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“Two things are infinite: the universe and human
stupidity; and I’m not sure about the universe.”

— Albert Einstein
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ABSTRACT

Technology advances have allowed and inspired the study of data
produced along time from applications such as health treatment, bi-
ology, sentiment analysis, and entertainment. Those types of data,
typically referred to as time series or data streams, have motivated
several studies mainly in the area of Machine Learning and Statis-
tics to infer models for performing prediction and classification.
However, several studies either employ batch-driven strategies to
address temporal data or do not consider chaotic observations, thus
missing recurrent patterns and other temporal dependencies espe-
cially in real-world data. In that scenario, we consider Dynamical
Systems and Chaos Theory tools to improve data-stream model-
ing and forecasting by investigating time-series phase spaces, re-
constructed according to Takens’ embedding theorem.
This theorem relies on two essential embedding parameters,

known as embedding dimensionm and time delay τ , which are com-
plex to be estimated for real-world scenarios. Such difficulty derives
from inconsistencies related to phase space partitioning, computa-
tion of probabilities, the curse of dimensionality, and noise. More-
over, an optimal phase space may be represented by attractors with
different structures for different systems, which also aggregates to
the problem.
Our research confirmed those issues, especially for entropy. Al-

though we verified that a well-reconstructed phase space can be
described in terms of low entropy of phase states, the inverse is not
necessarily true: a set of phase states that presents low levels of
entropy does not necessarily describe an optimal phase space. As a
consequence, we learned that defining a set of features to describe
an optimal phase space is not a trivial task.
As alternative, this Ph.D. proposed a new approach to estimate

embedding parameters using an artificial neural network training
on an overestimated phase space. Then, without the need of ex-
plicitly defining any phase-space features, we let the network filter
non-relevant dimensions and learn those features implicitly, what-
ever they are. After training iterations, we infer m and τ from
the skeletal architecture of the neural network. As we show, this
method was consistent with benchmarks datasets, and robust in
regarding different random initializations of neurons weights and
chosen parameters.
After obtaining embedding parameters and reconstructing the

phase space, we show how we can model time-series recurrences
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more effectively in a wider scope, thereby enabling a deeper analy-
sis of the underlying data.
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SAMENVATTING

Technologische vooruitgangen hebben de studie van tijdsafhanke-
lijke data mogelijk gemaakt in toepassingen zoals gezondheidszorg,
biologie, sentimentanalyse, en entertainment. Dit type data, ook be-
kend als tijdseries of data streams, hebben geleid tot verschillende
studies vooral op het gebied van machine learning en statistiek om
modellen te infereren voor predictie en classificatie. Niettemin de
meerderheid van deze studies gebruiken batch-driven strategieën
voor tijdsafhankelijke data-analyse of, anders, ze benaderen chaoti-
sche observaties niet; dit mist recurrente patronen en andere tijdsaf-
hankelijkheden in vooral reële data. In deze gevallen gebruikt men
instrumenten van dynamische systemen en chaostheorie om het mo-
delleren en voorspellen van data streams door de fase-ruimte van
deze time series te analyseren volgens het theorem van Takens.
Dit theorem maakt gebruik van twee essentiële parameters – de

embedding dimensie m en tijdsvertraging τ , die zijn moeilijk te
schatten voor reële data. Deze uitdagingen stammen uit inconsis-
tenties betreffend het partitioneren van de fase-ruimte, kansbereke-
ning, de zogenaamde curse of dimensionality, en ruis. Verder kan
een optimale fase-ruimte gerepresenteerd worden door attractoren
met verschillende structuren voor verschillende systemen, wat het
probleem nog complexer maakt.
Ons onderzoek heeft deze problemen bevestigd, met name wat

de entropie betreft. Hoewel we hebben geverifieerd dat een goede
reconstructie van de fase-ruimte beschreven kan worden in termen
van een lage entropie van de fase-ruimte, het omgekeerde is niet
noodzakelijk waar: Fase-ruimtes met lage entropieniveau’s zijn niet
noodzakelijk optimaal. De consequentie is dat het definiëren van
parameters die optimale fase-ruimtes beschrijven is verre van sim-
pel.
Als een alternatief, ons werk stelt een nieuwe benadering voor

