
Explanatory Visualization of
Multidimensional Projections

Rafael Messias Martins

Explanatory Visualization of
Multidimensional Projections

Rafael Messias Martins

The work in this thesis has been carried out as a double-degree PhD in a cooperation
between the Scientific Visualization and Computer Graphics (SVCG) research
group from the University of Groningen (RuG) and the Visualization, Imaging and
Computer Graphics (VICG) research group from the University of São Paulo (USP).

Cover: Multidimensional projection of a collection of images, showing both the
two-dimensional (texture) and the n-dimensional (bundled edges) neighborhoods
of a selected point.

Explanatory Visualization of Multidimensional Projections

Rafael Messias Martins
Thesis – University of Groningen

ISBN (electronic version): 978-90-367-8641-6
ISBN (printed version): 978-90-367-8642-3

Explanatory Visualization of

Multidimensional Projections

PhD thesis

to obtain the degree of PhD at the
University of Groningen
on the authority of the

Rector Magnificus Prof. E. Sterken
and in accordance with

the decision by the College of Deans.

This thesis will be defended in public on

Monday 29 February 2016 at 12.45 hours

by

Rafael Messias Martins

born on 6 October 1984
in Presidente Prudente, Brazil

Supervisor

Prof. A.C. Telea

Co-supervisor

Dr. R. Minghim

Assessment committee

Prof. M. Biehl
Prof. L.G. Nonato
Prof. J.J. van Wijk
Prof. E. Eisemann

Dedicated to two great women:
My mother, who started me on this journey;

and my wife, who kept me on it until the end.

So we see how we stand then like children at the edge of the
ocean of information and we’re putting our feet in and

wondering, you know, “Could we swim in that? What would it
be like to be wet in that? What would it be like to go into that

new medium?”

— Terence McKenna —

Thesis Summary

Visual analytics tools play an important role in the scenario of ‘big data’ solutions, combining
data analysis and interactive visualization techniques in effective ways to support the
incremental exploration of large data collections from a wide range of domains. One
particular challenge for visual analytics is the analysis of multidimensional datasets, which
consist of many observations, each being described by a large number of dimensions, or
attributes. Finding and understanding data-related patterns present in such spaces, such as
trends, correlations, groups of related observations, and outliers, is hard.

Dimensionality reduction methods, or projections, can be used to construct low (two or
three) dimensional representations of high-dimensional datasets. The resulting representa-
tion can then be used as a ‘proxy’ for the visual interpretation of the high-dimensional space
to efficiently and effectively support the above-mentioned data analysis tasks. Projections
have important advantages over other visualization techniques for multidimensional data,
such as visual scalability, high degree of robustness to noise and low computational complex-
ity. However, a major obstacle to the effective practical usage of projections relates to their
difficult interpretation.

Two main types of interpretation challenges for projections are studied in this thesis.
First, while projection techniques aim to preserve the so-called structure of the original
dataset in the final produced layout, and effectively achieve the ‘proxy’ effect mentioned
earlier, they may introduce a certain amount of errors that influence the interpretation of
their results. However, it is hard to convey to users where such errors occur in the projection,
how large they are, and which specific data-interpretation aspects they affect. Secondly,
interpreting the visual patterns that appear in the projection space is far from trivial, beyond
the projections’ ability to show groups of similar observations. In particular, it is hard to
explain these patterns in terms of the meaning of the original data dimensions.

In this thesis we focus on the design and development of novel visual explanatory
techniques to address the two interpretation challenges of multidimensional projections
outlined above. We propose several methods to quantify, classify, and visually represent
several types of projection errors, and how their explicit depiction helps interpreting data
patterns. Next we show how projections can be visually explained in terms of the high-
dimensional data attributes, both in a global and a local way. Our proposals are designed to
be easily added, and used with, any projection technique, and in any application context
using such techniques. Their added value is demonstrated by presenting several exploration
scenarios involving various types of multidimensional datasets, ranging from measurements,
scientific simulations, software quality metrics, software system structure, and networks.

Samenvatting

Visuele analyse spelt een sleutelrol in de zogenaamde ‘big data’ oplossingen door data-analyse
met interactieve visualisatietechnieken te combineren om de stapsgewijze exploratie van
grote gegevensverzamelingen te ondersteunen. Multidimensionale datasets zijn een aparte
uitdaging voor visuele analyse. Deze bevatten veel datapunten, elk dat beschreven wordt
door veel dimensies of attributen. Omdat men dergelijke hoog-dimensionale datasets zich
niet makkelijk kan voorstellen, het vinden van trends, correlaties, groepen van gerelateerde
observaties, en uitschieters is hard.

Dimensionaliteitsreductiemethoden, of projecties, kunnen gebruikt worden om laag
(twee of drie) dimensionale representaties van hoog-dimensionale data te bouwen. Deze rep-
resentaties dienen als hulpmiddelen voor de visuele interpretatie van de hoog-dimensionale
ruimte. Projecties hebben een aantal voordelen zoals visuele schaalbaarheid, hoge robu-
ustheid tegen ruis, afstandspreservatie, en een lage rekencomplexiteit. Integendeel is hun
interpretatie een grote praktische uitdaging.

Dit proefschrift benadert twee interpretatie uitdagingen. Eerst, alhoewel projecties
streven naar het bewaren van de zogenaamde datastructuur, creëren zij altijd een bepaalde
mate van fouten, die hun interpretatie bëınvloeden. Het is hard om de gebruikers de locatie,
grootte, en invloed (op de data interpretatie) van dergelijke fouten weer te geven. Ten
tweede, de interpretatie van de visuele patronen die in projecties voorkomen is verre van
triviaal – in het bijzonder het is hard om dergelijke patronen uit te leggen in termen van de
oorspronkelijke data dimensies.

Dit proefschrift presenteert het ontwerp en ontwikkeling van nieuwe visuele explorati-
etechnieken die de twee bovengenoemde interpretatie uitdagingen van multidimensionale
projecties verhelpen. We presenteren een aantal methodes voor de kwantificatie, classi-
ficatie, en visuele weergaven van verschillende types projectiefouten, en laten zien hoe
hun weergave de interpretatie van datapatronen verhelpt. We laten vervolgens zien hoe
projecties uitgelegd kunnen worden via hoog-dimensionale attributen op een lokale en
ook globale wijze. Onze oplossingen kunnen makkelijk toegevoegd worden aan elke pro-
jectietechniek en gebruikt worden in elk toepassingscontext waar dergelijke technieken
voorkomen. De toegevoegde waarde van onze oplossingen wordt afgebeeld door verschil-
lende scenario’s voor de exploratie van multidimensionale datasets afkomstig uit metingen,
wetenschappelijke simulaties, software kwaliteitsmetrieken, softwaresysteemstructuur, en
netwerken.

Contents

1 Introduction 1
1.1 Multidimensional Data: Importance and Challenges 2
1.2 Research Questions . 6
1.3 Structure of This Thesis . 7

2 Related Work 9
2.1 Multidimensional Data . 9
2.2 Multidimensional Visualization Tasks and Methods 12

2.2.1 Table Lenses . 14
2.2.2 Small multiples . 15
2.2.3 Scatterplot methods . 17
2.2.4 Parallel Coordinate Plots (PCPs) 19

2.3 Dimensionality Reduction . 21
2.3.1 Multidimensional Scaling (MDS) methods 23
2.3.2 Coordinate-based projections 24

2.4 Challenge 1: Visualizing Projection Quality 25
2.4.1 Distance-preservation errors 27
2.4.2 Neighborhood-preservation errors 28

2.5 Challenge 2: Explaining Projections 29
2.6 Multivariate Networks . 34
2.7 Discussion and Conclusions . 38

3 Visualizing Distance Preservation 41
3.1 Analysis Goals . 41
3.2 Visualization Methods . 43

3.2.1 Preliminaries . 43
3.2.2 The Aggregated Error view 44
3.2.3 The False Neighbors view 46
3.2.4 The Missing Neighbors view 48
3.2.5 The Missing Neighbors Finder 50
3.2.6 The Group Analysis views 52
3.2.7 The Projection Comparison view 54
3.2.8 Usage scenario . 56

3.3 Applications . 58
3.3.1 Description of datasets . 58

Contents

3.3.2 Description of projections 58
3.3.3 Description of parameters to analyse 59
3.3.4 Overview comparison of algorithms 61
3.3.5 Parameter analysis . 62

3.4 Discussion . 68
3.5 Conclusions . 72

4 Visualizing Neighborhood Preservation 75
4.1 Measuring and Visualizing Neighborhood Preservation 76

4.1.1 Preliminaries . 76
4.1.2 The Centrality Preservation view 78
4.1.3 The Set Difference view . 80
4.1.4 The Sequence Difference view 82
4.1.5 Refining the exploration . 84
4.1.6 Ground truth analysis and comparison 86
4.1.7 Additional examples . 88

4.2 Discussion . 94
4.3 Conclusions . 95

5 Explaining 3D Multidimensional Projections 97
5.1 Explanatory Visualizations . 99

5.1.1 Accuracy of 3D projections 100
5.1.2 Attribute exploration in 3D projections 104
5.1.3 Generalizing biplot axes . 107
5.1.4 Explanatory axis legends . 109
5.1.5 Aligning axes . 113
5.1.6 Viewpoint legend . 114

5.2 Example applications . 118
5.2.1 The Wine dataset: Finding good projection techniques . . . 118
5.2.2 The Multifield dataset: Explaining projection shapes 120
5.2.3 The Segmentation dataset: Comparing 2D and 3D projections123
5.2.4 The Software dataset: Finding meaningful clusters 127

5.3 Discussion . 129
5.4 Conclusion . 133

6 Local Explanation of Multidimensional Projections 135
6.1 Related Work . 136
6.2 Method . 138

6.2.1 Concept . 138
6.2.2 Ranking the dimensions . 139
6.2.3 Visualizing single top-ranked dimensions 141
6.2.4 Visualizing top-ranked dimension sets 144

6.3 Examples . 145

vi

Contents

6.3.1 Wine quality . 145
6.3.2 Quality of software projects 147
6.3.3 US counties . 148

6.4 Discussion . 148
6.5 Conclusions . 150

7 Multidimensional Visual Analysis of Networks 153
7.1 Preliminaries . 155
7.2 Method . 156

7.2.1 Connectivity-based projections 156
7.2.2 Attribute-based projections 163

7.3 Applications . 168
7.3.1 Connectivity-based projections: Research networks 169
7.3.2 Connectivity-based projections: Quality analysis 170
7.3.3 Connectivity-based projections: Neighborhood preservation 175
7.3.4 Attribute-based projections: Multivariate software networks 180
7.3.5 Multivariate software networks: Quality analysis 186

7.4 Discussion . 189
7.5 Conclusions . 191

8 Discussions and Conclusion 195
8.1 Analysis of the Research Questions 195
8.2 Design Decisions . 196
8.3 Advantages and Limitations . 198

8.3.1 Sub-question #1: Understanding projection errors 199
8.3.2 Sub-question #2: Understanding projections 200

8.4 Future Work . 201

Bibliography 204

List of Publications 222

Acknowledgements 225

Curriculum Vitae 227

vii

List of Figures

2.1 Table lens visualization of stock transactions created with the TableVi-
sion tool [180]. The images shown the zoomed-in table (a), zoomed-
out aggregated table (b), and zoomed-out table with rows sorted
and grouped by stock category, name, and trading date (c). 14

2.2 Small multiple visualization of stock transactions created with the
TableVision tool [180]. 16

2.3 Parallel coordinate plot using the parvis toolkit for a 6-dimensional
dataset (images from [181]). 20

2.4 Axis legends explaining the loadings of a multidimensional projec-
tion on the x and y axes of the corresponding 2D embedding space.
Visualization created with the Decision Exploration Lab [23]. . . . 31

3.1 Aggregate error view, several levels of detail: (a) ↵ “ 1,� “ 1. (b)
↵ “ 5,� “ 5. (c) ↵ “ 20,� “ 20 pixels (see Sec. 3.2.2). 45

3.2 False neighbors view (see Sec. 3.2.3). 47
3.3 Missing neighbors view for different selected points. Selections are

indicated by markers (see Sec. 3.2.4). 50
3.4 Missing neighbors finder view for four selected points. Selections

are indicated by markers (see Sec. 3.2.5). 51
3.5 Missing neighbors finder view, all point pairs, for different � values

(see Sec. 3.2.5). 52
3.6 Missing members for two point groups. Points in the selected groups

are drawn as marked (see Sec. 3.2.6). 54
3.7 Comparison of two projections. (a) LAMP (blue) and LSP (red)

points. (b) Bundles show corresponding point groups in the two
projections (see Sec. 3.2.7). 56

3.8 Comparison of LAMP, LSP, PLMP, and Pekalska projections for the
Segmentation dataset (see Sec. 3.3.4) 60

3.9 Applications – LAMP algorithm, Freephoto dataset, different neigh-
bor percentages per row (see also Fig. 3.10). 62

3.10 Applications – LSP technique, Freephoto dataset, different numbers
of control points per row (compare with Fig. 3.9) 63

3.11 Applications – LSP technique, Freephoto dataset, different numbers
of neighbors. Bundles show most important missing neighbors. . . . 64

List of Figures

3.12 Applications – One algorithm (LAMP), different datasets. Top row:
false neighbors. Bottom row: missing neighbors. 66

3.13 Applications – ISOMAP projection, finding missing group members
for different numbers of neighbors. 67

3.14 Applications – Shift between two LSP projections, for different num-
bers of force-directed iterations. 68

4.1 The four types of points that can be derived from the two k-neighborhoods
⌫n
k

piq and ⌫2
k

piq of a point i when analysing neighborhood preservation. 77
4.2 Centrality preservation view, segmentation dataset, LAMP projection.

(a-c) Centrality CP 2
k

, for three neighborhood sizes k. (d) Centrality
CPn

k

, for k “ 180 neighbors. 79
4.3 Set difference view, segmentation dataset, LAMP projection. The

figure uses the same k values as in Figs. 4.2a-c. 81
4.4 Sequence difference view, segmentation dataset, LAMP projection, for

four increasing scales (k values). 84
4.5 Local analysis of the connection between the left and central groups.

The visual border, seen also in Figs. 4.3b and 4.4, is marked by a
dotted curve. 85

4.6 Original classification (ground truth) for the segmentation dataset. . 87
4.7 Projection precision score (pps) [159], segmentation dataset, LAMP

projection, for four scales (k values). 89
4.8 Corel dataset, LAMP projection, k “ 75 neighbors. (a) Projection

without error metrics. (b) Projection colored by CP 2
k

. (c) Projection
colored by CPn

k

. 90
4.9 Corel dataset, LAMP projection, k “ 75 neighbors. (a) Set difference

view. (b) Sequence difference view. 90
4.10 Local neighborhood analysis for the Corel dataset, LAMP projection,

k “ 75 neighbors. 91
4.11 Neighborhood-preservation analysis for the Github dataset, LSP

projection, k “ 72 neighbors. 93

5.1 Three different viewpoints of the 3D LAMP projection of the ALL
dataset [136]. 99

5.2 Analysis of aggregated distance-based errors of different LAMP pro-
jections of the ALL dataset: (a) 2D projection errors; (b,c) 3D
projection errors for two different viewpoints; (d,e) 3D viewpoint-
dependent projection errors, for the same viewpoints shown in
images (b,c) respectively. See Section 5.1.1. 102

5.3 Generalized biplot axes for the ALL dataset projected by LAMP (see
Fig. 5.1). 109

x

List of Figures

5.4 Axis barcharts for the ALL dataset projected using LAMP. Left view:
arbitrary viewpoint, obtained by free rotation. Right view: aligned
configuration obtained from the left one by aligning variable 0 with
the x axis, followed by aligning variable 6 with the y axis. 111

5.5 Viewpoint legend for the configuration shown Fig. 5.4 b. 115

5.6 Viewpoint widget set to highlight a viewing direction that best shows
variables 2 vs 6. 116

5.7 Comparing three projection techniques (FBDR, ISOMAP, LAMP)
using biplot axes and axis legends (left) and projection errors (right).
The selected viewpoint best emphasizes the correlation of the alcohol
and acidity axes. See Sec. 5.2.1. 119

5.8 3D LAMP saddle-shaped projection of 10-variate multifield simula-
tion dataset (see Sec. 5.2.2). 121

5.9 Visualization of 19-variate image dataset using 3D projections (a,b).
See Sec. 5.2.3. 125

5.10 2D LAMP projection of a 19-dimensional dataset showing point
labels (a) and errors (c). 3D LAMP projection of the same dataset
showing errors (b). See Sec. 5.2.3. 127

5.11 Visualization of 12-variate software metrics dataset using 3D LAMP.
See Sec. 5.2.4. 128

5.12 Software dataset: Comparing a selected view of a 3D LAMP projec-
tion, and its aggregated error (a), with a 2D LAMP projection and
its corresponding error (b). See Sec. 5.2.4. 130

6.1 Annotating point-neighborhoods by the dimensions that best explain
their existence in the low-dimensional projection space (right). For
the high-dimensional neighborhoods (left), their bounding-boxes
are outlined. 139

6.2 Dimension-based explanation of synthetic 3D cube dataset. 143

6.3 Dimension-based explanations of three datasets using a single dimen-
sion (left column) and dimension-sets (right column). See Sec. 6.3. 146

7.1 Connectivity-based projections of the VisBrazil network constructed
using the IDMAP projection technique [122]. (a) Layout based on
the modified adjacency matrix. (b) Layout based on the shortest-
path matrix. 158

7.2 Connectivity-based projections of the VisBrazil-Main network, formed
by the main inter-connected group of authors from VisBrazil, using
IDMAP [122]. (a) Layout based on the modified adjacency matrix.
(b) Layout based on the shortest path matrix. 160

xi

List of Figures

7.3 Using connectivity-based projections of the VisBrazil network as a
preconditioner for a force-directed layout. (a) Force-directed layout
starting from random node positions. (b) Force-directed layout
starting from node positions given by a projection based on our
modified adjacency matrix (Fig. 7.1a). 161

7.4 Connectivity-based projection of the VisBrazil network – 100 steps of
force-based layout with random initial positions. 163

7.5 Two IDMAP projections of the VisBrazil-Papers dataset. (a) Projection
using only the VSM node attributes. (b) Projection using only the
shortest-path distance matrix encoding connectivity. 165

7.6 IDMAP projection of the VisBrazil-Papers dataset, based on a com-
bination of the nodes’ attribute distance matrix and connectivity
modeled by the (a) shortest-path distance matrix and (b) modified
adjacency matrix. 166

7.7 IDMAP projection of the VisBrazil-Papers dataset, using as input a
weighted combination of attribute and shortest-path distance matri-
ces. (a) Attribute distance matrix has a weight of 3; (b) Shortest-path
distance matrix has a weight of 3. 167

7.8 IDMAP projection of the VisBrazil-Papers dataset, created by a combi-
nation of shortest-path distance and year-attribute-similarity matri-
ces. Colors encode values of the publication-year attribute, ranging
from 1998 to 2010. 168

7.9 Paper-author network for the CG&A and CGF journals, composed
of 2471 articles and 3841 authors. (a) Projection colored by graph
degree; (b) Projection (drawn without edges) colored by betweenness.169

7.10 Paper-author network for all papers for the CG&A and CGF journals,
laid out with a spring embedder initialized by the projection layout
in Fig. 7.9. (a) Entire network, colored by journal ID. (b) Zoom-in
on the disconnected outlier component in Fig. 7.10a. 171

7.11 Layout for the eurovis dataset by (a) force-based method using
random positions (force); and (b) projection followed by force-based
method (proj-force). Colors indicate the k-means clusters in the
dataset. 172

7.12 Quality plots for both force and proj-force layouts. Top row: eurovis
dataset; middle row: vis dataset; bottom row: agric dataset. Left
column: neighborhood hit metric. Right column: neighborhood
preservation metric. 174

7.13 Analysis of neighborhood preservation using the set-difference view
for two versions of the eurovis dataset. (a,c) Full network. (b,d) Main
connected component. The graph drawings were created by (a,b)
the modified adjacency distance matrix; and (c,d) the shortest-paths
distance matrix of the considered networks. 177

xii

List of Figures

7.14 Analysis of neighborhood preservation errors using the set difference
view for the eurovis dataset, using different projection techniques.
The network connectivity is encoded by using the modified adjacency
distance matrix. 179

7.15 Attribute-based projection of caffe dataset, using the LSP projection
technique, with three color-coded metrics: (a) Coupling between
objects (CBO); (b) Depth of inheritance tree (DIT); and (c) number
of Attributes (NOA) [33, 10, 107]. 181

7.16 Projections of the caffe dataset, using the LSP projection technique,
with attribute values encoded by node glyph sizes and colors. (a,c)
Projection based on the shortest-path distance matrix only; (b,d)
Projection based on the attribute values only. Bottom row (b,d)
focuses the visualization on two selections of nodes, and thereby
renders nodes outside these selections as half-transparent. 183

7.17 Two LSP projections of the caffe dataset, using combinations of the
attribute-based and the connectivity-based distance matrices. Con-
nectivity information is represented using (a) the modified adjacency
distance matrix, and (b) the shortest-paths distance matrix. 185

7.18 Neighborhood preservation error (set difference view) analysis of
the Bitcoin-Main dataset, using LSP projections with different inputs:
(a) Attributes only; (b) Connectivity only (modified adjacency ma-
trix); (c) Connectivity only (shortest-paths matrix); (d) Combined
attributes and modified adjacency matrix; (e) Combined attributes
and shortest-paths matrix. 187

7.19 Neighborhood preservation analysis of the Bitcoin-Main dataset,
using the IDMAP and ISOMAP projection techniques. Nodes are
encoded by a combined attributes-and-shortest-paths distance matrix.189

7.20 Alternative network visualization with edge bundling [182], using
the same node coordinates shown in Fig. 7.6. Bundle opacities
encode the edge counts in the respective bundles. 192

xiii

List of Tables

7.1 Differences between the datasets VisBrazil and VisBrazil-Main . . . 159
7.2 Datasets used for the analysis of quality of connectivity-based pro-

jections. 171
7.3 Aggregated comparison values for proj-force and force plots. 175

Chapter 1

Introduction

T

he last decade has witnessed an explosion in the prominence of data as a
central artifact of scientific and technological development. Multiple facets

characterize this unprecedented development. The advent of increasingly sophisti-
cated, accurate, high-throughput and cheap sensing devices and technologies make
us, as a society, able to collect amounts of data from a huge range of sources and
up to extents that were unthinkable years ago. The increase of computing power
and data storage, and decrease of corresponding prices, has made it possible to
analyse and explore large amounts of data of virtually any type. These analyses
and explorations support a very diverse set of activities, such as validation and
verification of models and theories, optimization of algorithms and tools, and
obtaining new insights on phenomena described by the underlying data, which
can lead to new theories, models, and ultimately socially relevant technological
developments.

A critical component of the analysis of this universe – known under the generic
name of ‘big data’ – is the availability of efficient and effective analysis tools. These
encompass a wide variety of technologies, developed in traditionally separate re-
search domains, such as data mining, knowledge engineering, statistics, databases,
business intelligence, mathematical analysis, computer graphics, human-computer
interaction, and data visualization. As the problems to be studied become increas-
ingly complex, the size and complexity of datasets describing them increase too. As
such, tools and techniques that combine data mining and analysis and interactive
exploration techniques are of increasing interest and added value. Such tools are
created and used in a new field of expertise called visual analytics.

Visual analytics has emerged from the classical fields of scientific and informa-
tion visualization as a separate discipline focused on the development of theories,
methods, techniques and tools for analytical reasoning facilitated by interactive
visual interfaces [209]. The field has known a rapid development in the last decade
since its advent, which was related to applications in homeland security and busi-
ness intelligence [37]. Currently, visual analytics tools and techniques are actively
being developed and used in areas as diverse as medical science, physics, chemistry,
biology, material sciences, geographical information systems, e-governance, and
(surely not surprisingly) computer science and information technology [102]. One
of the main reasons for the success of visual analytics is its proposal to support
incremental sensemaking, in terms of discovering unknown facts in large data
collections and next building and refining hypotheses related to the underlying

Introduction

phenomena captured by the data. This is made effective, easy to learn, and gener-
ically applicable to a wide range of audiences and domains by using interactive
data visualization techniques that present and support the exploration of data in
intuitive ways [125].

1.1 Multidimensional Data: Importance and Challenges

A particular place in the described context is occupied by multidimensional data.
Such data typically consists of a set of observations, each being characterized by a
number of dimensions, also called attributes. A multidimensional dataset can be
thought of as a sampling of a high-dimensional space, whereby the observations
play the role of sample points. Multidimensional datasets include, among many
other possible examples, population studies (where observations are persons and
dimensions are attributes of a person, such as age, gender, profession, salary, job
description, or education) [23]; medical studies (where observations are diseases
and dimensions are diagnostic and treatment-related data) [133, 67, 9]; software
repositories (where observations are files under version control and dimensions
include file attributes such as type, size, authors, bug reports, or modification
requests) [200, 201].

Multidimensional data pose particularly hard challenges to visual analytics. First,
humans find it hard to visually imagine spaces having more than three (or possibly
four) dimensions. As such, understanding datasets having hundreds or possibly
thousands of dimensions becomes very challenging. Related to this, it is difficult
to create depictions, or visualizations, of such spaces. This, in turn, leads to the
difficulty of being able to spot patterns, trends, and outliers – which are tasks at the
core of the added-value of data visualization. Secondly, multidimensional data may
have a mix of attributes of different types and ranges. For instance, our population
study example mentioned earlier features attributes which are quantitative (age
and salary), categorical (gender, education), and text (job description). Different
attribute types require different visual encodings, which makes the design of an
effective visualization harder than in the case where all attributes are of the same
type. Additionally, reasoning about relative similarities and differences of such
distinct attribute types is difficult.

The challenge of multidimensional data has been recognized since long in visual
analytics. To address this, several visualization methods have been researched.
These range from classical two-dimensional scatterplots to scatterplot matrices,
parallel coordinates and space-filling curves. In this family of techniques, Dimen-
sionality Reduction (DR) methods, also sometimes known as projections, occupy
a particular position. Given any set of observations or points, having several di-
mensions each, and a suitable distance or similarity function defined for them,
projections typically construct a two- or three-dimensional scatterplot, under the
main constraint of keeping inter-point relationships in the projection space propor-

2

1.1. Multidimensional Data: Importance and Challenges

tional with inter-point relationships in the original high-dimensional space. This
allows analysts to employ the scatterplot as a ‘proxy’ for the interpretation of the
high-dimensional space in tasks that involve comparing points, such as finding
groups or clusters of highly similar points, finding outliers, and detecting trends
and correlations.

Projections have a number of important advantages as compared to other multi-
dimensional visualization techniques. First, they scale visually reasonably well in
terms of both number of observations and, more importantly, number of dimensions.
Secondly, recent projection methods offer a high degree of robustness to noise,
distance-preservation accuracy, computational complexity, and ease of use. Thirdly,
projection methods exist for datasets having quantitative, categorical, and mixed
quantitative-and-categorical attributes [149, 1, 24, 172]. Fourthly, projection plots
require typically little to no parameter definitions or choices on the part of the user.
This is in contrast to other multidimensional visualization techniques where one
has to explicitly decide how to arrange the dimension axes (parallel coordinates,
scatterplot matrices). To summarize, we can basically use projections as black boxes
to create two-dimensional scatterplots easily, quickly, and efficiently. There are still,
however, important challenges related to their usability and ease of interpretation,
as described next.

Projection errors: Most projections introduce a certain amount of error that influ-
ences the interpretation of their results (“I cannot trust what I am seeing.”)

All projection techniques aim to preserve the structure of the high-dimensional
dataset. At a low level, this structure is typically quantified in terms of distances be-
tween point pairs or, alternatively, in terms of nearest-neighbors of points. Groups
of data points exhibiting different local structures can then be seen to form larger-
scale data patterns. By preserving this data structure, projections effectively aim to
achieve the ‘proxy’ effect mentioned earlier, i.e., the fact that one can use the result-
ing low-dimensional scatterplot to reason about high-dimensional similarities or
neighbors. Early projection methods, such as Principal Component Analysis (PCA),
essentially ignore the variation of all dimensions by describing the data in terms of
two components with the highest variance. As such, they introduce considerable
errors when projecting any dataset that is not essentially in a hyperplane embedded
into a high-dimensional space. More recent non-linear projection methods con-
siderably increase the projection accuracy, quantified in terms of distance and/or
neighborhood preservation, by essentially making different decisions on how to
project the data for each separated local neighborhood of points [141, 95, 138].
However, even such projections cannot achieve a perfect neighborhood and/or
distance preservation, not even for two-dimensional manifold surfaces embedded
in high-dimensional spaces – consider, for example, the projection of points spread
over the surface of a sphere into a plane.

3

Introduction

Given the above, there is often a loss of information that stems from the inability
of the DR methods to fully achieve their goal of keeping the original structure of the
data intact. Where this information loss occurs and its severity is, however, usually
not obvious to the user. Typical projection-quality metrics, such as aggregated
stress [139], only provide a global assessment of how accurate a projection is. Such
metrics are useful when comparing several different projection techniques, in order
to see which one gets on average the lowest projection errors. We note that, in this
context, projection error metrics are further specialized in metrics that measure
distance-preservation errors and metrics that measure neighborhood-preservation
errors, in line with the two refinements of the definition of data structure introduced
above. However, when users face the concrete task of analysing a given projection
to make decisions, global aggregate error metrics are less useful. Indeed, consider
for example that a neighborhood in the projection might apparently represent very
similar points while, in high-dimensional space, those points are not neighbors; or a
compact cluster in the projection might actually represent the union of two separate
groups of similar points from the original space. Unless explicitly detected and
depicted, such local projection errors can easily mislead users when interpreting a
projection, thereby severely diminishing the advocated role of the projection as an
effective analysis proxy for the high-dimensional dataset.

Apart from showing projection errors, users should also be given ways to correct
these where and when needed. In operational terms, this can be done by changing
the various parameters of a given projection technique, or replacing that technique
by a different one. However, to be able to make an informed decision on this, users
need to see how parameter variation affects projection errors – or, in other words,
one needs effective ways to explore the parameter space of projection techniques.
To our knowledge, there is little research that addresses this goal.

Absence of dimension encoding: There is no obvious way of interpreting projected
points in relation to the original attributes of the dataset (“I do not know what I am
seeing.”)

All mainstream multidimensional visualization techniques, with the exception
of projections, explicitly encode (subsets of) the high-dimensional attributes in the
resulting visualization. For instance, parallel coordinates have axes that explicitly
and unequivocally allow the user to locate the value of any attribute on any data
element. When a user sees, for instance, a cluster of edges at a certain region of
an axis in such a plot, the interpretation is clear: Those specific data elements
(edges) share similar values for that attribute (axis), and the values that are
shared are immediately available for inspection by looking at the axis legends.
Scatterplot matrices also allow the explicit analysis of any pairs of attributes. After
the user locates a desired attribute pair, the data interpretation follows the usage
of a standard scatterplot. The trends present in the data regarding the selected

4

1.1. Multidimensional Data: Importance and Challenges

attribute-pair can be analysed and, when detected, can be immediately traced back
to the original values of the two attributes, located on either one of the axes of
the scatterplot. Explicit attribute encoding is also present in scientific visualization.
To give just one example, a hedgehog plot shows a three-dimensional vector field
(which can be seen as a three-variate dataset) by explicitly encoding the direction
and magnitude of the vector attributes by the orientation and length of arrow
glyphs [160].

In contrast to the above, standard multidimensional projections only depict the
similarity of data points, but not their attribute values. In a projection, a point’s
absolute position has no meaning in terms of its original attributes – that is, we
cannot infer the values of that point’s attributes just by looking at the point itself.
If we include in the analysis the neighbors of the point, we may infer various
facts about the similarity of points. This tells us that the points are similar (and,
possibly, how similar these points are), but not why the points are similar (that
is, due to which attributes and/or attribute values). In other words, the position
of a point in a multidimensional projection does not reflect the sole attributes of
that point, but the similarity of these attributes with those of neighboring points
in high-dimensional space. This is a fundamentally different approach to data
encoding than the one used by techniques such as parallel coordinates, scatterplots,
scatterplot matrices, or table lenses. The difficulty of interpreting projections is
aggravated in cases where we do not see a clear separation between different
clusters in the projected image. Overall, it is quite hard for users to locate a region
of interest in a projection and comprehend why the technique decided to place
those points there rather than somewhere else.

This problem of interpreting, or explaining, projections is well recognized, and
a number of solutions have been developed to address it. The simplest solution is
to color the points based on the value of a user-selected attribute. While this shows
the values of that attribute for all points, and thus allows seeing trends, outliers,
and even the individual attribute values for separate points, we need to know
beforehand which attribute we want to examine. Examining all attribute values in
sequence is not an option, as there may be hundreds of these, and a user’s visual
memory is clearly limited. Biplot axes are also a well-known tool in statistics [71].
These resemble classical Cartesian-plot axes, and indicate the directions and range
of variation of all attributes in a projection. Biplot axes are particularly useful
for detecting strongly correlated dimensions. However, classical biplot axes are
known only in the context of linear projections, thereby excluding the more recent,
high-quality, non-linear projection techniques, e.g. [141, 95, 138]. Also, biplot axes
do not easily explain the reasons of formation of clusters. Axis legends annotate
the two screen axes of a classical linear projection by the amount of variation of
each of the original dimensions along these axes, and thereby aim to make the
interpretation of a projection scatterplot (more) similar to that of a well-known
2D Cartesian plot [24, 23]. However, such legends do not address structures in

5

Introduction

the projection that are not axis-aligned. Separately, none of the above-mentioned
explanatory techniques has been used for projection scatterplots having more than
two dimensions.

1.2 Research Questions

From our analysis outlined above, we conclude that projections are efficient and
effective instruments for visually exploring high-dimensional datasets, but their
practical value is reduced by the absence of explanatory techniques. We focus on
two classes of such explanatory techniques, that address (a) the explanation of
the quality of projections in terms of fine-grained insight on the projection errors;
and (b) the explanation of the meaning of projections in terms of the original
high-dimensional attributes.

As such, we can formulate our general research question below:

How can we increase the added value of multidimensional projections of high-
dimensional datasets with explanatory techniques that enable a wide range of users to
interpret the information present in a projection in more effective ways?

We can next refine this research question into two sub-questions, based on our
earlier analysis of projection interpretation challenges:

1. How to explain the errors introduced in a projection by the underlying
dimensionality reduction technique, so that we see how and where these
errors influence our interpretation of the patterns present in the projection?

2. How to explain patterns present in a projection, such as trends, groups,
outliers, and correlations in terms of the original high-dimensional attributes?

We observe that these two sub-questions are related, but complementary. An-
swering sub-question 1 serves the goal of explaining which elements present in the
projection are trustworthy (and thus should be considered for further exploration),
and which not (and thus should be discarded or investigated in other ways). An-
swering sub-question 2 serves the goal of telling the users how to construct an
interpretation of projection regions based on the original data attributes. Addition-
ally, the techniques we will next propose to address our research sub-questions
work jointly to help explaining and interpreting a projection, and are comple-
mentary – first, separating projection elements that are worth interpreting further
from those that carry artifacts of the projection; next, interpreting the elements
selected in the previous step. The projection interpretation pipeline afforded by
these combined techniques is therefore compatible with the well-known informa-
tion visualization ‘mantra’ of Shneiderman: ‘Overview first, zoom and filter, then
details-on-demand’ [168].

6

1.3. Structure of This Thesis

1.3 Structure of This Thesis

Below we provide a brief overview of the focus of each following chapter in this
thesis.

Chapter 2 presents an overview of visualization methods that address the
exploration of multidimensional datasets. As our domain of interest is information
visualization, we naturally focus herein on information visualization and visual
analytics methods that deal with abstract, non-spatial, data. Also, we focus on
the visualization of high-dimensional datasets having hundreds of dimensions.
Separately, this chapter provides a survey of multidimensional projection techniques
as well as techniques that aim to explain such projections and quantify and present
projection errors.

Chapter 3 presents our work in the direction of visualizing and explaining
distance-preservation errors that appear in multidimensional projections, as in-
troduced in Sec. 1.1. To this end, we further refine the global notion of distance-
preservation errors into several sub-cases, such as false neighbors and missing
neighbors, and propose ways to measure and visually explore such errors. We
further generalize these error metrics to the coarser-scale of groups of close points
in a projection, which typically represent related observations. Separately, we
show how we can use the proposed error metrics to explain individual projections,
compare different projection techniques, and also explore the parameter space of
projection techniques to find optimal parameters in terms of error minimization.

Chapter 4 shows how we adapt our distance-preservation error metrics and visu-
alization techniques introduced in Chapter 3 to quantify and explore neighborhood-
preservation errors in multidimensional projections. Similarly to the work presented
in Chapter 3, we refine the notion of neighborhood preservation to propose sev-
eral concrete metrics to quantify this aspect in a projection, and next propose
several visual encodings to depict these metrics. We next show how visualizing
neighborhood-preservation errors is of practical added value in terms of detecting
high-error patterns in a projection that should be interpreted with care when trying
to reach global conclusions about the similarity of the projected observations.

Chapter 5 addresses our sub-question related to projection explanation. We
focus here specifically on three-dimensional projections that generate, as out-
put, a 3D scatterplot of observations. First, we show how the exploration of 3D
projections may achieve, in certain circumstances, a more faithful rendering of high-
dimensional structures such as clusters of similar observations than 2D projections,
and thereby build a case for the added value of 3D projections. We next identify
important sources of difficulty and/or potential errors in terms of 3D projection
interpretation, and detail how these relate to the interpretation errors described
for two-dimensional projections. We next adapt and extend existing techniques
for explaining 2D projections, such as biplot axes and axis legends to the specific
context of 3D projections and their interpretation challenges. Finally, we show

7

Introduction

how our techniques can be used to explain outliers, correlations, and trends in 3D
projections in terms of the original high-dimensional variables.

Chapter 6 focuses on the visual explanation of 2D projections. For these, we
propose a number of different explanatory techniques than those introduced for
3D projections in Chapter 5, by exploiting the relatively simpler structure of 2D
scatterplots. To this end, we first propose several metrics that aim to explain, on
a local basis and by using the original high-dimensional attributes, why points in
a 2D projection are placed close to each other. Next, we adapt and extend the
visual encodings proposed in Chapter 3 to depict our local explanations. While
both the techniques introduced in this chapter and Chapter 5 explain projections in
terms of the original high-dimensional attributes, our techniques for 2D projections
achieve a high local level-of-detail explanation, while the techniques proposed for
3D projections work at a more global level.

Chapter 7 turns our focus to the use of multidimensional projections for a
specific concrete application – the study of multivariate networks. We show that
we can directly use unmodified dimensionality reduction methods to address the
problem of visually presenting a multivariate network in terms of its connectivity,
its attributes, or both, solely by adapting its data representation according to the
desired goals and feeding it as input to a DR method. We compare the results of
this with more traditional force-based algorithms and show how they differ and
which features of the network are more or less apparent in each scenario. Finally,
we show that, by following this approach, it is then possible to apply the same
visual analysis methods introduced in previous chapters to evaluate and interpret
this new type of dataset, thus reinforcing the claim of adaptability, applicability
and usefulness of the proposed explanatory techniques.

Chapter 8 reflects back on our research questions and the proposed visualization
methods for multidimensional projections introduced in the body of this thesis. We
summarize our findings in terms of types of projection interpretation challenges vs
strong points and limitations of the proposed explanatory methods. This chapter
also concludes this thesis by summarizing our main findings and also identifying
future potential exploration directions for explaining projections, and outline how
such methods could improve the ease of use and effectiveness of projections in
practical data visualization applications.

8

Chapter 2

Related Work

I

n this chapter, we present a survey of methods and techniques related to the
interactive visual exploration of multidimensional datasets. Within this survey,

we dedicate particular attention to multidimensional projection techniques, which
offer several important advantages in terms of genericity, visual scalability, and
supporting tasks such as detection of outliers and groups of similar observations.
In line with our main research questions outlined in Chapter 1, we also discuss
techniques for the assessment of projection quality and projection errors, as well as
techniques that help explaining projections. The aim of this chapter is to provide
a technical background on techniques related to our own work described in the
next chapter, and also reflect on advantages and limitations of these techniques
in relation to our key research questions outlined in Chapter 1. In turn, these
set the stage for the explanation of our proposed techniques for explaining and
interpreting multidimensional projections.

2.1 Multidimensional Data

Multidimensional data can be described as a representation that associates to each
data point x

i

, 1 § i § M , also called an observation, a set of attribute values xj

i

,
1 § j § N . The set of all values xj

i

for a given value j, over all M observations,
is called an attribute, dimension, or feature, and is denoted by x

j . The number
N ° 1 of attributes of a data point is called the dimensionality of the data. Typical
multidimensional datasets allow N to take large values. For example, in image
classification, a set of images x

i

can be described by a multidimensional feature
space, consisting of hundreds of attribute values xj

i

extracted per observation
(image) [190, 47]. Similarly, in text analysis, a corpus of documents x

i

is analysed
by extracting the frequency of terms (keywords) per document; these generate N

attribute values per document, that is, the frequencies of the N considered terms.
The use of a large dictionary, containing possibly thousands of terms, can easily
generate datasets having thousands of dimensions per observation [13].

Attribute values are associated with types and ranges. In statistical data analysis
and information visualization, one distinguishes between several types of attributes,
based on the properties of the underlying attribute domain. While not unique and
unanimously accepted, the classification presented in the following paragraphs is
frequently encountered [125, 181, 73]:

Related Work

Quantitative, or continuous, attributes are defined over sets that admit the opera-
tions of addition, multiplication with a scalar (real-numbered) value, and ordering
of values. Given the above, quantitative attributes are most usually defined over
subsets of R, as the real axis meets all above properties. In visualization terms,
quantitative attributes give rise to scalar, vector, and tensor attributes [181]. These
are sets of attributes that, when taken together, describe the variation of a higher-
dimensional quantity. For terminology simplicity and consistency, we will next
consider that an attribute x

j is always one-dimensional (has a single value per ob-
servation). Of course, different attributes xj can be semantically grouped together
to assign a higher-level meaning to the resulting set txju, e.g. when grouping three
scalar attributes to create a three-dimensional vector attribute.

A key property of quantitative attributes is that they allow interpolation of
values. Indeed, considering that we have two observations x

i

and x

j

, then we can
create interpolated values between xk

i

and xk

j

, for any attribute k, as ↵
i

xk

i

` ↵
j

xk

j

,
where ↵ P R` represent the weights, or interpolation function values, of the two
observations x

i

and x

j

, measured at the location of the interpolated value. When,
moreover, observations are defined over a metric space, which offers us the notion
of distance between points, interpolation can generate values that smoothly vary
between the attribute values xk

i

at any point located between the observations x
i

.
Interpolation is a key property for supporting operations such as data resampling,
smoothing, filtering, and reconstruction, which in turn support the scalable visual-
ization of large and complex datasets.

Integral, or discrete, attributes are defined over sets that admit addition, subtraction,
ordering and multiplication by an integral scalar. Such sets are typically ranges of
Z or N. Examples of integral attributes are counts of items, such as number of lines
of code measured per software component [107]. Integral attributes typically do
not admit interpolation, since that would require multiplication of data values with
real numbers, which produces non-integral values.

Ordinal attributes are defined over sets that allow the ordering of values, i.e., sup-
port the computation of the relations †, °, and “. Ordinal attributes are usually
employed to express relative rankings, e.g. measuring the likelihood that one buys
a product over tdefinitely not, possibly, neutral, probably, definitely yesu, or ranking
the satisfaction of customers of a service over tunacceptable, bad, poor, neutral,
good, very good, excellentu. Ordinal attributes should not be confused with integral
attributes. Indeed, while both admit ordering, it is generally not meaningful to talk
about the distance between two ordinal attributes in the same sense we talk about
the difference of two integral attributes.

Categorical, or nominal, attributes are defined over any set, as they support a
single operation – comparing two values to determine if they are equal or different.

10

2.1. Multidimensional Data

Categorical attributes are usually employed to encode the notion of category, type,
or kind. Examples hereof are, as the name also indicates, types of items, such
as gender (male or female) or transportation means (car, plane, train, subway,
bicycle). In contrast to ordinal attributes, categorical attributes do not admit a
natural ‘ranking’ of their values – all categories are equally important.

Text attributes are defined over the set of all possible phrases, or productions, that
can be generated following a given grammar and given dictionary. Examples hereof
are text written in natural language, or source code written following the syntax
of a programming language. While text attributes can be seen as categorical (we
can easily say when two text fragments are identical) or ordinal (we can lexico-
graphically order strings), they typically come with higher-level semantics. Indeed,
not all text fragments in a text dataset are usually considered to have the same
importance, and two lexically different text fragments may capture precisely the
same semantics; this makes text different from categorical attributes. Separately,
it is hard to imagine how to define an ordering of text fragments that reflects any
useful text semantics; this makes text different from ordinal attributes.

Relational attributes are defined over sets of observations, and express the fact
that two or more such observations jointly participate in a relation that encodes
some useful application semantics. Such attributes give rise to datasets known
as trees, graphs, and networks. Relational attributes are different from all other
attribute types discussed earlier since they need at least two observations to define
an attribute value (whereas we associate quantitative, integral, ordinal, categorical,
and text attribute-values with a single observation). As such, relational attributes
spawn separate families of analysis and visualization techniques, such as graph
drawing [44] and graph visualization [202, 78].

At a higher organization level, attribute values for different observations can
be grouped, or put in relationship with each other, giving birth to the concept of a
dataset. Two main types of grouping of observations are known:

Structured observations correspond to situations where these are ordered in a
specific way to represent the sampling of a given domain D. The most known
instances hereof are the so-called grids. In grids, observations x

i

are organized
along a system of so-called structured coordinates that represent the scanning
or reading order in which we have to traverse the domain D to yield increasing
values of the observation index i. The simplest, and most prevalent, examples of
grids are 1D, 2D, and 3D uniform grids, which are represented by 1D, 2D, and
respectively 3D arrays of observations. These usually represent the sampling of
corresponding 1D, 2D, and 3D spatial domains D. In this case, the resulting dataset
is also called a field, and its visual exploration falls under the scope of scientific

11

Related Work

visualization [73, 181]. However, a grid is not always associated to an underlying
spatial domain – consider, for example, the 1D grids formed by ordered sequences
of rows (observations) in a table, indexed by row ID; and the 2D grids formed by
observations stored in the cells of a matrix.

When structured observations are present, one has to (naturally) use the struc-
ture information in the design of suitable visualizations to explore the data. Indeed,
to stay with our earlier examples: If a table’s rows are to be read in chronological
order, and this order is given by the row ID, then a visualization such as a table
lens [151] should not sort rows differently. A matrix visualization should reflect
the positions of the matrix elements, as this position encodes specific semantics
of the elements. Similarly, a field visualization should not re-arrange the samples
(observations) in any order, since the positions of observations encode essential
spatial semantics.

Unstructured observations correspond to cases where these are not stored in any
particular order. As such, the emerging dataset essentially consists of a set (rather
than an ordered sequence) of tuples, each representing an observation. This in-
cludes all cases of multidimensional data where observations are not taken in
any particular order, or where the sampling order has no particular semantics.
Examples hereof are population studies, where an observation encodes all data
(attributes) available over a person, and there is no semantics associated to which
person was recorded (sampled) first or next. Unstructured observations are harder
to visualize than structured observations, as they are non-spatial by excellence – we
have absolutely no information in the dataset on how to arrange, or embed these
observations into the (2D or 3D) visualization space. In contrast, such information
is available for structured observations, in terms of relative order or even precise
spatial location.

Unstructured observations of high dimensionality (tens to hundreds of at-
tributes) and potentially having all attribute types are one of the key focus areas of
multidimensional visualization, and the main focus of this thesis. In this context,
several types of visualization methods have been proposed. We next briefly review
these methods, in order to better place in context the added-value and challenges
of multidimensional projections – our area of interest.

2.2 Multidimensional Visualization Tasks and Methods

Multidimensional visualization methods can be characterized by the types of tasks
they support. In contrast to more generic task characterizations, such data-specific
task characterizations are of added value as they provide a more explicit map-
ping between concrete tasks and specific (visualization) tools that address these
tasks, and thereby facilitate coupling tasks with tools when desigining visualization

12

2.2. Multidimensional Visualization Tasks and Methods

applications [21, 161]. However, while characterizations and taxonomies of multi-
dimensional data visualization techniques exist, a comprehensive and universally
accepted characterization of analysis tasks for multidmensional data is still not
available. This makes it hard to reason about individual data-analysis tasks, and
even harder in the case of sequences of such tasks (also called workflows) that
address multidimensional data [176, 88, 94].

In a recent paper, Brehmer et al. characterized the visual exploration of multi-
dimensional data as a combination of five types of tasks: (1) naming synthesized
dimensions, (2) mapping a synthesized dimension to original dimensions, (3)
verifying clusters, (4) naming clusters, and (5) matching clusters and classes [22].
This categorization is very interesting in our context of using multidimensional
projections to visually analyse such data. Indeed, tasks (1) and (2) directly map to
our first research sub-question (Sec. 1.2) that refers to explaining patterns present
in a projection in terms of the original data dimensions; task (3) directly maps to
our second research question (Sec. 1.2) that refers to quantifying and displaying
projection errors that may influence the interpretation of patterns present in a
projection; and tasks (4) and (5) are essentially a refinement of our first research
sub-question, specialized for cluster patterns in a projection. We shall further
address tasks (1) and (2) by our explanatory visualizations of 3D projections in
Chapter 5; task (3) by our explanatory visualizations for projection errors in terms
of distances (Chapter 3) and neighborhoods (Chapter 4); and tasks (4) and (5) by
our local attribute-based explanatory visualizations in Chapter 6.

A further useful categorization of multidimensional visualization methods splits
these into observation-centric and attribute-centric methods, as follows:

• observation-centric methods focus on explicitly depicting observations as easy-
to-recognize, compact, items in the resulting visualization. Such methods
are best for tasks that revolve around the identity of observations, such as
finding groups of similar observations or outlier observations. Conversely,
such methods are less effective for reasoning about attributes, e.g. finding
direct or inverse correlations of attributes or finding how attribute values
evolve over the range given by all observations;

• attribute-centric methods focus on explicitly depicting the variation of all at-
tributes in the resulting visualization. Such methods are best for tasks related
to the analysis of attributes, such as finding direct or inverse correlations or
finding maximum or minimum values. Conversely, such methods are less
effective for reasoning about observations, e.g. assessing the similarity of two
or more observations.

As we shall see below, most (if not all) multidimensional visualization methods
propose different trade-offs between observation-centric and attribute-centric visu-
alizations, but none offers optimal ease in reasoning about both observations and
attributes.

13

Related Work

2.2.1 Table Lenses

Tables are probably the oldest, and best-known, technique for visualizing mul-
tidimensional data. Consider a multidimensional dataset X “ tx

i

u where each
observation is a tuple x

i

“ px1
i

, . . . , xN

i

q of N attribute values. A table visualization
essentially draws each observation x

i

as a horizontal row in which the attribute
values xj

i

are explicitly shown by text in cells. This layout, hence, creates columns
for each separate attribute x

j . When the number of observations M or attributes N
becomes too large to fit the table’s visual size, scrolling is used to go to the desired
location. Besides rendering attribute values as plain text, these can be also encoded
into bars scaled and colored to reflect the attribute value. Figure 2.1a shows this for
a data table where each row encodes a stock transaction, having as attributes the
name of the traded stock, category of the stock, trade price, trade moment (day and
intraday time), and trade volume [180]. This color-and-size coding enables one
to pre-attentively spot e.g. maxima or other outlier values when quickly scrolling
through a large table.

a) b) c)

2 3 41 2 3 4 5 6 7

Figure 2.1: Table lens visualization of stock transactions created with the TableVision
tool [180]. The images shown the zoomed-in table (a), zoomed-out aggre-
gated table (b), and zoomed-out table with rows sorted and grouped by stock
category, name, and trading date (c).

To address scalability in the number of observations, the table lens technique
proposes next to reduce the size of a row to one pixel size [151]. This effectively
renders each observation as a one-pixel-thick horizontal line, which allows thou-
sands of such observations to fit on a modern computer screen without scrolling.
In this case, using scaled and/or color-coded bars to convey attribute values is
mandatory (Fig. 2.1b). The table lens supports additional tasks besides making
the visualization scalable, such as detecting trends and correlations. For instance,
in Fig. 2.1b, we can easily see that variable 1 is linearly increasing top-to-bottom,
while variables 2, 4, 5, 6, and 7 show a strongly correlated pattern. Additionally,

14

2.2. Multidimensional Visualization Tasks and Methods

different color encodings can be used for the different variables, to e.g. highlight
specific aspects. An enhancement atop of the classical table lens is the possibility
to sort and group observations by attribute values [180]. Figure 2.1c shows an
example: Here, the observations (stock transactions) are grouped first by category,
next by stock name, and finally by trading date. Same-value blocks of contiguous
rows are emphasized in the visualization by using shaded cushions [196]. The
resulting hierarchy visualization is known also under the name of icicle plots [106].
This type of visualization allows one to focus the analysis on specific attribute
value-ranges, and also to see how the attribute values distribute over the entire
observation set.

Table lenses are quite effective in showing the individual evolution of each at-
tribute x

j and, up to a certain extent, in highlighting correlations between different
attributes. They also scale very well to hundreds of thousands of observations, by
using aggregation techniques that average contiguous rows in the final table [180].
However, obtaining an insightful and, ultimately, useful table lens visualization
strongly depends on finding a good order of the rows that places observations of
interest close to each other. Doing this may not always be possible, since we cannot
sort the table in the same time on multiple attributes. As such, tasks such as finding
groups of strongly similar observations (with respect to all their attributes) are not
directly supported by table lenses. Separately, table lenses do not readily scale to
datasets having hundreds of attributes.

2.2.2 Small multiples

Besides tables, small multiples are another well-known technique for visualizing
multidimensional data [187]. The key idea is simple: Consider a multidimensional
dataset X “ tx

i

u where each observation is a tuple x

i

“ px1
i

, . . . , xN

i

q of N

attribute values. Assume next we have a visualization method for all values,
over all observations, of a given attribute 1 § j § N . Denote by V

j

the visual
representation of this attribute x

j . A small multiple visualization is, then, a spatial
organization of all visualizations V

j

, 1 § j § N , also called multiples, that allows
one to compare and correlate values of different attributes. To enable this, the
visualizations V

j

should not only have a similar design, but also use similar visual
encodings, e.g. color, line thickness, scaling, shading, and texture. However, it is not
mandatory that all these encodings be identical. As long as the task of comparing
different visualizations V

j

, V
k‰j

is supported, a few visual encodings can be used
to mark aspects that are different for different attributes j.

Classical examples of small multiple visualizations include timelines and bar
charts organized in grids, which are ubiquitous in business intelligence and info-
graphics in general. Figure 2.2 shows a slightly more advanced small multiple
visualization along these lines [180]. The input dataset consists of the same type of
data table as discussed earlier in Sec. 2.2.1. The table lens visualization discussed in

15

Related Work

Figure 2.2: Small multiple visualization of stock transactions created with the TableVision
tool [180].

Sec. 2.2.1 regarded these data as a multidimensional dataset where an observation
is a stock transaction. At a higher level, we can look at the same data as being a
multidimensional dataset where each stock is an observation, and its attributes are
its category, name, and evolution of trade price and volume over a given time period.
Following this model, the data are first organized into a hierarchy, by grouping
observations by category, next by stock, and finally by trading day, as outlined in
Sec. 2.2.1. The resulting structure is visualized using a cushion treemap [196]. This
already shows the appearance of two top-level cushions or blocks of observations,
which represent each one of the two stock categories present in the input data.
Next, a classical timeline graph of the per-day average transaction price is drawn
atop of the treemap cushion of each stock. As the stock cushions are laid out in
lexicographic order (top-to-bottom and left-to-right, in alphabetical order of the
stock name) and using equal sizes when constructing the second treemap level,
this effectively creates a small-multiple layout where we can compare the evolution
of daily stock prices (attributes) across different stocks (observations). Separately,
since stocks (observations) are lexicographically ordered on name, we can create a
mental map of where a given stock is located based on its name.

Small multiples are effective in allowing one to flexibly organize a number of
visualizations V

j

so as to capture a wide range of aspects, e.g. attribute values,
attribute names, or domain-specific conventions. This favors creating visualizations
that have a ‘natural’ reading order. Note that table lenses can be seen as an
(extreme) particular case of a small multiple visualization, where each visualization
V
j

depicts a different table column or attribute x

j . A limitation of small multiples
is that they cannot cope with more than a few tens of visualizations V

j

– therefore
the qualification ‘small’. This creates problems when one maps each attribute of

16

2.2. Multidimensional Visualization Tasks and Methods

a high-dimensional dataset to a separate multiple. Separately, the ordering of
multiples will favor comparing those that are closely placed in the visualization,
and make it hard(er) to compare those that are far away. A more subtle effect is
that, if multiples are ordered in a 2D grid-like fashion, then this order should be
taken into account in conjunction with the natural reading order of a grid-like 2D
infographic, which is largely lexicographic [84]. Finally, just as for table lenses,
small multiples are largely an attribute-centric, rather than an observation-centric,
technique – they allow comparing values of attributes, but do not (typically) show
observations explicitly in the visualization. As such, tasks where observations are
central, such as finding groups of strongly similar observations or finding outlier
observations, are not optimally supported by small multiples.

2.2.3 Scatterplot methods

Scatterplot techniques are, as a visualization means for multidimensional data, on
par with tables and small multiples in terms of popularity. Classical scatterplots
are simple and easy to explain: Given a multidimensional dataset X “ tx

i

u with
observations x

i

“ px1
i

, . . . , xN

i

q, a two-dimensional scatterplot S
jk

plots a 2D point
p

i

“ pxj

i

, xk

i

q for each observation x

i

, using as 2D Cartesian coordinates the values
xj

i

and xk

i

of x
i

along two user-selected attributes, or dimensions, xj and x

k. The
result is a familiar 2D point cloud whose shape and spread allows one to interpret
the data along the two plotted attributes in various ways: The plot extent, or
size, conveys an idea of the range of the attributes; the plot’s spread conveys the
correlation strength of the two attributes; the plot’s closeness to a line conveys the
strength of linear correlation (or inverse correlation, depending on slope) of the
attributes; and isolated points in the plot indicate outlier observations.

The main strength of 2D scatterplots lies in their simplicity and ease of con-
struction. Most importantly, the values of the two plotted attributes x

j and x

k

are directly visible along the plot’s x and y axes respectively. Constructing such
plots is straightforward for quantitative and integral variables that admit a direct
mapping to the real-valued plot axes. For categorical variables, scatterplots can be
constructed by using multiple correspondence analysis techniques [1, 71], which
we will discuss in more details in Sec. 2.3. Clutter can, however, occur in 2D
scatterplots, when multiple observations project atop, or very closely to, each
other [49]. In such cases, a classical way to reduce clutter and convey more insight
is to display a 2D density map of the points p

i

, computed e.g. by kernel density
estimation, and visualized by a color coding [195]. While this does not make all
observations distinguishable, it conveys a clear idea of how many observations
one can see in every region of the scatterplot, and thus makes densely-populated
scatterplot regions, which are arguably more interesting, more salient.

The main limitation of 2D scatterplots is related to the fact that they can only
show two attributes at the same time. A third attribute can be added atop a

17

Related Work

classical 2D scatterplot, by color-coding the points p

i

by their value. However,
this interferes with densely-populated point regions and creates clutter that can-
not be solved by the density map solution outlined earlier. Alternatively, three
attributes can be visualized by constructing a 3D scatterplot in analogous ways
to 2D scatterplots. This results in 3D point clouds which can be then explored
interactively from multiple viewpoints to find correlations, trends, and outliers.
However, interpreting 3D scatterplots is generally found harder than interpreting
2D scatterplots, due to effects such as occlusion, depth ambiguity, the difficulty
of assessing distances between arbitrary 3D points, and the need for the user
to choose a suitable viewpoint [156]. To ease the interactive exploration of 3D
scatterplots, several techniques have been proposed, such as controlled animation
when changing viewpoints [158, 86] and illumination models that highlight the
local point-cloud density distribution (curve, surface, and volumetric) differently to
ease perception of dense scatterplots [157]. However, even with these refinements,
visually exploring 3D scatterplots still remains challenging.

