. However, this method strongly de-
pends on the quality of the skeletal probability volume. Overall, this type
of approach follows earlier work that uses a set of 2D projections of a
3D volumetric dataset to reconstruct various aspects of the 3D dataset,
such as the well-known Radon transform used in medical imaging to re-
construct a 3D scalar volume from 2D projections thereof. As far as we
are aware of, the method of Livesu et al. is the first time when a similar
principle was applied to the extraction of 3D curve skeletons.

We present here an extension of the view-based approach of Livesu et
al., with the following contributions. First, we propose a different way

69

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

for computing the curve-skeleton probability and representing it as a
dense point cloud. On the one hand, this eliminates a major part of the
original proposal’s false positives (i.e., locations where a curve-skeleton
point is suggested, but no such point actually exists), which makes our
probability better suited for further skeleton extraction. On the other
hand, our point-cloud model eliminates the need for a costly voxel rep-
resentation. Secondly, we propose a fast GPU implementation of the
point cloud computation which also delivers the skeleton probability
with higher accuracy than the original method. We demonstrate our tech-
nique on several complex 3D models.

3.7.1 View-based curve skeletonization

In contrast to the object-space curve skeletonization approaches dis-
cussed in Section 3.6, which require a full 3D model of the input shape
W, Livesu et al. proposes a different approach: Noting that the 2D projec-
tion of a 3D curve skeleton is close to the 2D skeleton of the projection,
or view, of an input 3D shape, they extract curve skeletons by merging
2D skeletal information obtained from several views of the input shape
Ω. Given two such views Ci and C⊥i , whose up-vectors are parallel and
lines of sight are orthogonal, the silhouettes Bi and B⊥i of Ω are first
computed by orthographic projection of the input shape. Secondly, the
2D skeletons S∂Bi and S

∂B⊥i
of these silhouettes are computed. Next,

stereo vision is used to reconstruct the 3D skeleton: Point pairs p ∈ SBi

and p⊥ ∈ SB⊥i
are found by scanning each epipolar line, and then back-

projected into 3D to yield a potential curve-skeleton point x. The points
x found in this way are accumulated into a so-called probability volume
V ⊂ R3, which gives, at each spatial point, the likelihood to have a
curve-skeleton passing through that point.

The above method has several advantages compared to earlier object-
based techniques. First, it can be used directly on shape views, rather
than 3D shape models, which makes it suitable for any model which can
be rendered in a 2D view, regardless of its representation (e.g. polygons,
splats, points, lines, or textures). Moreover, the method does not require
a full and consistent description of the 3D shape – a set of 2D views of
that shape is sufficient. Finally, the method can be easily parallelized, as
view pairs are treated independently. However, this method fundamen-
tally relies on the fast computation of a good probability volume which
contains a correct estimation of the curve skeleton location. This poses
the following requirements:

1. a reliable and accurate stereo vision correspondence matching,
i.e. finding the correct pairs of points (p ∈ S∂Bi , p⊥ ∈ S

∂B⊥i
) which

Here and in the remainder of this section, we denote by italics (e.g., p) the 2D projection
of a 3D point p in a 2D view C.

70

3.7 C U RV E S K E L E T O N E X T R AC T I O N F RO M P RO J E C T I O N S

represent the projection of the same curve skeleton point in the
view-pair (Ci,C⊥i);

2. an accurate and efficient representation of the probability volume
V for further processing.

Requirement (1) is not considered by Livesu et al., where all possible
point-pairs along an epipolar line are back-projected. This generates, as
we shall see in Sec. 3.7.4.2, a large amount of noise in the probability
volume V . Removing this noise requires four relatively complex post-
processing steps in the original proposal. Secondly, the probability vol-
ume V is represented as a voxel grid. This makes the method unnecessar-
ily inaccurate, relatively slow and hard to parallelize, and requires large
amounts of memory, thus contradicts requirement (2).

input 3D shape Ω

C⊥C

u

v

o

v
⊥

u
⊥

o
⊥

camera-pair

selection

silhouette

skeletonization

S

S⊥

pair matching+culling

and 3D backprojection

silhouette and

depth culling

3D skeleton

sharpening

Figure 3.14: Curve-skeleton probability computational pipeline.

In the following, we present several enhancements to the original idea
of Livesu et al. that make view-based skeleton extraction compatible
with requirements (1) and (2). This allows us to extract a high-accuracy
probability volume for further usage in curve skeleton computation or
direct visualization.

3.7.2 Accurate probability volume computation

Our proposal has three steps (see also Figure 3.14). First, we extract reg-
ularized and subpixel-accuracy 2D skeletons from several views of the
input shape (Sec. 3.7.3). Next, we use additional view-based information
to infer a conservative set of correspondences between points in such 2D
skeleton pairs, back-project these in 3D, and record the obtained points
as a point cloud (Sec. 3.7.4). Finally, we apply an additional sharpen-
ing step on the 3D point cloud, which directly delivers a highly accurate
curve-skeleton probability (Sec. 3.7.5).

3.7.3 Robust 2D skeletonization

Given a shape Ω and orthographic camera specification C = (o,v,u) de-
scribed by its origin o, view direction v, and up-vector u, we start by
computing the silhouette B of Ω by rendering the shape on the camera’s

71

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

σ0=0 σ0=0.05 σ0=0.1

ρ0=0 ρ0=5 ρ0=30

Figure 3.15: Skeleton regularization. Top row: Importance-based method [183]
for three different threshold values ρ0. Bottom row: Salience-based
method [177] for three different threshold values σ0.

view plane (u,v×u). Next, we compute the so-called salience 2D skele-
ton of B using the technique presented in [177]. The salience of a point
p ∈ B is defined as

σ(p) =
ρ(p)

DT∂B(p)
(3.6)

Here, DT∂B(p) is the 2D distance transform of the silhouette boundary
∂B and ρ(p) is the so-called skeleton importance

ρ(p) = max
f1,f2∈FT∂B(p)

‖γf1f2‖ (3.7)

where FT∂B is the feature transform of the boundary ∂B, and γab is the
compact boundary fragment between two points a and b on ∂B. The
importance ρ increases monotonically from the endpoints (tips) of the
skeleton towards its center. ρ(p) associates, to each skeleton point p, the
length of the longest boundary arc (in pixels) subtended by its feature
points. Upper thresholding ρ with a value ρ0 will thus remove both skele-
ton branches created by small boundary wiggles and end-parts of impor-
tant skeleton branches caused e.g. by boundary corners. Figure 3.15 (top
row) shows this effect for a silhouette B of a horse model. For ρ0 = 1,
we get the full 2D skeleton, which contains many spurious branches. For
ρ0 = 5, we get the desired skeleton detail at the legs and head, but still
have several spurious branches around the rump and neck. For ρ0 = 30,
we eliminate all spurious branches, but also loose relevant portions of
branches corresponding to the legs. This is undesired, since, as we shall

72

3.7 C U RV E S K E L E T O N E X T R AC T I O N F RO M P RO J E C T I O N S

later see, we need the important branches at their full length to recon-
struct a curve-skeleton reaching into all shape protrusions.

In contrast, the salience metric σ (Eqn. 3.6) delivers a better result. As
shown in [177], σ is high along the most important, or salient, skeleton
branches, and low elsewhere. Hence, we can threshold σ to obtain the
skeleton

S∂B = {p ∈ B|σ(p)> σ0}. (3.8)

Equation 3.8 delivers a clean, regularized, skeleton whose spurious
branches are eliminated, and whose important branches extend all the
way into the shape’s protrusions. Figure 3.15 (bottom row) shows the
saliency-based regularization. For σ0 = 0, we obtain the same full skele-
ton as for ρ0 = 1. Increasing σ0 over a value of 0.05 practically removes
all spurious branches, but keeps the important ones un-pruned (see zoom-
ins). As such, we use the value σ0 = 0.05 further in our pipeline.

We further enhance the precision of the computed skeleton by using
the subpixel technique presented in [166]. As such, skeleton points are
stored as 2D floating-point coordinates rather than integers. This will be
important when performing the 3D stereo reconstruction (Sec. 3.7.4.2).

3.7.4 Accurate correspondence matching

We find potential 3D curve-skeleton points along the same key idea
of [99]: Given a camera C = (o,v,u), where v points towards the ob-
ject’s origin, we construct a pair-camera C⊥ = (o⊥,v⊥,u⊥) which also
points at the origin and so that the two up-vectors u and u⊥ are parallel.
In this case, projected points p in C correspond to projected points p⊥

in C⊥ located on the same horizontal scanline. Given such a point-pair
(p,p⊥), the generated 3D point x is computed by triangulation, i.e. by
solving

x = p+ kv = p⊥+ k⊥v⊥ (3.9)

where p and p⊥ are the 3D locations, in their respective view planes C
and C⊥, corresponding to p and p⊥ respectively, and k and k⊥ are the
distances between x and the view planes of C and C⊥. Note that p and
p⊥ can be immediately computed as we know the positions of p and p⊥

and the cameras’ positions, orientations, and near plane locations.

3.7.4.1 Correspondence Problem

As well known in stereo vision, the success of applying Eqn. 3.9 is fun-
damentally conditioned by having the correct 2D points p and p⊥ paired
in the two cameras. Let us analyse this issue in our context: Consider
that a scan-line y intersects a 2D skeleton shape in m points on the av-
erage. Hence, we have m2 possible point-pairs. These will generate m2

73

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

points in the 3D reconstruction, whereas in reality there are only at most
m such points – that is, if no occlusion is present. The excess of m2−m
points are false positives. Given N such camera-pairs placed uniformly
around the object in order to reconstruct its 3D curve skeleton, and con-
sidering a camera viewplane of P×P pixels, we have in the worst case
O(N(m2−m)P) false-positive points in the curve skeleton. The ratio of
false-to-true positives is thus Π = O

(
N(m2−m)P)/(NmP)

)
= O(m). In

our measurements for a wide set of shapes, we noticed that m = 5 on the
average. Concretely, at an image resolution of P2 = 10242 pixels, and
using the setting N = 21 from Livesu et al., we thus get over 400K false-
positive points generated in excess of the NPm ' 100K true-positive
skeleton points.

The above false-to-true-positive ratio Π is a conservative estimate:
Given a rigid shape Ω, the 2D skeleton of its silhouette can change con-
siderably as the silhouette changes, even when no self occlusions oc-
cur. This, and additional self-occlusion effects, reduce the true-positive
count and thus increases Π. This ultimately creates substantial noise in
the curve-skeleton probability estimation, and thus makes an accurate
curve skeleton extraction more complex.

3.7.4.2 Pair-culling heuristic

We reduce the false-to-true-positive ratio Π by using additional informa-
tion present in our cameras, as follows. Consider a point p on a scanline
L in C and all points L⊥ = {p⊥i } on the same scanline in C⊥ (see Fig-
ure 3.16 e). The 3D reconstructions of all pairs (p, p⊥i) lie along the line
p+kv (Eqn. 3.9). Hence, if we had an estimate of the depth kest between
the correct reconstruction and the viewplane of C, we could select the
best pair p⊥est for p as

p⊥est = argmin
p⊥est∈L⊥

|kest − k| (3.10)

i.e. the point in C⊥ which yields, together with p, a depth closest to our
estimate. We estimate kest as follows: When we draw the shape in C, we
also compute its nearest and furthest depth buffers Zn and Z f , by ren-
dering the shape twice using the OpenGL GL_LESS and GL_GREATER
depth-comparison functions respectively. Next, for each point p in the
viewplane of C, we set kest =

1
2

[
Zn(p)+Z f (p)

]
(see Figure 3.16 e).

It is essential to note that our heuristic for kest is not an attempt to find
the exact value of the depth k. Indeed, if we could do this, we would not
need to apply Eqn. 3.10, as we could perform the 3D backprojection us-
ing a single view. We use kest only as a way to select the most likely point-
pair for 3D reconstruction. This is argumented as follows: First, we note
that the value k for the correct point-pair must reside between Zn(p) and
Z f (p) - indeed, the reconstructed 3D point x must be inside the object’s
hull. Secondly, the curve skeleton is roughly situated in the (local) mid-

74

3.7 C U RV E S K E L E T O N E X T R AC T I O N F RO M P RO J E C T I O N S

d) pair culling: 721 pairs

a) first view (C) b) second view (C⊥)

c) full pairing: 6046 pairs

C C⊥

v
⊥

v

C C⊥

v
⊥

v

C

scanline L⊥

v
⊥

v

p

pi
⊥

α

e) pair matching and triangulation

skeleton pixel

resolution
δ

depth spread ε

scanline L

shape Ω

Zf(p)

Zn(p)

Zn(p)+Zf(p)

2

reconstructed

point x

selected p⊥
est

Figure 3.16: Correspondence matching for curve-skeleton reconstruction. A
camera pair (a,b). Reconstructed 3D points when using full pair-
ing (c) and when using our depth-based pairing (d). Depth-based
pairing and triangulation (e)

75

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

dle of the object, thus its depth is close to kest . Thirdly, we note that, when
the angle between the cameras’ vectors α =∠(v,v⊥) decreases, then the
depths ki yielded by Eqn. 3.10 for a set of scanline-points p⊥i ∈ L⊥ get
further apart. In detail, if the distance between two neighbour pixels in
the scanline L⊥ is δ , the distance between their reconstructions using the
same point p in the other scanline L is ε = δ/sin(α), see Figure 3.16 c.
Hence, if we use a small α (under 90deg), we get fewer depths ki close to
kest , so we decrease the probability that selecting the point whose depth
is closest to kest (Eqn. 3.10) will yield an incorrect point-pair for the 3D
reconstruction. In contrast, Livesu et al. use α = 90◦, as this slightly sim-
plifies Eqn. 3.9. Given that low α values reduce the likelihood to obtain
false pairs using our depth heuristic, we prefer this, and set α = 20◦.

Figure 3.16 shows the results of using our depth-based pairing heuris-
tic. Images (a) and (b) show the two skeletons S∂B and S

∂B⊥ correspond-
ing to the two cameras C and C⊥ respectively. The brute-force many-
to-many correspondence pairing yields 6046 three-dimensional points.
As visible in Figure 3.16 c, these points are spread uniformly in depth
along the view directions of the two cameras. This is expected, since 2D
skeleton pixels are equally spaced in the image plane. For clarity, we
displayed here only those points which pass the silhouette and depth-
culling, i.e. which are inside the object from any considered view (see
further Sec. 3.7.5). The displayed points in Figure 3.16 c are thus final
points in the curve-skeleton probability volume delivered by many-to-
many matching.

Figure 3.16 d shows the reconstructed 3D points when we use our
depth-based pair-culling. Since we now only have one-to-one pairs,
we obtain much less points (721 vs 6046, see the explanations in
Sec. 3.7.4.1). Moreover, these points are located very close to the ac-
tual curve skeleton, as shown by the top view of the model.

Given our conservative point-pair selection, as shown in Figure 3.17,
we generate much fewer curve-skeleton points than if using many-to-
many pairing. Although this is highly desirable for obtaining an accurate
(false-positive-free) curve skeleton, it also means that the curve skeleton
will be sparser than when using all possible pairs. To counteract this, we
simply use more view pairs N. In practice, setting N ' 500 yields suf-
ficiently dense curve skeletons (see results in Sec. 3.8). An additional
advantage of using more views is that we do not need to carefully select
the optimal views for stereo reconstruction, in contrast to the original
method, where such views are obtained by performing a principal com-
ponent analysis (PCA) on both the 3D shape and its 2D projections.

We further reduce the number of tested point-pairs (Eqn. 3.10) by scan-
ning L from left to right (for p) and L⊥ from right to left (for p⊥), As
such, 3D points are generated in increasing order of their depth k, so
|kest − k| first decreases, then increases. Hence, we stop the scan as soon
as |kest − k| increases, which gives an additional speed improvement.

76

3.7 C U RV E S K E L E T O N E X T R AC T I O N F RO M P RO J E C T I O N S

a) original density volume b) density volume (low opacity)

c) pair culling d) depth culling e) sharpening

2599632 points

242689 points258899 points 253081 points

2599632 points

Figure 3.17: Curve-skeleton probability point-cloud. (a) original method [99].
(b) Cloud in (a) displayed with lower opacity. (c) Effect of depth-
based pairing. (d) Effect of depth culling. (e) Effect of sharpening
(see Sec. 3.7.5).

77

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

3.7.5 Probability sharpening

We collect the 3D points x (Eqn. 3.9) found by the depth-based corre-
spondence matching for a given camera-pair (C,C⊥) in an unstructured
point cloud C S . As C rotates around the input shape, we keep test-
ing that the projections x of the accumulated points x ∈ C S fall inside
the silhouette B in C, as well as within C’s depth range [Zn(x),Z f (x)].
Points which do not pass these tests are eliminated from C S . The depth
test explained above comes atop the silhouette test which was already
proposed by Livesu et al.. Whereas the silhouette test constrains C S
to fall within the visual hull of our input shape, we constrain C S even
further, namely to fall within the exact shape. The difference is relevant
for objects with cavities, whose visual hull is larger than the object itself.

However closer to the true curve-skeleton than the results presented by
Livesu et al., our C S still shows some spread around the location of the
true curve skeleton. This is due to two factors. First, consider the inher-
ent variability of 2D skeletons in views of a 3D object: The 2D skeleton
is locally centered with respect to the silhouette (or projection) of a 3D
object Ω. In areas where Ω has circular symmetry, the 2D skeleton of the
projected 3D object is indeed identical to the 2D projection of the true
3D curve skeleton, i.e., skeletonization and projection are commutative.
However, this is not true in general for shapes with other cross-sections.
Moreover, self-occlusions, in the case of concave objects, will generate
2D skeletons which have little in common with the projection of the
curve skeleton. It is important to stress that this is not a problem caused
by wrong correspondence matching. Secondly, using a small α angle
between the camera pairs (Sec. 3.7.4.2), coupled with the inherent reso-
lution limitations of the image-based skeletons, introduces some depth
estimation errors which show up as spatial noise in the curve skeleton.

We further improve the sharpness of C S as follows. For each camera
C which generates a silhouette B, we move the points x∈C S parallel to
the view plane of C with a step equal to ∇DT∂B. Since ∇DT∂B points to-
wards S∂B, this moves the curve-skeleton points towards the 2D skeleton
S∂B. Note that, in general, ∇DT∂B is not zero along S∂B [183]. Hence, to
prevent points to drift along S∂B, and thus create gaps in the curve skele-
ton, we disallow moving points x which already project on S∂B. Note
also that this advection never moves points outside Ω, since S∂B is al-
ways inside any silhouette B of Ω. Since the above process is done for
all the viewpoints C, the curve skeleton gets influenced by all the consid-
ered views. This is an important difference with respect to Livesu et al.,
where a 3D skeleton point is determined only by two views.

Figure 3.17 shows the effect of our three improvement steps: depth-
based pairing (Sec. 3.7.4.2), depth culling, and sharpening. All images
show 3D point clouds rendered with alpha blending. Figure 3.17 a shows
the cloud C S computed following the original method of Livesu et al.,
that is, with many-to-many correspondence matching along scanlines

78

3.7 C U RV E S K E L E T O N E X T R AC T I O N F RO M P RO J E C T I O N S

(Sec. 3.7.4.1). Clearly, this cloud contains a huge amount of points not
even close to the actual curve skeleton. If we decrease the alpha value
in the visualization, we see that this cloud, indeed, has a higher density
along the curve-skeleton (Figure 3.17 b). We see here also that naive
thresholding of the density, which is quite similar to decreasing the al-
pha value to obtain Figure 3.17 b from Figure 3.17 a, creates problems:
If a too low threshold is used, the skeleton still stays thick; if a too high
threshold is used, the skeleton risks disconnections (see white gaps in
the neck region in Figure 3.17 b).

Eliminating the large amount of false positives from the cloud shown
in Figure 3.17 a is very challenging. To do this, Livesu et al. apply an in-
volved post-processing pipeline: (1) voxelize the cloud into a voting grid;
(2) extract a maximized spanning tree (MST) from the grid; (3) detect
and prune perceptually salient tree branches; (4) collapse short branches;
(5) recover curve-skeleton loops lost by the MST; and (6) smooth the
resulting skeleton; for details we refer to [99]. Although this is possible,
as demonstrated by the results of Livesu et al., this post-processing is
highly complex, delicate, and time-consuming.

Figure 3.17 c shows our curve-skeleton probability, obtained with the
center-based correspondence pair culling (Sec. 3.7.4.2). The point cloud
contains now around ten times less points. Also, note that points close
to the true curve skeleton have been well detected, i.e., we also have
few false negatives. Applying the depth-based culling further removes
a small amount of false positives (Figure 3.17 d vs Figure 3.17 c). Fi-
nally, the density sharpening step effectively attracts the curve-skeleton
points towards the local skeleton in each view, so the overall result is a
sharpening of the point cloud C S , i.e. a point density increase along
the true curve skeleton and a density decrease further from the skeleton
(Figure 3.17 e).

3.7.6 Results

Figure 3.18 shows several results computed with our method. The pro-
duced curve-skeleton clouds contain between 100K and 300K points. We
render these clouds using small point splats of 2 by 2 pixels, to make
them more visible. The key observation is that our skeleton point clouds
are already very close to the desired 3D location, even in the absence
of any cloud post-processing. In contrast, the equivalent point clouds de-
livered by the method of Livesu et al. are much noisier (see example in
Figure 3.16 a and related discussion in Sec. 3.7.4.2), and thus require
significant post-processing to select the true-positives. Since our point
clouds are much sharper, we can directly use them for curve-skeleton
visualization, as shown in Figure 3.18. If an explicit line representation
of such skeletons is desired, this can be easily obtained by using e.g. the
curve-skeleton reconstruction algorithm described in [183], Sec. VIII-C.
Thin tubular skeleton representations can be obtained by isosurfacing the

79

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

a) cow b) horse c) hound d) spider

e) hand f) dino g) neptune h) rabbit

i) hippo j) scapula k) pig

l) armadillo m) bird n) rotor

Figure 3.18: Curve-skeleton probability point-clouds for several models (see
Sec. 3.8).

density field induced by our 3D point cloud. In this chapter, we refrained
from producing such reconstructions, as we want to let our main contri-
bution stand apart – the computation of noise-free, accurate point-cloud
representations of the curve skeleton probability.

3.7.6.1 Comparison

Figure 3.19 compares our method with several recent curve-skeleton ex-
traction methods. As visible, our curve skeleton has the same overall
structure and positioning within the object. However, differences exist.
First, our method produces smoother curve skeletons than [37] and [183].
This is due to the density sharpening step, which does not have an equiva-
lent in the latter two methods. Also, [7] requires a so-called connectivity
surgery step to repair the curve skeleton after the main Laplacian advec-

80

3.8 D I S C U S S I O N

tion has completed. This necessary step has the undesired by-product
of creating straight-line internal skeleton branches (Figure 3.19 d, palm
center). Secondly, we correctly find the skeleton’s ligature and inter-
nal branches. This is also the case for all other methods except [99],
where all skeleton branches are merged in a single junction point (Fig-
ure 3.19 b). This fact is not surprising, given the branch collapsing post-
processing step in the latter method. It is not clear to us why this step is
required (or beneficial), as it actually changes the topology of the skele-
ton, and thus may impair operations such as shape analysis or matching.

3.7.6.2 Parameters

All parameters of the method are fixed and independent on the input
shape, i.e. skeleton saliency threshold σ0 = 0.05 (Sec. 3.7.3), number
of considered views uniformly distributed around a sphere centered in
the object center N = 500 (Sec. 3.7.4.2), screen resolution P2 = 10242

pixels (Sec. 3.7.4.1), and angle between the camera-pair view vectors
α = 20◦ (Sec. 3.7.4.2). Less views (N < 500) will generate sparser-
sampled curve skeletons, as discussed in Sec. 3.7.4.2. Decreasing the
pixel resolution generates slightly thicker point distributions in the curve-
skeleton cloud. This is expected, since we have less and coarser-spaced
2D skeleton pixels, which also implies higher depth estimation errors
(Eqn. 3.9). Decreasing α under roughly 5 degrees generates too large
inaccuracies in the depth estimation; increasing it over roughly 30 de-
grees reduces the likelihood of good correspondence pairing; hence, our
setting of α = 20◦.

a) b) c) d) e) g)f)

Figure 3.19: Comparison with related methods: (a) our method; (b) [99]; (c)
[183]; (d) [7]; (e) [37]; (f) [183]; (g) [135] (see Sec. 3.8)

3.8 D I S C U S S I O N

This chapter dealt with the extraction of medial descriptors (feature
points, regularized surface skeletons, and regularized curve skeletons)
from polygonal 3D shape representations. Methods for the extraction of
surface and curve based medial axis from three dimensional shapes have
been presented. We next discuss and outline our key contributions, and
thereby set the scope of the extensions and refinements proposed in the
next chapters.

81

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

3.8.1 Regularized surface skeleton extraction

I N P U T The presented method works on both uniformly-sampled and
non-uniformly sampled mesh models. These meshes can be of any
genus (see the rabbit, cat, and dragon models), self-intersecting
(cow model), and non-closed (hand model). In particular, the
sampling resolution of the extracted surface skeletons follows
the local sampling resolution of the input mesh: Highly-sampled
mesh areas generate highly-sampled surface skeleton areas, while
coarsely-sampled mesh areas generate coarsely-sampled surface
skeleton areas. This is a desirable property, since highly-sampled
mesh areas typically contain more surface details, which in turn
should lead to more surface-skeleton details. Conversely, coarsely-
samples mesh areas are typically poor in details, so by producing
coarsely-sampled surface skeleton areas for them, we save both
computation time and storage space. The proposed skeleton extrac-
tion method requires only an oriented point cloud (no connectivity
is required). Connectivity data is only used for the computation of
the skeleton regularization.

AC C U R AC Y Voxel-based skeletons are limited by the voxel resolu-
tion [20, 66, 135]. Like Stolpner et al. [165], our skeletons are
point clouds close to the true medial axis within a user-prescribed
precision in world space. Separately, our image-based shape recon-
struction from its (simplified) skeleton is real-time and near-pixel
accuracy.

S C A L A B I L I T Y A 10243 distance-and-feature-transform volume needs
at least 4GB RAM [20, 64, 180]. An equivalent mesh, roughly 1M
triangles, needs only 24MB RAM, which is essential given typical
1GB GPU RAM limits. Voxelization has also large speed costs
and is delicate for certain meshes [43, 50, 116]. Multi-resolution
voxel schemes reduce memory costs, but complicate algorithms
and reduce GPU speedups. Table 1 (Sec. 3.2.1) (τ = 10−3, ε =
0, equivalent to a 10243 volume) shows that our method is over
100 times faster than [17, 37, 93, 108, 135, 165], even without
voxelization costs.