voor het schatten van embedding parameters met gebruik van een
kunstmatig neuraal netwerk of een overgeschatte fase-ruimte. Dit
stelt ons in staat om het netwerk niet-relevante dimensies te laten
filteren en de nodige paramet ers te laten leren, welke dan ook, zon-
der een expliciete definitie van fase-ruimte parameters. Na training,
we schatten m en τ vanuit de skeletarchitectuur van het netwerk.
We laten zien dat deze methode consistent is met benchmark data-
sets en ook robuust ten opzichte van willekeurige initialisatie van
de neurongewichten en andere parameters.
Na het schatten van de embedding parameters en reconstructie

van de fase-ruimte we laten zien hoe wij tijdsserie-recurrenties effec-
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tief kunnen modelleren voor een groot bereik van gevallen, wat ver-
der een diepere analyse van de onderliggende data mogelijk maakt.
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RESUMO

Avanços tecnológicos permitiram e inspiraram o estudo de dados
produzidos ao longo do tempo a partir de aplicativos como trata-
mento de saúde, biologia, análise de sentimentos e entretenimento.
Esses tipos de dados, geralmente chamados de séries temporais ou
fluxos de dados, motivaram vários estudos principalmente na área
de Aprendizado de Máquina e Estatística a inferir modelos para
realização de previsões e classificações. No entanto, vários estudos
empregam estratégias orientadas por lotes para tratar dados tem-
porais ou não consideram observações caóticas, perdendo assim pa-
drões recorrentes e outras dependências temporais especialmente
em dados do mundo real. Nesse cenário, consideramos as ferra-
mentas de Sistemas Dinâmicos e Teoria do Caos para melhorar a
modelagem e previsão do fluxo de dados investigando os espaços
fase das séries temporais, reconstruídos de acordo com o teorema
de mergulho de Takens.
Esse teorema baseia-se em dois parâmetros essenciais de mergu-

lho, conhecidos como dimensão de mergulhom e tempo de atraso τ ,
que são complexos de serem estimados para cenários do mundo real.
Essa dificuldade deriva de inconsistências relacionadas ao particio-
namento do espaço fase, ao cálculo de probabilidades, à maldição
da dimensionalidade e à ruídos. Além disso, um espaço fase ideal
pode ser representado por atratores com estruturas diferentes para
sistemas diferentes, o que também se agrega ao problema.
Nossa pesquisa confirmou esses problemas especialmente para

entropia e, embora tenhamos verificado que um espaço fase bem
reconstruído pode ser descrito em termos de baixa entropia de seus
estados, o inverso não é necessariamente verdadeiro: um conjunto
de estados do espaço fase que apresenta baixos níveis de entro-
pia não descreve necessariamente um espaço fase ideal. Como con-
seqüência, aprendemos que definir um conjunto de recursos para
descrever um espaço fase ideal não é uma tarefa trivial.
Como alternativa, este doutorado propôs uma nova abordagem

para estimar parâmetros de mergulho a partir do treinamento de
uma rede neural artificial em um espaço fase superestimado. Então,
sem a necessidade de definir explicitamente quaisquer característi-
cas de espaço fase, deixamos a rede filtrar dimensões não relevantes
e aprender essas caractereísticas implicitamente, sejam elas quais
forem. Após o treinamento das iterações, inferimos m e τ a partir
da arquitetura esquelética da rede neural. Como mostramos, esse
método mostrou-se consistente com conjuntos de dados conhecidos,
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resumo

e robusto em relação a diferentes inicializações aleatórias de pesos
de neurônios e parâmetros da rede.
Após obter os parâmetros de mergulho e reconstruir o espaço

fase, podemos modelar as recorrências de séries temporais com
mais eficiência em um escopo mais amplo, prosseguindo para uma
análise mais profunda dos dados.
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1INTRODUCTION