To increase the scalability, in terms of dimensions being shown, of scatterplots,
different techniques have been proposed. Scatterplot matrices (or SPLOMs) create a
small-multiple-type visualization consisting of N ˆN cells organized in a symmetric
matrix [12]. Each matrix cell pj, kq shows the 2D scatterplot S

jk

of variables j and
k. To facilitate the correlation of various attributes of the same observation in all
the matrix cells or multiples, the linked views technique is used – upon brushing or
selecting an observation, or set of observations, in any cell, the same observations
are highlighted and/or selected in all other cells of the SPLOM. While this offers
some support of correlating the different 2D scatterplots, SPLOMs still remain
an attribute-centric technique. In particular, finding groups of strongly related
(similar) observations requires an iterative process of interactively selecting close
points in one or several multiples and checking whether the selected points are
close in all other plots. Separately, SPLOMs do not scale well with the number of
attributes, as they essentially require N

2

2 cells to show an N -dimensional dataset.
Several refinements have been proposed to address the limitations of SPLOMs.

One such approach is to exploit interactivity to make the navigation of the user
in the high-dimensional space easier and/or more effective for specific tasks. In
this sense, the ‘rolling the dice’ technique allows users to continuously transition
between two SPLOM cells S

jk

and S
lm

, by creating an animation that linearly
interpolates the positions of the plotted points p

i

between the two plots [50].
Specific interaction tools are provided to facilitate the navigation between cells
that share one attribute axis, e.g. j “ l or k “ m. An additional advantage of
this technique is that it limits the required visual space – in the limit, one can
use only a single 2D scatterplot view to navigate the entire data space. The idea
of user-controlled animated interaction between two scatterplot-like views was
extended next by Hurter et al. [87, 86], in terms of allowing the user to stop
the animation at any desired stage, and also interactively control the playback

18

2.2. Multidimensional Visualization Tasks and Methods

speed and direction. This allows one to locate interesting patterns in the animated
scatterplot that may be visible only at specific animation stages, and also select
such patterns to explore further. Overall, such interactive techniques move a part
of the data space to be explored from a spatial encoding (like in SPLOMs) to a
temporal encoding (animation). While this effectively increases scalability in terms
of dimensions, it also requires additional learning and temporal-memory efforts
from the users.

A separate approach to enhance SPLOMs is proposed by a group of techniques
collectively known as scagnostics [188]. In essence, these techniques pre-analyse the
original high-dimensional data or, alternatively, the 2D scatterplots that a SPLOM
would create, and try to detect a small number of views on the data that best
depict a number of predefined patterns of interest. Next, these views are displayed
using e.g. a classical SPLOM. The two advantages of this approach are reducing
the number of views shown to the user to the most ‘interesting’ ones; and, since
views were selected based on some relevance metric that aims to recover patterns,
annotating the views to explain which types of patterns they depict. Different types
of metrics aim to locate different types of patterns, such as outliers, shapes, trends,
density, and coherence of scatterplots [207]; or relevance and coherence of 2D
scatterplots [110]. While scagnostic techniques can clearly reduce the number
of views required to depict high-dimensional data, they are implicitly limited in
the power of the underlying analysis techniques to detect which such views are
‘interesting’. For relatively simple patterns such as outliers and correlations, this is
quite easy to do. However, patterns that have more complex shapes or, even more
challengingly, which require multiple variables to be described, are hard and/or
computationally costly to detect. On a higher level, one can also state that such
approaches are not effective when one needs to explore a dataset without any a
priori idea or expectation on the patterns to be found – in such cases, we want to
‘discover the unknown’ rather than searching for the known (patterns), so different
approaches are needed.

2.2.4 Parallel Coordinate Plots (PCPs)

Parallel coordinate plots (PCPs) [90] aim to make observations more visible while
preserving the possibility to compare and analyse the data from an attribute-
centric perspective. For a multidimensional dataset X “ tx

i

u with observations
x

i

“ px1
i

, . . . , xN

i

q, a PCP constructs N parallel axes, one for each variable x

j . Next,
the values of the variables xj

i

are plotted on each corresponding axis. Finally,
the plotted points that correspond to the same observation x

i

are connected by a
polyline. The resulting plot contains, thus M polylines that cross the N axes at
locations indicating their attribute values.

Figure 2.3 illustrates the tasks supported by PCPs by showing two visualizations
created with the PCP technique by using the parvis visualization tool [108]. Groups

19

Related Work

of similar observations (in all dimensions) appear as thin bands of nearly parallel
polylines. These can be further emphasized by computing a density map by drawing
polylines using alpha blending. Flat distributions of attribute values show up as axis
intersection points spread uniformly along a given axis. In contrast, attribute-value
distributions that have localized peaks show as ‘bundles’ of polylines that intersect
the respective attribute axis at the given attribute value. Outliers appear as isolated
polylines that do not visually group to a band. Correlated values of attributes
plotted on adjacent axes appear as polyline fragments consisting of nearly parallel
lines. In contrast, inversely correlated values (for the same types of axes) appear
as polyline fragments that form an X-like pattern between the axes. Histograms
of attribute values can be overlaid on the axes to give a more quantitative view
of the attribute-value distributions than when looking at alpha-blended polylines.
Finally, interaction such as brushing and selection supports tasks such as finding all
observations that have a given range of attribute values.

swapped axes
(maximum is below)

swappeappeped axesped d axped

histograms

a)

b)

Figure 2.3: Parallel coordinate plot using the parvis toolkit for a 6-dimensional dataset
(images from [181]).

20

2.3. Dimensionality Reduction

Several enhancements to the basic PCP design have been proposed. Axes
can be permuted and swapped (in terms of direction) to limit the clutter created
by intersecting polylines, and also to bring axes that one wants to examine in
conjunction close to each other. Axes can also be aligned in a radial, rather than
parallel, pattern, leading to the so-called radial plots [81], star plots [30] and star
coordinates [99, 100] (which can be also seen as a variant of scatterplots). This
flexibility of arranging axes is taken a step further by FLINAPlots, which essentially
allow users to draw and arrange axes interactively as they desire, so as to position
axes relatively to each other in ways that best emphasize the desired patterns.

PCPs and their variations are effective in striking a good balance between the
visual predominance of observations and attributes, allowing users to pursue both
observation-centric and attribute-centric exploration strategies. However, they
also come with several limitations. First, the clutter created by numerous crossing
polylines can lead to displays where one can hardly see both observations and
attribute variations. This can be explained in terms of the amount of ink being
used to draw a given dataset of M N -dimensional observations and the amount of
overlaps present in the respective drawing: Table lenses have zero overlaps, and
use an amount of ink that is proportional to the product N ¨ M . Small multiples
have also zero overlap, while using a similar amount of ink. SPLOMs have zero
overlap and use an amount of ink proportional to M N

2

2 . In contrast, PCPs have
significant overlap in general, and use an amount of ink which, while being also
of the order of M ¨ N , is higher than for table lenses and, for low values of N ,
also higher than for SPLOMs, since one needs to leave a significant amount of
space between consecutive axes to draw the respective polyline segments with
limited clutter. A second limitation of PCPs regards their linear structure, or axis
arrangement. While this structure favors comparing adjacent axes, it makes it
quite hard to compare axes that are situated far apart from each other in the plot.
Permuting axes can bring different pairs of axes close to each other, but cannot,
for instance, generate a design where three or four axes are equally close to each
other. Separately, one needs to know how to arrange axes beforehand in order to
highlight specific patterns – and if such an arrangement is unknown, otherwise
interesting patterns may be missed. Finally, just as the other multidimensional
visualization techniques discussed earlier, PCPs are quite limited in the maximal
number of dimensions they can visualize simultaneously.

2.3 Dimensionality Reduction

As we have outlined in the previous sections, visualizing multidimensional data
is challenging, especially when the number of dimensions is high. In particular,
considering the characterization of such visualization methods into observation-
centric and attribute-centric introduced at the beginning of Sec. 2.2, we see that
table lenses, SPLOMs, and small multiples are all largely attribute-centric methods.

21

Related Work

Indeed, SPLOMs and small multiples do not offer a single and compact visual
encoding (depiction) of an observation, but plot it as a set of spatially disjoint
elements in the visualization. Table lenses do plot an observation as a spatially-
contiguous row of cells (encoded as colored bars); however, rows for different
observations cannot be easily compared, as they are typically ordered in the table
by the value of a single attribute; also, a row itself is far from being compact, thus
hard to be recognized, and reasoned about, as being an observation. From all
techniques reviewed above, PCPs come closest to being observation-centric, as they
explicitly represent observations as polylines. However, similar to table lenses, the
spatial extent (in the resulting visualization) of an observation is quite large, so it
is relatively hard to reason about the data from an observation-centric perspective.

Dimensionality reduction (DR) methods, also called projections1, propose a
diametrically opposed view on a multidimensional dataset. Here, observations
are clearly and easily identifiable as points in a typical 2D or 3D scatterplot.
More formally, given a multidimensional dataset Dn “ tp

i

P Rnu1§i§N

of N

n-dimensional points, a dimensionality Reduction (DR) method can be seen as a
mapping

f : Rn ˆ P Ñ Rm (2.1)

that maps each point p
i

P Dn to a point q
i

P Dm. Here, n is typically large (tens
up to thousands of dimensions), and m is typically 2 or 3, corresponding to the
generation of typical 2D or 3D scatterplots respectively, which can be directly drawn
for visual inspection. P denotes the parameter space of f , i.e. the various settings
that control the projection algorithm f and affect its output.

The goal of any DR method is to keep various aspects of the so-called structure
of the multidimensional data as similar as possible in Rn and Rm. By data structure,
we mean here aspects that are relevant for the application at hand, such as the
distance between observations or the k nearest neighbors of an observation (for a
user-specified value of k). If such aspects are kept (nearly) identical in the original
high-dimensional data Dn and in the projection space Dm, or in other words if
the projection preserves such aspects, then one can use the projection space as
a ‘proxy’ to reason about the invisible high-dimensional space. For instance, if
we are interested to find groups of very similar observations, and our projection
preserves distances (similarities) between observations, then we can visually locate
such groups in Dm and thereby directly find observations that are similar in Dn.
A crucial aspect that enables this task is the fact that projections preserve, by
construction, the fact that an observation is a point in both Dm and Dn. In other
words, projections are by excellence observation-centric methods.

1We note that the term projection is often used in the literature to refer to both a dimensionality
reduction method (a function) and the results of applying this method to some high-dimensional dataset
(the result of a function). We will, accordingly, use the term projection with the same semantics, and let
the reader disambiguate its two senses from the context.

22

2.3. Dimensionality Reduction

2.3.1 Multidimensional Scaling (MDS) methods

A particular case of DR methods forms a subset of the wider family of data-analysis
methods known under the name Multidimensional Scaling (MDS) [120, 40]. The
key aspect of these methods is that they do not need access to the original high-
dimensional coordinates of the observations in Dn (the original attribute values of
each instance of the dataset). Rather, all they need is a real-valued distance matrix
An “ pdnpp

i

,p
j

qq
ij

, where dn is a distance metric over Dn. These methods aim to
compute a distance matrix Am “ pdmpq

i

,q
j

qq
ij

, where dm is typically Euclidean
distance in the projection space Dm, and q

i

is the projection of observation p

i

,
so that Am

ij

is proportional to, or a scaled version of, An

ij

. Hence, the name
multidimensional scaling. If this is achieved, we say that the DR method under
consideration preserves distances, which is, as outlined earlier, a desirable feature
for projections.

Given the distance matrix An, these methods compute the DR function f by
minimizing an aggregate badness-of-fit measure [17, 40] such as the commonly
used normalized stress function

� “
∞

1§i§N,1§j§N

pdnpp
i

,p
j

q ´ dmpq
i

,q
j

qq2
∞

1§i§N,1§j§N

pdnpp
i

,p
j

qq2 (2.2)

If a distance matrix is not available, it can be straightforwardly computed from the
observations Dn themselves. However, computing (and storing) distances this way
creates additional costs (OpN2q for N points). The PLMP algorithm avoids this by
using distances only for a small set of representative points and using additional
information present in the nD coordinates to arrange the remaining points around
these representatives [141].

DR methods using an MDS approach can be classified by the techniques used
to compute f [141]. Spectral decomposition techniques project points on lower-
dimensionality subspaces computed by considering specific eigenvectors of the
point-wise distance matrix [186]. LLE [152] and ISOMAP [184, 170] use efficient
numerical methods tailored to solve sparse eigenproblems to speed up such compu-
tations. Landmarks MDS [169] and Pivot MDS [20] achieve further speed-ups by
using classical MDS on a subset of representative points and projecting remaining
points by local interpolation. Fastmap achieves linear complexity in the input
observation count but has a worse stress minimization [55]. MetricMap improves
the computational speed of Fastmap by trying to perform the entire projection in a
single step [203]. Fastmap, MetricMap, and Landmark MDS have been shown to
be instances of the same minimization framework [147].

A different approach to compute MDS-based projections is to construct a graph
whose nodes are the original observations and edges connect (ideally) all observa-
tion pairs. Nodes are assigned random positions in Rm. Edges are next assigned
weights which are inversely proportional to the distances dmpp

i

,p
j

q corresponding

23

Related Work

to the observation pair pp
i

,p
j

q, and these weights are regarded as elastic spring
energies. Next a spring embedder algorithm is run to diminish the total energy of
the graph, much like in classical graph-drawing algorithms [44]. Heuristics and
optimizations are proposed to increase the convergence speed of this relaxation
and to obtain a graph whose mode positions essentially minimize the stress �

(Eqn. 2.2) [208].

2.3.2 Coordinate-based projections

A different class of projection methods directly uses the coordinates of the observa-
tions p

i

P Dn rather than their distance matrix. As outlined earlier in Sec. 2.3.1,
this has the advantage, upon MDS methods, of storing only OpN ¨ nq values as
opposed to OpN2q values. For datasets having many more observations than di-
mensions, this produces considerable savings. However, the disadvantage of these
methods, which we next call coordinate-based projections, is that they are less
general than MDS methods, as they need to have access to the original observations
in Dn, which can be of various attribute types (Sec. 1.1).

One of the earliest coordinate-based projection methods is based on the Karhunen-
Loèwe transform [60]. For this, the covariance matrix of the observations’ coor-
dinates in Dn is computed. Next, the m eigenvectors thereof corresponding to
the m largest eigenvalues are found, and the observations in Dn are projected
on the hyperplane defined by these vectors. This yields the point set Dm which
captures most of the variance of the input data [97]. This technique has, however,
the main disadvantage that it assumes that the observations are well captured by
a m-dimensional hyperplane. As such, in cases where the observations are still
embedded on an m-dimensional curved surface (manifold), which is however not
a plane, the projection will loose a significant amount of the data variance.

Nonlinear optimization methods iteratively search the parameter space P to
minimize the stress � [62, 155]. Besides naive gradient descent, multigrid numeri-
cal solvers can be used to speed searching [25]. Pekalska et al. propose a speed-up
that projects a representative subset (by gradient descent) and fits remaining points
by local interpolation [144]. Force-based methods are a special class of nonlinear
optimization with many uses in graph drawing [48]. Chalmers speeds up such
methods by using the representative subset idea outlined earlier [29]. Further
speed-ups are achieved by multilevel solvers and GPU techniques [59, 89], and by
recursively selecting representatives via a multilevel approach [98]. Tejada et al.
use a heuristic to embed instances by force-based relaxation [179]. LSP positions
the representative subset by a force-based scheme and fits the remaining points
by Laplacian smoothing [139]. LAMP also uses a representative subset to locally
construct affine projections, and allows users to interactively place these points to
optimize the overall projection layout [95].

Apart from computational speed-up, most representative-based methods (but

24

2.4. Challenge 1: Visualizing Projection Quality

not all – LSP [139] is an exception) have the important advantage of being able
to locally define the projection. Assuming that, in the high-dimensional space Dm,
data is locally placed on a quasi-planar manifold, such projections can therefore
minimize the stress � (Eqn. 2.2) by taking different decisions for each representative.
This allows them to project high-dimensional data that is embedded on curved
manifolds much more accurately, in terms of distance preservation, than global
methods such as PCA-based techniques [95].

Some techniques, on the other hand, use a mix of both coordinates and distances
in order to achieve their results. One recent example is the t-Distributed Stochastic
Neighbor Embedding (t-SNE) [192], an improvement over the Stochastic Neigh-
bor Embedding (SNE) [80] technique that introduced the idea of converting the
pairwise distances between each pair of points i and j as conditional probabilities,
both in the high-dimensional (p

i|j) and the low-dimensional (q
i|j) space, then min-

imizing the divergence between the two in order to find a faithful low-dimensional
representation for the data. While SNE computes the probabilities in both spaces
using Gaussian distributions, t-SNE uses a heavy-tailed Student t-distribution in the
low-dimensional representation in order to make sure that dissimilar points end up
far away from each other, avoiding the crowding problem and leaving more space
for similar points to form well-defined clusters, while also achieving a cost function
that is easier to optimize.

The work presented in this section is a necessarily incomplete review of mul-
tidimensional visualization techniques (and implicitly dimensionality reduction
techniques), due to space limitations. However, for the purpose of establishing the
working context of this thesis, the presented material gives a sufficient overview
of the relevant space of methods and techniques. Additional details on specific
techniques will be given in the context of our work presented in the next chapters,
as necessary.

2.4 Challenge 1: Visualizing Projection Quality

As the above discussion outlines, projections are highly interesting tools for ex-
amining multidmensional datasets. Indeed, they are far more visually scalable
than other related techniques such as table lenses, SPLOMs, small multiples, and
PCPs. In the limit, we can say that projections offer the ultimate scalability in both
number of observations and number of dimensions – an observation is represented
by a single m-dimensional point. They are also fast to compute, and work largely
as black boxes, i.e., require minimal or even no explicit parameter choices from the
users. However, projections also have several drawbacks and challenges, which are
intimately related to their attempt to reduce a high-dimensional observation-set to
a low-dimensional point-set. We outline next how projections cope with the two
main challenges outlined in our research questions in Sec. 1.2, i.e., understanding
the quality of a projection (discussed below), and explaining projections in terms

25

Related Work

of data attributes (Sec. 2.5).
As mentioned earlier in Sec. 2.3, projections attempt to create a low-dimensional

dataset Dm that reflects the structure of the high-dimensional dataset Dn. The
key word to reflect on here is ‘attempt’. Indeed, in many cases, it is very hard, or
sometimes even impossible, to create a low-dimensional embedding Dm whose
inter-point distances are precisely proportional to their high-dimensional counter-
parts – consider, again, the example of projecting points located on the surface of a
3D sphere to a 2D plane, a problem well-known from classical cartography. As such,
projection errors, or non-zero values of the stress � (Eqn. 2.2), are unavoidable.
Such errors should be explicitly acknowledged and visually represented, to enable
users to reason about how they want to proceed next, e.g., adapt their interpretation
of the projection as a ‘proxy’ for the high-dimensional data, or even discard the
projection (and attempt to generate a better one) if errors are too large and/or too
frequently occurring.

Given the huge range of projection techniques and heuristics, it is hard for users
to assess the nature, magnitude, and location of projection errors they introduce,
without supporting tools. Understanding errors is crucial to correctly interpret
high-dimensional data by means of a projection [193, 118, 159, 8], and is done at
three levels of detail.

At the coarsest level, error metrics like normalized stress [17], correlation
coefficients [63], and silhouette coefficients [137] capture the overall projection
quality by a single number. This allows globally comparing projection methods [135,
53], but does not show how errors are distributed over the various points in a given
projection. In other words, global metrics do not show projection problems for
any point i vs all points j ‰ i in the input dataset. For instance, a relatively low
aggregated projection error may be an insignificant signal for further interpretation
of the projection: If the error is spread uniformly over a projection containing
many observations, then we locally get a very low distance distortion, which is
arguably negligible for further projection interpretation. If, however, the error
is concentrated in a single location, then one should refrain from making any
judgments on the projection close to and around that location.

On a finer detail level, distance scatterplots show the correlation of distances in
Dn vs Dm for every point-pair [95]. A similar technique is proposed to measure
cluster segregation [164]. Neighborhood-preservation plots (NPPs) show how a
projection preserves neighborhoods, for all possible neighborhood sizes [139, 199,
11, 198]. Of these, the trustworthiness-preservation metric [198] stands out as it
shows not only how many neighbors are preserved when projecting, but also if the
order of neighbors changes. However, just as distance scatterplots, NPPs give an
aggregated insight, and do not show how projection errors are spread per projected
point q

i

.
At the finest detail level, several methods aim to show projection errors for

each projected point q
i

in the projection Dm, and thus give the most insight in

26

2.4. Challenge 1: Visualizing Projection Quality

how projection errors are distributed and may affect the interpretation of the
resulting visualization. These methods can be classified into methods that focus on
distance-preservation errors (Sec. 2.4.1) and methods that focus on neighborhood-
preservation errors (Sec. 2.4.2).

2.4.1 Distance-preservation errors

Recognizing that DR methods can create distance approximation errors, Van der
Maaten et al. extend the t-SNE technique [192] to output a set tM

i

u of 2D
projections rather than a single one [193]. All points appear in all projections M

i

,
with potentially different weights and at different locations. This allows better
modeling non-metric similarities. Yet, correlating points over the several M

i

is
done manually by the user, and can be challenging for large datasets and many
projections M

i

.
Several quality metrics for continuous DR techniques are proposed by Au-

petit [8]. Point-based stretching and compression metrics measure, for each
p

i

P Dn, the aggregated increase, respectively decrease, of the distances of its
projection q

i

P D2 to all other projections q

j‰i

vs the distances of p
i

to all other
points p

j‰i

. Segment stretching and compression measure the variation of dis-
tances of close point pairs pi, jq between Rn and R2. For a selected p

i

, the proximity
metric maps distances in Rn from p

i

to all other points p
j‰i

to the corresponding
points q

i

P R2 and thereby helps understanding how (and where) the projection
may have distorted the structure of the data. These metrics are visualized with
piecewise-constant interpolation of the point, respectively segment, data using
Voronoi diagrams.

Still using colored Voronoi cells, Lespinats and Aupetit show, at the same time,
point stretching and compression by using a 2D color-coded map [111]. The
proposed colormap encodes stretching as green, compression as purple, low-error
points as white, and points with high stretching and compression as black, respec-
tively. While this color map can show local error types (or the absence thereof),
it cannot explicitly show the point-pairs that cause stretching and compression.
Besides, as the authors also note, Voronoi cells can lead to visualization bias due
to the cells’ sizes and shapes being heavily dependent on the D2 point density,
and the fact that cells cover the entire R2 space, even in areas where no projected
points exist. A similar remark was made by Broeksema et al. in the context of
their related usage of Voronoi diagrams to color-code categorical data displayed by
projections [24, 23] (see Fig. 2.4 for an example hereof).

To assist the task of navigating projections while also considering distortions,
Heulot et al. present an interactive semantic lens that filters points projected too
closely to a user-selected focus point in R2 [79]. Such points, also called false
neighbors, are pushed towards the lens border, so they do not attract the user’s
attention. Separately, points are colored by the distance in Dn to the focus point,

27

Related Work

to help users navigate to the so-called missing neighbors of the focus point. Instead
of Voronoi cells of [8, 111], points are colored using Shepard interpolation, which
yields a smoother, and arguably less distracting, image. However, in contrast
to [8, 111], this method can only show errors related to a single selected focus
point.

2.4.2 Neighborhood-preservation errors

In contrast to distance-preservation metrics, neighborhood-preservation metrics aim
to find how k-nearest neighborhoods are affected by the projection. Neighborhood
preservation analysis must cover two cases [198]: preservation of Dn neighbor-
hoods (are neighbors in Dn projected to neighbors in Dm?) and trustworthiness of
Dm neighborhoods (are neighbors in Dm also neighbors in Dn?). For this, Schreck
et al. compute, for each p P Dn, a projection precision score (pps) defined as the
normalized distance between two k-dimensional vectors containing the distances
between p

i

and its k nearest neighbors in Dn, respectively q

i

and its k nearest
neighbors in Dm [159]. Color mapping the pps atop the projection shows areas
with poorly preserved neighborhoods. This covers the first neighborhood ques-
tion outlined above but not the second one, leaving important errors, e.g. false
neighbors in terms of [118], undetected. Motta et al. propose a neighborhood
validation metric that combines precision (how many neighbors in Dm are also
neighbors in Dn) and recall (how many Dn neighbors are also neighbors in Dm)
into an error called the F-measure [124]. While related to our set-difference view
(Sec. 4.1.3), F-measures are computed by using an extended MST graph [123] to
define neighborhoods in Dn and Dm, while we use the simpler to compute, and
more intuitive, k-nearest neighbors.

Neighborhood preservation metrics defined using k-nearest neighbors are, by
construction, a function of the number k of considered neighbors. Most such
metrics let k be a free parameter, to be set by the user. However, choosing an ap-
propriate value for k is not evident, similarly to what happens in other applications
in graphics or data visualization that use similar neighborhoods, such as point
cloud reconstruction [32] or 3D shape processing [18]. Indeed, in such graphics
applications, k plays the role of a scale parameter, i.e., monotonically increasing
k will continuously enlarge the scale at which the considered shape is processed,
e.g. by ignoring or smoothing out small-scale details. Contrary to these applica-
tions, however, neighborhood preservation does not necessarily behave in a similar
monotonic manner with respect to the parameter k: A point may have the same
neighbors in both Dn and Dm for low k values; separately, for k “ N , where N is
the total number of points in our dataset, neighborhoods are obviously perfectly
preserved. However, for intermediate k values, neighborhood preservation may
be lower. Since neighborhood preservation is a non-monotonic function of k, the
question arises how should the user choose a meaningful k value to assess this

28

2.5. Challenge 2: Explaining Projections

desirable property of projections. To our knowledge, this question has not been
definitively answered by existing research.

2.5 Challenge 2: Explaining Projections

As outlined several times in this chapter, DR techniques are essentially observation-
centric: They explicitly show observations (as projected points in Dm), but do
not show attributes. This creates several interpretation challenges. Consider, for
instance, one of the main tasks for which projections are used – finding groups of
similar points. It can be argued that, if a projection has low errors (as discussed in
Sec. 2.4), then such groups can be easily found by visually spotting clusters of close
points separated by the remainder of the projected points by large white space
gaps. However, upon having detected such a group, a key question ensues: Why
are these points similar? Which attributes make them related? Such questions,
equally relevant for outliers, need to be addressed. We discuss next several classes
of methods related to this goal.

Interactive approaches explain projections by showing additional information
on-demand on user-selected points or point groups to help one define their mean-
ing. The simplest such technique shows the attribute values of the point under
the mouse in a tooltip. By brushing a point-group, one can (hopefully) see which
dimensions are most similar and, thus, likely capture the group’s meaning. A second
simple and popular technique lets users color-code all points in Dm by the value of
a single attribute. If this attribute takes very similar values for the points of interest,
then it is likely a good explanation for their similarity. Brushing and color-coding
are arguably some of the best known and most frequently used techniques in data
and information visualization applications, and are present in all major visualiza-
tion systems. As an example, see the Projection Explorer tool [140]. However, this
technique requires one to cycle through all attributes of the input dataset to find
the one that best explains similarities. Also, if similarity is explained by several,
rather than a single, attribute, this technique is less suited. A different approach is
proposed by the ForceSPICE tool, which uses a force-directed spring model to lay
out a scatterplot of textual elements [51]. The content similarity of each document
can be further inspected and the user can incrementally add annotations over the
layout or highlight specific text words. These actions update the spring model to
change the layout, to better reflect the user’s mental model. Cuadros et al. [41]
use a phylogenetic tree algorithm to project documents by placing similar ones in
close nodes of the tree. Next, users can execute a topic extraction algorithm that
automatically labels selected tree branches to guide exploration. Such approaches
explain an projection on several levels of detail, but require user interaction effort
to specify where to explain the projection.

29

Related Work

Clustering can be used to separate the projection Dm into closely-related point
groups. Projecting clusters instead of individual points creates various multi-level
visualizations where each projected cluster can be potentially explained by one or
a few ‘representative elements’ drawn atop of it using glyphs. ImageHIVE [175]
applies this idea by defining clusters from a collection of images. Using representa-
tives of each cluster, a graph is created based on the nD distances between images,
which is next drawn in 2D using a graph layout technique. A Voronoi diagram
is used to show the representatives’ contents. Multi-level maps are also used to
visualize documents [130]. The document corpus is projected and clustered by a
hierarchical clustering method. Cluster representatives are used to create a Voronoi
diagram filled with representative words. Showing representatives, however, does
not explain, in terms of attributes or dimensions, why documents are placed to-
gether. Kandogan [101] visually annotate clusters occurring in scatterplots based
on the attribute trends detected in them. Clusters are computed by an image-based
scatterplot density estimation. Important attributes are identified based on their
statistical relevance. The ProjCloud technique [143] presents an approach to build
word clouds inside general polygons formed by the outline of clusters from projec-
tions, while still preserving the semantic relationship among keywords and their
connection to their underlying document sources. The clusters can be generated
manually – in which case the technique can be considered an Interactive Approach –
or automatically. These approaches work well when the data and projection can be
easily and robustly separated into several clusters, and less well when there is no
such clear separation. The work of Joia et al. [96] improves on previous clustering
techniques by first identifying representative instances of the dataset – with the
use of Singular Value Decomposition (SVD) – then clustering all the remaining
instances according to their nearest representative. This method provides more
sensitivity to data variability and unbalanced data sets (those with clusters of very
different sizes). The same mathematical framework used to identify representative
instances can also be adapted to identify the most representative attributes of each
cluster. Concluding, it is important to notice that clustering-based approaches are
inherently sensitive to the type and parameters of the clustering technique used.
As such, users can generate multiple potentially different explanations of the same
dataset Dn, with the ensuing interpretation ambiguities.

Biplots: One way to assign a meaning to the m dimensions of the Dm projec-
tion space in relation to the original n attributes is by using biplots and their
variations [71, 69]. A biplot generalizes the scatterplot idea of plotting bi-variate
observations with respect to two Cartesian coordinate axes, into many variables be-
ing observed and viewed simultaneously. Consider the Nˆn matrix D “ pp

i

q1§i§N

.
If D has rank r, it can be rewritten by singular value decomposition (SVD) as

D “ U�V

T (2.3)

30

2.5. Challenge 2: Explaining Projections

where U is a N ˆ r matrix, � is a r ˆ r diagonal matrix of eigenvalues ↵1 °
. . . ° ↵

r

° 0, and V is a n ˆ r matrix. Here, UT
U “ V

T
V “ I, where I is the

identity matrix. Denoting F “ U�, we have D “ FV

T. The columns of VT define
the biplot axes. The rows of the left matrix F define the projections of our data
points p

i

onto these axes. If r § 3, we can directly visualize the biplot by drawing
projections as a point cloud and biplot axes as vector glyphs (oriented straight
lines) respectively. If r ° 3, we can approximate D by using in Eqn. 2.3 only the
first m † r columns of U and V. Then F gives the m-dimensional projections q

i

of
p

i

along the eigenvectors corresponding to the m largest eigenvalues ↵1, . . . ,↵m

of
DD

T. Using eigenvectors as biplot axes, however, does not convey much insight,
as eigenvectors usually do not relate one-to-one to the original variables in Dn. A
better solution is to construct n biplot axes by projecting, via Eqn. 2.3, the nD unit
vectors having one for each variable value and zero for all other n ´ 1 variables.
This overlays our m-dimensional scatterplot with n vectors that show the direction
of maximal variation of our n variables [71, 1].

Figure 2.4: Axis legends explaining the loadings of a multidimensional projection on the
x and y axes of the corresponding 2D embedding space. Visualization created
with the Decision Exploration Lab [23].

A different approach is given by Broeksema et al. [24]. Here, a nD categorical
dataset is projected to m “ 2 dimensions by SVD. Instead of drawing n biplot axes,
the contributions to the screen x and y axes of all original n dimensions are shown.
These contributions, also called loadings [71, 1], are the projections of the nD unit
vectors (via Eqn. 2.3) on the two eigenvectors that determine the projection. The
x and y axes are annotated with two n-element bar-charts or axis legends, where

31

Related Work

the height of each bar shows the contribution of a given variable to the respective
axis (Fig. 2.4). A third bar chart shows the contributions of all n variables to all
eigenvectors not used to construct the DR projection. This shows the amount of
information not captured by the 2D projection. A similar visualization of loadings
is shown in [132].

Incremental explanation approaches: Both the quality analysis and the explana-
tion of a projection can also be addressed jointly. The early VIBE system allowed
users to freely place in 2D space several so-called points of interest (POIs), each
representing a sample of the n-D space under study [134]. Points in this space
represent documents along n dimensions encoding term frequencies. Actual docu-
ments are placed in the same 2D space so as to reflect their relative similarities with
the given POIs. Conceptually, this can be seen as projecting both documents and
POIs (variable values) from n-D to 2D. However, this approach requires the user
to manually create relevant POIs (samples of the n-D space) and also place them
suitably in 2D. ForceSPIRE, a document-exploration system, uses a force-based
layout to construct a 2D projection of a set of documents represented as n-D term
vectors [51]. By dragging, pinning, and annotating documents, users can incre-
mentally assign higher-level semantics to 2D inter-document distances. The ‘dust
& magnets’ (D&M) technique extends the exploration power of ForceSPIRE and
VIBE by allowing users to interactively drag magnets to discover how data points
(dust) are attracted towards them in an animated fashion [210]. However, all these
techniques require a non-negligible amount of interaction effort from their users,
and are as such less appropriate for automated data visualization construction.

3D projections: A particular interpretation challenges is posed by 3D projections,
i.e., projections where the target space Dm has m “ 3 dimensions rather than the
more common m “ 2 two-dimensional, classical scatterplot-like, projections. 3D
projections typically achieve a better distance and/or neighborhood preservation
than their 2D counterparts. This is not surprising, as 3D projections have one extra
dimension in which to embed the high-dimensional data variation contained in the
input dataset. As such, 3D projections are, technically, an interesting alternative to
the more common 2D projections for the task of high-dimensional data exploration.
However, 3D projections come with their own challenges, which are discussed next.

A first aspect to consider is whether 3D projections are more suitable to certain
tasks than their 2D counterparts. This is still an open subject [178]. Several authors
argue that 2D DR plots are better for visualizing text documents [128, 205], and
that 2D navigation is easier than its 3D counterpart [205]. For the specific task
of cluster separation, Sedlmair et al. argue that 2D DR plots are found to be as
good as (interactive) 3D DR plots [163]. 2D DR plots were also found better for
search tasks [206] and for tasks involving distance assessment and spatial arrange-
ments [54]. On the other hand, Jolliffe argues that 3D projections are needed to

32

2.5. Challenge 2: Explaining Projections

“encode a realistic picture of what the data look like” when the intrinsic data dimen-
sion is 3 or higher [97]. Dang et al. show how 3D glyph stacking can overcome color
coding problems in 2D plots [43]. Additional cues such as illumination and depth
are proposed in support of using 3D scatterplots [157]. Sanftmann et al. argue
that high-point densities in scatterplots are better handled by 3D scatterplots [158].
Chan et al. argue that 3D projections decrease information loss by allowing better
discrimination between data elements [31]. A discussion of contexts where 3D
DR projections are preferable to 2D ones is given in [156] (Sec 2.3). Poco et al.
compared 2D and 3D DR projections using LSP [139] both quantitatively (by stress
metrics) and qualitatively (by controlled user studies) [148]. The quantitative
comparisons showed a higher accuracy of 3D projections; the user studies showed
that, when augmented by suitable interaction tools, 3D projections were superior
to 2D projections in terms of both confidence and satisfaction, and argued for the
further development of 3D interactive exploration tools.

Assuming that 3D projections are, indeed, desirable from a projection-error
minimization and task-suitability perspective, the next question to address is how
to interactively explore these. One main issue here is how to choose a suitable
viewpoint that highlights specific data aspects or, alternatively, which data aspects
are visible from a given viewpoint. This issue has been partially addressed by
multiple views, such as three 2D views linked with a 3D scatterplot by interactive
selection [146]. While not strictly speaking a technique to explore 3D projections,
‘Rolling the dice’ comes very close to this goal, as it adds interactivity to improve
navigation, 3D animated transitions to explore the visual space, and swapping the
scatterplot-matrix axes to show variable correlations and disparities, much like
rotating a 3D scatterplot [50]. This idea was extended in [158] by linking a 3D
scatterplot with a 3D scatterplot matrix, improving navigation by using three axes
and using one or two axes during visual transitions. Claessen et al. [34] extend axis
movement for scatterplot navigation, to allow users to interactively draw, place,
and link axes on a canvas, thereby creating a continuous combination-space of 2D
scatterplots, scatterplot matrices, and parallel coordinates. Although the method is
very flexible, it can create visualizations with redundant (replicated) axes. Also,
similar to [50], while the overall effect is close to what one would obtain by actually
rotating a 3D scatterplot, this technique is inherently two-dimensional. Separately,
techniques as biplots [71] and axis legends [24] have not been extended to handle
3D projections.

It is important to highlight that 3D multidimensional projections and 3D scat-
terplots have related, but not identical, understanding challenges. Issues such as
occlusion, difficulty of estimating distances between 3D points, the challenge of
selecting a good viewpoint, and depth ambiguities, mentioned in Sec. 2.2.3 for
3D scatterplots, are also shared by 3D projections. Consequently, the methods
mentioned in the same Sec. 2.2.3 that aid 3D scatterplot exploration are also
applicable to 3D projections. However, 3D projections have additional challenges

33

Related Work

that are not shared by 3D scatterplots. The main such challenge is the lack of
(simple) semantics for the dimensions of the embedding 3D space – whereas, for a
3D scatterplot, each such dimension maps a given attribute, a dimension maps a
weighted sum of attributes for a 3D projection (for details, see the discussion on
loadings in Sec. 2.5). Secondly, the placement of every point in a 3D scatterplot
is exact with respect to the mapping of its attribute values to embedding space
dimensions. This is not the case for 3D projections that are affected by distance
approximation errors (Sec. 2.4).

2.6 Multivariate Networks

A multivariate network, also called a multivariate graph, is a graph G “ pV,E “
V ˆ V q of vertices, or nodes, V , and edges E. Such a graph is called multivariate
if nodes n P V and/or edges e P E have several associated attributes of the types
earlier discussed in Sec. 1.1, i.e., quantitative, integral, ordinal, categorical, or text.

Understanding multivariate networks is particularly challenging, as these com-
bine data of two fundamentally different natures: relations (which are defined on
pairs of nodes) and scalar attributes (which are defined on individual nodes and/or
relations). In particular, to understand relations, we need suitable ways to depict
them. This is the domain of graph visualization or graph drawing [44, 202, 78].
Many algorithms have been proposed to depict the structure of graphs. Many
such algorithms are able to cope with specific constraints such as large graphs of
millions of nodes [62], reducing edge-crossing clutter to show the main graph
structure [82, 61, 85], and using specific drawing styles or conventions to highlight
specific graph sub-structures [70]. However, the large majority of graph visualiza-
tion techniques are severely limited when they have to consider showing several
attributes per node and/or edge together with the graph structure [46]. Given
our interest in multivariate data visualization, such use-cases are of clear interest.
In the following, we outline existing methods for visualizing multivariate graphs,
with a particular focus on the visualization of social networks, which are a prime
example of multivariate graphs.

Classical node-link techniques: The most prominent type of visualization of mul-
tivariate graphs offers precedence, in terms of the visualization layout construction,
to the relational information (as opposed to the attribute information). In sim-
ple terms, such techniques construct a graph visualization to display the network
structure, and next propose various mechanisms to add the visualization of node
and/or edge attributes atop of the existing graph layout. For example, Huisman
and Duijn describe several prominent tools for the visual exploration of social
networks [83]. These include NetDraw, able to visualize large social networks;
StoCNET, MultiNet, UCINet and Agna, which perform statistical analysis on social
networks; and Blanche and Condor, capable of simulating the network evolution.

34

2.6. Multivariate Networks

This survey also points out that only few techniques and tools exist that are able
to visually depict attributes of vertices and/or nodes; and that such visualizations
are usually limited to classical encodings of a few attributes into shape, color,
and size, similar to well-known techniques in general-purpose multivariate graph
visualization [46, 7]. A tool offering similar capabilities is Vizster which, atop of
classical graph-based visualization of networks and encoding a few attributes into
node and edge visual properties, also offers mechanisms to mine for patterns of
interest that may be present in the network [75].

The challenge of visualizing multivariate networks can be split into two sub-
challenges: the visualization of multiple attributes per node, respectively the
visualization of multiple attributes per edge. Several attributes can be shown for a
single node (in a node-link metaphor) by encoding them to several visual dimen-
sions (shape, size, texture, size, labels). This approach is relatively scalable, in the
sense that one can encode a large number of attributes per node if the node size,
in the visualization, is large enough. In the limit, for instance, nodes themselves
can become full-fledged visualizations of multivariate data tables [27]. However,
this implies a trade off between the number of nodes and the number of attributes
per node that a given visualization can accommodate. In the case of edges, the
multivariate challenge is far harder: It is much more difficult to design a visual
encoding that represents several attributes for an edge in a node-link metaphor.
Solutions such as encoding attributes into edge thickness, shading, transparency,
and color work reasonably well only for networks having a small number of edges
(to be more precise, edge intersections) [46]. As an alternative, more space can be
allocated to edges in the visualization, by using a table-lens, edge-centric, visual-
ization [150]. However, this metaphor is less intuitive than the classical node-link
depiction of networks. As such, visualizing networks with more than two or three
attributes per edge is, to date, an open challenge.

Adjacency matrices: Adjacency matrices are an alternative way to node-link lay-
outs to display relational data. Given a graph G “ pV,E “ V ˆ V q, an adjacency
matrix is a symmetric square matrix of }V } ˆ }V } elements, where element pi, jq
indicates whether node i is connected with node j, or whether pi, jq P E. Adja-
cency matrices have the key advantage that they can display moderately-sized
densely-connected graphs with zero occlusion, something that node-link layouts
usually cannot do [2]. In turn, this is an interesting feature in case one wants to
show multivariate attributes for nodes and/or edges. An example of this approach
is MatrixExplorer, which allows users to view a network as a set of nodes and
edges in coordination with a matrix representation [76]. The tool also creates a
view of connected components, where each component is viewed as a compact
rectangle whose size and color reflect the number of vertices contained in that
component. NodeTrix represents a network as a mix of adjacency matrices and
classical node-link layouts [77]. For this, the input network is separated into several

35

Related Work

so-called communities (sets of strongly-connected nodes), which are further linked
by edges via nodes that belong to different communities. Relationships between
community members are represented by adjacency matrices (which are a compact
way to depict strongly-connected components in a graph). Relationships between
communities are depicted as node-link edges between the respective adjacency
matrices representing the communities containing the involved nodes. The visual
properties of the vertices and edges can be modified to reflect attributes of the
network.

Multiple views: A different approach to tackle the high-dimensional space formed
by relations and attributes is by using multiple linked views. The basic idea of this
approach is simple: Each such view addresses a subset of the input data, created by
‘slicing’ either in the number of observations (nodes and edges) or in the number
of dimensions (node and/or edge attributes). Interactive linking of the views by
brushing and/or selection allows one next to correlate various data aspects. In
this context, Namata et al. presented a tool, called DualNet, capable of generating
coordinated representations or linked views [127]. The tool treats the network as a
set of sub-networks, each of which can be viewed and manipulated independently
in different coordinated views. The tool also allows the modification of visual prop-
erties of the vertices to reflect the attributes of the network. Shen et al. propose the
OntoVis tool, which is designed for the visualization of heterogeneous networks,
i.e., networks in which vertices represent more than one type of object [166]. From
an ontology graph, containing the different types of objects, users can construct a
derived graph by including only nodes whose types are selected in the ontology
graph. Next, node sizes and colors can be modulated to reflect attributes such as
node centrality and node types. Perer and Shneiderman described a system, called
SocialAction, that uses attribute ranking and coordinated (linked) views to help
users examine a number of social network analysis metrics [145]. Users can iterate
through visualizations of metrics, aggregate networks, find cohesive subgroups,
and focus on communities of interest, as well as separate networks by viewing
different link types individually, or find patterns across different link types using a
matrix overview. Aris and Shneiderman [5] developed the Substrate Designer, a
tool for users to specify attributes for grouping nodes into non-overlapping regions,
and attributes for placing them within regions. Users can specify the graph drawing
algorithm and decide on how to encode additional attributes into visual parameters
of nodes and/or edges, thereby facilitating several network analysis tasks. Li and
Lin [114] proposed a mechanism for egocentric information abstraction in hetero-
geneous social networks. They extract a set of features from a given ‘ego’ node
based on linear combinations of its edges, and calculate statistical dependency
measures between these features and the ego node. After filtering, they generate a
condensed feature graph representation as the abstraction of the given ego node.

36

2.6. Multivariate Networks

Similarity encoding: Several social network analysis tools attempt to display
nodes according to attributes or similarities. The key idea here is to use the
attribute-based similarity of nodes, computed as in the case of multidimensional
projections (Sec. 2.3), to create visualizations of multivariate networks. At a high
level, the paradigm offered here reverts the approaches described above, where
the network (relational) data is central in driving the visualization layout, while
the attributes are ‘retrofitted’ in a subsequent pass on the ensuing visualization.
Rather than doing this, the approaches discussed next jointly consider attributes
and relations in the creation of the visualization, thereby obtaining a view that
reflects both types of attributes equally well.

In this context, one approach is described by Gloor et al., which aims at visual-
izing social networks as a graph where the positioning of vertices is based on the
similarity of the content of the messages exchanged by the actors [68]. Velardi et al.
also presented an approach to grouping nodes based on the content of the messages
exchanged by the actors of the network [197]. The Graphdice tool employs various
multidimensional visualizations in support to visual analysis of social network,
including one type of projection technique [15]. Smith et al. proposed an approach
based on attributes to computing a degree of similarity between actors [171]. For
each attribute, a network can be generated in which the weight of the edges reflects
the degree of similarity calculated for that attribute. Other approaches to represent-
ing graphs based on vertex and/or edge attributes are described by Pretorius and
Van Wijk [150] and Archambault et al. [4]. These approaches define a hierarchical
structure based on the attributes to view the network, similar to the grouping of
table rows by equal-attribute values presented in the TableVision tool [180]. The
resulting hierarchy is next visualized with a variation of one-dimensional treemaps,
known also as an icicle plot [106]. Wattenberg et al. propose a scatterplot in which
the axes are determined by the dimensions of a query summarization [204]. All
actors who take the same values for both axes are grouped into a single node, and
its size reflects the amount of grouped actors.

However, the realm of creating visualizations that encode both relations and
attributes is far from being exhausted. Current approaches, such as the ones
outlined above, take different design decisions with respect to how to encode the
similarity of attributes vs how to encode the relational connectivity patterns; how
to weigh the impact of the attribute vs relation-based similarity, or connectivity, or
nodes; and how to display the final result, which aims to reflect both similarity in
attributes and connectivity of nodes. Different options for combining attributes and
relations in determining the placement and/or rendering of nodes and edges are
clearly possible and needed, and thus worth studying.

37

Related Work

2.7 Discussion and Conclusions

The review of related work on multidimensional data visualization presented
in this chapter offers a challenging picture of the state-of-the-art in this field vs
desired requirements. Many techniques for visualizing multidimensional data
exist, including table lenses, small multiples (or linked views), scatterplot matrices,
parallel coordinate plots, and dimensionality-reduction techniques. Analysing the
behavior of all these methods, we notice that there is a lack of optimal support for
both observation-centric and attribute-centric analysis tasks.

Multidimensional projections have several important advantages over the other
techniques reviewed in this context. They are by excellence scalable both in the
number of observations and dimensions, are robust and computationally scalable,
utilize a very simple visualization metaphor (2D or 3D scatterplots), and can be
used with minimal effort from the viewpoint of their end users. However, they also
have several important disadvantages that we believe to limit their widespread
deployment in practice.

First, most projections inherently introduce errors in terms of preserving dis-
tances and/or neighborhoods when projecting data from high-dimensional spaces
to low-dimensional (2D or 3D) spaces. Unless such errors are clearly quantified and
explained to the end user, interpreting projections may be misleading. We propose,
in Chapters 3 and 4, a set of visual techniques that enhance multidimensional
projections to make it easier for users to analyse their quality in terms of distance-
and neighborhood-preservation. They improve on previous work related to this task
by offering, among other contributions: (i) multiple correlated views (which can be
easily switched or used in parallel) of the same projection/dataset, each showing a
different perspective on the projection errors; (ii) new metrics for computing the
errors, both for distance- and neighborhood-preservation, that address the problem
from new points of view; (iii) a new multiscale visual presentation for projection
errors that allows easier visual detection and reasoning about large compact groups
of points in a projection than when using scatterplots; (iv) an approach to showing
projection errors related to one-to-many and many-to-many point relationships,
using edge bundling; and (v) the generalization of error-analysis techniques to
groups of points instead of single points.

Secondly, projections create visualizations that show observations (and their
similarities) well, but do not show the underlying data attributes. Unless this is
done, users may dismiss multidimensional projections as being too abstract and/or
far away from their original high-dimensional attribute space. The problem is even
worse with 3D projections; while 2D projections may come with a reasonably rich
set of explanatory techniques, the more accurate 3D projections do not offer such
techniques. Unless this is done, users may choose to remain confined to using 2D
projections, which may introduce significantly larger distance and neighborhood-
preservation errors. To deal with these problems, we propose new attribute-based

38

2.7. Discussion and Conclusions

techniques for explaining projections with low-dimensional representations both in
3D and 2D. For 3D projections (Chapter 5), the new proposed techniques improve
on previous work by offering, among other contributions: (i) ways of selecting the
best viewpoints in the 3D space that can show combinations of variables of interest;
(ii) generalizing biplot axes for nonlinear projection methods; and (iii) widgets for
viewpoint navigation that help users to move smoothly between combinations of
variables of interest. For the 2D projections (Chapter 6), the contributions concern
(i) explaining local neighborhoods in a projection instead of global projection axes;
(ii) automatic and implicit partition of the projection space into regions explained
by the same attributes, which handles also projections without clear separations
between points.

Finally, for multivariate datasets containing both scalar and relational attributes,
or multivariate graphs, projections have been only marginally used as a visual-
ization technique. Exploring projections as a tool for generating visualizations
of such datasets is a potentially effective avenue for creating insightful displays
of multivariate networks. The techniques proposed in Chapter 7 present (i) a
framework for using distance-based multidimensional projections for the layout of
graphs, which opens up the possibility of using any of the existing MDS techniques
on the literature to create graph layouts; (ii) the creation of layouts based on a
weighted mix of the network’s attributes and distances, depending on the user’s
exploratory requirements; and (iii) the application of the projection-error metrics
presented in the earlier chapters into the context of multivariate networks.

The remainder of this thesis is dedicated to exploring in details the above-
mentioned research directions and improvements, which are centered on making
multidimensional projections effective tools for the exploration of general-purpose
multivariate datasets.

39

Chapter 3

Visualizing Distance Preservation

A

s outlined in Chapter 2, multidimensional projections are effective tools for
exploring large sets of high-dimensional observations, especially when the

questions of interest regard the detection of groups of similar observations or iso-
lated outlier observations. However, as the same chapter has explained, projection
techniques are challenged by the inability of faithfully preserving the so-called
structure of the high-dimensional data, such as inter-point distances or point neigh-
bors. If such aspects of the data structure are not well preserved – or, alternatively,
if the lack of preservation is not clearly shown to the user, the visualization may
convey wrong insights in the data.

In this chapter, we address the first part of the above challenge, namely measur-
ing and displaying distance preservation errors in multidimensional projections. In
detail, we present a set of metrics that aim to address the following questions for
2D projections:

• How is the projection error spread over the 2D space?

• How to find points that are close in 2D but far in nD?

• How to find points that are close in nD but far in 2D?

• How do the choice of projection algorithm and its parameter settings affect
the above quality aspects?

To visualize the proposed metrics, we develop several space-filling techniques
that visually scale to large datasets, offer a multiscale (or level-of-detail) view
on the projection behavior, and do not require users to understand the internal
formulation of dimensionality-reduction algorithm. We next use these visualizations
to explore how five state-of-the-art dimensionality-reduction techniques behave,
in terms of distance-preservation errors, when varying their parameters. Our
endeavor of exploring projection errors is completed, next, by the work presented
in Chapter 4, which addresses the related, but different, task of measuring and
analysing neighborhood preservation errors for multidimensional projections.

3.1 Analysis Goals

Let us first recall the basic notations used to describe multidimensional projections.
A multidimensional projection technique was modeled as a function f : Rn ˆ P Ñ

Visualizing Distance Preservation

Rm that takes a dataset Dn Ä Rn and maps it to a lower dimensional dataset
Dm Ä Rm, m † n (see Eqn. 2.1 and related text in Sec. 2.3). Here, P indicates the
space of parameters of the projection technique f , which depends on the specific
details of the algorithm underlying f .

A projection f should preserve the structure of the original space Rn. This im-
plies, as discussed in Chapter 2, a mix of distance and neighborhood preservations
at various scales and happens at different rates for different datasets, projection al-
gorithms, and parameter values. One important task for which projections are used
is to detect and reason about groups of close points in Dm. Unless users are sure
that such groups of points are indeed also close in the original high-dimensional
dataset Dn, the interpretation of the projection result can be misleading [8]. Hence,
for such tasks, the perceived precision (or, in other words, quality) of a projection
is intrinsically linked to its ability to preserve distances between points [159].

Our exploration goal can be thus refined as follows: Given any dimensionality-
reduction (DR), or projection, algorithm (Eqn. 2.1), we aim to show how distance
preservation is affected by choices of parameter values in P , highlighting aspects
that can adversely affect the interpretation of the projected point set Dm. To
simplify the discourse, we next consider m “ 2, and that projections are drawn
as scatterplots – the most common option for DR visualization. We identify the
following aspects of interest in the exploration of distance preservation in multidi-
mensional projections:

A. False neighbors: Take a point p
i

P Dn and its 2D projection q

i

“ fpp
i

q. A
necessary condition for distance preservation is that all points q

j

that are close to
q

i

(in 2D) should be projections of points p

j

that are close to p

i

(in Dnq. If not,
i.e. we have a q

j

close to q

i

for which p

j

is not close to p

i

, the user wrongly infers
from the projection that p

j

is close to p

i

. We call such a point j a false neighbor1 of i.

B. Missing neighbors: The second necessary condition for distance preservation
is that all p

j

that are close to p

i

(in Dn) project to points q
j

that are close to q

i

(in
2D). If not, i.e. we have a p

j

close to p

i

for which q

j

is not close to q

i

, the user will
underestimate the set of points similar to point i. We call such a point j a missing
neighbor of i.

C. Groups: A main goal of DR is to help users find groups of similar points, e.g.
topics in a document set [95, 139] or classes of images in a database [55]. False
and missing point neighbors generalize, for groups, to false members and missing

1It is important to note that, although our discourse here uses terms such as false neighbors and
missing neighbors, the projection-error visualization techniques discussed in this chapter focus on
showing distance-preservation errors and not neighborhood-preservation errors, the latter being the
subject of Chapter 4. We employ here terms that use the ‘neighbor’ concept simply because this term is
more compact, and arguably more illustrative, than alternative distance-related terms.

42

3.2. Visualization Methods

members respectively. Given a group � of closely projected points, we aim to find if
all points in � truly belong there (no false members), and if all points that belong
to the topic described by � do indeed project in � (no missing members).

D. Detail: Aggregated local metrics such as [159, 8, 111, 79] can show, up to
various extents, where missing or false neighbors occur. However, they do not
directly show which are all such neighbors, for each projected point. Also, they do
not explicitly address locating false and missing group members. We aim to provide
interactive visual mechanisms to support these tasks on several levels of detail.

3.2 Visualization Methods

We next propose several visualization methods to address the analysis goals outlined
in Sec. 3.1. As a running example, we use the Locally Affine Multidimensional
Projection (LAMP) technique as projection method, with the default parameter
settings given in [95], and as input the well-known 19-dimensional Segmentation
dataset with 2300 points from [116, 95, 138, 141]. In this dataset, each point
describes a randomly drawn 3x3 pixel-block from a set of 7 manually segmented
outdoor images, by means of 19 statistical image attributes, such as color mean,
standard deviation, and horizontal and vertical contrast. The aim of analysing
this multidimensional dataset is to see how well extracted features group over
observations, and thereby derive insights that can further on help in the construction
of automatic classifiers for natural images. For completeness, we note that the task
of classifier construction is outside our scope – our goal is strictly the exploration
of the capability of projection techniques in displaying the similarity of high-
dimensional observations, and errors involved in this display.

3.2.1 Preliminaries

To quantify the distance preservation issues in Sec. 3.1, we first define the projection
error of point i vs a point j ‰ i as

e
ij

“ dmpq
i

,q
j

q
max

i,j

dmpq
i

,q
j

q ´ dnpp
i

,p
j

q
max

i,j

dnpp
i

,p
j

q . (3.1)

We see that e
ij

P r´1, 1s. Negative errors indicate points whose projections are too
close (thus, false neighbors). Positive errors indicate points whose projections are
too far apart (thus, missing neighbors). Zero values indicate ‘good’ projections,
which approximate optimally the distances in Dn.

Comparing Eqn. 3.1 with the aggregated normalized stress definition � (Eqn. 2.2),
we see similarities but also several differences. First, both errors are essentially
differences between the distances in Dm and Dn between data points – the more
these distances are different, the higher is the error. However, our error e

ij

is not

43

Visualizing Distance Preservation

a strictly positive value as the (terms of the) stress function. This allows us to
distinguish, on a more refined level, points that are projected too close from points
that are projected too far away. Secondly, our error is normalized between ´1 and
1, which allows us to compare more easily different projections and/or different
points in the same projection. In turn, both above aspects allow us to easily create
several detail visualizations of projection errors. These are described next.

3.2.2 The Aggregated Error view

We first provide an overview of how the projection error spreads over an entire
dataset, by computing for each point i the aggregate error

eaggr
i

“
ÿ

j‰i

|e
ij

|. (3.2)

The value of eaggr
i

gives the projection error of point i with respect to all
other points. Low values of eaggr show points whose projections can be reliably
compared with most other projections in terms of assessing similarity. These
are good candidates for representatives in multilevel projection methods [55,
144, 29, 139]. Large values of eaggr show points that are badly placed with
respect to most other points. These are good candidates for manual projection
optimization [142, 138].

Fig. 3.1 (a) shows eaggr by color mapping its value on the 2D projected points,
using a blue-yellow-red diverging colormap [74]. Brushing and zooming this image
allows inspecting eaggr for individual points. However, given our goal of providing
an overview first, we are actually not interested in all individual eaggr values, but
rather to (a) find compact areas in the projection having similar eaggr values, (b)
find outlier eaggr values in these areas (if any), and (c) see how eaggr globally
varies across the projection. For this, we propose an image-based, space-filling
visualization, as follows. Denote by DT px P R2q “ min

qPDm}q ´ x} the so-called
distance transform of the 2D point cloud Dm delivering, for any screen pixel x, its
distance to the closest point in Dm [39]. We then compute eaggr at every screen
pixel x as

eaggrpxq “
∞

qPN
✏

pxq exp
´

´ }x´q}2
✏

2

¯
eaggr

∞
qPN

✏

pxq exp
´

´ }x´q}2
✏

2

¯ (3.3)

with

✏ “ DT pxq ` ↵. (3.4)

Here, N
✏

pxq contains all projections in Dm located within a radius ✏ from x.
We next draw eaggrpxq as a RGBA texture, where the color components encode

44

3.2. Visualization Methods

a)

high

low

e
ag

g
r

b)

A1..A3

A4

c)

A4

A5

A6

Figure 3.1: Aggregate error view, several levels of detail: (a) ↵ “ 1,� “ 1. (b) ↵ “ 5,� “ 5.
(c) ↵ “ 20,� “ 20 pixels (see Sec. 3.2.2).

eaggrpxq mapped via a suitable color map, and the transparency A is set to

Aaggrpxq “
#
1 ´ DT pxq

↵

, if DT pxq † �

0, otherwise
(3.5)

For ↵ “ 1,� “ 1, we obtain the classical colored scatterplot (Fig. 3.1 (a)). For
↵ “ 1,� ° 1, the space between projections is filled, up to a distance �, by the eaggr

value of the closest data point. For ↵ “ 1,� “ 8, we obtain a Voronoi diagram of
the projections with cells colored by their eaggr values. This does not change the
eaggr data values, but just displays them on larger spatial extents than individual
pixels, making them easier to see, similarly to the use of Voronoi cells to show
attributes in multidimensional projections in [24, 111]. This creates visualizations
identical to those obtained by drawing scatterplots with point radii equal to �,
without having the issues created by overlapping points. For ↵ ° 1,� ° 1, the
result is similar to a smooth Shepard interpolation where the kernel size ✏ is given
by the local point density. The parameter ↵ • 0 controls the global level-of-detail
at which we visualize eaggr: Small values show more detail in dense point zones,
but also emphasize small-scale signal variations that are less interesting. Larger ↵
values create a smoother signal where coarse-scale error patterns are more easily
visible.