G E O D E S I C C O M P U TAT I O N Our GPU computation of shortest, straight-
est geodesics (SSGs) is over two orders of magnitude faster, and
more accurate, than state-of-the-art techniques [121, 170, 190],
making global skeleton regularization practical for large models.
Our method is directly usable for any application requiring fast,
near-exact, geodesics on meshes. As such, this method can be
used also for other applications besides computing regularized
surface skeletons.

82

3.8 D I S C U S S I O N

S I M P L I C I T Y Our framework has no complex computational geometry
operations or degenerate cases, unlike [108, 135, 165]. Its only
user parameters are the skeleton centeredness τ and number of
geodesic directions M, explained in Secs. 3.2.1 and 3.3.

3.8.2 Curve skeleton extraction

We discuss next our two proposed methods for extracting curve skeletons
from surface skeletons (Section 3.6) and from shape projections respec-
tively (Section 3.7).

3.8.2.1 Curve skeleton extraction from surface skeletons

Existing curve skeleton extractors have widely different speed, accuracy,
and curve skeleton definitions [7, 25, 31, 37, 64]. Our curve skeletons
cannot replace all such methods – as we have noted earlier with several
occasions, many curve skeleton methods exist, and most of them use
different curve skeleton definitions. Certain of these definitions may (or
may not be) optimal for certain applications. However, from a structural
perspective, our method is novel in the sense that it offers a fast way to
extract curve skeletons from a surface skeleton cloud – in other words,
we show that curve skeletons can be seen and computed as ‘skeletons of
skeletons’. The only method that is directly equivalent to our approach
that we are aware of is presented in [181]. There, the curve skeleton is
computed by iteratively shrinking a surface skeleton point cloud in the
local direction given by the bisector of the skeletal feature vectors. In
contrast to this iterative approach, our method presented here works in
an ‘integral’, rather than incremental (or differential) manner – we iden-
tify curve-skeleton points by computing a cumulative importance met-
ric that discriminates them from regular surface-skeleton points, similar
to [135].

Apart from [181], the closest methods to our approach are the me-
dial geodesic function (MGF) [37] and ROSA [172]. Yet, we use a dif-
ferent angle-based criterion than MGF and also than ROSA which com-
putes curve skeletons as centers of point-cloud projections on a cut plane
found by optimizing for circularity. Computationally, we are two orders
of magnitude faster than ROSA and MGF, and on average 50 times faster
than Au et al. [7] (Sec. 3.6.3). Additionally, compared to the variational
method of Hassouna et al. [64], we are 20 times faster (Figure 3.13,
Tab. 5 vs Figure 10 in [64]).

3.8.2.2 Curve skeleton extraction from shape projections

Our projection-based method extends the view-based curve-skeleton ex-
traction of Livesu et al. in several directions: (1) Using salience-based

83

E X T R AC T I O N O F M E D I A L D E S C R I P T O R S F RO M P O LY G O N A L S H A P E S

skeletons to guarantee preservation of terminal skeleton branches, (2) us-
ing depth information to reduce the number of false-positives in the 3D
skeleton reconstruction, and (3) sharpening the obtained point-cloud rep-
resentation to better approximate the 1D singularity locus of the curve
skeleton. We trade off speed for accuracy, by generating more conserva-
tive skeleton samples and using more viewpoints. However, by using a
GPU implementation, we achieve the same speed as the original method,
but deliver a much cleaner and sharper 3D skeleton point-cloud approxi-
mation. Overall, our method can be used either as a front-end for recon-
structing line-based representations of 3D curve skeletons, or for directly
rendering such skeletons as unstructured point clouds.

Our image-based method maintains all of the desirable properties of
curve skeletons advocated by related work [7, 31, 99, 174, 183]: Our
skeletons are thin and locally centered within the object. Higher-genus
objects (with tunnels) are handled well (see rabbit and rotor models, Fig-
ure 3.18). The method is robust against noise, due to the sharpening step
(see dino and armadillo models, Figure 3.18). Thin, sharp detail protru-
sions of the models generate curve skeleton branches, as long as these
parts project to at least 1 pixel in screen space (see neptune, spider, and
rabbit models, Figure 3.18). This is due to the usage of the 2D skeleton
saliency metric, which keeps 2D skeleton branches reaching into such
salient shape details (Sec. 3.7.3). Input model resolution, e.g. polygon
count, is largely irrelevant to the end result, since 2D skeletons are com-
puted in image space.

In terms of limitations, our image-based method cannot recover com-
plete curve skeletons for shape parts which are not visible from any view-
point, i.e., permanently self-occluded. This is an inherent problem of
view-based 3D reconstruction. For such shapes, the object-space skele-
tonization methods mentioned in Chapter. 3 should be used.

We have implemented our method in C++ with OpenGL and CUDA
and tested it on a 2.8 GHz MacBook Pro with an Nvidia GT 330M
graphics card. The main effort is spent in computing the regularized
2D salience skeletons (Sec. 3.7.3). We efficiently implemented the com-
putation of DT∂B, FT∂B, ρ , and σ (Eqns. 2.1-3.6) using the method
in [20], one of the fastest exact Euclidean distance-and-feature trans-
form techniques in existence (see our publicly available code at [178]).
The remaining steps of our pipeline are trivial to parallelize, as points
and camera views are treated independently. Overall, our entire pipeline
runs roughly at 500 frames/second. Given that we use more views than
Livesu et al., i.e. roughly 500 vs 21, our CUDA-based parallelization
is essential, as it allows us to achieve roughly the same timings as this
method.

84

3.9 C O N C L U S I O N

3.9 C O N C L U S I O N

This chapter introduced several methods for extracting medial descrip-
tors from large polygonal input shapes. Both surface and curve skeleton
extraction methods were presented. Moreover, regularization techniques
for both surface and curve skeletons are presented, based on the geodesic-
based metric of [135]. All in all, our methods allow the simple, fast, and
accurate computation of multiscale curve and surface skeletons from
large and complex 3D shapes represented as polygonal meshes. If reg-
ularization is not required, our methods can also handle oriented point-
cloud shapes. Separately, we have presented a method for the fast and
accurate computation of curve skeletons from multiple 2D views of 3D
shapes. Together with our 3D curve-skeletonization method, our view-
based method strengthens our overall claim that curve skeletons can be
seen as ‘skeletons of skeletons’ of 3D shapes. We believe that this opens
new ways for the theoretical understanding of skeletonization (and the re-
sulting different skeleton types) as a recursive dimensionality-reduction
process based on the notion of centrality under a suitable (Euclidean)
distance-from-boundary metric.

From a practical perspective, we now have efficient, easy-to-use, and
robust tools that allow us to easily compute highly-accurate skeleton
models of complex shapes. As such, this chapter is the starting point
towards further exploration of medial properties. In the next chapters,
several methods for subsequent analysis of medial surfaces are presented,
based on the 3D skeletons computed by the methods presented here.

85

4M U LT I S C A L E M E D I A L C L O U D A NA LY S I S
M E T H O D S

It’s not the tools that you have
faith in - tools are just tools.
They work, or they don’t work.
It’s people you have faith in or
not. Yeah, sure, I’m still
optimistic I mean, I get
pessimistic sometimes but not
for long.

Steve Jobs

4.1 I N T RO D U C T I O N

In the previous chapter, we have shown how we can efficiently compute
accurate surface and curve skeletons from large 3D oriented point clouds
and, subsequently, regularize these if surface connectivity information is
available. Specifically, given a raw (oriented) point cloud that describes a
(possibly non-watertight) surface, we are able now to extract both its 3D
curve skeleton and its more complex 3D surface skeleton. Given also con-
nectivity information for the input point cloud (in the form of a polygonal
mesh), we are next able to regularize our 3D curve and surface skeletons,
thereby generating a multiscale point classification where removing un-
interesting small-scale, or noise-induced, branches is subject to a simple
thresholding. The entire method is efficiently parallelized on both the
CPU and the GPU, and is robust and easy to use for a wide variety of
3D shapes. However, the application of this skeletonization method in
practice can encounter a number of challenges, as follows.

First, let us assume that the input shape we want to skeletonize does
not come as a mesh, but an unstructured point cloud. In this case, we
cannot apply our geodesic-based regularization (Sec. 3.3), since this tech-
nique requires the ability to compute geodesics on a surface that approx-
imates the input cloud. One could consider tackling this problem by us-
ing, in a preprocessing step, one of the many surface reconstruction tech-

This chapter is based on the following papers:

1. J. Kustra, A. Jalba, and A. Telea. Robust segmentation of multiple intersecting
manifolds from unoriented noisy point clouds. CGF, 33(1):73–87, 2014

87

M U LT I S C A L E M E D I A L C L O U D A N A LY S I S M E T H O D S

niques in order to extract a 3D meshed surface from the input point cloud.
As we shall see, however, there are many cases where this reconstruction
is very challenging, e.g. in the case of clouds having non-uniform point
densities, clouds containing a large amount of positional noise, or clouds
that do not locally describe the sampling of a manifold. In all such cases,
we cannot directly apply our skeletonization to the input cloud. More-
over, if the extracted 3D mesh does not match certain quality properties
(manifold structure, non-degenerate faces, no self-intersections), com-
puting geodesics on such meshes is challenging.

Secondly, as discussed in Sec. 3.8, our skeletonization method pro-
duces an unstructured point cloud that approximates the surface skeleton,
rather than a surface representation of the same skeleton. This skeletal
point cloud is sufficient for certain applications, such as the image-based
shape reconstruction from its surface skeleton discussed in Sec. 3.4.
For other applications, however, we need more information such as the
separate medial sheets or the point connectivity information. Examples
of such applications are shape segmentation methods using the surface
skeleton [130], surface classification methods [134], or, more plainly,
visualizing the manifold structure of the surface skeleton.

One way to jointly tackle the above two problems is to focus our atten-
tion on methods that process both general point clouds (such as those that
describe our input 3D shapes) and 3D skeletal point clouds (such as those
created by our skeletonization methods presented in Chapter 3). Specifi-
cally, we are interested in methods that allow us to recover the manifold
structure of such point clouds. When applied on our input shapes, this
delivers us the connectivity information required for our geodesic-based
skeleton regularization. When applied on our output surface skeletons,
this delivers us compact skeletal representations which are required by
subsequent applications.

In this chapter, we present a general-purpose method that is able to
denoise a point cloud, by eliminating its outlier samples, and also seg-
ment it into a set of manifolds. As compared to other related methods,
our proposal can robustly handle point clouds which represent a col-
lection of non-watertight, self-intersecting, manifolds with boundaries.
Using this method, we show how we can denoise point clouds similar
to our input shapes to be skeletonized, so that we can next use standard
surface-reconstruction methods to obtain our desired input meshes. Next,
we show how our method can segment a skeletal point cloud (potentially
containing noise points, i.e. skeleton fragments corresponding to small-
scale input-shape noise or details) into separate manifolds, so that we can
next use the same standard surface-reconstruction methods mentioned
above to create a 3D meshed representation of our surface skeletons.

88

4.2 N O I S Y P O I N T C L O U D S E G M E N TAT I O N I N T O M A N I F O L D S

4.2 N O I S Y P O I N T C L O U D S E G M E N TAT I O N I N T O M A N I F O L D S

4.2.1 Introduction

Point cloud models of 3D shapes are generated by many applications
such as surface scanning [123], stereo reconstruction [136], shape pro-
cessing [72, 135], medical imaging [157], and skeletonization (see Chap-
ter 3). Extracting clean 3D surfaces from such point clouds is an impor-
tant task. Many methods exist for reconstructing an approximation of a
continuous 2D surface S ⊂ R3 from a point cloud S. However, most
such methods pose constraints on the manifold structure of S and/or
structure of the point cloud S, such as the sampling density of S, avail-
ability of normals, and presence of watertight manifolds. A more restric-
tive constraint is that S contains a single non-self-intersecting mani-
fold M ⊂ R3. Point clouds created by 3D laser scans typically meet
the above manifold constraint. Other applications however can generate
point clouds which sample intersecting manifolds. Examples hereof are
medial shape processing 3, where 3D skeleton manifolds naturally inter-
sect; CAD reverse-engineering, where one aims to separate several inter-
secting shapes from a single point cloud, e.g. in the case where topology
information was lost; and dimensionality reduction [161].

Extracting non-manifold and/or (self) intersecting manifold surfaces
from unoriented noisy point clouds is very challenging, since reconstruc-
tion is ill-posed without prior simplifying assumptions on the manifold
structure. As such, few methods that are able to treat such point clouds
exist in the literature [23]. To address this, we propose to first segment
the cloud into subsets which have manifold properties. Such subsets can
next be reconstructed into manifold meshes by many existing surface re-
construction techniques, as a post-processing step. Our contribution in
this chapter focuses on point cloud segmentation (as opposed to e.g. sur-
face reconstruction from point clouds): Given an unoriented point cloud,
we first extract locally quasi-flat point groups. Next, we assemble these
groups into larger point sets using a global smoothness criterion. No
assumption is made on the manifolds’ shapes, sizes, or (self) intersec-
tions. Finally, we reconstruct meshed manifolds from each such point
set using standard existing surface reconstruction techniques. Manifold
smoothness is user controllable via two parameters. Our method is ro-
bust against geometric or topological noise, i.e. extracts smooth, clean,
manifolds embedded into noisy clouds.

The structure of this chapter is as follows. Section 4.2.2 reviews re-
lated work. We next detail the three steps of our method: local point
classification (Sec. 4.2.3.1), global classification (Sec. 4.2.3.4), and man-
ifold reconstruction (Sec. 4.2.3.8). Section 4.2.4 presents applications in
manifold cloud clustering, denoising, and medial surface reconstruction.
Section 4.3 discusses our method. Section 4.4 concludes the chapter and
outlines future work directions.

89

M U LT I S C A L E M E D I A L C L O U D A N A LY S I S M E T H O D S

4.2.2 Related work

Extracting manifold surfaces from noisy 3D point clouds has been re-
searched in several fields, as follows.

4.2.2.1 Data clustering

If the cloud is a mix of smooth (intersecting) manifolds with noise,
extraction can be seen as a data clustering problem. Clustering meth-
ods use assumptions on the underlying data, e.g. linear manifolds [63,
191], minimal space between manifolds [21], knowing the manifold
count [161], or normal data [127]. Spectral clustering can handle curved
manifolds, but its performance is low for intersecting manifolds [61].
K-manifolds [161] uses dimensionality reduction [184] to estimate
geodesic distances between points and uses this distance to cluster
points via expectation-maximization. K-manifolds can extract curved
manifolds, but needs to know the number of clusters, where each point
can belong to just one cluster. Since a geodesic distance is used to
separate clusters, this approach fails for non-intersecting clusters (see
further Sec. 4.2.4.1). Kushnir et al. [85] cluster manifolds by finding
a minimal normalized-cut in a weighted graph. However, this method
is not suitable for manifolds with varying sampling density. Recently,
Ioannou et al. proposed a point-cloud segmentation method based on
a so-called Difference of Normals (DoN) operator [70]. Point normals
are estimated at two given spatial scales r1 and r2, by fitting a plane on
each point’s neighbors within the radii r1 and r2 respectively. Next, the
difference of the two normals ∆n is computed. Large differences indicate
the existence of shapes in the cloud at a scale between r1 and r2. This
allows selecting points on shapes at a desired (user-provided) scale, and
subsequently clustering these points into groups to find separate objects.

4.2.2.2 Outlier removal

Points with statistical properties diverging from the desired smooth man-
ifolds are removed [18, 65, 74, 81, 142]. Such methods do not address
point clouds specifically. However, data statistics (distribution, distances,
and density) can have a too wide variance for non-uniformly sampled
clouds with many noisy outliers, e.g. tens of percents of the cloud size.
Sotoodech et al. [160] remove outliers recursively, in decreasing dis-
tance from the cluster center. However, such approaches do not work
well for datasets where noise and data overlap or which contain non-
intersecting manifolds far away from the largest data density (see fur-
ther Sec. 4.2.4.2). For such datasets, tensor voting (TV) provides an al-
ternative solution [105]. The main idea is to represent local geometric
structure, or features, using e.g. second-order symmetric tensors of the
covariance matrix created from the neighbors of each point. Each point
lying on a (potentially-noisy) manifold propagates its local feature in

90

4.2 N O I S Y P O I N T C L O U D S E G M E N TAT I O N I N T O M A N I F O L D S

a small neighborhood of user-specified radius σ , by casting a vote to
all nearby points. The neighborhood is determined by a dense so-called
‘voting field’, aligned with the local point. The vote is a tensor generated
according to the local tensor and position in the voting field. All votes
are accumulated in order to generate the new local tensor or feature. The
final tensor field is then further processed to extract 3D surfaces as iso-
surfaces of the extremal directions of the tensor field [105, 105].

4.2.2.3 Surface reconstruction

Point-cloud surface reconstruction often uses global priors, e.g. surface
smoothness, water-tightness, viewpoint-invariance, and topology [2, 12,
29, 38, 39, 46, 72, 77, 149, 173]. For noisy clouds, we distinguish be-
tween denoising [189] and surface extraction methods [36, 115, 152].
Chang et al. present a comprehensive comparison of the strengths and
limitations of 16 surface reconstruction methods [23]. They show that,
apart of their own method, all other reviewed methods cannot handle non-
manifold surfaces and/or intersecting manifolds. However, the method of
Chang et al. is much slower, and more complicated, than our proposal
(see Sec. 4.3).

4.2.2.4 Our contribution

Our goal is to separate manifold points from an input noisy cloud. Our
priors are a set of (self-) intersecting manifolds with or without bound-
aries, such as present in surface-skeleton clouds, among other situations.
This is more general than typical priors in data clustering, outlier re-
moval, and surface reconstruction: Unlike manifold clustering, we ex-
tract manifolds by labeling points as belonging to several, one, or no
manifold (i.e., noise). Unlike outlier removal, we allow a much higher
amount and spread of noise. Unlike surface reconstruction, we segment
the input cloud into separate manifolds, so we can use standard surface
reconstruction techniques onto each such manifold, with no further com-
plications or constraints on the input.

4.2.3 Method

Our input is a point cloud S = {xi} ⊂ R3 which represents the sampling
of a surface S ⊂ R3 consisting of one or several possibly (self-) inter-
secting manifolds Mi, embedded into noise. Normals at the points xi are
not required. We first classify, or label, S into a set of point clouds Mi⊂ S,
such that each Mi is the sampled representation of Mi. The classification
handles intersecting manifolds, i.e. Mi ∩M j can be non-void for i 6= j.
To handle noisy clouds, we allow certain points from S which cannot be
classified as belonging to any smooth manifold, to be labeled as noise,
and further ignored, i.e.

⋃
i Mi ⊆ S.

91

M U LT I S C A L E M E D I A L C L O U D A N A LY S I S M E T H O D S

a) nearest neighbors

of a given point x

ν(x)

b) normals for

7 triangles in ν

c) Gauss map

clustering into c1,c2

d) local patches (red=c1,

blue=c2, yellow= c1 c2)

ti(x)
c1={t5,t6,t7}

c2={t1,t2,t3,t4}

c
1

c
2c1

c2

t1

t2
t3

t4

t5 t6 t7

e) patch graph and

seed points ()

f) final result (real dataset)

Manifold cuts are in yellow
U

Figure 4.1: (a-e) Algorithm steps (see Secs. 4.2.3.1-4.2.3.8 for details). (f) Three
manifolds are extracted from a noisy point cloud.

Classification has two phases (Figure 4.1). First, for each small spa-
tial neighborhood ν(xi)⊂ S of a point xi ∈ S, we compute all point sets
µ i

j ⊂ ν(xi) which describe quasi-flat manifolds embedded in ν . We call
this local classification (Sec. 4.2.3.1). Next, we group the point sets µ i

j
into sets Mk which describe large, connected, manifolds Mk. We call this
global classification (Sec. 4.2.3.4). Finally, we reconstruct piecewise-
linear (meshed) representations of the manifolds Mk from the sets Mk
(Sec. 4.2.3.8).

4.2.3.1 Local classification

A key property of a 2D manifold is its local flatness. To reason about
local flatness, we consider each neighborhood ν(xi), xi ∈ S. Such neigh-
borhoods can be defined e.g. using the k nearest neighbors of xi or neigh-
bors within a ball of fixed small radius (Figure 4.1 a), as detailed further
in Sec. 4.3.

4.2.3.2 Local surface estimation

To determine all manifolds which a neighborhood ν(xi) admits, we first
construct all possible flat surfaces which pass through xi and two other
points xm,xn ∈ ν(xi), i 6= m 6= n, i.e. all triangles Tν = {(xi,xm,xn)}.
From these, we exclude degenerate triangles, i.e. those which have near-
zero area or, in other words, near-collinear or near-identical vertices.
The maximum triangle count is given by the number of possible 2-
permutations without repetition i.e. k!

(k−2)! where k = |ν(xi)| is the neigh-
borhood size. Next, for each neighborhood ν , we gather the unoriented
normals ni of all triangles ti ∈ Tν into a normal-set Nν (Figure 4.1 b).

Consider now the map γ : Nν → S2 where S2 is the unit sphere in R3.
Here, γ maps from each normal n ∈ Nν to the sphere point indicated by
n, seen as a vector starting at the sphere center. γ is also known as the
Gauss map of a surface formed by all triangles in Tν [56]. The peaks
of γ coincide with the normal directions of the most salient manifolds,
since these are the directions along which many triangles, packed within
the small spatial area ν , are oriented. Hence, we can use γ to extract our
desired quasi-flat manifolds within ν . We distinguish three cases:

92

4.2 N O I S Y P O I N T C L O U D S E G M E N TAT I O N I N T O M A N I F O L D S

a. If ν samples a quasi-flat surface, all triangles ti ∈ Tν have similar
normals n, so γ has two clear peaks (at n and −n, respectively);

b. If ν samples the intersection of two or more manifolds, γ has two
or more such peak-pairs;

c. If γ does not have clearly separated peaks, but is a rather flat signal,
we cannot reliably extract clear quasi-flat manifolds from ν , i.e. ν

samples a volumetric point distribution rather than a few intersect-
ing quasi-flat surfaces.

All points whose normals fall under such a peak-pair in the Gauss map
γ are thus points in ν which belong to the same quasi-flat surface. Hence,
if we can reliably find well-separated peaks in γ , we can find the desired
separate quasi-flat surfaces in ν . If such peaks are far apart in γ , their
corresponding quasi-flat surfaces should self-intersect within ν , since ν

is small and these surfaces are not parallel. The way we separate far-apart
peaks in γ is discussed next in Sec. 4.2.3.3. For illustration hereof, the
Gauss map for seven triangles in Figure 4.1 c captures the intersection
of two quasi-flat surfaces within the considered neighborhood, one with
3 triangles, the other one with 4 triangles.

4.2.3.3 Segmenting the Gauss map

To separate the different quasi-flat surfaces in a neighborhood ν , we clus-
ter the neighborhood’s Gauss map γ using the geodesic distance on the
sphere S2 between the map’s normals, defined as

d(ni ∈ Nν ,n j ∈ Nν) = arccos |ni ·n j| ∈ R+ (4.1)

where · denotes vector dot product. Since we do not know a priori the
number of peaks in γ , we use a hierarchical bottom-up, full-linkage, ag-
glomerative clustering on the distance matrix induced by d on Nν [68].
This yields a dendrogram D whose nodes ni = {t j ∈ Tν} are sets of tri-
angles having similar normals. We next cut D at a user-given normal dis-
similarity level dmax. For each node ni selected by the cut, we collect all
vertices of triangles in ni to create a so-called quasi-flat surface or patch
ci ∈ ν . We also store in each patch ci all normals of its triangles. We
denote this set of normals by n(ci). The threshold dmax gives the amount
of curvature we allow for our quasi-flat surfaces over ν . Small values of
dmax yield more, and flatter, patches ci. Larger values yield fewer, and
more curved, patches. For a discussion on parameter setting, see further
Sec. 4.3.

Repeating this process, we obtain, for each point xi in the input cloud,
a set πi = {c j} ⊂ ν(xi) of quasi-flat patches c j which pass through xi.
The size of the set πi tells what type of point xi is: If |πi|= 1, one patch
passes through xi, so we say that xi is a flat point. If |πi| > 1, more
patches pass through xi, so we consider that xi is an intersection point

93

M U LT I S C A L E M E D I A L C L O U D A N A LY S I S M E T H O D S

of several manifolds or a flat patch surrounded by noise. For example,
for a point on the intersection line of the two planes in the cloud in Fig-
ure 4.1 d, we get two patches π = {c1,c2}. Of course, the notions of flat-
ness and intersection used here are subject to the flatness threshold dmax
(see also Sec. 4.3). The further distinction between several intersecting
manifolds and noise (both occurring when |πi| > 1) is not done explic-
itly by counting the size of the set πi, but implicitly, by the global process
which joins overlapping similar-orientation patches to each other, as de-
scribed further in Sec. 4.2.3.4.

Our approach is similar to Weber et al. [194] where, for each point,
all local triangulations containing the current point are projected on a
Gauss map, which is next clustered. However, while Weber et al. use this
local analysis to find sharp edges only, we shall use our local patches
to reconstruct manifolds past such implicit edges, as described next in
Sec. 4.2.3.4.

Conceptually, our quasi-flat patches c j resemble the idea of splats as
used in point-based rendering (PBR), e.g. [82, 162]: We also want to ap-
proximate the surface (or intersecting surfaces) around each input point
cloud xi by a local quasi-flat structure, and for this, we use the k near-
est neighbors of xi. Also, both our patches, and PBR splats, overlap their
corresponding neighbors, to produce a full coverage of the approximated
surface. However, several differences exist. First, PBR splats are typi-
cally circular or elliptic in shape, whereas our patches do not have a con-
strained shape, except for their quasi-planarity given by the Gauss map
clustering. Secondly, a patch explicitly stores all normals of its points
(used further to merge patches into manifolds, see Sec. 4.2.3.4, whereas
a PBR splat typically fits an analytic surface to its sample points and
use this surface further. During this merging process, we only enforce
local quasi-flatness constraints on the resulting manifolds, whereas a
PBR splat has typically a global smoothness constraint, due to the above-
mentioned surface fit. Finally, we allow several patches with significantly
different orientations to co-exist at manifold intersection points, whereas
PBR splats are typically not used to model such intersecting surfaces. As
such, we use here the term patches to distinguish these from PBR splats.