1.1 context and motivation

Technology advances have allowed and inspired the study of data
produced from domains such as health treatment, biology, sen-
timent analysis, entertainment, the financial markets and many
more (Tucker, 1999; Robledo and Moyano, 2007). Typically, such
data is modeled as data collections, or datasets, consisting of a
large number of observations (also called samples), each of which
captures the phenomenon of interest by one or more measurements
of its properties along so-called dimensions, variables, or attributes.
In this context, researchers from several areas of science such as
Data Mining (Ester et al., 1996; Hodge and Austin, 2004), Natural
Language Processing (Indurkhya and Damerau, 2010), and Infor-
mation Visualization (Ward et al., 2010; Telea, 2014; Munzner,
2014) have proposed different approaches within their research
scope and concepts (and some times uniting efforts) to analyze
large data collections to extract actionable conclusions. In addition
to the difficulty of extracting information from large, multidimen-
sional and multivariate data, there are cases where data changes
along time. Such datasets characterize typically more complex sce-
narios referred to as time-series or data-streams analysis (Farmer
and Sidorowich, 1987; Kantz and Schreiber, 2004; Muthukrishnan,
2005). When dealing with such scenarios, in addition to batch-
driven studies such as classification and searching for patterns,
clusters, and outliers, forecasting is usually the most important
task, typically performed in the context of Machine Learning and
Dynamical Systems (Hitzl, 1981; Tucker, 1999; Robledo and Moy-
ano, 2007; de Mello, 2011; Vallim and De Mello, 2014; da Costa
et al., 2017).
When analyzing time series, it is worth to recall that the vari-

able time has as much importance as the raw values of observations
themselves, so that the data order is crucial for analysis. Thus, in-
stead of employing traditional batch-driven approaches, e.g., by
directly applying some regression function along raw data (Waibel
et al., 1990; Postolache et al., 1999; de Mello, 2011) or using data
visualization methods to discover patterns in the time series (Wong
and Bergeron, 1997; Ward et al., 2010), it is mandatory to also con-
sider temporal recurrences (trends, cycles, and trajectories) while
modeling, which usually leads to better forecasting results. In this
sense, researchers generally tackle time series by assuming they
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introduction

have either a deterministic or a stochastic bias. Nevertheless, due
to diverse reasons (inherent signal noise, acquisition problems, re-
stricted float number representation, or even the nature of the ana-
lyzed phenomenon itself), it is common to find series composed of
both deterministic and stochastic behaviors in conjunction, a well-
known example being the Sunspot dataset (Andrews and Herzberg,
1985). Therefore, methods have been proposed to decompose time
series into both stochastic and deterministic components (Graben,
2001; Ishii et al., 2011; Rios, 2013), and, consequently, focus on
studying subsequent aspects of linearity and stationarity, as shown
in Figure 1.1.

Figure 1.1: The first step in time-series analysis usually consists of ver-
ifying whether the series has a deterministic or a stochas-
tic bias. This process is mainly based on measuring the
number of recurrences the series has, what can be inferred
from the series itself or through its phase space. Chaos, on
the other hand, is mainly detected using phase-space mea-
surements. The solid-line boxes represent phase-space-based
steps. Dashed-line boxes represent the out-of-scope analysis
usually computed directly on the time series. Despite impor-
tant, those are not covered in this thesis as we predominantly
deal with deterministic series.

When dealing with a predominantly stochastic time series, one
common approach is to use statistical-based tools such as the
ARIMA models (Box and Jenkins, 2015) to describe time-series
components, which include random behavior (e.g., Normal and Uni-
form distributions). As the main advantage, this strategy permits
each type of component to be modeled using the most adequate
tool available for it (Graben, 2001; Rios and de Mello, 2013). On
the other hand, for predominantly deterministic series, especially
those derived from natural phenomena, physicists (Kennel et al.,
1992) typically rely on Dynamical Systems and Chaos Theory 1 to

1 A chaotic system has strong sensitiveness to initial conditions, so that it tends
to evolve to completely different orbits (Alligood et al., 1996; Ott, 2002; Kantz
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1.1 context and motivation

map the series into a multidimensional space referred to as phase
space (Takens, 1981). In this space, the dynamics of the studied
phenomenon are (hopefully) bound by a so-called attractor : this is
a lower-dimensional manifold that depicts how the series changes
over any given interval of time. The main advantage of using phase-
space representations is that they factor out the importance of the
time variable, thereby making the analysis simpler (Pagliosa and
de Mello, 2017).
Regarding this transformation, also known as the kernel function,

three main methods were proposed to reconstruct the phase space
from a time series:

• the method of derivatives (Packard et al., 1980);

• the method of delays or Takens’ theorem (Whitney, 1936;
Takens, 1981);

• a method based on singular value decomposition (Broomhead
and King, 1986).