Figs. 3.1 (b,c) show the aggregate error for the Segmentation dataset for various
values of the parameters ↵ and �. Here, e

ij

P r´0.67, 0.35s. The error range already
tells that we have poorly projected points, but does not tell where these are. In
Fig. 3.1 (b), with low values for both ↵ and �, we see that eaggr is relatively
smoothly distributed over the entire projection. However, we see three small red
spots A1..A3. These are high-error outlier areas, which indicate points that are
badly placed with respect to most other points. We also see a relatively high error
area A4 of larger spatial extent. Increasing both ↵ and � produces a simplified
visualization (Fig. 3.1 (c)). Larger � values fill in the gaps between points. Larger

45

Visualizing Distance Preservation

↵ values eliminate outlier regions whose spatial extent is smaller than ↵, such as
the three small outlier areas A1..A3, but A4 remains visible, since it is larger than
↵. We now also notice, better than in Fig. 3.1 (b), that the bottom and top areas
(A5, A6) in the projection have dark blue values, with a significantly lower error
than the rest of the projection.

Our image-based results are slightly reminiscent of the dense projection-precision-
score (pps) maps of Schreck et al. [159]. Differences exist, however. First, our eaggr

i

is a global metric, that tells how point i is placed with respect to all other points,
whereas the pps metric characterizes local neighborhoods. Interpolation-wise, our
technique (used with ↵ “ 1,� “ 8) delivers the same Voronoi diagram as Schreck
et al., which is also identical to the space partitioning of the point-based Voronoi
diagrams in [8, 111]. The data being mapped is, however, different: Our eaggr

shows the sum of distance compression and stretching, whereas the techniques
in [8, 111] treat these two quantities separately. In the next sections, we show how
we split our aggregated insight into separate insights. Further on, both Schreck et
al. and our method use smoothing to remove small-scale noise from such maps.
However, whereas Schreck et al. uses a constant-radius smoothing kernel, which
blurs the image equally strongly everywhere, we use, as explained, a variable-radius
kernel controlled by local density, which preserves better detail in non-uniform
point clouds (scatterplots).

3.2.3 The False Neighbors view

While it is useful to assess the error distribution and find badly vs well-projected
point groups, the aggregate error view does not tell us if the error is due to false
neighbors, missing neighbors, or both. Let us first consider the false neighbors
(case A, Sec. 3.1). To visualize these, we create a Delaunay triangulation of the
projected point cloud that gives us the closest neighbors of each projected point
in all directions, i.e., the most important false-neighbor candidates for that point.
To each edge E

k

, 1 § k § 3 of each triangle T of this triangulation, with vertices
being the points q

i

and q

j

of Dm, we assign a weight efalse
k

“ |minpe
ij

, 0q|, i.e.,
consider only errors created by false neighbors. Next, we interpolate efalse over all
pixels x of T by using

efalsepxq “
∞

1§k§3
1

dpx,E
k

q }E
k

}e
false

k∞
1§k§3

1
dpx,E

k

q }E
k

}
(3.6)

where dpx, Eq is the distance from x to the edge E and }E} is the length of the
edge. Similarly to the aggregated error, we construct and render an image-based
view for efalse as a RGBA texture. In contrast to the aggregated error, we use here
a heated body colormap [74], with light hues showing low efalse values and dark
hues showing high efalse values. This attracts the attention to the latter values,

46

3.2. Visualization Methods

while pushing the former ones into the background. The transparency A is given by

Afalsepxq “ Aaggrpxq
ˆ
1 ´ 1

2

ˆ
min

ˆ
DT

T

pxq
DT

C

pxq , 1
˙

`

max

ˆ
1 ´ DT

C

pxq
DT

T

pxq , 0
˙˙˙

(3.7)

where DT
T

pxq “ minpdpx, E1q, dpx, E2q, dpx, E3qq is the distance transform of T
at x, DT

C

pxq is the distance from x to the barycenter of T , and Aaggr is given by
Eqn. 3.5. The same technique is used in a different context to smoothly interpolate
between two 2D nested shapes [153], to which we refer for further (simple)
implementation details. The combined effect of Eqns. 3.6 and 3.7 is to slightly
thicken, or smooth out, the rendering of the Delaunay triangulation. Note that this
interpolation does not change the actual values efalse

k

rendered on the triangulation
edges. The distance-dependent transparency ensures that data is shown only close
to the projection points.

high

low

e
fa
ls
e

Figure 3.2: False neighbors view (see Sec. 3.2.3).

Fig. 3.2 shows the false neighbors for the Segmentation dataset. Several aspects
are apparent here. First, the rendering is similar to a blurred rendering of the
Delaunay triangulation of the 2D projections colored by efalse, showing how each
point relates to its immediate neighbors. Light-colored edges show true neighbors,
while dark edges show false neighbors. Since edges are individually visible, due
to the transparency modulation (Eqn. 3.7), we can see both the true and false
neighbors of a point separately. The smooth transition between opaque points (on
the Delaunay edges) and fully transparent points (at the triangles’ barycenters)
ensures that the resulting image is continuous and easier to follow at various screen
resolutions than a Delaunay triangulation rendered with pixel-thin edges, as our
edges appear slightly thicker.

47

Visualizing Distance Preservation

In Fig. 3.2, two error-related aspects are visible. First, we see an overall trend
from light to dark colors as we go further from the projection’s border towards the
projection center. This confirms the known observation on DR methods that points
projected near the border tend to be more accurate, since there is more freedom
(and space) to place them. In contrast, projections falling deep inside the resulting
point cloud tend to have more false neighbors, because the DR algorithm has there
less space to shift points around to accommodate all existing distance constraints.
Intuitively, we can think of this phenomenon as a ‘pressure’ which builds up within
the projected point set from its border inwards. We shall see more examples of this
phenomenon in Sec. 3.3. Secondly, we see a few small-scale dark outliers. Zooming
in Fig. 3.2, we see that these are points connected by dark edges to most of their
closest neighbors in a star-like pattern. Clearly, false neighbors exist here. These
can be either the star ‘center’ or the tips of its branches. However, we also see
that these tips have only one dark edge. Hence, they are too closely positioned to
the star center only, and not to their other neighbors. Since the tip points are all
positioned well with respect to their neighbors (except the star center), and the
center point is positioned too closely with respect to all its direct neighbors, we can
conclude that too little space was offered in the projection to the center point, or in
other words that the center point is a false neighbor of its surrounding points.

The false neighbors view is related to Aupetit’s segment compression view,
where the shortening of inter-point distances due to projection is visualized [8].
The underlying metrics, i.e. our e

ij

(Eqn. 3.1) and mdistor

ij

([8], Sec. 3.2) are similar,
up to different normalizations. However, the proposed visualizations are quite
different. Aupetit uses so-called ‘segment Voronoi cells’ (SVCs). SVCs essentially
achieve piecewise-constant (C´1) interpolation of the values efalse

k

, defined on
the edges E

k

of each Delaunay triangle T , over T ’s area, by splitting T in three
sub-triangles using its barycenter. In contrast, our interpolation (Eqn. 3.6) is C8

over T . Also, our triangles are increasingly transparent far away from their edges
(Eqn. 3.7). Comparing our results (e.g. Figs. 3.2, 3.9 (a,d,g)) with SVCs (e.g.
Figs. 7 (d), 12 (c) in [8]), we observe that SVCs exhibit several spurious elongated
Voronoi cells that do not convey any information. Such cells do not exist in our
visualization due to the transparency blending. Also, we argue that the artificial
SVC edges linking projected points with Delaunay triangulation barycenters do
not convey any information, but only make the visualization more complex. Such
edges do not exist in our visualization due to our continuous interpolation.

3.2.4 The Missing Neighbors view

Besides false neighbors, projection errors (and subsequent misinterpretations) can
also be caused by missing neighbors (case B, Sec. 3.1). Visualizing this by a space-
filling method like for the aggregate error or false neighbors is, however, less easy.
Given a projected point q, its missing neighbors can be anywhere in the projection,

48

3.2. Visualization Methods

and are actually by definition far away from q. To locate such neighbors, we would
need to visualize a many-to-many relation between far-away projected points.

We first address this goal by restraining the question’s scope: Given a single
point q

i

, show which of the other points Dmzq
i

are missing neighbors for q
i

. For
this, we first let the user select q

i

by means of direct brushing in the visualization.
Next, we compute the error emissing

i

“ max

j‰i

pe
ij

, 0q, i.e., the degree to which q

j

is a missing neighbor for q
i

, and visualize emissing by the same technique as for
the aggregated error (Sec. 3.2.2).

Fig. 3.3 shows this for the Segmentation dataset, using the same heat colormap
as in Fig. 3.2. In Figs 3.3 (a,b), we selected two points deep inside the central,
respectively the lower-right point groups in the image. Since Figs. 3.3 (a,b) are
nearly entirely light-colored, it means that these points have few missing neighbors.
Hence, the 2D neighbors of the selected points are truly all the neighbors that these
points have in nD. In Figs. 3.3 (c,d), we next select two points located close to
the upper border of the large central group and the left border of the left group
respectively. In contrast to Figs. 3.3 (a,b), we see now an increasingly darker color
gradient as we go further from the selected points. This shows that points far away
from these selections are actually projected too far, as they are actually more similar
than the projection suggests. This is a known (but never visualized as such) issue of
many DR methods, which have trouble in embedding high-dimensional manifolds
in 2D: points close to the embedding’s border are too far away from other points in
the projection. Another interesting finding is that the color-coded Figs. 3.3 (c,d) do
not show a smooth color gradient: We see, especially in Fig. 3.3 (c) that the colors
appear grouped in several ‘bands’, separated by discontinuities. In other words, the
projection method suddenly increases the error as we get over a certain maximal
2D distance.

The missing neighbors view is related to the proximity view of Aupetit [8]. In
both views, a point i is selected and a scalar value, related to this selection, is
plotted at all other points j ‰ i. For Aupetit, this is the distance mprox

j

“ dnpp
i

´p

j

q
(normalized by its maximum). For us, it is the error emissing

j

. Both the distance and
emissing have, in general, the tendency to be small at points j close in 2D to the
selected point i, and increase farther off from point i. However, the two quantities
are different and serve different purposes. Visualizing mprox is useful in finding
points located within some distance to the selection i. Finding projection errors
is only implicitly supported, as these appear as non-monotonic variations in the
mprox signal. In contrast, emissing specifically emphasizes points projected too far,
rather than conveying the absolute distance. Thus, our visualization helps locating
projection errors rather than assessing proximity.

49

Visualizing Distance Preservation

a) b)

color
discontinuities

c) d)

high

low

e
m
is
si
n
g

Figure 3.3: Missing neighbors view for different selected points. Selections are indicated by
markers (see Sec. 3.2.4).

3.2.5 The Missing Neighbors Finder

Although providing details for single points, the views in Sec. 3.2.4 cannot show
missing neighbors for an entire dataset. We address this goal by a different method,
as follows. Consider all positive values of e

ij

. By definition, these give all point-
pairs which are projected too far away. We sort these values decreasingly, and select
the largest � percent of them, where � is a user-provided value. The selected values
give the point pairs which are worst placed in terms of overestimating their true
similarity. We next construct a graph G “ pV,Eq whose nodes V are the projected
points q

i

present in such point pairs, and edges E indicate the pairs, with e
ij

added
as edge weights. Next, we draw G using the KDEEB edge bundling technique [85],
which provides robust, easy to use, and real-time bundling of graphs with tens of
thousands of edges on a modern GPU. We color the bundled edges based on their

50

3.2. Visualization Methods

weight using a grayscale colormap (with white mapping low and black mapping
high weights), and draw them sorted back-to-front on weight and with an opacity
proportional to the same weight. The most important edges thus appear atop and
opaque, and the least important ones are at the bottom and transparent.

Fig. 3.4 shows this visualization, which we call the missing neighbors finder,
with bundles that connect a single selected point with its most important missing
neighbors (bundles connecting multiple points are discussed later on). The back-
ground images show emissing (Sec. 3.2.4). Dark bundle edges attract attention to
the most important missing neighbors. For the selected points in images (a) and
(b), we see that there are only very few and unimportant missing neighbors (few
half-transparent edges). For the selected points in images (c) and (d), the situation
is different, as the bundles are thicker and darker. Bundle fanning shows the spread
of missing neighbors for the selected points: In image (c), these are found mainly
in the left point group, with a few also present in the lower part of the central
group. In contrast, all missing neighbors of the point selected in image (d) are at
the top of the central group.

a) b)

c) d)

low emissing

low emissing
Bundles

Background

high emissing

high emissing

selected point

missing neighbors
of selected point

selected point

missing neighbors
of selected point

Figure 3.4: Missing neighbors finder view for four selected points. Selections are indicated
by markers (see Sec. 3.2.5).

The main added value of the missing neighbors finder appears when we visualize
the many-to-many relations given by all projected points. Fig. 3.5 shows this result
for three values of � for the Segmentation dataset. The background shows now

51

Visualizing Distance Preservation

the aggregated error (eaggr, Sec. 3.2.2). We color bundles from black for largest
error e

ij

to white for largest error above the user-provided parameter �. Image
(a) shows the � “ 1% worst missing-neighbor point-pairs. These link the top-right
area of the central group with the left frontier of the left group. Adding more
missing neighbor pairs to the view (image (b), � “ 3%) strengthens this impression.
Adding even more missing neighbor pairs (image (c), � “ 20%) reveals additional
missing-neighbor pairs between the two areas indicated above (light gray parts
of thick top bundle), and also brings in a few missing neighbors between these
areas and the lower-right point group (light gray thin bundle going to this group).
Nearly all bundles appear to connect point pairs located on the borders of the
projection. This strengthens our hypothesis that such point pairs are challenging
for the LAMP projection, which we noticed using the interactive missing neighbors
view (Sec. 3.2.4). However, as compared to that view, the bundled view shows all
such point pairs in a single go, without requiring user interaction.

a) φ=1% b) φ=3% c) φ=20%

high emissinglow emissing

high eaggrlow eaggr
Bundles

Background

Figure 3.5: Missing neighbors finder view, all point pairs, for different � values (see
Sec. 3.2.5).

3.2.6 The Group Analysis views

As outlined in Sec. 3.1, the false and missing neighbors issues for individual
points become, at group level, the problems of false and missing group members
respectively. We next propose two visualizations that assist in finding such issues.

First, let us refine the notion of a group. Given the tasks in Sec. 3.1 (C), a
group � Ä Dm is a set of projected points which form a visually well-separated
entity. When users see points in a group, they understand that these share some
commonality, but are different from points in other groups. In the LAMP projection
of our Segmentation dataset, we see three such groups (Figs. 3.1-3.5). Group
perception is, obviously, subject to many factors such as user preferences and
level-of-detail at which one focuses. However, once a user has established which
are the groups (s)he sees in a visualization, the false and missing membership
issues become relevant.

52

3.2. Visualization Methods

We allow users to select groups in a given projection by several mechanisms:
direct interactive selection, mean-shift clustering [36], and upper thresholding
of the point density [52]. Other user-controlled methods can be used if desired,
e.g., K-means or hierarchical agglomerative clustering, e.g. [92, 91]. The actual
group selection mechanism is further of no importance to our visualization method.
We next render each obtained group � “ tq

i

u by the shaded cushion technique
in [182] as follows. First, we compute a density map ⇢pxq “ ∞

qP� Kpx´yq, where
K is an Epanechnikov kernel of width equal to the average inter-point distance �

in �, following [36]. Next, we compute a threshold-set �
�

of ⇢ at level �, and its
distance transform DT�

�

. Finally, we render a RGBA texture over �
�

, where we set
the color a fixed hue (light blue in our case) and the transparency A to

a
DT�

�

(following the approach in [182] which shows that such a transparency profile
creates naturally-looking cushions).

Having now groups both as a data structure and also shown in the visualization,
we adapt the missing neighbors and finder techniques (Secs. 3.2.4, 3.2.5) to show
missing group members. For this, we compute a value

emissing

� pq
i

q “
#
min

q

j

P�pe
ij

q if q
i

R �

0 otherwise
(3.8)

at each projected point q
i

, and visualize emissing

� using the same technique as for
missing neighbors.

Fig. 3.6 (a,b) show two missing group members views. The shaded cushions
show the three groups identified in our Segmentation dataset. Several points fall
outside of all groups. This is normal, in general, e.g. when the user cannot decide to
which group to associate a point. In image (a), we select the bottom group �

bottom

.
The underlying color map shows now emissing

�
bottom

, (Eqn. 3.8). All points appear light
yellow. This means that, with respect to �

bottom

seen as a whole, no points are
projected too far, so �

bottom

has no missing members. In image (b), we do the
same for the left group �

left

. The image now appears overall light yellow, except
for a small dark-red spot in the upper-right corner of the central group �

center

.
Here are a few points which are placed too far from any point in �

left

. These are
highly likely to be missing members of �

left

. To obtain more insight, we now use
the bundle view in Sec. 3.2.5, with two changes. First, we build only bundles that
have an endpoint in the selected group. Secondly, we consider all edges rather
than showing only the most important ones. Image (c) shows the bundle view for
�

bottom

. We see only a few bundled edges, ending at a small subset of the points in
�

bottom

. This strengthens our hypothesis that there are no points outside �

bottom

which should be placed closer to all points in �

bottom

– or, in other words, that
�

bottom

has no missing members. Image (d) shows the bundled view for �
left

. The
bundle structure tells us that the top-right part of �

center

contains many missing
neighbors of �

left

. In particular, we see dark bundle edges that connect to dark-red

53

Visualizing Distance Preservation

points. This is a strong indication that these points can indeed be missing members
of �

left

. For a final assessment, the user can interactively query the discovered
points’ details (attribute values) and, depending on these, finally decide if these
points are missing group members or not.

a) b)

d)c)

Γ
bottom

highlow

emissingΓ
bottom

Γ
left

highlow

emissingΓ
left

Γ
center

potential missing
members of Γ

left

Γ
bottom

Γ
left

Bundles

high emissinglow emissing

Bundles

high emissinglow emissing

Figure 3.6: Missing members for two point groups. Points in the selected groups are drawn
as marked (see Sec. 3.2.6).

3.2.7 The Projection Comparison view

Consider running the same DR algorithm with two different parameter sets, or
projecting a dataset by two different DR algorithms. How to compare the results
from the viewpoint of distance preservation? Subsequent questions are: Which
points that were (correctly) placed close to each other in one projection are now
‘pulled apart’ in the other projection? Do the two projections deliver the same
groups of points? Understanding all these aspects is crucial to further using the
respective projections for interpreting the original high-dimensional data. Indeed,

54

3.2. Visualization Methods

if we were able to see that specific point-groups are placed at significantly different
locations in the 2D space by different projection techniques and/or parameter set-
tings, this would mean that great care should be invested in assessing the respective
tools (projection techniques and/or parameter settings) prior to interpreting the
projection results. If, in contrast, the main point-groups in the projection would be
the same with respect to technique and/or parameter settings, this would mean
that one could use the respective projection tools very much like agnostic ‘black
boxes’ further on.

To answer such questions, we propose the projection comparison view. The
view reads two projections Dm

1 and Dm

2 of the same input dataset Dn. For each
point-pair pq1

i

P Dm

1 ,q2
i

P Dm

2 q, we compute a displacement

edisp
i

“ }q1
i

´ q

2
i

}
max

i

}q1
i

´ q

2
i

} . (3.9)

We next build a graph whose nodes are points in Dm

1 Y Dm

2 . Edges relate point
pairs pq1

i

P Dm

1 ,q2
i

P Dm

2 q, and have the values edisp as weights. We visualize this
graph via edge bundling, as for the missing neighbors finder (Sec. 3.2.5).

Fig. 3.7 (a) shows a view where we compare the Segmentation dataset projected
via LAMP (red points, Dm

1) and LSP (green points, Dm

2). The two projections are
quite similar, since red and green points occur together in most cases. However,
this image does not tell if the two projections create the same groups of points,
since we do not know how red points match the green ones. Fig. 3.7 (b) shows the
projection comparison view for this case. We immediately see a thin dark bundle
in the center: This links corresponding points which differ the most in the two
projections. Correlating this with image (a), we see that LSP decided to place the
respective points at the bottom (A

LSP

) of the central group, while LAMP moved
and also spread out these points to the top (A

LAMP

). However, points around the
locations A

LSP

and A
LAMP

do not move much between the two projections, as we
see only light-colored bundles around these locations, apart from the dark bundle
already discussed. Hence, the motion of these points indicates a neighborhood
problem in one or both of the projections. Indeed, if e.g. the points in A were
correctly placed by LAMP (into A

LAMP

), then the decision of LSP to move the
point-group A all the way up in the visualization (to A

LSP

) should also have moved
the neighbors of A

LAMP

. Since this does not happen, A
LSP

cannot be close to the
same points that A

LAMP

was. A similar reasoning applies if we consider that A
LSP

is correct – it then follows that A
LAMP

cannot be correctly placed with respect to
its neighbors.

Apart from this salient dark-colored bundle, we see many shorter and light-
colored bundles. These show smaller-scale displacements between the two pro-
jections. For instance, we see how the red points at the right of the left group
(B

LAMP

) are moved to the left (B
LSP

) of the same group. As these bundles fan
out relatively little, do not have many crossings, and they are short, it means that

55

Visualizing Distance Preservation

a) b)

ALSP ALSP

ALAMPALAMP

BLAMP
BLSP BLAMP

BLSP

Bundles

high edisplow edispPoints in LSP

Points in LAMP

Figure 3.7: Comparison of two projections. (a) LAMP (blue) and LSP (red) points. (b)
Bundles show corresponding point groups in the two projections (see Sec. 3.2.7).

B
LSP

is almost a translation to the left of B
LAMP

, so the two projections depict
the same structure of the left group. Also, we do not see any bundle exiting this left
group. This means that both LAMP and LSP keep all points in this group together.
Finally, in the bottom-right group we see just a very few short light-colored bundles.
Most points in this group do not have any bundles connected to them. This means
that edisp for these points is very small (yielding thus very short, nearly transparent,
bundles). From this, we infer that LAMP and LSP produce very similar layouts for
this group. If users are interested only to spot the most salient differences between
two projections, and want to ignore such small-scale changes, this can be easily
obtained by mapping edisp

i

to bundle-edge transparency.

3.2.8 Usage scenario

Considering that the user is offered quite a few different views to analyse projection
errors, each with specific features and goals, the next question arises: How to put
all these views together to form a coherent usage scenario for a common analysis
task? Below we propose such a usage scenario. The view names herein refer to the
respective techniques presented earlier in this section.

Step 1: Start with the Aggregated Error view. This shows an overview of the error
at all points, without a distinction between false or missing neighbors. Next, check
if (a) there are regions or groups with substantial errors or (b) the overall error
is low. Case (b) indicates that the projection is quite good and that nothing else
needs to be improved. In case (a), continue with steps 2, 3, and 4.

56

3.2. Visualization Methods

Step 2: The Missing Neighbors Finder view can be enabled and disabled freely
over the Aggregated Error view to show the most important missing neighbors
between all points. The user should notice now whether this view shows bundles
having high error values (i.e. dark-colored). If so, there are important missing
neighbors between the groups connected by such bundles. These groups must be
further analysed with the Group Analysis Views. If not, i.e. the bundles are colored
(light) gray, this tells that the projection is good and, although there are missing
neighbors, they are in a low error range and should not threaten the projection
interpretation.

Step 3: Points, groups or regions found problematic in steps 1 and 2 are now
analysed in more detail using the False Neighbors and Missing Neighbors views. For
groups detected in step 1 the most important thing is to find out exactly what kind
of error is present: Are they (a) wrongly placed with respect to each other and
other close points (false neighbors) or (b) in relation to far away points that should
be closer (missing neighbors)? For groups detected in step 2, the error is already
identified from the beginning: They have a high rate of missing neighbors. In this
case, the question to be answered is: Which points are exactly the problematic ones
inside the detected groups, or where exactly do the relations (bundle edges) with
the highest errors start and end from? By using these two views, the user should
be able to establish exactly which are the more problematic points (or groups), and
what kind of error these have.

Step 4: Knowing now where exactly errors occur, we consider the next questions:
(1) Are such errors really a problem? (2) Do they show unexpected results related
to how the projection should work with the provided data? (3) Are the problematic
points important for the analysis task at hand? If questions (1-3) all answer ‘no’,
then we have a good projection for our data and analysis task, and our analysis
stops. If any question (1-3) answers yes, then the user must improve the projection
of problematic points, as follows. If the user is a projection designer testing the
accuracy of a new method, (s)he should go back to the algorithm and use the new
insight gotten from this analysis to improve that algorithm. If the user has no access
to the projection implementation, the solution is to re-execute the analysis from
step 1 with either (i) a new projection algorithm that might better fit the specific
data and task; or (ii) a new set of parameters for the same algorithm. The new
results can be compared with the old ones to determine if the errors have decreased
or if the errors moved into a new region where they are not as important for the
task at hand. For the second task, the Projection Comparison View can be used.

57

Visualizing Distance Preservation

3.3 Applications

We now use our views to study several projections for several parameter settings –
thus, to explore the space P that controls the creation of a DR projection. First, we
present the datasets used (Sec. 3.3.1), the studied projection algorithms (Sec. 3.3.2),
and their parameters (Sec. 3.3.3). Next, we use our views to explore the considered
parameter settings (Secs. 3.3.4, 3.3.5).

3.3.1 Description of datasets

Apart from the Segmentation dataset used so far, we consider the following datasets:

Freephoto: contains 3462 images grouped into 9 unbalanced classes [58]. For
each image, we extract 130 BIC (border-interior pixel classification) features. Such
features are widely used in image classification tasks [173].

Corel: composed of 1000 photographs that cover 10 specific subjects. Similarly
to the Freephoto dataset, we extract for each image a vector of 150 SIFT descrip-
tors [115].

News: contains 1771 RSS news feeds from BBC, CNN, Reuters and Associated
Press, collected between June and July 2011. The 3731 dimensions were created
by removing stopwords, employing stemming and using term-frequency-inverse-
document-frequency counts. We manually classified the data points based on the
perceived main topic of the news feed resulting in 23 labels. Given the imprecision
of the manual classification and the restriction to have one topic per point, the
labels are unbalanced for a number of points. Also, for other points (with different
labels), we can still have a high similarity of content.

Sourceforge: This publicly available dataset contains 24 software metrics com-
puted on 6773 open-source C++ software projects from the sourceforge.net web-
site [121]. Metrics include classical objet-oriented quality indicators such as cou-
pling, cohesion, inheritance depth, size, complexity, and comment density [107],
averaged for all source code files within a project.

3.3.2 Description of projections

We detail next the projection algorithms whose parameter spaces we will next study.
We chose these particular algorithms based on their availability of documented
parameters, scalability, genericity, presence in the literature, and last but not least
availability of a good implementation.

58

3.3. Applications

LSP: The Least Squares Projection [139] uses a force-based scheme to first posi-
tion a subset of the input points, called control points. The remaining points in
the neighborhood of the control points are positioned using a local Laplace-like
operator. Overall, LSP creates a large linear system that is strong in local feature
definition. LSP is very precise in preserving neighborhoods from the nD space to
the 2D space.

PLMP: The Part-Linear Multidimensional Projection (PLMP) [141] addresses com-
putational scalability for large datasets by first constructing a linear mapping of
the control points using the initially force-placed control points. Next, this linear
mapping is used to place the remaining points, by a simple and fast matrix multipli-
cation of the feature matrix with the linear mapping matrix.

LAMP: Aiming to allow more user control over the final layout, the Local Affine
Multidimensional Projection (LAMP) [95] provides a user-controlled redefinition
of the mapping matrix over a first mapping of control points. LAMP also works by
defining control points, which are used to build a family of orthogonal affine map-
pings, one for each point to project. LAMP has restrictions regarding the number of
dimensions against the number of points. Also, LAMP cannot directly work with
distance relations, i.e., it needs to access the nD point coordinates. However, LAMP
is very fast, without compromising the precision reached, for instance, by LSP. Both
LSP and LAMP can be controlled by a number of parameters, such as the control
point set.

Pekalska: Another class of projection techniques works with optimization strate-
gies. These are, in general, quite expensive computationally. To improve speed,
Pekalska et al. [144] first embeds a subset of points in 2D by optimizing a stress
function. Remaining points are placed using a global linear mapping, much like
LAMP and LSP.

ISOMAP: The ISOMAP technique [184] is an extension of classical Multidimen-
sional Scaling (MDS) that aims to capture nonlinear relationships in the dataset.
ISOMAP replaces the input distance between point pairs by an approximation of
the geodesic distance given by the shortest path on a graph created connecting
neighbor points in the original space with the original distance as weight. The final
2D coordinates are computed via a conventional MDS embedding with calculations
of eigenvalues over the distance relations of the previous step.

3.3.3 Description of parameters to analyse

Most techniques that initially project control points use a simplified iterative force-
based algorithm, such as the one of Tejada et al. [179]. The number of iterations

59

Vi
su

al
iz

in
g

D
is

ta
nc

e
Pr

es
er

va
tio

n

LAMP LSP PLMP Pekalska

Aggregated error

False neighbors

Missing neighbors

e = 0.36missing
max e = 0.40missing

max e = 0.19missing
max e = 0.53missing

max

low high

low high

low high

Figure 3.8: Comparison of LAMP, LSP, PLMP, and Pekalska projections for the Segmentation dataset (see Sec. 3.3.4)
. 60

3.3. Applications

of force-based placement influences the control points’ positions, and is, thus,
a relevant parameter. LSP control points are typically the centroids of clusters
obtained from a clustering of the input dataset. The number of control points is
thus a second relevant parameter for LSP. To position points in the neighborhood
of a given control point, LSP solves a linear system for that neighborhood. The
neighborhood size (number of neighbors) is a third relevant parameter.

In LAMP, the affine mappings are built from a neighborhood of control points.
The size of the control point set used to build the mapping, expressed as a percentage
of the size of the control point set, is the main parameter here. The choice of
control points and the choice of the initial projection of the control points are also
parameterizable, just as for LSP, PLMP, and Pekalska. However, in LAMP, these
parameters are mainly interactively controlled by the user, and thus of a lesser
interest to our analysis.

ISOMAP, just as the previous methods, also requires the expression of neigh-
borhoods. The main, and frequently only, exposed parameter of ISOMAP is the
number of nearest neighbors that defines a neighborhood.

3.3.4 Overview comparison of algorithms

To form an impression about how the goals outlined in Sec. 3.1 are better, or
less well, satisfied by LAMP, LSP, PLMP, and Pekalska, we start with an overview
comparison.

Figure 3.8 shows the false neighbors, aggregated error, and most important
� “ 5% missing neighbors for the Segmentation dataset. To ease comparison, color
mapping is normalized so that the same colors indicate the same absolute values in
corresponding views. The aggregate error (top row) is quite similar in both absolute
values and spread for all projections, i.e., lower at the plot borders and higher inside,
with a few dark (maximum) islands indicating the worse-placed points. Overall,
thus, all studied projections are quite similar in terms of distance preservation
quality. The false neighbors views (middle row) show a similar insight: Border
points have few false neighbors (light colors), and the density of false neighbors
increases gradually towards the projections’ centers. Although local variations
exist, these are quite small, meaning that all studied projections are equally good
from the perspective of (not) creating false neighbors. The missing neighbors view
(bottom row) is however quite different: By looking at the size and color of the
depicted bundles, we see that LSP and Pekalska have many more important missing
neighbors than PLMP, while LAMP has the fewest missing neighbors. In all cases,
we see bundles that connect borders of the projected point-set. This confirms that
all studied projections optimize placement of close points than far-away points.
We also see that the missing neighbors are spread differently over the data: For
LAMP, there are no bundles going to the bottom-right point cluster, showing that
this cluster is indeed well separated in the projection, as it should be in relation to

61

Visualizing Distance Preservation

False neighbors Missing neighbors Aggregated error
1

0
%

 n
e

ig
h

b
o

rs
3

0
%

 n
e

ig
h

b
o

rs
5

0
%

 n
e

ig
h

b
o

rs

a) b) c)

d) e) f)

g) h) i)

largest
error

Figure 3.9: Applications – LAMP algorithm, Freephoto dataset, different neighbor percentages
per row (see also Fig. 3.10).

the nD data. In contrast, LSP, PLMP, and Pekalska all have bundles going to this
cluster, indicating that they place these points too close to the remaining projected
points.

3.3.5 Parameter analysis

We next refine our overview analysis by selecting two of the studied algorithms:
LAMP and LSP. We next vary several of their parameters, and evaluate the resulting
projections’ quality with respect to this variation.

LAMP - Different control point percentages: Fig. 3.9 shows the results of LAMP

62

3.3. Applications

False neighbors Missing neighbors Aggregated error
1

8
0

 c
o

n
tr

o
l p

o
in

ts
2

5
0

 c
o

n
tr

o
l p

o
in

ts
3

4
0

 c
o

n
tr

o
l p

o
in

ts

a) b) c)

d) e) f)

g) h) i)

largest
error

Figure 3.10: Applications – LSP technique, Freephoto dataset, different numbers of control
points per row (compare with Fig. 3.9)

for the Freephoto dataset with three different values for the percentage parameter:
10%, 30% and 50%. The error has been normalized on each view type (column in
the figure).

First, we see that the final layout of the point cloud does not change drastically
while varying the percentage parameter, only showing a 90 degree clockwise rotation
for the value of 30%. While analysing the false neighbors view, we also see that,
while the light brown areas are large – meaning that a moderate amount of error
can be expected on the whole layout – the dark-colored spots are found nearer to
the center. This suggests that LAMP positions the most problematic points in the
center, surrounded by the rest of the points. By focusing on the dark spots (points
with the largest false neighbor errors) throughout the parameter variation we can

63

Visualizing Distance Preservation

see that the value of the largest errors on each result remain similar – no view has
many more, or much darker-colored, areas.

a) 10 neighbors b) 50 neighbors c) 100 neighbors

C

B

A

B
B

ACAC

Figure 3.11: Applications – LSP technique, Freephoto dataset, different numbers of neighbors.
Bundles show most important missing neighbors.

For the missing neighbors view, we selected a point near the upper border of
the layout, marked by a cross in Figs. 3.9 (b), (e) and (h)), since missing neighbors
occur mainly on the borders of the projection, as we have already observed in Sec-
tion. 3.2.4. The dark spot in Fig. 3.9 (h) is where the largest error occurs over these
three views. While in Fig. 3.9 (b) there are a few orange spots showing moderate
error, in Fig. 3.9 (e) the error decreases considerably, and then increases again
in Fig. 3.9 (h). This suggests that using about 30% of neighbors is a good value
for avoiding large numbers of missing neighbors. We confirmed this hypothesis
on several other datasets (not shown here for brevity). Finally, the aggregated
error view shows results very similar to the false neighbors view: More problematic
points (dark spots) are pushed to the center, and moderate error is found spread
evenly over the entire layout. This shows that, for LAMP, most errors come from
false neighbors rather than from missing neighbors.

LSP - Different numbers of control points: Figure 3.10 shows the same dataset
(Freephoto) projected with LSP. The varying parameter is the number of control
points. We use here the same views as in Fig. 3.9, and normalized the error in each
column. By looking at the false neighbors views, we see a spatial interleaving of
light-yellow and orange-brown colored areas in the projection. This contrasts with
LAMP (Fig. 3.9) where the larger missing neighbor errors are consistently located
away from the projection border. As the number of control points increases, the
large error areas get more compact and closer to the projection center, but we see
no increase in error severity (the amount of the orange and dark-red spots stays
the same). In the missing neighbors views, the dark-colored areas in Fig. 3.10 (b)
disappear largely in images (e) and (h), which means that the missing neighbors
severity decreases when our control parameter increases. Comparing this with
LAMP (Fig. 3.9 b,e,h), this shows that LAMP and LSP behave in opposite ways when

64

3.3. Applications

dealing with missing neighbors. Finally, like for LAMP, the aggregate error views
show the worst errors (dark spots) located in the center: The most problematic
points are pushed inside by the other points which surround them, creating a mix
of both false neighbors and missing neighbors. The severity of the errors, however,
does not change visibly between the three parameter values.

LSP - Different numbers of neighbors: We next examine the effect of a second
parameter of LSP: number of neighbors. For the Freephoto dataset, we fix 250
control points and vary the number of neighbors to 10, 50 and 100. Fig. 3.11 shows
the results with the missing neighbors finder view. We see that the most significant
errors are initially concentrated between groups A, B and C, with C being essentially
too far placed from both A and B. Increasing our parameter reduces has a positive
impact on solving the missing neighbors problem between groups A and C, bringing
them together into the group marked AC. The main missing neighbors are now
concentrated in the relationship between groups AC and B. The ‘concentration’
of error given by the parameter increase is, upon further analysis, explainable by
the working of LSP: Given a neighborhood N , LSP’s Laplace technique positions
all points in N close to each other in the final layout. However, the position of
the neighborhoods N

i

themselves is given only by the control points, which are
determined by the initial force-based layout. If this layout suboptimally places
two control points i and j too far away from each other, then all points within
the neighborhoods N

i

and N
j

end up being too far away from each other. Hence,
as the neighborhood size increases, the likelihood to see fewer thick high-error
bundles increases. This insight we found is interesting since it was not reported in
the LSP literature so far, and it can be explained (once we are aware of it) by the
algorithmics of LSP.

LAMP - Different datasets: We next analyse the LAMP technique applied to
three different datasets: Corel (1000 elements), Freephoto (3462 elements), and
Sourceforge (6773 elements). The varying parameter is now the input dataset itself.
The aim is to see whether (and how) errors are affected by the nature of the input
data, e.g. distribution of similarity, number of dimensions, and number of points.
Figure 3.12 top row shows the false neighbors views. We see here that, while for
the first two datasets the behavior of false neighbors is similar to earlier results, for
the largest dataset (Sourceforge) there are much fewer false neighbors. These are
located close to the intersection area of the two apparent groups in the image, and
on the borders of these groups. This, and the low errors (light colors) inside the
groups may indicate that both groups have a high degree of cohesion between their
inner elements. The large errors on close to the intersection areas and borders can
indicate elements that could be in either group, respectively very different from
all other elements. Figure 3.12 (a) shows a similar pattern: Most false neighbors
are located at the ‘star’ shape’s center, while the arms of the start contain elements

65

Visualizing Distance Preservation

Figure 3.12: Applications – One algorithm (LAMP), different datasets. Top row: false
neighbors. Bottom row: missing neighbors.

that are more cohesive. This may indicate that the dataset contains a number of
cohesive groups equal to the number of start arms, and elements in the center
belong equally to all groups.

While analysing the missing neighbors for several points selected on the pe-
riphery of the projections, we see that the errors are smaller for Figs. 3.12 (d)
and (e), and considerably larger for Fig. 3.12 (f). For the last image, we selected
a point close to the intersection area of the perceived groups. Image (f) shows
that this point is equally too far placed from most points in both perceived clusters.
The size and speed of increase of the error (as we get further from this point in
the projection space) strongly suggests that the selected point belongs stronger to
both perceived groups than the projection indicates. This strengthens our initial
hypothesis that the area separating the two groups belongs equally to these groups.

ISOMAP - Different numbers of neighbors: To illustrate a different type of ana-
lysis made possible by our work, Fig. 3.13 shows the effect of changing the number
of neighbors in ISOMAP on missing group members. Our group � of interest, shown
first on Fig. 3.13 (a), is highlighted in images (b-d) by a shaded cushion. Besides
the fact that � moves from the left of the projection to the right, images (b-d) show
how its missing members behave as we change our parameter. At first, in Fig. 3.13

66

3.3. Applications

a) b) c) d)

group of
interest

50 neighbors 100 neighbors 200 neighbors
highlow

emissingΓ

group Γ

highlow

emissingΓ

highlow

emissingΓ

group Γ

group Γ

A1

A2

Figure 3.13: Applications – ISOMAP projection, finding missing group members for different
numbers of neighbors.

(b), we see that the most important missing neighbors are found in two other areas
A1 and A2 on the far side of the layout. We also notice many black edges, which
means that the points in A1 and A2 are indeed too far away from all points in the
selected group. The relatively large fan-out of the bundles show that the group
misses many members, and these are scattered widely over the projection. As the
parameter increases, we see in image (c) that the missing members spread out even
more, but the severity of the errors decreases (as shown by the lighter colors of
emissing

� background. The inner fanning of the edges, inside �, is still large, which
shows that many group members miss neighbors. Finally, in Fig. 3.13 (d), issues
decrease significantly: We see thinner bundles, which imply less error; the bundle
fanning inside � is relatively small, meaning that most of �’s points do not miss
neighbors; and the fan-out of the bundles is smaller, showing that the missing group
members are now more concentrated than for the first two parameter values. This
leads to the conclusion that, for the analysed group, the increase of the number of
neighbors parameter has a positive impact on the final projection quality.

LSP - Different numbers of iterations: The final analysis we present compares
two different LSP projections of the same dataset (News), computed using values
of 50, respectively 100 for the number of iterations parameter of the control-point
force-directed placement.

Figures 3.14 (a) and (b) show the two LSP projections. In each of them, several
high-density groups are visible. These are strongly related news feeds, i.e., which
likely share the same topic (see Sec. 3.3.1). However, without extra help, we cannot
relate the two projections, e.g., find out (a) if points significantly change places
due to the parameter change; (b) which groups in one projection map to groups in
the other projection; and (c) whether points in a group in one projection are also
grouped in the second projection.

To answer question (a), we use the projection comparison view (Sec. 3.2.7).
The result (Fig. 3.14 (c)) shows that there are many large point shifts; the bundle
criss-crossing also shows that groups change places in the projection. This is a first

67

Visualizing Distance Preservation

a) 50 iterations b) 100 iterations c) full difference

d) shift of group A e) shift of group B f) split of group C

A

B
C

C
B

A

A
1

B1

B2

B3

C1

C2

Figure 3.14: Applications – Shift between two LSP projections, for different numbers of
force-directed iterations.

indication that LSP is not visually stable with respect to its number of iterations
parameter. Next, we manually select three of the most apparent point groups in
one projection, shown in Fig. 3.14 (a) by the shaded cushions A,B,C. We examine
these in turn. In Fig. 3.14 (d), we show how points in group A shifted, in the
second projection, to a group A1. Virtually all bundled edges exiting A end in
A1, so the parameter change preserves the cohesion of group A (though, not its
position in the layout). The same occurs for group B (Fig. 3.14 (e)). However,
the parameter change spreads B more than A – in image (e), we see that B maps
to three groups, B1..B3. These visualizations thus answer question (b). Group
C behaves differently (Fig. 3.14 (f)): This group is split into two smaller groups
C1 and C2 when we change our parameter. For question (c), thus, the answer is
partially negative: not all groups are preserved in terms of spatial coherence upon
parameter change.

3.4 Discussion

We have implemented our visualization techniques in C++ using OpenGL 1.1, and
tested them on Linux, Windows, and Mac OSX. Below we discuss several aspects of

68

3.4. Discussion

our techniques.

Computational scalability: For Delaunay triangulation and nearest-neighbor
searches, we use the Triangle [167] and ANN [6] libraries. Both can handle
over 100K points in subsecond time on a commodity PC. Further, we accelerate
imaging operations using GPU techniques. For 2D distance transforms, we use the
pixel-accurate Euclidean distance transform algorithm and GPU implementation
proposed in [28]. On an Nvidia GT 330M, this allows us to compute shaded cush-
ions and perform our Shepard interpolation at interactive frame rates for views
of 10242 pixels. For edge bundling, we implemented KDEEB [85] fully on Nvidia’s
CUDA platform. This yields a speed-up of over 30 times (on average) as compared
to the C# implementation in [85] and allows bundling graphs of tens of thousands
of edges in roughly one second. All in all, we achieve interactive querying and
rendering of our views for projections up to 10K points.

Visual scalability: Our image-based approaches scale well to thousands of data
points or more, even when little screen space is available. Moreover, all our tech-
niques have a multiscale aspect: The parameters ↵ and � (Eqns. 3.4, 3.5) effectively
control the visual scale at which we want to see false neighbors, missing neighbors,
and the aggregate error. Increasing these values eliminates spatial outliers smaller
than a given size, thereby emphasizing only coarse-scale patterns (see e.g. Fig. 3.1).
The bundled views (Sec. 3.2.5) also naturally scales to large datasets given the
inherent property of bundled edge layouts to emphasize coarse-scale connectivity
patterns.

Genericity: Our visualizations are applicable to any DR algorithm, as long as
one can compute an error distance matrix encoding how much 2D distances de-
viate from their nD counterparts (Eqn. 2.2). No internal knowledge of, or access
to, the DR algorithms is needed – these can be employed as black boxes. This
allows us to easily compare widely different DR algorithms, e.g. based on repre-
sentatives, based on distance matrices, or based on direct use of the nD coordinates.

Ease of use: Our views are controlled by three parameters: ↵ sets the scale of
the visual outliers we want to show; � sets the radius around a point in which we
want to display information, i.e., controls the degree of space-filling of the resulting
images; � sets the percentage of most important missing neighbors we want to show.
These parameters, as well as the interaction for selecting point groups (Sec. 3.2.6)
are freely controllable by users by means of sliders and point-and-click operations.

Comparison: Similarly to Van der Maaten et al. [193], we use multiple views
showing the same data points to explain a projection, e.g., the false neighbors,
missing neighbors view, missing neighbors finder, and group-related maps. How-

69

Visualizing Distance Preservation

ever, the multiple maps in [193] are used to actually convey the projection, so
the same point can have different locations and/or weights in different maps. In
contrast, we use multiple views to convey different quality metrics atop of the
same 2D projection, but keep the position of all observations the same in all these
views. This simplifies the user’s task of correlating these multiple views, based on
spatial positions. Similar to Aupetit [8], our error metrics encode discrepancies in
distances in Rn vs R2. However, our error metrics are different. More importantly,
our visualizations are different: Our false neighbors view does not show (a) spu-
rious Voronoi cell edges far away from data points or (b) cell subdivision edges
whose locations does not convey any information, since we (a) use distance-based
blending and (b) continuous rather than constant per-cell interpolation (Sec. 3.2.3).
Secondly, our missing neighbors finder (Sec. 3.2.5) can show one-to-many and
many-to-many error relationships, whereas all other methods are constrained to
one-to-one relationships. Finally, we can show errors at group level, whereas the
other studied techniques confine themselves to showing errors at point level only.

Our projection comparison view (Sec. 3.2.7) is technically related to the method
of Turkay et al., which connects two 2D scatterplots to each other by lines linking
their corresponding points [189]. However, Turkay et al. stress that line correspon-
dences only work for a small number of points. In contrast, we use bundles to (a)
show up to thousands of correspondences, and coloring and blending to encode
correspondence importance.

Findings: It can be argued that our results are limited, as we did not decide, using
our method, which of the studied DR algorithms are best. However, this was not
the aim of our work. Rather, our goal was to present a set of visual techniques
that help analyse the effect of parameters on projection quality for several DR
techniques of interest. Deciding whether a certain degree of quality, e.g. in terms
of false neighbors, missing neighbors, grouping problems, or projection stability is
a highly context, dataset, and application-dependent task. Having such a context,
our tools can be then used to assess (a) which are the quality problems, (b) how
parameter settings affect them, and (c) whether these problems are acceptable
for the task at hand. The same observation applies to the datasets used here. Our
analyses involving these should be seen purely as test cases for assessing the quality
problems of DR projections, and not as findings that affect the underlying problems
captured by these datasets.

Distance vs neighborhood preservation: It can be argued that our error metrics,
and corresponding visualizations, measure and respectively present a mix between
the preservation of distances and neighborhoods: The aggregate error view is
a ‘pure’ distance-related metric, very close to the well-known aggregated stress
metric. The false neighbors view encodes distance errors into colors, but only for
the Delaunay neighbors of each projected point. The missing neighbors view is also

70

3.4. Discussion

a pure distance-related metric. The missing neighbors finder highlights, indeed, the
most important missing neighbors of a projected point, but uses a distance metric
to define the notion of missing neighbors. The group analysis views lift the above
interpretations at the level of a user-chosen group of projected points.

Obviously, distance preservation and neighborhood preservation are related
notions: Perfect distance preservation implies perfect neighborhood preservation,
as nearest neighbors are defined by distances. However, the converse is not true –
neighborhoods are defined in terms of the order of points as given by their sorted
set of distances, and not by the absolute value of distances. As such, very high
distance-preservation errors are quite likely to cause also significant errors in neigh-
borhood preservation, but the two types of errors are not reducible to each other.
As all our error metrics proposed in this chapter are essentially distance-based,
we refer to them as distance-preservation errors. In contrast, errors that use sets
of nearest neighbors in their formulation, rather than distances, will be called
neighborhood-preservation errors, and will be analysed separately in Chapter 4.

Limitations: A few limitations can be identified for the techniques presented in
this chapter. The error metric described by Equation 3.1 can be quite sensitive to
outliers. If there is an outlier in the original space (Dn) then max

i,j

dnpp
i

,p
j

q will
be much larger than most other pairwise distances dn. Hence, after naive linear
normalization, the distances between all non-outlier points will be squeezed into
a small portion of the output (normalized) space. Unless this outlier behavior is
very well-represented in the projection (Dm), this will make the rightmost term
of Equation 3.1 be quite different than the leftmost term even when they should
be similar, so well-positioned points may still show errors. Considering also the
phenomenon of ‘curse of dimensionality’, it can be very hard for projections to
represent outliers well without crowding non-outlier points in a very small area
in the output space. The neighborhood-preservation error metrics proposed in
the next chapter deal with this by considering, for each point i, only the ranks of
neighbors of i, i.e., their discrete position in the sorted list of nearest-neighbors of
i, and not their actual distances.

Regarding our visualizations, as outlined by the examples, they can show (a)
which projection areas suffer from low quality; and (b) how two projections differ
in terms of neighborhood preservation. However, we cannot directly explain (c)
why a certain DR algorithm decided to place a certain point in some position; and
(d) how the user should tune (if possible) the algorithm’s parameters to avoid
errors in a given area. In other words, we can explain the function f : P (Eqn. 2.1)
and its first derivatives over P , but not the inverse f´1. This is a much more
challenging task – currently not solved by any technique we know of. Further
explaining such second-order effects to help users locally fine-tune a projection is
subject to future work. Secondly, the parameter space P of some DR algorithms
can be high-dimensional. So far, we can only analyse the variation of one or two

71

Visualizing Distance Preservation

parameters at a time. Extending this to several parameters is a second challenging
next topic.

3.5 Conclusions

We have presented a set of visualization methods for the analysis of the quality
of dimensionality-reduction (DR) algorithms in terms of their ability to preserve
distances. We generically model such algorithms as functions from nD to 2D,
parameterized in terms of the various settings of the respective projection algorithm.
Next, we classify distance-related projection errors into false neighbors, missing
neighbors, and aggregated projection error at both individual point and point-group
level, and propose metrics to quantify these errors. We next propose several dense-
pixel, visually scalable, techniques such as multi-scale scattered point interpolation
and bundled edges to display out error metrics in ways that are visually and
computationally scalable to large datasets and also work in a multiscale mode. We
demonstrate our techniques by analysing the parameters of five state-of-the-art DR
techniques.

In contrast to existing assessments of DR projections by aggregate figures,
that can only infer overall precision, we offer more local tools to examine how
neighborhoods and groups are mapped in the final projection. The usage of our
techniques is simple and, most importantly, allows users of DR techniques to study
their quality without needing to understand complex internal processes or the exact
role of each parameter in the projections.

As noted in the introduction of this chapter, the techniques presented here only
deal with distance errors in projections. While these are, naturally, important to
quantify and see, they are not the only sources of problems in interpreting projec-
tions. As such, in Chapter 4, we will detail the issue of quantifying and visualizing
neighborhood-preservation errors, the second most-important source of projection
interpretation errors identified in Chapter 2. Separately, Chapter 5 will show how
projection errors can be computed and used to assess distance preservation for 3D
projections, and also compare the quality of 2D and 3D projections generated by
the same projection technique.

After identifying the nature, distribution, and magnitude of errors in a given
projection, a natural question for users is to assess which points get affected by
such errors. This requires explaining groups of points in a projection in terms of the
underlying high-dimensional variables. A related task of interest is to understand
why errors appear for a given subset of points of a given dataset projected by a given
algorithm. Both above tasks can be addressed by depicting the most important
high-dimensional variables that cause a projection to place points close to, or far
away from, each other. Techniques that address these tasks will be discussed in
Chapter 6.

72

3.5. Conclusions

Contributions

The text of this chapter is based on the article “Visual analysis of dimensional-
ity reduction quality for parameterized projections” (R. Martins, D. Coimbra, R.
Minghim, A. Telea), Computers & Graphics, vol. 41, pp 26-42, 2014. The two first
co-authors have had equal major contributions to this publications, and should
be seen as joint first authors. Specific contributions of R. Martins involve: the
proposal of dense image-based techniques to encode and visualize various forms
of projection errors, based on smooth interpolation, and the design of the various
error metrics (Sec. 3.2.2 and following); the adaptation and usage of edge bundles
to visualize various types of errors (Secs. 3.2.5 and 3.2.6); and the selection, usage,
and interpretation of projections constructed by the PLMP, Pekalska, and ISOMAP
techniques (Sec. 3.3.2 and following).

73

Chapter 4

Visualizing Neighborhood Preservation

T

he visual analysis of projection errors introduced in Chapter 3 highlighted the
importance of making it clear, for the user of a projection, where and how

much the chosen projection method maintains aspects of the original structure
of the data under investigation. We showed that errors are not always equally
distributed over all points, especially when considering nonlinear projection tech-
niques. As such, having a local insight into the quality of the projection provides
the user with good advice for the decision of which regions should or should not
be trusted. Interactive tools for fine-grained investigation are also crucial in the
process of analysing errors, allowing the user to confirm or deny hypothesis that
come from more general views.1

Chapter 3 also highlighted that the preservation of the structure of the data, in
the context of a projection, can be further quantified in terms of several metrics.
One of these, the preservation of Euclidean distances between point pairs, can be
used to detect and analyse various quality aspects related to projections, such as
missing and false neighbors, defined both at the level of individual observations
and groups of observations.

However, distance-based quality metrics are not always the way to capture
the desired quality aspects of a projection. One such situation is the widespread
analysis task involving finding and reasoning about point groups and outliers. For
such tasks, actual distances between points are less important than the neighbors of
points. Indeed, we visually decide that a point-set in a projection forms a cluster by
typically using the fact that inter-point distances over the cluster are much smaller
than distances between the cluster and other points. Similarly, we visually decide
that a point is an outlier if it is located at a distance from all other points which is
considerably larger than other inter-point distances in the same projection. In both
above cases, groups and outliers can be reliably identified even if distances are not
faithfully preserved by the used projection technique. The element that plays a
key role here is the preservation of neighborhoods by the projection technique – or,
in other words, the fact that the k nearest neighbors for a point in the projection
are the same as the k nearest neighbors of the same point in the original high-
dimensional space. As such, understanding neighborhood preservation errors is of
a similar importance to understanding distance-preservation errors.

1The text of this chapter is based on the paper Explaining Neighborhood Preservation for Multidimen-
sional Projections (R. Martins, R. Minghim, A. Telea), Proc. Computer Graphics and Visual Computing
(CGVC), eds. R. Borgo and C. Turkay, Eurographics, 2015.

Visualizing Neighborhood Preservation

In this chapter we address the task of interpreting projections by making explicit
where neighborhood-related errors appear. For this, we propose several metrics
to quantify the appearance of such errors in projections. We introduce several
visualizations that allow selecting suitable scales or levels-of-detail to examine such
errors, and next show these errors and support users in understanding and using
the projection in their presence. Our explanatory methods are simple to implement,
computationally scalable, apply to any projection technique, and can be easily
integrated in classical scatterplot views of projections.

In this context, our main contributions are (1) three neighborhood preservation
metrics that adapt [118, 198] to find and interpret false and missing neighbors for
different neighborhood sizes given by k-nearest neighbors; (2) three corresponding
multiscale views that allow exploring neighborhood preservation errors at the
desired (local) level of detail, based on the projection’s visual topology. These are
presented next.

4.1 Measuring and Visualizing Neighborhood Preservation

4.1.1 Preliminaries

Let Dn “ tp
i

u be a set of n-dimensional points, and let Dm “ tq
i

u the projection
of Dn into a space having m dimensions. In this context, each high-dimensional
point p

i

has a unique corresponding low-dimensional point q
i

. For simplicity of
notation, and when we need to refer solely to the identity of such a point, without
specifying which of its two ‘versions’ p

i

or q
i

we consider, we will denote it simply
by point i.

With the above convention, we define a k-neighborhood of a point i as the set

⌫
k

piq Ä t1, . . . , Nu (4.1)

of the k-nearest neighbors of i (for a user-given k), sorted increasingly by Euclidean
distance to i.

When a high-dimensional dataset Dn is projected into m dimensions, each
point i has two k-neighborhoods: one in Dn, denoted by ⌫n

k

piq, and other in Dm,
denoted by ⌫m

k

piq. All the examples in this chapter use 2D projections pm “ 2) and
Euclidean distances, for illustration simplicity. However, the presented techniques
can be equally easily applied to 3D projections and/or other distance metrics.

Based on from these two k-neighborhoods, four types of points can be identified
as important for the neighborhood preservation analysis of any point i, as illustrated
by the Venn diagram in Fig. 4.1:

• missing neighbors “ tp
j

P ⌫n
k

piq ^ q

j

R ⌫2
k

piqu
These are points that, while present in ⌫n

k

piq, are considered not very im-
portant by the projection method, and therefore are pushed outside ⌫2

k

piq.

76

4.1. Measuring and Visualizing Neighborhood Preservation

Missing neighbors are, thus, not found when visually examining the projection
around q

i

.

• false neighbors “ tp
j

R ⌫n
k

piq ^ q

j

P ⌫2
k

piqu
These points are originally far away from p

i

(outside ⌫n
k

piq), but are brought
close to q

i

in the resulting projection. False neighbors are, thus, points we
visually see as being close to point q

i

in the projection, but which are in
reality far from point p

i

in the high-dimensional space Dn.

• true neighbors “ tp
j

P ⌫n
k

piq ^ q

j

P ⌫2
k

piqu
These are points which are close to both q

i

and p

i

, so their visual representa-
tions are accurate regarding the k-neighborhood of i.

• not neighbors “ tp
j

R ⌫n
k

piq ^ q

j

R ⌫2
k

piqu
These are points which are not near i in either Dn or Dm for a given value of
k.

not neighbors

false
neighbors

missing
neighbors

true
neighbors

ν
k
(i)2 ν

k
(i)n

Figure 4.1: The four types of points that can be derived from the two k-neighborhoods ⌫n
k piq

and ⌫

2
kpiq of a point i when analysing neighborhood preservation.

Considering that projections are used to reason about point neighborhoods in
Dn by using point neighborhoods in D2, we do not want a projection to create any
false or missing neighbors, as these would mislead users when visually interpreting
the data. Ideally, a projection should only create true neighbors, i.e. ⌫n

k

piq “ ⌫2
k

piq,
for all points i and neighborhood sizes k. However, as we will see, even state-of-
the-art projection techniques are far from this ideal.

To explore how much, where, and why projections deviate from ideal neigh-
borhood preservation, we next propose several views to analyse different neigh-
borhood preservation aspects. As a running example, we use the well-known
segmentation dataset (2100 points, 18 dimensions) from the UCI Machine Learn-
ing Repository [116]. Each point represents a small pixel-block extracted from 7
hand-segmented outdoor images. Dimensions encode various image descriptors,
such as color and contrast histograms and edge detectors. This dataset is frequently

77

Visualizing Neighborhood Preservation

used in infovis papers to assess the quality of projection techniques in terms of
being able to cluster similar image structures [95, 139, 118]. For the projection
technique we use the well-known high-quality nonlinear LAMP technique [95]. As
for the investigation of distance-based projection errors discussed in Chapter 3,
other datasets and projection techniques can be directly used.