4.2.3.4 Global classification

To find the desired manifolds Mk from the local patch-sets πi = {c j} com-
puted previously, we assume that each c j is part of exactly one Mk. We
justify this as follows. First, the patches c j are quasi-flat or lightly curved,
by construction – thus, it would make little sense to assign the same
quasi-flat structure to two different manifolds. Secondly, any two such
patches from the same small neighborhood ν are oriented at strongly
different angles, since our clustering threshold dmax finds strong, sep-
arated, peaks in the Gauss map (see also Sec. 4.3). Thus, when such
situations occur, we have two manifolds intersecting in ν , each of the

94

4.2 N O I S Y P O I N T C L O U D S E G M E N TAT I O N I N T O M A N I F O L D S

two patches belonging to a different manifold. Thirdly, we assume that
all points in any Mk belong to some patch, i.e. that our manifolds are a
union of patches

⋃
k Mk =

⋃
i πi.

Assembling patch sets πi into manifolds Mk is described next.

4.2.3.5 Patch connectivity graph

First, we determine how patches in the patch-sets πi around each point
xi relate to each other. For this, we construct a patch connectivity graph
G = (V,E =V ×V), as follows (Figure 4.1 e). For each patch ci, we add
a graph vertex u(ci) to V . Given two patches cα and cβ , we define their
surface dissimilarity δ as

δ (cα ,cβ) = min
nA∈n(cα), nB∈n(cβ)

d(nA,nB) (4.2)

with d given by Eqn. 4.1. If two points xi ∈ S,x j ∈ S, which belong to
the same patch-set, have patches cα ∈ πi,cβ ∈ π j whose dissimilarity δ

is below a given value δmax, we add an edge to E between u(cα) and
u(cβ). Since we compare only points xi,x j belonging to the same patch-
set, δ is evaluated only for close, overlapping patches. Although Eqn. 4.2
is equivalent to a full-linkage between all normals in n(cα), n(cβ), we
speed up its computation by adding an edge between two graph nodes as
soon as we find two normals nA,nB which are closer than δmax. We store
G as a binary adjacency matrix where each entry defines if two patches
are connected or not. For a discussion on the setting of δmax, see further
Sec. 4.3.

G could be directly used to find points of the different manifolds Mk
e.g. by computing its connected components via flood filling. However,
this only works if manifolds always intersect at non-acute angles, which
is not the case for many datasets (see examples in Sec. 4.2.4.2). If mani-
folds intersect at acute angles, a connected component of G could cover
more than a single manifold. Indeed, patches close to manifold intersec-
tions and which belong to different manifolds differ too little in terms
of normals, and thus get connected when building G. We solve this is-
sue and robustly detect intersecting manifolds from the patch graph G in
two steps: seed point detection (Sec. 4.2.3.6) and manifold point labeling
(Sec. 4.2.3.7).

4.2.3.6 Seed point detection

Seed points Ω ⊂ S are cloud points located in quasi-flat areas and far
from potential manifold intersections. They are starting points for a flood
fill process over G which ultimately delivers our manifold points Mi
(Sec. 4.2.3.7). We compute Ω as follows.

1. Mark all cloud points xi ∈ S as unvisited, and set Ω to ∅.

95

M U LT I S C A L E M E D I A L C L O U D A N A LY S I S M E T H O D S

2. Find an unvisited flat point xi, i.e. with |πi|= 1 (Sec. 4.2.3.3).

3. Add xi to Ω.

4. Mark all unvisited flat neighbors {x j ∈ ν(xi)
∣∣|π j| = 1} of xi as

visited, using a flood fill.

5. Repeat from step 2 until all points in S are visited.

Ω contains seed points far away from manifold intersections, one seed
for each segment of a manifold part delimited by manifold intersec-
tion curves and manifold boundaries. For example, for the shape in Fig-
ure 4.1 a, we find four seeds, one for each cross arm. The point flat-
ness condition stops the fill, which starts far from intersection areas by
construction, to leak from one manifold to another; intersections act as
flood barriers, since they have non-flat points. So, we get as many seeds
as manifold segments delimited by intersections, e.g. four seeds for the
shape in Figure 4.1 a.

4.2.3.7 Manifold labeling

The seed set Ω (Sec. 4.2.3.6) could be directly used to find manifold
connected-components separated by intersection curves. Although such
results are useful [188], we aim to find entire manifolds past intersection
curves. For instance, for the shape in Figure 4.1 f, we want to find three
intersecting surfaces (red, green and blue in Figure 4.1 f) rather than
twelve quarter-surfaces. Since seed points si ∈Ω are flat, their patch-sets
have a single patch, i.e. π(si) = {c(si)}. We use this observation as fol-
lows (see also Figure 4.2 for a 2D sketch): For each si ∈ Ω, we assign a
unique ID to c(si) (step A). Next, we do a flood-fill over patches (step B).
For this flood fill, we use the patch connectivity (stored in G) instead of
the point neighbors (given by ν) used to find seeds (Sec. 4.2.3.6). Hence,
the patch-level flood fill can cross manifold intersections but stays con-
fined to the surface of a single manifold.

The patch-level flood fill adds to every patch the IDs of the seed points
which flooded through that patch. However, we are interested in having
this information at point level, i.e., find which are the seed points which
flood through each cloud point. We store this in a compact and fast way
by using a binary matrix B = {bi j}, where each row 1 ≤ i ≤ |S| is a
bit-vector whose non-zero values encode the seeds 1 ≤ j ≤ |Ω| which
flooded through point xi. We finally find the manifolds Mi as all points
which share the same row bit-combinations in B. Hence, we detect as
many manifolds as different row bit-combinations we have in B.

Points lying on manifold intersections contain seed-point information
from all manifolds intersecting at that location. To add such points to
their intersecting manifolds, we visit the k-neighbors of a given non-
intersection point xi, and add to the manifolds of xi those which con-
tain the same seed vertices as xi. The result is a manifold binary matrix

96

4.2 N O I S Y P O I N T C L O U D S E G M E N TAT I O N I N T O M A N I F O L D S

manifold 1

manifold 2

intersection point

manifolds

manifold

construction

from B row bit

combinations

patch-level flood fill

in
p

u
t
c
lo

u
d

 p
o

in
ts

manifold 1

m
a

n
if
o

ld
 2

intersection

point
x
1

flooded seed points (matrix B)

in
p

u
t
c
lo

u
d

 p
o

in
ts

manifold matrix B
~

...

...

...

final result

initial seed values

x
2

x
3

x
4

x
1

x
2

x
3

x
4

A

B

C

D

Figure 4.2: Manifold labeling, 2D sketch: (A) assignment of IDs 0..3 to seed
points x1..x4; (B) patch-level flood fill yielding matrix B, (C) con-
struction of manifolds, and (D) final manifolds (see Sec. 4.2.3.7).
Overall, from the four seed points (marked in red), we extract two
manifolds with labels 02 and 13, and one intersection point with la-
bel 0123.

B̃ = {b̃i j}, where rows 1≤ i≤ |S| correspond to the original cloud points
xi ∈ S and columns to manifolds M j, and b̃i j = 1 indicates that xi ∈M j
(Figure 4.2, step C). A point can belong to none, one or more manifolds.
Points which were not reached from any seed point, and are not seed
points themselves, belong to no manifold, i.e. are labeled as noise. Points
which belong to more manifolds lie on manifold intersection curves, and
can be used to explicitly find such curves, see e.g. the light-blue point at
the intersection in Figure 4.2 (step D), or the three yellow intersection
curves in Figure 4.1 f.

Let us now see what happens when two sampled manifolds intersect at
a small acute angle α . Figure 4.3 sketches such a situation. If the terminal
‘branches’ of the two manifolds are far enough from each other, phase
A of our algorithm finds here four seed points (x1..x4, Figure 4.3 top).
These are labeled with IDs 1..4. Next, the patch-level flood-fill phase
propagates these seeds. If α is very small around the intersection point,
each ID will ‘leak’ from its manifold-component to two other compo-
nents past the intersection point, e.g. the top-left ID 1 will flood both the
top-right and bottom-right branch. In phase C, we thus find four different
manifold components, corresponding to the unique labels 123, 124, 134,
and 234, as well as one intersection point with label 1234. If α is larger,
we have the situation in Figure 4.2, where we find only two manifolds.

97

M U LT I S C A L E M E D I A L C L O U D A N A LY S I S M E T H O D S

x
1 x

2

x
3

x
4

1 2

34

123 124

234 1341234

α

Figure 4.3: Labeling of manifolds intersecting at acute angles.

When α tends to zero, then a single seed point can be found, thus a single
manifold is extracted.

4.2.3.8 Manifold reconstruction

We have now classified the input point cloud S into a set of (intersect-
ing) point-sets Mk, each one representing a separate manifold. We can
now use several existing methods to reconstruct the desired manifold
surfaces Mk. A good candidate is the ball pivoting method [12], which
can efficiently and effectively reconstruct approximating triangle mesh
surfaces from manifold point clouds. Other surface reconstruction meth-
ods from 3D point clouds (representing manifolds) can be used as well,
as long as these methods can robustly handle non-uniform point densi-
ties and manifolds with boundaries, and are computationally attractive
(fast). Figure 4.1 f shows the final result on our running example. The
three surfaces are correctly extracted from the input cloud. Manifold in-
tersections are marked in yellow. Non-manifold noise points, found by
our extraction, are shown black.

Point classification into separate manifolds is essential to reconstruc-
tion quality: Feeding an entire, unclassified, cloud to ball pivoting would
create ‘stitches’ between points on different manifolds and close to
manifold intersections. Other existing point cloud reconstruction meth-
ods generate similar artifacts if no prior manifold classification is per-
formed [2, 36, 38, 77], since such methods are not designed for noisy
(self) intersecting surfaces (see further examples in Sec. 4.2.4.4).

4.2.4 Applications

Having presented our method for segmenting noisy 3D clouds into sep-
arate manifolds (and optionally reconstructing meshed versions of these
manifolds), we now present several applications of this method.

We start by demonstrating the application of the method for general
manifold clustering, such as manifolds found in manifold learning ap-

98

4.2 N O I S Y P O I N T C L O U D S E G M E N TAT I O N I N T O M A N I F O L D S

plications. We follow by showing how the method can be used for the
denoising of point clouds. This can be used as a pre-processing step to
apply to the input point cloud prior to skeletonization.

We follow by presenting the application of the method for medial sur-
face segmentation and reconstruction. We demonstrate for several com-
plex shapes how the method is capable of clustering the output skeletons
from the skeletonization method in 3.

Finally, the last two presented applciation focus on scenarios not nec-
essarily linked to Medial Axis: We demonstrate how the method can be
used to perform general surface segmentation, along its surface high cur-
vature areas. The last application to be demonstrated, is the usage of our
method as a pipeline element for surface reconstruction and denoising,
when in the presence of noisy input shapes.

4.2.4.1 Manifold clustering

a) c) e) b) d) f)

g) i) k) h) j) l)

Clustering with K Manifolds Clustering with our method

c
lu

s
te

re
d

 p
o

in
t
c
lo

u
d

s
a

m
p

le
 m

a
n

if
o

ld

Figure 4.4: Manifold clustering: Our algorithm (right) vs K-manifolds (left). Top
row: clustering results. Bottom row: One selected manifold from
the clustering, displayed separately for illustration purposes. Input
clouds are similar to examples in [161].

Manifold clustering of point clouds aims at labeling each point as
belonging to a manifold. The labeled cloud can be further applied in
manifold learning algorithms [161], shape segmentation, or as an input
for surface reconstruction. We compare next our method with the well-
known K-manifolds algorithm [161]. As input, we use non-uniformly
sampled manifolds embedded in 3D, see Figure 4.4: Two intersecting
curved surfaces (a,b), a four-branch spiral (c,d), and a densely-sampled
spiral cut by a sparsely-sampled plane (e,f). Since K-manifolds is very
slow (several minutes for a few thousand points), we limited our tests
to small clouds only. As Figure 4.4 shows, our method finds the several
manifolds present in the input robustly and eliminates the surrounding
noise. In contrast, K-manifolds does handle well intersecting manifolds
(Figure 4.4 a vs 4.4 b, 4.4 c vs 4.4 d), but separates manifolds from noise
less well (Figure 4.4 k vs 4.4 l).

99

M U LT I S C A L E M E D I A L C L O U D A N A LY S I S M E T H O D S

4.2.4.2 Noise removal from (intersecting) manifold clouds

Noise present in point clouds can occlude the underlying surfaces and
limit the success of techniques such as surface reconstruction, cluster-
ing, and registration [23]. We evaluate the noise-removal ability of our
method for several clouds representing various surfaces. For a fraction
φ = 40% of the points in each cloud, we add an outlier close to each
cloud point x in a random direction and at a random distance from x
ranging from 0 to 40% of the cloud’s size. We next use our classifica-
tion method (Sec. 4.2.3) to find noisy points, i.e., which do not belong to
any manifold. When removing these points, we should recover the initial
noiseless cloud (ground truth).

S
O

R
 m

e
th

o
d

O
u

r
m

e
th

o
d

N
o

is
y

 c
lo

u
d

T
e

n
s

o
r

v
o

ti
n

g

Figure 4.5: Noise removal from manifold clouds. Noisy shapes (top) are de-
noised with SOR [142], TV [105], and our method. Zoom-ins show
details marked in blue. TV: red markers show incorrectly removed
points; green markers show not removed noise.

We compared our method with the statistical outlier removal (SOR) of
Rusu et al. [142] and tensor voting (TV) [105, 105]. Figure 4.5 shows the
results. We remove considerably more outliers (noise points) than SOR,
i.e. produce surfaces which are very close to the original. Our method
works well even in spatially complex areas, see e.g. the gun handle de-
tail. TV can also effectively remove most noise points. However, in this
process, TV tends to create spurious surfaces that connect the original
surface with nearby noise points (Figure 4.5, green markers: bunny years,
mouse tail connected to body, and thickening of shuttle wings), or it re-
moves details altogether (Figure 4.5, red markers: shuttle tailwing and
gun handle). The balance between incorrectly kept noise and incorrectly
removed details is strongly influenced by TV’s volume sampling resolu-
tion [105, 105]: Higher resolutions remove less original non-noise points,

100

4.2 N O I S Y P O I N T C L O U D S E G M E N TAT I O N I N T O M A N I F O L D S

but also keep too many noise points. Lower resolutions sub-sample the
extracted tensor field. As a consequence, less manifold structures can be
traced through noisy areas (so more noise is subsequently removed), but
also more original detail points are classified as noise and thus removed.

Figure 4.6 shows the difference between added and removed points,
as percentage of the original input point-count, for different values of φ

ranging from 0 (no noise added) to 40% extra noise points added. Values
are averaged for all models in Figure 4.5. We did not include TV in this
comparison, since its behavior with respect to keeping incorrect noise
points vs removing correct original points strongly depends on parame-
ter settings (as explained earlier) and also on the actual input cloud. For
φ = 0, both our method and SOR do remove some points of the original
model (5% and 15% respectively). Although, ideally, this value should
be zero for a point cloud consisting only of manifolds, we remove less
such points than SOR, which is desirable. As more noise is added, the
ratio of added vs removed points stays stable with our method, i.e., we re-
move only the added noise. In contrast, SOR removes increasingly more
points than the added noise, i.e. removes more (up to almost 20%) of the
original, noise-less, points.

D
iff

er
en

ce
 b

et
w

ee
n

ad
de

d

an
d

re
m

ov
ed

 p
oi

nt
s

Percentage of added noise outliers

our method

SOR

Figure 4.6: Percentage of removed points in excess of added noise points for
different noise amounts, averaged for the models in Figure 4.5 Blue
line: our method; red line: SOR method [142])

4.2.4.3 Medial surface segmentation and reconstruction

Medial surfaces, or skeletons, contain the loci of maximally inscribed
balls within a given shape [122, 154]. Such surfaces consist of tens
of manifolds of various sizes which meet along a set of Y-intersection
curves [23, 34, 93]. Each manifold corresponds to a separate edge-set on
the initial surface S . Separating medial surfaces into their correspond-
ing manifolds is useful for applications such as shape classification [23],
shape matching [33], and segmentation [130, 132].

In Chapter 3, we have proposed our own method for extracting surface
skeletons which, similar to Ma et al., produces point cloud skeletal rep-

101

M U LT I S C A L E M E D I A L C L O U D A N A LY S I S M E T H O D S

m) n) o) p)

a) b) c) d)

e) f) g) h)

i) j) k) l)

M
e

s
h

-b
a

s
e

d
re

c
o

n
s

tr
u

c
ti

o
n

O
u

r
m

e
th

o
d

(n
o

is
e

 r
e

m
o

v
e

d
)

O
u

r
m

e
th

o
d

(n
o

is
e

 d
ra

w
n

)
Is

o
to

p
ic

re
c

o
n

s
tr

u
c

ti
o

n
T
e

n
s

o
r

v
o

ti
n

g
re

c
o

n
s

tr
u

c
ti

o
n

q) r) s) t)

Figure 4.7: Medial surface reconstruction: (a-d) High-accuracy ground
truth [181]. (e-h) Our method (noise points removed). (i-l)
Our method, (detected noise rendered in black). (m-p) Isotopic
reconstruction [39]. (q-t) Tensor voting reconstruction [105].

resentations. However, as stressed by Ma et al., that medial point clouds
are of limited use since, since for typical applications, more informa-
tion is required, such as the skeleton surface of the individual manifolds.
Creating such representations from medial clouds is highly challenging,
since typical medial surfaces contain numerous (self-) intersections of
very closely spaced, non-watertight, manifolds. Also, small-scale noise

102

4.2 N O I S Y P O I N T C L O U D S E G M E N TAT I O N I N T O M A N I F O L D S

on the input shape creates spurious medial sheets, which show up as out-
lier points in the medial point cloud [101, 108, 154].

In Section 3.4.1, we presented a simple method for reconstructing
meshed representations of the surface-skeleton manifolds, using Delau-
nay triangulations. However, as discussed there, this type of reconstruc-
tion produces artifacts such as small-scale holes or stitches for skeletal
clouds that have closely-spaced or sparsely-sampled manifolds or con-
tain noise (are not regularized). Moreover, this reconstruction method
cannot separate the individual manifolds, but produces a single mono-
lithic skeletal mesh.

Using our manifold extraction method presented in Section 4.2.3, we
show next that we can simultaneously

A: eliminate outlier (noise) medial points;

B: obtain a mesh where each medial manifold is separately identified.

Figure 4.7 illustrates this on two medial clouds. Images (e-l) show the
skeletal manifolds extracted by our method, colored differently for il-
lustration purposes. As visible, our method captures well the complex
medial topology and also robustly finds and eliminates the quite numer-
ous noise points – compare images (i-l) where such points are drawn in
black with images (e-h) where we eliminated these points. As mentioned
earlier, such noise points are unavoidable when extracting medial axes of
discrete objects. Hence, our method has the added value of acting as a
filter that generates clean medial surfaces.

For comparison ground-truth, we next used the medial surface recon-
struction method presented in Chapter 3.

Our method produces nearly identical medial surfaces with the
method presented in Section 3.4.1 (Figure 4.7 a-d vs Figure 4.7 e-h).
Differences consist in small-scale holes present in our manifolds, which
do not exist in the reconstruction as in Section 3.4.1. Upon closer inspec-
tion, we see that these holes are due to limitations of the ball pivoting
method that we use following our point classification, and not due to the
fact that our method incorrectly classifies as noise (and thus removes)
manifold points. Hence, we argue that our main goals A and B are
reached. The mesh collapse method (Section 3.4.1) does not produce
such small holes in the medial surface reconstruction. This is expected,
since this method requires the input to be provided as an oriented mesh
rather than an unoriented cloud. Moreover, the mesh collapse method
needs the feature transform linking this mesh with its medial cloud,
the relatively expensive and complicated importance computation for
denoising [135] (which adversely affects goal A), and delivers a single
unstructured medial surface (thus does not satisfy goal B). Although
we require far less information (meshless unoriented medial clouds), i.e.
use no knowledge that these points encode a medial surface, we can still
extract separate and clean medial manifolds.

103

M U LT I S C A L E M E D I A L C L O U D A N A LY S I S M E T H O D S

4.2.4.4 Surface segmentation

Given a point cloud S which samples a surface S in 3D, our method can
segment S into smooth regions separated by sharp edges. In contrast
to many surface segmentation techniques, we do not require S to be
closed, non-intersecting, consisting of a single manifold, have normals,
or be a mesh.

Figures 4.10 (d-l) show our cloud segmentation for various 3D point
clouds. Zoom-ins show point cloud details to provide insight into the
point samples’ distribution in various areas. To better visualize the seg-
mented point-sets, we show their reconstructions by ball pivoting. Image
(d) shows the segmentation of a cloud from a 3D structured-light scan of
a room by a Kinect device. The point sampling is relatively uniform, but
noisy. The objects in the room are segmented correctly from each other
and the room floor. The back wall (red) is only partially segmented since
points in that range, far from the camera, are highly noisy, so they do not
create a smooth manifold. In images (e-f), the various parts of the rabbit
statue (body, plinth faces, inner ear surfaces, and heart detail) are cor-
rectly found. Since the input cloud describes a hollow shape, we also get
manifolds for the inner surfaces – see the head, body and plinth cavities
in the half-opaque rendering in Figure 4.10 f. Very thin, highly-curved,
details like the screw connecting the head to the heart shape are marked
as noise, as they have a higher local curvature than the imposed flatness
dmax (Sec. 4.2.3.3). Images (i-j) show the segmentation of a cloud hav-
ing several tens of intersecting shapes (sails, mast parts, and hull parts).
In image (i), we used a low-resolution cloud (38K points). As seen in
the zoom-in, fine details such as the masts have extremely few points in
the longitudinal direction. Hence, few or no patches are found along the
mast structure, just as the screw for the rabbit model, so no manifolds
are found there (case c of local surface estimation, Sec. 4.2.3.2). Using
the higher-resolution cloud (image (j), 74K points) also finds these de-
tail manifolds along the masts. Image (k) shows a complex cloud (125K
points) of a CAD model of a car engine with over 100 self-intersecting
surfaces and highly non-uniform sampling. Image (l) shows the extracted
manifolds. As for the ship, too thin and/or sparsely sampled details are
classified as outliers and no manifolds are extracted there.

Figure 4.8 shows the results of the difference-of-normals (DoN)
method [70], as implemented in the PCL library [70], applied to two
of our point clouds. As the DoN method requires, we first specified the
scale range [r1,r2] within which features are sought. We did this, by trial
and error, so as to obtain results as similar as possible to those produced
by our method (Figure 4.10 b,d): Specifically, for the room scene, we
want to detect segments corresponding to the various objects positioned
on the floor; for the kitten model, we want to detect its medial manifolds.
The DoN threshold ∆n was set to various values in the range [0.1,0.5],
similar to [70]. The resulting point clusters from DoN are rendered as

104

4.2 N O I S Y P O I N T C L O U D S E G M E N TAT I O N I N T O M A N I F O L D S

a) Kinect room b) kitten

Figure 4.8: Difference-of-normals (DoN) segmentation [70] applied to two point
clouds (compare with results in Figure 4.10 b,d).

colored balls, for display purposes. Input points not selected by DoN
are rendered light gray. We see that DoN separates reasonably well the
small-scale objects from the room floor. Also, a large part of the kitten’s
medial manifolds are found and separated from each other. However,
several issues are visible too. First and foremost, the large manifolds
present in the room (floor, walls) are not found – since these are not
within the user-selected scale range [r1,r2]. If we carefully tune both r1
and r2, we can find parts of these manifolds. However, in the same time,
we loose the ability to segment the smaller-scale objects. For the kitten
medial cloud, segmenting is even more challenging, since its manifolds
are less well separated from each other. In contrast, our method better
separates both large and small manifolds, in both the room and kitten
point clouds (Figure 4.10 b,d). This is explained by the fact that our
method does not search for manifolds at a (user-specified) scale range,
but rather tries to construct the largest possible manifolds allowed by the
dmin and δmin constraints.

105

M U LT I S C A L E M E D I A L C L O U D A N A LY S I S M E T H O D S

O
u

r
m

e
th

o
d

Is
o

to
p

ic
 r

c
o

n
s

tr
u

c
ti

o
n

B
a

ll
 p

iv
o

ti
n

g
P

o
is

s
o

n
 r

e
c

o
n

s
tr

u
c

ti
o

n
T
e

n
s

o
r

v
o

ti
n

g

Figure 4.9: Shape reconstruction comparison for noisy point clouds with inter-
secting manifolds. From top to bottom, rows: our method, isotopic
reconstruction [39], ball pivoting [12], Poisson reconstruction [77],
and tensor voting [105]. Zoom-ins show point cloud details of se-
lected model areas, for getting insight into the sampling distribution.

4.2.4.5 Surface reconstruction and denoising

Figure 4.9 shows a different use-case: We now use our method to recon-
struct surfaces formed by several intersecting manifolds embedded into
noise. We compare our results with several surface reconstruction meth-
ods, which are well known in the literature, easy to use, and their authors

106

4.2 N O I S Y P O I N T C L O U D S E G M E N TAT I O N I N T O M A N I F O L D S

provided their implementations: isotopic reconstruction [39], ball pivot-
ing [12], Poisson reconstruction [77], and tensor voting [105, 105].

Our method recovers best the various manifolds embedded into the
noisy clouds. Isotopic reconstruction yields the next best results, as it
can handle surfaces with boundaries, but still creates many small-scale
spurious, non-manifold, surface fragments. Ball pivoting, as expected,
cannot handle well dense noise and has problems for highly non-uniform
clouds, like the rhino model whose rump has a much lower sampling den-
sity than the rest of the model (see zoom-ins in Figure 4.9). However, if
ball pivoting is executed after our clustering method, most noise points
are discarded, given the built-in denoising of our method. This drasti-
cally improves the effectiveness of ball pivoting (compare Figure 4.9,
first and third rows). Also, since each segmented manifold is smooth,
ball-pivoting can be used with a larger rolling-ball radius. This increases
the ball pivoting robustness with respect to non-uniform sampling. Com-
paring the results of ball pivoting with isotopic reconstruction, we see
that the latter suffers far less from noise and also does not produce un-
desired holes. Hence, isotopic reconstruction is a very good candidate
to replace ball pivoting in our per-manifold reconstruction following the
proposed denoising and classification. Poisson reconstruction, using an
octree depth and solver divide value of 10, produces smooth surfaces,
but cannot handle well (intersecting) manifolds with boundaries. Finally,
tensor voting, used with a volume sampling resolution of 5003 and point-
neighborhood size σ = 15 (for details, see [105, 105]) yields smooth
surfaces, but fails in thin areas where parallel surfaces are close to each
other, like the thin muzzle and horns of the elk model.

a) b) c) d)

g) h)

i) j)

e) f)

k) l)

Figure 4.10: Shape segmentation examples. (a-c) Medial surfaces. (d) Structured
light acquisition. (e,f) Shape with inner surfaces. (g,h) Mechanical
shapes. (i,j,k,l) Mix of different structures with varying sampling
density.