Despite there is no formal evidence on which of the above three
methods is the most appropriate, Ravindra and Hagedorn (1998)
suggest that the Takens’ embedding theorem leads to more con-
sistent results when analyzing nonlinear time series. Indeed, this
is the most used method in the literature of Dynamical Systems
for phase-space reconstruction (Alligood et al., 1996; Kantz and
Schreiber, 2004). Such theorem defined that, given a time series Ti
formed by observations of a single variable i ∈ [1, d] from the d-
dimensional system Sd (representing the underlying phenomenon
under analysis), the dynamics of Sd could be reconstructed into
an m-dimensional phase space, if points on that space, typically
referred to as phase states, were formed by m observations time-
shifted τ units along Ti. We describe this process with more details
in Chapter 2.
Nevertheless, the method of delays also has some important lim-

itations, as follows. First, Takens’ theorem stated nothing about
the embedding pair (m, τ), only that a “sufficient” phase space can
be properly unfolded when the embedding dimension m is greater
or equal to 2d+1. In practical scenarios, however, this information
is not helpful since most time series are derived from experimental
data: nothing is known about the phenomenon of origin and the
dimension d. Furthermore, despite being a simple and effective ap-
proach to reconstruct phase spaces from time series, the method
of delays is very sensitive to the choice of the parameters m and τ .
Different values of these parameters lead to completely different re-
constructions and, consequently, conclusions about the time series.

and Schreiber, 2004; Boccaletti and Bragard, 2008), typically giving the wrong
impression of randomness.

3
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To alleviate this, several approaches were proposed to estimate the
time delay τ and the embedding dimensionm, each of them present-
ing benefits and drawbacks for different scenarios. In this scenario,
even with their limitations including sensitiveness to noise and lack
of consistency, False Nearest Neighbors (Kennel et al., 1992) and
Auto-Mutual Information (Fraser and Swinney, 1986) (details in
Chapter 4) are the most employed methods to estimate of m and
τ , respectively (see Chapter 4 for details on the related work). All
in all, the above leads, in our view, to a gap in the literature:
there is no method robust enough to estimate embedding
parameters for general time series.
Once the phase space is sufficiently unfolded, one can take advan-

tage of the system dynamics to assess crucial assets such as: i) un-
derstand and visualize low-dimensional attractors (Section 2.3.2);
ii) measure the amount of the time-series determinism (Marwan
et al., 2007; Serrà et al., 2009; Marwan and Webber, 2015); iii) iden-
tify and model chaos, i.e., measure how initial conditions impact on
next series observations; iv) forecast time series recursively (Farmer
and Sidorowich, 1987; Myers et al., 1992; Farmer and Sidorowich,
1987; Meng and Peng, 2007; de Mello and Yang, 2009; Bhardwaj
et al., 2010); and v) propose ways to interfere and control the un-
derlying phenomenon (Boccaletti and Bragard, 2008).

1.2 objective, hypothesis and research ques-
tions

Given the periodic behavior of real-world phenomena (Andrews
and Herzberg, 1985; Tucker, 1999), the main motivation behind
this research is to explore and understand phase spaces for im-
proving time-series modeling. However, as the phase space firstly
needs to be reconstructed and, based on the current gap in the
literature (Fraser and Swinney, 1986; Kennel et al., 1992) outlined
in the previous section, the main objective of this thesis is
to improve the estimation of the embedding dimension m
and the time delay τ .
We established the above objective as follows. Based on stud-

ies on the dynamics of well-known chaotic systems, we noticed
that after increasing m and τ up to a certain limit (and some-
times this limit can be the minimum pair, as shown next), the
optimal embedding usually presents the most well-structured at-
tractor. Indeed, such behavior is expected for deterministic time
series defined by maps or partial differential equations, as one state
leads to exactly a single other in the future. For two-dimensional
phase spaces, for instance, such relationship is easier to be tracked
using cobweb plots (Alligood et al., 1996), where the route of tra-
jectories is illustrated by lines connecting consecutive phase states.