4.1.2 The Centrality Preservation view

Since our neighborhood preservation analysis method uses a fixed k to compute
neighborhoods, one initial challenge is to understand, for the projection at hand,
what is the effect of the value of k on the neighborhoods being analysed, or, in
other words, to comprehend what would be a good value for k taking into account
both the distribution of points and the specific goals of the analysis. Indeed,
without having such a value, one would need to porentially analyse neighborhood
preservation for all values 1 † k § N allowed by a dataset of N points. This is
clearly prohibitive, both in computational costs and in user-effort terms.

Considering this problem, we introduce the centrality preservation metric

CP
k

pjq “
ÿ

1§i§N,jP⌫
k

piq
k ´ ⇢

i

pjq ` 1, (4.2)

for a set D of N points, where ⇢
i

pjq is the rank of a k-neighbor j in ⌫
k

piq when
sorted in ascending order by distance to i, so the nearest neighbor has ⇢

i

“ 1 and
the farthest neighbor has ⇢

i

“ k.
The expected behavior of CP

k

is that points j that are near neighbors to many
other points i of D should be assigned high CP

k

values, such as points which
are central with respect to the structure of the set D, while points close to the
periphery of D, which are not near neighbors to many other points, should be
assigned low CP

k

values. We visualize CP
k

by color-coding its values over the 2D
projection point-cloud using Shepard interpolation to fill in gaps between close
points and thereby generate a continuous, easier to visually follow, color image.
For the detailed description of these techniques, we refer to Sec. 3.2.2, where we
introduced them first for the visualization of distance preservation errors. A first
example of the result is shown in Fig. 4.2, for CP

k

computed in both D2 and Dn.
Let us first consider CP 2

k

, i.e. the centrality preservation computed over the D2

projection space (Figs. 4.2a-c). As expected, in the D2 space, points located near
central areas have higher values (closer to red) than points located near peripheral
areas, which have lower values (closer to blue). However, the exact distribution
of these values throughout the projection varies considerably as the k parameter
changes. Fig. 4.2a shows that with too low k values CP

k

highlights very small
changes in local point density. Assessing neighborhood preservation at such scales
might not be interesting for most real-world scenarios – even a tiny shift in the
points’ positions would create different CP 2

k

values. Conversely, setting too large k

78

4.1. Measuring and Visualizing Neighborhood Preservation

peripheric central

a)CPk (k=30)2
b)CPk (k=180)2

c)CPk (k=500)2
d) CPk (k=180)n

CPk

Figure 4.2: Centrality preservation view, segmentation dataset, LAMP projection. (a-c) Cen-
trality CP

2
k , for three neighborhood sizes k. (d) Centrality CP

n
k , for k “ 180

neighbors.

values (Fig. 4.2c) highlights too coarse-scale patterns that do not match the shape
of the projection, since points j are being considered as k-neighbors even when
they are very far from the reference point i. In the limit case k “ N , CP 2

k

will show
a single circular gradient covering the entire projection. This highlights the fact
that, for this extreme k value, all points j ‰ i are considered to be neighbors of any
reference point i – a configuration which is arguably not useful for any practical
analysis of neighborhood preservation. In-between values, e.g. k “ 180 for our
running example (Fig. 4.2b), highlight centrality patterns which match well the
perceived shape of the projection — we see how red bumps nicely match the main
point-groups visible in the projection.

Hence, visualizing CP 2
k

helps finding a good scale at which to assess neighbor-
hoods, and the D2 centrality view can be used to select a k which best matches the
desired level-of-detail to explore the projection, based on the match between the
shapes we see in the projection and the CP 2

k

peaks. In detail, we aim to set k to
obtain roughly one such peak per individual set of points in the projection which

79

Visualizing Neighborhood Preservation

the user regards as forming a separate group. Note that this is not always possible:
For the dataset in Fig. 4.2, the closest we can come to this configuration is given
by setting k “ 180, yielding the image in Fig. 4.2b. We see here how the left and
bottom-right groups of points in the projection are each nicely matched by a single
red peak. However, the large central point group is covered by several such peaks.

Once the k value is set, the analysis can now turn to the original Dn neigh-
borhoods by changing the values drawn over the projected points D2 to CPn

k

. To
explain this design, consider a projection that perfectly preserves neighbors: In
such a case, CPn

k

piq “ CP 2
k

piq,@i P t1, . . . , Nu,@k P t1, . . . , Nu, and the visualiza-
tion of CPn

k

should match the already-understood color gradient shown earlier by
CP 2

k

. Conversely, in areas where neighborhoods are not preserved, CPn

k

will show
perturbations to this pattern: If points which were peripheral in Dn become central
in D2, then we will see blue points in central areas in D2, where we expect red
points; and if points which were central in Dn become peripheral in D2, then we
will see red points on the periphery of D2, where we expect blue points.

Fig. 4.2d shows CPn

k

for k “ 180, the same value of k as Fig. 4.2b (for CP 2
k

).
While the trend of red central points and blue peripheral points is somewhat similar
in Figs. 4.2b and 4.2d, the smooth red-to-blue gradient in Fig. 4.2b is partially lost
in most areas of the image. This is an indication that there are neighborhood preser-
vation errors and that they are spread out all over the projection. By itself, however,
this view is not detailed enough to clearly point to the user where the errors are
occurring, what kinds of errors these are, and why they are happening. To answer
these questions, we refine the exploration of neighborhood preservation with the
set-difference and sequence-difference views presented next in Sections 4.1.3 and
4.1.4 respectively.

4.1.3 The Set Difference view

The second proposed view, called the set difference view, compares the neighbor-
hoods ⌫n

k

piq and ⌫2
k

piq of each data point i using the Jaccard set-distance [112], by
computing

JD
k

piq “ 1 ´ ⌫2
k

piq X ⌫n
k

piq
⌫2
k

piq Y ⌫n
k

piq . (4.3)

This value represents the neighborhood preservation error of each point i. Its
interpretation is simple: JD

k

piq “ 1 means that the Dn neighborhood of point i
was completely lost by the projection, while JD

k

piq “ 0 means that the projection
preserved the k neighbors of i perfectly. However, the neighbors’ ranks, positions,
and distances relative to point i are not considered by this error metric.

Fig. 4.3 shows three set-difference views for the same k values as in Fig. 4.2,
for ease of comparison. According to the interpretation of JD

k

, high values (warm
colors) show poor neighborhood preservation while low values (cold colors) show

80

4.1. Measuring and Visualizing Neighborhood Preservation

areas where neighbors are well preserved. With these new images it is now possible
to get extra insights into the neighborhood preservation of the projection, in
addition to the information provided previously by the centrality preservation view
(Fig. 4.2).

a) k=30 b) k=180

A

C

E

D

F

c) k=500

D

E
F

B1

B2

0 1

JD
k

Figure 4.3: Set difference view, segmentation dataset, LAMP projection. The figure uses the
same k values as in Figs. 4.2a-c.

First, for the fine-grained scale k “ 30 (Fig. 4.3a), we see a relatively low
neighborhood preservation (high JD

k

values) for most points, except the ones in
the low-right group B1. For our reference scale k “ 180 (Fig. 4.3b), determined
in Sec. 4.1.2 to be a good level-of-detail to examine this dataset, we see that both
smaller point-groups B1 and B2 have very good neighborhood preservation (low
JD

k

values). This confirms that the LAMP method was right to separate them from
the central group A.

At the same scale (k “ 180), an isthmus (Fig. 4.3b, marker C) can be identi-
fied connecting group B2 with the large group A, with very high neighborhood
preservation errors. Interestingly, once we look left past this isthmus, group B2

shows a very good neighborhood preservation (dark blue colors). This indicates
that groups B2 and A may, actually, not be close in the high-dimensional space, or,

81

Visualizing Neighborhood Preservation

in other words, that we are looking at a projection artifact here. We will explore
this hypothesis next with our other views (Sec. 4.1.4).

Several red islands can also be found in the central group A (Fig. 4.3b, zones D).
Increasing k to 500, these islands are reduced to a few outliers (Fig. 4.3c, zones D),
which suggests that, on a coarse scale (a scale that would better match its size, since
it is a larger group than the others), group A has little neighborhood preservation
issues, so it is indeed a large group in Dn space. However, the relatively isolated
group F remains red even at a coarse scale; this indicates that, no matter the value
of k, these points are wrongly projected close to group A’s right border.

Finally, a more subtle observation can be done. Looking at group A in the
projection, without the insight shown by the metric in the set difference view, a
user may think of it as simply a compact large cluster of very similar points. Yet,
in the set difference view, we see a Z-shaped corridor of points of medium error
(Fig. 4.3b, marker E) that winds through the high-error red islands inside group
A. This suggests that group A may not be that homogeneous in Dn space. We will
explore this finding next using our subsequent views.

4.1.4 The Sequence Difference view

While the JD
k

metric (Eq. 4.3) comes naturally from the problem of comparing
two possibly-overlapping sets of points, and its accompanying set difference view
(Sec. 4.1.3) shows an easy-to-interpret picture of how many true neighbors a
projected point has, it has limitations that are worth noticing. As can be observed
in Fig. 4.3, for example, the results are quite sensitive to the setting of k. The
three pictures generated by increasing the neighborhood size are considerably
different from each other; areas where high-errors were abundant in one picture
can be seen with very low errors in the others, and high-error outliers are also not
constant. Since, as outlined earlier, k is a free parameter that different users may
set differently for the same projection, having a view that is strongly affected by
the setting of k can be a threat to the consistency of the results obtained from the
analysis process.

We argue that this perceived limitation is related to two properties of JD
k

:
(a) it ignores changes in the structure of the k-neighborhoods other than the
inclusion/exclusion of neighbors, such as whether and how much a k-neighbor
j changes ranks (in the sense introduced in Eqn. 4.2) when comparing both
k-neighborhoods; and (b) how important this k-neighbor j is, in terms of how
much it is near the reference point i.

The work of Pagliosa et al. [135] proposes a Smooth Neighborhood Preservation
metric that deals with these problems by using the distances between neighbors as
weights for the error, so that the more distant a neighbor is, the less impact it has
on the error. Alternatively, to decrease the analysis sensitiveness to the setting of k
and also to account for the importance of neighbors, using their ranks instead of

82

4.1. Measuring and Visualizing Neighborhood Preservation

distances, we propose next a sequence difference metric to compare ⌫2
k

piq and ⌫n
k

piq
as

SD
k

piq “
ÿ

jP⌫2
k

piq
pk ´ ⇢2

i

pjq ` 1q ¨ |⇢2
i

pjq ´ ⇢n
i

pjq|

`
ÿ

jP⌫n

k

piq
pk ´ ⇢n

i

pjq ` 1q ¨ |⇢2
i

pjq ´ ⇢n
i

pjq|, (4.4)

where ⇢
i

pjq is the rank of a k-neighbor j in ⌫
k

piq, as defined in Eqn. 4.2. The first
term in each sum in Eqn. 4.4 assigns a higher weight to the displacement of nearer
(lower-rank) neighbors, capturing the assumption that not preserving the rank of
a near neighbor is worse, in terms of interpretation of the resulting projection,
than not preserving the rank of a distant neighbor. This is based on the way users
typically interpret a projection visually, i.e. by locally scanning and querying small
point neighborhoods to find what is most similar to a given point, before they scan
further points. The metric’s second term in each sum penalizes neighbors j which
do not keep ranks after projection, i.e. ⇢2

i

pjq ‰ ⇢n
i

pjq, by how much their rank is
changed.

Figure 4.4 shows the sequence difference view for our running example. The four
pictures, generated for increasing scales of k, show much less differences and are
more stable when compared to the earlier views (Figs. 4.2 and 4.3), as expected.
All medium and high-error areas exposed by the set difference view (Fig. 4.3b) can
still be seen, and high-error outliers (small red dots marked in Fig. 4.4) are now
much better visible at all scales.

To explain this effect, one might think of SD
k

(Eqn. 4.4) as a rank-weighted
version of JD

k

(Eqn. 4.3). Consider a neighborhood ⌫n
k

piq and its 2D counterpart
⌫2
k

piq which are identical, except that the farthest two neighbors are swapped. The
resulting value SD

k

piq will be equal to 2. If we take a slightly smaller neighborhood
of k ´ 2 elements, SD

k´2piq equals zero, since the first k ´ 2 elements in both
⌫n
k

piq and ⌫2
k

piq are identical. Now, consider that ⌫n
k

piq differs from ⌫2
k

piq in terms
of the first two elements being swapped. The resulting value SD

k

piq will equal 2k,
a value much larger than 2. Hence, small changes at the border of neighborhoods,
where new points are considered as k increases, have small impacts, which yields a
smooth variation of SD

k

as function of k.
One final observation about the definition of SD

k

relates to how it handles
missing and false neighbors (as defined in Sec. 4.1.1). A missing neighbor j that
was originally part of ⌫n

k

piq but was pushed outside of ⌫2
k

piq has a ⇢2
i

that is greater
than k. The absolute-difference terms |⇢2

i

pjq ´ ⇢n
i

pjq| of each sum in the definition
of SD

k

(Eqn. 4.4) always represent how much the rank of a point changed between
both spaces, no matter the k. The same happens to false neighbors. In a way, this
approach can be considered to join the analysis of neighborhood preservation with
the analysis of distance preservation, since SD

k

is able to ‘see’ beyond the fixed
k value. However, it must be noted that (a) the metric considers only neighbors

83

Visualizing Neighborhood Preservation

low high
SD

k

Figure 4.4: Sequence difference view, segmentation dataset, LAMP projection, for four increas-
ing scales (k values).

(whether true, false or missing), so the analysis is still restricted by the value of k;
and (b) our metric only considers ranks and not actual Euclidean distances between
points. This last property is important because it allows using this metric for the
analysis of datasets for which the original distances are not directly comparable to
distances in the low-dimensional projection space D2. This topic is further detailed
in Chapter 7.

4.1.5 Refining the exploration

Using the set and sequence difference views, we are able to notice a few different
areas of the projection from our running example that show different levels of
neighborhood-preservation errors. This is by itself an important insight into the
overall quality of the projection, but not a fully detailed one: By using these views,
a user cannot distinguish between errors that are due to false neighbors and errors
that are due to missing neighbors. Additionally, it is not only important to know the

84

4.1. Measuring and Visualizing Neighborhood Preservation

types of occurring errors, but also where do these errors come from. For instance,
if we have a case of false or missing neighbors, important questions to address are
which are these false neighbors, and where are the missing neighbors, respectively.
To address these tasks, we next propose visual representations of ⌫n

k

piq and ⌫2
k

piq
for specific selected q

i

’s, similar to the techniques used in Sec. 3.2.4 for the detailed
analysis of distance-preservation errors.

The first scenario of local analysis is shown in Fig. 4.5 for our running example.
The proposed visual encoding works as follows: For any selected point q

i

, its true
k-neighbors are colored according to their proximity to i in Dn, i.e. k ´ ⇢n

i

` 1, so
that higher values mean nearer k-neighbors. The colormap for this analysis, while
very similar to the ones used in previous figures in this chapter, has one distinct
feature: Transparency is assigned to points according to their values, increasing
linearly with the proximity to i (the same value mapped to color). Hence, nearer
k-neighbors are more opaque, while farther k-neighbors are slightly less apparent.
All points that are not k-neighbors – they are neither in ⌫n

k

piq nor in ⌫2
k

piq, so they
are not relevant to this analysis – are assigned ⇢n

i

“ k ` 1, as if they were all just
outside the k-neighborhood. This means that in the view they are assigned the
value 0 and, thus, get the maximum assigned transparency. This design is useful
for a better visibility of missing neighbors. These are visualized by connecting
them with lines to the reference point i, and next bundling these lines to reduce
clutter caused by many crossing lines and also emphasize the main groups of
missing neighbors, similarly to the missing neighbors finder technique proposed
in Sec. 3.2.5 for distance-based errors. The bundled lines are colored using a gray
scale where closer k-neighbors are darker than farther ones.

a) b)

left group

central group

border

q

q’

missing neighbors
of q

closefar

true neighbors

not neigh.

Figure 4.5: Local analysis of the connection between the left and central groups. The visual
border, seen also in Figs. 4.3b and 4.4, is marked by a dotted curve.

The set difference view (Fig. 4.3b) shows a salient border, or color gradient, that

85

Visualizing Neighborhood Preservation

seems to separate the highly-coherent group of points in the left of the projection
from the large central group via an isthmus of in-between points (see Fig. 4.3b,
marker C). This finding suggests the hypothesis that the left point-group is actually
well separated from the central group in high-dimensional space, and that the
linking isthmus is mainly an artifact of the projection.

To verify this hypothesis, we first select the point q (Fig. 4.5a), to the right of
the border and inside the high-error area of the isthmus. Warm colors spread only
to the right of the border, which means the nearest true k-neighbors of q are all
placed to the right of the border and towards the large cluster. With the missing
k-neighbors (bundled edges) it is exactly the same: dark edges all point to the
inside of the central group, which means that k-neighbors that were originally close
to q in Dn are located in the inner parts of the central group. In other words, we
conclude that the points on the isthmus form indeed a tight k-neighborhood in Dn,
as suggested by the previous views, but while that k-neighborhood is visually close
to the left group in D2, there are no strong indicators that it is also the case in Dn.

Neighborhood relationships are not commutative, however: If a point A is
one of the nearest k-neighbors of a point B, that does not necessarily mean that
B is also one of the nearest k-neighbors of A (and vice-versa, for far neighbors).
Therefore, to conclude the investigation of our hypothesis, it is also important to
analyse the points outside of the isthmus and in the left group. Repeating the
same operations for a point q1 located to the left of the border (and outside the
high-error area of the isthmus), we can see a nearly exactly complementary picture
(Fig. 4.5b): All true and missing k-neighbors of q1 are located inside the left group.
The only difference is that q1 has fewer missing k-neighbors, and the ones which
are there are not important – light-gray edges mean that these k-neighbors were
originally already far from p

i

in Dn, and they do not reach far into the left group,
but stop at the border of the colored true k-neighbors.

Together, the above two findings lead to the conclusion that the border we
discovered by our views, highlighted in Fig. 4.5 as a dotted curve, is indeed an
important and well-defined division between the multidimensional data points
from the left and the central groups. Without the tools and views presented in this
section, starting all the way from the general detection of a potentially problematic
region and ending in the specific and detailed analysis of the k-neighborhoods of
the points around the area, this insight might not be easily obtained by a user of
this projection. Further on, without this insight, the visual analysis of this complex
area in the projection might mislead and erroneously drive the exploration of the
data.

4.1.6 Ground truth analysis and comparison

The segmentation dataset we used as a running example is a collection of 2100 3x3
pixel regions, also called instances, drawn randomly from a database of 7 outdoor

86

4.1. Measuring and Visualizing Neighborhood Preservation

images and represented by attributes related mainly to the positions and colors of
the pixels. The information of which image each instance comes from is available
as a class attribute and can be used to separate the instances in 7 different groups.
However, this information is not used by the projection method, in line with typical
machine learning procedures where one wants to (a) automatically extract features
from a dataset and next (b) validate the usage of these features by correlating them
with manual annotations, or ground truth, information. In our context, assessing
the projection in terms of finding correlations of the neighborhood-preservation
error and mix of class attributes is a potentially useful way to reason about the
causes of the appearance of these errors.

Following this idea, we show our running example dataset in Fig. 4.6 colored by
the ground truth (class attribute). Next, we analyse how much of the patterns and
visual features related to neighborhood preservation, which we identified earlier
with our proposed views, match the distribution and position of patterns implied
by the class attribute. For clasity, we show the color-coded projection image twice,
once without and next with superimposed annotations. We also note that the
Shepard attribute interpolation used earlier is now not employed, since the class
attribute is a categorical, rathern than quantitative, one.

isthmus connecting
left with central group

groups B
1
 and B

2
:

same-class
observations

central Z
pattern

Classes

1 2 3 4 5 6 7

high-error
outliers

class 5
instances

a

b

c

Figure 4.6: Original classification (ground truth) for the segmentation dataset.

Comparing Figure 4.6 with our earlier images showing neighborhood-preservation
errors (Figs. 4.3 and 4.4), several observations can be made: Classes 1 and 6 are
very well separated in the projection, and their respective areas coincide with
high neighborhood-preservation areas in the projection. High-error zones detected
earlier inside the large central group are also apparent when comparing the mixing
of classes; one point (outlier a), part of the highly-cohesive class 1, can be found in
the middle of points from classes 3 and 5, while a few points from class 5 (outliers
b and c) are far away from the main zone covered by their class, in the upper part

87

Visualizing Neighborhood Preservation

of the projection, so most of their nearer neighbors are from other classes. The
Z-pattern inside the large central group, found in our previous views to show less
errors than its surroundings, can now be traced roughly to the layout of points
from classes 2 and 7 along the large cluster. Points in this Z-pattern, while still
considerably mixed with points from other classes, have less error because their
classes are relatively well-grouped among the clutter (so their near neighbors are
mixed, instead of mostly good or mostly bad). Finally, our main focus area in
Sec. 4.1.5, the isthmus connecting group B2 to group A, can also be explained by
observing the distribution of points from class 3, starting from the border of group
B2 and moving towards the inner area of group A.

In Section 2.4.2, a few existing techniques for the visual analysis of neighbor-
hood preservation in projections were presented. These techniques share some of
the goals of the views proposed in this chapter, but propose different approaches to
reach them. To better illustrate the differences and added-value of our proposed
views, we selected the work of Schreck et al. [159] for comparison, and computed
the herein proposed projection precision score (pps) for the same example and k

values as in Fig. 4.4.
The resulting visualization of the pps score is shown in Fig. 4.7. For the first two

k values (30 and 180), it is hard to see any quality difference between different
projection regions. For the last two k values (500,1000), some of the patterns
we obtained with our proposed views show up a bit better, such as the isthmus
between the left and central groups, a few high-error outliers, and the overall lower
error of the bottom-right group. However, these views are much more sensitive to
the chosen scale (k value) than ours, and the salience and separation of interesting
patterns from noise is harder. Also, patterns such as the Z-shaped zone of low errors
separated by high-error islands in the central point-group (Fig. 4.3) are not visible.
Last but not least, the technique proposed in [159] only proposes the visualization
of the pps score, but does not introduce additional explanatory tools to refine the
exploration by e.g. explaining the causes of identified high-error patterns.

4.1.7 Additional examples

To expand on the initial examples from previous sections, we next offer additional
insight into the way that our proposed neighborhood-preservation exploration tools
work by showing how they can be useful in the analysis of different datasets and
projections.

The first example discussed next uses the Corel dataset, consisting of 1000
instances where each represents a photograph described by 150 SIFT features,
common in image analysis [115]. We constructed the projection of the data using
LAMP [95] and obtained the star-shaped image in Fig. 4.8a. By observing the
distribution of points in this projection, it can be hypothesized that there are several
well-separated image clusters in the dataset, one for each branch, while a group of

88

4.1. Measuring and Visualizing Neighborhood Preservation

a) k=30 b) k=180

c) k=500 d) k=1000

low high
pps

Figure 4.7: Projection precision score (pps) [159], segmentation dataset, LAMP projection,
for four scales (k values).

“average” images which have no separate group identity and/or which are similar
to instances from many different groups populate the center of the projection.

We start by checking the centrality preservation for both Dn and D2 (Fig. 4.8b–
c). The selected value of k “ 75 roughly captures the two-dimensional layout
of the points into branches (Fig. 4.8b). The picture for the centrality in Dn is
completely different (Fig. 4.8c): Most of the centrality seems to have been ‘lost
in the translation’. This does not mean (yet) that the projection is wrong in any
specific way; it may be the case that the Dn space is so sparse that, for the selected
scale k, no points stand out as being particularly central. However, this image does
indicate that the projection layout differs from the original in terms of centrality.
As such, it is interesting to investigate the neighborhood preservation to get more
insight into why this loss of centrality happened.

We next inspect the set and sequence difference views (Fig. 4.8a,b). Similar
to our previous running example, the set difference view shows a medium-to-
high neighborhood preservation error spread rather uniformly over the projection

89

Visualizing Neighborhood Preservation

min maxa) b) c)CPk CPk
2 n

Figure 4.8: Corel dataset, LAMP projection, k “ 75 neighbors. (a) Projection without error
metrics. (b) Projection colored by CP

2
k . (c) Projection colored by CP

n
k .

(Fig. 4.8a), with a hint of some branches having better preservation than others.
This difference between the branches is confirmed by the sequence difference view,
which allows us to better distinguish the high-error and the low-error branches
(Fig. 4.8b). Another advantage of the sequence over the set difference view, in
this case, is that it allows us to better comprehend the distribution of errors in
the central area: While these errors are quite similar for the set difference view
(Fig. 4.9a), the sequence difference view shows us more clearly the outliers with
the largest errors (Fig. 4.8b). These insights indicate that some branches represent
more cohesive groups, i.e. groups having more similar images, than other branches.

a) b)min maxJDk SDk

low error
branch

high error
branch

high error
center

Figure 4.9: Corel dataset, LAMP projection, k “ 75 neighbors. (a) Set difference view. (b)
Sequence difference view.

Considering this difference of behavior in each branch, we move into investi-
gating what are the relationships between branches or, in other words, whether
D2 neighbors between star branches represent the Dn neighborhood as well as
D2 neighbors along star branches. To highlight specifically the neighborhood
preservation errors of a selected point q

i

, we slightly change the visual encoding
used in previous figures of local analysis, to obtain the result showin in Fig. 4.10:
Here, color encodes the false k-neighbors of q

i

inversely by their rank, with values

90

4.1. Measuring and Visualizing Neighborhood Preservation

computed by k ´ ⇢2
i

` 1, so nearer false k-neighbors are shown with warmer colors
while distance false neighbors have cold colors. This design is chosen to better
highlight the more important problems – false k-neighbors that are nearer to q

i

are worse than those which are farther. Points which are not k-neighbors are
half-transparent blue, to make them less salient in the analysis. The encoding of
the edges connecting a selected point with its neighbors is also slightly changed:
Instead of showing missing k-neighbors only, edges in Fig. 4.10 show the entire
neighborhood ⌫n

k

piq of the selected point i.

a) b) c)

closefar

false k-neighbors

not neigh.

q
i

q
i
’

q
i
’’

Figure 4.10: Local neighborhood analysis for the Corel dataset, LAMP projection, k “ 75

neighbors.

With this visual encoding, we first select a point q
i

on a star branch having low
neighborhood preservation error (Fig. 4.10a). Seeing warm colors all around the
point q

i

, especially in nearby branches, is an indication that this point is surrounded
by false k-neighbors. These points, although near q

i

in D2, are actually ‘intruders’
in the projected neighborhood, since they are not part of ⌫n

k

piq. Edges emerging
from q

i

precisely follow the star branch that point i is located into and do not
bifurcate to nearby branches to the right or left. This confirms our observation that
points along the branch are nearer to p

i

in Dn, and points across the branch (which
are not present in the edge bundles) are not. However, these edges continue to
reach for k-neighbors that are very far from the selected point, going all the way
to a branch on the opposite side of the projection. This not only helps to explain
the high errors detected in this area, but also show where these points should have
been positioned to be nearer their Dn k-neighbors.

We next select a different point q1
i

in another star branch. The resulting visual-
ization shows a completely different situation (Fig. 4.10b). Not only are the false
k-neighbors few and having cold colors, but the edges linking the selected point to
its neighbors are all limited to its own branch, explaining why it presented such
low errors values. Hence, we conclude that points in this star branch are indeed
much more similar to each other than points located in nearby branches. As such,
we argue that the interpretation of this projection should be done differently than

91

Visualizing Neighborhood Preservation

the intuitive paradigm of closer is better, common when there are no insights into
the projection’s error: points should be considered closer not based only on their
D2 distance between each other, but specially based on their distance following the
star branches, as if there were walls separating the branches.

Finally, we select a point q2
i

in the star center (Fig. 4.10c). The edge bundles
end up reaching both very close but also very far from q

2
i

, into two opposite star
branches. This confirms to us that, indeed, a point in the central region has a
confusing k-neighborhood, with its Dn k-neighbors spread over large extents of
the projection. Moreover, all its nearest k-neighbors in the projection, shown by
the color coding, are actually false, which contributes even more to the high error
values observed in this area.

The second application uses the Github dataset, a collection of 725 observations,
each describing one among the highest-ranked open source software projects hosted
at GitHub [65]. For each project, 30 software metrics were extracted describing
various aspects of its development, such as size (lines of code, file count), average
coupling and cohesion of modules, complexity, and number of forks and open
issues [107]. We then create a visual representation of this 30-dimensional dataset
using the LSP projection [139], with the goal of finding clusters of projects with
similar quality attributes or trends in the spatial distribution that could indicate
how these metrics behave in real projects. The result, presented in Fig. 4.11,
shows mainly a large central cluster, surrounded by a few outliers. By looking at
this projection without any of the visual helpers we introduced, a first question is
raised: Are all projects indeed simply grouped into one similar set, or is the lack of
separated clusters an artifact of the LSP technique?

To answer this, we first select a suitable neighborhood size (k value), as ex-
plained in Sec. 4.1.2, and obtain a value of k “ 72. We start by inspecting the set
difference view (Fig. 4.11a). While a quite poor neighborhood preservation can be
observed for most points – which would suggest that LSP does not work optimally
for this dataset – two groups of points seem to stand out for opposite reasons: G1

stands out for its especially large errors, and G2 stands out for showing lower errors
than the remainder of the projection. The sequence difference view (Fig. 4.11b)
confirms that G1 has indeed the largest neighborhood preservation error in the
projection, while G2 still maintains very low errors. We have now two indicators of
special point groups that, for different reasons, stand out from the initially roughly
plain visualization.

We next examine these groups in detail by selecting a point of interest. The
visual encoding is the same used in Sec. 4.1.5: Colors represent the selected point’s
true k-neighbors and the missing neighbors are shown with bundled edges. When
we select a point q1 P G1 (Fig. 4.11c), we quickly see that q1 is surrounded by
false k-neighbors – there is only a very small hotspot around the selected point
that represents its true k-neighbors. Another interesting observation is that not
only most of the missing k-neighbors are far away from the selected point, but all

92

4.1. Measuring and Visualizing Neighborhood Preservation

a) set difference
 view

b) sequence
 difference view

d) point q2

G1

missing neighbors
of q1

in group 2
c) point q1

in group 1

true neighbors
of q1

true neighbors
of q2

G1

G2 G2

Figure 4.11: Neighborhood-preservation analysis for the Github dataset, LSP projection,
k “ 72 neighbors.

edges are high-valued (dark), which means that these neighbors were actually very
close to p1 in Dn. These missing neighbors are all grouped into a small area on top
of the projection, which by all indications seems to be the right neighborhood for
q

1

. The reason why these neighbors were placed so far away from q1 is, however,
not something our techniques can explain – possible causes can range from the
limitations of the LSP technique to the inappropriate tuning of the technique’s
parameters and to the similarity of these missing neighbors to other points located
in the top area of the projection. In contrast, when selecting a point q2 P G2, we see
almost no edges reaching out (the only out-reaching edge is light-gray and going
to a nearby point), and the points around q2 are warm-colored, so most points in
the projection around q2 are indeed its true neighbors (Fig. 4.11d). Hence, there
are strong indications that G2 is indeed a cohesive group in Dn and, since it is
relatively well separated from the central group, we conclude that it represents
a set of software projects that are highly-similar between themselves and quite
different from the rest of the analysed set.

93

Visualizing Neighborhood Preservation

4.2 Discussion

We next discuss several technical aspects of our proposed views for analysing
neighborhood-preservation.

Workflow: Key to the success of a visual analytics application is proposing a work-
flow that users should follow to obtain desired insights. In our case, this workflow
has the following four steps: (1) Use the centrality view to determine a suitable
value for k at which the neighborhood size matches well the size of the patterns of
interest in the projection; (2) Use the set-difference view to find out how errors are
spread over the projection and what is the average error size; (3) Use the sequence-
difference view to locate outliers, i.e. zones having the largest (or smallest) errors;
(4) Select points of interest in the projection, either in areas describing observations
relevant for application-dependent tasks, or else in high-error areas, and use edge
bundles to find where their true neighbors are located; (5) Use insights from (2-4)
to determine where the true boundaries of strongly-related point groups in the
projection are; (6) Decide, based on (2-5), whether the projection supports the
tasks at hand in presence of all found errors, and how to interpret the projection; or
whether these errors are too large and/or numerous, which means that a different
projection is required.

Generality: Our techniques can be applied for any projection technique, including
linear [186, 24] and non-linear ones [139, 192, 179, 141], in a black box fashion.
That is, we only need to access the input high-dimensional points and the output
low-dimensional projections thereof, and need no details of, or access to, the pro-
jection internals. This makes adding our techniques easy to any projection-based
application.

Scalability: Our projection metrics require the computation of k neighborhoods
for N points in Dn and D2. We do this efficiently by using the fast nearest-neighbor
search provided by [6], which is Opkn logNq, and can handle any number of di-
mensions n and many types of distance metrics. Practically, this means that we can
compute our metrics, and generate our views, in real time on a typical PC computer
for tens of thousands of points having tens of dimensions.

Evaluation: Analysing neighborhood-preservation of projections is certainly not
a problem with a single simple solution, given the variability and wide range of
projection techniques, parameter settings, and datasets. The results presented in
this chapter show how our proposed techniques work with a few representative
and well-understood combinations of projections, parameter settings and datasets,
which were selected to illustrate how our techniques behave in a few different key
scenarios. However, we acknowledge that the presented experiments could not

94

4.3. Conclusions

cover the entire aforementioned space of possibilities. As such, more strict and
more thorough evaluations and validations are required. One important example
of future work in this direction is the evaluation of the proposed metrics with the
use of artificial datasets specifically crafted to evaluate possible limitations, such as
their sensitivity to outliers.

Neighborhood vs Distance Preservation: As discussed in Sec. 3.4, distance-
preservation and neighborhood-preservation are related, yet different, quality
aspects of a multidimensional projection. Ideally, a projection should preserve
both distances and neighborhoods. However, as seen in the many examples pre-
sented both in this chapter and Chapter 3, even state-of-the-art projections have
challenges in meeting both these aspects. In such situations, we believe that
selecting between using distance-preservation and neighborhood-preservation ex-
ploratory tools should be based mainly on the tasks implied by the application at
hand: When these tasks involve comparing distances between points, then distance-
preservation errors are clearly to be considered and explored. In contrast, when
tasks involve reasoning about apparent groups of close points in the projection,
then neighborhood-preservation errors should be explored first and foremost.

4.3 Conclusions

We have presented a visual exploration method for finding and explaining neigh-
borhood preservation errors in multidimensional projections. Our method supports
assessing the usefulness of a projection in terms of determining its overall quality,
local errors, and how these errors should be considered when interpreting the
projection to reason about the underlying high-dimensional data. Our techniques
complement and extend the set of existing tools for projection exploration includ-
ing aggregate error metrics, neighborhood preservation plots, and distance-error
views, thereby offering users additional ways to reason about the usefulness and
usability of multidimensional projections for data analysis tasks. In particular,
our neighborhood-preservation exploratory tools add themselves to the distance-
preservation exploratory tools presented in Chapter 3: They propose a similar
top-down analysis of the distribution and magnitude of errors, and employ sim-
ilar visual interactive techniques to depict the measured errors. The two sets of
exploratory tools complement each other, in the sense of offering the user detailed
insight in projection errors that affect different types of exploratory tasks.

At a global level, both distance-preservation and neighborhood-preservation
exploratory tools serve a number of different tasks, such as assessing the suitability
of a given projection result for a given analysis goal; finding potential interpre-
tation problems in a projection; and comparing several projections or projection
techniques to decide which is more suitable, in terms of error, for a given ana-
lysis. The last point involves not only comparing different projection techniques

95

Visualizing Neighborhood Preservation

against each other, but also comparing projections that create results of different
dimensionalities, such as 2D or 3D scatterplots. The topic of comparing 2D and
3D projections from the perspective of produced errors, and next augmenting
3D projections with suitable explanatory mechanisms to bring them to a level of
ease-of-use comparative to 2D projections, is explored in the next chapter.

96

Chapter 5

Explaining 3D Multidimensional Projections

T

he previous two chapters have presented several examples showing how
multidimensional projections can help in understanding the structure of high-

dimensional datasets by creating two-dimensional (2D) representations thereof.
Such representations can, next, be used to reason about data features such as
groups of observations, outliers, and trends. Separately, we have shown how
to augment 2D projections to show where errors occur in the projection process
with respect to the lack of preservation of distances and/or neighborhoods of
observations. Showing such errors is essential to gauge the degree of trust one can
assign to the discovered structures in the 2D projection, in terms of knowing how
much these structures reflect actual structures present in the high-dimensional data
or, alternatively, whether these structures are projection artifacts.

Our results shown in Chapters 3 and 4 show that projection errors, in terms of
distance and/or neighborhood preservation, occur up to various degrees for all the
studied projection techniques and datasets that we have analysed. As outlined in
the respective chapters, this result is not surprising, and it is caused by the large
difference in dimensionality between the input high-dimensional space and the
output 2D space where the projection resides.

Given the above, three-dimensional (3D) projections are an interesting alterna-
tive to two-dimensional projections in terms of reducing projection errors. Indeed,
the extra dimension offered by 3D projection diminishes the dimensionality dif-
ference outlined above and, as such, reduces projection errors [97, 139, 148].
Additionally, for state-of-the-art projection techniques, the computational and end-
user effort required to generate 3D projections is practically identical to the one
required to generate corresponding 2D projections. As such, 3D projections repre-
sent an interesting alternative to 2D projections when exploring high-dimensional
datasets.

However, multidimensional 3D projections come with additional challenges, as
follows:

• Accuracy: While, in general, 3D projections have a lower projection error as
compared to their 2D counterparts, the assessment of such projection errors
has been done so far using mainly aggregated projection errors [97, 139, 148].
For a fair comparison of 2D and 3D projections, a more fine-grained error
assessment is required, in line with the techniques we proposed for 2D
projection error assessment in Chapters 3 and 4.

Explaining 3D Multidimensional Projections

• Usability: 3D projections output a 3D point cloud, which is next visualized
usually as a scatterplot. However, in contrast to classical 3D scatterplots
whose axes have clear meanings (they map data variables one-to-one), the
axes of a 3D projection do not carry any particular meaning. As such, inter-
preting such scatterplots is challenging in an absolute sense [50], but also in a
relative sense, if we compare them with the easier to interpret 2D scatterplots
created by projections [128, 205, 163]. As users rotate the 3D scatterplot to
find a suitable viewpoint, several questions arise, such as: How much of the
original data structure has the projection preserved? What is the meaning
of the 3D directions along which scatterplot points are spread, in terms of
original variables? How can we see values of these variables in the scatter-
plot? What are good viewpoints to look at the scatterplot from, given a set of
questions on these variables?

To support the claim that 3D projections are effective tools for exploring multi-
dimensional datasets, we have to study both above points in detail. Indeed, for a
3D projection to be indeed effective, it has to (1) provide measurable added-value
in terms of reduced errors, as compared, again, to a 2D projection; and (2) be easy
to use, at least up to a similar level as compared to a 2D projection.

In this chapter, we address the above two aspects concerning the explanation
and error-assessment of 3D dimensionality reduction (DR) projections, as follows.
First, to address point (1) outlined above, we extend our error metrics proposed
in Chapter 3 to handle 3D projections (Sec. 5.1.1). Separately, we use these
error metrics to compare 3D projections with their 2D counterparts, for a given
projection technique and dataset. This provides a way to compare the added-value
of 3D projections vs their 2D counterparts in a quantitative and detailed way, and
thereby supports the general argument made for the added-value of 3D projections.
Secondly, we propose a set of interactive explanatory visualization techniques to
help users answer the questions listed under point (2) above for 3D DR projections
(Sec. 5.1.2 and following). Our techniques work as add-ons to any DR technique,
i.e., do not depend on technical aspects of the DR algorithm being used. We keep
their visual design simple, so that learning to use them requires limited effort.
While we also use interaction to explain a projection, like [51, 210, 134], our focus
is to explain projection-space distances in terms of the original n-D variables, rather
than showing similarities of projected points with a user-selected set of variable
values or extracting higher-level semantics from variable values. As such, we do
not modify our projection, as we consider it to be our ‘ground truth’, and also give
a key role to the n-D variables in our explanation. We integrate our techniques
with classical 3D scatterplot views, so that they can be readily used to assist typical
projection-exploration scenarios, or in other words, explain the projection. We
illustrate our visualization techniques by applying them to several data exploration
scenarios involving real-world multidimensional datasets and a set of recent DR

98

5.1. Explanatory Visualizations

projection algorithms.
The structure of this chapter is as follows. Section 5.1 introduces our explanatory

visualizations for 3D projections, both in terms of understanding the projection
errors and in terms of understanding which variables are best explained by a given
viewpoint of the corresponding 3D projection, via a simple dataset. Section 5.2
illustrate how our visualizations can answer several questions on 3D scatterplots
created by several DR techniques from real-world datasets, thereby showing how
these techniques augment the usability of 3D projections. Section 5.3 discusses our
techniques. Finally, Section 5.4 concludes this chapter.

5.1 Explanatory Visualizations

To illustrate our proposal next, we choose a simple sample dataset. This dataset has
2814 points, each having 9 attributes (dataset ALL in [136]). The points represent
scientific papers. The dimensions were created by using stemming and stop-word
elimination on the text of the scientific abstracts of the respective papers, followed
by calculating the term-frequency-inverse-document-frequency count [154], well
known in text mining.

Classes

Figure 5.1: Three different viewpoints of the 3D LAMP projection of the ALL dataset [136].

Our first visual exploration of this dataset, shown in Fig. 5.1, depicts the data
using a 3D projection, computed by the LAMP technique LAMP [95]. Projected
points are color-coded by an additional categorical class attribute – not used in the
projection – using the categorical colormap indicated in the figure. This attribute
describes the topic of the respective documents, and was assigned manually to the
dataset, after inspection of the abstracts. Three 3D viewpoints of this visualization
are shown in Fig. 5.1.

Looking at the images in Fig. 5.1, the only (relatively) salient aspect one can
find, is the presence of a number of relatively compact same-color points in the
scatterplot. Assuming the LAMP projection indeed preserves distances, this would
indicate that documents whose topics (as found by humans) are similar, also have
similar high-dimensional attributes. If so, this would be an interesting finding,

99

Explaining 3D Multidimensional Projections

further justifying the use of the respective attributes for e.g. automatic topic mining
or similar tasks [136].

However, the insight provided by our 3D projection stops here. Besides seeing
the above-mentioned color-coherent point groups, there is little other insight we can
directly get from the image. For instance, we cannot see how the nine dimensions
of the dataset correlate (or not) along the projected points, or along specific point
clusters; we do not know which specific variables (dimensions) or value-ranges
thereof define a specific cluster; we do not know how are the distances and/or
neighborhoods of the original space preserved, by this specific technique, in three
dimensions (thus, how much we should trust what the 3D projection shows); and
finally, we have no guidance in choosing suitable viewpoints that best support a
given question concerning the data.

As such, this ‘raw’ 3D projection is not very useful: It tells us that the nine
attributes extracted from the document dataset seem to correlate relatively well
with the ground truth captured by the class attribute, which is a desirable situation
for e.g. further building automatic classification systems for such documents.
However, this image does not tell us how attributes correlate with document classes
or how well the final layout represents the original data. The remainder of this
chapter presents methods and techniques to address the above two points.

5.1.1 Accuracy of 3D projections

We start our exploration of 3D projections with an analysis of how the errors are
distributed in such projections. In turn, this will help us to gauge the added value
of 3D representations over 2D ones in terms of the accuracy of the representation
of the multidimensional data space. To do the above error assessmebt, we adapt
one of the techniques we introduced in Chapter 3: the aggregated distance-based
error. While this method was initially used only for 2D scatterplots created by 2D
projections, it can be readily applied to 3D with minimal adaptation. Recall that, as
defined in Section 3.2.1, the aggregate normalized projection error em

i

P r0, 1s is

em
i

“
ÿ

j‰i

ˇ̌
ˇ̌ dmpq

i

,q
j

q
max

i,j

dmpq
i

,q
j

q ´ dnpp
i

,p
j

q
max

i,j

dnpp
i

,p
j

q

ˇ̌
ˇ̌ . (5.1)

Here, dn, dm, p, and q are identical to the respective terms introduced earlier in
Eqn. 2.2. Note also that em

i

is essentially a different way to scale the aggregated
normalized projection error eaggr

i

(Eqn. 3.2) introduced in Sec. 3.2.2. The error em
i

,
m P t2, 3u, briefly put, measures how well the distances between a projected point
i in mD, to all other points j ‰ i, reflect the same distance-pairs between points
pi, jq in the original n-dimensional space. For details, we refer to Section 3.2.2,
where we have introduced the aggregate normalized projection error.

To compute and compare the error of a 3D projection with the similar error of a
2D projection, we propose three different formulations, as follows.

100

5.1. Explanatory Visualizations

2D projection error: For the studied ALL dataset, we start by computing its pro-
jection error as given by projecting the 9-dimensional dataset to two dimensions,
using the LAMP technique. Figure 5.2a shows this error, which was computed in
the exact same way as described in Chapter 5.1 – that is, by comparing the original
9-dimensional inter-point distances with the distances between the same points in
the 2D projection space. The result is a layout with a dense grouping of points in
the center and some outstretching spearated clusters that spread away towards the
borders of the image, in different directions. Distances are well-preserved in the
center of the projection, despite the cluttering, with some high-error outliers on the
periphery and a tendency of mid-level errors towards the tips of the outstretching
clusters.

3D projection error: A second way to compute the projection error is to use a 3D
projection rather than a 2D one. In this case, the final projection space has m “ 3

dimensions rather than m “ 2, as used earlier in Fig. 5.2a. Figures 5.2b–c show
the error em

i

computed for m “ 3 dimensions, by directly applying Eqn. 5.1 with
m “ 3 instead of m “ 2. Given that the error formulation is view-independent, its
values will be the same (for the same 3D points) in any different viewpoints for the
same projection. We can see then, by looking at Figs. 5.2b–c, that for this specific
combination of dataset and projection (our running example – ALL and LAMP), the
errors of the 3D projection behave in a very similar way to the errors of the 2D
projection earlier shown in Fig. 5.2a: We see a very good distance preservation (low
error) in the center of the projection; some high-error outliers in the periphery;
and mid-level errors towards the tips of the point clusters visible in the projection.

3D viewpoint-dependent projection error: Given the above observation, what
is, then, the added-value of using a 3D projection in this case, as compared to a
2D projection? To answer this question, let us consider the key factor that a 3D
projection is not a static image, but a potentially infinite set of 2D images, where
each image is generated by drawing the computed (fixed) 3D projection from a
user-specified viewpoint. As such, the actual projection error, in the sense of the
discrepancy perceived by an end user between the (invisible) inter-point distances
in the original high-dimensional space and the visible inter-point distances shown
on the computer screen, is a function of both the 3D projection and the viewpoint
from which this projection is further viewed. To capture this ‘composition’ of
the nD-to-3D and 3D-to-2D projections involved in generating the final image,
we introduce a different way of calculating em

i

for a specific viewpoint of a 3D
projection: Instead of using the 3D inter-point distances to compute the projection
error, we first project, for a given viewpoint, the 3D points in the 2D screen plane,
and next use the points’ 2D positions to compute the projection errors. In other
words, our projection error applies Eqn. 5.1 with m “ 2, and with the 2D point

101

Explaining 3D Multidimensional Projections

aggregated
distance-based error

3
D

-t
o

-2
D

 e
rr

o
rs

3
D

 e
rr

o
rs

Viewpoint #1 (good) Viewpoint #2 (bad)

LAMP 2Da)

b) c)

d) e)

Figure 5.2: Analysis of aggregated distance-based errors of different LAMP projections of
the ALL dataset: (a) 2D projection errors; (b,c) 3D projection errors for two
different viewpoints; (d,e) 3D viewpoint-dependent projection errors, for the
same viewpoints shown in images (b,c) respectively. See Section 5.1.1.

102

5.1. Explanatory Visualizations

positions given by the concatenation of the nD-to-3D projection (LAMP) and the
3D-to-2D viewpoint-dependent projection. The effect of this new type of error
computation is that the error of each point changes interactively with the chosen
viewpoint. As such, the errors we see, at any moment, are the actual errors of the
picture that is being shown on the screen as compared to the high-dimensional
data.

Figures 5.2d–e show the errors computed with this new method (3D viewpoint-
dependent errors) for the same viewpoints as shown in Figs. 5.2b–c. The obtained
error plots shown in Figs. 5.2d–e are quite different from the 3D errors shown in
Figs. 5.2b–c and also from the 2D projection errors shown in Fig. 5.2a. For instance,
the error shown for the viewpoint corresponding to Fig. 5.2d is considerably lower
than all other errors shown in Fig. 5.2. In other words, this specific view of a
3D projection of the analysed dataset reflects the high-dimensional inter-point
distances best from all considered projections. For instance, the viewpoint shown
in Fig. 5.2e shows that the displayed errors are worse than any other shown in the
other considered projections and/or viewpoints thereof – we see high-error outliers
mixed in the central area, and mid-to-high-error points all around the periphery.

From the insights presented in Fig. 5.2, several conclusions can be drawn.
First and foremost, we see that 3D projections have a measurable added-value
as opposed to the classical 2D projections studied in Chapter 3: If viewed from
a suitable viewpoint, such 3D projections show lower errors than corresponding
2D projections using the same projection technique and executed for the same
dataset. In other words, it can be better (error-wise) to use an nD-to-3D projection,
followed by the choice of a suitable 2D viewpoint, than to use a direct nD-to-2D
projection. However, a direct consequence of this is that the choice of viewpoint can
also negatively influence the result, in terms of both its error and the insight it can
convey: Depending on the choice of such viewpoints, one can achieve lower, but
also higher, errors as compared to a ‘static’ viewpoint-independent 2D projection.
Thirdly, we see that 3D projections clearly suffer from a given amount of occlusion
– that is, not all observations will be equally well visible from any chosen viewpoint.
Therefore, depending on the analysis task at hand, certain viewpoints of the same
3D projection may be better (or worse) than other viewpoints. The main conclusion
of this error analysis of 3D projections is, thus, that 3D projections do have the
potential of showing better insights into the original high-dimensional dataset than
static 2D projections, but such insights are dependent on the choice of a suitable
viewpoint. As such, we will next explore the design of explanatory mechanisms
that show how users can choose good viewpoints of 3D projections for exploring
specific aspects of the data at hand.

We next show how such raw 3D scatterplots can be enhanced with visual
explanatory tools to address the above-mentioned questions regarding the connec-
tion of the visible structures in the scatterplot with the original high-dimensional
attributes. These tools include enhanced biplot axes (Sec. 5.1.3), enhanced axis leg-

103

Explaining 3D Multidimensional Projections

ends (Sec. 5.1.4), and a viewpoint legend (Sec. 5.1.6). Following a brief overview
of the explanatory goals we aim to address (Sec. 5.1.2), these tools are explained
next.

5.1.2 Attribute exploration in 3D projections

Refining the explanatory goals outlined at the beginning of this chapter, we identify
the following aspects which we aim to address for a 3D projection (for details, see
our original publication [35]):

1. explain the dimensions of the 3D projection space based on the original n
high-dimensional attributes;

2. explain the distances between projected 3D points based on the corresponding
distances between the same points, in the original nD space;

3. support users in choosing viewpoints that are good for addressing given
data-exploration tasks;

4. compare how good 2D and 3D projections are, relative to each other, in
supporting specific data-exploration tasks;

As introduced in Sec. 2.5, these aspects are currently addressed by a number of
visualization techniques. We briefly overview these techniques and their limitations
in the context of, and with a focus on, explaining 3D multidimensional projections.

Aspect 1 is a well-known, and much, studied, problem in visualizing multi-
dimensional data by means of dimensionality-reduction methods. Arguably the
earliest methods to address this aspect are biplots [71, 69]. Biplots can be best
understood by comparing them with classical scatterplots: In a classical scatterplot,
data (having two or three dimensions) is projected along two, or three, perpendic-
ular axes, respectively. This way, one can directly read the values of the original
variables along the respective axes, much like in a Cartesian plot. In contrast,
biplots achieve the same goal (linking the positions of the projected observations
with values of their variables) by adding, to the plot, depictions of the values of the
variables of the projected dataset. As Gower mentions [69], this allows correlating
observations with each other, and also correlating observations with values of their
variables. The distribution of the projected variable values are called biplot axes,
by analogy to the (Cartesian) axes of a classical scatterplot. In this model, there
are, thus, as many biplot axes as original high-dimensional variables. However, in
contrast to Cartesian scatterplots, these biplot axes need not be, and they usually
are not, orthogonal to each other – indeed, the original variables need not be (fully)
independent. When shown in a visualization, biplot axes help seeing the way the
original high-dimensional variables change in the projection space, in the same
way that Cartesian scatterplot axes do.

104

5.1. Explanatory Visualizations

Biplot axes have been proposed for linear projections, in which case these axes
become straight lines in the projection space [71, 1]. While useful, this case does
not cover the more general nonlinear projections, which, as we have outlined
earlier, have in general lower projection errors than their linear counterparts,
e.g. [95, 141]. Additionally, the construction of biplot axes currently known in
the literature assumes that one knows the internals of the projection technique,
e.g. singular value decomposition [71]. Constructing biplot axes for any type of
projection is, thus, not handled by this approach.

Besides biplots, aspect 1 can be approached by the techniques proposed by
Broeksema et al. [24] and Oeltze et al. [132]. Instead of showing the directions of
maximal variation of the m high-dimensional variables in the projection space, this
alternative approach shows the amount of variation of these m variables along the
x and y axes of the 2D projection space. These amounts, also called loadings [71, 1],
are essentially equal to the projections of the m (straight-line) biplot axes on the
two largest eigenvectors of the observation covariance matrix that determine the
x and y axes of a 2D projection [24]. Loadings are visualized by two bar charts,
or legends, having, each, m bars, each bar indicating the loading of a variable on
the corresponding screen axis. A third bar chart indicates the amount of variance
of the n variables which is not captured by the two eigenvectors that determine
the 2D projection. By identifying the largest bars in the legends for the x and y

axes, one can therefore determine which variables mainly explain the spread of the
points in the 2D projection. However, this technique has not been extended for 3D
projections, whose x and y screen axes are determined by the chosen viewpoint.
Separately, and similarly to biplot axes, the aforementioned axis legends have been
so far only used in the context of linear projections.

Aspect 2, i.e., explaining the distances between projected points in terms of the
corresponding distances between high-dimensional points, is covered by various
techniques that include error metrics (such as stress (Eqn. 2.2), correlation [63],
neighborhood-preservation plots [139]); and, separately, user studies aiming to
show how users can reason about the original high-dimensional distances when
seeing only the low-dimensional distances in the projection space [113]. Global
aggregate error metrics are good in comparing different projections on a high
level, e.g., to determine whether a projection technique generates more accurate
results than another projection technique. However, such global metrics cannot
show how errors are distributed in a projection, i.e., which parts thereof are the
most severely affected by distance distortions. As such, they are less useful for
exploratory visualization. A more fine-grained explanation of distance preservation
is offered by distance scatterplots, which plot all distances between point-pairs
in nD vs the corresponding distances in mD [95]. The deviation of such plots
from a straight diagonal line (the ideal case) show how distances are increased,
respectively decreased, by the projection technique. However, distance scatterplots
do not link distance errors with observations, i.e., cannot show for which subsets of

105

Explaining 3D Multidimensional Projections

points in a projection large (or small) errors occur. On an even finer level of detail,
errors can be explainer by local metrics which show how (small) neighborhoods
around projected points are affected by the projection technique. Such local
explanation methods include the projection precision score (pps) [159], distance
stretching and compression metrics [8], the distance error metrics introduced by
us in Chapter 3), and the neighborhood-preservation metrics (Chapter 4). Such
metrics are discussed in more detail in [14]. However, to our knowledge, all these
error metrics have been so far only constructed and applied for 2D projections. In
Section 5.1.1, we showed how such metrics can be generalized for 3D projections.
Apart from this, it is important to note that projection errors are useful to show
where in a projection problems appear; however, they do not explain why points are
projected the way they are. As such, projection error metrics are indeed useful to
show whether a projection is accurate or not – but, for an accurate projection, they
cannot further explain the meaning of the resulting point-distribution patterns.

Aspect 3, i.e. choosing one or several viewpoints (in the case we have a 3D
projection or scatterplot) so that specific questions are answered by these, can be ad-
dressed in different ways, as follows. First, 3D scatterplots can be further explained
by adding three supplementary 2D views (following a linked-view metaphor). Se-
lecting and/or brushing points between the linked views allows explaining complex
patterns in the 3D projection by using the relatively simpler 2D views [146]. The
same aspect is also addressed by offering users enhanced mechanisms to manipulate
the projection in terms of changing the viewpoint [50, 158], smoothly navigat-
ing between different viewpoints [87, 86], and allowing the user to interactively
arrange the variable axes in the projection [34]. However,while simplifying the
exploration, such mechanisms are not tuned to tell the user which aspects related
to the original high-dimensional variables one can see in a given viewpoint, nor do
they give a compact overview of all such aspects that all possible viewpoints of a
3D projection can provide.

Aspect 4, i.e. choosing between the use of 2D vs 3D projections for a given
application or end-to-end task, is arguably one of the hardest problems involving
the estimation of usability of 3D projections. Given the very high level of this
question, it is not surprising that the instruments employed to address it center,
most often, on user studies and evaluations (see further Sec. 2.5). While the insights
provided by such studies are of clear added value in terms of understanding the
general pro’s and con’s of 2D vs 3D projections, they are generally limited to high
level, qualitative, explanations. Quantitative and detailed insights, showing e.g.
why, where, and how much do errors in a 2D projection differ from those in a 3D
projection, are lacking. Providing such detailed insights can arguably help both
users and designers of projection-based visualization tools in selecting the best
technique for a specific exploration task.

From the above, we conclude that there is still significant open space for
improvement in the context of explaining 3D projections of multidimensional

106

5.1. Explanatory Visualizations

data, in order to make these more useful and usable. Separately, as outlined in
Sec. 5.1.1, and in line with earlier evidence discussed above, 3D projections do
have the potential of showing data with fewer errors, if suitable viewpoints are
chosen. In the remainder of this chapter, we present several mechanisms that aid
the above-mentioned explanatory goal.

5.1.3 Generalizing biplot axes

As explained in Sec. 2.5, and also outlined above, biplot axes are typically con-
structed by applying singular value decomposition (SVD) to the high-dimensional
observations (Eqn. 2.3). The eigenvectors of this decomposition represent the
biplot axes, which are next drawn (using e.g. vector glyphs) atop of the projected
points [1]. While this technique is extremely simple, it has several limitations.
Conceptually speaking, constructing (and drawing) biplots by applying SVD to all
the points only makes sense if we use the same technique (SVD) to also project
the points. In other words, this way of constructing biplot axes is only applicable
if the projection technique used is a linear one. This, obviously, precludes all
non-linear projection techniques from using such biplot axes – indeed, if we were
to e.g. superimpose SVD biplot axes atop of a LAMP projection [95], or any other
non-linear technique discussed in Sec. 2.3.2, the result would make no sense, since
the axes, respectively the projected observations, would not match each other. A
separate problem is that the SVD-based construction of biplot axes assumes that a
single global transformation is used to project all observations. If this is not the
case, e.g., if different transformations are used to project subsets of points, such
as in PLMP [141], then we cannot use a global computation of biplot axes, for the
same reasons as those explained above for non-linear projections.

If we were to generalize biplot axes from the classical SVD ones to any projection
technique, a second problem appears. For SVD, such axes are simple to compute
since we, obviously, have access to the exact details of how the projection is done
(specifically, the matrices U, �, and V discussed in Sec. 2.3). If we were to
generalize this to other techniques, we would need, by analogy, to ‘open up’ the
implementation of the respective techniques, and extract the required information
needed to compute the biplot axes. While this can be done, it would imply that one
would need to have a separate implementation of biplot axis construction for each
projection technique out there. Clearly, this is not a desirable situation, given the
large (and increasing) number of projection techniques that exist, and are added
to, the literature.