107

M U LT I S C A L E M E D I A L C L O U D A N A LY S I S M E T H O D S

We also used the isotopic and tensor voting reconstruction methods to
extract manifolds from medial point clouds (see Figure 4.7, two bottom
rows). We notice here similar issues as in the examples in Figure 4.9.
The isotopic method tends to create small-scale non-manifold noisy de-
tails. In contrast, tensor voting creates very smooth surfaces and handles
manifold intersection regions very well. However, tensor voting has the
tendency to extend the reconstructed manifolds far into the noisy point
regions in an anisotropic way, i.e. retains noise points which allow a
smooth continuation of the medial manifolds but in the same time elim-
inates noise points from the same areas if these are not aligned with the
reconstructed manifolds.

dmax = 0.2 δmax = 0.05 dmax = 0.3 δmax = 0.05 dmax = 0.4 δmax = 0.05

dmax = 1.5 δmax = 0.05 dmax = 1.5 δmax = 0.1 dmax = 1.5 δmax = 0.2 dmax = 1.5 δmax = 0.25

Figure 4.11: Effect of parameters dmax and δmax on manifold extraction results.

4.3 D I S C U S S I O N

We next discuss several relevant aspects of our method for extracting
clean manifolds from noisy 3D point clouds.

4.3.0.6 Generality

We use a local feature detection for each point-cloud spatial neighbor-
hood, followed by a global flood fill to find individual manifolds. Our
approach has two main contributions. First, we extract manifold clouds
from large amounts of embedding noise. Next, we segment manifold
clouds from a single input cloud. This allows a direct reuse of exist-
ing surface reconstruction or shape analysis methods for point clouds on
complex, multi-manifold, noisy clouds, even when such methods were
designed to work only on smooth manifold clouds.

4.3.0.7 Robustness

Our method is robust to outlier noise, as shown by several examples
(Figs. 4.5, 4.7). This feature is due to the hierarchical clustering of
the local normal maps (Sec. 4.2.3.3) and the global clustering of local

108

4.3 D I S C U S S I O N

quasi-flat patches (Sec. 4.2.3.4). The first clustering separates locally rel-
evant patches from noisy outliers, so it acts as a fine-grained noise filter.
The second clustering ensures that only similar neighboring patches get
grouped into smooth manifolds, so it acts as a coarse-grained noise filter.
We pose no constraints on the cloud sampling density, as we detect local
flatness using k nearest neighbors, rather than range-search with a user-
prescribed radius, such as e.g. [70]. The examples in this chapter show
that we can handle point clouds with a significant amount of sampling-
density variation (see Figs. 4.9 and 4.10). However, we acknowledge our
limits: Highly non-uniformly sampled clouds (e.g. Figs. 4.10 i,k) will be
classified as noise.

4.3.0.8 Parameters

Our method has three parameters, as follows. The neighborhood size (k
nearest neighbours) should be large enough to create triangles around
a given point x to represent all possible surfaces crossing x, but not
too large so that meaningless surfaces are created. On all our models,
regardless of sampling density, k ∈ [7..10] provided good results. Set-
ting k too large creates, along with the desired patches (that is, oriented
along the sampled manifolds), several spurious patches at various ran-
dom orientations. However, these are typically much fewer than the de-
sired patches, so their effect gets filtered out by the Gauss map seg-
mentation and subsequent patch-level flood fill steps. The local flatness
dmax ∈ [0,π/2] (Sec. 4.2.3.3), set in this chapter to 0.15, models the com-
promise between the extracted manifold smoothness, robustness to point-
displacement noise, and manifold separation accuracy. Figure 4.11 (top
row) illustrates this. Lower dmax yield more manifolds, since we allow
normals to locally vary less within a manifold. This, for example, sepa-
rates the toes and eyes detail of the rhino. Larger dmax values yield fewer,
but potentially more curved, manifolds – the toes and eye get merged
with the surrounding points. Increasing dmax even further merges the
lower and upper leg fragments. For noisy datasets, larger dmax values
also have the effect of classifying more points as noise, since less curva-
ture is allowed within a manifold. Classifying points as noise prevents
them from being treated by the ball pivoting reconstruction which, in
turn, creates the small-scale holes mentioned in Sec. 4.2.4.3. However,
we argue that such holes are not a classification problem, but a limitation
of the postprocessing surface reconstruction method being used: If the
aim is to remove such holes and still extract smooth manifolds, as con-
trolled by dmax, then one should use a surface reconstruction tool that can
handle non-uniformly sampled manifold clouds. If, however, the aim is
to extract less smooth manifolds, then dmax should be increased. Another
approach would be to set dmax adaptively as a function of the neighbor-
hood’s point distribution. However, how to do this and still guarantee the

109

M U LT I S C A L E M E D I A L C L O U D A N A LY S I S M E T H O D S

desired noise removal and manifold intersection detection is a topic of
future research.

The global flatness, or patch similarity, δmax ∈ [0,π/2] (Sec. 4.2.3.5)
acts similarly to dmax, but at a coarser scale (see Figure 4.11, bottom
row). Small δmax values extract relatively flat manifolds, i.e. split larger
manifolds along their crease lines. Large δmax values extract less, and
more curved, manifolds. For the rhino model example, increasing δmax
progressively merges all toe details with the legs, and further merges
legs with the rump. For the figures shown in this chapter, we used δmax ∈
[0.05,0.1].

4.3.0.9 Performance

We implemented our method in C++ using kd-trees for nearest-neighbor
searches [114]. We easily added CPU parallelization for local classifica-
tion (Sec. 4.2.3.1) and patch graph building (Sec. 4.2.3.5), since points
and patches are treated independently. Table 6 shows timings for a single-
threaded vs a 4-core 2.8 GHz MacBook 4 GB RAM laptop. Our method
scales well with the number of available cores. If desired, a GPU (e.g.
CUDA) port could be easily done for further speed-ups. Our CPU imple-
mentation takes roughly half the time of the GPU surface reconstruction
from noisy clouds in [152]. For the same datasets, the tensor voting sur-
face extraction in [105] takes tens of minutes (at a volume resolution
5003 and σ = 15). This is not too surprising, given that the tensor voting
method is essentially based on several convolution passes of a large 3D
tensor volume with a filter of kernel size σ . Decreasing the volume reso-
lution speeds up tensor voting, but makes it unable to capture small-scale
manifold details. Finally, the DoN method [70] has similar costs to our
method. For example, the kitten skeleton and room models in Figure 4.8
took 4.9 and 15.96 seconds respectively (compare with our timings in
Tab. 6).

Computing the patch dissimilarity δ with full-linkage (Eqn. 4.2) is
O(N2) worst-case for a patch with N normals on average. N is a few
tens for all tested models. The early termination criterion (δ < δmax,
Sec. 4.2.3.5) makes this cost much lower in practice, roughly O(N) (see
also below). We also tested an average-linkage patch dissimilarity, i.e.,
using the distance between patch average normals, which is O(N). For
the models in this chapter, this gave a speed-up of about 20%, with a
slight quality decrease – a few small-sized manifolds appear, since aver-
ages of two patch normal sets usually differ more than the closest nor-
mals of such sets. Given this, we chose to pay the small extra cost of
full-linkage for increased manifold quality.

4.3.0.10 Limitations

If a neighborhood ν has no apparent 2D manifold structure, but a vol-
umetric or one-dimensional point density, the local Gauss map has no

110

4.3 D I S C U S S I O N

Model Points Manifolds Unclustered Time (sec.) Time (sec.)
points (1-core CPU) (4-core CPU)

Mouse (N) 54829 61 21288 27.33 7.52

Space Shuttle (N) 106580 36 35902 34.68 12.58

Glue gun (N) 128887 124 46379 26.32 7.31

Stanford bunny (N) 42322 4 5976 20.97 4.86

Intersecting planes 30486 3 0 4.89 1.38

Rabbit 124998 40 4012 7.89 2.15

Engine 124481 426 34235 52.33 14.29

Ship 38240 67 9420 13.56 3.72

Ship 2 74573 117 18232 28.02 7.63

Screwdriver 27152 5 673 7.43 1.96

Rockerarm 43213 4 1322 12.12 3.59

Kinect room 135402 19 23733 36.87 9.75

Elephant (MS) 173012 28 16232 56.32 15.51

Cow (MS) 252180 51 22309 89.74 24.04

Scapula (MS) 116930 4 5022 37.28 10.25

Pig (MS) 225281 76 15471 73.38 20.23

Horse (MS) 120442 42 10503 39.65 11.10

Kitten (MS) 43510 23 9503 12.38 3.53

Table 6: Timings for models shown in this chapter (N=model with added noise
(see Figure 4.5); MS=medial surface (see Figure 4.7))

clearly separated peaks. In that case, the neighborhood is labeled as noise
(see e.g. ship’s thinnest masts and its ropes, and the rabbit screw in Fig-
ure 4.10). If this happens for most neighborhoods, e.g. in the case of a
surface sampled overall by a thick point cloud, our manifold extraction
will fail. This is expected, as our method is designed to find 2D manifolds
only. In this respect, tensor voting is more general, as it can extract 2D
surfaces, 1D curves, and junction points where several surfaces or curves
intersect. However, for the manifold extraction case, both our method
and tensor voting share the same limitation: Given a neighborhood where
n manifolds intersect, if the sampling rate of these manifolds is too low
with respect to n, neither method will be able to reliably separate these
manifolds, and both methods will classify the neighborhood as noise.
Examples of such configurations are visible for the car engine cloud seg-
mentation (Figure 4.10 k. When the sampling rate is high enough, our
method can reliably extract several intersecting manifolds, as illustrated
by the medial examples in Figure 4.7.

111

M U LT I S C A L E M E D I A L C L O U D A N A LY S I S M E T H O D S

4.3.0.11 Comparison

Many surface reconstruction methods exist, so the comparisons in
Sec. 4.2.4 are clearly not exhaustive. Yet, as mentioned, we are not
aware of any method that can extract (self) intersecting manifolds with
boundaries from noisy clouds, except [23] and [105]. For instance, [12]
and [39] can handle boundaries, but are challenged by noise and inter-
sections; [77] can handle noise well, but not manifold boundaries and
intersections. [36, 115, 152] can handle noise well, but cannot handle
intersections.

In the class of methods that explicitly handle intersections, we are
around 5 times faster than [23] (Tab. 6 vs Figure 27 in [23]). Note that
[23] does not appear to include the medial surface computation cost. If
one added that cost, our method is over 15 times faster. Also, [23] is
considerably more complex to implement, as it requires a separate ro-
bust extraction of 3D medial surfaces from point clouds [93]. Compared
to [105], we are over two orders of magnitude faster, and handle better
manifolds which are close to each other.

Our method does not aim to replace all general-purpose surface re-
construction methods from point clouds. When certain properties hold,
such as lack of noise, intersections, or boundaries, then other methods
should be used, as outlined above. However, when all these properties
lack, i.e. we have a noisy cloud describing intersecting manifolds with
boundaries, our method can segment such clouds into subsets that have
manifold properties. Such subsets can be next used for piecewise surface
reconstruction (like in the examples shown in this chapter), but also for
other, more general, tasks involving 3D point cloud processing, such as
denoising, classification, segmentation, and matching.

4.4 C O N C L U S I O N S

We have presented a method to robustly segment unoriented point clouds
into smooth manifolds. We handle clouds with complex combinations of
an unknown number of potentially (self) intersecting, open or closed,
manifolds embedded into noise. Using a clustering approach, we find
the most probable local quasi-flat surface patches passing through each
point, and merge these patches to classify the input points into manifolds
or noise. Classified per-manifold points are reconstructed into a mesh
using out-of-the-box cloud reconstruction methods. Compared to other
methods, we allow input points to be classified as belonging to no man-
ifold (e.g. noise), one manifold, or being on the intersection of several
manifolds. This allows handling highly noisy clouds or point clouds hav-
ing complex structures. The method allows for an easy parallelization, is
simple to use, and has robust default parameter values. We demonstrate
our method on several point clouds with use-cases in manifold extrac-

112

4.4 C O N C L U S I O N S

tion from embedding noise, regularized medial-surface reconstruction,
and point-cloud surface segmentation, and point-cloud reconstruction.

In particular, our method can be effectively used for the separation
of a 3D skeletal cloud, obtained by e.g. the skeletonization method pre-
sented in Chapter 3, into its distinct manifolds. This allows using classi-
cal surface reconstruction methods, e.g. ball pivoting or similar, to create
meshed representations of each separate skeletal manifold. Additionally,
the denoising properties of our point-cloud clustering method allow re-
moving noisy skeletal points from the skeletal cloud, thereby producing
clean surface skeletons. This is an alternative regularization method to
the geodesic-based technique presented in Chapter 3, which has the im-
portant advantage of removing the constraint that the input shape has to
provide connectivity information. Moreover, this type of regularization
is simpler to implement than the geodesic-based technique. As such, our
manifold segmentation method presented in this chapter has clear advan-
tages for the skeletonization context.

One further application area in which our method could prove useful is
CAD reverse engineering, i.e., the recovery of separate 3D parts, or com-
ponents, from a point cloud where topology information has been lost. A
different application area is for other data than point clouds. By replac-
ing the definitions of spatial neighborhood and orientation similarity, we
could extract smooth manifold-like structures embedded in other spaces,
e.g. find bundles or sheets of fibers in tractography datasets or segment
multivariate spatial data. Such topics are left open to future research.

113

5M E D I A L P O I N T C L O U D D E N S I T Y A NA LY S I S

It is the harmony of the diverse
parts, their symmetry, their
happy balance; in a word it is
all that introduces order, all that
gives unity, that permits us to
see clearly and to comprehend
at once both the ensemble and
the details.

Henri Poincaré

5.1 I N T RO D U C T I O N

In Chapter 3, we proposed a general-purpose method for extracting both
3D surface and 3D curve skeletons from complex 3D mesh shapes. Sub-
sequent examples illustrated the method’s speed, scalability, robustness
to noise, regularization properties, and generality. We also discussed the
bidirectional mapping that our surface skeletons establish vs the input
shape surface, by using the feature transform (Section 3.5.1). In Chap-
ter 4, we showed how we can segment such 3D surface skeletons (rep-
resented as point clouds) into separate manifolds, and construct meshed
representations for these manifolds. As such, Chapter 4 shows how we
can refine a raw 3D skeleton description by adding supplementary infor-
mation to it, such as the classification of individual skeletal points into
manifolds, and the addition of skeletal manifold connectivity.

However, the refinement of raw skeletal data presented in Chapter 4
is obviously not the final step one can take to enrich 3D skeletal ab-
stractions. There is more information residing in such raw 3D skeletons,

This chapter is based on the following papers:

1. J. Kustra, A. Jalba, and A. Telea. Shape segmentation using medial point clouds
with applications to dental cast analysis. In Proc. VISAPP, pages 151–159, 2014

2. J. Kustra, M. de Jager, A. Jalba, and A. Telea. Teeth shape modeling pipeline for
oral healthcare appliances development. In Proc. ICCE. IEEE, 2014

3. J. Kustra, M. de Jager, A. Jalba, and A. Telea. A medial point cloud based
algorithm for dental cast segmentation. In Proc. ICCE. IEEE, 2014

115

M E D I A L P O I N T C L O U D D E N S I T Y A N A LY S I S

such as local point density, distribution of feature points, and distances
of skeletal points to the input shape, to name just a few. Such informa-
tion can be explicitly extracted and exploited to many ends, such as the
enabling of additional shape-processing applications using skeletal de-
scriptors. Now that we have seen how to scalably compute accurate 3D
surface skeletons from complex shapes (and how to create manifold rep-
resentations of such skeletons), it is time to focus on these higher-level
steps of skeleton-based shape-processing applications.

In this context, this chapter takes a further step for using specific
properties of 3D skeletal clouds to enable shape-processing applications.
Specifically, we exploit the properties of the relationship linking the sam-
pling density of an input shape ∂Ω with the sampling density of its 3D
surface skeleton S∂Ω. For point-sampled shapes (such as 3D meshes or
point clouds), we have briefly outlined, in Chapter 3, that the two densi-
ties are related, due to the fact that our skeletonization method produces
precisely one skeleton point per input-shape point. Globally, this implies
that input-shape zones having higher sampling densities lead to surface-
skeletons zones having higher sampling densities; a similar relationship
exists between low sampling density zones on the input surface and its
surface-skeleton.

However, as we shall next, the sampling density of surface skeletons
does not only depend on the (local) sampling density of its input surface,
but also on the local curvature of this input surface. Specifically, convex
input-surface features result into a locally higher skeleton density, and
concave surface regions result into a lower relative density of the skele-
ton respectively. These variations in sampling density can be used as
tool for the analysis of specific surface features. This analysis can next
lead to efficient algorithms for segmenting 3D surfaces, with concrete
applications in a real-world shape analysis problem: the segmentation of
teeth from an orthodontic 3D cast. This application also demonstrates
the added-value of medial descriptors in real-world contexts where other
shape processing algorithms have not been able to produce comparable
results.

5.2 A P P L I C AT I O N C O N T E X T

Segmenting 3D surfaces into their natural components has many ap-
plications in shape analysis, computer vision, shape compression, and
medical imaging. Segmentation requirements strongly depend on the tar-
get application, so many segmentation methods exist. At a global level,
one can distinguish between patch-type and part-type segmentation
methods [150]. Patch-type methods use local shape information such
as surface curvature to produce quasi-flat segments separated by high-
curvature creases or ridges. Part-type methods are more semantically-
oriented, i.e., try to find segments that a human user would intuitively see

116

5.2 A P P L I C AT I O N C O N T E X T

as distinct logical shape parts. Such segments are not always separated
by high-curvature ridges.

For some shapes, neither patch-type nor patch-type methods do yield
the desired result. Consider for example the dental cast model in Fig-
ure 5.3 a, where we want to find the separate teeth as individual segments,
and also separate them from the gums. Part-based methods fail here,
since the teeth are not clear protrusions from the shape’s rump, as would
be, e.g., the limbs sticking out of an articulated body model. Patch-based
methods also fail, since ridges separating teeth from each other and from
the gums are quite shallow, so local-curvature detectors typically used
by patch-based methods will fail to find segment borders. Figure 5.3 b
illustrates this by showing the surface’s curvature (concave=blue, con-
vex=red).

The main motivation of the work presented in this chapter is the need
to segment dental casts, which are tools used to create orthodontic treat-
ment plans for dental patients. Advances in range imaging and 3D scan-
ning allow capturing dental scans directly from a patient [6], and next to
digitize such shapes into 3D surface meshes of the teeth-and-gum struc-
ture. Digital casts allow the automatic assessment of several orthodontic
metrics, such as the arch length discrepancy, and new opportunities to-
wards teeth alignment treatment planning and simulation. However, all
such analyses require a prior segmentation of the scan into individual
teeth and the gums. Typical dental scans do not exhibit sharp creases
between individual teeth (due to scanning resolution limitations or ac-
tual teeth touching), nor between teeth and gums. Hence, existing patch-
based segmentation cannot be directly used.

Dental cast segmentation has been widely explored recently due to the
increasing availability of digital models. However, in this context, man-
ual segmentation is prohibitively slow for current orthodontic practice.
Several methods have been proposed instead, ranging from fully auto-
mated methods [83] to methods needing minimal user interaction [67,
84, 197]. The method in [83] avoids the 3D mesh processing complexity
by first transforming the 3D data into a plan-view range image which is
next segmented. Recently, a snake-based approach for teeth segmenta-
tion has been proposed [84]. Here, a snake is iteratively fit to the surface
curvature until it reaches local minima. However, such methods have
problems in low-curvature regions, i.e., where creases separating teeth
are shallow. Also, such methods assume a way to find the positions and
number of teeth prior to segmentation, e.g. using the dental arch metric.
In our proposal, we do not rely on such priors.

For the motivating use-case of segmenting dental casts, we present
next a new method to compute patch-based segmentations of 3D shapes
which do not exhibit strong creases between segments. Instead of using
local information such as curvature, we take a global approach, based
on the shape’s surface skeleton. Key to our method is the observation
that surface skeletons capture all input shape creases, regardless of their

117

M E D I A L P O I N T C L O U D D E N S I T Y A N A LY S I S

sharpness. To compute a high-resolution surface skeleton, we use the
GPU-based skeletonization method presented in Chapter 3, which deliv-
ers point-cloud skeletons for models of hundreds of thousands of poly-
gons in a few seconds. Next, we regularize the surface skeleton, to elim-
inate small manifolds that do not correspond to input shape segments
which are large enough to be of interest. Next, rather than segmenting the
surface (as virtually all patch-based method do), we segment its regular-
ized surface skeleton, by a mean-shift approach. Finally, we project back
the found skeletal segments onto the input surface, and use a nearest-
neighbour approach to yield a segmentation that entirely covers the input
shape (Figure 5.1).

Figure 5.1: Algorithm workflow: A shape is transformed into the medial domain.
Its skeleton is next segmented by a mean-shift approach. The seg-
mentation is transferred back to the original shape.

The structure of this chapter is as follows. Section 5.3 details our
skeleton-based segmentation method. Section 5.4 presents our segmen-
tation results. Section 5.5 discusses our method and its results. Finally,
Section 5.6 concludes the chapter.

5.3 M E T H O D

Our method first transforms the surface into its medial domain (see Fig-
ure 5.3). Specifically, we use the skeletonization method presented in
Chapter 3 to compute a simplified, or regularized, skeleton Sτ of the
input surface, where the simplification parameter τ takes care of remov-
ing noisy skeletal points created by very small surface perturbations. We
next exploit skeletal point density properties to perform the segmenta-
tion in this domain. Finally, we project the medial segmentation back to
the surface. We detail these steps next.

5.3.1 Surface curvature vs skeleton density

To further segment our skeleton cloud, we use the following observa-
tions linking the curvature of a shape ∂Ω and point density on it surface
skeleton S∂Ω. Consider a densely sampled 3D shape ∂Ω. For a positive-
curvature region of ∂Ω (bump, or convexity), the feature vectors rn,
where r is the surface-to-skeleton distance at a surface point x (equal

118

5.3 M E T H O D

sampled convex surface

sampled skeleton

sampled concave surface

sampled skeleton

high-density medial

point clusters

Figure 5.2: Relationship between local surface curvature and medial cloud den-
sity. Top: Concept sketched in 2D. Bottom: High-density point clus-
ters are formed inside positive-curvature 3D surface areas (front
teeth).

to the distance transform of ∂Ω sampled at the respective skeleton point)
and n, the normal at the same surface point x, point inwards in a con-
verging fashion. Hence, the density of the skeletal points corresponding
to the regions around x will be higher than the surface sampling density.

Conversely, for a region on ∂Ω with negative curvature (a crease, or
concave, region), the feature vector directions will point inwards in a
diverging fashion, so the density of the skeletal points for this region
will be lower than the surface sampling density. Figure 5.2 (top) illus-
trates this in 2D. Figure 5.2 (bottom) shows an actual example for a
3D skeletal cloud computed from a dental cast. We observe that skele-
tal parts enclosed in the front teeth present a high point density, since
these teeth are indeed convex shape parts. Note that this relationship of
the local sampling densities of the input surface ∂Ω and surface skeleton
S∂Ω use the important assumption that we compute exactly one skeleton
point per surface point. In this context, our observed sampling-density
relationship can be seen as a consequence of the earlier observation of
Siddiqi et al. that define the surface skeleton of a 3D shape as the locus of
points inside the shape having a (high) negative divergence of the bound-
ary’s distance-transform gradient [155]. Indeed, areas where this diver-
gence is highly negative indicate shape regions where many boundary
points ‘converge’ to the same or near location(s) if they were advected
in the distance-transform gradient field. Thus, these are regions where
the sampling-density of the surface skeleton would be larger than the
input surface sampling density. Of course, the ensuing question is what
happens for skeletal regions corresponding to concave boundary frag-
ments. In such regions, the divergence is (formally) still negative, but of
much lower absolute value. These regions correspond to so-called skele-
ton ligature branches. As such, these regions are hard to find by simply

119

M E D I A L P O I N T C L O U D D E N S I T Y A N A LY S I S

thresholding the gradient’s divergence. Siddiqi et al. observed this. To
find such regions, they needed to add a homotopy-preserving thinning
step to their skeletonization algorithm, thereby ensuring that divergence
thresholding would not disconnect the resulting skeletons.

For our current aims, however, the above observations on the diver-
gence of the distance-transform gradient are not critical. Indeed, we do
not use such a divergence-based measure to detect the surface skeleton.
Indeed, our surface skeletons are computed by using the ball shrinking
algorithm presented in Chapter 3, which is not sensitive to such local
properties. In contrast, our main observation here simply relates the lo-
cal sampling densities of the two surfaces (input shape and its surface
skeleton) in terms of the curvature properties of the input surface. As
such, we can next analyze the sampling density of the shape’s surface
skeleton as an indicator of the convexity of the input shape – thereby
providing us with a tool to segment the input shape.

120

5.3 M E T H O D

S
k
e
le
to
n
iz
a
ti
o
n

In
it
ia
li
z
a
ti
o
n

R
e
g
u
la
ri
z
a
ti
o
n

S
e
g
m
e
n
ta
ti
o
n

a) input mesh

c) surface skeleton

e) thresholded importance f) seed points

g) segmented skeleton h) segmented mesh

d) reconstructed skeleton

b) surface curvature

Figure 5.3: Algorithm steps: Input shape (top row). Surface skeletonization (sec-
ond row). Medial cloud regularization (third row). Medial cloud seg-
mentation and segments’ transfer to the input surface (bottom row).

5.3.2 Mean shift clustering

We now show how to use the density-related observations in Sec. 5.3.1
to segment the skeleton cloud that captures the surface of an orthodontic
scan.

Since the skeletal cloud exhibits strong density variations, it should be
possible to segment it into point clusters representing the dense regions
based on a method which exploits such density variations. An ideal such
method is mean shift clustering [30], which we extend to our segmenta-
tion needs, as follows. We start by selecting a set of seed points P ⊂ Sτ

from the simplified skeleton Sτ . The seed point selection is discussed sep-
arately in Sec. 5.3.3. Each seed point x∈P is assigned a unique ‘segment
id’. For each seed point x ∈ P, we aim to find its so-called convergence

121

M E D I A L P O I N T C L O U D D E N S I T Y A N A LY S I S

seed point

convergence
point

convergence points

a) b) c)

Figure 5.4: Mean shift clustering: (a) A seed point (black dot) is shifted to
the centroid of its skeleton-cloud neighborhood density until conver-
gence (red dot). (b) Final convergence points for dental cast. (c) Seg-
ment IDs assigned to skeleton points.

point c(x)∈R3. For this, we first find all neighbours Nε
x ⊂ Sτ of x within

a small fixed radius ε and determine the centroid of Nε
x

m(x) =
∑

y∈Nε
x

K(‖x−y‖)y

∑
y∈Nε

x

K(‖x−y‖)
(5.1)

where K is a 1D Gaussian kernel

K(x) =
1√
2π

e
x

2σ2 (5.2)

following the kernel density estimation idea in [30]. Here, ε is set to a
small fraction (about 5%) of the model size. We next iteratively shift
the seed points x to their centroids m(x) following Eqn. 5.1 (see also
Figure 5.4 a) until these stabilize, i.e., move at one iteration less than a
small threshold λ = ‖m(x)− x‖, set in practice to 10−4. Also, for each
non-seed point (which is not shifted), we define a voting weight v(y),
initialized to zero at the beginning of the algorithm. At every mean-shift
iteration, we add a value K(‖y−m(x)‖) to v(y) for each non-seed point
y ∈ Nε

x , and also add a pointer from y to m(x), to indicate that y was
int he neighbourhood of m(x). When m(x) has converged, we search
its neighbourhood for other existing convergence points c′ than itself. If
one exists, we merge the ids of m(x) and c′. Otherwise, we create a new
convergence point c = m(x).