4



1.2 objective, hypothesis and research questions

Figure 1.2 depicts the cobweb plot for the Logistic map, whose op-
timal phase space can be unfolded with m = 2 and τ = 1 (details
on Section 3.2.2).

Figure 1.2: (a) Each row represents one phase state of the Logistic map
phase space, reconstructed using the optimal embedding pair
(m = 2, τ = 1). (b) The cobweb plot uses the diagonal line
x = y to guide the drawing of trajectories.

In cobweb plots, the dynamics of the system can be observed
after connecting the first m− 1 dimensions of a state with its lat-
ter one, and then going back to the first m − 1 dimensions on
the next state. Then, the trajectories are drawn by executing this
process iteratively for all states. In Figure 1.2, this is represented
by projecting each dimension (x(t) and x(t + 1)) into the diago-
nal line x = y. As it can be noticed, the created line tends to
hit (if a sufficient small open ball around each state is considered)
a single state during the course of trajectories. Thus, even that
such unique correspondence does not occur for generic datasets, it
is expected well-reconstructed phase spaces to have minimum lev-
els of ambiguity. Moreover, after increasing embedding parameters
too excessively, the attractor starts to fade, eventually losing its
structure. Figure 1.3 illustrates this process, also known as irrele-
vance, after setting τ = 10. Conversely, too small values of embed-
ding pairs (m, τ) lead to redundant phase spaces usually character-
ized by hyper-diagonal attractors. In those cases, the embedding
does not have enough information to unfold the system dynam-
ics. Based on both extremes, it was noticed that a sufficient phase
space should present some balance between the expansion and con-
traction of phase states (Rosenstein et al., 1994). In this sense, the
concept of entropy (Hammer et al., 2000; Han et al., 2012) seemed
a good measurement to describe these behaviors. This enables us
to outline the central hypothesis explored in this thesis:

5
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Figure 1.3: (a) The cobweb plot applied over the optimal (m = 2, τ = 1)
and (b) overestimated (m = 2, τ = 10) phase spaces for the
Logistic map. As one can notice, orbits (arrowed line) inter-
sect many more states in the overestimated space, reinforcing
that entropy can be used as guideline to validate phase-space
reconstructions.

Hyphotesis. “The reduction of entropy, measured in function
of the trade-off between irrelevance and redundancy of phase
states, is a sufficient criterion to estimate the time delay and
the embedding dimension required to reconstruct the phase
space from a univariate time series, therefore supporting the
analysis and prediction of deterministic and chaotic phenom-
ena.”

However, as we observed in the course of our work (see Sec-
tion 5.7 for details), entropy by itself showed to be insufficient to
derive such conclusions. As such, the above hypothesis was proved
wrong. Although a negative result, we believe that this insight is
an important and useful contribution to the research on Dynamical
Systems.
As part of the methodology to investigate the above-mentioned

hypothesis, several Dynamical Systems concepts and methods re-
ferring to Chaos Theory and phase spaces were analyzed. This even-
tually led to different research questions (RQ), as outlined next:

RQ1. Does the optimal phase space have indeed low levels of en-
tropy?

RQ2. Is it better to use phase-space rather than time-series mod-
eling?

RQ3. How to ensure learning in concept-drift scenarios?

RQ4. How to correlate time-series and phase-space attributes?

RQ5. Can neural networks estimate Takens’ embedding parame-
ters?