Given the above, we propose to generalize the construction of biplot axes by
taking a different approach than the one proposed for linear projections. Specifically,
we consider the ability of the projection function f (see Sec. 2.3 to project any nD
point to mD. Given such a function, chosen to project the regular observations,
we reuse it to create the biplot axes. For this, we create a number of S artificial

107

Explaining 3D Multidimensional Projections

observations p

i

1§j§S

, for each high-dimensional variable i of our dataset. These
observations are created as follows: The values for dimension i of the points pi

j

are
uniformly distributed over the range of variable i, with equal steps; the values of all
other dimensions k ‰ i are set to the average of the values that dimension k takes
in our dataset. In other words, we augment the set of observations that is taken as
input by f by a number of S ¨ n points, which are basically uniformly sampling the
n high-dimensional axes, clipped by the n-dimensional bounding-box determined
by the variables’ ranges, and constructed so as to pass through the centroid of this
bounding-box. Next, we project all these additional points p

i

j

to 3D, yielding a
set of three-dimensional projections qi

j

. Finally, for all points qi

j

belonging to the
same axis i, we draw a polyline c

i

that connects them. This polyline represents
the generalized biplot axis for dimension i. In practice, we use a value of S “ 100

sample points.
The resulting generalized biplot axes are shown in Fig. 5.3 a for the same ALL

dataset, projected by LAMP in 3D, which was discussed earlier in this chapter.
Several aspects are visible here. First, we see how the generalized biplot axes
intersect in (or close to) the projection’s centroid, and span the extent of the
projected points, as expected. In this sense, the axes resemble typical Cartesian
axes used in, e.g., classical scatterplots. Following this analogy, we can use the
lengths of the generalized axes to reason about the spread of data values along
specific dimensions – short axes indicate variables which have a smaller range, and
long axes indicate variables having a larger range. The directions of variation of
variables along their respective axes is indicated by colored labels placed at the
axes’ ends, with green indicating the maximum, and red indicating the minimum,
of a variable, respectively. The curvature of the generalized axes indicates the local
spatial deformations that the projection technique achieves – simply put, deviations
from a straight line indicate that the projection is non-linear in the respective
areas. More interestingly, the angles formed by axes indicate correlations between
variables: Axes which form close angles indicate strongly correlated variables.
Direct or inverse correlation is easily read by looking at how the orientations of
the respective axes matches (or not). Similarly, axes that form large angles (with a
maximum of 90 degrees) indicate highly uncorrelated, or independent, variables.

As an additional example, Figure 5.3 b shows a different projection of the
ALL dataset. Here, in contrast to LAMP, we use the Force-Based Dimensionality
Reduction (FBDR) technique [179]. We selected FBDR as a projection technique
on purpose, as we were aware of its high nonlinear nature, and wanted to confirm
this insight. Visualizing the generalized biplot axes in Fig. 5.3 b confirms our
impressions. Indeed, the biplot axes look now significantly more curved than in
the LAMP projection. This is an useful insight that would tell a user that using
FBDR to reason about the correlation of variables is not the optimal choice, LAMP
being much better for this task. However, this does not imply that FBDR cannot
generate useful projections. For instance, it could be so that FBDR minimizes the

108

5.1. Explanatory Visualizations

various projection errors discussed in Chapter 3 better than LAMP, in which case
the FBDR projection would be better than the LAMP one for tasks that center on
finding groups of similar points. Checking this can be easily done by visualizing the
projection errors, as explained in Sec. 5.1.1 (omitted here for brevity).

a) LAMP Projection

axis 2

axis 4

axis 1

axis 7

axis 8

aaaaaaaaaaaaxxxxxxxxis 0

axis 5

axis 6s 6

axis 3

axis 2

axis 1axis 7 axis 4

axis 6

axis 6axis 6

axiiiiisssss 6

axis 2axis

axis 2

axis 0 axis 7axi

axis 4

axis 5

axis 8

axis 1

axis 4axi

axxxxxis 00000axis 7

axxxxxxxxxxxxxxxiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisssssssssssssssssssssssssssssssssssss 11111111111111111111

b) FBDR Projection

Figure 5.3: Generalized biplot axes for the ALL dataset projected by LAMP (see Fig. 5.1).

5.1.4 Explanatory axis legends

To explore 3D projections, we provide standard viewing-control tools, in our case a
so-called virtual trackball widget (controlled by the mouse) to rotate the viewpoint,
zoom in and out of the data, and translate the viewpoint in the view plane (pan
the view).

One key difficulty that arises for both 2D and 3D projections of multidimensional
data, is to convey a (simple) understanding of the meaning of the screen axes.
Indeed, typical end users are accustomed with Cartesian plots, where these axes
have a clear meaning: In the case of 2D plots, these axes map two data variables;
in the case of 3D plots, the screen axes do not directly map three data variables
(given that the user can choose any viewpoint). However, axis legends embedded
in the visualization give this insight. In our case of viewing 3D projections of
high-dimensional data, we have both difficulties.

To address this, we extend an earlier technique proposed to explain the meaning
of the screen axes for 2D projections [24]. In this technique, the two screen axes x
and y, which we further denote by x1 and x2 respectively, are annotated by two
barchart legends. Each legend has as many bars as original high dimensions. The
length of a bar j in the legend for x

i

indicates, intuitively put, how well can one
see the variation of variable j along screen axis x

i

. A third legend is added to show
which variables can be worst seen along both screen axes x1 and x2, as they are
not captured well by the used 2D projection. For full details, we refer to [24].

109

Explaining 3D Multidimensional Projections

By analogy, our 3D projection case has the same problems as the 2D projection
case in [24]. Specifically, given a viewpoint defined by screen axes x1 and x2, and
also by a viewing direction x3, our users’ questions are essentially identical to those
treated in [24]: What is the meaning of the screen axes x1 and x2 in terms of the
original variables? Which original variables are hard to explore from the given
viewpoint? Summarizing the above, we aim to provide additional visual details
that explain what a given viewpoint can show.

Following our analogy, we approach the explanatory problem by using three
barcharts, or axis legends (Fig. 5.4). Each legend corresponds to one of the axes x

i

,
1 § i § 3, and has as many bars as high-dimensional variables in our dataset. The
length of the ith bar in the barchart for axis j indicates how well the axis x

j

aligns
with the variation of variable i. Conceptually speaking, this is the same metric as
the one used by [24] in their 2D barchart legends. However, our actual metric
used to scale bars is different, for a number of reasons. First and foremost, we
use the underlying projection technique as a black box, and as such, do not have
access to quantities such as loadings, which were used in [24] to compute the bar
lengths. Moreover, it is not clear if such quantities can be computed in general for
any (non-linear) projection technique. Secondly, we have a 3D projection, and as
such, we can (and should) treat the construction of legends for all three axes x

j

similarly. This was not the case in [24], where a 2D projection was used.
Given the above, we chose to compute the above-mentioned legend-bar lengths

by following a simple intuition, i.e., by measuring how well a generalized biplot
axis c

i

aligns well with a screen axis x
j

. This measure yields the length of bar j in
the barchart of axis x

j

. Formally, the above measure is given by the absolute value
of

hj

i

“
`
pqi

S

´ q

i

1q ¨ x
j

˘ ˆ
1 ´ |}c

i

} ´ }qi

S

´ q

i

1}|
}c

i

}

˙
(5.2)

where c
i

is the biplot axis for variable i (see Sec. 5.1.3) and }c
i

} “ ∞
S´1
j“1 }qi

j

´q

i

j`1}
denotes the length of the curve c

i

. The explanation of Eqn. 5.2 is as follows: The
term pqi

S

´q

i

1q ¨x
j

gives the length of c
i

along x

j

. If this value is high, it means that
we can easily see how variable i spreads (varies) along x

j

, and we thus indicate
this by a long bar i in the legend of x

j

. Note that, if this value is low, it implies
that either biplot axis i is far from being aligned with screen axis x

j

(in which case,
we can try to obtain a better view by choosing a different viewpoint); or that the
range of variable i is very small, as compared to the other variables in the dataset
(in which case, we cannot obtain a better ‘view’ of this variable; and it can also be
argued that this is not useful, since the variable’s range is very small). The term
1 ´ |}c

i

}´}qi

S

´q

i

1}|
}c

i

} in Eqn. 5.2 is a measure of how straight the generalized biplot
axis c

i

is, obtained by comparing the actual length }c
i

} of the curved axis with
that of the straight-line segment qi

S

´ q

i

1 that connects its endpoints. The intuition
behind adding this term to the computation of hj

j

is that reading a variable that is

110

5.1. Explanatory Visualizations

y
ax

is
 le

g
en

d

x
ax

is
 le

g
en

d

o
b

se
rv

ab
ili

ty
 le

g
en

d
x

ax
is

 le
g

en
d

rotation

0 2 7 8 3 5 4 1 6

1 3 8 4 5 7 2 0 6

6 5 4 3 1 2 8 7 0

shift-click on variable 6

axis 0

ax
is

 63 1 8 5 0 4 2 7 6

6 2 4 8 7 1 5 0 3

y
ax

is
 le

g
en

d

7 6 0 5 8 1 2 3 4

a) Before alignment b) After alignment

variable 0

variable 6

variable 2
variable 7

axis 2

axis 7

axis 6
axis 0

axis 7

axis 2

click on variable 0

o
b

se
rv

ab
ili

ty
 le

g
en

d

axis 5

Figure 5.4: Axis barcharts for the ALL dataset projected using LAMP. Left view: arbitrary
viewpoint, obtained by free rotation. Right view: aligned configuration obtained
from the left one by aligning variable 0 with the x axis, followed by aligning
variable 6 with the y axis.

projected along a straight biplot axis, by using a straight screen axis x
j

is, arguably,
much easier than using a straight screen axis to read a variable projected along a
curved biplot axis.

The interpretation of bar lengths in our three legends is identical to those
in [24]: Long bars in the legends of the x and y screen axes are good, as the
indicate we can read the respective variables easily along these axes. In contrast,
long bars in the legend for the view-direction axis x3 are to be avoided, as they
show that important data variations in our dataset are not visible, or not observable,
from the current viewing direction. As such, the barchart for x3 is next called the
observability legend. In contrast to the original barchart design in [24], where all
bars were growing upwards in their respective charts, we choose to let bars in
the observability legend grow downwards (see Fig. 5.4). This makes reading the
three legends more uniform: The upward direction represents a desirable situation
(good observability); the downward direction represents an undesired situation
(bad observability).

The axis barcharts presented above, i.e., the values of |hj

i

|, show how well a
variable i aligns to a screen axis x

j

. However, they do not show how to read the
values of variable i along x

j

, i.e., if variable i increases in the same sense, or in
the opposite sense, of x

j

. This insight can be obtained by looking at the colored
text labels attached to the endpoints of the biplot axis c

i

. However, often, such
labels can be easily occluded in a 3D plot. Hence, we add a supplementary cue, in
terms of a small icon placed under each bar. The icon is colored green if variable
i increases along the vector x

j

(i.e., if hj

i

° 0); red if variable i decreases along
x

j

(i.e., if hj

i

† 0), and gray if variable i varies in a direction orthogonal to that
axis (i.e., if hj

i

“ 0). Icons are not used for the observability legend, since this

111

Explaining 3D Multidimensional Projections

legend shows data variations which are not observable from the current viewing
direction. A variation of the above technique is to color the icons on the actual
value of |hj

i

|, as follows: Icons where hj

i

° 0 are colored by interpolating between
gray (hj

i

“ 0) and saturated green (hj

i

“ 1); and icons where hj

i

† 0 are colored
by interpolating between gray (hj

i

“ 0) and saturated red (hj

i

“ ´1). While this
gives a more continuous, and nuanced, view of how easy is to read a variable’s
variation in the positive, respectively negative, sense of a screen axis, it also creates,
we believe, more interpretation difficulties. As such, we chose for the simple
three-color categorical mapping described above.

Finally, to make the interpretation of the barcharts easier, we label them by the
variable names, and color them by using a categorical colormap generated using
the well-known ColorBrewer tool [74].

A subsequent degree of freedom relates to how bars are sorted in a legend. We
explored two designs here. In the first designs, all bars are sorted based on the
same criterion in all legends, e.g., alphabetically on their variable names. This
places the bar for a given variable at the same positions in all three legends. This
is desirable when, in the current exploration scenario, we already have a few
important variables which we know, a priori, we want to explore. As bars have
fixed positions in the three legends, we can then easily visually correlate their
lengths. This is the same design as originally proposed by [24]. However, a more
interesting (and we believe, useful) scenario is the situation when all variables
are, a priori, of equal interest. In that case, it is natural to (want to) focus on the
variables which are best visible from a given viewing direction. To emphasize these,
we sort all three legends in decreasing order of their respective bar lengths. This
is the mode shown in Fig. 5.4 and all subsequent figures in this chapter. Finding
which variables are best observable from the current viewpoint is now easy – one
simply looks at the longest (i.e., leftmost) bars in the legends for the x and y screen
axes. Conversely, seeing which variables one should not attempt to analyze from
the current viewpoint is equally easy – one looks at the longest (i.e., leftmost) bars
in the observability legend. The sorted mode has the extra added-value that it
lets our visualization scale to handle datasets with tens of dimensions or more:
To make bars and their annotations visible, we limit ourselves to displaying only
the n

max

“ 20 longest bars in any legend. Arguably, this is the best one can do
given this visual design, in the sense that we explain to the user the most salient
(observable) n

max

dimensions. As a subsequent design element for the barcharts,
we adopt the linking mechanisms introduced in [24]: Brushing a bar highlights
the corresponding dimension (if present in the n

max

displayed ones) in all three
legends. As a final design element, we use the observability values (|h3

i

|) to control
the transparency of the biplot axes. This way, axes which are poorly observable
from the current viewpoint (large |h3

i

| values) become more transparent, and thus
also clutter the visualization less (see e.g. 7,6,2 in Fig. 5.3a). Conversely, axes
which are well observable from the current viewpoint (small |h3

i

| values) become

112

5.1. Explanatory Visualizations

more opaque, and thus attract the attention of the user (see e.g. axis 5 in Fig. 5.3b).
Arguably the largest design difference between our barcharts and those pro-

posed in [24] relates to interactivity. In our case, changing the viewpoint by
manipulating the virtual trackball changes the values of the three axes x

j

. This
invokes a recomputation and redisplay of all barcharts (using Eqn. 5.2). This way,
one can dynamically monitor how specific variables map to the screen axes while
one changes the viewpoint, and thus, decide whether the current viewpoint is a
good or interesting one, or if one, for instance, wants to go to a previous viewpoint.
This feature showed up to be especially useful when fine-tuning a viewpoint to
show specific variables of interest.

5.1.5 Aligning axes

As noted several times so far, an important task in the exploration of 3D projections
is to study how specific variables correlate (or not) with each other. Doing this
by interactively manipulating the viewpoint legend, as outlined at the end of the
previous section, is possible, but can be time-consuming. Indeed, it can be hard
to manually select the precise viewpoints that best show the variation of a specific
subset of axes.

To help this, we provide an automatic alignment mode, as follows. To align
a variable i with any of the x

j

, ⌘ P t1, 2u screen axes, we click the respective bar
for that variable in the respective barchart. This initiates a smooth rotation that
sets the viewing direction to one where hj

i

is maximal. This leaves us an additional
degree of freedom, namely, the rotation of the viewpoint around x

j

. We exploit this
to allow the alignment of a second variable with the remaining screen axis, by shift-
clicking another bar in the barchart of this screen axis. Two such clicks, thus, allow
one to smoothly change the viewpoint from its current setting to the one where two
user-chosen variables are best aligned with the two screen axes x1 and x2. This
way, we can interactively create scatterplots of arbitrary pairs of such variables with
only two clicks. It should be noted, however, that such scatterplots are not identical
to the traditional (Cartesian) ones that one would create by simply considering two
variables from a multidimensional dataset. Indeed, our two-variable scatterplots
are limited, in terms of accuracy, by the underlying fixed 3D projection. While
this accuracy is, in general, lower than when considering two-variable Cartesian
scatterplots, the added value of constructing them from projections is that we can
smoothly navigate between any pair of such scatterplots, simply by performing a
viewpoint rotation. Doing this navigation for Cartesian scatterplots is possible, but
involves more complex deformations, which make it harder for users to maintain
their mental map during the navigation [50].

Figure 5.4 shows our mechanism for scatterplot construction by iterative axis
alignment. Starting from an arbitrary viewpoint (Fig. 5.4a), we next click on the
bar of variable 0 in the x axis legend and next shift-click on the bar of variable 6

113

Explaining 3D Multidimensional Projections

in the y axis legend to obtain the aligned view in Fig. 5.4b. Looking now at the
longest bars in the two legends, we see that the spread of points along the y screen
axis is mainly due to variable 6; in contrast, the spread along the x screen axis is
due to the combined effect of variables 0, 2, and 7. Since the lengths of the bars
for these three variables are roughly similar in the x legend, it follows that the
respective three variables are also strongly correlated. Looking at the colors of
the icons below these bars in the x legend, we discover that variables 0 and 7 are
directly correlated, and both are inversely correlated with variable 2.

5.1.6 Viewpoint legend

As outlined above, the interactive manipulation of the viewpoint allows us to freely
explore the space of possible views of our 3D projection. Interesting viewpoints
being discovered are highlighted by specific distributions of the bar lengths in the
three axis barcharts. At the other end of the exploration spectrum, going to a
targeted viewpoint which allows optimal exploration of two given variables, is
provided by the mechanism outlined in Sec. 5.1.5.

However flexible, the above two exploration mechanisms do not cover the
full spectrum of possible use-cases. Indeed: The axis-alignment tool is good for
targeted navigations, when we know the variable-pair we are interested in, but not
for additional explorations. In contrast, free-mode rotation is good to discover new
insights, but navigating through all such possible viewpoints is clearly prohibitive.

We next describe a mechanism, called the viewpoint legend, that aims to bridge
the preciseness (but narrow focus) of the axis-alignment tool with the freedom (but
vagueness) of free navigation. Specifically, we aim to provide a compact summary
of all variable-pair relations that one could discover, using free navigation, if one
had the time to explore all possible viewpoints. The viewpoint legend consists
of two elements. The first one is a sphere S of center c (Fig. 5.5a) whose points
v P S describe all view directions c ´ v that one can look at a given 3D projection,
modulo zooming and panning. The current viewpoint is indicated on the sphere by
a cross and is, by construction, always located in the center of the sphere’s image.
For each viewpoint v P S we define its ability of showing the variable-pair pi, j ‰ iq
as

qpv, i, jq “ }ph1
i

, h2
i

q ˆ ph1
j

, h2
j

qT}. (5.3)

More formally, q measures how well a 3D projection, viewed from v, shows the
variation of variable i vs j, modulo rigid transformations such as scaling (zooming),
translation (panning), and rotation of the view around the viewing direction c ´ v.
Large values of qpv, i, jq indicate that the biplot axes for variables i and j have
long projections onto the view plane and that these projections form a large angle
(maximally, 90˝). In other words, large values of q tell the existence of viewpoints
from which we can construct good two-dimensional-like scatterplots showing pairs
of (largely) independent variables which also have significant variations.

114

5.1. Explanatory Visualizations

red region: all viewpoints from which
the scatterplot of variables 0 and 6
is best visible

current viewpoint

highlighted cell (0,6)

Q
~

0 1

1

0.5

S,V

a) b)

c)

transfer function for V

transfer function for S

screen axis x

sc
re

en
 a

xi
s

y

Figure 5.5: Viewpoint legend for the configuration shown Fig. 5.4 b.

As indicated by Eqn. 5.3, several variable-pairs may be well visible from a
given viewpoint v. Showing all this information to the user may be possible, but
overwhelming. Instead, we choose to show the best visible such variable pair. To
find this, we compute

Qpvq “ max

1§i§n,1§j‰i§n

qpv, i, jq, (5.4)

and, further, normalize this value over all viewpoints to yield

¯Qpvq P r0, 1s “ Qpvq{max

uPS
Qpuq. (5.5)

When computing Qpvq (Eqn. 5.4), we also compute the pair of variables ppvq “
pi, jq that yields this maximum value, i.e. ppvq “ argmax1§i§n,1§j‰i§n

qpv, i, jq.
Having this information, we compute the set P “ tppvqu containing the C variable
pairs that have maximal values ¯Qpvq for all viewpoints v P S. In other words, P
tells us which are the C best-visible variable-pairs from all possible viewpoints.
In practice, we limit C to a maximal value of 8, which yields thus maximally 8
such variable-pairs. Hence, we can visualize these pairs over S by categorical color
mapping, i.e. by assigning to each p P P a distinct color.

The above procedure does not, however, cover all points v P S, but only those
from which one of the C best visible variable-pairs shows up. For all other points of
S, we color them gray, to indicate that none of the overall-best-visible variable-pairs
is visible from there. As a final design, we set the saturation S and luminance V of
each sphere’s colored point by ¯Qpvq, via the transfer functions depicted in Fig. 5.5c.
By this, we effectively encode two information elements at each (view)point –
the identity of the best-visible variable-pair from there (hue), and how well this
variable-pair is visible from there, as compared to how well the same or other

115

Explaining 3D Multidimensional Projections

variable-pairs are visible from other points (luminance and saturation). The global
result, shown in Fig. 5.5 b, is to create a pseudo-shading effect, where viewpoints
for highly-visible variable-pairs appear as highlights; and points which cannot show
a globally-best-visible variable-pair appear dark, respectively. Note that, although
highlights do not carry a hue, finding out which variable-pair they can best show is
easy – we simply look at the darker, saturated, colored points surrounding such a
highlight. We implement Eqns. 5.3-5.5 by sampling S with about 50 ˆ 50 points,
uniformly distributed in polar coordinates. The resulting polygonal representation
is rendered with standard bilinear color interpolation.

To make the above best-visible variable-pair scheme complete, we need to add a
(categorical) color legend. We achieve this by the matrix shown in Fig. 5.5b. Matrix
cells map all variable-pairs p “ pi, jq, whose hues are set exactly as for the sphere
points, i.e., if p P P , we use cppq, else we use gray. The brightness of a cell p is set to
linearly vary between the default brightness of its color cppq (at the cell border) and
max

vPS qpv, i, jq (at the cell center). This way, the matrix shows two information
elements at each cell or variable-pair – first, the color that that variable-pair is
mapped to (cell hue, visible at the border); and secondly, the relative visibility
of this variable-pair over all viewpoints, as compared to other variable-pairs (cell
luminance, visible at the center).

green area: viewpoints from which
the scatterplot of variables 2 and 6
is best visible

variable 6

variable 2

axis 6

axis 2

highlighted cell (2,6)

va
ria

bl
e

2

2 0 6 4 5 1 8 3 7

7 3 8 1 4 0 5 2 6

va
ria

bl
e

6

6 5 1 2 3 4 8 7 0

Figure 5.6: Viewpoint widget set to highlight a viewing direction that best shows variables 2
vs 6.

Figure 5.6 shows the working of the viewpoint legend for our ALL dataset. Turn-
ing the virtual trackball in the main (scatterplot) view rotates the viewpoint sphere,
and conversely – turning the viewpoint legend changes the current viewpoint.
As such, the viewpoint legend acts both as an output device (showing what can
be seen from basically 50% of all possible viewpoints at once) and input device
(allowing users to change the viewpoint to go to one where a specific variable-pair

116

5.1. Explanatory Visualizations

is best-visible from). The viewpoint sphere and matrix legend are also linked – the
matrix legend highlights the cell for the current viewpoint (so one immediately
knows to which variable-pair pi, jq the color under the central cross cursor belongs);
and clicking in a matrix cell pi, jq rotates the viewing direction to the viewpoint
from which the pair pi, jq is best visible (so one can construct the best-possible
two-variable scatterplots pi, jq,@i ‰ j by a single click).

Several use-cases can be described where the viewpoint legend brings in effec-
tive exploratory help, as follows:

What is a good viewpoint to examine pi, jq from? To find this, one (1) finds the
cell pi, jq in the matrix legend, memorizes its hue, (2) turns the sphere to see bright
highlights surrounded by the memorized hue, and (3) turns the sphere so the cross
enters such a highlight. Alternatively, one can directly click on the cell, to go to the
best such viewpoint. If the luminance of cell pi, jq is low, however, it means there is
no such really good viewpoint available.

Can I easily study variable i vs j? To find this, one (1) finds the cell pi, jq in
the matrix legend, memorizes its hue, (2) turns the sphere to see how large (and
brightly highlighted) areas colored in that hue are on the sphere. The size and
distribution of such areas tells how easy is to create a scatterplot showing variable
i vs j. Intutively put, if it’s easy to rotate the sphere so as to get the cross in such a
bright area, then creating the respective scatterplot is easy. Moreover, the larger
the respective area highlight is, the less accurate does one need to fine-tune the
viewpoint to get good results.

Is there any good viewpoint for examining i vs j? To find this, one can examine
the brightness of the cell pi, jq in the matrix legend. A bright cell will tell that there
exists at least one suitable examination viewpoint – and clicking the cell goes to it.
Separately, examining the entire sphere for the occurrence of areas colored like cell
pi, jq tells how easy is to find such a good viewpoint. If the desired cell pi, jq is dark,
then no suitable viewpoint for the task exists. This may indicate either a projection
problem, or the simple fact that the variables i and j have very small ranges.

What should I expect to see from a given viewpoint? To find this, one should
(1) look at the highlighted matrix legend cell and (2) infer the row i and column j

of that cell to get the best-visible variable-pair from there. Additionally, one should
(2) look at the brightness under the cross cursor on the sphere. A large value
indicates that, indeed, pair pi, jq outlined above is well visible from there; a dark
value indicates that, although pair pi, jq is the best visible from the given viewpoint,
its overall visibility is very poor. As such, one should not expect to see anything
interesting in the sense of a variable-pair correlation from that viewpoint.

117

Explaining 3D Multidimensional Projections

How to study the relation of more than two variables? A single-hue zone, on
the viewpoint sphere, shows a ‘field of view’ from which the same variable-pair
pi, jq is best visible; therefore, when the viewpoint crosses the border between two
such zones, one goes from best-viewing a pair pi, jq to best-viewing another pair
pk, lq. Often, as we will see in Sec. 5.2.2, pairs pi, jq and pk, lq share a variable (e.g.,
j “ k), which makes such border-zones be good viewpoints from where one can
examine the interaction of three variables.

5.2 Example applications

To illustrate and text the power of the explanatory techniques presented above in
the context of understanding 3D projections in terms of their underlying variables,
we studied four different multidimensional datasets. These come from four dif-
ferent domains (agriculture, scientific simulations, image analysis, and software
quality assessment. The datasets range between 2300 and 200000 observations,
and have between 10 and 19 dimensions. All observation values are quantita-
tive. The covered exploration tasks involve a variety of typical cases frequent in
multidimensional (projection) data exploration, such as finding correlated and/or
independent variables, explaining point clusters and outliers, assessing projection
quality, and comparing the suitability of using a 2D vs a 3D projection technique.
In terms of the latter, we used in total four projection techniques.

5.2.1 The Wine dataset: Finding good projection techniques

This dataset has 6497 12-dimensional points. Each point describes a type of
vinho verde wine [38] by means of 11 physicochemical properties, such as density,
concentration of chloride, concentration of sulfur, pH, and alcohol percentage. The
12

th variable is a (subjective) human-specified level of quality. The underlying
use-case for this dataset is finding how the 11 measured variables correlate with the
perceived quality, as a first step into designing automatic classifiers for wine [38].

To use dimensionality reduction, we must fist decide which projection technique
is best suited. We consider here three DR methods: FBDR [179], ISOMAP [184],
and LAMP [95] to project our dataset to 3D (other DR methods can be equally easily
used, if desired). Figure 5.7(left) shows the resulting three projections, aligned to
be viewed from (roughly) the same viewpoint. The right column in the same figure
shows the projections colored by their 3D aggregated distance errors. One way
to choose a good projection to work with further would be to select the method
that minimizes the errors (Eqn. 5.1). However, as shown by Fig. 5.7(right), these
three state-of-the-art projection techniques yield quite similar distributions of error
values, so such aggregate errors are not discriminatory enough in this specific case.

In contrast to several of the datasets discussed in Chapter 3, projection errors
do not help us much here in deciding which is the best projection. To further

118

5.2. Example applications

a
)

F
B

D
R

10: alcohol

1: acidity

b
)

IS
O

M
A

P 1: acidity1: acidity

10: alcohol

variable 1

variable 10

c
)

L
A

M
P

variable 10

10: alcohol

1: acidity

acidity

variable 10

variable 1

variable 1

distance error

Figure 5.7: Comparing three projection techniques (FBDR, ISOMAP, LAMP) using biplot
axes and axis legends (left) and projection errors (right). The selected viewpoint
best emphasizes the correlation of the alcohol and acidity axes. See Sec. 5.2.1.

discriminate them, we use the biplot axes (Fig. 5.7(left)). We see here that LAMP
creates much straighter axes than FBDR and ISOMAP. Reading data values along
such axes is considerably easier than along highly curved axes, as discussed earlier
in Sec. 5.1.3. This is an argument in favor of further using LAMP, if we are interested
in exploring such our values along axes, much like in classical scatterplots.

However, there are other tasks we would like to accomplish using the selected
projection, such as studying correlations of two variables. As a test, we consider
the variables alcohol and acidity (10 and 1, respectively, in Fig 5.7). To best view

119

Explaining 3D Multidimensional Projections

the correlation of these two variables, we align all projections by clicking on the
two bars in the x and y legends, respectively (see Sec. 5.1.5). Additionally, we
color all points by their acidity values, using a three-color divergent colormap (see
Fig. 5.7(bottom left)).

This viewpoint allows us to make several interesting observations. The x axis
barchart for FBDR shows several bars of similar length to the longest bar (acidity).
This means either that all these variables are strongly correlated, or that FBDR has
problems in projecting these variables into separate areas of the 3D target space.
If we, however, look at the LAMP projection’s x barchart, we see that variable 1
(acidity) is not strongly correlated with any of the other variables (the barchart
shows a rapid decrease in bar lengths from variable 1 onwards). As we have seen
that the projection errors are roughly equal in the three cases, it means that LAMP
achieves a (much) better separation of unrelated variables, and the fact that these
look correlated in FBDR is just an artifact of FBDR. As such, we can conclude that
LAMP is a better projection than FBDR. Comparing ISOMAP with LAMP, using a
similar reasoning, yields a similar conclusion – in particular, LAMP is better than
ISOMAP since it has a similar error and it creates straight axes, whereas ISOMAP
creates a curved alcohol axis. All in all, we conclude that, for this dataset and
related questions, LAMP is a better projection to further use than FBDR or ISOMAP.

5.2.2 The Multifield dataset: Explaining projection shapes

This dataset, part of the IEEE Vis 2008 contest, represents the results of a mul-
tifield simulation that aims to model the formation and evolution of the early
Universe [131]. The dataset contains 200K points, representing various locations
in space, and attributed with 10 variables, that describe the points’ matter density,
temperature, and concentrations of 8 chemical species. While the full dataset
is time-dependent, we chose to examine a single frame or time-step, due to the
fact that the projection techniques we are aware of cannot readily handle time-
dependent data.

Figure 5.8) shows various viewpoints of the dataset, projected into 3D using
LAMP (which, as we have seen in Chapter 3 and earlier in this chapter, has overall
good qualities). The first observation we can make, is that the projection appears
to look like a saddle-shaped manifold. This is an interesting finding, as it means
that the involved 10 dimensions strongly constrain each other in some way.

To understand the above saddle shape, and also how variables relate to each
other to create it, we examine next the biplot axes. By freely rotating the projection
in 3D, we find out that the spread of variable 7 is the largest of the 10 variables.
As such, this variable is, arguably, important in explaining the resulting shape. To
better view this relation, we align axis 7 with the y screen axis (Fig. 5.8a). This
shows us, quite clearly, that the concavity in the saddle-shape is explained almost
entirely by variable 7, since its axis is perpendicular to it, and since all other 9

120

5.2. Example applications

7:
 H

-
m

as
s

ab
un

da
nc

e

5:
 H

e+
 m

as
s

ab
un

da
nc

e

ce
ll

(5
,7

)

6:
 H

e+
+

m
as

s
ab

un
da

nc
e

7:
 H

-
m

as
s

ab
un

da
nc

e

ce
ll

(6
,7

)

va
ria

bl
e

7
va

ria
bl

e
7

va
ria

bl
e

6

c
o

lo
r:

 v
a

ri
a

b
le

 5
c

o
lo

r:
 v

a
ri

a
b

le
 6

sp
ik

e

7:
 H

-
m

as
s

ab
un

da
nc

e

6:
 H

e+
+

m
as

s
ab

un
da

nc
e

c
)

v
a

ri
a

b
le

s
 6

 a
n

d
 7

 a
li

g
n

e
d

 w
it

h
 s

c
re

e
n

 a
x

e
s

 x
 a

n
d

 y

5:
 H

e+
 m

as
s

ab
un

da
nc

e

d
)

v
a

ri
a

b
le

s
 2

 a
n

d
 6

 a
li

g
n

e
d

 w
it

h
 s

c
re

e
n

 a
x

e
s

 x
 a

n
d

 y

6:
 H

e+
+

m
as

s
ab

un
da

nc
e

2:
 H

 m
as

s
ab

un
da

nc
e

ce
ll

(2
,6

)

c
o

lo
r:

 v
a

ri
a

b
le

 2

va
ria

bl
e

6
va

ria
bl

e
5

va
ria

bl
e

5

ce
ll

(6
,7

)

va
ria

bl
e

2

va
ria

bl
e

3

sp
ik

e

6:
 H

e+
+

m
as

s
ab

un
da

nc
e

va
ria

bl
e

7

va
ria

bl
e

6

sp
ik

e

a
)

v
a

ri
a

b
le

s
 5

 a
n

d
 7

 a
li

g
n

e
d

 w
it

h
 s

c
re

e
n

 a
x

e
s

 x
 a

n
d

 y
b

)
v

a
ri

a
b

le
 6

 a
li

g
n

e
d

 w
it

h
 s

c
re

e
n

 a
x

is
 x

Fi
gu

re
5.

8:
3D

LA
M

P
sa

dd
le

-s
ha

pe
d

pr
oj

ec
tio

n
of

10
-v

ar
ia

te
m

ul
tifi

el
d

si
m

ul
at

io
n

da
ta

se
t(

se
e

Se
c.

5.
2.

2)
.

121

Explaining 3D Multidimensional Projections

biplot axes appear to be located in a plane orthogonal to axis 7. This finding is
confirmed by the y axis legend, where we see that all variables show very little
correlation with variable 7.

To further explain the saddle-shape, we should, thus, study its variation in
directions orthogonal to variable 7. Looking at the x axis legend, we see that
variable 5 has a high bar. Further aligning variable 5 with the x axis, by shift-
clicking its bar in the x legend, yields the image in Fig. 5.8) a. We see here, indeed,
that the points’ spread orthogonal to variable 7 is caused mainly by variable 5.
Further on, we see that the icon below variable 5 is red, indicating that it is large
to the left, and small to the right, of the image. Color-coding the projection by
variable 5 confirms this finding – in other words, the horizontal spread of the saddle
is mainly caused by variable 5.

Besides the overall saddle-shape, we also see a ‘spike’-like feature in the pro-
jection (Fig. 5.8)a, top-left). By slightly turning the viewpoint around its current
position, we see that this spike aligns well with both axes 5 and 6. To see which
of these two best explains the spike, we align the x axis, in turn, with variables
5 and 6. Comparing the plots, we see that the spike aligns better with variable 6.
The plot for this configuration is shown in Fig. 5.8b. To validate the finding, we
color points now by variable 6. The result now nicely shows that the spike can be
(almost perfectly) explained as containing points having medium-to-large values
of variable 6, while the remainder of the projection contains low values for this
variable.

The findings so far indicate that variables 6 and 7 are very important in ex-
plaining the projection shape. These variables are also quite independent on each
other, as shown by both the orthogonality of their biplot axes, but also by the
large brown zone on the viewpoint sphere in Fig. 5.8b, which corresponds to the
highlighted cell p6.7q in the matrix legend. To study the remaining variables, we
choose to align the already studied variables 6 and 7 with the x and y screen axes,
respectively. We now get a good view of both the saddle shape and the spike feature
(Fig. 5.8c). Additionally, we see here that biplot axes 6 and 6 are almost parallel,
so the corresponding variables are strongly correlated. Note that the same finding
can be got (albeit with more effort) using the viewpoint legend in this figure: The
current viewpoint (cross cursor) best shows, by construction, variables 6 and 7,
and is located inside a brown zone on the sphere but very close to the border with
a green zone. Examining the green cell in the matrix legend, we find that it maps
variables 5 and 7. We also see that the green-brown border area is quite bright. All
in all, this means that there are many viewpoints which best show a scatterplot
of variables 5 and 7 and these are very close to viewpoints which show a good
scatterplot of variables 6 and 7. Putting it all together, it follows that variables 5
and 6 are strongly correlated.

To further explore the saddle shape, we align variable 6 aligned with the y axis,
and align variable 2 with the x axis, yielding the result in Fig. 5.8d. The x and y

122

5.2. Example applications

axis legends tell us now that variables 5 and 6, respectively 2 and 3, are highly
correlated, since they have nearly equal and almost maximal bars. Coloring this
view by the value of variable 2 shows that the rightmost upwards-twisted tip of the
projection (red) is explained very well by extremal values of variable 2.

All in all, the above exploratory scenario let us discover that the projection
has a 2D-manifold-like saddle shape; that a spike outlier is present; and explain
both the saddle shape and spike by the variations and/or values of a few variables.
These findings are interesting by themselves, so we may claim that our proposed
explanatory mechanisms were effective with respect to their supporting aims. A
separate aspect regards the efficiency of these mechanisms. To perform our explo-
ration, we required about 30 seconds of free rotation (to familiarize ourselves with
the overall projection shape), followed by several short sequences of a few clicks
each (to align the viewpoint with desired axes pairs) and, optionally, to color-code
the projection by the values of one of the variables we aligned with. In contrast,
a classical 3D projection exploration tool, consisting of a raw point cloud, virtual
trackball, and the ability to color-code points by any of the 10 dimensions, would
take much more time to arrive at the same results. While we did not perform a
formal measurements here, freely rotating the viewpoint with the trackball so as
to best see the spike outlier, takes about 2 to 3 minutes. As explained earlier, this
takes just two clicks with our method. Once the alignment is achieved, finding
which variable best explains the spike would take cycling through color-coding of
the projection by the values of all 10 variables, and memorizing the one which
produces the strong color gradient visible in Fig. 5.8b, i.e., variable 6. In our case,
this iterative color-coding is not needed – the axis alignment in Fig. 5.8b already
tells us that the spike is best explained by variable 6; we next use color coding
mainly as a check, and to get a more precise understanding of the values of variable
6 that explain the spike.

5.2.3 The Segmentation dataset: Comparing 2D and 3D projections

The third dataset we use consists of 2300 19-dimensional points. Each point
encodes information about a 3 ˆ 3 pixel-block which is randomly-selected from 7
manually segmented outdoor images of various types. The pixel block is described
in terms of classical image descriptors, or features, used in pattern recognition and
image classification. These include various color and luminance statistical metrics,
such as mean and standard deviation, horizontal and vertical contrasts (edges),
and gradients [116]. The 19

th attribute describes the label, or class, of the image,
and has 7 distinct values, corresponding to the 7 image examples. This dataset
is frequently used in applications involving the construction of automated image
classifiers that aim to learn the 7 classes from the values of the 18 measured image
attributes [95, 141, 138].

To explore this dataset, we project it to three dimensions using LAMP (Fig. 5.9).

123

Explaining 3D Multidimensional Projections

Next, we color points by the value of the categorical label attribute (which is not
used in the projection). Our aim is to see, on the one hand, how the measured
variables correlate (or not) with each other, and how they correlate with the
class attribute – similarly to the use-case described in Sec. 5.2.1. We start by
freely rotating the 3D projection to get an overall impression, as for the example
discussed in Sec. 5.2.2, and see that the longest biplot axis corresponds to variable 0
(region-centroid-col). As such, we align this variable with the y screen axis, to ‘factor
it out’ from the projection, and see which other variables explain the projection’s
shape. After alignment, we see that the current viewpoint corresponds to a red
cell in the matrix legend (Fig. 5.9a), which maps the variable-pair p0, 3). The large
red zone on the viewpoint sphere means that, if we turn the viewpoint even with
large amounts from the current position, we still can best see variables 0 and 3.
This is not too surprising, given the very large length of axis 0 as compared to all
other axes. Aside from this, we are next interested to explore variable 3 (short-line-
density), so we click this cell and obtain the viewpoint which best explains these
two variables (0 and 3).

From the current viewpoint, two useful insights can be drawn. First and
foremost, the vertical same-color ‘bands’ present in the figure show that there is no
correlation of specific values of variable 0 with the label values – in other words,
any label value occurs equally frequently for any value of variable 0. Secondly, we
see that all biplot axes 1-8 are located in a plane roughly perpendicular to axis 0.
This plane also contains the directions along which the colors mapping the labels
mostly vary. Taken together, all facts above tell us that variable 0 is (a) independent
on all other variables, and (b) not correlated with the label values. As such, we
can, and actually we should, eliminate variable 0 from the dataset, as it brings no
added value for classification.

Given the above, one can proceed further in various ways. Among other options,
we consider the following:

1. Construct a new dataset where variable 0 is removed, and repeat the entire
exploratory procedure;

2. Use the current 3D projection in such a way that the (uninteresting) effect of
variable 0 is removed;

3. Use a 2D projection of the dataset.

While option (1) above is interesting, we decided not to study it further, since
removing an actual dimension from the input dataset may, after all, cause unex-
pected and undesired effects. Also, comparing our results with other techniques
which use this same dataset would become more difficult in this case.

To study option (2), we align biplot axis 0, which corresponds to the dimension
we found to be uninteresting, with the viewing direction. Further on, we align
biplot axis 3, which we already have found as being important, with the screen

124

5.2. Example applications

0: region-centroid-col 3: short-line-densityvariable 0

cell (3,0)

variable 3

3: short-line-density

cell (11,3)

variable 3

variable 11

variable 16

color: label a)

b) color: label

raw-red-mean,
raw-green-mean,
value-mean,
intensity-mean

short-line-density-2,
hedge-sd,
hedge-mean,
vedge-mean

Figure 5.9: Visualization of 19-variate image dataset using 3D projections (a,b). See
Sec. 5.2.3.

y axis. The result is shown in Fig. 5.9b. In this figure same-color point clusters
emerge more visibly than in Fig. 5.9a, which suggests that it is, indeed, possible to
compute the label (class) values based on the 17 remaining dimensions. To refine
this insight, we study the biplot axes in Fig. 5.9b. As a first observation, we see
several variable correlations, e.g. the vertical downward-pointing axes for short-
line-density-2, hedge-sd, hedge-mean, and vedge-mean). These correlations may not
be too surprising, as all these variables describe essentially image edges. Similarly,
we see a group of correlated axes pointing horizontally to the left (raw-red-mean
raw-green-mean, value-mean, and intensity-mean). As for the former group, these
correlations are not that surprising, as all these variables essentially describe color

125

Explaining 3D Multidimensional Projections

averages.

The above correlations, although explainable once we have found them, indi-
cate that there are a number of possibly redundant variables, or features, in our
dataset. This is a quite well known phenomenon in feature extraction for image
classification – adding several types of edge-detector, gradient, or statistical features
to a multidimensional dataset does not necessarily increase the true dimensionality
of the data, and thus of the performance of classifiers built atop of it, as such fea-
tures are often strongly correlated. However, in the same time we see that certain
clusters can be easily explained by the existing variables. For instance, the isolated
orange cluster left in Fig. 5.9b can be easily explained in terms of highly-saturated
colors. This can be a first step into building a (simple but robust) classifier that first
isolates images corresponding to the ‘orange’ class from all others.

To study option (3), we project the data into 2D, using LAMP, and color points
by label values (Fig. 5.10a). Interestingly, the obtained pattern of same-color point
clusters is relatively similar to those obtained in the specific 2D view of our 3D
projection shown in Fig. 5.9b. This raises the question of which, of these two
techniques (selecting a suitable view of a 3D projection vs projecting the dataset
directly to 2D) is the best one.

To study this, we compute and display the the aggregated normalized projection
errors em

i

defined earlier in Eqn. 5.1. Figures 5.10b and 5.10c show the errors
e3
i

and e2
i

for the 3D and 2D projections in Figs. 5.9b and 5.10a respectively. In
both cases, we color map errors using a blue-yellow-red divergent colormap. By
comparing the two images, we immediately see that e3

i

is overall lower than e2
i

. This
was not unexpected – as discussed earlier, it is easier to preserve distances when
mapping to a higher target dimension. Separately, we see that the distribution of
errors over points is quite similar in the two projections – that is, there are overall
just a few very high-error points, and there is a limited spatial variation in error
magnitude between neighboring points. From the above, we can conclude that
using a suitable viewpoint of our 3D LAMP projection is, error-wise, better than
using a direct LAMP projection to 2D. This conclusion can be explained, among
others, by the fact that the 2D view of the 3D projection in Fig. 5.10b places the
large variation of variable 0 along a dimension which is orthogonal to the view
plane. In contrast, in the 2D projection case (Fig. 5.10c), this large variation has
to share the same (limited) 2D projection space which is used by the other 17
variables. All in all, visualizing the 3D LAMP projection from the viewing direction
that cancels out the effect of variable 0 is conceptually identical to creating a 2D
projection that uses only variables 1 . . . 18, i.e., identical to our option (1) outlined
above. As this does not explicitly alter the dataset by removing a dimension, and
also creates a projection having lower error than directly projecting all data to 2D,
we conclude that option (2) – visualizing a 3D projection from a suitably chosen
viewpoint – is the optimal one in this case.

126

5.2. Example applications

a)
color: label (2D projection)

b)
color: aggregate error (3D)

c)
color: aggregate error (2D)

Figure 5.10: 2D LAMP projection of a 19-dimensional dataset showing point labels (a) and
errors (c). 3D LAMP projection of the same dataset showing errors (b). See
Sec. 5.2.3.

5.2.4 The Software dataset: Finding meaningful clusters

For our fourth example, we consider a dataset describing a corpus of open-source
software projects written in C [121]. For each project, 11 software quality metrics
were computed, by statically analyzing their source code files, and averaging
the results for the entire project. The provided database contains 6733 projects
(observations), each having 11 attributes (code quality metrics). A separate 12

th

attribute measures the number of times each project was downloaded. Similar to
[121], we are interested in finding correlations between the metrics themselves
and/or the metrics and the download count values.

As in the previous examples, we start by freely examining a 3D projection of our
data, computed using LAMP (Fig. 5.11). Here, in contrast to the previous examples,
we continue our exploration by using the matrix legend, rather than the biplot axes
and axis legends. We note that this is not a mandatory choice, but just a means
to show alternative investigation paths that our interactive tools support. In this
matrix legend, we notice an outstanding bright green cell, indicating that there is

127

Explaining 3D Multidimensional Projections

2: ln-cof
7: ln-sum-tloc

a)
color: ln-cof

cluster A
(low-coupling)

cluster B
(medium-coupling)

2: ln-cof

7: ln-sum-tloc

cell (2,7)

cluster C
(high-coupling)

2: ln-cof

b)
color: ln-sum-tloc

2: ln-cofcell (2,7)

7: ln-sum-tloc

7: ln-sum-tloc

cluster C
(small systems)

clusters A+B
(large systems)

Figure 5.11: Visualization of 12-variate software metrics dataset using 3D LAMP. See
Sec. 5.2.4.

a pair of variables that admits to be very well examined from certain viewpoints.
We select this variable-pair, i.e. variable 2 (ln-cof, or average coupling-factor, i.e.
the number of inter-file function-calls [107]) and variable 7 (ln-sum-tloc, or total
number of lines-of-code), and its best viewpoint by clicking on this green cell, and
obtain the view in Fig. 5.11a. We next refine this view by aligning biplot axis 2 with
screen x axis. In the resulting image (Fig. 5.11a), two large point clusters A and B

emerge. The spread in both clusters appears to be perpendicular to axis 2 (ln-cof).
In other words, points in A and B seem to be distinguishable by the values of ln-cof.
To further see this, we color-code all points by this variable, and see, indeed, that
points in A contain low ln-cof values. Upon examination by brushing, we found
out that these low-coupling systems are mainly libraries. In contrast, points in B

contain average-coupling systems, such as standalone programs (applications). In

128

5.3. Discussion

the same view, we notice a third, separated, cluster C that mainly corresponds
to very high coupling systems. However, to better characterize C, we now see
that its shape is orthogonal to axis 7 (ln-sum-tloc), and it is positioned close to
one end of this axis. Hence, variable 7 can be useful (aside of variable 2) in
explaining cluster C. To get more insight, we color next all points by variable 7
(Fig. 5.11c): As observed earlier, we confirm the fact that points in C have similar
and extremal values of variable 7 – specifically, they have very low values of this
variable, whereas both clusters A and B have relatively high values for variable
7. Since variable 7 denotes the total size of a system (ln-sum-tloc), it means that
C can be explained as containing small systems, whereas A and B contain large
systems. Putting it all together with the earlier observations, we explain C as
containing small applications; A as containing large libraries; and B as containing
large applications, respectively.

Let us now consider the same question here as for the imaging dataset discussed
in Sec. 5.2.3: Would we obtain the same insight (splitting of the software corpus
into three types of systems) if we used a 2D projection? We start exploring this
question in the same way as in Sec. 5.2.3 – namely, we compute a 2D LAMP
projection of the same dataset, and next compare the aggregated projection errors
e3
i

(Fig. 5.12a) and e2
i

(Fig. 5.12b). We see that both e3
i

and e2
i

are uniformly
distributed over their 3D, respectively 2D, projections, and that e3

i

is in general
smaller than e2

i

. These insights are very similar to the ones obtained for our imaging
dataset.

A main difference with the earlier imaging dataset use-case is that the shapes
of the 2D and 3D projections are quite different for our software dataset. Indeed,
the 3D projection, viewed from the viewpoint discussed earlier on, shows three
clusters, which, as we have seen, can be explained mainly by two variables (ln-cof
and ln-sum-tloc, as discussed). In contrast, the 2D projection shown in (Fig. 5.12b)
depicts only two clearly separated clusters A1 and B1. To explain these, we brush
their points and iteratively color the 2D projection by the values of the variables
(since we use a standard 2D LAMP implementation which does not feature any
explanatory tools). This way, we found that A1 contains a mix of large libraries
and applications (thus, an union of A and B); and B1 contains small systems (thus,
roughly corresponds to C). As such, our software dataset studied here is, in contrast
to the imaging dataset, an example where a 3D projection is truly needed to let us
discover the separation of the point-set into three distinct classes (using just a 2D
projection would only elicit two such classes, thus, a coarser-grained explanation
of the data).

5.3 Discussion

Our proposed explanatory techniques for 3D projections raise several discussion
points, as follows.

129

Explaining 3D Multidimensional Projections

a)

cl
u

st
er

 A
(l

ar
g

e
lib

ra
ri

es
)

cluster B
(large applications)

cluster C
(small systems)

cluster B’
(small systems)

clu
st

er
 A

’

(la
rg

e l
ib

ra
rie

s a
nd ap

plic
at

io
ns)

b)

color: aggregated error (3D) color: aggregated error (2D)

Figure 5.12: Software dataset: Comparing a selected view of a 3D LAMP projection, and its
aggregated error (a), with a 2D LAMP projection and its corresponding error
(b). See Sec. 5.2.4.

Added value: The explanatory techniques proposed in this chapter are effective
to show the presence of strongly (inversely) correlated dimensions, independent
dimensions, and to explain groups of closely-projected points (clusters) in terms of
specific value ranges of specific dimensions. However, it should be noted that the
last feature is only effective if such clusters are already present in the underlying
3D projection. If the projection fails to identify such clusters, or if such clusters
actually do not exist in the original high-dimensional space, the added-value of
our techniques will be limited to the former use-cases listed above. To a larger
extent, this limitation also applies to finding correlations (or the lack thereof)
between variables. One way to test the effectiveness of using our techniques is to
study the projection errors (Chapter 3) prior to their application: If such errors
are small, we believe that it is very likely that our techniques will next help with
the above-mentioned explanatory tasks. If the projection exhibits large errors, the
exploring its parameter space to improve it (see also Chapter 3) should be done
prior to exploring the projection.

3D vs 2D context: As outlined by our examples presented in Sec. 5.2, our tech-
niques focus on explaining 3D projections. In contrast to 2D projections, the user’s
choice of viewpoint for 3D projections is crucial with respect to the obtained in-
sights [139, 163]. To explain this further, we can consider a view of a 3D projection
as being the composition of a nD-to-3D projection (P

n3) with a 3D-to-2D typical
orthographic or perspective projection (P32). Denote the projection of the same
dataset from nD to 2D by P

n2. As discussed at various points, the error of P
n3 is

in general lower than the error of the corresponding P
n2 (all other factors such as

130

5.3. Discussion

projection method, parameters, and input dataset being kept the same). However,
the total error that our 3D pipeline creates, also contains the error introduced
by P32. Hence, to minimize this total error, we aim to minimize the error of P32.
Our exploratory and explanatory tools attempt to do this selectively – that is, to
minimize the error of P32 for specific sets of points, or sets of dimensions. This
allows one to obtain a view in which such specific subsets of interest of the input
data are projected well to the final 2D image, whereas other subsets of the data
may (still) contain large errors. The key added value of our interactive techniques
resides precisely in being able to easily specify on-the-fly which these subsets are.
For instance, we can change the viewpoint to optimize the comparison of a selected
pair (or set) of variables. The same can be said concerning occlusion, a factor
which is known to adversely affect the exploration of 3D scatterplots: It is true
that 3D projections are liable to occlusion. However, one has still the chance of
changing the viewpoint so as to decrease occlusion selectively for given subsets of
points of interest. In contrast, the same is not true for 2D projections: Overlaps
also occur in such projections, and reducing them cannot be done by other means
than re-computing the entire projection.

Generality: The proposed mechanisms can directly handle any dimensionality-
reduction technique, whether linear or not, global or local, white-box or black-box,
and using the actual high-dimensional point coordinates, or alternatively a distance
matrix (MDS-like methods). In all cases, we do not need any access to, or informa-
tion about, the projection algorithm’s internals. This cannot be said about other
explanatory mechanisms for projections [71, 1, 132, 24], which make explicit use of
the projection algorithm’s internals (typically, SVD or PCA). As such, we were able
to easily use our explanatory tools with projections as diverse as LAMP, ISOMAP,
and FBDR (demonstrated here) and also LSP [139] and PLMP [141] (omitted here
for brevity). Applying our techniques to additional projection methods, such as e.g.
the very popular t-SNE method [192, 194] can be immediately done.

Scalability: Computationally speaking , our techniques scale linearly with the
number of dimensions, which makes them applicable to real-time data exploration
of very large projections. Visually speaking, our same techniques scale quite well
up to roughly n

max

“ 20 variables, which is in line with other multivariate visual-
ization techniques [132, 50, 24, 31]. For datasets having many more dimensions,
we choose to limit insights to the most important (salient) dimensions that can be
explored from a given viewpoint (axis biplots, axis legends) and also the globally
most salient dimension-pairs (viewpoint legend). While this can be seen as a
limitation in the view of existence of datasets having hundreds up to thousands
of dimensions, we believe that aiming to display (information about) all these
dimensions can be a too ambitious, and possibly even impractical, endeavor. For
such datasets, the typical way to handle them is to first automatically aggregate or

131

Explaining 3D Multidimensional Projections

cluster dimensions by data mining and machine learning techniques, and visually
explore the reduced-dimensionality result.

Comparison: Our techniques bear several similarities with existing work in explor-
ing multidimensional datasets. Apart from the already explained similarities with
biplot axes and axis legends [1, 24], we note here also ‘rolling the dice’ (RTD) [50].
Our axis-alignment (Sec. 5.1.3) and viewpoint-selection mechanisms (Sec. 5.1.6)
are conceptually similar, in purpose, to the cells of a scatterplot matrix, in the sense
that they display selected ‘interesting’ variable-pairs. This also bears a resemblance
to scagnostics techniques which aim at pre-selecting interesting variables to display
next [207]. Yet, differences exist. Most existing techniques display such interest-
ing variable-pairs as classical Cartesian scatterplots, whereas we define them as
viewpoints on a given 3D projection. One disadvantage of our approach is that,
unlike Cartesian scatterplots, we are limited, in terms of quality and accuracy, by
the configurations encoded by the 3D projection. In contrast, one advantage is that
any of our viewpoints displays information about more than two (in theory, all)
dimensions, while classical scatterplots are limited to two up to three dimensions.

Technical details: Several of our design decisions, such as the precise choices made
for colormaps and color transfer functions are, of course, open to customization
and/or improvement. For instance, one can customize the categorical colormap
used in the axis legends to mark specific variables of interest, which one needs to
pay particular attention during the analysis, with salient colors or colors having an
application-specific semantics. Alternatively, one could select an axis legend, color
map its bars using a sequential or ordinal colormap, and next compare this legend
color-wise with the other two axis legends to reason about variable correlation or
orthogonality. Yet other alternatives may exist for specific user groups and work
domains.

Limitations: From a technical perspective, our visualizations are limited in terms
of number of observations they can display without causing excessive occlusion
(a limitation shared by any 3D scatterplot technique) and the number of dimen-
sions that can be simultaneously explained. Separately, it can be argued that the
proposed tools only address a limited subset of the questions and tasks related to
multidimensional data exploration. For instance, we do not support the explicit
identification of well-defined point clusters and the explanation of such clusters
in terms of dimension values and/or dimension correlations, but only provide a
global explanation of the entire dataset. Separately, the viewpoint legend focuses
mainly on showing the best-visible pairs of independent variables. It can be argued
that extending this legend to show (viewpoints from which we can analyze) pairs
of strongly correlated variables, or extending both above scenarios to sets of more
than two variables, is an useful addition.

132

5.4. Conclusion

In terms of user effort, our techniques cannot, and do not aim to, fully replace
interactive trial-and-error exploration, as compared e.g. to certain scagnostics-
based techniques. Rather, our aim is to support interactive exploration and make
it reach a given goal more efficiently. Examples hereof include quickly finding
suitable viewpoints for certain tasks, understanding what a viewpoint tells, but also
providing visual feedback as one freely rotates the projection so as to pre-attentively
guide the user towards specific navigation paths.

Separately, we note that the discussion of certain advantages of 3D projections
with respect to their 2D counterparts (Sec. 5.2) should not be generalized to imply
that 3D projections are always better, for all exploration tasks and datasets, than
2D projections. Rather, the aim of the respective discussion is to show that there
are situations in which 3D projections can be more effective than 2D projections,
when complemented by suitable exploratory tools.

5.4 Conclusion

In this chapter, we have presented several interactive visualization techniques aimed
at assisting users when exploring three-dimensional projections of high-dimensional
data. The core aim of these techniques is to add back to a 3D projection information
in terms of the identities, ranges, values, and (cor)relations of the original high-
dimensional variables, specifically when such information has been lost during the
projection itself. The added information helps in understanding patterns and shapes
created by point groups in the 3D projection in terms of the original variables;
identify groups of strongly correlated, or independent, variables; identify limitations
of the projection; and, last but not least, help the user in understanding what a
given viewpoint of a 3D projection does show, and how to suitably choose such
viewpoints for specific tasks. Our techniques are computationally scalable, simple
to implement, and can be directly added to any type of dimensionality-reduction
method, without any specific constraints. From a user perspective, our methods
complement, rather than replace, classical exploratory techniques such as brushing,
selection, and color mapping.

As a consequence of having these techniques, we have shown that 3D projec-
tions can be used to obtain more precise, and sometimes more detailed, insights as
compared to their 2D counterparts. For these cases, we have also shown that 3D
projections minimize the distance-related errors implied by reducing dimensionality,
as compared to the same 2D counterparts; and that exploring these 3D projections
does not bring considerable additional costs as compared to exploring 2D projec-
tions. Taken together, the above insights indicate to us that 3D projections should
not be dismissed as an alternative to 2D projections for the task of high-dimensional
data exploration.

The first contribution of this chapter – explaining 3D projections in terms of
biplot axes and axis legends – is a first step towards making scatterplots produced

133

Explaining 3D Multidimensional Projections

by projection techniques interpretable in a more intuitive way by a wide range of
users. In the next chapter, we refine this idea of explaining projections by proposing
a set of alternative visual techniques that complement the work presented here.