At the end of the mean shift, all seed points have thus converged to
a set C of convergence points (see Figure 5.4 b). The ids of the points
c ∈C give us the final segments. Finally, to assign each non-seed point
y ∈ Sτ to a segment, is done by assigning to y the id of the convergence
point that it is linked to and which has the highest amount of votes within
the k last iterations (Figure 5.4 c). Different segmentation levels can be
achieved by considering the voting of only the last k iterations of the
mean shift process. This way, only the areas around the skeleton-cloud
density peaks are considered. This is illustrated by the dental cast mod-

122

5.4 R E S U LT S

els, where the gum areas remain mostly unsegmented (Figure 5.5 a-e),
for which we used a value k = 20. In contrast, for the other shapes in Fig-
ure 5.5 f-k, the full mean-shift path has been considered for the voting,
leading to the full surface being segmented into patches.

5.3.3 Seed point detection

We find the initial seed points P used in mean shift clustering by using
the specific geometry of our dental casts. We want at least one seed point
in each relevant segment (that is, inside each high-density cluster such as
the ones in Figure 5.2; we do not want seed points outside such segments.
We allow more seed points in a segment, so that finding seed points is
not parameter-critical. The definition of segment relevance is application-
dependent: For our dental cast use-case, we only want the teeth segments
and the gum, i.e., we don’t want to over-segment the gum. To achieve
this, we use as seed points all skeleton points which (a) have a low dis-
tance DT∂Ω(s) to the original surface ∂Ω and (b) have a high curvature,
computed as the angle between the feature vectors f1− s, f2− s.

5.3.4 Segmentation transfer to surface

In the last step, we transfer the skeleton segmentation to the input surface,
as follows. For each point s ∈ Sτ , we copy the segment ID of s to its two
feature points f1 and f2. However, this does not assign a segment ID to
all points on ∂Ω, since we segmented the simplified skeleton Sτ rather
than the full skeleton SΩ. For all points p ∈ ∂Ω which are not assigned
a segment ID, we search the closest surface point p′ ∈ ∂Ω which has
an ID ID(p′) assigned, and mark p with the same ID(p′). This fills the
gaps between segments on ∂Ω in distance order, yielding a full, non-
overlapping, surface segmentation. In mathematical terms, this can be
seen as a nearest-neighbor interpolation of the segment-ID signal on the
surface ∂Ω (that is, an interpolation of the signal ID at any point x ∈ ∂Ω

based on shortest geodesic distance over ∂Ω).

5.4 R E S U LT S

Figure 5.5 shows several results of our skeleton-based segmentation
method. Surface segments are colored differently, for illustration. For
images (a-e), which show dental cast scans, we see that the method sep-
arates very well the incisives, canines, molars and pre-molars, both from
each other, and also from the gums. We also see several problems. The
molars are over-segmented (Figure 5.5 a,b), and occasionally the gums
are also over-segmented (Figure 5.5 c,e). The gums over-segmentation is
not problematic for the considered orthodontic application, since users
are only interested to analyze the teeth, and not the gums. The molars

123

M E D I A L P O I N T C L O U D D E N S I T Y A N A LY S I S

a) b) c)

d) e)
f)

g) h) i) j) k)

Figure 5.5: Segmentation results for different dental casts (a-e) and other shapes
(f-k).

over-segmentation is be explained by the fact that they (a) have a more
complex geometry than the other teeth (more internal creases) and also
that, in our models, the input surface has less points here. Hence, the
skeletal manifolds for to these detail-rich areas are too poorly sampled
to fully capture their features.

We also segmented other shapes than dental casts, to get more in-
sight in the method’s behaviour (Figs. 5.5 f-k). Several observations can
be made. For models having convex surface areas separated by well-
delimited concave ridges, such as the hand or spider, we get the expected
segmentation, just as for the dental casts. For the other models, segments
are created around the most salient convex bumps of the shape. These
segments meet along the model concavities, or creases – see e.g. the nose,
eyes, and chin of the face model (Figure 5.5 j); bunny years, tail, head,
rump, and front paw (Figure 5.5 h); and the convex bone components of
the sacrum model (Figure 5.5 k).

5.5 D I S C U S S I O N

Several aspects are relevant for our method.

5.5.0.1 Simplicity and novelty

A key asset of our method is its algorithmic simplicity. We use al-
gorithms with proven accuracy, convergence, and complexity proper-
ties [30, 73, 135]. Our method is the first we are aware of to use sur-
face skeletons computed on mesh models to segment surfaces. Its only
competitor, using more expensive and lower-resolution voxel models,

124

5.5 D I S C U S S I O N

Model de
nt

al
1

de
nt

al
2

de
nt

al
3

do
g

bu
nn

y

bo
ne

ha
nd

sp
id

er

fa
ce

pts surf. 119594 127578 82887 18114 34834 41035 327323 29741 35437

pts skel. 6136 24339 11214 16823 10706 8271 128839 8389 8450

seed points 339 487 373 336 535 827 644 829 1041

CPU skel. (s) 51.3 48.53 22.87 34.89 10.96 10.26 151.68 5.85 12.8

GPU skel. (s) 11.7 11.0 5.78 3.24 3.6 1.82 31.2 0.95 2.11

CPU segm. (s) 1.95 1.92 1.3 43.07 2.71 40.12 152.02 167.53 11.35

CPU total (s) 53.25 50.45 24.17 77.96 13.67 50.38 303.7 173.38 24.15

GPU total (s) 13.65 12.92 7.08 46.31 6.31 41.94 183.22 168.48 13.46

Table 7: Segmentation timings.

is [130]. Apart from that, we note that our approach is also the first use
of mean shift to cluster skeletons.

5.5.0.2 Robustness

The method is robust to different surface point-sampling densities, as the
segmentation is performed based on the medial surface density proper-
ties. We tested our method on several dental cast models with the same
parameter settings, and obtained identical results (cf. Figs. 5.3, 5.5).

5.5.0.3 Applicability

Our method is, by construction, geared towards the segmentation of con-
vex surface patches separated by shallow concave creases. In this sense,
we stress that the skeleton simplification (Eqn. 3.7) only eliminates skele-
ton points corresponding to small-scale surface bumps (convexities), but
no skeleton point corresponding to a concavity (crease). This makes
our method principially more robust than many other curvature-based
segmentation methods. Also, our method can handle non-watertight sur-
faces (such as our teeth scans, which are not closed at the base, or the
face model in Figure 5.5 j) with no problems.

5.5.0.4 Performance

We implemented our method in C++ using ANN [114] to find nearest
neighbours and the GPU skeletonization presented in Chapter 3. The lat-
ter also provides the needed distance transform, feature points, and im-
portance metric used for skeleton regularization. For 3D surface super-
sampling, we used Yams [51]. Tab. 7 shows timings on a Windows PC at
2.66 GHz with an Nvidia 690 GTX for several shapes. Skeletonization
times include regularization (Eqn. 3.7); we show timings for our skele-
tonization method in Chapter 3 on both GPU and GPU. Segmentation

125

M E D I A L P O I N T C L O U D D E N S I T Y A N A LY S I S

timings include mean shift, segment ID assignment, and transfer on the
original surface, all done on the CPU. As expected, GPU skeletonization
is much faster than its CPU counterpart. The segmentation cost varies in
function of the actual model. For the dental casts, this cost is quite low.
Indeed, for these models, we use only the last k iterations (Sec. 5.3.2),
whereas for the other models we use the full mean shift path. The seg-
mentation (not optimized, unlike skeletonization) is dominated by the
nearest neighbor searches. Such searches can be massively accelerated
using GPUs, as shown in [73], so a GPU mean shift implementation
should massively accelerate this step.

5.5.0.5 Dental use-case

For teeth segmentation, our method can segment all teeth whose medial
surfaces converge to a point density maximum. Given the geometry
of the incisives, canines, molars and pre-molars, we saw that these
present the expected properties, so are robustly segmented. Molars have
a slightly more complex geometry, including too shallow separation
creases from gums. This creates some challenges (over-segmentation)
when using the exact same mean-shift parameters as for the other teeth
(see e.g. Figure 5.3 a,b). Possible ways to overcome this are super-
sampling the input mesh, leading to a surface skeleton with better sepa-
rated manifolds. However, we stress that, even with such limitations, our
method is superior to existing alternatives in the orthodontic industry
(see references in Sec. 5.2), as all such methods require a non-trivial
amount of user input to produce their segmentations.

5.5.0.6 Limitations

As seen in Figure 5.5, our method cannot be directly applied to any 3D
shape. The method is geared towards segmenting shapes whose skeletal
manifolds exhibit clearly separated high-density branches, each branch
corresponding to one surface segment. These are surfaces with convex
patches separated by concave ridges. As such, one should not attempt
to compare our current method with other general-purpose surface seg-
mentation methods. Still, the main added value of our technique for seg-
menting general shapes (apart from the segmentation of dental casts) is
the proof that point-cloud skeletons can be used for segmenting complex
3D surfaces. To our knowledge, this result has not been shown so far in
current literature. As such, we hope that future work will show how this
result can be extended to segmenting more general surfaces.

5.6 C O N C L U S I O N S

We have presented a method for segmenting compact convex patches
of 3D polygonal surfaces from dental cast scans which are separated

126

5.6 C O N C L U S I O N S

by shallow creases. For this, we use several properties of surface skele-
tons, in particular the sampling relationship between the skeleton and its
original surface, and the correspondence relationship between the two
surfaces given by the feature transform. To our knowledge, our method
is the second existing technique able to use surface skeletons to segment
3D surfaces. In contrast to the first published technique in this area [130],
we can directly handle meshed models without a costly voxelization step;
we do not require the complex and sensitive detection of skeletal bound-
aries; and we can treat significantly more complex shapes than the earlier
cited method in this class.

We foresee several possible extensions of our method towards a more
general-purpose surface segmentation technique. Examples are the in-
corporation of surface differential properties, captured by the feature
transform, in the analysis and segmentation of the surface skeleton,
and application-adaptive skeleton simplification metrics that preserve
or eliminate specific surface details for the purpose of more versatile
segmentation.

Apart from the above application-specific context, this chapter con-
tributes to the overall goal of this thesis by showing how specific skele-
tal properties (sampling density, in this case) can be used to support real-
world applications (shape segmentation, in this case) in a generic manner.
This, in turn, contributes to our overall claim that surface skeletons are
useful and usable descriptors that support shape processing applications.

127

6R E F I N E D A B S T R AC T I O N S F O R M E D I A L P O I N T
C L O U D S

It is the harmony of the diverse
parts, their symmetry, their
happy balance; in a word it is
all that introduces order, all that
gives unity, that permits us to
see clearly and to comprehend
at once both the ensemble and
the details.

Henri Poincaré

6.1 I N T RO D U C T I O N

In the previous chapters, we have presented several methods to extract
and regularize medial point clouds, and use such skeletal point clouds to
construct the first steps towards more advanced shape processing meth-
ods. Specifically, Chapter 4 presented a point cloud processing method
capable of identifying manifold structures embedded in noisy point
clouds. This enabled us to extract noise-free and separate manifolds
from 3D surface skeleton clouds. Chapter 5 extended the idea of refining
medial descriptors in the direction of analyzing their density properties
to enable shape segmentation applications.

However, the above medial properties (manifold sheets and local den-
sity characteristics) are not the only (useful) properties one can extract,
and reason about, for surface skeletons. Specifically, surface skeletons
have a complex structure, consisting of several so-called medial sheets,
or manifolds. Manifold points have several types, which characterize the
kind of surface points they correspond to via the MAT [58]. Boundaries
of these curves, mapped via the MAT to shape edges [134, 154], can be
used for shape segmentation [130]. The curves where sheets meet, also
called Y-intersection curves or medial scaffold, can be used for shape re-

This chapter is based on the following papers:

1. J. Kustra, A. Jalba, and A. Telea. Computing refined skeletal features from medial
point clouds. Pattern Recognition Letters (Submitted), 2014

129

R E F I N E D A B S T R AC T I O N S F O R M E D I A L P O I N T C L O U D S

construction and shape matching [23, 34, 93].The individual sheets cor-
respond to separate shape parts, enabling additional shape simplification
and segmentation applications.

Although the usage of such features, for both curve and surface
skeletons has been demonstrated and applied on voxel-based represen-
tations [130, 135], their computation for point-cloud or meshed medial
surfaces (such as introduced in Chapter 3) is far from trivial. Extracting
features such as endpoints, branches, and junctions from curve skeletons
is much easier than for surface skeletons, due to the inherent simpler
structure of curve skeletons. Among other aspects, such as a higher com-
putational simplicity and robustness, this makes curve skeletons to be
more frequently used in applications, even though they encode less infor-
mation than surface skeletons. As such, to become useful and effective
for a wide range of real-world shape processing applications, recent fast-
and-accurate 3D medial surface point-cloud extraction methods, such as
our own method presented in Chapter 3, need enhancement in the sense
of robustly classifying medial points, computing separate medial sheets,
extracting sheet boundaries and Y-intersection curves, and mapping all
these higher-level medial features robustly and efficiently to the shape
surface.

In this chapter, we show how to efficiently and robustly construct all
above features from medial surface point-clouds, by combining several
input-shape and medial properties. This turns 3D medial clouds into
shape representations which can be directly used for several shape anal-
ysis applications.

The structure of this chapter is as follows. Section 6.1.1 reviews the
challenges associated with medial surfaces as described in Chapter 3
and motivates the remainder of the chapter. Section 6.2 presents our
methods to compute these features from unstructured medial clouds. Sec-
tion 6.3 shows the use of our medial features for part-based and patch-
based shape segmentation and classification, to illustrate the applicability
of our feature computation. Section 6.4 discusses our techniques. Sec-
tion 6.5 concludes the chapter.

6.1.1 Motivation

The feature extraction or decomposition of medial surface features is an
essential step towards its further usage in applications for shape anal-
ysis or classification. Examples of such features are the individual me-
dial sheets [154, 165], Y-intersection curves or sheet boundaries, i.e., the
medial scaffold [93]. Applications of such features has been previously
demonstrated on finely-sampled voxel skeletons [132], leading to the us-
age of medial surfaces to create compelling multiscale shape segmenta-
tions [130]. Doing all above for medial clouds is, however, far from triv-
ial. In previous chapters, this analysis has been previously attempted by
using local medial geometry properties (Chapters 4 and 5). As shown in

130

6.2 C O M P U T I N G R E F I N E D M E D I A L F E AT U R E S

Chapter 4, using generic point-cloud segmentation methods for 3D sur-
face skeletons is doable, but quite challenging, since medial surfaces con-
sist of numerous intersecting manifolds with boundaries, which are hard
to capture even with very dense point clouds. In addition, the method
presented in Chapter 4 requires parameter settings related to local me-
dial geometrical properties, such as the maximum local connectivity an-
gle. These parameters are specific to the point cloud properties, which
only become available once the skeleton has been computed. Therefore,
the automation or abstraction of shape processing pipelines becomes a
non-trivial task for a high variability of input shapes.

Overall, the above observations make us believe that additional higher-
level information computed for surface skeletons, that show how these
skeletons relate to their input shapes, is useful and necessary for shape
analysis applications. Indeed, on the one hand, having such information,
beyond simple local connectivity or point-sampling density data, should
enable us to reason about shape properties on a higher level. On the other
hand, such higher level information may remove the need of setting var-
ious parameters and thresholds for the analysis of lower-level skeletal
information – the desired information is readily available, and we do not
need to ‘reverse engineer’ it from the actual skeleton geometry or sam-
pling density.

In this chapter, we present several methods that enrich a 3D medial
point cloud with several refined abstractions, or features. Rather than
using the local medial cloud geometric properties, the relationships be-
tween the medial points xi feature vectors f1, f2 and their correspondence
to surface Ω properties are used. Figure 6.1 overviews our proposal.
Given a meshed surface, we first compute its ‘raw’ skeleton point cloud.
Next, we classify medial points following [58]. This classification further
enables us to extract separate medial point-sets corresponding to medial
sheets (and subsequently detect the skeletal Y-network). Separately, all
above features (medial point types and sheets) enable us to support sev-
eral practical applications: simple and efficient medial point-cloud regu-
larization, medial sheet reconstruction, and part-based and patch-based
shape segmentation. Computing and using these refined skeletal features
is discussed next.

6.2 C O M P U T I N G R E F I N E D M E D I A L F E AT U R E S

To address the interpretation challenges outlined in Sec. 6.1.1, we next
present several new methods for computing the above-mentioned higher-
level features from skeletal point clouds. We start by showing how to
robustly classify medial points following [58], find skeletal boundaries
and Y-curves, and robustly regularize the medial surface (Sec. 6.2.1). We
next use these features to robustly segment the medial surface into sep-
arate manifolds (Sec. 6.2.2). As input for all these operations, we only
assume a surface skeleton represented by an unstructured and unoriented

131

R E F I N E D A B S T R AC T I O N S F O R M E D I A L P O I N T C L O U D S

meshed surface medial surface cloud medial points classification medial cloud decomposition Y-network extraction

patch based segmentation medial cloud regularization part based segmentationmedial sheet reconstruction

F
ea

tu
re

 e
xt

ra
ct

io
n

A
p

p
lic

at
io

n
s

surface edge detection

Figure 6.1: Refined skeletal features computed from medial point clouds (top
row) and subsequently enabled applications (bottom row).

point-cloud having exactly one skeleton point per surface point and ex-
actly two feature-points per skeleton point, as computed e.g. by our skele-
tonization method presented in Chapter 3.

6.2.1 Medial points classification

6.2.1.1 Estimating the feature transform

To classify unstructured medial clouds following [58], we first need to
estimate the feature transform FT (x ∈ S∂Ω) (Eqn. 2.3). As explained
earlier, the entire FT is not directly available in most skeletonization
methods; in particular, our point-cloud methods (Chapter 3) only com-
pute two feature points per skeleton point (Section 3.5.1). To find all
feature points, we proceed as follows. Let DTx be next a shorthand for
the input shape’s distance transform DT∂Ω(x). For each skeleton point
x∈ S∂Ω, we first find the closest points FTτ(x)⊂ ∂Ω in a radius DTx+τ ,
where τ is defined as a fraction of ερ∂Ω(x), where ρ∂Ω(x) is the average
point density on ∂Ω in a small neighborhood around {f1(x)}∪{f2(x)},
and ε is a small constant set to 0.1. The slightly increased radius deter-
mines that the set Fτ(x) will conservatively contain all feature points of
x, i.e. FT (x) ⊂ FTτ(x). Setting τ to track the local sampling density of
∂Ω allows us to conservatively estimate Fτ for non-uniformly sampled
meshes without introducing too many false-positives, i.e., minimizing
the set FTτ \FT .

Given the finite tolerance τ and the discrete sampling of ∂Ω, FTτ(x)
will also contain surface points which are slightly further from x than
feature points; this is especially salient for points x of type A3, that map
to circular or spherical sectors on ∂Ω via the feature transform. How-
ever, as we shall see next, the conservative estimation of FT (x) given by
FTτ(x) does not pose any problems to our medial attribute computation.

132

6.2 C O M P U T I N G R E F I N E D M E D I A L F E AT U R E S

6.2.1.2 Classification of medial points

Since FTτ(x) is essentially a dilated, or fuzzy, version of FT (x), it con-
sists of one or several point clusters centered around actual feature points.
A cluster C ⊂ FTτ(x) can be defined as

C = {f ∈ FTτ(x)|∀y ∈C,z ∈ (FTτ(x)\C),‖f−y‖< ‖f−z‖} (6.1)

i.e., all points which are closer to each other than to any point from
another cluster.

We observed that the number of these clusters is a good indicator of
the type of the medial point x: For A3 points, there is one such clus-
ter, whose diameter is proportional to DTx; for A2

1 points, we find two
clusters; and for Ak,k≥3

1 points, we find k clusters. To compute k, we clus-
ter the point-set FTτ(x) by a single-linkage hierarchical agglomerative
method based on the Euclidean distance between the points. Next, we
cut the resulting dendrogram, or cluster-tree, at a distance value equal to
the average local sampling density ρ∂Ω. This results in k clusters. The
value of k gives us the point type, as explained above.

p

∂Ω

SΩ

p

q

∂Ω

SΩ

α

D
T
p

f p1
f q2

f q1
f q2

τ

τ

one single cluster:

p wrongly classified as A3

two separate clusters:

q correctly classified as A2
1

d

ρ
S

ρ
∂Ω

a) b)

α

D
T
p

D
T
q

e e

σ

Bp
Bq

Figure 6.2: Skeleton point classification based on fuzzy FTτ analysis. The figure
is drawn for the case of 2D skeletons, for illustration simplicity.

Let us justify why k is a good point-type indicator. Figure 6.2 a shows
an incorrect classification of medial point p which is on the skeleton SΩ

branch ended by point e. Since the intersection of ∂Ω with a ball Bp of
radius DTp + τ and center p (dotted red circle) yields a single cluster
(thick red line), p is incorrectly marked as A3 rather than as A2

1. This
is caused by (1) the value τ used to compute FTτ being too large; (2)
p being close to e; and (3) the bump on ∂Ω corresponding to e being
too shallow. Consider now the minimal distance dmin from p that we
have to move on SΩ away from e to find a point q which is correctly
classified as A2

1 (Figure 6.2 b). This happens when the intersection of the
ball Bq of radius DTq + τ and center q (dotted blue circle) yields two

133

R E F I N E D A B S T R AC T I O N S F O R M E D I A L P O I N T C L O U D S

disconnected clusters on ∂Ω (marked thick blue). To find dmin, note that
the maximal ‘inward shift’ between the upper parts of Bp and Bq equals
σ =DTp−DTq+dmin. To cause the disconnection of the compact cluster
in Figure 6.2 a, σ must be larger than the maximal bump height on ∂Ω

that fits in the sphere-shell of thickness τ , i.e., DTp−DTq + dmin > τ .
Since DTq−DTp = dmin cosα , where α is the angle between a feature
vector and the tangent plane to SΩ, it follows that

dmin >
τ

1− cosα
. (6.2)

Separately, for a ∂Ω with local sampling density ρ∂Ω, the corresponding
skeleton sampling density is

ρS =
ρ

sinα
. (6.3)

Incorrect classification (Figure 6.2 a) can only occur when ρS < dmin.
Indeed, a correct classification should mark only a one sampling-point-
thin ‘band’ of skeleton points as A3 (surface skeleton boundary). If ρS
is smaller than the minimal ball-shift dmin required to change point type
from A3 to A2

1, this band gets thicker, which blurs our classification. Sub-
stituting our value of τ = ερ∂Ω (Sec. 6.2.1.1) in Eqn. 6.2, it follows that
this problem can only appear when ε ≥ 1−cosα

sinα
. For our chosen value of

ε = 0.1, this implies α . 11.4◦. In other words, for any medial sheets
except those corresponding to highly obtuse angles on ∂Ω, our method
finds skeleton boundaries (A3 points) which are precisely one sample-
point thick.

Following the above, if k = 1 or k = 2, we can confidently say that
to have found an A3, respectively A2

1, skeleton point. As k increases, the
spatial separation of the clusters decreases too, so k does not reflect ac-
curately the skeleton point type. We have empirically verified that the
cluster count k accurately finds A3

1 up to A4
1 points for densely-sampled

surfaces ∂Ω. A more robust way to find such Y-curve points, that is
far less sensitive on the sampling density of ∂Ω, is described further
in Sec. 6.2.2.2, based on the segmentation of SΩ into individual medial
sheets.

Related to our work, [134] found A3 points by computing the set dif-
ference between the full medial surface S and a simplified version Sτ

of S, where τ is a small fixed value and simplification uses the MGF
metric (Sec. 2.3.4). Compared to our approach, their method does not
find Ak,k>1

1 points, and does not give an analysis of how to set parameter
values.

6.2.1.3 Skeleton regularization using A3 edge filtering

As outlined in Sec. 2.3.4, the MGF metric [37, 135] provides very good
regularization properties such as separating spurious skeleton points

134

6.2 C O M P U T I N G R E F I N E D M E D I A L F E AT U R E S

a) b)

Figure 6.3: Skeleton regularization. (a) Rounded spleen shape with feature vec-
tors shown for A3 points. (b) Skeleton regularized by filtering A3
points.

from important ones while maintaining skeleton connectivity. The MGF
importance ρ(x) of a medial point x equals the length of the longest
shortest-geodesic on ∂Ω between any two feature points of FT (x).
Hence, the MGF requires an accurate computation of the feature trans-
form FT (Eqn. 2.3). As discussed in Sec. 6.2.1.1, we compute a conser-
vative FTτ which may contain tens of feature points for A3-type points.
Computing shortest-geodesics between all such point-pairs is very ex-
pensive. Given this cost, (Chapter 3) and [135] compute the MGF using
only two feature points per skeleton point, i.e. implicitly consider all
medial points to be of type A2

1. This has two problems. First, the impor-
tance ρ for A3 points will be typically underestimated, since one has no
guarantee of finding the longest shortest-geodesic connecting any two
feature points. This, in turn, creates a relatively jagged appearance of
the simplified skeleton. Secondly, computing the MGF is expensive for
large models, even when using only two feature points per medial point
and highly optimized GPU implementations (Chapter 3).

We propose here an alternative way to regularize medial surfaces by
simply filtering A3 points found by our classification. Figure 6.3 shows
this for a shape having highly rounded edges, i.e. whose A3 points have
many feature points. This is the kind of shape where the aforementioned
problem of the MGF metric occurs. Figure 6.3 a shows the medial cloud
with feature vectors (in red) for the A3 points. Figure 6.3 b shows our
regularized skeleton, with all noisy points being removed. Since A3
points appear only on the medial boundary by definition, our regular-
ization does not create gaps or disconnect the medial surface. Since our
method requires only a simple clustering of feature points based on their
Euclidean distance, it is considerably faster than the MGF metric (see
Sec. 6.4 for details). However, in contrast to the MGF, our method cannot
deliver a multiscale of progressively simplified skeletons; we can only
remove the finest scale of noisy boundary points. As such, our regular-

135

R E F I N E D A B S T R AC T I O N S F O R M E D I A L P O I N T C L O U D S

ization is useful when one needs a clean and detail-rich surface skeleton
for further processing, rather than a multiscale skeleton representation.