6



1.3 thesis structure

To answer these research questions, we have first designed and
employed analysis methods based on Machine Learning (ML). How-
ever, as outlined by the case study proposed by Anscombe (1973)
(Figure 1.4), which shows different datasets having identical statis-
tical measurements, traditional ML approaches may not be suffi-
cient to discriminate the data initially, and a first analysis based
on different approaches might be required. As alternative, visu-
alizing the data lies among the most considered options (Wong
and Bergeron, 1997). Therefore, we decided to also consider In-
formation Visualization metaphors to highlight insights about the
system dynamics and compare multiple embeddings at the same
time. Thus, we implemented our ML methods in the R program-
ming language (R Development Core Team, 2008), chosen due to
its simple algebraic manipulation, chaos-related packages (Hegger
et al., 1999; Antonio, 2013; Garcia and Sawitzki, 2015), and com-
pactness; and our visualization tools were designed in JavaScript
using D3 (Bostock et al., 2011), due to the its easy plotting and
interaction support. This allowed us to develop a visual analytics
approach where different underlying techniques (from Dynamical
Systems, Machine Learning, and Visualization) were tightly com-
bined to address our research questions.
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Figure 1.4: The Anscombe quartet shows the importance of data visu-
alization. All datasets share several identical statistical mea-
surements, such as variance and mean (for x and y axis),
linear regression line (in black), and coefficient of determi-
nation (R squared) (McClave, 2006). However, the datasets
are different.

1.3 thesis structure

The remaining of this thesis is organized as follows.
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introduction

Chapter 2 presents the nomenclature and main concepts used
throughout this manuscript. This material serves to formally define
the context of our work, as well as important terms and techniques
subsequently referred to in the next chapters.
Chapter 3 details the chaotic time series typically used as bench-

marks in the dynamic systems literature, as well as their most ac-
cepted phase spaces. Although there are more types of time series
of interest (and used as study object in Dynamical Systems), we
mainly focused on datasets whose generating rule is known, so it is
possible to compare and validate the reconstructed phase spaces.
Chapter 4 describes the state of the art to estimate embedding

parameters. Given the central scope of this thesis in Dynamical Sys-
tems, this chapter focused on the related work concerning mainly
our hypothesis, i.e., phase-space reconstruction. Complementary,
the related work covering topics from Machine Learning, Statis-
tical Learning Theory, and Information Visualization, important
when addressing the refined research questions (RQ1 to RQ5), is
discussed as needed in the corresponding chapters.
Chapter 5 details our initial study to correlate optimal phase

spaces with their entropy (RQ1). As entropy is a sensitive mea-
surement difficult to be computed in practice, we then relied on
the dependence of phase states (a measure proportional to their en-
tropy (Myers et al., 1992)) to validate such a relationship. Although
we empirically show that optimal phase spaces indeed present the
highest independence among their states, we could not find any re-
lation to deterministically estimate the optimal embedding given
its entropy levels.
Chapter 6 effectively shows how phase-space methods can im-

prove analysis of time series when compared to raw (based on the
time series itself) data, therefore tackling RQ3. The study was per-
formed on the classification of positive and unlabeled data in a
semi-supervised scenario. Of course, this does not mean that the
phase space will always lead to better results for general cases, but
rather that Dynamical-Systems methods worth being considered
when analyzing time series.

Chapter 7 presents a set of conditions that a concept drift algo-
rithm should respect to ensure learning while parsing time series
(RQ3). Although this line of research seems to be orthogonal to
this Ph.D. hypothesis, it is related to it since reconstructing the
phase space is one of the required steps in our proposed methodol-
ogy. Moreover, this chapter is a consequence of our first study, in
which we assumed data was provided under a controlled environ-
ment with a fixed distribution, so the Statistical Learning Theory
framework could be used to tackle RQ1.
Chapter 8 describes a novel visualization tool to simultaneously

explore the attributes and dimensions of multidimensional datasets.
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1.3 thesis structure

We have improved the related work of radial-based visualizations
in terms of exploration, scalability and decreasing of ambiguities.
Despite designed to deal with general types of data, this visual
metaphor could have been used to correlate time-series and phase-
space attributes (RQ4). Nonetheless, due to the lack of time, this
analysis has been left for future work.
Chapter 9 assesses our final proposal for estimating the embed-

ding parameters. After verifying the difficulty in correlating opti-
mal phase states with states-based measurements, we decided to
rely on an artificial neural network (RQ5) to automatically learn
optimal features, whatever they are. As we have shown, despite
results depend on a certain level of interpretability, we describe a
robust and deterministic method to estimate embedding parame-
ters. We validated our approach against different scenarios of noise,
input parameters, and benchmark datasets.
Chapter 10 summarizes the work conducted during our research.

We reflect upon our attempts to prove the key hypothesis and
discuss the implications of our main conclusion, namely that our
current insights showed our hypothesis has been disproved. Finally,
we summarize our contributions and suggest directions for future
work.