Contributions

The work performed in this chapter is based on the article Explaining 3D Dimen-
sionality Reduction Plots (D. Coimbra, R. Martins, T. A. T. Neves, A. C. Telea, F. V.
Paulovich), Information Visualization Journal, SAGE Publications, DOI:10.1177/
1473871615600010, 2015. The first two co-authors have had equal major contri-
butions to the publication, and should be seen as joint first authors. Furthermore,
specific parts of the work can be assigned to R. Martins, as follows: the analysis
of three-dimensional projection errors and the extension thereof to viewpoint-
dependent errors (Sec. 5.1); the elicitation and testing of the specific use-cases
for the viewpoint legend widget (Sec. 5.1.6); the analysis of the wine dataset and
usage of projection errors to derive additional insight in comparing projections
(Sec. 5.2.1); and the selection, analysis, and interpretation of the software dataset
(Sec. 5.2.4).

134

Chapter 6

Local Explanation of Multidimensional
Projections

I

n the previous chapters, we have explored several ways for explaining multidi-
mensional projections. Chapters 3 and 4 show how projection errors related to

the preservation of inter-point distances, respectively point neighborhoods, can
be visually encoded so that users get a detailed insight into where, how large,
and which types of errors occur in such projections. Chapter 5 shows how the 3D
low-dimensional projection space can be annotated with axis legends to explain
the directions of variation of the original high-dimensional attributes, by adapting
and extending existing explanatory techniques for 2D projections.

While contributing in different ways to explaining projections, the above tech-
niques fall short of explaining the reason why observations are placed close to
each other in projections: The techniques presented in Chapters 3 and 4, while
providing local insights in a projection, focus only on showing the errors caused by
the underlying projection method. As such, these techniques are mainly useful to
decide which projection areas are reliable in the sense of faithfully encoding the
high-dimensional data structure, and which areas contain significant errors. As
explained in Chapter 3, a typical workflow involving error analysis focuses mainly
on limiting the subsequent data analysis to low-projection areas. For such areas, we
can next use the explanatory techniques presented in Chapter 5, i.e. biplot axes and
axis legends, to get an overall impression of how the high-dimensional variables
spread across the projection space (which can be two- or three-dimensional). These
techniques are useful in understanding global projection features, such as correla-
tions or orthogonality relations between variables; or explaining outliers which are
well aligned along high-dimensional variables. However, these techniques fall short
in understanding local projection features, such as small groups of closely-placed
observations.

In this chapter, we address the goal of explaining multidimensional projections
from the perspective of local structures apparent in the projection. In detail,
we enrich 2D scatterplots created by multidimensional projection techniques, by
visually highlighting the key dimensions, or attributes, that make closely-projected
points similar. These explanations are different from those proposed in Chapter 5:
While the biplot axes and axis legends show the directions of maximal variation of
high-dimensional attributes, the explanations proposed in this chapter show the
attributes which determine the appearance of each local neighborhood of points in
the projection – hence, the name ‘local explanation’ used for these techniques. We
compute such explanatory visuals over all point neighborhoods of a 2D projection

Local Explanation of Multidimensional Projections

and render them next by image-based techniques, similar to the ones presented
in Chapters 3 and 4. Our technique implicitly partitions the projection space into
compact areas that are next provided with simple explanations in terms of variables.
The technique is simple to implement and independent on the (2D) projection
technique being used.

The structure of this chapter is as follows. Section 6.1 summarizes related work
targeting the explanation of multidimensional projections in terms of attributes.
Section 6.2 introduces the proposed visual explanatory techniques. Section 6.3
presents applications of our techniques on several real-world multidimensional
datasets. Section 6.4 relates our technique to all other visual explanation techniques
proposed in this thesis. Section 6.5 concludes the chapter.

6.1 Related Work

Multidimensional projections are effective tools in showing groups of similar ob-
servations present in large datasets where each observation is described by many
dimensions or attributes. However, in practice, such projections are very challeng-
ing to interpret: While standard projections show, indeed, which observations are
similar, they fail to explain why observations are similar. This type of informa-
tion is crucial in further using the insight regarding the similarity of groups of
observations.

The need to explain projections has been long recognized in information visual-
ization and visual analytics. The most natural way to explain such projections is
in terms of the original high-dimensional variables, which encode domain-specific
knowledge, and are arguably the most intuitive way for users to understand them.
To this end, several explanatory mechanisms have been proposed. As outlined in
Section 2.5, such mechanisms can be classified into several types, as follows.

Interactive approaches show information on-demand atop the projected observa-
tions, such as color-coded values of a user-selected attribute or user-selected values
of attributes mapped to additional points in the projection [51]. More advanced
methods target the finding of interesting feature subspaces to display the data
within, in a scagnostics-like fashion [177]; feature selection for exploration via
the visualization of aggregated feature relevance data [105]; and the interactive
selection of feature subspaces by the visual analysis of plots combining observations
and attributes [211]. However, such interactive methods require a significant effort
from their end users. Biplots and biplot axes show the directions of variation of
all attributes atop the projected observations [1, 71, 69, 189]. However, such
methods still keep a certain separation between observations and attributes, in
the sense that they do not explicitly show why observations are placed at their
respective positions in the projection. Axis legends show the attributes that have
the highest variance along the projection-space axes, and are applicable both for
2D projections [24, 132] and 3D projections (as shown by our work presented in

136

6.1. Related Work

Chapter 5). However, such methods only explain the projection-space axes, and
do not explicitly mark each point cluster in the projection with the attributes that
determined its appearance.

A different way to explain multidimensional projections is offered by clustering
methods. Such methods explicitly partition the projection into clusters of close
points. Assuming, next, that the technique used to generate the projection places
indeed points which are similar in the input high-dimensional space close to each
other, an explanation is synthesized for each such cluster, e.g. in terms of one
or a few representative samples that best characterize the data variation within
a cluster, or in terms of the dimensions that have the lowest variance over the
samples in a cluster [175, 130, 101]. This provides an effective and visually scalable
summarization of the projection in terms of a few representatives or attribute names.
However, clustering methods are challenged by the need to explicitly decide where
to draw borders between sets of observations. If such borders are not constructed
appropriately, the resulting visualization may convey wrong insights. Additionally,
clustering implies a hard partition of the projection into distinct regions which are
next separately explained. This works well for projections consisting of several
compact groups of points separated by large amounts of white space, but has
problems for projections which exhibit a fuzzier, more subtle, variation between
close points.

In machine learning applications, scoring metrics are proposed to determine
which attributes, also called features, determine a user-selected number of high-
dimensional observations to be close together (so called compactness metrics) or,
alternatively, which attributes make two or more groups of observations be far away
from each other (so called segregation metrics) [72, 64]. In spirit, such methods are
close to the aim of the work presented next in this chapter – that is, determine, or
rank, the dimensions which are mainly responsible for the appearance of groups of
close observations in projections. Yet, a key difference exists between the typical use
of dimension-scoring metrics in machine learning and the use of dimension-ranking
metrics in our own work:

• Dimension-scoring (in the first context) is typically done to explain why an
explicitly selected group of observations is different than another group of
observations. Explicit selection is done either by the user, or by using the
value of a so-called class attribute, in typical classifier design;

• Dimension-ranking (in our own context) will be done to explain why an
implicitly determined group of close observations is different from all other
observations in the dataset. There is no user-based or attribute-based explicit
delimitation of such groups. Rather, they are formed implicitly by the fact
that our method yields the same explanation for neighboring points.

Moreover, feature scoring techniques, while popular in machine learning, have
been quite sparsely used for the visual explanation of multidimensional projections.

137

Local Explanation of Multidimensional Projections

6.2 Method

6.2.1 Concept

Consider a high-dimensional dataset Dn Ä Rn, and a projection function, or
method, P : PpRnq Ñ PpRmq, where m ! n, and P denotes the power set opera-
tor. In our work next, we shall fix m “ 2, i.e., use two-dimensional projections. We
call the value Dm “ P pDnq the projection of Dn into a low-dimensional dataset
Dm Ä Rm, At the core of our proposal is the attempt to answer the following
question:

Given a group of close neighbor-points ⌫m Ä Dm, which dimensions V Ä
t1, . . . ,mu of the original high-dimensional data are the most responsible ones for the
fact that the points in ⌫m are close to each other?

Let us further refine this question. Assuming the projection function P is a ‘well
behaved’ one, it will aim to preserve distances (like e.g. most multidimensional scal-
ing techniques), or alternatively preserving neighborhoods (like e.g. t-SNE [194])
when projecting points from Rn to Rm. Consider now a small point-neighborhood
⌫m Ä Dm, and denote by ⌫n the high-dimensional points that project there, i.e.,
P p⌫nq “ ⌫m. If, indeed, P preserves distances and/or neighborhoods, as it is
expected from a good-quality projection, then the points ⌫m also form a (close)
neighborhood.

The key question next is: Can we determine some particular statistical aspect
of the data values of the points in ⌫n which explains why those points are close to
each other in Dn, i.e., form a neighborhood? If so, then the respective aspect is
also the reason why P has created ⌫m in Dm. Hence, by annotating ⌫m with the
respective aspect, when visualizing the projection Dm, we explain to users why the
respective neighborhood ⌫m has been formed by the projection.

Figure 6.1 illustrates the idea. In this example, we consider a dataset Dn

which consists of two well-separated point clusters ⌫n1 and ⌫n2 . Furthermore, let
us assume, for the sake of explanation, that the points in ⌫n1 are close because of
their strong similarity with respect to some dimension i of the n dimensions of
Dn; and points in ⌫n2 are close because of their strong similarity with respect to
some other dimension j. This is shown in the figure by the depiction of the axis-
aligned bounding boxes of ⌫n1 and ⌫n2 . Assuming that our projection P preserves
distances well, the corresponding 2D neighborhoods ⌫12 and ⌫22 will also show up
as well-separated groups of points in D2. If we can detect this fact, i.e., we can find
the identities of the dimensions i and j, we can next annotate the corresponding
neighborhoods ⌫21 and ⌫22 with the explanations V1 “ tiu and V2 “ tju, respectively.
For example, we can color-code the set V , using e.g. red to map dimension i and
green to map dimension j, and color map the projected points D2 by this color

138

6.2. Method

d
im

e
n
si

o
n
 i

dimension j

ν
1
2

ν
2
2

ν
1
n

ν
2
n

annotated by
dimension i

annotated by
dimension j

high-dimensional Dn low-dimensional D2

projection P

Figure 6.1: Annotating point-neighborhoods by the dimensions that best explain their exis-
tence in the low-dimensional projection space (right). For the high-dimensional
neighborhoods (left), their bounding-boxes are outlined.

coding. The resulting visualization (Fig. 6.1 right) then easily explains to the user
that the point-cluster ⌫21 is mainly formed because the respective high-dimensional
points (⌫n1) are close because of dimension i, whereas the point-cluster ⌫22 is mainly
formed because the respective high-dimensional points (⌫n2) are close because of
dimension j, respectively.

6.2.2 Ranking the dimensions

Let us now refine the above idea. We start by defining our two-dimensional
neighborhoods ⌫2

i

so as to be centered at each projected point q
i

P D2, as ⌫2
i

“ tq P
D2|}q´q

i

} § ⇢u, where ⇢ is a (small) radius, or neighborhood size. Given such any
neighborhood ⌫2

i

, we immediately find the neighborhood ⌫n
i

of the n-dimensional
point p

i

that maps, by projection, to q

i

, simply by point correspondence. Next, as
indicated above, we analyze the distribution of points in ⌫n

i

to compute a so-called
ranking, or ordering, of the n dimensions of our dataset. We denote this ranking
by the tuple, µ

i

“ pµ1
i

, . . . µn

i

q P Rn. Here, µj

i

P t1, . . . , nu, 1 § j § n, denotes the
fact that dimension µj

i

has rank j for the neighborhood centered at point i. In
other words, mu

i

is a permutation of the set t1, . . . , nu. Additionally, a low-rank
dimension, i.e. a value µj

i

for a low j, is more important in the explanation of ⌫2
i

than a high-rank dimension. The remainder of this section introduces two ways to
compute such rankings.
Euclidean ranking: The intuition behind this ranking method can be found if we

139

Local Explanation of Multidimensional Projections

consider the squared Euclidean distance between two points p and r

}p ´ q}2 “
nÿ

j“1

|pj ´ r

j |2, (6.1)

where x

j denotes the jth dimension of a point x. This distance essentially explains
the similarity of the two high-dimensional observations, and is composed out of
n contributions of the n dimensions. As such, we can say that a dimension j is
contributing the normalized amount

lcj
p,r

“ |pj ´ r

j |2
}p ´ r}2 . (6.2)

to the (dis)similarity of two high-dimensional points.
We can extend the above idea of dimension-contribution from a point p

i

to
the entire neighborhood ⌫n

i

centered around it. We define this per-neighborhood
dimension-contribution by averaging the per-point dimension-contributions of all
the neighborhood’s points as

lcj
i

“
∞

rP⌫n

i

lcj
p

i

,r

}⌫n
i

} , (6.3)

where } ¨ } is the set size operator. Intuitively, if lcj
i

is low for a dimension j, it
means that the respective dimension contributes little to the dissimilarity of points
in the neighborhood ⌫n

i

, and hence it is a strong factor in explaining why these
points are similar. Put in other words, a low lcj

i

value indicates that the axis-aligned
bounding-box surrounding ⌫n

i

is much narrower along axis j than along the other
axes.

To use the above metric to compare dimensions against each other for the
same neighborhood and also across neighborhoods, we need to ensure proper
normalization. For this, we use compute next the so-called global contributions
gcj of all dimensions j, simply by applying Eqn. 6.3 to the centroid of Dn and
considering, as neighborhood, the entire Dn. Having these values, we define the
(normalized) Euclidean ranking contributions of dimensions j at each point i as

µj

i

“ lcj
i

{gcj
∞

n

j“1

´
lcj

i

{gcj
¯ P r0, 1s. (6.4)

Intuitively, the above normalization will give more important (that is, low-valued)
contributions to dimensions which are very significant to describe the local similarity
of points, but which are less important for describing the overall dataset shape.
Variance ranking: An alternative to the above ranking is to use a variance-based
solution rather than one using Euclidean distances. For this, we proceed analo-
gously to the previous case. First, we compute the local variance LV j

i

of the j

140

6.2. Method

dimensions of all points contained in the neighborhood ⌫n
i

. Secondly, we normalize
these values by the global variance GV j “ varppjq of all values of dimension j

over all points p P Dn. Finally, we compute the variance ranking of dimension j

for neighborhood ⌫n
i

as

µj

i

“ LV j

i

{GV j

∞
n

j“1pLV j

i

{GV jq
P r0, 1s. (6.5)

Analogously to the Euclidean ranking, low values of the variance ranking indi-
cate dimensions which contribute little to the variance of points in a neighborhood,
thus dimensions which are good to explain the similarity of these points.

6.2.3 Visualizing single top-ranked dimensions

Using either Euclidean or variance ranking, we can produce a set R
i

“ tpj, µj

i

qu,
1 § j § n of dimensions and their ranking values for each point j. As explained
above, we are interested in low ranking values, as these show dimensions which
can explain best why points in a neighborhood are similar. As such, we next sort R

i

increasingly on the values of µj

i

. The order in which the dimensions j get permuted
due to this sorting give us the final ranks of the dimensions, from high (important
ones, having low µj

i

values) to how (unimportant ones, having high µj

i

values).

Color coding: A first option to get insight in this information is to visualize the top-
ranked dimensions d

i

P t1, . . . , nu of each set R
i

– in other words, to show, for every
single point p

i

P D2, the most important dimension d
i

that explains it similarity
with its neighbors. This amounts to visualizing a categorical value (dimension ID)
per point. Given the little space available in a (dense) 2D projection displayed as a
point cloud, we choose to visualize such values by color coding the projected points
by categorical colors indicating the identities of their highest-ranked dimensions.

However, this design would not work when the total number of dimensions n is
larger than (roughly) 10, as it is well known that it is hard to generate good categor-
ical colormaps with more entries. To solve this problem, we proceed analogously
to the solution outlined in Sec. 5.1.4 for visualizing the best visible dimensions
mapped to a projection axis. Specifically, we count, for each dimension j, the num-
ber of times it is selected as top-ranked over all points in D2. Next, we select the
C “ 9 most-encountered dimensions to color map via a color table produced with
ColorBrewer [74]. This essentially highlights the dimensions which are top-rank
for most points in the visualization. All other top-rank dimensions, which cannot
get a color due to the colormap-size limitations, get mapped to a reserved color
(dark blue in our case).

Uncertainty: If we were to directly visualize the per-point top-ranked dimensions d
i

with color coding, as outlined above, the result would show sharp color transitions

141

Local Explanation of Multidimensional Projections

in areas where the top-ranked dimension quickly changes between neighbor points.
Assuming that the coordinates of local neighborhoods in Dn vary (relatively)
smoothly, such sharp transitions do not occur, and are misleading. Additionally, in
most situations the top-ranked dimension does not explain all the similarity of a
local neighborhood – in other words, the ranks muj

i

are rarely all zero except a
single one being equal to one.

One way to encode the uncertainty of the top-ranked dimension d
i

as being
capable of explaining local similarity is to simply consider the values µd

i

i

of the
top-ranked dimensions d

i

. However, in practice, we have seen that such values
are, in general, quite small – this being, possibly, an effect of the so-called curse of
dimensionality. To obtain a more robust evaluation of uncertainty, we compute, for
a neighborhood ⌫2

i

, and for every dimension j, the sum �j

i

of the rankings µj

i

over
all points in ⌫2

i

for which j has been selected as top-ranking dimension, i.e.

�j

i

“
ÿ

p

k

P⌫2
i

^d

k

“j

µj

k

. (6.6)

Finally, we define the certainty, or confidence �
i

, that the top-rank dimension d
i

can explain well a local neighborhood around point i as the normalized value

�
i

“ �d

i

i∞
n

j“1 �
j

i

P r0, 1s. (6.7)

Simply put, defining the confidence by �
i

instead of µd

i

i

essentially smooths
out, or filters, large local variations of µd

i

i

. In other words, neighborhoods having
homogeneous top-rank dimensions get a high confidence, while regions having
points with different top-rank dimensions get a low confidence. Finally, we note
that, in Eqn. 6.6, we use a smaller neighborhood ⌫2

i

of radius ⇢
c

† ⇢ than the one,
of size ⇢ used to compute the local contributions (Eqn. 6.3). Intuitively put, the
larger ⇢ values allow us to compute the rankings more robustly, while the smaller
⇢
c

values allow us to capture the fine-grained variation of ranking confidence (see
also Fig. 6.2 next).

Having now the top ranks d
i

and their confidences �
i

, we visualize them over the
2D projection using the Voronoi-based (nearest neighbor) interpolation technique
presented earlier in Sec. 3.2.2 for the display of projection errors, by encoding top
ranks into categorical colors, and using confidences to interpolate between these
colors (� “ 1) and black (� “ 0q. Note that we use nearest-neighbor interpolation
instead of the smoother Shepard interpolation (described also in Section 3.2.2)
since our data values are categorical dimension IDs, for which interpolation of
higher order than nearest-neighbors does not make sense.

Figure 6.2 illustrates the proposed visualization applied to a synthetic dataset
of 3000 points. The points are sampled using a Poisson distribution from three
adjacent faces of a 3D axis-aligned cube, and next jittered from their locations

142

6.2. Method

radius ρ

ra
d

iu
s
 ρ

c

Figure 6.2: Dimension-based explanation of synthetic 3D cube dataset.

by uniformly-distributed random noise of amplitude equal to 5% of the cube size.
For projection, we use here PCA [97] rather than more complex techniques, as
PCA is simple and easy to interpret, and works well for this manifold-like dataset.
Rankings are computed by variance (Eqn. 6.5). The neighborhood size ⇢ is set to
10% of the diameter of D2. We see that the color-coded projection shows three
regions that match very well the three faces of the original cube. In other words,
our visual explanation technique has, indeed, succeeded to detect that each such
face is best explained by a single dimension. Moreover, we see that points that are
close to the cube edges have a low confidence (dark). This is, again, correct, since
neighborhoods ⌫n

i

centered around such points contain high-dimensional points
belonging to two faces of the cube, and can as such not be well explained by a
single dimension.

To help interpreting the color coding, a legend is added (Fig. 6.2 top-right) to
show the specific colors used for the three data dimensions x, y, and z, and also the
number of points of the dataset that are (best) explained by each dimension. As
visible here, the 3000 input points are split into three approximately equal groups.
This is correct, given that the cube’s sampling density is relatively uniform, i.e.,
each of its three faces has about the same number of samples.

To provide more insight into the explanation, we allow brushing the projected
points i to show their rankings µj

i

. This information is shown in the bottom-right
legend in Fig. 6.2, for the currently brushed point i “ 1447, located in the center
of the top face. For this point, the legend tells us that µ0 “ 0, i.e., there is no
variance of dimension x in the displayed neighborhood around this point. This is
correct, given that the respective cube face is orthogonal to dimension 0 (x) of
the dataset. Additionally, we see that the variances of dimensions 1 (y) and 2 (z)
are relatively equal – which is also correct, given that the respective neighborhood
contains roughly the uniform sampling of a plane.

143

Local Explanation of Multidimensional Projections

6.2.4 Visualizing top-ranked dimension sets

As mentioned above, in many cases it is hard to assign the explanation of similarity
of points in a neighborhood to a single dimension. So far, we approached this
problem by defining a confidence �

i

(Eqn. 6.7) to express how dominant the top-
ranked dimension is in this explanation. This works well for situations where,
locally, a single dimension is responsible for a large part of the similarity of points.
However, in many cases, a point can have several such dimensions j, which
differ only very little in terms of values of their (high) rankings µj

i

. Using the
single-dimension explanation will generate a dark uninformative map, since most
such points will have, in turn, very low confidence values �

i

for their top-ranked
dimension d

i

.
A way to tackle this issue is to extend the possibility of explaining a neighbor-

hood by several dimensions rather than a single one. One way to do this is to let
the user define the number k of dimensions to be used for explaining each point.
However, this solution is impractical, as (1) one may not know what a good value
for k is for a given dataset, and, more importantly, (2) different regions in the
same dataset may be explained up to the same level by different values of k. This
phenomenon is analogous to the difficulty of choosing a good representative value
for k when computing the k-nearest neighbors of a non-uniformly distributed point
cloud.

Following the above analogy, a good solution – in the case of nearest neighbors
– is to use range search rather than k-nearest search. In our context, the analogy
works as follows: We define a global maximal ranking value ⌧ P r0, 1s. Next, for
each point i, we compute the maximal dimension-set D

i

“ tdj
i

u
j

containing all

its top-ranked dimensions dj
i

, in increasing order of µd

j

i

i

, whose summed rankings
∞

j

µ
d

j

i

i

is equal or just larger than ⌧ . Intuitively put, all these dimensions dj
i

have a
contribution on the inter-point Euclidean distance (or, alternatively, data variance)
smaller than a fraction ⌧ of the total distance.

The above formulation computes dimension-sets D
i

of varying sizes for the
different points i: If, for a point, many of its dimensions have low rankings, then
D

i

will be large. That is, we need many dimensions to explain why points in a
local neighborhood are similar. If, on the contrary, only few dimensions of a point
are good explainers (i.e., have low ranking values), then the set D

i

will be small.
That is, we can explain the similarity of points in a neighborhood by just a few
dimensions. Note that the dimension-set explanation converges in the limit to the
single-dimension explanation presented earlier in Sec. 6.2.3 – indeed, when either
⌧ is very small, or only all dimensions (except one) have large rankings, D

i

will
contain only the first, lowest-ranking-value, dimension. All in all, the dimension-set
explanation adapts itself to use as many dimensions as needed to explain a local
neighborhood, as specified by the user-given parameter ⌧ . Setting this parameter
is intuitive: Small values of ⌧ imply using, in general, few dimensions for the

144

6.3. Examples

explanation. This is good for the explanation simplicity, but explains only a relative
small fraction of the inter-point distances. Larger ⌧ values will explain a larger
fraction of the inter-point distance (which is good), but also need to use more
dimensions (which makes the explanation more complex). In the limit, setting
⌧ “ 1 explains the entire distance, but requires using all the n dimensions (as
expected). In practice, values ⌧ P r0.02, 0.3s have shown to give a good trade-off
between explanation accuracy and conciseness.

Once we have computed the dimension-sets D
i

, we proceed to visualize them
similarly to the single dimensions used earlier. That is, given a categorical color
table with C entries, we find the C dimension-sets which occur most frequently
over the entire projection, and assign to these colors from the table. All other
dimension sets (occurring less frequently) are mapped to a reserved color (dark
blue).

6.3 Examples

We illustrate our dimension-based projection explanations on three datasets (Fig. 6.3).
All datasets are projected by LAMP [95], which was selected as it is accurate, simple
to use, and was also studied extensively earlier in this thesis. The Euclidean and
variance ranking metrics were both tested, and we noticed them to produce very
similar results. However, the variance metric was found to be slightly more resistant
to noise and parameter variations, so we chose it to use next. The parameters were
set to ⇢ “ 10% of the projection size and ⌧ “ 0.05 respectively. Finally, we manually
added text labels atop of the same-color regions identified by our explanation, to
list the dimensions which were selected for explanation.

6.3.1 Wine quality

This dataset has 6497 12-dimensional points. Each point describes a type of
vinho verde wine [38] by means of 11 physicochemical properties, such as density,
concentration of chloride, concentration of sulfur, pH, and alcohol percentage. The
12

th variable is a (subjective) human-specified level of quality. For more details, we
refer to Sec. 5.2.1, where the dataset was introduced.

Projecting this dataset to 2D creates a relatively amorphous shape without clear
cluster separation (Fig. 6.3 a). When adding our single-dimension explanation,
we see how this shape is partitioned into three zones which are best described
by similarities in the alcohol rate, sodium chloride, and residual sugar dimensions
(purple, yellow, and red areas in the image). A smaller cluster of brown points
is wedged between the yellow and purple zones, being best explained by volatile
acidity. The borders of the same-color zones appear dark, which is indeed plausible,
as points here would be similar with respect to more than a single dimension.
Interestingly, these separation borders look relatively smooth, which indicated

145

Local Explanation of Multidimensional Projections

W
in

e
 d

a
ta

s
e

t
S

o
ft

w
a

re
 d

a
ta

s
e

t
U

S
 c

o
u

n
ti

e
s

 d
a

ta
s

e
t

Explanation by a single dimension Explanation by dimension sets

(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Dimension-based explanations of three datasets using a single dimension (left
column) and dimension-sets (right column). See Sec. 6.3.

146

6.3. Examples

(indirectly) that the projection succeeds in placing similar points close to each other
even at coarse scales.

If we use the dimension-set explanation, the four above regions appear to
further split (Fig. 6.3 b). Specifically, residual sugar is split into two zones A1 and
A2, which are best explained by (residual sugar, free sulfur dioxide, total sulfur
dioxide) and (residual sugar, total sulfur dioxide) respectively. We see how residual
sugar, which was previously explaining the large red region in the single-dimension
explanation, has been ‘inherited’ by the dimension-set explanation, which refined it
by adding two extra dimensions. Region A3 appears close to the border of the purple
and red regions in the single-dimension explanation, and is, indeed, explained by
their joint dimensions residual sugar and alcohol. Similar explanation-refinement
phenomena are seen for the regions A4 and A5. The remaining regions, identified
by dimensions sodium chloride, alcohol, and volatile acidity in the dimension-set
visualization, show points which can be still explained by a single dimension, even
if we allow multiple dimensions in the explanation.

As compared to the single-dimension explanation, we see considerably more
dark-blue points. This is not surprising – when we admit dimension-sets to the
explanation, it is very likely that more than C “ 9 such sets will be created (where
C is the size of our colormap). Interestingly, these appear to the periphery of
the projection. The reason for this may be related to the tendency of LAMP of
generating missing neighbors on the projection periphery (see Chapter 3). As
such, 2D neighborhoods around the periphery will correspond to widely spread
points in the original dataset; so finding concise explanations for such groups of
loosely-related points will be hard.

6.3.2 Quality of software projects

This dataset describes a corpus of open-source software projects written in C [121].
For each project, 11 software quality metrics were computed, by statically analyzing
their source code files, and averaging the results for the entire project. The provided
database contains 6733 projects (observations), each having 11 attributes (code
quality metrics). A separate 12

th attribute measures the number of times each
project was downloaded. The dataset was introduced in Sec. 5.2.4.

The 2D projection of this dataset exhibits two separate clusters. Using single-
dimension explanation (Fig. 6.3 c), the left one is best explained by total lines of
code, while the right one is split into two groups, best explained by total lines of code
and lack of function cohesion. The double occurrence of the same dimension (total
lines of code) in two areas of the projection is not erroneous: Brushing the points
shows that the respective regions are explained by two different ranges of this
attribute. Using dimension-set explanation (Fig. 6.3 d) splits the large same-color
zones shown earlier into smaller zones, much like in the wine quality example. The
left ‘lobe’ of the projection now becomes mainly blue, which shows that it contains

147

Local Explanation of Multidimensional Projections

smaller zones that can be explained by a limited number of variables as compared
to the right lobe; as such, the explanation algorithm prefers to assign the (few)
available colors to the right lobe and leave the left one unexplained. The right lobe
is split into several regions: A3 (adds lack of function cohesion to the explanation);
A5 (adds lack of function cohesion, number of function parameters); A4 (adds number
of function parameters); and A6 (adds number of public variables).

6.3.3 US counties

This 12-dimensional dataset describes social, economic, and environmental data
from 3138 USA cities [191]. As for the wine dataset, LAMP projects it into a single
clump. Using the single-dimension explanation, we see six large groups, of which
the largest two are characterized by the dimensions below 18 (years old) and
high school 25+ (Fig. 6.3 e). As for the previous two examples, the dimension-set
explanation refines these groups into smaller ones (Fig. 6.3 f). The below 18 group
gets split into four parts: A small purple part (still best explained by below 18);
A2 (adding dimensions unemployed, population density to the explanation); A3

(adding dimensions unemployed, population density, and percent of college/higher
graduates); and A1 (adding dimensions unemployed, population density, percent of
college/higher graduates, and median of owner-occupied housing value). The yellow
region in the single-dimension explanation gets split into a smaller yellow area
(still best explained by high school 25+); and a pink area A4, which adds population
• 65 years old to the high school 25+ explanation.

6.4 Discussion

Below we discuss several relevant aspects of our explanatory method.

Related work: Using color coding to explain salient dimensions in a projection is
also used by Gleicher [66] which employs a color field visualization to quickly judge
the importance of a dimension in a projected space. However, our way of defining
and computing the importance of a dimension, as well as the usage context, are
different from the above-mentioned approach.

Advantages: Arguably the main added-value of our method is its ability to treat
any projection, regardless of the presence of clearly-separated visual clusters herein
(see e.g. Fig. 6.3a,c). This is in contrast with other clustering-based techniques,
which need to separate the projection space into several areas which are next
explained. In contrast to this, our method partitions the projection space implicitly.
Separately, our method is fully automatic (the parameters ⇢, ⇢

c

and ⌧ working
well with the default values mentioned in this chapter). This is in contrast to
explicit clustering methods, whose output can depend significantly on clustering

148

6.4. Discussion

parameters, e.g., [175, 130, 101].

Simplicity: The proposed technique is easy to learn and use – in most cases, it
operates fully automatically, and only requires the user to read the color legends
and, optionally, perform some brushing to get more information on the displayed
clusters. Computationally speaking, our single-threaded CPU implementation of the
method in C++ runs in real-time for datasets of up to 10000 points on a standard
PC. As for the error explanatory metrics and 3D explanatory techniques presented
earlier in this thesis, our dimension-based explanation is generic, i.e., it can handle
any projection technique, as long as we know the high-dimensional coordinates of
the projected points.

Parameters: If desired, users can control various visual aspects of the explanation
using the method’s three parameters. Here, rho acts as a level-of-detail parameter
– large values create larger same-explanation regions, but also typically lower
confidence (thicker dark borders), and small values act in the opposite direction.
⇢
c

acts as a denoising filter: large values eliminate local variations, but create
thicker dark borders, and small values work in the opposite direction. Finally, ⌧
controls the balance between accurate explanations of the inter-point similarity
(potentially creating too many subregions which cannot be color mapped) and
coarser similarity explanations (which create less subregions, thus minimize the
chance that we exhaust the color map entries).

Hierarchy: As outlined in the examples in Sec. 6.3, the dimension-set explanation
refines the single-dimension explanation in a hierarchical nature. While we can-
not state that regions created by the former are always a partition of the larger
regions created by the latter, spatially speaking, we do see a quite good match
here. Also, we see that the finer-grained explanation used by the dimension-set
method for some region A always includes the dimension that the single-dimension
explanation produced for the region A1 that A most overlaps with. In other words,
the single-dimension and dimension-set explanations appear to create a two-level
hierarchy that partitions the dataset both spatially, and in terms of dimensions
used for explanations. Exploiting this observation to generate more refined visual
explanation methods is thus an interesting future work direction.

Limitations: As our explanatory methods use (categorical) color coding, they
are implicitly limited to the maximum size C of such colormaps. As shown in our
examples, C can be smaller than the number of regions required for the explanation,
both in the single-dimension and in the dimension-set modes. This limitation is
expected to become more problematic as the number of dimensions increases.
However, in this case, the dimension-set method has the chance of actually working
better than the single-dimension explanation, as a single region (using a color entry)

149

Local Explanation of Multidimensional Projections

can be explained by an arbitrary number of dimensions. Other limitations include
the lack of display of values of the dimensions over the identified same-explanation
regions. Separately, the Euclidean distance and variance ranking metrics, while
simple to compute, may not be the best way one can measure the contributions of
dimensions to similarities of close points. In this sense, it is extremely interesting
to study feature scoring, dimension correlation, and outlier detection metric well
known in machine learning [72, 64]. Fortunately, any such metric can be adapted
to be used by our visual explanation, and can be also easily added to the current
implementation of our method.

6.5 Conclusions

We have presented a simple and automatic technique that visually explains 2D
scatterplots, created by multidimensional projections, by the names of the original
dimensions. In contrast to other explanatory techniques for multidimensional
projections which aim at globally explaining the projection in terms of variances or
spreads of attributes, our approach focuses on explaining each local neighborhood
of close points in the projection by color-coding the attribute(s) that are most
responsible for placing those points close together.

Several directions can be envisaged to extend the local attribute-based expla-
nation of multidimensional projections presented in this chapter. First, automatic
segmentation of the regions implicitly created by our ranking techniques can be
easily produced using e.g. level-set techniques [165]. This would allow explicit
construction of labels or glyphs to explain such regions in more detail than by using
color-coding only. Secondly, such segments could be used to construct smoother
representations of the variation of the explanation confidence atop a single region,
by using e.g. the construction of generalized shaded cushions following the regions’
shapes, along the techniques presented in [182, 26]. Thirdly, our explanations
in terms of individual dimensions vs dimension-sets creates an implicit hierarchy
of coarse-to-fine explanations. Such explanations could be visualized in a single
image by adapting hierarchical shaded cushion techniques used for the depiction
of treemaps [196, 129]. All these directions open new possibilities for the compact
and intuitive explanation of multidimensional projections in ways which are simple
to understand for a large class of users. Finally, we intend to better integrate the
error-analysis techniques described in Chapters 3 and 4 with the attribute-based
explanations, in order to fully support the workflow of first filtering the projection
for high-quality regions, then exploring these regions regarding their representative
attributes.

150

6.5. Conclusions

Contributions

The text of this chapter is based on the paper Attribute-based Visual Explanation of
Multidimensional Projections (R. R. O. da Silva, P. Rauber, R. Martins, R. Minghim,
A. Telea), Proc. EuroVis Workshop on Visual Analytics (EuroVA), eds. E. Bertini and
J. C. Roberts, Eurographics Association, pp. 134-139, 2015. The key contributions
of R. Martins have been the adaption of the dense image-based error visualization
technique, presented earlier in this thesis in Chapter 3, to visualize attributes
and their confidence levels; the proposal of the variance-based ranking metric
(Eqn. 6.5); and the selection, analysis, and interpretation of the software dataset
(Sec. 6.3.2).

151

Chapter 7

Multidimensional Visual Analysis of
Networks

I

n the previous chapters, we have presented several types of methods that aim
to explain, or facilitate the visual interpretation of, multidimensional projections

from various angles: Chapters 3 and 4 present methods for explaining projec-
tion distance-related and neighborhood-related errors respectively; Chapter 5
presents methods that explain 3D projections in terms of axes related to the orig-
inal high-dimensional variables; and Chapter 6 explains local neighborhoods in
2D projections in terms of the most important attributes that are responsible for
creating these neighborhoods.

All the explanatory methods outlined above address projections of multidmen-
sional datasets whose attributes are, essentially, quantitative values. However, as
outlined in Sec. 2.1, such attributes can be of more types: integral, ordinal, cate-
gorical, text, and relational. From the perspective of our explanatory techniques,
integral, ordinal, categorical, and text attributes can be essentially treated in similar
ways to quantitative attributes when generating multidimensional projections, by
designing suitable dissimilarity or distance functions for the respective attribute
spaces, as shown by several papers [1, 24, 23].

In contrast to the above, relational attributes occupy a particular position in
the ‘attribute space’ defining multidimensional datasets. As outlined in Sec. 2.1,
their main difference with respect to the other above-mentioned attribute types, is
that they are defined on sets of observations rather than on individual observations
– indeed, this is the essence of the term ‘relation’. As such, visually depicting
relational attributes creates different, and particularly hard, challenges.

Relational datasets, also called networks or graphs, are ubiquitous in many
application areas. There is, for example, a great amount of information regarding
human relationships in social networking sites and databases that can be used for
various purposes, such as to investigate preference patterns to support commerce
and production sectors, to detect and investigate illegal activities, and to discover
new forms of communication among individuals [37, 102]. In a different field, the
structure, dependencies, and operation of large software systems can be described
and analysed as multivariate networks of relationships between entities such as
files, packages, components, classes, methods, tasks, developers, change reports,
and bugs [46, 45]. Many other application domains generate networks, such as
the transportation sector [87], biology [16], and medicine [56].

The most common way to represent networks in visual analysis tools is by using
graphs drawn using the well-known node-link metaphor [75, 83], an approach

Multidimensional Visual Analysis of Networks

that highlights relationships (edges) between actors (vertices) and groups of actors.
Various algorithms and tools for graph drawing exist [44, 70, 7]. Recent techniques,
such as multilevel layout algorithms [59] and edge bundling techniques [82, 61, 85]
succeed in creating drawings of graphs having millions of nodes and/or edges with
limited clutter and good overview of the high-level graph structure.

However, networks may include also attributes for their vertices and/or edges,
which can be of all the above-mentioned types (quantitative, intgral, ordinal,
categorical, and text). Such attributes are (at least) as important as the relations
that describe the network itself to understanding and using the network data. As
such, the grand challenge of understanding relational attributed datasets regards
the visual depiction of both relations and node-and-edge attributes in a scalable
and understandable way.

As we have seen in the previous chapters, multidimensional projections are
effective and efficient techniques for depicting large multidimensional datasets,
especially when the analysis tasks at hand regard the detection and understanding
of groups of similar observations and the detection and analysis of correlations of
attributes. As such, it seems natural to consider adapting such techniques for the
(more challenging) task of depicting large multivariate networks, i.e., networks
whose nodes and/or edges have several data atrributes, and whose analysis should
jointly consider the network structure and attribute values. In this chapter, we
address this challenge, at two different levels, as follows.

First, we show how the relational data present in a network can be regarded
in similar ways to the distance information implied by multidimensional datasets.
We next use this approach to construct network layouts, or graph drawings, that
emphasizes different kinds of connections between nodes. This approach has
similar goals to the well-known force-based techniques used in graph drawing
to generate embeddings of graphs [44, 48]. However, as we shall see, several
differences exist between our approach and classical force-based graph drawing.

Secondly, we show how to incorporate node attributes in constructing such
layouts, so that the resulting graph drawing emphasizes both connections between
nodes and node similarities due to their attribute values. When a network is
described not only by its relations, but also by attributes mapped on its elements,
then it is important that its visual layout reflects not only the connections of the
nodes in the network structure, but also the similarities of the nodes’ attributes.
Creating a graph drawing that reflects strictly the relational information is the
common use-case of force-based layouts. Creating a visualization that reflects
similarities of observations is the typical use-case of dimensionality reduction
methods, or projections. The additional requirement of considering both relations
and attributes at the same time, and producing a visual layout that reflects both
types of information, is explored in this chapter.

More than one view of the same graph can be generated at once to provide views
of different contexts on the same data, and the resulting views can be coordinated

154

7.1. Preliminaries

to cross-analyse attribute against structure in the network, or even to associate
properties of different networks with shared individuals. The goal of the concurrent
use of these two approaches is to support data centered visual exploration of
networks and to promote easy visual location, in the layout, of groups of nodes
that are also related by their properties.

The structure of this chapter is as follows. In Section 7.1, we explore the
similarities and differences of relational (graph) data and multidimensional data,
with the aim of establishing a conceptual framework that will further let us (a)
model relational data as multidimensional data and (b) unify both data types to
handle them by multidimensional projections. Section 7.2 presents our use of
projection techniques to construct visualizations for multivariate network data.
Section 7.3 presents several applications of our proposed visualization methods
for the visual exploration of real-world multivariate networks. In Section 7.4 we
discuss some of the more important aspects of our proposal to use multidimensional
projections for the visualization of attributed networks, and Section 7.5 concludes
this chapter.

7.1 Preliminaries

Let G “ pV,E “ V ˆ V q be a graph, where V “ tx
i

u denotes its nodes or vertices,
and E “ tpx

i

P V,x
j

P V qu denotes its edges respectively. A multivariate attributed
graph further associates several attributes to its nodes and/or edges. In this sense,
the node-set V is basically identical to our by now well-known set of observations
which are the target of multidimensional data visualization methods.

Let us now consider the main high-level goals, or tasks, of graph visualization:
For a non-attributed graph, a good drawing thereof should convey (1) the strongly-
connected components, or node groups, in the graph; (2) the main connectivity
patterns linking the above-mentioned node groups; (3) the paths between (ideally)
any pair of nodes in the graph [109, 202]. With due simplification, these tasks can
be described in terms of a similarity metric: Nodes which are connected should
be placed close to each other in the resulting graph drawing; and, consequently,
groups of strongly connected nodes should be compact, and placed at a distance
from each other that reflects the aggregated connection strength between their
node elements. In other words, the connection pattern between nodes in a graph
can be modeled as a similarity, or distance, matrix A “ pa

ij

q where a
ij

models
the connection strength between nodes x

i

and x

j

. In the simplest case, a
ij

equals
one if nodes x

i

and x

j

are connected by an edge, or else it equals zero. In this
case, A is also called the adjacency matrix describing the graph G. Alternatively,
a
ij

can be set to model the (positive real-valued) connection strength, or weight,
of the edge px

i

,x
i

q. These aspects are reflected by many existing graph drawing
methods. For instance, force-based methods explicitly model node connections in
terms of a distance, or energy, function described by the combination of an elastic

155

Multidimensional Visual Analysis of Networks

spring and repulsion factor [48]. More recent scalable graph drawing methods
model the entire graph structure as a distance matrix which is next subjected to a
minimization process [103, 104, 62].

In parallel, let us recall the main goal of multidimensional projection methods –
that of generating a placement of the observations x

i

in a low dimensional space
(typically, 2D or 3D) so that inter-observation distances in this space match the (typ-
ically Euclidean) distances between observations in their original high-dimensional
space, as given by their attributes. As outlined in Sec. 2.3.1, multidimensional
projections can use either the original observations x

i

or alternatively the distance
matrix A “ p}x

i

´ x

j

}q
ij

to compute the desired low-dimensional embedding.
From the above, it follows that, at a high level, the goals of graph drawing and

multidimensional projections are related: Both types of methods take as input a
matrix describing similarities between observations, and output a low-dimensional
drawing where distances between observations should reflect the above-mentioned
similarities. As such, it follows that both tasks of standard (non-attributed) graph
drawing and multivariate graph drawing could be joined in a single framework
based on the usage of multidimensional projections. This observation forms the
core of our visualization methods for (multivariate) graphs which are described
next.

7.2 Method

In line with the preliminaries outlined in Sec. 7.1, we present next two types of
methods for the visual depiction of networks. The first type of methods creates
graph drawings based solely on the connectivity (relational) information present
in a graph, by embedding nodes in the low-dimensional (2D) space so that their
distances reflect their graph-theoretic distances (Sec. 7.2.1). The second type of
methods adds node attribute information in the process of computing the low-
dimensional embedding, and thereby makes the resulting distances between drawn
nodes (also) reflect their attribute similarities (Sec. 7.2.2).

7.2.1 Connectivity-based projections

Our first proposal for creating a two-dimensional embedding of a network is to
map its connectivity pattern to a dissimilarity matrix, designed to reflect the goals
of the underlying data analysis. As a running example, we use a bipartite graph
G where nodes represent scientific papers and authors of these papers. Edges
exist between both types of nodes: Paper-author edges represent authorship of
papers; author-author edges model co-authorship of papers; and paper-paper
edges represent papers that have common co-authors. We can represent this
graph G by an adjacency matrix A “ pa

ij

q, where a
ij

has a binary value (0 or 1)
indicating whether two nodes (authors and/or papers) are related or not in the

156

7.2. Method

senses mentioned above. A more refined approach is to actually encode in the
values a

ij

the strength of connections between nodes. For this, we set a
ij

to (1) the
number of papers two authors have in common, if x

i

and x

j

are both authors; (2)
the number of authors two papers have in common, if x

i

and x

j

are both papers;
and (3) one, if x

i

and x

j

are a paper and an author thereof, respectively.
With the adjacency matrix A “ pa

ij

q described above, we next construct two
typesof dissimilarity matrices to create a two-dimensional embedding of the under-
lying research network using projection techniques, as follows:

1. Modified adjacency matrix: We construct a modified adjacency matrix
A1 “ pa1

ij

q where a1
ij

“ 1{a
ij

if a
ij

‰ 0 and otherwise a1
ij

“ k ¨ max

i,j

a
ij

,
where k is a fixed constant value. The matrix A1 is essentially a distance
matrix between papers and/or authors – if two papers and/or authors have a
strong connectivity, in the sense implies by the original adjacency matrix A,
then they will have a small distance in A1. We next use this distance matrix
as input for any projection method that accepts distance matrices, such as
the multidimensional scaling (MDS) methods overviewed in Sec. 2.3.1. As
outcome, the resulting projection will place nodes which are immediately
adjacent close to each other. In contrast, nodes which are connected by paths
having a length superior to one are not guaranteed to be placed at distances
proportional to the connecting path-length.

2. Shortest-path matrix: Consider the same graph G as outlined above. For
this graph, we construct a distance matrix A1 “ pa1

ij

q where a1
ij

equals the
length of the shortest path connecting nodes x

i

and x

j

, if such a path exists.
If the respective nodes are not connected by any path in G, then we set
a1
ij

“ k ¨ max

i,j

P , where P is the maximal path length between any two
nodes in G. By using this distance matrix A1 as input for a multidimensional
scaling method, the resulting projection will reflect more the global path-
length structure of G rather than small-scale connectivity patterns, such as
captured by the proposal listed at point (1) above.

The examples in Fig. 7.1 illustrates the characteristics of the connectivity-based
and shortest-path-based projections using IDMAP [122]) as a projection technique.
The input network is a dataset called VisBrazil which describes the publications
in the field of data visualization in Brazil for a period of 7 years (2003–2010). In
detail, this heterogeneous network includes 262 nodes (105 papers and their 157
authors). The network has 1861 edges, which represent author-paper relations
(representing the authorship of the papers), author-author relations (representing
co-authorship of papers), and paper-paper (representing co-authors of papers).

157

Multidimensional Visual Analysis of Networks

For this dataset, a paper can be thought of as a community of authors. The final
drawings of the projected observations encode the observation type into shape –
authors are circles and papers are square glyphs, respectively. The size of the nodes
maps their betweenness centrality, a measure that indicates how many shortest paths
between all pairs of nodes in the network pass through a given node, or, in other
words, the importance of the node in the exchange of information between the
nodes of the network [57, 19]. In this case, since the nodes are authors and their co-
authorships in published papers, nodes with high betweenness centrality indicate
important collaborators between different research groups (the exact centrality
value reflected by the nodes’ sizes is not important, only the comparison between
small and high values). In both the modified adjacency matrix plot (Fig. 7.1a) and
the plot using the shortest-path matrix (Fig. 7.1b), we can see that highly central
nodes (in terms of their centrality metric) are also located quite close to the local
center of the projection. Additionally, author nodes (circles) are color mapped to
show their productivity in the network, i.e., the number of published papers, using
an inverted heat (yellow to dark-brown) colormap. For papers, we set the color
to correspond to a value of zero (light yellow). The fact that most of the large
(author) nodes are also darker indicates that there is a direct relationship between
collaboration and productivity in this network.

a) b)

number of publicationspapers

authors
size: betweenness

legend:

Figure 7.1: Connectivity-based projections of the VisBrazil network constructed using the
IDMAP projection technique [122]. (a) Layout based on the modified adjacency
matrix. (b) Layout based on the shortest-path matrix.

From a first look at Figs. 7.1a-b, one feature becomes apparent – the presence of
isolated points that populate empty areas around the large interconnected groups
of points. Browsing these points, to show their data attributes, we find out their

158

7.2. Method

reason of showing up as outliers: These are small connected groups of papers
and/or authors that do not share any co-authorship with the remaining large
group of papers and authors. This feature can be found in most graph-based
bibliography analyses: There is usually a large connected component, explained by
the propagation of cooperation between researchers; the isolated graph fragments
represent small sets of papers of research groups with separate interest areas or
papers of newly formed research groups. As can be seen in Figs. 7.1a-b, both types
of distance matrices proposed above isolate such smaller groups from the larger
main component quite well.

The projection method we are using (IDMAP) is specifically developed to
consider distances between all pairs of points present in its input dataset, in line
with most other distance-matrix-based projection methods. Also, we note that there
is a large difference in connectivities (in the sense of number of edges, or node
degrees) between nodes present in the large central strongly-connected component
and the isolated small components. As such, nodes in these small groups will have
large distances to all other nodes, given by k ¨ max

i,j

pa
ij

q, as described earlier.
Consequently, these small groups will be placed far away from the central strongly-
connected component, leaving large areas of (unused) white space to surround
them.

We continue the analysis of the connectivity-based projections by focusing on
the main inter-connected group of authors from the VisBrazil network, comprising
222 nodes (89 papers, 133 authors) and 1739 edges (see Tab. 7.1). We call this
selected subset of observations VisBrazil-Main. The visualization of VisBrazil-Main,
created with the same parameters as the visualization of VisBrazil (Fig. 7.1), is
shown in Fig. 7.2.

Table 7.1: Differences between the datasets VisBrazil and VisBrazil-Main

Datasets Nodes Edges
Papers Authors Total

VisBrazil 105 157 262 1861
VisBrazil-Main 89 133 222 1739
Difference 15,23% 15,28% 15,26% 6,55%

In Fig. 7.2, we see that the relationship between the nodes’ computed centrali-
ties, encoded by their sizes, and their spatial positions in the central areas of the
layout, are more apparent for the shortest-path-matrix case (Fig. 7.2b) than in
the modified-adjacency-matrix case (Fig. 7.2a). This insight is useful to help us
understand how the shortest-path-matrix plot actually works: Nodes with high
centrality – those with short paths to most other nodes in the graph – are pushed
towards the center of the projection, which leads to the interpretation that central
nodes are hubs that connect peripheral nodes. Separately, let us consider the
position of the nodes which have a high centrality and high number of published

159

Multidimensional Visual Analysis of Networks

number of publicationspapers

authors
size: betweenness

legend:

a) b)

Figure 7.2: Connectivity-based projections of the VisBrazil-Main network, formed by the
main inter-connected group of authors from VisBrazil, using IDMAP [122]. (a)
Layout based on the modified adjacency matrix. (b) Layout based on the shortest
path matrix.

papers, i.e., the large-and-dark circles. We notice that their organization in the
two layouts (Figs. 7.2a-b) changes significantly: In the shortest-path-matrix plot,
these nodes are located, again, close to the local center of their surrounding node
distributions, confirming their positions as central interaction hubs int his social
network; in contrast, in the modified-adjacency-matrix plot, they are located at
various positions with respect to the surrounding nodes, thereby making it harder
to visually detect them as important interaction hubs. Following these insights, we
argue that projections created by shortest-path distance matrices are more effective
in highlighting the distribution of nodes, in such social networks, around central
communication hubs.

Combining projections and spring embedders: Besides being able, on their
own, to construct two-dimensional embeddings of networks, our projection-based
techniques are also useful as ‘preconditioners’ for classical force-based layouts used
to visualize such networks. We illustrate this in Figure‘7.3. The input dataset
consists of our entire VisBrazil network discussed above. Figure 7.3a shows a graph
layout created by using a standard spring embedder that iteratively adapts the
positions of the nodes, starting from random placements, until the total spring
energy captured by the graph’s edges, falls under a given value, or until a maximal
number of 30 iterations has been performed [48]. Figure 7.3b shows a layout of

160

7.2. Method

the same graph, using the same spring embedder and parameters, this time starting
from node positions given by the modified-connectivity-matrix method (Fig. 7.1a).
As can be seen in Fig. 7.3b, when a force-directed layout is applied after a projection
of the nodes, there is less likelihood of large groups of connected nodes ‘collapsing’
together in the layout, as it happens with a conventional force-directed layout with
random initial node placement (Fig. 7.3a). We shall analyse this property in more
quantitative terms later on in Section 7.3. Projecting nodes first before performing
the force-directed layout prevents local energy minima, in the force-directed layout,
from derailing force-based placements. Importantly, we note that even a force-
based placement where spring stiffnesses of the edges are given by connectivity
calculation can not produce such a separation effect. As such, our proposed use of
a projection step as preconditioner for applying a force-directed graph layout is of
added value.

Figure 7.3: Using connectivity-based projections of the VisBrazil network as a preconditioner
for a force-directed layout. (a) Force-directed layout starting from random node
positions. (b) Force-directed layout starting from node positions given by a
projection based on our modified adjacency matrix (Fig. 7.1a).

The movements of the nodes in Fig. 7.3b by the force-directed layout starting
from node positions determined by our projection reveal a better picture of small
sub-graphs to the left and right of the larger subgraph. These small subgraphs
represent small research groups working in relative isolation. Such subgraphs are
also visible in the original projection (Fig. 7.1a) in the sense of being separated
from the central strongly-connected graph component, due to the large distance
values we set in the modified adjacency matrix A1 between disconnected nodes.
However, by using the projection only, these small subgraphs appear as ‘collapsed’

161

Multidimensional Visual Analysis of Networks

to sets of overlapped nodes. In contrast, the force-directed pass used after the
projection keeps these components separated from each other, but also spreads
their nodes more uniformly over the available space, therefore decreasing clutter
and overlap (Fig. 7.3b). Finally, we note that, by using a force-directed layout
only, starting from random initial positions, nodes in the above-mentioned small
disconnected components get mixed with other nodes (Fig. 7.3a). To separate
these, a large number of force-directed iterations is required – and even if such an
iteration count is allowed, separation is not guaranteed, which in turn leads to a
cluttered layout. At a high level, the explanation of the above phenomena is as
follows: Both our IDMAP projection and force-directed technique are, essentially,
embedders that take as input a distance matrix and aim to create a two-dimensional
configuration of nodes whose 2D distances best approximates the given distance
matrix. However, differences exist between the working and heuristics of these
two techniques. In a general sense, neither of them is ideal: IDMAP may preserve
well distances from the input matrix, but this may cause nodes to be placed too
close to each other when such distances are too small; the spring embedder, on
the other hand, achieves better clutter and overlap minimization by its repulsive
forces [48], but cannot preserve distances between nodes as well as IDMAP. In this
sense, the combination of IDMAP (or, in the more general sense, a multidimensional
projection) and a spring embedder achieves a good combination between desirable
features of both types of techniques.

Comparing projections and spring embedders: Our final example, shown in
Fig. 7.4, shows a layout of the VisBrazil-Main dataset, i.e., the central strongly-
connected component of our authorship network, generated by 100 steps of a
force-based spring embedder starting from random initial positions. Interestingly,
the result shown in Fig. 7.4 reflects a spatial distribution of the nodes which is
quite similar to the one shown by the projection based on the shortest-path-matrix
(Fig. 7.2b): Both images show that the network is roughly divided into two large
groups, to the left and to the right of the projection, with a third smaller group
towards the bottom, mediated by a single well-connected researcher (marked as
Researcher #1). However, the force-based layout (Fig. 7.4) consistently settles
on smaller edges between the nodes, cluttering the organization inside the two
distinct groups and making it hard to distinguish between papers (squares) and
authors (circles). In contrast, the projection based on the shortest-path-matrix
(Fig. 7.2b) shows a clearer separation between nodes of different types, which
makes it easier to spot their effect on the network around them. Together with
the results presented in Fig. 7.3, this supports our claim that projection-based
techniques are good alternatives and/or preconditioners to force-based embedders
for the creation of low-clutter graph layouts.

162

7.2. Method

Figure 7.4: Connectivity-based projection of the VisBrazil network – 100 steps of force-based
layout with random initial positions.

7.2.2 Attribute-based projections

When a dataset is composed not only of relations, but also of (potentially multiple)
attributes that describe each observation (node) and/or relation (edge), a complete
visual analysis of this dataset must involve not only the exploration of its structural
connectivity patterns, but also of the similarities between its elements in terms
of their attributes. For this, the previously described techniques (Sec. 7.2.1) are
not enough, as these only consider the relations. To accommodate attributes, we
consider separately the two cases of edge attributes and node attributes. Edge
attributes are relatively easy to accommodate using the distance-matrix based
techniques outlined in Sec. 7.2.1, by weighting the entries a1

ij

of the connectivity-
based distance matrix A1 by the values of such attributes. This follows the typical
usage of edge attributes to model the importance, or strength, of an edge, which
is in line with the semantics of the connectivity-based distance matrix entries.
When multiple attributes are defined on an edge, they can be aggregated by e.g.

163

Multidimensional Visual Analysis of Networks

summation or averaging to compute a single weight. Node attributes, however,
are slightly less straightforward to integrate in the above solution, since they are
defined per observation rather than per relation. As such, we focus the discussion
in this section on node attributes solely.

We propose in this section an approach to combine, in one or more visualizations,
the two different viewpoints of a given network given by its relations and node
attributes. For this, we shall merge a number of distance matrices that capture
separate aspects of the network into a single distance matrix that reflects the
user’s analysis goals. This matrix is next used as input for a MDS-type projection
technique, in the same way as already described in Sec. 7.2.1.

To demonstrate the underlying idea, we first describe the dataset to be visual-
ized. This dataset, called next VisBrazil-Papers, is a subset of the VisBrazil dataset
introduced in Sec. 7.2.1, containing only the paper-type nodes (that is, no author
nodes) and edges linking them, which represent, as already explained, papers
that share at least one common co-author. Edges are weighted by the number
of common co-authors of their paper nodes. To this relational information, we
can add extra data concerning the contents of the papers. For this, we transform
their text contents into multidimensional attribute vectors by using the classical
Vector Space Model (VSM) representation of text documents [154]. In short, this
process extracts all words from each document, removes stopwords, transforms
the remaining words into so-called radicals, and removes radicals that occur less
frequently over the entire set of processed documents. Each document then gets an
attribute vector with one entry (attribute) per radical having, as value, the number
of times this radical occurs in the respective document (a similar approach was
used for the ALL dataset used in Sec. 5.1). Following this description, it becomes
clear why we eliminated authors from the dataset – these do not have the same
types of attributes as papers.

Connectivity vs attribute projections: Our first question is how does a projection
that solely uses the relational information in this dataset differ from a projection
that solely uses node-attributes. Figure 7.5 shows two visualizations that illustrate
these differences. Both visualizations are created by using the IDMAP projection.
Figure 7.5a uses a distance matrix computed from the VSM node-attribute rep-
resentation, where attribute-vectors are compared by using cosine distance, as
typical in document processing. Hence, distances between the nodes in this image
encode the dissimilarity of the documents’ texts. Figure 7.5b uses the shortest-path
distance matrix encoding the relations in the network (Sec. 7.2.1). Hence, distances
between nodes in this image encode the connectivity patterns in the network.