6.2.2 Surface skeleton decomposition

Besides classifying skeleton points, higher level features can be com-
puted. One such feature is the decomposition of the medial surface into
separate sheets, used in shape analysis and segmentation tasks [93, 130].
While such decompositions can be computed relatively easy for voxel
skeletons [132], this is challenging for medial clouds, especially when
these contain a large number of complex sheets (Chapter 4).

We address this task by clustering the medial cloud based on a
novel definition of medial sheets that uses the medial cloud proper-
ties (Sec. 6.2.2.1). Next, we use this decomposition to robustly find
Y-intersection curves where several such sheets meet (Sec. 6.2.2.2). Fi-
nally, we use the feature transform to construct compact (meshed) sheet
representations (Sec. 6.2.2.3).

6.2.2.1 Medial sheet computation

We first define a distance for a pair of two medial points x and y as

δ (x,y) = ∑
a∈F(x)

min
b∈F(y)

MGF(a,b), (6.4)

where MGF(a,b) is the medial geodesic function, i.e. the length of the
shortest geodesic on ∂Ω between feature points a and b [135]. Next, we
define a medial sheet γ as all medial points having a distance δ lower
than a threshold τ

γ = {x ∈ SΩ | ∃y ∈ γ,δ (x,y)< τ}. (6.5)

The value of τ is set to a relative low geodesic distance in the distance
range between two points on ∂Ω. In practice, this resulted in setting it
in the range [3×ρ∂Ω,10×ρ∂Ω], where ρ∂Ω is the average surface ∂Ω

sampling density. The rationale behind Eqn. 6.5 is that medial points x
and y which are close and belong to the same sheet have small distances
(along ∂Ω) between their corresponding feature points. This statement
is supported as follows: Since medial sheets are locally smooth and have
a low curvature [122], their feature vectors vary smoothly and slowly
locally; in turn, this implies that the corresponding feature points vary
slowly and smoothly across ∂Ω. Figure 6.4 illustrates this for a 2D shape
(for simplicity): Medial points x and y are on the same sheet, and have
small MGF distances between their feature points, thus a small δ (x,y).
In contrast, medial points w and z, which belong to different sheets, have
at least two feature vectors pointing in different directions, thus a large
δ (x,y).

136

6.2 C O M P U T I N G R E F I N E D M E D I A L F E AT U R E S

low δ

input shape ∂Ω

skeleton SΩ
x y

w

z

high δ

hierarchical clustering

separated medial sheetsfeature points
skeleton points

Figure 6.4: Medial sheet computation: a) Distance function δ , illustrated in 2D.
b) Sparse distance matrix, used as an input for hierarchical point
clustering. c) Medial sheets found for a palatine bone shape (see
Sec. 6.2.2.1).

Equations 6.4 and 6.5 define medial sheets without using any medial
connectivity information. We can thus use them to segment a medial
cloud into its sheets, as follows. First, we define a distance matrix M
encoding the distances δ (x,y) between all medial point pairs. For effi-
ciency, we only compute matrix entries that correspond to δ values below
our chosen threshold τ , since the sheet definition (Eqn. 6.5) only requires
to know when δ < τ . To do this, we first notice that medial points x and
y which are far apart will also have large values of δ (x,y). As such, for
a point x, we only consider in M those entries that correspond to its K
nearest neighbours y. Secondly, when computing δ (x,y), if the length of
the geodesic traced on ∂Ω from x to y exceeds τ , we stop tracing it and
skip the respective matrix entry. Overall, this turns the computation and
storage of M from a quadratic process in the number of medial points
into a linear process. Finally, we use M as input for a single-linkage hi-
erarchical clustering [71], which outputs a partition of SΩ into a set of
medial sheets γi, so that γi ∩ γ j 6=i = ∅ and ∪iγi = SΩ. Figure 6.4 c illus-
trates the separated sheets of the medial surface of a palatine bone shape.
Same-sheet points are marked by the same color. Although the medial
cloud is quite complex, its sheets are cleanly separated. Such sheets can
be processed to create compact representations thereof, as discussed next
in Sec. 6.2.2.3.

Figure 6.5 compares our method for sheet extraction from a medial
cloud with two other methods. Image (a) shows the method of [132],
which works in brief as follows: Given a (voxel) medial surface S, its Y-
network voxels SY are found based on the cardinality of the feature trans-
form for A3

1 points (Sec. 2.2.2). Next, separate medial sheets are found
as being the connected components of the voxel set S \ SY . While this
method gives good results, it is quite sensitive to the voxel sampling of
the input shape. For instance, the cog wheel detail in Figure 6.5 a (1283

voxels) shows two separate components c1 (red) and c2 (purple), which
actually are part of the same sheet. These are wrongly separated since
(1) the sampling resolution disconnects the detected medial sheet half-
way and (2) sheet detection is based on connected component finding.

137

R E F I N E D A B S T R AC T I O N S F O R M E D I A L P O I N T C L O U D S

a) b) c)c)

d) e) f)d) e)e) f)

g) h) i)

NN=10 NN=8

NN=8NN=12

c1

c2

c c

Figure 6.5: Medial sheet extraction: (a) Method of [132]; (b,d,e,g,h) Method of
Chapter 4; (c,f,i) our method. For the method in Chapter 4, one of its
parameters, the number of nearest neighbours NN, is indicated.

Image (b) shows the method presented in Chapter 4. Image (c) shows
our method. As visible, both local (Chapter 4) and our presented method
correctly detect a single sheet c instead of the two separate fragments c1
and c2. Images (d-i) further compare our method with our method pre-
sented earlier in Chapter 4 for two shapes and two different values of
the nearest-neighbour count NN (one of the parameters of the method in
Chapter 4). Two observations can be made here. First, we see how the
results depend quite strongly on the choice for NN. In contrast, the pro-
posed method does not require tuning such a parameter. Secondly, and
more importantly, the point-similarity used in Chapter 4 is essentially
purely local, as it involves only inter-point distances and local flatness
of the sheets. In contrast, the proposed method uses a distance function
(Eqn. 6.4) which captures global shape properties, due to the underlying

138

6.2 C O M P U T I N G R E F I N E D M E D I A L F E AT U R E S

MGF function. This makes the sheet computation far less sensitive to
shape variations.

6.2.2.2 Y-intersection curve extraction

Once the medial sheets are found, the Y-intersection curves can be found
as those points x ∈ SΩ that belong to at least two different sheets. How-
ever, performing this test directly on the medial sheet-set is not possible,
since our sheets are disjoint, i.e. γi ∩ γ j 6=i = ∅. Hence, we find Y-curve
points as those skeleton points x which have at least one k-nearest neigh-
bour belonging to a different sheet than the one containing x. Tuning k
allows controlling the thickness of the Y network being computed. Fig-
ure 6.6 shows three examples of Y networks, computed for k = 3.

a) sternum b) cortex c) manubrium

Figure 6.6: Y-network extraction with Y-curve points colored green.

6.2.2.3 Computing compact medial sheets

In Sec. 6.2.2.1, we computed medial sheets as unstructured point clouds.
Many shape processing operations require the input to be a triangle mesh.
We show next how such meshes can be created based on an analysis of
the feature vectors v1(x) and v2(x) of each skeleton point x (Chapter 3).
The key idea is to use the feature vectors to back-project the connectivity
information captured by the ∂Ω mesh onto each sheet γ . The method
has two steps, as follows.

Feature vector alignment: The projection

P(γ) = P1(γ)∪P2(γ) = {x ∈ ∂Ω | ∃y ∈ γ,x ∈ {f1(y), f2(y)}} (6.6)

of a sheet γ consists of two triangulated areas P1(γ) and P2(γ) of ∂Ω, one
for each side of γ . If we can isolate any of these two areas, we can next
simply transfer its connectivity information onto γ to obtain our desired
sheet mesh. For this, we reorder, or align, the feature vectors v1(x) and
v2(x) of all sheet points so that all f1 are included in P1(γ), and all f2 are
included in P2(γ), as follows. First, we select a reference point xre f ∈ γ

139

R E F I N E D A B S T R AC T I O N S F O R M E D I A L P O I N T C L O U D S

and mark it as visited. We next visit all other points x ∈ γ in order of
increasing distance to xre f and redefine their feature points as

fi = argmin
f∈{f1,f2}

MGF(f, fvis
i), i ∈ {1,2}, (6.7)

where fvis
i is the closest visited (aligned) feature point to fi, and mark

f as visited. When all points of γ are visited, all feature vectors v1
will be on the same side of γ as v1(xre f), while all v2 will be on the
other side. We can next find the projection of side i ∈ {1,2} of γ as
Pi(γ) = {x ∈ ∂Ω | ∃y ∈ γ,x = fi(y)}.

Connectivity projection: We finally construct a meshed version of γ

by simply copying all triangle information from Pi(γ) to γ , with i be-
ing either 1 or 2 (both sides are equally good). That is, for any triangle
t = {xi}1≤i≤3 in e.g. P1(γ), we construct a triangle tγ = {yi}1≤i≤3 where
xi = f i

1. Figure 6.7 illustrates the resulting meshed sheets for the surface
skeletons of several complex anatomical shapes from the open database
in [110], where neighbour sheets have different colors for illustration pur-
poses. Given these meshed sheets, we can now use any polygon-based
geometric algorithm to analyse or process them further, e.g., to estimate
curvature, areas, elongation, or compute shortest paths or distance fields.

a) scapula b) hip bone c) cortex d) ear

h) gyrus i) frontal bonef) manubrium g) sternume) xiphoid

capula

Figure 6.7: Compact medial sheets computed for several anatomical models
(Sec. 6.2.2.3).

6.3 A P P L I C AT I O N S

We next use our computed medial features (point classification, regular-
ization, and medial surface decomposition into sheets) to support several
shape analysis applications. These examples implicitly illustrate the qual-

140

6.3 A P P L I C AT I O N S

d) e) f)

a) b) c)

Figure 6.8: Soft edge detection on surfaces using curvature estimation [176] (a);
skeleton method of [134] (b); our method (c-f).

ity and robustness of our feature computation methods. Secondly, they
show how such features enhance the added-value of surface skeletons by
allowing it to support the construction of surface processing tools.

6.3.1 Surface edge detection

Finding edges on a surface in 3D space has many applications in segmen-
tation and classification. Most existing edge detectors are based on the
surface’s curvature tensor [26, 111, 176]. A challenge of such detectors
is that they operate at a given scale, i.e. find edges of a sharpness range
which must be specified. Using skeletons allows finding both sharp and
blunt edges: Following the observation that medial surface boundaries
(A3 points) correspond to curvature maxima or edges on the input sur-
face [122], Reniers et al. compute surface edges by finding A3 points
as explained in Sec. 6.2.1.2, and next back-projecting these on the in-
put surface by the feature transform [134]. We propose here an alter-
native approach: For each A3 skeletal point x, detected as explained in
Sec. 6.2.1.2, we find all surface points enclosed in a sphere of radius
DTx + τ , with τ set as explained in Sec. 6.2.1.1, and set each surface
point with the smallest DTx value which enclosed it. Remaining surface
points are set to max(DTx). Figure 6.8 (a-c) compares our method with
the classical curvature detector of [176] and with [134] for a brain cortex
surface. The goal is to find the sulcal brain structures, which correspond
to (soft) convex surface edges, an important task in many structural and
functional anatomic brain analyses. The presence of sulci is shown us-
ing a blue (concave) to red (sharp convex) rainbow colormap, mapping
the three studied detectors: mean curvature [176] (Figure 6.8 a), geodesic
distance to back-projected A3 points [134] (Figure 6.8 b), and our sphere

141

R E F I N E D A B S T R AC T I O N S F O R M E D I A L P O I N T C L O U D S

radius metric (Figure 6.8 c). Our method achieves a sharper sulci sepa-
ration than [134], which in turn performs better than [176]. Images (c-f)
show our method applied to three additional shapes which exhibit a mix
of sharp and blunt edges. As visible, our detector finds both sharp (and
thus, thin) and blunt (and thus, thick) edges. The edge sharpness and
thickness is also visible in the color mapping.

d) scapula

e) gyrus

c) xiphoid

h) vertebrag) sternum h)

i) frontal bone (left: front view; right: below view)

d) scapulalapulala

ho

f) kidney

a) fandisk b) spleen

Figure 6.9: Patch based segmentation (Sec. 6.3.2).

6.3.2 Patch-based segmentation

Patch-based segmentation (PBS) divides a shape ∂Ω into patches, i.e.
quasi-flat areas which are separated by sharp creases. Most PBS meth-
ods work by clustering surface points using, as similarity metric, the
surface curvature or similar quantities [151]. Since medial surfaces fully
capture the surface information via the MAT (Chapter. 3), these medial

142

6.3 A P P L I C AT I O N S

surfaces can be used for PBS. For this, Reniers et al. compute soft edges
by using the feature transform of low-importance medial-surface points,
and next use these thick edges to segment the shape. However, their
method needs to handle a large number of special cases (and is thereby
quite complicated), and only works for voxel shapes. We propose here a
much simpler approach: We project all skeleton-boundary points p (type
A3) to ∂Ω via our extended feature transform FTτ , i.e. compute the set
E = {x ∈ FTτ(p)|p ∈ S∂Ω ∧ type(p) = A3} ⊂ ∂Ω. The set E consists
of a thick version of the edges of ∂Ω. Due to the conservativeness of
Fτ (Sec. 6.2.1.1), E will contain connected edges, in contrast to e.g. a
naive thresholding of the curvature of ∂Ω or other similar local surface
classifiers. Hence, we next find patches by simply computing connected
components of ∂Ω \E. Finally, we add the points in E to their closest
patch, thereby making the resulting patches become a partition of ∂Ω.

Figure 6.9 shows our results, using the same color scheme as Fig-
ure 6.7. For models with clear, sharp, edges, we see how patches neatly
follow these edges (e.g. Figure 6.9 a, rib sockets in Figure 6.9 g, skull
concavity in Figure 6.9 i). More importantly, our method handles equally
well models with soft edges (Figs. 6.9 b,c,f) and/or mixes of sharp and
soft edges (Figs. 6.9 d,g,h).

6.3.3 Medial sheet mapping segmentation

In contrast to patch-based segmentation (Sec. 6.3.2), part-based segmen-
tation (pBS) separates a shape ∂Ω into its meaningful components that
are perceived as being the natural ‘parts’ of the shape [151]. Among the
many methods for pBS, curve skeletons are often used, as they readily
capture the part-in-whole topology of shapes having elongated protru-
sions. One way to compute a pBS is to find the so-called junction points
of curve skeletons (equivalent to Y-curves for surface skeletons), and
then cut the shape with curves that go around these points [135]. Such
methods are robust and relatively simple to implement, but work well
only for shapes with a tubular structure, i.e., which have a meaningful
curve skeleton. We propose here to use the surface skeleton for pBS. For
this, we compute its medial sheets γ (Sec. 6.2.2.1), and next project these
into ∂Ω using P(γ) (Eqn. 6.6). Since all points on ∂Ω have a skeleton
point by construction (Chapter 3), the entire shape is covered by such
projections, which give us the ‘parts’ of the shape. The borders separat-
ing two such neighbour parts are nothing but the projections of the Y-
curves. Since such curves are smooth [154], and the feature-vector field
used for the projection is also smooth (since parallel to ∇DT∂Ω which is
divergence-free away from the skeleton [155]), the resulting part borders
will also be smooth. Figure 6.10 show several part-based segmentation
examples. Although many alternative pBS segmentations are possible,
we argue that the identified segments coincide well with what one would
regard to be the distinct shape parts. Notably, such segmentations cannot

143

R E F I N E D A B S T R AC T I O N S F O R M E D I A L P O I N T C L O U D S

be achieved using a curve-skeleton, since the shown shapes do not have
a tubular structure.

a) scapula b) hip
bone

c) vertebra

d) cortex e) frontal bone

Figure 6.10: Medial sheet mapping segmentation (Sec. 6.3.3).

6.4 D I S C U S S I O N

We discuss next several aspects related to our contribution – showing
that we can efficiently and easily compute high-level medial features
from large point-cloud skeletons, and that using such features in various
applications is a practical proposition.

Generality: As input for all our methods, we require only a raw me-
dial 3D cloud having two feature points per skeleton point. Such point
clouds can be very efficiently and easily computed by recent GPU meth-
ods [73, 101] or older CPU methods [66], for any type of 3D shape
topology or geometry.

Point classification: To our knowledge, our work is the first attempt
to compute Giblin’s medial point classification [58] for unstructured
medial clouds. In addition, using this classification for skeleton regu-
larization (Sec. 6.2.1.3) is considerably simpler to implement, and also
much faster, than the alternative MGF metric. Compared to local reg-
ularization metrics [122, 155, 168], we do not disconnect the skeleton,
and guarantee to remove only a thin layer of boundary points. This gives
a simple, fast, and effective way to create clean medial surfaces that

144

6.4 D I S C U S S I O N

preserve relevant skeletal details.

Medial sheet extraction: Separating sheets from a raw medial cloud is
a challenging task for which few methods exist, and generic point-cloud
clustering tools cannot be easily used (Chapter 4). Our contribution here
is the similarity metric (Eqn. 6.4) which combines both local and global
shape information. This enables a medial cloud segmentation into sheets
which is noise-resistant and has a simple parameter setting. In detail,
[88] requires tuning three parameters: The number of nearest neigh-
bours of each skeletal point, the maximal allowed local-flatness of each
sheet, and the sheet similarity. In contrast, our method requires a single
parameter, the maximum MGF distance between feature-points of two
skeleton-points that are on the same sheet (τ in Eqn. 6.5). For all tested
shapes, a value of τ equal to four times the local point-density ρ∂Ω on
the input surface yielded optimal results.

Y-network extraction: Our Y-network extraction finds the points
around the Y-network of the skeleton. Exact Y-network points are not
(by definition) directly extracted by the core skeletonization method we
use, since this method always assumes two contact points for each me-
dial point (Eqn. 2.2).

Scalability: We implemented our medial feature computation methods
in C++. On an Intel Core i7 3.8 GHz computer, our single-threaded code
computes all medial features, except the medial sheets, in a few seconds
for all shapes shown in this chapter, which range between 30K and
230K skeleton points. Medial sheet extraction is more costly, as it uses
the expensive MGF metric (Eqn. 6.4). On the same platform, using the
proposed CPU-based MGF computation (Chapter 3), sheet extraction
takes under one minute for all tested shapes. Higher performance can be
easily obtained, if desired, e.g. using the GPU-based MGF computation
from [73].

Limitations: The quality of our medial features highly depends on the
quality of the input medial cloud. This depends next on the sampling
density of the input shape, since we require only two feature points per
medial point (Sec. 6.2).

Applications: For the segmentation and classification applications in
Sec. 6.3, we note that better specific techniques (not using medial de-
scriptors) exist. Our sample applications are aimed at showing the possi-
bilities that refined medial features open, as alternatives and in contrast
to established approaches, and not as a final answer to the underlying
use-cases.

145

R E F I N E D A B S T R AC T I O N S F O R M E D I A L P O I N T C L O U D S

6.5 C O N C L U S I O N S

We have presented a set of techniques for computing refined medial fea-
tures from raw medial-surface point clouds. These features include me-
dial point classification, skeleton regularization, Y-network extraction,
separating medial sheets, and reconstructing meshed sheets. Such fea-
tures enrich the abstraction level on which one can reason about medial
surfaces, and open ways for constructing new shape processing applica-
tions that use medial clouds. We provide, for illustration, sample appli-
cations for edge detection and shape segmentation. Overall, our work
shows that the more complex surface skeletons can be, technically, used
with the same ease and computational efficiency as the simpler, and more
frequently used, curve skeletons, without significant additional costs, and
with actual significant benefits.

Together with the manifold extraction techniques presented in Chap-
ter 4 and the skeletal density analysis techniques presented in Chapter 5,
the techniques presented in this chapter enrich the set of refined medial
descriptors that can be easily computed from point-cloud surface skele-
tons obtained from complex and large 3D models. Along this, we show
how these descriptors are useful and usable in supporting a range of sur-
face processing and analysis applications, such as segmentation and clas-
sification. All in all, the work in this chapter builds towards our general
claim that medial descriptors, complemented by suitable refined descrip-
tors, are efficient and effective tools for shape processing and analysis.

146

7D I S C U S S I O N A N D C O N C L U S I O N S

This thesis has presented a framework for three-dimensional shape pro-
cessing using medial surface representations. Our work addresses the
joint challenges posed in computing and interpreting 3D shapes by us-
ing medial descriptors, i.e. the two following main questions:

• Can 3D medial descriptors (surface and curve skeletons) be com-
puted efficiently, accurately and robustly from large and complex
3D shapes?

• Can such medial descriptors be refined and used to efficiently and
effectively support various shape processing applications?

In this chapter, we reflect on these two main questions, and state that
they have been both answered positively (up to a sufficient extent). Addi-
tionally, we present more detailed information pertaining to the various
limitations of our work and also to potential directions for future work.

7.1 C O M P U T I N G 3 D S K E L E T O N S

The first part of our investigation (Chapter 3 has focused on designing
methods for extracting both curve and surface skeletons of 3D shapes
which can be applied in practice, i.e., efficiently, effectively, and easily
usable on large and complex 3D point-sampled models. We further re-
fined these applicability criteria into a number of desirable sub-criteria:

• robustness to noise (in terms of providing a multiscale technique
that would separate skeleton branches created by noise and/or
small details from those created by important shape parts),

• scalability (in terms of size of the input shapes and computational
speed),

• genericity (in terms of being able to handle complex 3D shapes
of various genuses, closed or open, having various sampling den-
sities, and having connectivity information or not), and

• ease of use (in terms of number and complexity of the exposed
user parameters).

We next discuss our results and findings structured along these criteria.

147

D I S C U S S I O N A N D C O N C L U S I O N S

7.1.1 Robustness to noise

From these criteria, robustness to noise has proven the most challenging
to satisfy. Based on a study of the literature covering skeletonization
of 2D shapes, we have concluded that the so-called boundary-collapse
(BC) importance metric, proposed separately and in different contexts
by several authors [45, 118, 183] is an elegant, simple to implement, fast
to compute, and generic way to rank 2D skeleton points in terms of the
amount of input-shape boundary that such skeleton points subtend. A
similar criterion was known, at the moment of writing of this thesis, for
3D shapes. Specifically, the medial geodesic function (MGF), proposed
by [37] in the context of detecting 3D curve skeletons, was used by [135]
in the context of regularizing 3D surface skeletons. An extension of the
MGF was also proposed by [135] for regularizing 3D curve skeletons.

However, computing the MGF was shown to be very expensive by
both [37] and [135]. Since this metric was shown by previous work to
be the best way to regularize 3D skeletons (both curve and surface vari-
ants) for basically any kind of shape, our first attempt to regularize 3D
skeletons was to re-use, or extend, the simpler BC metric from 2D to 3D
shapes. For this, we studied the conjecture proposed by [99] that projec-
tions of 3D (curve) skeletons of some 3D shape match the 2D skeletons
of the shape’s 2D projection. By using regularized 2D skeletons of such
projections under the BC metric, we thus aimed to reconstruct regular-
ized 3D (curve) skeletons, without the need of computing a ‘true’ 3D
importance metric. The results of this work, discussed in Sec. 3.7, show
that it is indeed possible to compute regularized 3D curve skeletons of a
wide range of shapes by only using what is essentially a 2D regularized
skeletonization technique. Further use of a GPU implementation of [183]
made us able to compute 3D regularized curve-skeletons at close to in-
teractive frame rates.

However, the above approach cannot compute curve skeletons for all
possible 3D shapes, due to inherent occlusions which make parts of the
geometry of such shapes not recoverable from any 2D projection. More
importantly, this approach cannot compute regularized 3D surface skele-
tons. As such, we reverted our attention to the latter types of skeletons.
For these, we decided that the MGF metric proves, to date, the only
viable alternative that can regularize any type of 3D shape by gradu-
ally eliminating branches (manifolds) caused by small surface details or
noise, and keeping the important branches, without changing the topol-
ogy of the surface skeleton.

7.1.2 Scalability

Given the above observation, our next aim has been to make the MGF
metric practical for large and complex 3D shapes. The original ap-
proaches proposing this metric both used a voxel shape representa-

148

7.1 C O M P U T I N G 3 D S K E L E T O N S

tion [37, 135]. Even assuming a modern powerful workstation, such
an approach would be limited in terms of memory scalability to han-
dling volumes of roughly 10243 voxels. In turn, this makes the accurate
capture of fine details present in many mesh models very challenging.
As such, we decided that a mesh-based representation for the entire
skeletonization pipeline, from the input shape and up to the skeleton
representation, is a better solution. In this direction, we studied the per-
formance bottlenecks of the point-cloud-based skeletonization method
of [101], and proposed a parallel implementation that removes most, if
not all, such bottlenecks (Section 3.2.1). We verified that our parallel im-
plementation, realized both on the CPU (using multi-threading) and on
the GPU (using the CUDA computing platform) scales roughly linearly
with the number of input points, thus has optimal complexity. Sepa-
rately, we noted that our GPU skeletonization delivers a performance
boost of about two orders of magnitude as compared to state-of-the-art
3D skeletonization methods that use voxel representations. Practically,
this means that we are now able to provide surface skeletons of models
of up to 1M vertices in sub-second time on a modern GPU. Separately,
we note that this performance boost is in line with typical speed-ups de-
livered by (well designed) CUDA algorithms as opposed to their serial
CPU counterparts.

An interesting side-finding of this research was that the key bottle-
neck in designing parallel mesh-based skeletonization methods is the ef-
ficiency of the nearest-neighbor technique used. Although many highly
efficient such techniques are known for a CPU single-thread implemen-
tation, adapting them to the context of a parallel GPU implementation
is challenging, and the obtained performance figures have been seen to
vary highly and/or differ from the ones stated by earlier studies in the
same field. As such, we believe that working on designing efficient GPU-
based nearest-neighbor schemes is an interesting (and important) area for
future research.

Atop of the raw skeletal point cloud delivered by our parallel skele-
tonization, we next studied different ways to efficiently compute the
MGF metric, using a parallel implementation. Our proposal, described
in Section 3.3.2, proved to be between one and three orders of magni-
tude faster than known geodesic-tracing algorithms. Concretely, we can
compute regularized surface skeletons of large models (hundreds of thou-
sands of vertices) in a few (tens of) seconds on a modern GPU. Addition-
ally, our parallel geodesic technique is not limited or constrained to be
used only with skeleton applications. Any computer graphics, or shape
processing, application requiring efficient and accurate computation of
geodesics on meshed surfaces, either in terms of a given starting point
and given initial direction or in terms of the shortest geodesic between
two given points, can use our technique directly.