9





2FUNDAMENTALS

2.1 initial considerations

This chapter introduces and describes relevant concepts related to
time series (Section 2.2), Dynamical Systems (Section 2.3), and em-
beddings (Section 2.4). Next, we combine all theory to show how to
reconstruct phase spaces from time series in practice (Section 2.5),
to finally proceed to important analysis based on phase-states fea-
tures (Section 2.6).
As noted in Chapter 1, related work encompasses, apart from

the fundamental concepts and results related to time series (our
main focus), also work in Statistical Learning Theory, Machine
Learning, and Information Visualization. Since this second type
of related work pertains specifically to the techniques addressing
individual research questions, we introduce and describe it only
when needed along Chapter 5 to Chapter 91.

2.2 time series

A univariate2 time series Ti is the sequence of n observations

Ti = {x(0), x(1), x(2), · · · , x(n− 1)}, xk ⊂ R, (2.1)

that models the evolution of some variable i (e.g., wind speed,
relative humidity of the air), representing a feature of some phe-
nomenon of interest (e.g., weather) during an interval of time. In
practical scenarios, Ti is formed after collecting impulses from or
solving mathematical equations describing (Butcher, 1996) the phe-
nomenon at sampling rate ts, which defines the time elapsed be-
tween two consecutive observations. Moreover, sampling rates ts
can be kept constant (Figure 2.1) or change along time, depending
on the target application.
Along this manuscript, the subscripted index (such as i in Ti)

is also appended to the time-series corresponding features, such as

1 For some of the topics included in this chapter, different definitions were used
in the published articles. Thus, although we have tried our best to standardize
the nomenclature in this thesis, the reader may find some divergences when
comparing the following chapters with their corresponding articles.

2 In the context of this manuscript, we approach unidimensional time series
only. However, the studies developed in this thesis and in the produced articles
can be extended to multiple dimensions as performed in (Serrà et al., 2009),
without loss of generality.
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Figure 2.1: Example of time series with n = 20 observations, each sam-
pled after ts = 0.5 seconds.

the number of observations, average, or variance. Further, aggre-
gated indexes will denote variations of the same series. For instance,
Ti and Tj represent two different series, while Tij , for j ∈ [1, s],
denotes one of the s modifications of Ti. In the last case, the fea-
tures of modified series remain identical to the original by default
(i.e., number of observations, average, etc.) unless explicitly stated
differently. Such notations become useful when comparing phase
spaces (Section 2.3.3) and dealing with surrogate data (Theiler
et al., 1992).
In addition to the sampling rate ts, other features such as the

length of the series, the initial observation x(0) (especially for
chaotic data), and the amount of noise (Graben, 2001) also need
to be considered when analyzing a time series. These additional
features help quantifying various statistical properties of interest,
and are useful to identify when different series might still repre-
sent the same phenomenon of interest. Figure 2.2 illustrates the
idea on observations from one of the variables of the Lorenz sys-
tem (Tucker, 1999). As it can be seen by this figure, a time series
from the Lorenz system can be represented in different ways. Then,
the robustness of some model can be tested against variations of
the same series. Nonetheless, we expect the series to be large (at
least 1000 observations) and “clean” enough to preserve the nature
of the measured variable. According to our point of view, this is not
too much to ask for, as no relevant models can really be inferred
from too small-noisy datasets. In other words, the series must have
sufficient information to unfold the dynamics of the generating rule
(see Section 2.3 for details).

Apart from the above, additional notations include the time de-
lay τ ∈ I+, representing the number of observations to be shifted
from the current timestamp t, such that x(t±τ) ∈ Ti; and the leap
time ρ ∈ I+, a moment in the future to be forecasted as a single
observation.

12
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Figure 2.2: Different representations of the Lorenz system. (a) Ti is
the “original” time series, generated using ts = 0.01. (b)
Ti1 shows a variation using ts = 0.02; (c) Ti2 has an ad-
ditional noise following a Normal distribution N (0, 4), with
zero mean and standard deviation equal to 2. (d) Ti3 is a
surrogate generated by the iAAFT method (Schreiber and
Schmitz, 1996), which attempts to preserve the linear struc-
ture and the amplitude distribution.