To make the comparison of the two projections in Fig. 7.5 easier, we subse-
quently cluster the nodes based on similarity of their VSM attributes, using the
Bisecting K-Means algorithm [174] (other clustering algorithms can be used equally
well), and next color all nodes in each cluster by the same categorical color. Since

164

7.2. Method

clusters
size: betweenness

legend:

a) b)

Figure 7.5: Two IDMAP projections of the VisBrazil-Papers dataset. (a) Projection using only
the VSM node attributes. (b) Projection using only the shortest-path distance
matrix encoding connectivity.

the clustering is identical for both projections, differences in the distribution of node
colors in the two images indicate differences in the way the two projections place
nodes in the two-dimensional embedding space. We notice that same-color points,
which belong to the same cluster, in Fig. 7.5a are placed near each other, reflecting
the fact that the layout favors similarities in the multidimensional attributes. In
contrast, there is no visible relation between node colors and positions in Fig. 7.5b.
Indeed, this image is a projection that places connected nodes close to each other,
regardless of their attribute values. On the other hand, the layout in Fig. 7.5b has
shorter edges and less edge-crossing, since, as explained, this projection follows the
network’s connectivity patterns. In contrast, edges in Fig. 7.5a are long and crossing
all over the projection, since this projection completely ignores the relational data
in the input dataset. This comparison shows two extreme viewpoints that can
be obtained from the same dataset, by considering its node attributes or its node
connections. Both viewpoints have their merits: Figure 7.5a is preferred if one is
interested purely in an attribute-based analysis; while Figure 7.5b is preferred if
one is interested purely in a connection-based analysis.

Combining connectivity and attributes: There are, clearly, cases when one wants
to analyse this type of dataset from a perspective that regards both attributes
and connections. For this, we need to merge both sources of information in the
construction of our projection. A simple way to do this is to compute two distance
matrices, one using only the connections (as explained in Sec. 7.2.1) and the second

165

Multidimensional Visual Analysis of Networks

one using the cosine distance between all attribute-vectors of all nodes; next, we
add these distance matrices to yield a final distance matrix that we use to compute
the projection. To stress connectivity vs attribute similarity, we can next weigh the
two distance matrices in the summation.

Figure 7.6 shows, for the VisBrazil-Papers dataset, the results of combining the
connectivity and attribute distance matrices, with equal weights, and applying the
IDMAP projection technique to the final matrix. Colors follow the same scheme
as in Fig. 7.5. Figure 7.6a shows the result when connectivity is captured by the
shortest-path distance matrix. Figure 7.6b shows the result when connectivity is
captured by the modified adjacency distance matrix. Several observations can be
made here. First, both images in Fig. 7.6 have a structure that appears to be an
in-between form of the extreme structures shown in Figs. 7.5a,b: Same-color nodes
are located relatively close to each other (like in Fig. 7.5a, when using only node
attributes in the projection); and strongly-connected node groups are placed close
to each other (like in Fig. 7.5b). Additionally, when using the shortest-path distance
matrix to encode the network’s connectivity (Fig. 7.6), we see how central nodes
(large circles) are placed far from the layout’s periphery.

a) b)

clusters
size: betweenness

legend:

Figure 7.6: IDMAP projection of the VisBrazil-Papers dataset, based on a combination of the
nodes’ attribute distance matrix and connectivity modeled by the (a) shortest-
path distance matrix and (b) modified adjacency matrix.

It might be the case that, depending on the analysis goals, one of the two
factors – connectivity or attributes – is more important than the other. To reflect
that in the resulting visualization, we can change the weights of the corresponding
distance matrices when summing them up to compute the final distance matrix.
Figure 7.7 shows this by using the same dataset and settings as in Fig. 7.6a, but

166

7.2. Method

having different weights on the two distance matrices. In the first image (Fig. 7.7a),
we set the weight of the attribute distance matrix to be 3 times larger than the
weight of the shortest-path matrix that encodes connectivity. As a result, same-color
(thus, similar) nodes are placed closer to each other than in Fig. 7.6a, the result
approaching more the purely attribute-based image in Fig. 7.5a. In the second
image Fig. 7.7b), we set the weight of the shortest-path distance matrix to be 3
times larger than the weight of the attribute distance matrix. As a result, strongly-
connected node groups are placed closer to each other, and the placement is less
influenced by the node attribute similarities. This can be seen by observing the
spread of the green nodes in the projection, which, even though similar, are pulled
to relatively far apart positions by their local connections to other nodes.

b)a)

clusters
size: betweenness

legend:

Figure 7.7: IDMAP projection of the VisBrazil-Papers dataset, using as input a weighted
combination of attribute and shortest-path distance matrices. (a) Attribute
distance matrix has a weight of 3; (b) Shortest-path distance matrix has a weight
of 3.

Merging of the attribute and connectivity distance matrices does not have to
include necessarily all the node attributes of the input dataset. Depending on
the analysis goals, when exploring a network the user might be interested in
the similarity of only one (or a few) attributes, instead of all of them. As such,
only these attributes should be included in the computation of the projection.
This can be easily done by considering only these attributes when computing the
attribute distance matrix, prior to merging it with the connectivity distance matrix.
Figure 7.8 shows such an example. The dataset and projection technique here
are VisBrazil-Papers and IDMAP, respectively, like in our earlier examples. The

167

Multidimensional Visual Analysis of Networks

projection uses a distance matrix merging the shortest-path distance matrix with an
attribute distance matrix considering only the year attribute of each node (paper).
Nodes are colored by their publication year, ranging from 1998 to 2010, and scaled
by their betweenness centrality. The resulting projection shows clearly how nodes
are positioned to reflect their connectivity pattern, with high-betweenness nodes
closer to the layout center, expected. In the same time, we see that same-color
nodes are placed quite close to each other – hence, the projection captures well
similarity of the year attribute.

years
size: betweenness

1998 2010

legend:

Figure 7.8: IDMAP projection of the VisBrazil-Papers dataset, created by a combination of
shortest-path distance and year-attribute-similarity matrices. Colors encode
values of the publication-year attribute, ranging from 1998 to 2010.

7.3 Applications

We next describe several applications of our techniques for visualizing multivariate
attributed networks. All applications take the form of using our techniques for
exploring a real-world dataset containing both relations and node attributes, and
describing relevant insights found by our visual exploration. Sections 7.3.1, 7.3.2,
and 7.3.3 address the utilization of network visualizations constructed using purely
connectivity information (Sec. 7.2.1). Sections 7.3.4 and 7.3.5 address the utiliza-
tion of network visualizations constructed using the combination of connectivity
information with node attribute values (Sec. 7.2.2).

168

7.3. Applications

7.3.1 Connectivity-based projections: Research networks

The analysis of networks representing interactions among researchers and their re-
search subjects is an application useful for several purposes, such as understanding
the evolution of a subject area and evaluating impact, influence or performance
from a certain point of view. This example is meant to illustrate the nature of
displays and types of analysis provided by connectivity-based projections.

The dataset, obtained from [3], is the collection of all citations of two major
journals in areas of computer graphics: IEEE Computer Graphics and Applications
(CG&A) and Computer Graphics Forum (CGF). The full graph of citations and
authors extracted from this dataset comprises 2471 papers and 3841 authors.
To explore this graph, we computed its modified adjacency matrix, and used this
matrix to project the nodes to 2D, using the IDMAP projection technique. Figure 7.9
shows two such projections. These visualizations are discussed next.

a) b)

outliers

Figure 7.9: Paper-author network for the CG&A and CGF journals, composed of 2471 articles
and 3841 authors. (a) Projection colored by graph degree; (b) Projection (drawn
without edges) colored by betweenness.

Figure 7.9 shows the first projection-based visualization of this dataset. We
see how the modified adjacency matrix distance-technique dedicates most of the
available 2D space to the large connected subgraph of authors and papers (the
crescent shape in Fig. 7.9a). We also see an isolated outlier, which represents the
projection of all papers and authors which are not connected to the large crescent
shape. These outlier nodes are actually the ones that determine the crescent-like
shape of the projection – in other words, for the highly-connected nodes in the bulk
of the graph to be placed (equally) far away from the disconnected outliers, the
bulk needs to assume the crescent shape visible in the projection. In Figure 7.9a,
nodes are colored by their degree (number of edges), using a blue-to-red colormap.
Figure 7.9b shows the same projection, this time drawn without the edges that
connect the nodes; also, node colors show now the nodes’ betweenness centrality

169

Multidimensional Visual Analysis of Networks

(introduced in Sec. 7.2.1), using a red to blue colormap. We see here how highly
central nodes, i.e. papers and/or authors that are highly cited, are distributed over
the layout of the projection, acting as ‘connection hubs’ between all nodes in the
network.

The above images are useful for locating the outlier papers and authors, as
being items which are disconnected from the main body of related publications.
However, as we have seen, the modified adjacency matrix technique collapses all
these outliers to a single location, making it impossible to further analyse potential
relations between them. To better see and analyse the structure of the disconnected
outlier component, we apply a force-directed layout to the paper-author graph,
initialized with the node positions delivered by the projection shown in Fig. 7.9.
Figure 7.10 shows the result. In the left image (Fig. 7.10a), we see how the
disconnected outliers, which were originally collapsed to a single 2D location, are
now spread over a larger area of the available 2D space, while the crescent shape
of the bulk of related publications is kept. This allows us to better see the structure
of the outlier component – or, in other words, the available projection space is used
more efficiently, in the sense that less whitespace is spent in showing that the outlier
component is disconnected from the bulk component. This result is not surprising:
Projection techniques, such as IDMAP which was used here, try to approximate the
input distances, provided in the distance matrix fed to the projection algorithm,
in the positions of the 2D points. Given the way our modified adjacency matrix
is computed (Sec. 7.2.1), it is not surprising that disconnected components are
placed far away from the remaining nodes in the projection, since they are marked
as being at very large distances from all nodes not being connected to them. In
contrast, force-directed layouts care far less about an accurate preservation of
high-dimensional distances. Moreover, the node-to-node repulsion terms used
in typical force-directed algorithms [48] spread the nodes away from each other,
thereby making a more effective use of the available empty space in the embedding
dimension.

7.3.2 Connectivity-based projections: Quality analysis

As shown in Sections 7.2.1 and 7.3.1, networks can be visualized by using multidimensional-
scaling-type (MDS) projections based on their modified adjacency matrices. The
examples given in the above-mentioned two sections show that such visualizations
look, globally speaking, similar to visualizations created by classical methods that
exploit the available relational information, such as force-directed methods. How-
ever, such insights are qualitative at best. To justify the use (and added value)
of projections as tools for constructing two-dimensional embeddings of networks,
more detailed measurements and comparisons of the quality of the produced
layouts needs to be done.

In this section we address the above task of quantitative exploration of the

170

7.3. Applications

outliers

a) b)

Figure 7.10: Paper-author network for all papers for the CG&A and CGF journals, laid out
with a spring embedder initialized by the projection layout in Fig. 7.9. (a)
Entire network, colored by journal ID. (b) Zoom-in on the disconnected outlier
component in Fig. 7.10a.

quality of graph layouts created by using our modified adjacency matrix. The
proposed procedure comprises the selection of a number of real-world network
datasets; the creation of two-dimensional graph layouts for these datasets using
(1) standard force-based techniques where node positions are randomly initialized;
and (2) force-based techniques where node positions are initialized based on our
proposed projection; and the comparison of a number of quantitative metrics,
measured on both types of visualizations, in order to compare their quality.

For our analysis, we employed three datasets of co-authorship networks: The
eurovis dataset includes all papers and authors of the proceedings of the EuroVis
Conference on Data Visualization, and its precursor symposium VisSym, from
1990 to 2010. The second dataset (vis) includes all papers and authors of the
proceedings of the IEEE Visualization and IEEE InfoVis conferences, from 2001 to
2010. The third dataset (agric) includes papers (and their corresponding authors)
published from 2009 to 2011 by Brazilian researchers on agriculture. Table 7.2
summarizes the sizes of the graphs formed from these datasets. The last column is
the percentage of nodes that belong to the larger connected component of each
dataset.

Table 7.2: Datasets used for the analysis of quality of connectivity-based projections.

Dataset Papers Authors Nodes Edges % Largest
Component

eurovis 420 865 1,285 4,838 59.1
vis 1,586 2,849 4,435 21,176 72.2
agric 2,220 3,958 6,178 30,965 73.2

171

Multidimensional Visual Analysis of Networks

For each of the above three datasets, we generated layouts based on classical
force-directed methods (further called force) and force-directed methods initialized
by our projection technique (further called proj-force). Figure 7.11 shows two such
typical layouts, for the eurovis dataset. As visible, and in line with the similar results
shown in Sec. 7.2.1, the two types of layout methods yield very different results.
However, from a visual investigation only, it is not possible to tell which of the two
layouts has a better quality. To measure quality in a more detailed and objective
way, we measure next three metrics, for each pair of layouts (force vs proj-force):
two metrics quantifying the distribution of nodes based on their connectivity, and
the number of edge crossings in the resulting layout. The metrics are averaged over
five runs of each dataset and each algorithm, to account for possible variations.
The aim of this experiment is to compare these metrics for the force and proj-force
techniques over the three considered datasets, and thereby quantitatively assess the
added-value, in terms of quality improvement, of using our projection technique as
initializer for a force-based placement.

(a) (b)

Figure 7.11: Layout for the eurovis dataset by (a) force-based method using random positions
(force); and (b) projection followed by force-based method (proj-force). Colors
indicate the k-means clusters in the dataset.

Figure 7.12 shows, for our three considered datsets, the first two quality metrics
we consider, which are the neighborhood preservation (npres) and neighborhood
hit (nhit), described in detail below.

Neighborhood preservation (npres): Given a number of k nearest neighbors,
npres measures the percentage of neighbors, averaged for all nodes, which are the
same in the two-dimensional layout as well as in the adjacency matrix A intro-
duced in Sec. 7.2.1. Higher npres values are, clearly, desirable. Preserving node
neighborhoods in two-dimensional layouts is, clearly, not an easy task in the case
of highly connected graphs. However, as the npres plots in Fig. 7.12(b,d,f) show,

172

7.3. Applications

node neighborhoods are consistently better preserved when using a force-directed
method preconditioned by a projection (proj-force) than when using a force-directed
method alone (force).

Neighborhood hit (nhit): We first cluster the points using a distance-based clus-
tering method – k-means in this case. Then, we count, for each node x

i

, the
number of its 2D k-nearest neighbors, with k being a free parameter, that fall into
the cluster in which x

i

is located, and average this quantity over all nodes to yield
the final plotted value. Figure 7.11 illustrates this for the eurovis dataset. Nodes
are here colored to show the identity of the clusters computed by k-means from
this dataset. We see that the node colors in the projection using the proj-force
method (Fig. 7.11b) seem to match the nearest-neighbors of their respective points
better than when using the force method (Fig. 7.11a). This is precisely the property
that nhit aims to capture. Figure 7.12(a,c,e) shows that preconditioning the force-
directed layout by a projection (proj-force) yields consistently higher nhit values
than when using a standard force-directed layout (force).

Several additional global observations are due to the quality analysis presented
in Fig. 7.12, as follows. First, we note that the maximal values for both npres
and nhit for our studied datasets, respectively npres “ 0.425 and nhit “ 0.83,
are not very large, given that the absolute maxima of both metrics is one. This
reflects the inherent difficulty of mapping the connectivity patterns of the three
considered relational datasets to a two-dimensional space. However, as stated
earlier, we obtain higher values for both metrics when using our proposed proj-force
method than when using the standard force spring-embedder method. As such,
we conclude that the projection-based preconditioning of force-directed methods
is beneficial in terms of increasing the quality of the final visualization. Secondly,
we see how both npres and nhit depend on the number k of considered nearest
neighbors. This phenomenon is expected – as discussed in more detail in Chapter 4,
preserving smaller neighborhoods is, in general, much easier than preserving
large neighborhoods. We also note that, to get a more detailed comparison and
understanding of neighborhood preservation issues involved with the force and proj-
force methods, we could employ here the fine-grained set-difference (Sec. 4.1.3)
and sequence-difference (Sec. 4.1.4) views. However, our current purpose is
to obtain a global understanding of which of the two considered graph-drawing
methods, force and proj-force, has a higher quality, rather than interpreting the
fine details and errors of a given projection. As such, we prefer for this task the
aggregated error plots shown in Fig. 7.12. Finally, we note that we obtained similar
npres and nhit curves, and observed a similar quality advantage of the proj-force
vs the force method, when using other projection techniques than IDMAP, e.g.,
LSP [139]. This increases our confidence when we state that multidimensional
projections are useful precoditioners to force-directed layouts.

To get a better insight in the perceived advantage of proj-force as compared

173

Multidimensional Visual Analysis of Networks

(a) (b)

(c) (d)

(e) (f)

Figure 7.12: Quality plots for both force and proj-force layouts. Top row: eurovis dataset;
middle row: vis dataset; bottom row: agric dataset. Left column: neighborhood
hit metric. Right column: neighborhood preservation metric.

to force, we computed, for each pair of plots (i.e., npres
force

vs nhit
force

and
npres

proj´force

vs nhit
proj´force

), the significance of their differences. For this,
we used a simple statistical t-test. The resulting p-values are shown in Table 7.3.
They demonstrate the growing significance of the advantages of performing a
multidimensional projection as an initial step to a force-directed layout, as the
number of nodes grows. Table 7.3 also shows our third and final quality metric used
to compate the force and proj-force methods – the number of edge-crossings counted
for a given layout. As well known from numerous analyses, edge-crossings are
undesirable artifacts in a graph drawing, as they impair the easy and reliable reading
of the connectivity information conveyed by a node-link visualization [125, 181].
As such, graph visualizations which minimize such edge crossings are preferred. In
Tab. 7.3, we see that the number of edge-crossings is (significantly) lower for the
proj-force method as compared to the force method. This is an additional argument

174

7.3. Applications

in favor of our proposal to precondition force-based layouts by multidimensional
projections.

Table 7.3: Aggregated comparison values for proj-force and force plots.

Dataset nhit p-value npres p-value edge crossings edge crossings number of
proj-force force clusters

eurovis 0.25 0.16 45,600 54,500 10
vis 0.17 0.17 1,620,000 2,900,000 10
agric 0.0013 0.029 4,000,000 7,900,000 15

7.3.3 Connectivity-based projections: Neighborhood preservation

Section 7.3.2 has presented an aggregated quantitative analysis of the added-value
of preconditioning force-based graph layouts by multidimensional projections. As
mentioned in that discussion, these aggregated views fulfill their aim quite well –
that is, showing whether and how much one gains from using projections before
force-based layouts.

A separate question is: How to provide fine-grained insight in the quality issues
involved in our projection-based methods used for the visualization of networks?
In other words: How can/should we adapt the detailed neighborhood preservation
views, presented in Chapter 4 for multidimensional datasets, to handle multivariate
relational datasets? To answer this question, we adapt the set difference view
described in Sec. 4.1.3 to the context of networks. In detail, to do this, we
need to provide a definition of distances in the high-dimensional space between
observations, which are used to compute neighbor sets (Eqn. 4.3). For this, we
proposed to use in our network context the shortest-path distance matrix introduced
in Sec. 7.2.1.

While the shortest-path distance matrix can, technically, be used without modifi-
cation to compute the set-difference view, in terms of finding the high-dimensional
k-neighborhood of any node, there are several special cases where this idea needs
to be adapted, as follows:

• In many not strongly-connected graphs, some nodes may not have k

neighbors. In this case, a method that determines a k-neighborhood of a
node x

i

may include as k-neighbors of x
i

, and for certain k values, nodes
that are not connected to x

i

. This is due to the fact that, in our shortest-paths
distance matrix, distances between disconnected nodes are all set to the
fixed value max

i,j

P , where P is the maximal path length between any two
nodes in the input graph (Sec. 7.2.1). To handle this, we adapt the global
user-provided value of k nearest neighbors in a local way: Given a value
of k, a node x

i

will have k1 † k neighbors considered in its neighborhood-
preservation analyses, if the connectivity structure of the input graph states
that x

i

has only k1 nodes connected to it. The same value k1 is used next

175

Multidimensional Visual Analysis of Networks

to determine the number of neighbors of the projection of x
i

in 2D when
computing, for example, the neighborhood-preservation npres quality metric
(Sec. 7.3.2).

• In a shortest-paths distance matrix of a network with discrete edge
weights, several k-neighbors of a node x

i

may have the exact same dis-
tance to x

i

. The problem here is that, when computing the k-neighborhood
of x

i

given by this distance matrix, the search for neighbors may finish with
an arbitrary neighbor that has precisely the same distance to x

i

than several
other neighbors. Since all these neighbors have precisely the same distance to
x

i

, we do not know a priori which to include in the k neighbors of x
i

. This is
a well-known ‘tie’ situation encountered also when one searches for k nearest
neighbors in Euclidean distance spaces [6]. To solve this problem, we include
in the k-neighborhood of x

i

all neighbors having equal distances to x

i

equal
to the distance of the kth neighbor. Thereby we solve the aforementioned ties
by including all of them in the k-neighborhood of x

i

. Note that the problem of
ties is also present in the original set-difference view presented in Sec. 4.1.3,
albeit to a lower extent, since the likelihood that many high-dimensional
Euclidean distances between observations are precisely equal is far less than
in the case of using connectivity distance matrices with discrete edge weights.

With these two adaptations, the set difference view in Sec. 4.1.3 can be applied
to connectivity-based projections in order to compare the k-neighborhoods of points
in the original (network) space, given by the shortest-paths distance matrix, and
those implied by the resulting network drawing in 2D. Figure 7.13 presents the
results of such an analysis for the eurovis dataset – one showing the full paper-
author network (Figs. 7.13a,c) and the second one showing the largest connected
component (Figs. 7.13b,d), for the two types of distance matrix proposed in
Sec. 7.2.1, i.e., the modified-adjacency and the shortest-paths distance matrices.
The chosen projection method was ISOMAP [184]. The number of considered
nearest-neighbors k was set to 10% of the total number of nodes in each graph, i.e.,
128 nodes for the full graph, and 72 nodes for the main component, respectively.

The layouts resulting from projections of the full eurovis graph (Figs. 7.13a,c)
are very different from each other, while the layouts resulting from projections
of the main component (Figs. 7.13b,d) are more similar. Nodes in these figures
are colored by the neighborhood-preservation error, using a blue (low) to red
(high) colormap. This confirms the large impact that sets of small disconnected
sub-graphs have in the final results of the projections of networks, in line with
earlier findings discussed in Figs. 7.9 and 7.10 and related text. In Figure 7.13a
it is possible to discern that these small isolated subgraphs (dark blue component
to the right of Fig. 7.13a) all show a very low neighborhood preservation-error, as
illustrated by the node’s colors, while the highest errors are located in edges that
reach this subset of isolated graphs. These errors are very likely due to the close

176

7.3. Applications

a) k = 128 b) k = 72

c) k = 128 d) k = 72

NP: Set Difference

min max

Full Graph Main Component

M
o

d
ifi

e
d

 A
d

ja
ce

n
c
y

S
h

o
rt

e
st

-P
a

th
s

sub-graphs

sub-graphs

Figure 7.13: Analysis of neighborhood preservation using the set-difference view for two
versions of the eurovis dataset. (a,c) Full network. (b,d) Main connected
component. The graph drawings were created by (a,b) the modified adjacency
distance matrix; and (c,d) the shortest-paths distance matrix of the considered
networks.

177

Multidimensional Visual Analysis of Networks

positions of these nodes in the 2D layout, while the original (connectivity-based)
distances are quite large, as this component is disconnected from the remainder of
the graph. The remainder of the network (large component in the center and left
of Fig. 7.13a) is roughly divided in horizontal bands of points with similar levels
of neighborhood-preservation errors. This reflects the tendency of the modified
adjacency distance matrix to group immediate-neighbor nodes with less focus on
the global distances. Two groups of nodes with smaller errors are positioned on
the top and the bottom of the layout (green-cyan nodes in Fig. 7.13a), while the
central area is populated with nodes having middle-to-high errors. This indicates
that these central nodes (authors and papers) have a more confusing neighborhood
structure on the original graph, in terms of having many connections with several
node groups, which are hard to embed in two dimensions.

The shortest-paths-based layout of the full graph (Fig. 7.13c) is not very infor-
mative: The large main component of the graph has collapsed into a small lump of
nodes (compact component showing warm colors to the top-right in Fig. 7.13c).
All other other smaller sub-graphs have a low neighborhood preservation error
and are spread around the 2D space. This shows that, for this specific projection,
using distances from all pairs of points might induce a process of distortion of inter-
point similarities inside the main component and the inter-group dissimilarities
between all sub-graphs. On the other hand, the similar layout and distribution
of neighborhood-preservation of the two projections of the main connected com-
ponent of the graph (Figs. 7.13b,d) are an interesting indication that the original
structure of this large group is well captured, showing a few important sub-groups
with high connectivity, linked by a few nodes representing their research collabora-
tions. Given of this characteristic of this part of the graph, these sub-groups and
their structure are well preserved in the 2D layout, regardless of using the modified
adjacency or shortest-paths distance matrices.

Besides the variations caused by the structure of the network and the input
distance matrix used in the projection process, different projection methods will
also generate different layouts depending on how their inner algorithm works. In
order to better clarify the effects of the projection method on the layout of the
networks and their correspondent neighborhood preservation errors, in Fig. 7.14 we
show two extra projections of the full graph, using the modified adjacency distance
matrix as input (in line with Fig. 7.13a). The multidimensional projection methods
used here are IDMAP [122] and classical multidimensional scaling (MDS) [17].

As observed in Fig. 7.13, the set of small isolated sub-graphs behaves, again,
very differently for each projection technique. With the IDMAP projection method
(Fig. 7.14a), these graph components are collapsed into a single 2D location. This
is a common pattern for this projection method, as shown, for example, in Figs. 7.1
and 7.9. While it may seem that these sub-graphs are being neglected by the
projection, in favor of laying out the largest group, the wide empty circular area
that is kept around them suggests that it is not so: Their inner organization of

178

7.3. Applications

a) IDMAP b) Classical MDS

NP: Set Difference k =128

min max

Figure 7.14: Analysis of neighborhood preservation errors using the set difference view
for the eurovis dataset, using different projection techniques. The network
connectivity is encoded by using the modified adjacency distance matrix.

these small components is not shown, but their effect on, and distance to, the
other nodes, which is due to the high distances in the distance matrix between
disconnected nodes, is clearly reflected. Inside the main connected group in
Fig. 7.14a, patterns between the nodes are hard to discern, as most of these nodes
are regularly distributed in the 2D embedding space and also show mid-to-high
neighborhood preservation error. Yet, these values are quite different from the
errors shown for the two smaller groups on the left and right sides of the projection,
which have lower neighborhood-preservation errors.

Figure 7.14b shows one final comparison of our eurovis dataset, using this time
a layout constructed by the classical MDS projection method [17]. In this case, in
a similar way to Fig. 7.13c, most nodes of the main component were collapsed
into a small 2D area, making it hard to discern their inner organization. The
neighborhood preservation error in this central area is high (red cluster of nodes in
Fig. 7.14b), hinting at a possibly inaccurate layout. Three groups of nodes, however,
were positioned in very distinct groups in long ‘arms’ stretching from the central
tight group. These arms also show lower neighborhood preservation errors than
the central group. This is an indication that the MDS projection method, when
used with a modified adjacency distance matrix, considerably favors the separation
of well-connected sub-groups instead of showing the often more complex layout of
tightly-connected node groups. Another characteristic of the layout of Fig. 7.14b
is that the smaller sub-graphs are not immediately visible, as with most other
layouts, but are mixed with the rest of the connected graph. This tells that, for

179

Multidimensional Visual Analysis of Networks

this particular projection method, the large dissimilarities between disconnected
nodes are not taken into account as much as, for instance, the IDMAP projection
illustrated in Fig. 7.14a.

7.3.4 Attribute-based projections: Multivariate software networks

Apart from social networks, such as those created by considering papers and authors
discussed in the previous sections, software systems offer another rich field for the
exploration of multivariate attributed networks. Indeed, software systems can be
described by graphs, or networks, where nodes are software entities, e.g. functions,
classes, files, packages, and subsystems; and relations describe the interaction of
such software entities, such as dependencies, call relations, data flows, include
relations, and code duplication [45]. Nodes have a wealth of attributes, such as
name, signatures, and software quality metrics [107]. Altogether, this delivers
us rich multivariate attributed graphs which we can explore to understand the
software systems at hand from multiple perspectives.

Below we describe several scenarios used to explore the multivariate network
structure of software datasets by our proposed multidimensional projection meth-
ods introduced in Sec. 7.2.1). The procedure for creating such networks from
software projects is outlined below.

1. Obtaining the source code: The source code of the studied software projects
was obtained from github [65], a popular source-code repository for open-
source software projects. For analysis, we selected several popular projects,
having many commits, active developers, and clones. For each project, we
selected to analyse its most recently updated revision in the project’s master
branch. We selected projects written in the C++ programming language, as
our software-analysis tools, which were used next to extract relations and
attributes from source code, support this language well.

2. Attribute extraction: To characterize the software entities in each project,
we need to extract a number of attributes for each such element. For these,
we used 37 code quality metrics frequently used in software maintenance,
including object-oriented measures such as structural complexity, coupling,
cohesion, and descriptive measures such as total lines of code, total number
of methods and attributes [33, 10, 107]. We automatically extracted these
metrics from the downloaded source code of the studied projects using
Analizo [185], an open-source tool for source code static analysis. Other
static analysers, e.g. [183], can be used equally well. The result of this analysis
is a set of software entities, each being described by a 37-dimensional vector
of real-valued (quantitative) attributes.

3. Relation extraction: The software entities identified in our studied projects
are connected by dependency relationships which are explicitly defined in

180

7.3. Applications

source code in terms of method calls – an entity A depends on an entity B

when at least one method of A calls at least one method of B. The resulting
dataset is typically known as a call graph in program comprehension [45].
For simplicity, we chose to consider edges as being undirected. The weight,
or strength, of an edge connecting two entities A and B equals the sum of
the number of methods from A calling methods from B with the number of
methods from B calling methods from A. In our terminology, this is a discrete
edge attribute.

Merging these two features – multiple attributes per node from extracted
software metrics and connections between nodes – we construct multivariate
software network datasets that can be described either by the characteristics of
their individual nodes, or the relationships between their nodes, or both at the
same time, depending on the goals of the analysis. We next detail several visual
exploration applications of such datasets based on our projection methods.

Our dataset discussed in this section is based on the software project caffe, a
deep learning framework developed mainly by the Berkeley Vision and Learning
Center (BVLC) at the University of Berkeley, California [93].

Attribute-only projection: Considering first the multivariate nature of the dataset,
its many attributes (metrics) mapped on each element make it possible to construct
a first visualization of this dataset, using a multidimensional projection method
that positions the elements (nodes) in 2D based on distances that reflect their
attributes’ similarities. Figure 7.15 shows the result of applying the LSP projection
method [139] on this dataset, with no connectivity information considered during
the projection process.

metrics

min max

a) CBO b) DIT c) NOA

Figure 7.15: Attribute-based projection of caffe dataset, using the LSP projection technique,
with three color-coded metrics: (a) Coupling between objects (CBO); (b) Depth
of inheritance tree (DIT); and (c) number of Attributes (NOA) [33, 10, 107].

To get more insight in how attributes determine the projection, we color the
projected nodes in Fig. 7.15 by the value of three different selected metrics: (i)

181

Multidimensional Visual Analysis of Networks

coupling between objects (CBO), which counts the unique number of other types
(classes and interfaces) that are related to a node through method calls, method
parameter types, return types, thrown exceptions, and accessed fields [33]; (ii)
depth of inheritance Tree (DIT), which measures the maximum length of the class-
inheritance path from a given (class) node to the root of its inheritance tree [33];
and (iii) the number of attributes, which gives, for any node, the number of data
attributes our static analysis computed for that node.

The three color-coded metrics shown in Fig. 7.15a–c lead to various insights
and interpretations of the resulting projection layout. In Figure 7.15a, we see that
the values of the CBO metric are distributed in increasing order from top to bottom
(with only a few outliers), resulting in a color gradient along the y axis of the 2D
projection space. In other words, the CBO metric increases gradually from bottom
to top in this projection. In Figure 7.15b, the gap separating the two vertical bands
of points located at the left, respectively right, of the projection, appears to be
explained by the DIT metric, which takes only three possible values in the dataset –
low for the right group of points (yellow), high for the left group of points (orange),
and very low for a single outlier point located to the extreme left of the projection
(brown). Figure 7.15c shows that the NOA metric is related to the formation of
a tail-like structure in the lower part of the projection; all points in this structure
show high CBO and low DIT values, but they vary significantly with respect to their
number of attributes (NOA) values.

Connectivity-only projection: A different, but very common, way of looking at
the structure of a software project is to visualize it as a dependency graph, where
nodes can be files, classes, modules, methods, or any other structural element of
the programming language used; and edges represent connections between these
elements, e.g. dependencies, communication paths, or containment relations. Using
the connectivity-based projection techniques described in Sec. 7.3.1, Figure 7.16a
shows an LSP projection created from the shortest-path distance matrix of the caffe
dependency graph. In order to contrast this new layout with the one presented
in Fig. 7.15, we replicate it in Fig. 7.16b with a new visual encoding: The three
metrics displayed in separate subfigures in Fig. 7.15 (CBO, DIT, and NOA) and
are also shown by Fig. 7.16; however, we now attempt to let one visualize these
three metrics simultaneously, and therefore encode them into three separate visual
properties of the network nodes, as follows: (i) Since the DIT metric only assumes
three values in the entire dataset (0, 1 and 2), we encode it by node-glyph shape, by
using squares, circles, and triangles for the three values 0, 1, and 2 respectively. (ii)
The values of the NOA metric, which were shown earlier to vary mostly in a specific
region – the tail-like formation at the bottom of the projection in Fig. 7.15c – are
now encoded by glyph sizes; and (iii) the CBO quantitative metric is color-coded
by a heat colormap.

In Figure 7.16a, the glyph properties (colors, shapes, and sizes) appear to have

182

7.3. Applications

a) b)

size: NOA
DIT:

0 1 2 CBO

min max

legend:

c) d)

se
le

ct
io

n

selection

gtest gtest-all

UnitTestImpl

gtest

gtest-all

UnitTestImpl

high values of
DIT and CBO

gtest

gtest

Connectivity-based Attribute-based

Figure 7.16: Projections of the caffe dataset, using the LSP projection technique, with at-
tribute values encoded by node glyph sizes and colors. (a,c) Projection based on
the shortest-path distance matrix only; (b,d) Projection based on the attribute
values only. Bottom row (b,d) focuses the visualization on two selections of
nodes, and thereby renders nodes outside these selections as half-transparent.

183

Multidimensional Visual Analysis of Networks

little relation to the positions of the points, being randomly distributed throughout
the entire layout. This is expected, since the LSP projection used here uses purely
connectivity (shortest-path) information and no attribute information. The high-
DIT-valued nodes, however, are mostly distributed in a group of points in the
lower-left part of the main connected component in Fig. 7.16a, along with most of
the high-CBO-valued nodes. The tight grouping of nodes with these two attributes
may be explained by two observations: First, the way the CBO metric is computed
is also related to the dependencies (relations) of the network, since method calls,
which we consider here as edges between nodes, are one of the relationships
that are counted for the metric. This means that high-CBO-valued nodes are also
highly-connected nodes in the network; hence, a connectivity-based projection will
tightly group such nodes. Secondly, most of the high-DIT-valued nodes that form
the tail-like structure in marked in Fig. 7.16b are connected to a single other node
(gtest in Fig. 7.16b). This node is also high-CBO-valued and is positioned inside the
same tight group of nodes in the lower-left part of the main component marked in
Fig. 7.16a.

In order to understand better the shared characteristics of the connectivity-
based and attribute-based projections of the caffe dataset, we select the same group
of high-CBO-valued nodes in both Figs. 7.16c,d, which show these two projections,
and next manually browse their elements to investigate their similarities. By brush-
ing this group of points in both images at the same time, following a linked-view
metaphor, several insights appear: (i) The tail-like formation derived from the NOA
values is indeed well-hidden in the connectivity view (Fig. 7.16a); (ii) a few nodes,
such as the ones marked in Fig. 7.16d, have a very high degree or number of edges;
however, since the connectivity view favors placing nodes close to their connected
neighbors, this is hard to see behind the clutter; and (iii) the strongy-connected
and high-CBO-valued group of points marked in our selection is related to testing
code, and not the separate ‘production-grade’ code of the caffe software system.

Attribute-and-connectivity projection: As it can be noticed by the previous analy-
sis of Figs. 7.15 and 7.16, the two different views of the caffe dataset generated by
using either attributes or connectivity information are each useful in their own way,
showing insights that relate to different aspects of the system under investigation.
However, they both also have their limitations. The attribute-based view does
nothing to ensure that the resulting 2D layout is coherent with the dependency
structure (relations) of the network; this aspect is prominent when seeing the long
and multiply-crossing edges in Figs. 7.15 and 7.16b,d. In contrast, the connectivity-
based projection groups nodes by their dependencies (relations), but does little to
facilitate the examination of nodes with different attribute values; such nodes are
often collapsed into small areas which are too compact for visual exploration, or
alternatively they are spread randomly over the projection. To deal with situations
where both attributes and connectivities are equally important for the analysis at

184

7.3. Applications

hand, which is usually the case when investigating software systems, we can use
a projection based on the combination of attribute-based and connectivity-based
distance matrices introduced in Sec. 7.2.2. The results of using this approach with
the caffe dataset are shown in Fig. 7.17.

b)

size: NOA
DIT:

0 1 2 CBO

min max

legend:

a)

high C
BO

high CBO

high NOA

h
ig

h
 N

O
A

gtest

gtest

DIT = 1

DIT = 0
DIT = 0DIT = 1

Figure 7.17: Two LSP projections of the caffe dataset, using combinations of the attribute-
based and the connectivity-based distance matrices. Connectivity information
is represented using (a) the modified adjacency distance matrix, and (b) the
shortest-paths distance matrix.

Following patterns already observed in previous examples, e.g. Figs. 7.6
and 7.13), the projection that uses the modified adjacency distance matrix (Fig. 7.17a)
has a tendency of better using the available screen space, spreading the nodes
more evenly. In contrast, the projection that uses the shortest-paths distance matrix
(Fig. 7.17b) is more strict and tends to group nodes more strongly. Due to the
effects of the attributes, however, neither of the above two projections show the
high level of compactness of Figs. 7.16a–c. This makes it easier to discern structural
patterns among the nodes, such as the high-degree nodes separated from the main
group in Fig. 7.17b.

When looking at the visual encodings of the three metrics in Figs. 7.17a–b,
we rediscover the patterns previously observed in the attribute-only projection
(Fig. 7.15), even though our new projection in Fig. 7.17 combines attributes and
connectivity information. This stands our in contrast to the connectivity-only
projection (Fig. 7.16). The gradient of colors that depict the values of the CBO
metric is again visible, although in a different direction in each projection. Again,
we discover the group of high-valued CBO nodes close to each other; however, in
contrast to the attribute-only and connectivity-only projections, we now obtain a

185

Multidimensional Visual Analysis of Networks

more spread-out layout that allows for node interconnections to be explored more
easily.

The previously-noticed tail-like structure (Fig. 7.15) is now visible in both
layouts (Figs. 7.17a–b). This reflects the fact that, even though these nodes are
very similar in terms of connectivities, their values of the NOA metric increase
considerably and must be differentiated in the view. The edges that emerge from
these nodes, however, are now shorter and show less crossings, due to the better
positioning of the gtest node in relation to the group.

A final insight is found by looking at a direction perpendicular to the direction
of the color gradient showing the CBO metric. In this perpendicular direction, we
see how the DIT-metric values are distributed into different sides of the projection –
see annotations DIT “ 0 and DIT “ 1 in Figs. 7.17a–b – in a similar manner to
the effect shown in Fig. 7.15. However, in this case, instead of obtaining completely
isolated groups with different DIT values, we have a rough division of the projection
in two halves which still maintains the coherence given by groups of well-connected
nodes. The separation between the different DIT valued nodes occur inside each
node-group; this effectively combines both the insights that nodes in these groups
are (1) similar, in terms of connectivity; but (2) different, in terms of DIT attribute
values.

7.3.5 Multivariate software networks: Quality analysis

The next application is based on the source code of the Bitcoin project [126], a
digital currency trading platform implemented as a decentralized peer-to-peer
network. We use the multivariate software network of Bitcoin, extracted from
the project’s source code using the process described in Sec. 7.3.4, to investigate
the effects of using combined connectivity-and-attribute distance matrices, with
different projections methods, on the neighborhood preservation of the nodes in
the final 2D layout. For a fine-grained local quality analysis, we employ again the
set difference view adapted to multivariate networks described in Sec. 7.3.3.

Figure 7.18 shows the results of using different types of distance matrices to
generate projections, using the LSP technique, of the main connected component
of the Bitcoin dataset, which we next call Bitcoin-Main. The colors of the nodes
represent their neighborhood-preservation error, computed by the network-adapted
set-difference metric, using a colormap ranging from blue (low error) to red (high
error).

In the images presented in Fig. 7.18, each row contains projections created with
one of the three different approaches for the visualization of multivariate networks
presented in this chapter, which means that the original high-dimensional distances
used for creating the projections are different. For this reason, when computing
the neighborhood preservation errors of the projections of each row, the input
distance matrices used were different, as follows: a distance matrix generated from

186

7.3. Applications

NP: Set Difference k =120

min maxa)

b) c)

d) e)

A
tt
ri
b
u
te
-b
a
se
d

C
o
n
n
e
c
tiv
it
y-
b
a
se
d

C
o
m
b
in
e
d

Modified-Adjacency Shortest-Paths

Figure 7.18: Neighborhood preservation error (set difference view) analysis of the Bitcoin-
Main dataset, using LSP projections with different inputs: (a) Attributes
only; (b) Connectivity only (modified adjacency matrix); (c) Connectivity
only (shortest-paths matrix); (d) Combined attributes and modified adjacency
matrix; (e) Combined attributes and shortest-paths matrix.

187

Multidimensional Visual Analysis of Networks

Euclidean distances between the nodes’ attributes (Fig. 7.18a); the shortest-path
distance matrix, similar to the approaches described in Sec. 7.3.3 (Figs. 7.18b,c);
and a distance matrix combining the Euclidean distance between node attributes
and their shortest-path distance in the network (Figs. 7.18d,e). The number k of
nearest neighbors used when computing the neighborhood preservation errors was
set to 120, which represents 20% of the total number of nodes. This was raised
from the initial 10% used in previous applications (Sec. 7.3.3), due to the even
higher overall errors observed for lower k values.

A first interesting insight from Fig. 7.18 is that, besides the attribute-based
projection (Fig. 7.18a), all other shown projections, which use connectivity as a
factor, display relatively high neighborhood preservation errors (Figs. 7.18b–e). The
errors are especially large for the projections that use only connectivity information
(Figs. 7.18b,c). While the projections created from combined distances also show
a similar trend (mid-to-high errors), it’s possible to see that these contain several
relatively large areas (marked in Figs. 7.18d,e) with nodes with lower errors. These
areas are localized in the periphery of the resulting layout, with more central
nodes showing higher errors. This shows that these projections respect the original
structure of the input dataset (in terms of relations and attributes) better than the
connectivity-based projections.

If we compare the above observations with the completely different picture
shown in Fig. 7.18a, we see that the attribute-based projection shows mostly mid-
to-low error values over basically the entire layout. Hence, we conclude then
that using LSP for connectivity-based projections generates tightly-packed layouts
(confirming the features seen previously e.g. in Figs. 7.16a,c), which do not preserve
local neighborhoods very well. In contrast, the quality of LSP with attribute-based
(or combined) distance matrices is generally better. To test this observation, we
select the set-up shown in Fig. 7.18e – combined attribute-and-shortest-paths based
distance matrices – and use it to generate projections with two other different
previously-used methods: IDMAP and ISOMAP. The results of the neighborhood
preservation analysis, for the same value of k “ 120, are shown in Fig. 7.19.

The IDMAP projection of the combined distance matrix (Fig. 7.19a) also shows a
tight grouping of the nodes, similarly to what was observed with the LSP projection,
but with a clearly different error distribution: Instead of lower errors on the
periphery of the layout and higher errors towards the center, as the case of LSP
was, IDMAP shows exactly the opposite – central nodes have the lowest errors
seen in any of the combined attribute-connectivity projections of the Bitcoin-Main
dataset. While the nodes of the ISOMAP projection in Fig. 7.19b do not reach
the same low-error values of the IDMAP example (Fig. 7.19a), their errors are
still overall lower than those shown for all LSP-based layouts in Fig. 7.18. The
ISOMAP projection also has one other interesting characteristic: The error values
show a roughly linear gradient: At the right of Fig. 7.19b, nodes are more sparsely
distributed and their errors are lower than to the left of the same figure, where

188

7.4. Discussion

a) IDMAP b) ISOMAP

NP: Set Difference k =120

min max

Figure 7.19: Neighborhood preservation analysis of the Bitcoin-Main dataset, using the
IDMAP and ISOMAP projection techniques. Nodes are encoded by a combined
attributes-and-shortest-paths distance matrix.

nodes are more tightly-grouped and their errors are higher. Similarly to LSP, but
contrary to IDMAP, the tighter node groups of the ISOMAP projection show more
error, but at the same time the nodes with lower errors and their neighborhoods
are more visible. These observations positively corroborate our conclusion that
LSP, while working well with attributes, is arguably not a good candidate for
connectivity-based projections.

7.4 Discussion

Several aspects of our proposal to use multidimensional projections to create 2D
visualizations of attributed networks are important to discuss, as follows.

Distance-based projections: As already mentioned in Sec. 7.2.1, all projections
that were used in our construction of visualizations of attributed networks are
essentially multidimensional-scaling-type (MDS-type) projections. As explained
with several occasions in this thesis, a second class of projections exist, which ac-
cepts multidimensional observations rather than distance matrices, e.g., LAMP [95].
Although we have experimented with using such projections for constructing 2D
visualizations of attributed networks, our results so far have been markedly of
less quality than when using distance-based projections. The key problem here
seems to be related to the design of a meaningful multidimensional attribute vec-
tor for observations (nodes) which encodes both their attribute value and their
connectivity pattern. Technically, many schemes can be created which translate

189

Multidimensional Visual Analysis of Networks

relational information into attributes in an algorithmically consistent way. However,
our experiments so far have shown suboptimal results as compared to projec-
tions using distance-based matrices. As such, the usage of projections that do not
use distance matrices to create network visualizations is still an open research topic.

Mixing connectivity and attribute information: We have shown that we can
create projections based purely on a network’s connectivity information, its node
attributes, or a (weighted) mix of the two. Not unexpectedly, mixing connectivity
and attribute information creates visualizations which are, in a qualitative sense, an
‘interpolation’ of the visualizations using connectivity or attributes only. The added-
value of all these different visualization styles is highly dependent on the use-case
at hand – there are several envisageable scenarios where a connectivity-only, an
attribute-only, or a combined visualization are preferred. An interesting area for
further research, however, is exploring how one can control the visual differences
of such network layouts in terms of the used weights for the construction of the un-
derlying distance matrices. For instance, we would find it useful if it were possible
for users to specify how many units of two-dimensional (embedding) space were to
be affected by, e.g., relations, attributes, or even a specific selection of attributes.

Projection space: As illustrated by our several examples in this chapter, we can
create projections which differ visually in significant ways by varying several param-
eters, such as the kind of projection technique, type of connectivity-distance matrix,
weighting of attribute-distance matrix with the connectivity-distance matrix, and
selection of attributes being used in the attribute-distance matrix. The richness
of the exploration space opened by multidimensional projections is not surprising
– we have discussed a similar phenomenon for the use of projections to visualize
non-relational multidimensional datasets in Chapter 3. As such, and in line with the
discussion and findings outlined in Chapter 3, we note that our exploration of the
usage of projections to visualize multivariate graphs discussed in this chapter is only
a (very) limited sampling of the entire space of possible parameter possibilities. A
more thorough study of all combinations of parameter values is of clear added-value
in the sense of understanding the working of multidimensional projections. Let us
also note that this large space of parameters, or possibilities, is, at a higher level,
identical to the well-known space of possibilities for creating significantly different
drawings from the same graph. Just as we miss a comprehensive exploration of
the possibilities of drawing a graph, we advocate the need of better exploration of
possibilities of using multidimensional projections for drawing attributed graphs.

Projection quality: In this chapter, we have shown that aggregated neighborhood-
preservation errors (Sec. 7.3.2) and the more detailed set-difference views (Sec. 7.3.5)
can be effectively used to explore projection errors incurred when drawing multi-
variate networks with multidimensional projection techniques. However, several

190

7.5. Conclusions

other ways to quantify and visualize projection errors exist, as described in our
earlier work on distance-based errors (Chapter 3) and the sequence-difference
views for neighborhood preservation errors (Section 4.1.4). Technically speaking,
adapting these error metrics and visualization to work for multivariate networks is
straightforward. We leave the exploration of the insights delivered by these metrics
in the overall quality of multivariate network layouts constructed with projections
as a topic for future work.

Visual Presentation: In Chapters 3 and 4), we have shown several examples of
networks or graphs which use edge bundling techniques to spatially group edges
connecting closely placed endpoints (nodes). As explained in the respective chap-
ters, edge bundling creates simpler and less cluttered visualizations of large graphs,
and thereby helps one detect important connectivity patterns in the graph. In
contrast, the network visualizations shown in this chapter were created by using
the classical node-link metaphor for graph drawing. That is, nodes are placed
using multidimensional projections, just as in the applications described in Chap-
ters 3 and 4). However, instead of drawing edge bundles, we chose to draw edges
as straight lines. This visualization design decision was taken in order to focus the
attention of the reader, when examining the resulting images, on the specific details
of node placement, which are the key contribution of this chapter. Additionally,
steaight-line node-link drawings allow an easier discussion and comparison of the
impact of the different proposed techniques for creating graph layouts, while edge
bundling visualizations tend to focus the attention of the observer mainly on the
connection patterns represented by the edges.

However, the above does not mean that edge bundling cannot be applied to,
and is not useful for the visual exploration of, graph layouts constructed by the
projection techniques presented in this chapter. To illustrate this, Figure 7.20 shows
an alternative visualization of the graph layouts presented earlier in Fig. 7.6, by
using the edge bundling technique described in [182] and used earlier in Chapter 3.
Node colors and sizes encode the cluster identities and betweenness-centrality
measure respectively, as in Fig. 7.6. Edges are rendered with alpha blending. As
such, less dense bundles appear as half transparent (light gray), while dense
bundles containing many edges appear darker. As visible from Fig. 7.20, edge
bundling is very effective for showing the coarse-scale main connectivity patterns
in the depicted graph, and creates less cluttering than when using straight-line
drawing. In the same time, individual edges in the graph cannot be easily followed
in the bundled visualization – a well-known limitation of edge bundling techniques.

7.5 Conclusions

In this chapter, we have explored the use of multidimensional projections for the
construction of visualizations of multivariate attributed graphs, of networks. The

191

Multidimensional Visual Analysis of Networks

a) b)) b)

clusters
size: betweenness

legend:

Figure 7.20: Alternative network visualization with edge bundling [182], using the same
node coordinates shown in Fig. 7.6. Bundle opacities encode the edge counts
in the respective bundles.

core of our proposal is the unification of the concepts of connectivity and similarity
of nodes of a graph in a single real-valued distance matrix, which can be next used
to create two-dimensional embeddings reflecting the above-mentioned similarities,
by using existing multidimensional projection techniques.

We have presented, and explored, several ways of achieving the above goal,
in terms of (1) encoding the connectivity information of the underlying network
by modified adjacency matrices or shortest-path distances; (2) encoding node
attributes by classical distance matrices based on multidimensional distance metrics;
and (3) combining the above-mentioned distance matrices in order to generate
graph visualizations that reflect both the connectivity of their nodes as the similarity
of nodes in terms of their attributes. These methods achieve different mixes of
contributions of the relational information (edges) and attribute information (node
and edge values) in the construction of the resulting 2D node-link layouts of the
network.

One particularly interesting result regards the comparison of our graph visu-
alization methods with classical force-based layout methods, which are, to date,
among the most popular techniques for creating 2D embeddings of graphs. We
have shown that the use of our proposed projection methods to create a preliminary
2D embedding of nodes, based on node connectivity and/or attribute similarity,
can act as an effective preconditioner for force-based methods: By using such a pre-

192

7.5. Conclusions

conditioner, the results of force-based embedders show a higher quality, measured
both in terms of objective graph-layout quality metrics and in terms of qualitative
insights concerning the resulting graph drawings.

Finally, we have shown how we can adapt the quality metrics proposed earlier
for quantification of neighborhood preservation in multidimensional projections
(Sec. 7.3.5) to handle multivariate graphs. This shows that it is possible to analyse
the quality of drawings of such graphs at a spatially detailed level, and in ways
which are identical to analysing the quality of general multidimensional projections.
We believe that the unification of quality analysis of visualizations of graphs and
multidimensional datasets is an interesting result, which, if refined further, can lead
to important and useful results in the direction of exploration of complex hybrid
multidimensional datasets. Conversely, our quality metrics and visualizations
thereof could be also adapted to explore the quality of classical graph layout
methods.

193

Chapter 8

Discussions and Conclusion

W

e conclude our presentation of techniques for the visual explanation of multi-
dimensional projections with an analysis of the key results presented in this

thesis, along with their main added value and respective limitations. Additionally,
we outline directions for future research and applications that are enabled by the
work presented in this thesis.

8.1 Analysis of the Research Questions

As described in Chapter 1, we started this thesis with the hypothesis that multidi-
mensional projections are effective tools for the exploration of high-dimensional
datasets, but their usefulness does not reach its full potential due to the absence
of explanatory techniques. For clarity, the general research question (originally
presented in Section 1.2) is reproduced below:

How can we increase the added value of multidimensional projections of high-
dimensional datasets with explanatory techniques that enable a wide range of users to
interpret the information present in a projection in more effective ways?

The general answer for this question – which has been proposed, described and
developed throughout the entire body of this thesis – is that the visual represen-
tation of multidimensional projections should be improved in two different but
complementary ways:

1. To make it clearer for the user where projection errors occur, what they mean
and how severe they are, helping to evaluate whether a certain projection is
indeed a good representation of the original dataset for the given task; and

2. To tell the user not only that certain points are similar (or not) by positioning
them close to (or far away from) each other, but also why they are similar
or not, using clear and descriptive visual explanations that can be used to
reason about the original attributes of the dataset.

These two improvement areas are complementary – having one without the
other leads to an incomplete solution. If we show and explain projection errors
but do not explain the meaning of point positions in terms of the original data
attributes, one will be able to ‘filter out’ wrongly projected points from a subsequent

Discussions and Conclusion

analysis, but not be able to understand the meaning of patterns created by the
correctly projected points. Conversely, if we explain the meaning of projected
points in terms of the high-dimensional variables but do not show local projection
errors, one can be misled into using the visual explanation to reason about false
patterns, which are due to projection errors rather than to actual patterns present
in the high-dimensional data.

The above analysis also indicates the order in which error explanation and
projection explanation techniques should be (jointly) used in a real-world vi-
sual analytics scenario. Given a multidimensional dataset, one would first use a
multidimensional projection to generate a two-dimensional or three-dimensional
projection of the respective data. Next, the error exploration techniques described
in Chapters 3 and 4 should be used to understand the extend and distribution
of projection errors. If these errors are too large overall and/or distributed over
significant areas of the projection, then one should arguably not use the projection
further, since it will very likely lead to too many wrong insights. If the errors affect a
limited and/or localized projection area, then visual analysis of the remainder of the
projection can be done. Next, visual explanatory techniques for two-dimensional
projections (Chapter 6) and three-dimensional projections (Chapter 5) can be used
to understand the meaning of the correctly-projected areas by explaining them in
terms of the original high-dimensional attributes. The above workflow, or pipeline,
can naturally be repeated by e.g. using different projection techniques and/or
projection parameters to improve the projection quality in specific areas of interest,
remove uninteresting observations and/or observations creating high projection
errors, or simply focus on specific areas of interest, until the desired insights are
obtained. This workflow follows the traditional visualization design mantra of
overview and filtering first (with the detection and investigation error areas) and
then details-on-demand (with the visual analysis of the remaining areas of interest
in terms of their original attributes).

Since we could not, obviously, explore to exhaustion all the possible ways
in which a projection can be improved, we instead focused on showing that it
is indeed possible to improve the understanding of projections, and to provide
insights that were not present before, by focusing on the two previously highlighted
improvement areas. By applying the proposed techniques to various case studies
with different datasets from different sources and domains, we have also shown that
the improvements are not domain- or application-dependent, but can be observed
in different situations, which points to the possibility of the generalization and
wide-applicability of the results.

8.2 Design Decisions

Throughout our work, we have consistently followed a number of constraints and
design decisions. As we believe that these design decisions support several impor-

196

8.2. Design Decisions

tant desirable features of explanatory visualizations of multidimensional data, we
discuss them next.

Projections as black-boxes. One of our first choices of research method and
design was to consider projection methods as black-boxes. We did not make any
assumptions on specific constraints of the projection techniques, such as assuming
that such techniques are of the multidimensional scaling variant (accepting distance
matrices as inputs) or of the projection proper variant (accepting high-dimensional
coordinates as inputs). We also did not assume any knowledge of the projection
internals, e.g., the fact that a projection is linear or not, or the fact it uses a certain
neighborhood size. For us, a projection is simply a function mapping a set of high-
dimensional observations to two-dimensional or three-dimensional points. The key
advantage hereof is that all our results are directly applicable to any projection
technique out there, without any modification, and in a technically straightforward
manner. A second, equally important, advantage is that this approach focuses on
the needs of a typical user who wishes or needs to use a projection to analyse
a dataset of her own specific domain, but does not usually comprehend how a
projection method works internally. In other words, our key goal is to explain the
result of a projection, and not the projection technique.

However, this approach also comes with a limitation. Projection techniques
get increasingly specialized beyond the original goal of globally and uniformly
preserving distances and/or neighborhoods. For instance, projection techniques
may choose to embed points so that distances between certain given observation-
pairs are best preserved at the expense of other observation-pairs; or that certain
distance ranges are better preserved than others; or to create as salient as possible
separations between groups of related observations. For such projections, our
techniques will likely indicate higher errors in certain areas, as compared to generic
projections which aim to minimize errors uniformly for all observations. However,
such errors may actually not be harmful, but actually instrumental, to using the
projection for very specific tasks, such as the localization of strongly-related groups
of observations. As such, the interpretation of errors seen in the projections should
be always done by having a task in mind; and errors should be deemed negative
only when their presence clearly affects the task at hand.

Easy-to-understand error metrics. In our study of projection errors (Chapters 3
and 4), we introduced a number of relatively simple metrics for quantifying these
errors, and visual encodings thereof, such as the false positive neighbors, false neg-
ative neighbors, group-related metrics, set-difference view, and sequence-difference
views. These metrics are effective in explaining local errors in a projection in terms
of both locality in the original high-dimensional space and the projection space.
Obviously, many other types of errors can be imagined for a projection, and many
other corresponding metrics can be designed to quantify these. However, the more

197

Discussions and Conclusion

complex such metrics become, the harder will be their visual interpretation and
analysis. As projections are already very complex and abstract techniques, we
believe that one should not make their explanations, which aim to lower their
interpretation burden, too complex – otherwise they would be defeating their
purpose. Additionally, more complex metrics serve more specialized scenarios, and
our focus has been to cover the baseline explanatory scenarios first, which arguably
are of interest for the widest category of users and their use-cases.

Visual and computational scalability. As outlined several times in this thesis,
one of the key attractive aspects of projection techniques is their visual and com-
putational scalability. Indeed, projections can handle datasets which are large
in both observation and dimension count, with modern projection implementa-
tions scaling roughly linearly in computational effort with the size of the input
dataset. Secondly, projections generate a structurally very simple representation –
a two-dimensional or three-dimensional point cloud or scatterplot – which is fast to
render and visually navigate, and also may accommodate hundreds of thousands of
data points on a single screen. As such, our visual explanation tools were designed
to keep the visual and computational scalability features of projections. This way,
an integrated end-to-end visual analytics pipeline featuring joint projection and
visual explanation tools will be visually and computationally scalable, and thus
interesting for real-world usage. We achieved this scalability by a number of design
decisions and techniques, as follows. First, we favored a simple visual representa-
tion consisting of (color coded) scatterplots, edge bundles, synthesized images, and
legends. All these techniques are visually scalable, as they generate space-filling
representations where virtually every pixel can be counted on to encode informa-
tion. Secondly, these representations do a good job in reducing or minimizing
visual clutter, which is also instrumental to increase visual scalability. Thirdly, we
used a mix of highly computationally scalable techniques for the generation of our
visualizations, such as efficient spatial search structures [6], GPU-based image syn-
thesis techniques [28, 182], and GPU-accelerated edge bundling techniques [85].
All these techniques ensure that we can generate our visual explanations within
fractions of a second for datasets having tens of thousands of observations and
tens of dimensions on a typical desktop computer, which allows for interactive
exploration.