As a final scalability note, we should mention that recent develop-
ments in the field of parallel computing with the CUDA platform are

149

D I S C U S S I O N A N D C O N C L U S I O N S

highly likely to provide an additional boost to our technique. In prac-
tice, we identified that the major bottleneck to our geodesic computation
is given by the non-uniform load balancing of the CUDA cores, each
which traces one whole geodesic. Late-generation CUDA techniques, in-
cluding dynamic load balancing and fast atomic operations, could be
used to redesign our parallel tracing to achieve even higher performance
figures.

7.1.3 Genericity

For algorithmic simplicity and ease of implementation on parallel hard-
ware frameworks, two and only two feature points are extracted for each
surface point. As pointed out previously, due to the surface sampling lim-
itations, this can lead to noisy skeleton points around smooth rounded
edges in the shape. This limitation is overcome in chapter 6, by present-
ing a method to regularize and eliminate those noisy edges. In this ap-
proach all remaining skeletal points and edges are retained, contrary to
what a geodesic based regularization can provide: The regularization in
this later case is uniform, making no distinction of points generated due
to sampling on low curvature edges and actual sharp shape edges. Note
that the noisy skeleton points generated on smooth edges can have rela-
tively large geodesic distances between their feature points.

The presented extraction method is suitable for computing non uni-
formly sampled meshes. These meshes are suitable for further analysis,
however care must be taken when choosing the correct parameters for
the application of several of the presented methods. For instance, the re-
sulting point density differences of the algorithms presented in Chapter
5 become not only due to the boundary curvature properties but also due
to its sampling properties.

Non-watertight meshes can be handled by the presented skeletoniza-
tion method. Since the connectivity information is not actively used for
the skeleton computation, only the closest neighbours to the sphere locus
are considered. A typical example of open meshes where the method has
been demonstrated are the dental casts: These consist of open meshes on
the bottom of the shape.

7.2 M A N I F O L D E X T R AC T I O N F O R S H A P E A N A LY S I S

In Chapter 4, a generic point cloud processing method has been pre-
sented to tackle several challenges associated with the extraction of
medial surfaces from point cloud boundary representations. With this
method, smooth manifolds (which can be embedded into noise) can
be uniquely identified. This method can be applied in several stages of
shape processing:

150

7.3 F E AT U R E E X T R AC T I O N F RO M M E D I A L S U R F AC E S

S H A P E P R E - P RO C E S S I N G F O R S K E L E T O N I Z AT I O N As pointed
out along this thesis, small variations in the input boundary can
lead to large noisy branches in the computed skeleton. In the
presence of outlier points, further unpredictable results would be
expected. Therefore, the extraction of smooth manifolds enables a
more predictable medial surface computation suitable for further
shape analysis operations.

M E D I A L S U R F AC E D E C O M P O S I T I O N Medial surfaces consist mainly
of (intersecting) manifold surfaces. Finding such manifolds is not
easy, and is essential for many subsequent usages of the surface
skeleton. Our method can be used for directly extracting medial
sheets from unstructured medial clouds. Moreover, our method
can remove medial noise from such sheets prior to segmentation,
thereby acting as a simpler (and cheaper) regulatization tool.

S H A P E S E G M E N TAT I O N Our method can be used for other contexts
than the regularization (denoising) and/or segmentation of me-
dial clouds, e.g. in the context of denoising and segmentation of
generic 3D point clouds. We have shown results that support the
claim that our method is faster, of a better quality, and easier to
parameterize, as compared to state-of-the-art methods in this field.
This result can lead to a new generation of point-cloud processing
methods for general 3D shapes.

7.3 F E AT U R E E X T R AC T I O N F RO M M E D I A L S U R F AC E S

Chapters 5 and 6 present several methods that extract so-calle refined
medial descriptors from raw medial point clouds. Concrete instances of
such descriptors are: classification of medial points into types accord-
ing to [58], decomposition into medial sheets, medial boundary extrac-
tion, Y-network extraction, and analysis of the medial sampling density
properties. From a theoretical viewpoint, our work shows that all such
descriptors, recognized as being relevant in the medial literature, can be
easily and efficiently computed, which is a novel result. Subsequently,
we show how the computation of these descriptors enables the imple-
mentation of several well-known shape processing applications such as
segmentation and classification. This supports our claim that medial de-
scriptors do indeed offer new efficient ways to tackle such applications,
along traditional methods.

7.4 L I M I TAT I O N S

As in any explorative research work, several (subtle) limitations exist to
our proposals. We next outline the main ones. Firstly, we cannot claim
that our methods are usable out-of-the-box for any type of 3D point-

151

D I S C U S S I O N A N D C O N C L U S I O N S

sampled shape. Extreme conditions such as very low or very high sam-
pling densities or very high amounts of sampling noise will obviously
negatively affect our results. However, we should note that such condi-
tions do equally (if not more) affect all skeletonization methods we are
aware of.

Secondly, nearly all our applications (with the exceptions shown in
Chapter 6) regularize skeletons by the MGF metric. While this metric
has indeed desirable properties (keeps the skeleton connected, and has
a simple geometric interpretation in terms of feature sizes on the input
surface), we do not have a fundamental justification of why other met-
rics could not be equally good (or better) for regularizing skeletons. The
research area of skeleton regularization is, thus, still open to exploration.

Thirdly, in terms of completeness, we should admit that many other
more complex shape descriptors exist apart from the ones studied here.
In defense of our work, we state that one should first show how the basic
descriptors can be computed and used, before one proceeds to the more
involved ones. This is the approach we have taken here.

Finally, we should state that many other alternative methods exist for
the applications covered in this thesis (shape classification and segmenta-
tion). However, our key goal was not to optimize the solution(s) for a par-
ticular application, but to show that medial descriptors, long blamed for
their lack of effectiveness due to aspects such as computational complex-
ity and instability, can be used as easily and efficiently as other methods
to the same practical ends. We believe that this is a major contribution
of our work, which partially dispells the aforementioned negative claims
concerning skeletons, and thereby opens several new research and appli-
cation directions in this area.

7.5 F U T U R E W O R K

Although several methods and applications have been presented which
potentially enable several novel shape analysis applications, the pre-
sented work is far from exhaustive. We foresee several new research
directions spawned by our work. Examples thereof cover the usage of
skeletons for shape segmentation in wider application fields, e.g. full
volumetric datasets such as 3D CT and MRI scans; the usage of our
skeletonization algorithms for enabling real-time shape matching and/or
registration algorithms for time-dependent datasets; the extension of the
presented work to time changing shapes; and novel shape representation
and/or compression methods using the symmetry information encoded
by medial descriptors. The groundwork and tools for these fields have
been laid out by this thesis. It is the task of future research to exploit our
findings.

152

B I B L I O G R A P H Y

[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and
C. Silva. Point set surfaces. In Proc. IEEE Visualization, pages
21–28, 2001.

[2] N. Amenta, S. Choi, and R. Kolluri. The power crust. In Proc.
SMA, pages 65–73. ACM, 2001.

[3] N. Amenta, M. Bern, and M. Kamvysselis. A new Voronoi-based
surface reconstruction algorithm. In Proceedings of the 25th
Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’98, pages 415–421, New York, NY, USA,
1998. ACM. ISBN 0-89791-999-8. DOI 10.1145/280814.280947.
URL http://doi.acm.org/10.1145/280814.280947.

[4] C. Arcelli, G. Sanniti di Baja, and L. Serino. Distance-driven
skeletonization in voxel images. IEEE TPAMI, 33(4):709–720,
2011.

[5] C. Armstrong, T. Tam, D. Robinson, R. McKeag, and M. Price.
Automatic generation of well structured meshed using medial
axis and surface subdivision. In Proc. ASME Design Automation,
pages 1–10, 1991.

[6] Atron, Inc. 3D intraoral scanner, 2013. www.a-tron3d.com/en/
products/id-3d-intraoral-scanner.html.

[7] O. K. C. Au, C. Tai, H. Chu, D. Cohen-Or, and T. Lee. Skeleton
extraction by mesh contraction. In Proc. ACM SIGGRAPH, pages
441–449, 2008.

[8] X. Bai. Skeleton-based shape classification using path similar-
ity. International Journal of Pattern Recognition, 22(4):733–746,
2008.

[9] X. Bai and L. Latecki. Path similarity skeleton graph matching.
IEEE TPAMI, 30(7):1282–1292, 2008.

[10] X. Bai, L. Latecki, and W. Y. Liu. Skeleton pruning by contour
partitioning with discrete curve evolution. IEEE TPAMI, 3(29):
449–462, 2007.

[11] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Com-
putational Geometry: Algorithms and Applications. Springer,
2010.

153

http://dx.doi.org/10.1145/280814.280947
http://doi.acm.org/10.1145/280814.280947
www.a-tron3d.com/en/products/id-3d-intraoral-scanner.html
www.a-tron3d.com/en/products/id-3d-intraoral-scanner.html

B I B L I O G R A P H Y

[12] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and
G. Taubin. The ball-pivoting algorithm for surface reconstruction.
IEEE TVCG, 5(4):349–359, 1999.

[13] S. Beucher. Digital skeletons in Euclidean and geodesic spaces.
Signal Processing, 38(1):127–141, 1994.

[14] I. Bitter, M. Sato, M. Bender, K. McDonnell, and A. Kaufman.
CEASAR: A smooth, accurate and robust centerline extraction al-
gorithm. In Proc. IEEE Visualization, pages 45–52, 2000.

[15] H. Blum. A Transformation for Extracting New Descriptors of
Shape. In W. Wathen-Dunn, editor, Models for the Perception of
Speech and Visual Form, pages 362–380. MIT Press, Cambridge,
1967.

[16] S. Bouix, K. Siddiqi, and A. Tannenbaum. Flux driven auto-
matic centerline extraction. Medical Image Analysis, 9(3):209–
221, 2005.

[17] S. Bouix, K. Siddiqi, A. Tannenbaum, and S. Zucker. Medial axis
computation and evolution. In Statistics and analysis of shape,
chapter 1, pages 1–28. Springer LNCS, 2006.

[18] M. Breunig, H. P. Kriegel, R. Ng, and J. Sander. LOF: Identifying
density-based local outliers. In Proc. SIGMOD, pages 93–104.
ACM, 2000.

[19] J. Cao, A. Tagliasacchi, M. Olson, H. Zhang, and Z. Su. Point
cloud skeletons via laplacian-based contraction. In Proc. IEEE
SMI, pages 187–197, 2010.

[20] T. Cao, K. Tang, A. Mohamed, and T. Tan. Parallel banding algo-
rithm to compute exact distance transform with the GPU. In Proc.
SIGGRAPH I3D Symp., pages 134–141, 2010.

[21] W. Cao and R. Haralick. Nonlinear manifold clustering by dimen-
sionality. In Proc. ICPR, pages 920–924. IEEE, 2006.

[22] L. Cayton. A nearest neighbor data structure for graphics hard-
ware. In Proc. ADMS, pages 192–197, 2010. people.kyb.
tuebingen.mpg.de/lcayton.

[23] M. Chang, F. Leymarie, and B. Kimia. Surface reconstruction
from point clouds by transforming the medial scaffold. CVIU,
(113):1130–1146, 2009.

[24] J. Chuand and N. Ahuja. Path planning using the Newtonian po-
tential. In Proc. IEEE Intl. Conf. on Robotics and Automation,
volume 1, pages 558–563, 1991.

154

people.kyb.tuebingen.mpg.de/lcayton
people.kyb.tuebingen.mpg.de/lcayton

B I B L I O G R A P H Y

[25] J. Chuang, C. Tsai, and M. Ko. Skeletonization of three-
dimensional object using generalized potential field. IEEE
TPAMI, 22(11):1241–1251, 2000.

[26] U. Clarenz, M. Griebel, M. Schewitzer, and A. Telea. Feature
sensitive multiscale editing on surfaces. Visual Computer, 20(5):
329–343, 2004.

[27] U. Clarenz, M. Rumpf, and A. Telea. Surface processing methods
for point sets using finite elements. Computers & Graphics, 28
(6):851–868, 2004.

[28] U. Clarenz, M. Rumpf, and A. Telea. Finite elements on point
based surfaces. In Proc. Symp. on Point Based Graphics, pages
192–200. Eurographics, 2004.

[29] D. Cohen-Steiner and F. Da. A greedy Delaunay-based surface
reconstruction algorithm. Visual Comput., 20(1):4–16, 2004.

[30] D. Comaniciu and P. Meer. Mean shift: A robust approach toward
feature space analysis. IEEE TPAMI, 24(5):603–619, 2002.

[31] N. Cornea, D. Silver, X. Yuan, and R. Balasubramanian. Comput-
ing hierarchical curve-skeletons of 3D objects. Visual Computer,
21(11):945–955, 2005.

[32] N. Cornea, D. Silver, and P. Min. Curve-skeleton properties, ap-
plications, and algorithms. IEEE TVCG, 13(3):87–95, 2007.

[33] L. Costa and R. Cesar. Shape analysis and classification. CRC
Press, 2000.

[34] J. Damon. Global medial structure of regions in R3. Geometry
and Topology, 10:2385–2429, 2006.

[35] T. Dey and S. Goswami. Provable surface reconstruction from
noisy samples. In Proc. Ann. SCG, pages 428–438, 2004.

[36] T. Dey and S. Goswami. Provable surface reconstruction from
noisy samples. Int. J. Comput. Geom. Ap., 35(1):340–355, 2006.

[37] T. Dey and J. Sun. Defining and computing curve skeletons with
medial geodesic functions. In Proc. SGP, pages 143–152. IEEE,
2006.

[38] T. Dey and W. Zhao. Approximating the medial axis from the
Voronoi diagram with a convergence guarantee. Algorithmica, 38:
179–200, 2003.

[39] T. Dey, K. Li, E. Ramos, and R. Wenger. Isotopic reconstruction
of surfaces with boundaries. CGF, 28(5):1371–1382, 2009.

155

B I B L I O G R A P H Y

[40] M. van Dortmont, H. van de Wetering, and A. Telea. Skeletoniza-
tion and distance transforms of 3D volumes using graphics hard-
ware. In Proc. DGCI, pages 617–629. Springer LNCS, 2006.

[41] H. Du and H. Qin. Medial axis extraction and shape manipulation
of solid objects using parabolic PDEs. In Proc. ACM SMA, pages
168–176, 2004.

[42] M. van Eede, D. Macrini, A. Telea, and C. Sminchisescu. Canon-
ical skeletons for shape matching. In Proc. ICPR, pages 542–550,
2006.

[43] E. Eisemann and X. Decoret. Fast scene voxelization and applica-
tions. In Proc. SIGGRAPH I3D Symp., pages 71–78, 2006.

[44] O. Ersoy, C. Hurter, F. Paulovich, G. Cantareira, and A. Telea.
Skeleton-based edge bundles for graph visualization. IEEE TVCG,
17(2):2364 – 2373, 2011.

[45] A. X. Falcão, J. Stolfi, and R. A. Lotufo. The image foresting
transform: Theory, algorithms, and applications. IEEE TPAMI,
26(1):19–29, 2004.

[46] S. Flöry. Fitting curves and surfaces to point clouds in the pres-
ence of obstacles. CAGD, 26(2):693–707, 2009.

[47] M. J. Flynn. Some computer organizations and their effective-
ness. IEEE Trans. Comput., 21(9):948–960, September 1972.
DOI 10.1109/TC.1972.5009071. URL http://dx.doi.org/10.
1109/TC.1972.5009071.

[48] H. Fogg, C. Armstrong, and R. Robinson. Decomposition of do-
mains into quad blocks using the medial axis transform. In Proc.
20th International Meshing Roundtable. Springer, 2011.

[49] S. Foix, G. Alenya, and C. Torras. Lock-in time-of-flight (ToF)
cameras: A survey. IEEE Sensors Journal, 11:1917–1926, 2011.

[50] M. Foskey, M. Lin, and D. Manocha. Efficient computation of a
simplified medial axis. In Proc. Shape Modeling, pages 135–142,
2003.

[51] P. Frey. YAMS: a fully automatic adaptive isotropic surface
remeshing procedure. tech. rep. 0252, INRIA, Nov. 2001. www.
ann.jussieu.fr/~frey.

[52] J. Fung and S. Mann. Computer vision signal processing on graph-
ics processing units. In Acoustics, Speech, and Signal Processing,
2004. Proceedings.(ICASSP’04). IEEE International Conference
on, volume 5, pages V–93. IEEE, 2004.

156

http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1109/TC.1972.5009071
www.ann.jussieu.fr/~frey
www.ann.jussieu.fr/~frey

B I B L I O G R A P H Y

[53] V. Garcia, E. Debreuve, and M. Barlaud. Fast k nearest neighbor
search using GPU. In Proceedings International Workshop on
Computer Vision on GPU (CVGPU), pages 77–83, 2008.

[54] S. Garrido, L. Moreno, M. Abderrahim, and F. Martin. Path plan-
ning for mobile robot navigation using voronoi diagram and fast
marching. In Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems, pages 2376–2381, 2006.

[55] S. Garrido, L. Moreno, and D. Blanco. Voronoi diagram and fast
marching applied to path planning. In Proc. IEEE Intl. Conf. on
Robotics and Automation, pages 3049–3054, 2006.

[56] C. F. Gauss and P. Pesic. General investigations of curved sur-
faces. Dover Books on Mathematics. Dover Publ., 2005.

[57] Y. Ge and J. Fitzpatrick. On the generation of skeletons from
discrete euclidean distance maps. IEEE TPAMI, 18:1055–1066,
1996.

[58] P. Giblin and B. Kimia. A formal classification of 3D medial axis
points and their local geometry. IEEE TPAMI, 26(2):238–251,
2004.

[59] J. Giesen, B. Miklos, M. Pauly, and C. Wormser. The scale axis
transform. In Proc. Annual Symp. Comp. Geom., pages 106–115,
2009.

[60] W. Goh. Strategies for shape matching using skeletons. CVIU,
110(3):326–345, 2008.

[61] A. B. Goldberg. Multi-manifold semi-supervised learning. Proc.
AISTATS, pages 169–176, 2009.

[62] A. Hajdu, C. Giamas, and I. Pitas. Object simplification using a
skeleton-based weight function. In Proc. ISSCS, pages 1–4, 2007.

[63] R. Haralick and R. Harpaz. Linear manifold clustering. Machine
Learning and Data Mining in Pattern, pages 132–141, 2005.

[64] M. Hassouna and A. Farag. Variational curve skeletons using gra-
dient vector flow. IEEE TPAMI, 31(12):2257–2274, 2009.

[65] D. M. Hawkins. Identification of Outliers. Chapman and Hall,
London, 1980.

[66] W. Hesselink and J. Roerdink. Euclidean skeletons of digital im-
age and volume data in linear time by the integer medial axis trans-
form. IEEE TPAMI, 30(12):2204–2217, 2008.

157

B I B L I O G R A P H Y

[67] Y. Hirogaki, T. Sohmura, H. Satoh, J. Takahashi, and K. Takada.
Complete 3-d reconstruction of dental cast shape using perceptual
grouping. Medical Imaging, IEEE Transactions on, 20(10):1093–
1101, 2001. DOI 10.1109/42.959306.

[68] M. de Hoon, S. Imoto, J. Nolan, and S. Myiano. Open source
clustering software. Bioinformatics, 20(9):1453–1454, 2004.

[69] I. Hotz and H. Hagen. Visualizing geodesics. In Proc. IEEE Visu-
alization, pages 311–318, 2000.

[70] Y. Ioannou. DoN implementation in the PCL library,
2013. URL pointclouds.org/documentation/tutorials/
don_segmentation.php.

[71] A. K. Jain and M. N. Murty. Data clustering: A review. ACM
Computing Surveys, 31(3):264–323, 1999.

[72] A. Jalba and J. Roerdink. Efficient surface reconstruction using
Coulomb potentials. IEEE TVCG, 13(6):1512–1519, 2007.

[73] A. Jalba, J. Kustra, and A. Telea. Surface and curve skeletoniza-
tion of large 3D models on the GPU. IEEE TPAMI, 35(6):1495–
1508, 2013.

[74] T. Johnson, I. Kwok, and R. Ng. Fast computation of 2-
dimensional depth contours. In Proc. KDDM, pages 224–228.
AAAI Press, 1998.

[75] G. Katz and J. Kider. All-pairs shortest-paths for large graphs on
the {GPU}. In Proc. Graphics Hardware, pages 208–216, 2008.

[76] S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy
clustering and cuts. ACM TOG, 22(3):954–961, 2003.

[77] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface recon-
struction. In Proc. SGP, pages 61–70, 2006.

[78] R. Kimmel, D. Shaked, N. Kiryati, and A. Bruckstein. Skele-
tonization via Distance Maps and Level Sets. Computer Vision
and Image Understanding: CVIU, 62(3):382–391, 1995.

[79] A. Kiraly, K. Helferty, E. Hoffman, and G. McLennan. Three-
dimensional path planning for virtual bronchoscopy. IEEE TMI,
23(11):1365–1379, 2004.

[80] R. Klette and A. Rosenfeld. Digital geometry: Geometric methods
for digital picture analysis. Morgan Kaufmann, 2004.

[81] E. M. Knorr, R. T. Ng, and V. Tucakov. Distance-Based Outliers:
Algorithms and Applications. J. VLDB, 8(3-4), 2000.

158

http://dx.doi.org/10.1109/42.959306
pointclouds.org/documentation/tutorials/don_segmentation.php
pointclouds.org/documentation/tutorials/don_segmentation.php

B I B L I O G R A P H Y

[82] J. W. L. Kobbelt. Optimized sub-sampling of point sets for surface
splatting. CGF, 23(3):643–652, 2004.

[83] T. Kondo, S. Ong, and K. W. C. Foong. Tooth segmentation of
dental study models using range images. IEEE Trans Med Imag,
23(3):350–362, 2004. DOI 10.1109/TMI.2004.824235.

[84] T. Kronfeld, D. Brunner, and G. Brunnett. Snake-based segmen-
tation of teeth from virtual dental casts. CAGD, 7(2):221–233,
2010.

[85] D. Kushnir, M. Galun, and A. Brandt. Fast multiscale cluster-
ing and manifold identification. Patt. Recog., 39(10):1876–1891,
2006.

[86] J. Kustra, M. de Jager, A. Jalba, and A. Telea. Teeth shape model-
ing pipeline for oral healthcare appliances development. In Proc.
ICCE. IEEE, 2014.

[87] J. Kustra, M. de Jager, A. Jalba, and A. Telea. A medial point
cloud based algorithm for dental cast segmentation. In Proc.
ICCE. IEEE, 2014.

[88] J. Kustra, A. Jalba, and A. Telea. Robust segmentation of multiple
intersecting manifolds from unoriented noisy point clouds. CGF,
33(1):73–87, 2014.

[89] J. Kustra, A. Jalba, and A. Telea. Shape segmentation using me-
dial point clouds with applications to dental cast analysis. In Proc.
VISAPP, pages 151–159, 2014.

[90] J. Kustra, A. Jalba, and A. Telea. Computing refined skeletal fea-
tures from medial point clouds. Pattern Recognition Letters (Sub-
mitted), 2014.

[91] J. Kustra, A. Jalba, and A. Telea. Probabilistic View-based Curve
Skeleton Computation on the GPU. In 8th International Joint
Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications, VISAPP 13, 2013.

[92] C. Lantuéjoul. La squelettisation et son application aux mesures
topologiques de mosaiques polycristallines. PhD thesis, School
of Mines, Paris, 1979.

[93] F. Leymarie and B. Kimia. The medial scaffold of 3D unorganized
point clouds. IEEE TVCG, 29(2):313–330, 2007.

[94] F. Leymarie and M. Levine. Simulating the grassfire transform
using an active contour model. IEEE TPAMI, 14(1):56–75, jan
1992. DOI 10.1109/34.107013.

159

http://dx.doi.org/10.1109/TMI.2004.824235
http://dx.doi.org/10.1109/34.107013

B I B L I O G R A P H Y

[95] X. Li, T. Woon, T. Tan, and Z. Huang. Decomposing polygon
meshes for interactive applications. In Proc. I3D Symp., pages
35–42, 2001.

[96] L. Linsen and H. Prautzsch. Global versus local triangulations. In
Proc. Eurographics, page 257–263, 2001.

[97] B. Liu, A. C. Telea, J. B. Roerdink, G. J. Clapworthy, D. Williams,
P. Yang, F. Dong, V. Codreanu, and A. Chiarini. Parallel center-
line extraction on the gpu. Computers & Graphics, 2014.
Accepted.

[98] L. Liu, E. Chambers, D. Letscher, and T. Ju. A simple and robust
thinning algorithm on cell complexes. CGF, 29(7):2253‚Äì2260,
2010.

[99] M. Livesu, F. Guggeri, and R. Scateni. Reconstructing the curve-
skeletons of 3D shapes using the visual hull. IEEE TVCG, 18(11):
1891–1901, 2012.

[100] W. E. Lorensen and H. E. Cline. Marching cubes: A high reso-
lution 3d surface construction algorithm. SIGGRAPH Comput.
Graph., 21(4):163–169, August 1987. DOI 10.1145/37402.37422.
URL http://doi.acm.org/10.1145/37402.37422.

[101] J. Ma, S. Bae, and S. Choi. 3D medial axis point approximation
using nearest neighbors and the normal field. Vis. Comput., 28(1):
7–19, 2012.

[102] D. Macrini, K. Siddiqi, and S. Dickinson. From skeletons to bone
graphs: Medial abstraction for object recognition. In Proc. CVPR,
pages 324–332, 2008.

[103] G. Malandain and S. Fernandez-Vidal. Euclidean skeletons. Im-
age Vision Comput., 16(5):317–327, 1998.

[104] G. F. Marshall. Handbook of Optical and Laser Scanning. Marcel
Dekker, Inc., 2004.

[105] G. Medioni and C. K. Tang. Tensor voting: Theory and applica-
tions. In Proc. RFIA, 2000.

[106] A. Meijster, J. B. T. M. Roerdink, and W. H. Hesselink. A gen-
eral algorithm for computing distance transforms in linear time.
In Mathematical Morphology and its Applications to Image and
Signal Processing, pages 331–340, 2000.

[107] F. Meyer. Skeletons and perceptual graphs. Signal Processing, 16
(4):335–363, 1989.