8.3 Advantages and Limitations

To provide more insight into our level of answering the original research questions,
we detail next the main advantages and limitations of our proposed techniques
with respect to these questions.

198

8.3. Advantages and Limitations

8.3.1 Sub-question #1: Understanding projection errors

Our main goal here has been to provide generic, computationally scalable, and
easy-to-understand visual metaphors that explain different types of errors that
occur in multidimensional projections. To this end, we have provided ways to
measure and depict false neighbors and missing neighbors caused by distance
errors, at both individual point level and at the level of groups of points, in 2D
projections (Chapter 3); ways to measure and depict the level of preservation of
k-nearest neighborhoods at local point level in 2D projections (Chapter 3); and
ways to measure and depict false and missing neighbors caused by distance errors
at point level in 3D projections (Chapter 5). All these techniques are simple to
implement and computationally scalable. For 2D projections, visual scalability is
ensured by using image-based techniques to encode the resulting error maps as
continuous 2D fields (space-filling techniques). This design also allows us to easily
compute multiscale representations of our various error maps to focus on the most
salient error patterns and/or to increase visual scalability and decrease clutter.

The ease of understanding of the proposed techniques is, arguably, harder to
quantify. We have used the proposed techniques overall with a limited group
of users (about 15 persons in total), but with a large number of representative
datasets and corresponding questions (over 25 in total). The qualitative feedback
collected from observing the users and discussing feedback with them was that the
proposed error presentation techniques are quite easy to learn and understand, as
they involve very simple and typically already known visual metaphors (color-coded
scatterplots, legends, colored heatmaps, and edge bundles). The key difficulty in
understanding was actually observed to be related to the concept of projection
error, whose comprehension requires a certain familiarity with the process of
dimensionality reduction. While researchers in machine learning, statistics, or
data visualization had no problems at all to follow the error explanations, typical
end-users coming from outside these fields would comprehend where an error is,
which points this error affects, and how to compare different error levels, but not
necessarily understand what to do next to reduce these errors or eliminate them
from subsequent data interpretations.

Related to the ease of use of our techniques, we should mention that all of them
involve a (small) amount of interactive exploration. This poses a corresponding
(small) burden on the users. However, we noticed no instance when this exploration
would be perceived as complex, hard to learn, or tedious to use. This is arguably
related to the minimal nature of the proposed interactive tools – brushing, lasso
and bounding-box selection, 3D trackball manipulation, and simple GUI-based
preset choices for various visualization styles. All these operations are well known
by a large spectrum of users, can be accomplished with minimal effort, and require
limited precision during the interaction.

199

Discussions and Conclusion

8.3.2 Sub-question #2: Understanding projections

Our main goal here has been to provide generic, computationally scalable, and
easy-to-understand visual metaphors that explain (parts of) a multidimensional
projection in terms of the original high-dimensional variables of the projected
dataset. To this end, we have provided two different explanation designs.

For 2D projections, we used the same design elements employed to explain
projection errors – that is, shaded cushions, color coding, image synthesis, and
legends. In line with the comments provided above in Sec. 8.3.1, these techniques
are generic, and visually and computationally scalable. One main novel point for
the visual explanation of 2D projections was, in our view, the creation of implicit
regions in a projection that explain subsets of points in terms of the similarity of
one or a few variables. This leads to visualizations which strongly resemble the
way humans annotate a map or diagram or other drawing consisting of a set of
graphical symbols, by surrounding regions that allow a simple explanation, and
writing the explanation atop of these regions. However, this technique also has
its limitations. When the number of regions that require different explanations
is too large, roughly over a dozen for a typical computer screen, our technique
may not be sufficiently visually scalable. More importantly, our technique only
covers explanation in terms of variable similarity. This naturally follows the fact
that projections place similar observations close to each other, thus naturally give
birth to precisely the type of regions we are creating in our visualizations. However,
one can easily imagine many other ways in which one can ‘divide’ a 2D projection
into parts that can be independently explained, e.g., by explaining why a region
is different from all surrounding regions. While our visual design accommodates
such explanation types too, they are still open to be explored in the future.

For 3D projection, we extended the design elements promoted by Broeksema
et al. [24, 23] for the global explanation of 2D projections (Chapter 5). By
global explanation, we mean that our design only indicates how the original
high-dimensional variables map to the entire projection space – in contrast to the
local explanation design shown in Chapter 6 which divides the projection space
into regions that are given different explanations. As such, while both designs
presented in Chapters 5 and 6 are attribute-centric – in the sense that they explain
a projection by the names and/or values of the original high-dimensional attributes,
the explanation of 3D projections (Chapter 5) is global, while the explanation of
2D projections (Chapter 6) is local. The design choice to use a global explanation
for 3D projections has been determined chiefly by the fact that local explanations
would create too complex 3D patterns to be easily visualized. Indeed, such patterns
would give rise to multiple 3D shapes (groups of points, point hulls, or similar)
whose visual exploration in 3D would be, arguably, highly impeded by occlusion. To
limit occlusion, we restricted our 3D explanations designs to metaphors specifically
designed not to crowd and/or clutter the 3D scatterplot created by the projection –

200

8.4. Future Work

axis legends, screen-axis legends, and viewpoint legends. All such legends, with
the exception of the axis legends, are placed outside the 3D scatterplot visualiza-
tion, so do not create any occlusion. The axis legends are minimal in design – a
set of one-dimensional curves embedded in 3D – and therefore create negligible
additional clutter.

While our 3D explanatory visualizations demonstrably bring more insight than
visualizing ‘raw’ 3D scatterplots, they also have several limitations. First and
foremost, they are global, as said earlier. As such, if one locates, for example,
a particular formation (outlier, cluster) of points in a specific region of the 3D
projection space, explaining it in terms of variables and their values requires a
certain amount of interactive projection exploration in terms of axis alignment and
color-coding (for details, we refer to Chapter 5). This is in high contrast to our 2D
projection explanations which require no user interaction (Chapter 6). Secondly,
3D projections are, by their very nature, encumbered by occlusion. Our explanatory
techniques, while not increasing this clutter further on, do not also decrease it, and
thus still suffer from its presence. This is, to our understanding to date, a required
price to pay for the added precision of 3D projections.

8.4 Future Work

Given the huge scope, increasing abundance, and prominence in science and tech-
nology of multidimensional data and related analysis problems, and the well-known
scalability and genericity of multidimensional projections as exploration tools for
such data, there are many future possible extensions and applications of our work
presented here on the design of visual exploratory and explanatory techniques for
multidimensional data. Below we outline only the most salient ones.

Data size and types: Our work has mainly considered quantitative and relational
datasets having up to tens of thousands of observations and tens of dimensions.
Clearly, much larger datasets in terms of both observation count and dimension
count exist, are easily to obtain, and are interesting to analyse for their involved
stakeholders. Exploring how our visual explanatory tools can be adapted to cope
with such massive datasets is a low-hanging fruit for further exploration. Addition-
ally, we can easily consider the extension and/or adaption of our techniques to
explain non-quantitative, non-relational datasets, such as datasets having categori-
cal and ordinal attribute types. Projection techniques and explanatory techniques
have been investigated for such datasets [24, 23]. Finally, our techniques have
only handled static time-independent data. Exploring time-dependent data brings
a sizeable set of non-trivial theoretic and practical challenges: Data sets become
significantly larger; time requires a suitable mapping to a visual dimension; and
defining, detecting, and explaining relevant spatio-temporal patterns and corre-
sponding errors in multidimensional data is, by itself, a barely studied problem.

201

Discussions and Conclusion

Providing simple and effective visual explanations for multidimensional temporal
data is an important current, and future, challenge to visual analytics.

Improving projections: Our work has mainly focused on explaining projections,
in terms of errors and original high-dimensional variables. One of the use-cases
related to providing this explanation is that, when errors and/or other patterns of
interest are found by using our tools, users can next perform actions to focus on
the interesting parts of the data space for further exploration, e.g. by removing
the causes of the errors and redoing the projection, or by selecting specific subsets
of observations and/or dimensions to further explore. So far, our explicit support
for the entire round-trip visualization improvement and refinement pipeline is
limited to the detection of problematic or interesting events, but not to their further
elimination or examination. Many future work directions exist here. For instance,
visual cues could be provided to indicate, in a projection, the actions one needs to
take locally or globally to decrease errors in a specific area of interest; and next,
interactive aids could be provided to execute these actions in the visual space,
thereby reducing the round-trip execution time to a minimum.

Evaluation: As already discussed in Chapter 4, proposed solutions for analysing
projection errors and explaining them regarding the original attributes of the data
may work differently for different scenarios. To explore this variability, we have
used, throughout our work, a relatively small but – we argue – comprehensive set
of projections, datasets, and parameter settings. The main reason behind limiting
the number of samples of this space of possibilities is computational complexity:
For instance, evaluating our four different error types for ten projection techniques,
each tested on ten different datasets, each using ten different parameter settings,
would produce four thousand different projection images. Clearly, analysing and
discussing such a number of examples is prohibitive. To manage this complexity, we
chose therefore to limit ourselves to a smaller subset of well-known, robust, easy
to use, and scalable projection techniques; consider a small subset of parameter
values which are close to the optimal configurations for these techniques; and
treat a limited number of datasets which are well-known in the literature, so that
comparisons with existing work are easier to do. Separately, this limitation in
variability of the studied projection techniques, parameter settings, and datasets
makes it easier to relate and compare our results presented in different chapters.
Evaluation: As already discussed in Chapter 4, proposed solutions for analysing
projection errors and explaining them regarding the original attributes of the data
may work differently for different scenarios. To explore this variability, we have
used, throughout our work, a relatively small but – we argue – comprehensive set
of projections, datasets, and parameter settings. The main reason behind limiting
the number of samples of this space of possibilities is computational complexity:
For instance, evaluating our four different error types for ten projection techniques,

202

8.4. Future Work

each tested on ten different datasets, each using ten different parameter settings,
would produce four thousand different projection images. Clearly, analysing and
discussing such a number of examples is prohibitive. To manage this complexity, we
chose therefore to limit ourselves to a smaller subset of well-known, robust, easy
to use, and scalable projection techniques; consider a small subset of parameter
values which are close to the optimal configurations for these techniques; and
treat a limited number of datasets which are well-known in the literature, so that
comparisons with existing work are easier to do. Separately, this limitation in
variability of the studied projection techniques, parameter settings, and datasets
makes it easier to relate and compare our results presented in different chapters.

However, it is entirely possible that unknown strengths and/or limitations of
our proposed techniques were still not fully explored with the presented use-cases.
Hence, we acknowledge the importance of performing, as future work, more strict
and more thorough evaluations and validations. One example hereof is the evalua-
tion of the proposed error metrics with artificial datasets specifically crafted to bring
to light possible limitations, such as the already discussed sensitivity to outliers.
It is also important to evaluate different combinations of projections, parameter
settings and datasets, to validate the quality of the results presented in this thesis
and to understand how they behave in the widest possible range of situations.
The data-driven framework for evaluation of visual quality measures proposed by
Sedlmair and Aupetit [162] is one interesting possibility for supporting future work
in this direction.

Integration and validation: The last, but definitely not the least, important point
for future work concerns the integration of our visual explanatory tools together
with other data mining and analysis tools such as filters, statistical estimators,
cluster and pattern mining algorithms, into fully-fledged end-to-end visual analytics
systems. Such systems are, on the one hand, the prime means to test and validate
the added value of our proposed techniques in the context of real-world applications,
users, and use-cases. On the other hand, the design and deployment of such systems,
and the generation of useful insights for their targeted end-users, is the ultimate
goal that our work aims to support, and the core reason-to-be of the entire research
in data visualization and visual analytics.

203

Bibliography

[1] H. Abdi and D. Valentin. Multiple correspondence analysis. In: N. J. Salkind
(ed.), Encyclopedia of Measurement and Statistics, pp. 651–657. Thousand
Oaks (CA), 2007.

[2] J. Abello and F. van Ham. Matrix Zoom: A visual interface to semi-external
graphs. In: Proceedings of the IEEE Symposium on Information Visualization
(INFOVIS), pp. 183–190. IEEE, 2004.

[3] A.-C. Achilles and P. Ortyl. The Collection of Computer Science Bibliogra-
phies, 2013. Available at: http://liinwww.ira.uka.de/bibliography/.

[4] D. Archambault, T. Munzner, and D. Auber. GrouseFlocks: Steerable ex-
ploration of graph hierarchy space. IEEE Transactions on Visualization and
Computer Graphics, 14(4):900–913, 2008.

[5] A. Aris and B. Shneiderman. Network Visualization by Semantic Substrates.
Information Visualization, 12(5):733–740, 2007.

[6] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An opti-
mal algorithm for approximate nearest neighbor searching fixed dimensions.
Journal of the ACM, 45(6):891–923, 1998.
Available at: http://www.cs.umd.edu/

~

mount/ANN.

[7] D. Auber. Tulip — a huge graph visualization framework. In: Graph Drawing
Software, Mathematics and Visualization series, pp. 105–126. Springer Berlin
Heidelberg, 2004.

[8] M. Aupetit. Visualizing distortions and recovering topology in continuous
projection techniques. Neurocomputing, 10(7-9):1304–1330, 2007.

[9] A. T. Azar and A. E. Hassanien. Dimensionality reduction of medical big
data using neural-fuzzy classifier. Soft computing, 19(4):1115–1127, 2014.

[10] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented de-
sign metrics as quality indicators. IEEE Transactions on Software Engineering,
22(10):751–761, 1996.

[11] H. Bauer and K. Pawelzik. Quantifying the neighborhood preservation
of self-organizing feature maps. IEEE Transactions on Neural Networks,
3(4):570–579, 1992.

http://www.cs.umd.edu/~mount/ANN

BIBLIOGRAPHY

[12] R. Becker, W. Cleveland, and M. Shyu. The visual design and control of trellis
display. Journal of Computational and Graphical Statistics, 5(2):123–155,
1996.

[13] M. W. Berry. Survey of text mining: Clustering, classification, and retrieval.
Springer, 2004.

[14] E. Bertini, A. Tatu, and D. Keim. Quality metrics in high-dimensional
data visualization: an overview and systematization. IEEE Transactions on
Visualization and Computer Graphics, 17(12):2203–2212, 2011.

[15] A. Bezerianos, F. Chevalier, P. Dragicevic, N. Elmqvist, and J.-D. Fekete.
GraphDice: A System for Exploring Multivariate Social Networks. Computer
Graphics Forum, 29(3):863–872, 2010.

[16] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang. Complex
networks: Structure and dynamics. Physics Reports, 424(4-5):175–308,
2006.

[17] I. Borg and P. Groenen. Modern multidimensional scaling: Theory and
applications. Springer, 2005.

[18] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Levy. Polygon Mesh Process-
ing. A. K. Peters, 2010.

[19] U. Brandes. A faster algorithm for betweenness centrality. Journal of
Mathematical Sociology, 25(2):163–177, 2001.

[20] U. Brandes and C. Pich. Eigensolver methods for progressive multidimen-
sional scaling of large data. In: M. Kaufmann and D. Wagner (eds.), Graph
Drawing – 14th International Symposium (GD 2006), volume 4372 of Lecture
Notes in Computer Science, pp. 42–53. Springer, 2007.

[21] M. Brehmer and T. Munzner. A multi-level typology of abstract visual-
ization tasks. IEEE Transactions on Visualization and Computer Graphics,
19(12):2376–2385, 2013.

[22] M. Brehmer, M. Sedlmair, S. Ingram, and T. Munzner. Visualizing
dimensionally-reduced data: Interviews with analysts and a characteri-
zation of task sequences. In: Proceedings of the Workshop on Beyond Time
and Errors: Novel Evaluation Methods for Visualization (BELIV), pp. 1–8.
ACM, 2014.

[23] B. Broeksema, T. Baudel, A. C. Telea, and P. Crisafulli. Decision exploration
lab: A visual analytics solution for decision management. IEEE Transactions
on Visualization and Computer Graphics, 19(12):1972–1981, 2013.

206

BIBLIOGRAPHY

[24] B. Broeksema, A. C. Telea, and T. Baudel. Visual analysis of multidimensional
categorical data sets. Computer Graphics Forum, 32(8):158–169, 2013.

[25] M. Bronstein, A. Bronstein, R. Kimmel, and I. Yavneh. Multigrid multidimen-
sional scaling. Numerical Linear Algebra with Applications, 13(2–3):149–171,
2006.

[26] H. Byelas and A. C. Telea. Visualizing metrics on areas of interest in software
architecture diagrams. In: Proceedings of the IEEE Pacific Visualization
Symposium (PacificVis), pp. 33–40. IEEE, 2009.

[27] H. Byelas and A. C. Telea. Visualizing multivariate attributes on software di-
agrams. In: Proceedings of the European Conference on Software Maintenance
and Reengineering (CSMR), pp. 335–338. IEEE, 2009.

[28] T.-T. Cao, K. Tang, A. Mohamed, and T.-S. Tan. Parallel banding algorithm
to compute exact distance transform with the GPU. In: Proceedings of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D), pp.
83–90. ACM, 2010.

[29] M. Chalmers. A linear iteration time layout algorithm for visualising high-
dimensional data. In: Proceedings of IEEE Visualization (VIS), pp. 127–131.
IEEE, 1996.

[30] J. Chambers, W. Cleveland, B. Kleiner, and P. Tukey. Graphical Methods for
Data Analysis. Wadsworth, 1983.

[31] Y.-H. Chan, C. D. Correa, and K.-L. Ma. Regression cube: A technique for
multidimensional visual exploration and interactive pattern finding. ACM
Transactions on Interactive Intelligent Systems, 4(1):7, 2014.

[32] M.-C. Chang, F. Leymarie, and B. Kimia. Surface reconstruction from point
clouds by transforming the medial scaffold. Computer Vision and Image
Understanding, 113(11):1130–1146, 2009.

[33] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

[34] J. Claessen and J. J. van Wijk. Flexible linked axes for multivariate data
visualization. IEEE Transactions on Visualization and Computer Graphics,
17(12):2310–2316, 2011.

[35] D. B. Coimbra, R. M. Martins, T. T. A. T. Neves, A. C. Telea, and F. V.
Paulovich. Explaining three-dimensional dimensionality reduction plots. In-
formation Visualization, 2015. Available at: http://dx.doi.org/10.1177/
1473871615600010.

207

http://dx.doi.org/10.1177/1473871615600010
http://dx.doi.org/10.1177/1473871615600010

BIBLIOGRAPHY

[36] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature
space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(5):603–619, 2002.

[37] K. A. Cook and J. J. Thomas. Illuminating the path: The research and
development agenda for visual analytics. Technical report, Pacific Northwest
National Laboratory (PNNL), Richland, WA (US), 2005.

[38] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Modeling wine pref-
erences by data mining from physicochemical properties. Decision Support
Systems, 47(4):547–553, 2009.

[39] L. Costa and R. Cesar. Shape Analysis and Classification. CRC Press, 2001.

[40] T. F. Cox and M. A. A. Cox. Multidimensional Scaling. Chapman & Hall,
2001.

[41] A. M. Cuadros, F. V. Paulovich, R. Minghim, and G. P. Telles. Point Placement
by Phylogenetic Trees and its Application to Visual Analysis of Document
Collections. In: Proceedings of the IEEE Conference on Visual Analytics Science
and Technology (VAST), pp. 99–106. IEEE, 2007.

[42] R. da Silva, P. Rauber, R. M. Martins, R. Minghim, and A. C. Telea. Attribute-
based visual explanation of multidimensional projections. In: Proceedings of
the International EuroVis Workshop on Visual Analytics (EuroVA), pp. 134–
139. Eurographics Association, 2015.

[43] T. Dang, L. Wilkinson, and A. Anand. Stacking graphic elements to avoid
over-plotting. IEEE Transactions on Visualization and Computer Graphics,
16(6):1044–1052, 2010.

[44] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[45] S. Diehl. Software Visualization: Visualizing the Structure, Behaviour, and
Evolution of Software. Springer, 2008.

[46] S. Diehl and A. C. Telea. Multivariate networks in software engineering.
In: A. Kerren, H. C. Purchase, and M. O. Ward (eds.), Multivariate Network
Visualization – Dagstuhl Seminar #13201, 2013, volume 8380 of Lecture
Notes in Computer Science, pp. 13–36. Springer, 2014.

[47] S. Ding, H. Zhu, W. Jia, and C. Su. A survey on feature extraction for pattern
recognition. Artificial Intelligence Review, 37(3):169–180, 2012.

[48] P. A. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–
160, 1984.

208

BIBLIOGRAPHY

[49] G. Ellis and A. Dix. A taxonomy of clutter reduction for information visualisa-
tion. IEEE Transactions on Visualization and Computer Graphics, 13(6):1216–
1223, 2007.

[50] N. Elmqvist, P. Dragicevic, and J.-D. Fekete. Rolling the dice: Multidi-
mensional visual exploration using scatterplot matrix navigation. IEEE
Transactions on Visualization and Computer Graphics, 14(6):1141–1148,
2008.

[51] A. Endert, P. Fiaux, and C. North. Semantic interaction for visual text
analytics. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI), pp. 473–482. ACM, 2012.

[52] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In: Proceedings of
the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pp. 226–231. AAAI, 1996.

[53] R. Etemadpour, R. Motta, J. de Souza, R. Minghim, F. de Oliveira, M. Cristina,
and L. Linsen. Perception-based evaluation of projection methods for mul-
tidimensional data visualization. IEEE Transactions on Visualization and
Computer Graphics, 21(1):81–94, 2015.

[54] S. Fabricant. Spatial metaphors for browsing large data archives. PhD thesis,
University of Colorado Boulder, 2000.

[55] C. Faloutsos and K.-I. Lin. FastMap: A fast algorithm for indexing, data-
mining and visualization of traditional and multimedia datasets. SIGMOD
Record, 24(2):163–174, 1995.

[56] S. G. Finlayson, P. LePendu, and N. H. Shah. Building the graph of medicine
from millions of clinical narratives. Scientific Data, 1, 2014.

[57] L. C. Freeman. A set of measures of centrality based on betweenness.
Sociometry, 40:35–41, 1977.

[58] Freephoto. Free stock photo collection, 2013. Available at: www.freephoto.
com. Last access: 15/07/2013.

[59] Y. Frishman and A. Tal. Multilevel graph layout on the GPU. IEEE Transac-
tions on Visualization and Computer Graphics, 13(6):1310–1319, 2007.

[60] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press,
1990.

[61] E. Gansner, Y. Hu, S. North, and C. Scheidegger. Multilevel agglomerative
edge bundling for visualizing large graphs. In: Proceedings of the IEEE Pacific
Visualization Symposium (PacificVis), pp. 187–194, 2011.

209

www.freephoto.com
www.freephoto.com

BIBLIOGRAPHY

[62] E. Gansner, Y. Koren, and S. North. Graph drawing by stress majorization.
In: Graph Drawing, pp. 239–250. Springer, 2004.

[63] X. Geng, D.-C. Zhan, and Z.-H. Zhou. Supervised nonlinear dimensionality
reduction for visualization and classification. IEEE Transactions on Systems,
Man and Cybernetics, 35(6):1098–1107, 2005.

[64] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine
Learning, 63(1):3–42, 2006.

[65] GitHub. Online project hosting using Git, 2015.
Available at: https://github.com/.

[66] M. Gleicher. Explainers: Expert explorations with crafted projections. IEEE
Transactions on Visualization and Computer Graphics, 19(12):2042–2051,
2013.

[67] M. Gletsos, S. G. Mougiakakou, G. K. Matsopoulos, K. S. Nikita, A. S. Nikita,
and D. Kelekis. A computer-aided diagnostic system to characterize CT focal
liver lesions: design and optimization of a neural network classifier. IEEE
Transactions on Information Technology in Biomedicine, 7(3):153–162, 2003.

[68] P. A. Gloor, J. Krauss, S. Nann, K. Fischbach, and D. Schoder. Web Science
2.0: Identifying Trends through Semantic Social Network Analysis. In:
Proceedings of the 2009 International Conference on Computational Science
and Engineering, pp. 215–222, 2009.

[69] J. Gower, S. Lubbe, and N. Roux. Understanding biplots. Wiley, 2011.

[70] GraphViz. The GraphViz graph visualization software, 2014.
Available at: http://www.graphviz.org/.

[71] M. Greenacre. Biplots in practice. Fundacion BBVA, 2010.

[72] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer
classification using support vector machines. Machine Learning, 46(1-3):389–
422, 2002.

[73] C. Hansen and C. J. Johnson. The Visualization Handbook. Elsevier, 2005.

[74] M. Harrower and C. A. Brewer. ColorBrewer.org: an online tool for selecting
colour schemes for maps. The Cartographic Journal, 40(1):27–37, 2003.

[75] J. Heer and D. Boyd. Vizster: Visualizing Online Social Networks. In:
Proceedings of the IEEE Symposium on Information Visualization (INFOVIS),
pp. 32–39. IEEE, 2005.

210

https://github.com/
http://www.graphviz.org/

BIBLIOGRAPHY

[76] N. Henry and J.-D. Fekete. MatrixExplorer: A Dual-Representation System
to Explore Social Networks. IEEE Transactions on Visualization and Computer
Graphics, 12(5):677–684, 2006.

[77] N. Henry, J.-D. Fekete, and M. McGuffin. NodeTrix: A Hybrid Visualization of
Social Networks. IEEE Transactions on Visualization and Computer Graphics,
13(6):1302–1309, 2007.

[78] I. Herman, G. Melançon, and M. Marshall. Graph visualization and naviga-
tion in information visualization: A survey. IEEE Transactions on Visualization
and Computer Graphics, 6(1):24–43, 2000.

[79] N. Heulot, M. Aupetit, and J.-D. Fekete. Proxilens: Interactive exploration
of high-dimensional data using projections. In: Proceedings of the EuroVis
Workshop on Visual Analytics using Multidimensional Projections, pp. 11–15,
2013.

[80] G. E. Hinton and S. T. Roweis. Stochastic neighbor embedding. In: Advances
in neural information processing systems, pp. 833–840, 2002.

[81] P. Hoffman, G. Grinstein, K. Marx, I. Grosse, and E. Stanley. DNA visual
and analytic data mining. In: Proceedings of the IEEE Visualization (VIS), pp.
437–ff. IEEE, 1997.

[82] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations in
hierarchical data. IEEE Transactions on Visualization and Computer Graphics,
12(5):741–748, 2006.

[83] M. Huisman and M. A. J. Duijn. Models and Methods in Social Network Analy-
sis, chapter: Software for Social Network Analysis, pp. 270–316. Cambridge
University Press, 2005.

[84] C. Hurter, O. Ersoy, S. Fabrikant, T. Klein, and A. C. Telea. Bundled visual-
ization of dynamic graph and trail data. IEEE Transactions on Visualization
and Computer Graphics, 20(8):1141–1157, 2014.

[85] C. Hurter, O. Ersoy, and A. C. Telea. Graph bundling by kernel density
estimation. Computer Graphics Forum, 31(3):865–874, 2012.

[86] C. Hurter, R. Taylor, S. Carpendal, and A. C. Telea. Color tunneling: Interac-
tive exploration and selection in volumetric datasets. In: Proceedings of the
IEEE Pacific Visualization Symposium (PacificVis), pp. 225–232, 2014.

[87] C. Hurter, B. Tissoires, and S. Conversy. FromDaDy: Spreading data across
views to support iterative exploration of aircraft trajectories. IEEE Transac-
tions on Visualization and Computer Graphics, 15(6):1017–1024, 2009.

211

BIBLIOGRAPHY

[88] S. Ingram, T. Munzner, V. Irvine, M. Tory, S. Bergner, and T. Moller. Dim-
Stiller: Workflows for dimensional analysis and reduction. In: Proceedings of
the IEEE Conference on Visual Analytics Science and Technology (VAST), pp.
3–10. IEEE, 2010.

[89] S. Ingram, T. Munzner, and M. Olano. Glimmer: Multilevel MDS on the GPU.
IEEE Transactions on Visualization and Computer Graphics, 15(2):249–261,
2009.

[90] A. Inselberg and B. Dimsdale. Parallel coordinates: A tool for visualizing
multi-dimensional geometry. In: Proceedings of the IEEE Visualization (VIS),
pp. 361–378. IEEE Computer Society Press, 1990.

[91] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition
Letters, 31(8):651–666, 2010.

[92] A. K. Jain, M. N. Murthy, and P. J. Flynn. Data clustering: A review. ACM
Computing Surveys, 31(3):264–323, 1999.

[93] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell. Caffe: Convolutional architecture for fast feature
embedding. In: Proceedings of the ACM International Conference on Multime-
dia (MM), pp. 675–678. ACM, 2014.

[94] S. Johansson and J. Johansson. Interactive dimensionality reduction through
user-defined combinations of quality metrics. IEEE Transactions on Visualiza-
tion and Computer Graphics, 15(6):993–1000, 2009.

[95] P. Joia, F. V. Paulovich, D. Coimbra, J. A. Cuminato, and L. G. Nonato. Local
affine multidimensional projection. IEEE Transactions on Visualization and
Computer Graphics, 17(12):2563–2571, 2011.

[96] P. Joia, F. Petronetto, and L. G. Nonato. Uncovering representative groups
in multidimensional projections. Computer Graphics Forum, 34(3):281–290,
2015.

[97] I. Jolliffe. Principal Component Analysis, p. 487. Series in Statistics series.
Springer, 2002.

[98] F. Jourdan and G. Melançon. Multiscale hybrid MDS. In: Proceedings of the
IEEE Symposium on Information Visualization (INFOVIS), pp. 388–393. IEEE,
2004.

[99] E. Kandogan. Star coordinates: A multi-dimensional visualization technique
with uniform treatment of dimensions. In: Proceedings of the IEEE Symposium
on Information Visualization (INFOVIS), pp. 9–12. IEEE, 2000.

212

BIBLIOGRAPHY

[100] E. Kandogan. Visualizing multi-dimensional clusters, trends, and outliers
using star coordinates. In: Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pp. 107–116.
ACM, 2001.

[101] E. Kandogan. Just-in-time annotation of clusters, outliers, and trends in
point-based data visualizations. In: Proceedings of the IEEE Conference on
Visual Analytics Science and Technology (VAST), pp. 73–82. IEEE, 2012.

[102] D. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann (eds.). Mastering the
information age: Solving problems with visual analytics (VisMaster). Euro-
graphics Association, 2010.

[103] Y. Koren, L. Carmel, and D. Harel. ACe: A fast multiscale eigenvector
computation for drawing huge graphs. In: Proceedings of the IEEE Symposium
on Information Visualization (INFOVIS), pp. 137–144. IEEE, 2002.

[104] Y. Koren, L. Carmel, and D. Harel. Drawing huge graphs by algebraic
multigrid optimization. Multiscale Modeling & Simulation, 1(4):645–673,
2003.

[105] J. Krause, A. Perer, and E. Bertini. INFUSE: interactive feature selection
for predictive modeling of high dimensional data. IEEE Transactions on
Visualization and Computer Graphics, 20(12):1614–1623, 2014.

[106] J. B. Kruskal and J. M. Landwehr. Icicle plots: Better displays for hierarchical
clustering. The American Statistician, 37(2):162–168, 1983.

[107] M. Lanza and R. Marinescu. Object-Oriented Metrics in Practice. Springer,
2006.

[108] F. Lederman. Parvis – parallel coordinates visualisation, 2012.
Available at: http://www.mediavirus.org/parvis/.

[109] B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry. Task taxonomy for
graph visualization. In: Proceedings of the Workshop on Beyond Time and
Errors: Novel Evaluation Methods for Visualization (BELIV), pp. 1–5. ACM,
2006.

[110] D. J. Lehmann, G. Albuquerque, M. Eisemann, M. Magnor, and H. Theisel.
Selecting coherent and relevant plots in large scatterplot matrices. Computer
Graphics Forum, 31(6):1895–1908, 2012.

[111] S. Lespinats and M. Aupetit. CheckViz: Sanity check and topological clues for
linear and non-linear mappings. Computer Graphics Forum, 30(1):113–125,
2011.

213

http://www.mediavirus.org/parvis/

BIBLIOGRAPHY

[112] M. Levandowsky and D. Winter. Distance between sets. Nature,
234(5323):34–35, 1971.

[113] J. M. Lewis, L. Van Der Maaten, and V. R. de Sa. A behavioral investigation
of dimensionality reduction. In: Proceedings of the Annual Conference of the
Cognitive Science Society (CogSci), pp. 671–676. Cognitive Science Society,
2012.

[114] C.-T. Li and S.-D. Lin. Egocentric Information Abstraction for Heterogeneous
Social Networks. In: Proceedings of the International Conference on Advances
in Social Network Analysis and Mining (ASONAM), pp. 255–260. IEEE, 2009.

[115] J. Li and J. Z. Wang. Automatic linguistic indexing of pictures by a statistical
modeling approach. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 25:1075–1088, 2003.

[116] M. Lichman. UCI machine learning repository, 2013.
Available at: http://archive.ics.uci.edu/ml.

[117] R. M. Martins, G. F. Andery, H. Heberle, F. V. Paulovich, A. de Andrade Lopes,
H. Pedrini, and R. Minghim. Multidimensional projections for visual analysis
of social networks. Journal of Computer Science and Technology, 27(4):791–
810, 2012.

[118] R. M. Martins, D. Coimbra, R. Minghim, and A. C. Telea. Visual analysis of
dimensionality reduction quality for parameterized projections. Computers
& Graphics, 41:26–42, 2014.

[119] R. M. Martins, R. Minghim, and A. C. Telea. Explaining Neighborhood
Preservation for Multidimensional Projections. In: Computer Graphics and
Visual Computing (CGVC). The Eurographics Association, 2015.
Best Student Paper Award.

[120] A. Mead. Review of the development of multidimensional scaling methods.
The Statistician, 41(1):27–39, 1992.

[121] P. Meirelles, C. Santos, J. Miranda, F. Kon, A. Terceiro, and C. Chavez. A
study of the relationships between source code metrics and attractiveness
in free software projects. In: Proceedings of the Brazilian Symposium on
Software Engineering (SBES), pp. 11–20. IEEE, 2010.
Data available at: http://ccsl.ime.usp.br/mangue/data. Last access:
15/07/13.

[122] R. Minghim, F. V. Paulovich, and A. A. Lopes. Content-Based Text Mapping
using Multi-Dimensional Projections for Exploration of Document Collec-
tions. In: SPIE Proceedings: Visualization and Data Analysis, volume 6060,
pp. S1–S12, 2006.

214

http://archive.ics.uci.edu/ml
http://ccsl.ime.usp.br/mangue/data

BIBLIOGRAPHY

[123] R. Motta, A. Lopes, B. Nogueira, S. Rezende, M. Jorge, and M. de Oliveira.
Comparing relational and non-relational algorithms for clustering proposi-
tional data. In: Proceedings of the ACM Symposium on Applied Computing,
pp. 150–155. ACM, 2013.

[124] R. Motta, R. Minghim, A. Lopes, and M. Oliveira. Graph-based measures
to assist user assessment of multidimensional projections. Neurocomputing,
150:583–598, 2015.

[125] T. Munzner. Visualization Analysis and Design. CRC Press, 2015.

[126] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Consulted,
1(2012):28, 2008.

[127] G. M. Namata, B. Staats, L. Getoor, and B. Shneiderman. A Dual-View
Approach to Interactive Network Visualization. In: Proceedings of the ACM
Conference on Information and Knowledge Management, pp. 939–942. ACM,
2007.

[128] G. B. Newby. Empirical study of a 3D visualization for information retrieval
tasks. Journal of Intelligence Information Systems, 18(1):31–53, 2002.

[129] A. Nocaj and U. Brandes. Computing Voronoi treemaps: Faster, simpler, and
resolution-independent. Computer Graphics Forum, 31(3):855–864, 2012.

[130] A. Nocaj and U. Brandes. Organizing search results with a reference map.
IEEE Transactions on Visualization and Computer Graphics, 18(12):2546–
2555, 2012.

[131] M. Norman and D. Whalen. IEEE Vis’08 contest data, 2013.
Available at: http://sciviscontest.ieeevis.org/2008.

[132] S. Oeltze, H. Doleisch, H. Hauser, P. Muigg, and B. Preim. Interactive visual
analysis of perfusion data. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1392–1399, 2007.

[133] O. N. Oliveira Jr., T. T. A. T. Neves, F. V. Paulovich, and M. C. F. de Oliveira.
Where chemical sensors May assist in clinical diagnosis exploring ’big data’.
Chemistry Letters, 43(11):1672–1679, 2014.

[134] K. Olsen, R. Korfhage, K. Sochats, M. Spring, and J. Williams. Visualiza-
tion of a document collection: The VIBE system. Information Processing &
Management, 29(1):69–81, 1993.

[135] P. Pagliosa, F. V. Paulovich, R. Minghim, H. Levkowitz, and L. G. Nonato. Pro-
jection inspector: Assessment and synthesis of multidimensional projections.
Neurocomputing, 150:599–610, 2015.

215

http://sciviscontest.ieeevis.org/2008

BIBLIOGRAPHY

[136] J. Paiva, W. Schwartz, H. Pedrini, and R. Minghim. Semi-supervised dimen-
sionality reduction based on partial least squares for visual analysis of high
dimensional data. Computer Graphics Forum, 31(3):1345–1354, 2012.

[137] T. Pang-Ning, M. Steinbach, and V. Kumar. Introduction to data mining.
Pearson, 2006.

[138] F. V. Paulovich, D. Eler, J. Poco, C. Botha, R. Minghim, and L. G. Nonato.
Piecewise Laplacian-based projection for interactive data exploration and
organization. Computer Graphics Forum, 30(3):1091–1100, 2011.

[139] F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz. Least square
projection: a fast high-precision multidimensional projection technique.
IEEE Transactions on Visualization and Computer Graphics, 14(3):564–575,
2008.

[140] F. V. Paulovich, M. C. F. Oliveira, and R. Minghim. The Projection Explorer:
A Flexible Tool for Projection-based Multidimensional Visualization. In:
Proceedings of the Brazilian Symposium on Computer Graphics and Image
Processing (SIBGRAPI), pp. 27–36, 2007.

[141] F. V. Paulovich, C. T. Silva, and L. G. Nonato. Two-phase mapping for
projecting massive data sets. IEEE Transactions on Visualization and Computer
Graphics, 16(6):1281–1290, 2010.

[142] F. V. Paulovich, C. T. Silva, and L. G. Nonato. User-centered multidimensional
projection techniques. Computing in Science & Engineering, 14(4):74–81,
2012.

[143] F. V. Paulovich, F. Toledo, G. P. Telles, R. Minghim, and L. G. Nonato.
Semantic wordification of document collections. Computer Graphics Forum,
31(3):1145–1153, 2012.

[144] E. Pekalska, D. de Ridder, R. Duin, and M. Kraaijveld. A new method of
generalizing Sammon mapping with application to algorithm speed-up. In:
Proceedings of the 5th Annual Conference of the Advanced School for Computing
and Imaging (ASCI), pp. 221–228, 1999.

[145] A. Perer and B. Shneiderman. Balancing Systematic and Flexible Explo-
ration of Social Networks. IEEE Transactions on Visualization and Computer
Graphics, 12(5):693–700, 2006.

[146] H. Piringer, R. Kosara, and H. Hauser. Interactive f+c visualization with
linked 2D/3D scatterplots. In: Proceedings of the International Conference on
Coordinated and Multiple Views in Exploratory Visulization (CMV), pp. 49–60.
IEEE, 2004.

216

BIBLIOGRAPHY

[147] J. C. Platt. FastMap, MetricMap, and Landmark MDS are all Nyström
algorithms. In: Proceedings of the 10

th International Workshop on Artificial
Intelligence and Statistics, pp. 261–268. Society for Artificial Intelligence and
Statistics, 2005.

[148] J. Poco, R. Etemadpour, F. V. Paulovich, T. Long, P. Rosenthal, M. Oliveira,
L. Linsen, and R. Minghim. A framework for exploring multidimensional
data with 3D projections. Computer Graphics Forum, 30(3):1111–1120,
2011.

[149] G. Pölzlbauer. Survey and comparison of quality measures for self-organizing
maps. In: Proceedings of the 5th Workshop on Data Analysis (WDA), pp. 67–
82, 2004.

[150] A. J. Pretorius and J. J. V. Wijk. Visual Analysis of Multivariate State
Transition Graphs. IEEE Transactions on Visualization and Computer Graphics,
12(5):685–692, 2006.

[151] R. Rao and S. K. Card. The Table Lens: Merging graphical and symbolic
representations in an interactive focus+context visualization for tabular
information. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI), pp. 318–322. ACM, 1994.

[152] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally
linear embedding. Science, 290(5500):2323–2326, 2000.

[153] M. Rumpf and A. C. Telea. A continuous skeletonization method based on
level sets. In: Proceedings of the Symposium on Data Visualisation (VISSYM),
pp. 151–ff. Eurographics Association, 2002.

[154] G. Salton. Introduction to modern information retrieval. McGraw, 1986.

[155] J. Sammon. A nonlinear mapping for data structure analysis. IEEE Transac-
tions on Computers, C-18(5):401–409, 1969.

[156] H. Sanftmann. 3D visualization of multivariate data. PhD thesis, University
of Stuttgart, Germany, 2014.
Available at: http://elib.uni-stuttgart.de/opus/volltexte/2012/

7807.

[157] H. Sanftmann and D. Weiskopf. Illuminated 3D scatterplots. Computer
Graphics Forum, 28(3):642–651, 2009.

[158] H. Sanftmann and D. Weiskopf. 3D scatterplot navigation. IEEE Transactions
on Visualization and Computer Graphics, 18(11):1969–1978, 2012.

217

http://elib.uni-stuttgart.de/opus/volltexte/2012/7807
http://elib.uni-stuttgart.de/opus/volltexte/2012/7807

BIBLIOGRAPHY

[159] T. Schreck, T. von Landesberger, and S. Bremm. Techniques for precision-
based visual analysis of projected data. Information Visualization, 9(3):181–
193, 2010.

[160] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit: An
Object-Oriented Approach to 3-D Graphics, 4rd edition. Kitware, Inc., 2006.

[161] H. J. Schulz, T. Nocke, M. Heitzler, and H. Schumann. A design space of
visualization tasks. IEEE Transactions on Visualization and Computer Graphics,
19(12):2366–2375, 2013.

[162] M. Sedlmair and M. Aupetit. Data-driven evaluation of visual quality mea-
sures. Computer Graphics Forum, 34(3):201–210, 2015.

[163] M. Sedlmair, T. Munzner, and M. Tory. Empirical guidance on scatterplot and
dimension reduction technique choices. IEEE Transactions on Visualization
and Computer Graphics, 19(12):2634–2643, 2013.

[164] M. Sedlmair, A. Tatu, T. Munzner, and M. Tory. A taxonomy of visual cluster
separation factors. Computer Graphics Forum, 31(3):1335–1344, 2012.

[165] J. A. Sethian. Level Set Methods: Evolving Interfaces in Geometry, Fluid
Mechanics, Computer Vision, and Materials Science. Cambridge University
Press, 1996.

[166] Z. Shen, K.-L. Ma, and T. Eliassi-Rad. Visual analysis of large heterogeneous
social networks by semantic and structural abstraction. IEEE Transactions on
Visualization and Computer Graphics, 12(6):1427–1439, 2006.

[167] J. R. Shewchuk. Delaunay refinement algorithms for triangular mesh gener-
ation. Computational Geometry, 22(1–3):21–74, 2002.

[168] B. Shneiderman. The eyes have it: a task by data type taxonomy for
information visualizations. In: Proceedings of the IEEE Symposium on Visual
Languages, pp. 336–343. IEEE, 1996.

[169] V. Silva and J. Tenenbaum. Sparse multidimensional scaling using landmark
points. Technical report, Stanford University, 2004.

[170] V. Silva and J. B. Tenenbaum. Global versus local methods in nonlinear
dimensionality reduction. In: Advances in Neural Information Processing
Systems, volume 15, pp. 705–712. MIT Press, 2003.

[171] M. Smith, C. Giraud-Carrier, and N. Purser. Implicit Affinity Networks and
Social Capital. Information Technology and Management, 10(2-3):123–134,
2009.

218

BIBLIOGRAPHY

[172] C. Sorzano, J. Vargas, and A. Pascual-Montano. A survey of dimensionality
reduction techniques, 2014. Available at: http://arxiv.org/pdf/1403.

2877.

[173] R. O. Stehling, M. A. Nascimento, and A. Falcão. A compact and efficient
image retrieval approach based on border/interior pixel classification. In:
Proceedings of the 11th International Conference on Information and Knowl-
edge Management (CIKM), pp. 102–109. ACM, 2002.

[174] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document cluster-
ing techniques. In: Proceedings of the KDD Workshop on Text Mining, volume
400, pp. 525–526. Boston, 2000.

[175] L. Tan, Y. Song, S. Liu, and L. Xie. ImageHive: Interactive content-aware
image summarization. IEEE Computer Graphics and Applications, 32(1):46–
55, 2012.

[176] A. Tatu, G. Albuquerque, M. Eisemann, P. Bak, H. Theisel, M. Magnor, and
D. A. Keim. Automated analytical methods to support visual exploration
of high-dimensional data. IEEE Transactions on Visualization and Computer
Graphics, 17(5):584–597, 2010.

[177] A. Tatu, F. Maas, I. Farber, E. Bertini, T. Schreck, T. Seidl, and D. Keim.
Subspace search and visualization to make sense of alternative clusterings
in high-dimensional data. In: Proceedings of the IEEE Conference on Visual
Analytics Science and Technology (VAST), pp. 63–72. IEEE, 2012.

[178] M. Tavanti and M. Lind. 2D vs 3D, implications on spatial memory. In:
Proceedings of the IEEE Symposium on Information Visualization (INFOVIS),
pp. 139–145. IEEE, 2001.

[179] E. Tejada, R. Minghim, and L. G. Nonato. On improved projection techniques
to support visual exploration of multidimensional data sets. Information
Visualization, 2(4):218–231, 2003.

[180] A. C. Telea. Combining extended table lens and treemap techniques for
visualizing tabular data. In: Proceedings of the Joint Eurographics / IEEE VGTC
Conference on Visualization (EuroVis), pp. 51–58. Eurographics Association,
2006.

[181] A. C. Telea. Data visualization: principles and practice. CRC Press, 2014. 2nd

edition.

[182] A. C. Telea and O. Ersoy. Image-based edge bundles: simplified visualization
of large graphs. Computer Graphics Forum, 29(3):843–852, 2010.

219

http://arxiv.org/pdf/1403.2877
http://arxiv.org/pdf/1403.2877

BIBLIOGRAPHY

[183] A. C. Telea and L. Voinea. An interactive reverse engineering environment
for large-scale C++ code. In: Proceedings of the ACM Symposium on Software
Visualization (SoftVis), pp. 67–76. ACM, 2008.

[184] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, 290(5500):2319–
2323, 2000.

[185] A. Terceiro, J. Costa, J. Miranda, P. Meirelles, L. R. Rios, L. Almeida,
C. Chavez, and F. Kon. Analizo: an extensible multi-language source code
analysis and visualization toolkit. In: Brazilian Conference on Software:
Theory and Practice (Tools Session), 2010.

[186] W. S. Torgeson. Multidimensional scaling of similarity. Psychometrika,
30(4):379–393, 1965.

[187] E. R. Tufte. Envisioning Information. Graphics Press, 1990.

[188] J. W. Tukey and P. A. Tukey. Computer graphics and exploratory data
analysis: An introduction. The Collected Works of John W. Tukey: Graphics:
1965-1985, 5:419, 1988.

[189] C. Turkay, P. Filzmoser, and H. Hauser. Brushing dimensions-a dual visual
analysis model for high-dimensional data. IEEE Transactions on Visualization
and Computer Graphics, 17(12):2591–2599, 2011.

[190] T. Tuytelaars and K. Mikolajczyk. Local invariant feature detectors: a survey.
Foundations and Trends in Computer Graphics and Vision, 3(3):177–280,
2008.

[191] University of Maryland. US counties dataset, 2014.
Available at: http://archive.ics.uci.edu/ml.

[192] L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(11):2431–2456, 2008.

[193] L. van der Maaten and G. Hinton. Visualizing non-metric similarities in
multiple maps. Machine Learning, 87(1):33–35, 2012.

[194] L. van der Maaten, E. Postma, and H. van den Herik. Dimensionality
reduction: A comparative review. Journal of Machine Learning Research,
10(1):66–71, 2009. Extended version available online: www.iai.uni-bonn.de/
„jz/dimensionality reduction a comparative review.pdf.

[195] R. van Liere and W. de Leeuw. Graphsplatting: Visualizing graphs as
continuous fields. IEEE Transactions on Visualization and Computer Graphics,
9(2):206–212, 2003.

220

http://archive.ics.uci.edu/ml

BIBLIOGRAPHY

[196] J. J. Van Wijk and H. van de Wetering. Cushion treemaps: Visualization
of hierarchical information. In: Proceedings of the IEEE Symposium on
Information Visualization (INFOVIS), pp. 73–82. IEEE, 1999.

[197] P. Velardi, R. Navigli, A. Cucchiarelli, and F. D’Antonio. A New Content-Based
Model for Social Network Analysis. In: Proceedings of the IEEE International
Conference on Semantic Computing, pp. 18–25. IEEE, 2008.

[198] J. Venna and S. Kaski. Neighborhood preservation in nonlinear projection
methods: An experimental study. In: Artificial Neural Networks/ICANN, pp.
485–491. Springer, 2001.

[199] T. Villmann, R. Der, M. Herrmann, and T. M. Martinetz. Topology preser-
vation in self-organizing feature maps: exact definition and measurement.
IEEE Transactions on Neural Networks, 8(2):256–266, 1997.

[200] L. Voinea and A. C. Telea. Multiscale and multivariate visualizations of
software evolution. In: Proceedings of the ACM Symposium on Software
Visualization (SoftVis), pp. 115–124. ACM, 2006.

[201] L. Voinea, A. C. Telea, and J. J. van Wijk. CVSscan: Visualization of code
evolution. In: Proceedings of the ACM Symposium on Software Visualization
(SoftVis), pp. 47–56. ACM, 2005.

[202] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. van Wijk, J.-D.
Fekete, and D. Fellner. Visual analysis of large graphs: State-of-the-art and
future research challenges. Computer Graphics Forum, 30(6):1719–1749,
2011.

[203] J. T.-L. Wang, X. Wang, K.-I. Lin, D. Shasha, B. A. Shapiro, and K. Zhang.
Evaluating a class of distance-mapping algorithms for data mining and
clustering. In: Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pp. 307–311. ACM, 1999.

[204] M. Wattenberg. Visual Exploration of Multivariate Graphs. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp.
811–819. ACM, 2006.

[205] S. Westerman, J. Collins, and T. Cribbin. Browsing a document collec-
tion represented in two-and three-dimensional virtual information space.
International Journal of Human-Computer Studies, 62(6):713–736, 2005.

[206] S. Westerman and T. Cribbin. Mapping semantic information in virtual space:
dimensions, variance and individual differences. International Journal of
Human-Computer Studies, 53(5):765–787, 2000.

221

BIBLIOGRAPHY

[207] L. Wilkinson, A. Anand, and R. Grossman. Graph-theoretic scagnostics. In:
Proceedings of the IEEE Symposium on Information Visualization (INFOVIS),
p. 21. IEEE, 2005.

[208] M. Williams and T. Munzner. Steerable, progressive multidimensional
scaling. In: Proceedings of the IEEE Symposium on Information Visualization
(INFOVIS), pp. 57–64. IEEE, 2004.

[209] P. C. Wong and J. Thomas. Visual analytics. IEEE Computer Graphics and
Applications, 24(5):20–21, 2004.

[210] J. S. Yi, R. Melton, J. Stasko, and J. A. Jacko. Dust & magnet: multivariate in-
formation visualization using a magnet metaphor. Information Visualization,
4(4):239–256, 2005.

[211] X. Yuan, D. Ren, Z. Wang, and C. Guo. Dimension projection matrix/tree:
Interactive subspace visual exploration and analysis of high dimensional data.
IEEE Transactions on Visualization and Computer Graphics, 19(12):2625–
2633, 2013.

222

List of Publications

The following publications resulted from the work presented in this thesis:

• R. M. Martins, D. Coimbra, R. Minghim, and A. C. Telea. Visual analysis of
dimensionality reduction quality for parameterized projections. Computers &
Graphics, 41:26–42, 2014

• R. M. Martins, R. Minghim, and A. C. Telea. Explaining Neighborhood
Preservation for Multidimensional Projections. In: Computer Graphics and
Visual Computing (CGVC). The Eurographics Association, 2015.
Best Student Paper Award

• D. B. Coimbra, R. M. Martins, T. T. A. T. Neves, A. C. Telea, and F. V.
Paulovich. Explaining three-dimensional dimensionality reduction plots.
Information Visualization, 2015. Available at: http://dx.doi.org/10.1177/
1473871615600010

• R. da Silva, P. Rauber, R. M. Martins, R. Minghim, and A. C. Telea. Attribute-
based visual explanation of multidimensional projections. In: Proceedings of
the International EuroVis Workshop on Visual Analytics (EuroVA), pp. 134–139.
Eurographics Association, 2015

• R. M. Martins, G. F. Andery, H. Heberle, F. V. Paulovich, A. de Andrade Lopes,
H. Pedrini, and R. Minghim. Multidimensional projections for visual analysis
of social networks. Journal of Computer Science and Technology, 27(4):791–
810, 2012

http://dx.doi.org/10.1177/1473871615600010
http://dx.doi.org/10.1177/1473871615600010

Acknowledgements

Para minha mãe: Você sempre colocou minha educação em primeiro lugar e,
com isso, me abençoou para a vida inteira. Eu devo tudo a você. Muito obrigado!

To my beautiful and beloved wife, Priscila: You are the very definition of
strength. Even if we stayed together for a thousand years, I would never stop
learning the secrets of life from you. For always being there – Thank you!

To Alex: You have been a huge example of professional to me. Meeting you and
working with you has been a turning point in my career. For all that you have
taught me and for trusting me as your student – Thank you!

To Rosane: For all your support and guidance when things didn’t seem to move
anywhere, and for trusting me at hard times when even I didn’t trust myself –
Thank you!

To Maldonado: All of this started with you, and I would not want it any other
way. It has always been an honor working with you, and I hope this honor goes on
for a very long time still. Thank you!

To Carol: I love you! For being the best sister in the world – Thank you!

To Danilo: For being such an awesome friend and partner – Thank you!

To Enrico: Anyone who has ever bumped into you has been a lucky person, but
to be your friend is indeed a blessing that happens very rarely in one’s life. You are
very important to us (me and Priscila). Thank you!

To all my Groningen friends: You showed me that life around the world is not
that different from home, and that language and culture are only details when you
have true friends! Thank you!

To all group members from SVCG and VICG: Working with all of you has been
a great learning experience. For all the laughs, the lunches, the coffee breaks and
the white-board discussions – Thank you!

Acknowledgements

My PhD was funded mainly by the São Paulo Research Foundation (FAPESP),
with additional support from the Brazilian Coordination for the Improvement
of Higher Education Personnel (CAPES), the National Council for Scientific and
Technological Development (CNPq) and NUFFIC, the Netherlands organisation for
international cooperation in higher education.

Rafael Messias Martins

226

About the Author

Rafael Messias Martins was born on the 6th of October of 1984, in Presidente
Prudente, São Paulo, Brazil. He received his bachelor degree in Computer Science
from UNESP – Univ. Estadual Paulista, where he studied from 2002 to 2007.

After developing an interest for both software engineering and computer graph-
ics during his bachelor, he went on to pursue a master’s degree at the Institute of
Mathematics and Computer Science of the University of São Paulo (ICMC–USP), in
the area of data visualization. The work involved the application of visualization
techniques for multidimensional data to support tasks related to the process of per-
forming systematic reviews, with a special focus on empirical software engineering
research. Under the supervision of Prof. José Carlos Maldonado and Prof. Rosane
Minghim, he successfully defended his master’s thesis and obtained his master’s
degree in 2011.

Near the end of his period as a master’s degree student he became involved in
the QualiPSo project (Quality Platform for Open Source Software)1, an interna-
tional cooperation between academia and industry with the goal of defining and
implementing new technologies, procedures and policies for the development of
open source software, where he worked with an international team in the research
and development of web services for the testing of open source software.

The experience of working in the QualiPSo project sparked his interest in
continuing his academical studies, which led him to take the next step and become
a PhD student at ICMC–USP, again in the area of data visualization. During this
period he had the opportunity of doing a one-year internship in the University
of Groningen (RUG). Due to the results obtained, it was agreed between both
universities that the partnership should continue, and so he became a double-degree
PhD student, under supervision of both Prof. Rosane Minghim (at ICMC–USP) and
Prof. Alexandru C. Telea (at RUG).

The motivation for his PhD work came from realizing, during his previous work,
that there is a great potential for using multidimensional visualization techniques
in many specific application domains, such as the development of open source
software, but that this potential is currently not fully developed. He set out then to
try to understand why this is so, and how this could be improved. You can check
the results of this investigation in this thesis.

1For more information: http://cordis.europa.eu/project/rcn/80465_en.html

http://cordis.europa.eu/project/rcn/80465_en.html

	Introduction
	Multidimensional Data: Importance and Challenges
	Research Questions
	Structure of This Thesis

	Related Work
	Multidimensional Data
	Multidimensional Visualization Tasks and Methods
	Table Lenses
	Small multiples
	Scatterplot methods
	Parallel Coordinate Plots (PCPs)

	Dimensionality Reduction
	Multidimensional Scaling (MDS) methods
	Coordinate-based projections

	Challenge 1: Visualizing Projection Quality
	Distance-preservation errors
	Neighborhood-preservation errors

	Challenge 2: Explaining Projections
	Multivariate Networks
	Discussion and Conclusions

	Visualizing Distance Preservation
	Analysis Goals
	Visualization Methods
	Preliminaries
	The Aggregated Error view
	The False Neighbors view
	The Missing Neighbors view
	The Missing Neighbors Finder
	The Group Analysis views
	The Projection Comparison view
	Usage scenario

	Applications
	Description of datasets
	Description of projections
	Description of parameters to analyse
	Overview comparison of algorithms
	Parameter analysis

	Discussion
	Conclusions

	Visualizing Neighborhood Preservation
	Measuring and Visualizing Neighborhood Preservation
	Preliminaries
	The Centrality Preservation view
	The Set Difference view
	The Sequence Difference view
	Refining the exploration
	Ground truth analysis and comparison
	Additional examples

	Discussion
	Conclusions

	Explaining 3D Multidimensional Projections
	Explanatory Visualizations
	Accuracy of 3D projections
	Attribute exploration in 3D projections
	Generalizing biplot axes
	Explanatory axis legends
	Aligning axes
	Viewpoint legend

	Example applications
	The Wine dataset: Finding good projection techniques
	The Multifield dataset: Explaining projection shapes
	The Segmentation dataset: Comparing 2D and 3D projections
	The Software dataset: Finding meaningful clusters

	Discussion
	Conclusion

	Local Explanation of Multidimensional Projections
	Related Work
	Method
	Concept
	Ranking the dimensions
	Visualizing single top-ranked dimensions
	Visualizing top-ranked dimension sets

	Examples
	Wine quality
	Quality of software projects
	US counties

	Discussion
	Conclusions

	Multidimensional Visual Analysis of Networks
	Preliminaries
	Method
	Connectivity-based projections
	Attribute-based projections

	Applications
	Connectivity-based projections: Research networks
	Connectivity-based projections: Quality analysis
	Connectivity-based projections: Neighborhood preservation
	Attribute-based projections: Multivariate software networks
	Multivariate software networks: Quality analysis

	Discussion
	Conclusions

	Discussions and Conclusion
	Analysis of the Research Questions
	Design Decisions
	Advantages and Limitations
	Sub-question #1: Understanding projection errors
	Sub-question #2: Understanding projections

	Future Work

	Bibliography
	List of Publications
	Acknowledgements
	Curriculum Vitae