160

http://dx.doi.org/10.1145/37402.37422
http://doi.acm.org/10.1145/37402.37422

B I B L I O G R A P H Y

[108] B. Miklos, J. Giesen, and M. Pauly. Discrete scale axis representa-
tions for 3D geometry. In Proc. ACM SIGGRAPH, pages 394–493,
2010.

[109] B. Mirtich. Using skeletons for nonholonomic path planning
among obstacles. In Proc. IEEE Intl. Conf. on Robotics and Au-
tomation, volume 3, pages 2533–2540, 1992.

[110] N. Mitsuhashi, K. Fujieda, T. Tamura, S. Kawamoto, T. Takagi,
and K. Okubo. BodyParts3D: 3D structure database for anatomi-
cal concepts. Nucleic Acids Research, 37(1):782–785, 2009.

[111] H. Moreton and C. Séquin. Functional optimization for fair sur-
face design. In Proc. ACM SIGGRAPH, pages 167–176, 1992.

[112] M. Mortara, G. Patanet, M. Spagnuolo, B. Falcidieno, and
J. Rossignac. Plumber: A method for multiscale decomposition
of 3D shapes into tubular primitives and bodies. In Proc. ACM
SMA, pages 339–344, 2004.

[113] B. Mory. Interactive Segmentation of 3D Medical Images with
Implicit Surfaces. PhD thesis, Ecole Polytechnique Federale de
Lausanne, 2011.

[114] D. Mount and S. Arya. Approximate nearest neighbor search soft-
ware, 2011. www.cs.umd.edu/~mount/ANN.

[115] P. Mullen, F. DeGoes, M. Desbrun, D. Cohen, and P. Alliez. Sign-
ing the unsigned: robust surface reconstruction from raw pointsets.
CGF, 29(5):1733–1741, 2010.

[116] F. Nooruddin and G. Turk. Simplification and repair of polygonal
models using volumetric techniques. IEEE TVCG, 9(2):191–205,
2003. see also www.cs.princeton.edu/~min/binvox.

[117] NVIDEA. Cuda, 2014. www.nvidea.com/cuda.

[118] R. L. Ogniewicz and O. Kubler. Hierarchic Voronoi skeletons. Pat-
tern Recognition, (28):343–359, 1995.

[119] K. Palagyi and A. Kuba. Directional 3D thinning using 8 subit-
erations. In Proc. DGCI, volume 1568, pages 325–336. Springer
LNCS, 1999.

[120] P. Peter and M. Breu. Refined homotopic thinning algorithms
and quality measures for skeletonisation methods. In Innovations
for Shape Analysis Mathematics and Visualization, pages 77–92.
Springer, 2013.

161

www.cs.umd.edu/~mount/ANN
www.cs.princeton.edu/~min/binvox
www.nvidea.com/cuda

B I B L I O G R A P H Y

[121] G. Peyre and L. Cohen. Geodesic computations for fast and
accurate surface remeshing and parameterization. In Progress
in Nonlinear Differential Equations and Their Applications, vol-
ume 63, pages 151–171. Springer LNCS, 2005. www.ceremade.
dauphine.fr/~peyre.

[122] S. Pizer, K. Siddiqi, G. Szekely, J. Damon, and S. Zucker. Mul-
tiscale medial loci and their properties. IJCV, 55(2-3):155–179,
2003.

[123] M. Pollefeys, D. Nistér, J. M. Frahm, A. Akbarzadeh, P. Mordohai,
B. Clipp, C. Engels, D. Gallup, S. J. Kim, P. Merrell, C. Salmi,
S. Sinha, B. Talton, L. Wang, Q. Yang, H. Stewénius, R. Yang,
G. Welch, and H. Towles. Detailed real-time urban 3D reconstruc-
tion from video. Int. J. Comput. Vision, 78(2-3):143–167, 2008.

[124] K. Polthier and M. Schmies. Straightest geodesics on polyhedral
surfaces. In ACM SIGGRAPH Courses, pages 30–38, 2006.

[125] S. Prohaska and H. C. Hege. Fast visualization of plane-like struc-
tures in voxel data. In Proc. IEEE Visualization, page 29–36,
2002.

[126] C. Pudney. Distance-ordered homotopic thinning: A skeletoniza-
tion algorithm for 3D digital images. CVIU, 72(3):404–413, 1998.

[127] T. Rabbani, F. Van Den Heuvel, and G. Vosselmann. Segmenta-
tion of point clouds using smoothness constraint. Intl. Archives
of Photogrammetry Remote Sensing and Spatial Information Sci-
ences, 36(5):1–6, 2006.

[128] D. Reniers and A. Telea. Tolerance-based feature transforms. In
Advances in Comp. Graphics and Comp. Vision, pages 187–200.
Springer, 2007.

[129] D. Reniers and A. Telea. Part-type segmentation of articulated
voxel-shapes using the junction rule. CGF, 27(7):1837–1844,
2008.

[130] D. Reniers and A. Telea. Patch-type segmentation of voxel shapes
using simplified surface skeletons. CGF, 27(7):1954–1962, 2008.

[131] D. Reniers and A. Telea. Robust segmentation of voxel shapes
using medial surfaces. In Proc. SMI, 2008.

[132] D. Reniers and A. Telea. Segmenting simplified surface skeletons.
In Proc. DGCI, pages 132–145. Springer, 2008.

[133] D. Reniers and A. Telea. Extreme simplification and rendering of
point sets using algebraic multigrid. Computing and Visualization
in Science, 12(1):9–22, 2009.

162

www.ceremade.dauphine.fr/~peyre
www.ceremade.dauphine.fr/~peyre

B I B L I O G R A P H Y

[134] D. Reniers, A. Jalba, and A. Telea. Robust classification and anal-
ysis of anatomical surfaces using 3D skeletons. In Proc. VCBM,
pages 61–68. EG Press, 2008.

[135] D. Reniers, J. J. van Wijk, and A. Telea. Computing multiscale
skeletons of genus 0 objects using a global importance measure.
IEEE TVCG, 14(2):355–368, 2008.

[136] T. Ringbeck and B. Hagebeuker. A 3D Time of Flight Camera for
Object Detection. Measurement, 9:867–879, 2007.

[137] T. Robinson. Automated mixed dimensional modelling with the
medial object. In Proc. 17th International Meshing Roundtable,
pages 281–298. Springer, 2008.

[138] P. Rosenthal and L. Linsen. Smooth surface extraction from un-
structured point-based volume data using PDEs. IEEE TVCG, 14
(6):1531–1546, 2001.

[139] L. Rossi and A. Torsello. An adaptive hierarchical approach to the
extraction of high resolution medial surfaces. In Proc. 3DIMPVT,
pages 371–378, 2012.

[140] M. Rumpf and A. Telea. A continuous skeletonization method
based on level sets. In Proc. VisSym, pages 151–158, 2002.

[141] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point
rendering system for large meshes. In Proc. SIGGRAPH, pages
230–237, 2000.

[142] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz.
Towards 3D point cloud based object maps for household envi-
ronments. Robotics and Autonomous Systems, 56(11):927–941,
2008.

[143] P. Sampl. Semi-structured mesh generation based on medial axis.
In Proc. 9th International Meshing Roundtable, pages 21–32. San-
dia National Laboratories, 2000.

[144] M. Schmitt. Some examples of algorithms analysis in computa-
tional geometry by means of mathematical morphological tech-
niques. In J. D. Boissonnat and J. P. Laumond, editors, Geome-
try and Robotics, volume 391 of Lecture Notes in Computer Sci-
ence, pages 225–246. Springer Berlin Heidelberg, 1989. ISBN
978-3-540-51683-5. DOI 10.1007/3-540-51683-2_33. URL http:
//dx.doi.org/10.1007/3-540-51683-2_33.

[145] J. Serra. Image Analysis and Mathematical Morphology. Aca-
demic Press, Inc., Orlando, FL, USA, 1983. ISBN 0126372403.

163

http://dx.doi.org/10.1007/3-540-51683-2_33
http://dx.doi.org/10.1007/3-540-51683-2_33
http://dx.doi.org/10.1007/3-540-51683-2_33

B I B L I O G R A P H Y

[146] J. Sethian. Level Set Methods and Fast Marching Methods. Cam-
bridge Univ. Press, 2002.

[147] J. Shah. Gray skeletons and segmentation of shapes. CVIU, 99
(1):96–109, 2005.

[148] D. Shaked and A. Bruckstein. Pruning medial axes. CVIU, 69(2):
156–169, 1998.

[149] S. Shalom, A. Shamir, H. Zhang, and D. Cohen-Or. Cone carving
for surface reconstruction. ACM TOG, 29(6):547–555, 2010.

[150] A. Shamir. A formulation of boundary mesh segmentation. In
Proc.3DPVT, pages 378–386, 2004.

[151] A. Shamir. A survey on mesh segmentation techniques. CGF, 27
(6):1539–1556, 2008.

[152] H. Sheung and C. Wang. Robust mesh reconstruction from unori-
ented noisy points. In Proc. SPM, pages 13–24. ACM, 2009.

[153] J. Shewchuk. Triangle: Engineering a {2D} Quality Mesh Gener-
ator and Delaunay Triangulator. In Applied Computational Geom-
etry: Towards Geometric Engineering, pages 203–222. Springer
LLNC, 1996.

[154] K. Siddiqi and S. Pizer. Medial Representations: Mathematics,
Algorithms and Applications. Springer, 2009.

[155] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. Zucker. Hamilton-
Jacobi skeletons. IJCV, 48(3):215–231, 2002.

[156] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker. The
hamilton-jacobi skeleton. In Proc. of the International Conference
on Computer Vision - Volume 2, ICCV ’99, pages 828–, Washing-
ton, DC, USA, 1999. IEEE Computer Society.

[157] A. Sitek, R. H. Huesman, and G. T. Gullberg. Tomographic recon-
struction using an adaptive tetrahedral mesh defined by a point
cloud. IEEE Trans. Med. Imag., 25(9):1172–1179, 2006.

[158] A. Sobiecki, H. C. Yasan, A. Jalba, and A. Telea. Qualitative com-
parison of contraction-based curve skeletonization methods. In
Mathematical Morphology and Its Applications to Signal and Im-
age Processing, pages 425–439. Springer LNCS, 2013.

[159] A. Sobiecki, A. Jalba, and A. Telea. Comparison of curve and
surface skeletonization methods for voxel shapes. Pattern Recog-
nition Letters, 47:147–156, 2014.

164

B I B L I O G R A P H Y

[160] S. Sotoodeh. Hierarchical clustered outlier detection in laser scan-
ner point clouds. Intl. Archives of Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, 36(3/W52):383–388, 2007.

[161] R. Souvenir and R. Pless. Manifold clustering. In Proc. ICCV,
pages 648–653, Beijing, China, 2005.

[162] M. B. M. Spernat and L. Kobbelt. Phong splatting. In Proc. PBG,
pages 25–32, 2004.

[163] J. Stasko. An evaluation of space-filling information visual-
izations for depicting hierarchical structures. Intl. J. Human-
Computer Studies, 53(5):663–694, 2000.

[164] S. Stolpner, S. Whitesides, and K. Siddiqi. Sampled medial loci
and boundary differential geometry. In Proc. IEEE 3DIM, pages
87–95, 2009.

[165] S. Stolpner, S. Whitesides, and K. Siddiqi. Sampled medial loci
for 3D shape representation. CVIU, 115(5):695–706, 2011.

[166] R. Strzodka and A. Telea. Generalized distance transforms and
skeletons in graphics hardware. In Proc. VisSym, pages 221–230,
2004.

[167] A. Sud. Efficient computation of discrete Voronoi diagram and
homotopy-preserving simplified medial axis of a 3D polyhedron.
PhD thesis, UNC Chapel Hill, 2006.

[168] A. Sud, M. Foskey, and D. Manocha. Homotopy-preserving me-
dial axis simplification. In Proc. SPM, pages 103–110, 2005.

[169] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson. Skeleton
based shape matching and retrieval. In Proc. SMI, pages 130–138,
2003.

[170] V. Surazhsky, T. Surazshky, D. Kirsanov, S. Gortler, and H. Hoppe.
Fast exact and approximate geodesics on meshes. In Proc. ACM
SIGGRAPH, pages 130–138, 2005.

[171] S. Svensson. Reversible surface skeletons of 3D objects by itera-
tive thinning of distance transforms. In Proc. Discrete Geometry
for Computer Imagery, pages 400–411. Springer, 2001.

[172] A. Tagliasacchi, H. Zhang, and D. Cohen-Or. Curve skeleton ex-
traction from incomplete point cloud. In Proc. ACM SIGGRAPH,
pages 541–550, 2009.

[173] A. Tagliasacchi, M. Olson, H. Zhang, G. Hamarneh, and
D. Cohen-Or. VASE: Volume-aware surface evolution for surface
reconstruction from incomplete point clouds. CGF, 30(5):1563–
1571, 2011.

165

B I B L I O G R A P H Y

[174] A. Tagliasacchi, I. Alhashim, M. Olson, and H. Zhang. Skele-
tonization by mean curvature flow. In Proc. Symp. Geom. Proc.,
pages 342–350, 2012.

[175] R. Tam and W. Heidrich. Shape simplification based on the medial
axis transform. In Proc. IEEE Visualization, pages 63–68, 2003.

[176] G. Taubin. Estimating the tensor of curvature of a surface from a
polyhedral approximation. In Proc. ICCV, pages 902–907, 1995.

[177] A. Telea. Feature preserving smoothing of shapes using saliency
skeletons. In Visualization in Medicine and Life Sciences, pages
155–172. Springer, 2012.

[178] A. Telea. GPU skeletonization code, 2012. www.cs.rug.nl/
svcg/Shapes/CUDASkel.

[179] A. Telea and O. Ersoy. Image-based edge bundles: Simplified
visualization of large graphs. Comp. Graph. Forum, 29(3):543–
551, 2010.

[180] A. Telea and A. Jalba. Voxel-based assessment of printability
of 3D shapes. In Proc. ISMM, pages 393–404. Springer LNCS,
2011.

[181] A. Telea and A. Jalba. Computing curve skeletons from medial
surfaces of 3d shapes. In Proc. Theory and Practice of Computer
Graphics (TPCG), pages 224–232. Eurographics, 2012.

[182] A. Telea and A. Vilanova. A robust level-set algorithm for cen-
terline extraction. In Proc. Data Visualization (VisSym), pages
185–194, 2003.

[183] A. Telea and J. J. van Wijk. An augmented fast marching method
for computing skeletons and centerlines. In Proc. VisSym, pages
251–259, 2002.

[184] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global ge-
ometric framework for nonlinear dimensionality reduction. Sci-
ence, 290(5500):2319–2323, 2000.

[185] R. Torres and A. Falcão. Contour salience descriptors for effective
image retrieval and analysis. Image and Vision Computing, 25(1):
3 – 13, 2007. ISSN 0262-8856. SIBGRAPI.

[186] R. Torres, A. Falcão, and L. Costa. A graph-based approach
for multiscale shape analysis. Pattern Recognition, 37(6):1163
– 1174, 2004. ISSN 0031-3203.

[187] TranscenData. TranscenData Ltd., 2014. www.transcandata.
com.

166

www.cs.rug.nl/svcg/Shapes/CUDASkel
www.cs.rug.nl/svcg/Shapes/CUDASkel
www.transcandata.com
www.transcandata.com

B I B L I O G R A P H Y

[188] R. Unnikrishnan and M. Hebert. Robust extraction of multiple
structures from non-uniformly sampled data. In Proc. IROS, pages
1322–1329, 2003.

[189] R. Unnikrishnan and M. Hebert. Denoising manifold and non-
manifold point clouds. In Proc. BMVC, 2007.

[190] V. Verma and J. Snoeyink. Reducing the memory required to find
a geodesic shortest path on a large mesh. In Proc. ACM GIS, pages
227–235, 2009.

[191] R. Vidal, Y. Ma, and S. Sastry. Generalized Principal Component
Analysis. IEEE TPAMI, 27(12):1945–1959, 2005.

[192] M. Wan, F. Dachille, and A. Kaufman. Distance-field based skele-
tons for virtual navigation. In Proc. IEEE Visualization, pages
239–246, 2001.

[193] J. Wang, M. Oliveira, and A. Kaufman. Reconstructing mani-
fold and non-manifold surfaces from point clouds. In Proc. SMA,
pages 139–147, 2007.

[194] C. Weber, S. Hahmann, and H. Hagen. Sharp feature detection in
point clouds. In Proc. SMA, pages 175–186, 2010.

[195] H. Xie, J. Wang, J. Hua, H. Qin, and A. Kaufman. Piecewise c1
continuous surface reconstruction of noisy point cloud via local
implicit quadric regression. In Proc. IEEE Visualization, pages
198–206, 2003.

[196] J. Xie, P. Heng, and M. Shah. Shape matching and modeling using
skeletal context. Pattern Recognition, 41:1756–1767, 2008.

[197] M. Zhao, L. Ma, W. Tan, and D. Nie. Interactive tooth segmenta-
tion of dental models. In Proc. EMBS, pages 654–657, 2005.

[198] H. Zhou, X. Yuan, W. Cui, H. Qu, and B. Chen. Energy-Based
Hierarchical Edge Clustering of Graphs. In Proc. PacificVis, pages
55–62, 2008.

[199] M. van der Zwan, Y. Meiburg, and A. Telea. A dense medial
descriptor for image analysis. In Proc. VISAPP, pages 285–293,
2013.

167

L I S T O F P U B L I C AT I O N S

The following publications resulted from the work presented in this the-
sis:

1. A. Jalba, J. Kustra, and A. Telea. Surface and curve skeletoniza-
tion of large 3D models on the GPU. IEEE TPAMI, 35(6):1495–
1508, 2013

2. J. Kustra, A. Jalba, and A. Telea. Probabilistic View-based Curve
Skeleton Computation on the GPU. In 8th International Joint
Conference on Computer Vision, Imaging and Computer Graph-
ics Theory and Applications, VISAPP 13, 2013

3. J. Kustra, A. Jalba, and A. Telea. Robust segmentation of multiple
intersecting manifolds from unoriented noisy point clouds. CGF,
33(1):73–87, 2014

4. J. Kustra, A. Jalba, and A. Telea. Shape segmentation using me-
dial point clouds with applications to dental cast analysis. In Proc.
VISAPP, pages 151–159, 2014

5. J. Kustra, M. de Jager, A. Jalba, and A. Telea. Teeth shape model-
ing pipeline for oral healthcare appliances development. In Proc.
ICCE. IEEE, 2014

6. J. Kustra, M. de Jager, A. Jalba, and A. Telea. A medial point
cloud based algorithm for dental cast segmentation. In Proc.
ICCE. IEEE, 2014

7. J. Kustra, A. Jalba, and A. Telea. Computing refined skeletal
features from medial point clouds. Pattern Recognition Letters
(Submitted), 2014

169

AC K N OW L E D G E M E N T S

One of the qualities which I believe is unique to humans, is the ability
to dream. It is probably this ability which propels most mankind great
achievements. Education, as process of discovery, is a key catalizer of
dreams, expanding the individual minds to wonder further than before.

It would therefore seem obvious any system relying on human power,
would have education, and consequently free thinking, as one of its
most basic assets. However, as the story of the 2014 Nobel Prize winner
showed us, education is not always an intrinsic value but a continuous
endeavor with internal and external factors. On my personal level, the
process of learning and discovery is a vital experience - at all levels
worth aspiring and striving for.

During the endeavor to pursue this PhD, several people have enabled,
guided and supported me through these internal and external struggles,
contributing to the realization of this ambitious goal.

First and foremost, my supervisor, Alex Telea. Your sharp knowledge
on such a broad range of subjects have been a unique source of inspi-
ration for me. You are a mentor and an outstanding leader. You have
demonstrated firsthand how to persistently pursue ideas and transform
ideas into tangible concepts. Your guidance has enabled me excel myself
and to reach several milestones in my life which I had longed for. For
everything, I am uniquely grateful.

My co-supervisor, Andrei Jalba: Andrei, your numerical problem solv-
ing skills are amazing! It was a great experience to have the opportunity
to discuss and work together towards several of the results in this the-
sis. Your support in this context was fantastic - Thank you so much for it!

The committee members, Prof. A. Falcao, Prof. F. Leymarie and Prof.
W. Hesselink, for their very detailed reviews. Your detailed comments
and remarks identified several points which have contributed to several
improvements in the thesis.

My group leaders who followed me during this track. Peter Stolk, thank
you for trusting and enabling me to pursue this goal, especially in a time
when this decision was truly a brave one! Guido Volleberg, thank you for
all your continous support, trust and recognition! I greatly appreciated
your leadership and working together - This strongly contributed to this
achievement!

171

AC K N O W L E D G E M E N T S

My family. The support I always found on your side to learn and pursue
education and interests strongly contibuted to shaping the person I as-
pired to be. Knowing that you unconditionally are always there for me,
is absolutely priceless, for which I am extremely grateful.

My friends. Sharing great, memorable and, (depending on the percep-
tion) crazy moments have a rationally unexplainable importance for
experiencing life!

My colleagues, with whom I shared interesting discussions and hard
working sessions. I appreciate the work, all we learned from each other
and most of all, seeing the results of our commitment coming together
into meaningful applications.

Finally, my partner in life, Mahsa. Being together brings meaning and
hapiness to so many seemingly trivial details. Any obstacle becomes
minuscule when compared to the significance of our life. During this
adventure, you were the one and only who daily accompanied my joys,
disappointments and thrills. Thank you for dreaming with me, let’s keep
on making our dreams come true!

172

A B O U T T H E AU T H O R

Jacek Kustra was born in Czestochowa, Poland in 1981. He is a Scientist,
currently in Philips Research, where he has focused on a wide spectrum
of technologies, from Electronics design to advanced algorithm research.
His current focus is on innovative healthcare systems for oncology based
applications. He followed this PhD track independently and in parallel
to his full time job.

The strong interest in science and technology, specifically in electron-
ics and software and algorithms has led him since a very early age to start
developing his own software and to actively pursue several professional
activities related to software development. This interest, in combination
with his adventurous spirit and multicultural background (having been
born in Poland, raised in Portugal, working in several countries - and in
love with a Persian), provide him with the opportunity to be fluent in
several cultures and languages with a strong awareness of global issues.
He is eager to actively contribute to solutions with his creative thinking
and problem solving skills.

His academic background includes a 5 year degree in Electronics and
Telecommunications Engineering in the University of Aveiro in Portu-
gal, where he expanded his knowledge in a variety of fields, ranging
from analog and digital electronics, signal and image processing, con-
trol systems, ending with a specialization in Medical Electronics and
Systems, specifically in medical image reconstruction and visualization.
During these studies, he was also a professional Volleyball player in the
first portuguese league and worked as a software freelancer for the local
Portuguese industry. By following his education with a post-graduate de-
gree in Biomedical Engineering in the University of Aveiro, he brought
together his passion for problem solving and technology together with
his ambition to contribute to the improvement of people’s lives. During
these years, he was a lecturer on computer science courses and focused
his research on Electroencephalography and functional Magnetic Reso-
nance Imaging applications, contributing with several novel algorithmic
approaches.

The eagerness to continuously learn, solve novel problems and apply
his skills to meaningful applications, led him to his current professional
position and to pursue the personaly very rewarding experience of this
PhD degree.

173

	Dedication
	Contents
	1 Introduction
	1.1 Shapes
	1.2 Shape Representation
	1.3 Shape Processing
	1.4 Medial Representations
	1.4.1 Types of medial representations
	1.4.2 Applications of medial representations
	1.4.3 Medial representation challenges

	1.5 Structure of this Thesis

	2 Medial Representations of Objects
	2.1 Introduction to shape representations
	2.1.1 Volumetric representations
	2.1.2 Boundary sampling representations

	2.2 Medial Representations
	2.2.1 Definitions
	2.2.2 Classification of Medial Points

	2.3 An overview of skeletonization techniques
	2.3.1 Volumetric Methods
	2.3.2 Boundary sampling methods
	2.3.3 Curve skeleton methods
	2.3.4 Regularization Methods

	2.4 Conclusions

	3 Extraction of Medial descriptors from Polygonal Shapes
	3.1 Introduction
	3.2 Medial Surface Computation from large Polygonal Shapes
	3.2.1 Surface skeleton extraction
	3.2.2 Numerical Parallelization of Skeleton computation
	3.2.3 Graphics Processing Unit (GPU) parallelization

	3.3 Medial Surface Regularization
	3.3.1 Shortest and straightest geodesics
	3.3.2 Efficient Straightest Geodesic computation
	3.3.3 Performance and accuracy of SSG tracing

	3.4 Image-based surface reconstruction
	3.4.1 Surface skeleton reconstruction

	3.5 Medial surface comparison
	3.5.1 Direct and inverse correspondence

	3.6 Curve skeleton extraction from the surface skeleton
	3.6.1 Detecting candidate curve skeleton points
	3.6.2 Regularization of candidate curve-skeleton points
	3.6.3 Curve skeleton reconstruction
	3.6.4 Comparison

	3.7 Curve skeleton extraction from projections
	3.7.1 View-based curve skeletonization
	3.7.2 Accurate probability volume computation
	3.7.3 Robust 2D skeletonization
	3.7.4 Accurate correspondence matching
	3.7.5 Probability sharpening
	3.7.6 Results

	3.8 Discussion
	3.8.1 Regularized surface skeleton extraction
	3.8.2 Curve skeleton extraction

	3.9 Conclusion

	4 Multiscale Medial Cloud Analysis Methods
	4.1 Introduction
	4.2 Noisy point cloud segmentation into manifolds
	4.2.1 Introduction
	4.2.2 Related work
	4.2.3 Method
	4.2.4 Applications

	4.3 Discussion
	4.4 Conclusions

	5 Medial point cloud density analysis
	5.1 Introduction
	5.2 Application context
	5.3 Method
	5.3.1 Surface curvature vs skeleton density
	5.3.2 Mean shift clustering
	5.3.3 Seed point detection
	5.3.4 Segmentation transfer to surface

	5.4 Results
	5.5 Discussion
	5.6 Conclusions

	6 Refined Abstractions for Medial Point Clouds
	6.1 Introduction
	6.1.1 Motivation

	6.2 Computing refined medial features
	6.2.1 Medial points classification
	6.2.2 Surface skeleton decomposition

	6.3 Applications
	6.3.1 Surface edge detection
	6.3.2 Patch-based segmentation
	6.3.3 Medial sheet mapping segmentation

	6.4 Discussion
	6.5 Conclusions

	7 Discussion and Conclusions
	7.1 Computing 3D skeletons
	7.1.1 Robustness to noise
	7.1.2 Scalability
	7.1.3 Genericity

	7.2 Manifold extraction for shape analysis
	7.3 Feature extraction from medial surfaces
	7.4 Limitations
	7.5 Future work

	Bibliography
	List of Publications
	List of Publications
	Acknowledgements
	About the Author