2.3 dynamical systems

A dynamical system Sd = {p0, · · · ,p∞} is a set of d-dimensional
states (also known as points) pt = [pt,1, pt,2, · · · , pt,d]3 that, driven
by a generating (also called governing) rule R(·), models the be-
havior of some phenomenon as a function of state trajectories so
that

R : Sd → Sd, (2.2)

where d corresponds to the number of degrees of freedom the sys-
tem has, i.e., the number variables required to describe R(·). Fur-
ther, although Sd can consist of an infinity of states, in practical
terms, a dynamical system is usually represented by the finite set
S = {p0,p1, · · · pN} ⊂ Sd of N states.

2.3.1 Types Of Dynamical Systems

Dynamical systems can be classified in function of their generating
rule, as described below.

3 When referring to time-series and phase-spaces attributes, indices will start
at 0. For other contexts, such as indices denoting dimensions or position in
arrays, we start counting from 1.
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First, the generating rule is classified either as discrete or
continuous, as follows.

Discrete rules: Also known as maps, discrete rules are functions
of the form F = {f1, f2, · · · , fd} that explicitly relate states based
on past values (defining their trajectories) so that pt+1 = F (pt)
and

Sd = {F (p0), F 2(p0), · · · , F∞(p0)}. (2.3)

In the above, F 2(pt) = F (F (pt)), and similarly for higher compo-
sition orders.

Continuous rules: Also called fluxes, continuous rules are mod-
eled by a set of differential equations

pt+1 = ∂pt, (2.4)

that describe how Sd varies in the limit. In such scenarios,
Equation 2.4 is typically approximated in the form of Equation 2.3
based on discrete methods (Butcher, 1996) solved using the
sampling rate ts. Summarizing the above, no matter whether the
rule is a discrete map or a continuous flux, d different time series,
as described by Equation 2.1, can be generated to represent each
dimension of the underlying system.

Separately, Sd can be either deterministic or stochastic, based
on the nature of the generating rule, as follows.

Non-deterministic (stochastic) dynamical systems are used to
model unknown influences by means of random or conditional pa-
rameters. An example of such system is the two-dimensional ran-
dom walk

pt+1 =

n∑
t=0

Z(pt), (2.5)

where Z(pt) is a Markov chain (Meyn and Tweedie, 2009) over each
state based on the probability density function P ([p0, · · · ,pt]).
Among other applications, the random walk, depicted in Fig-
ure 2.3(a), is a simplified model that mimics the Brownian
motion used in physics to represent the random motion of fluid
molecules (Einstein, 1956). Random walks are also present in
several other disciplines such as economics, chemistry, computing,
and biology. In this scenario, when one analyzes each dimension
of Equation 2.5 as a time series, the most common approach is to
use statistical tools (Box and Jenkins, 2015) to support modeling
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2.3 dynamical systems

and prediction.

Deterministic dynamical systems, on the other hand, have a well-
defined generating rule R(·) that produces a single and unique state
in the future, given a starting moment. Nonetheless, deterministic
systems may present chaotic behaviors. A well-known example is
the Lorenz system, designed to model atmospheric data to support
weather forecasting (Tucker, 1999) in the form

∂

 x

y

z

 =

 σ(y − x)

x(ρ− z)− y
xy − βz

 . (2.6)

In this context, parameters σ, β, ρ are adjusted to simulate different
environmental conditions. A chaotic system is typically observed
using ρ = 28, σ = 10 and β = 8/3. In this case, approaches like non-
linear regression (Bates and Watts, 1988) to forecast observations
may lead to poor results when applied directly over dimensions
(i.e., time series), as small disturbances tend to evolve to com-
pletely different trajectories. Phase-space methods aim to improve
modeling by considering phase states and their orbits instead (see
Chapter 4).

Figure 2.3: Example of dynamical systems. (a) Stochastic random
walk. (b) The Lorenz system was created using p0 =
{−13,−14, 47}, ts = 0.01, n = 5001, σ = 10, β = 8/3, and
ρ = 28. Parameters σ, β, ρ were set with values known to
produce a chaotic behavior.

Lastly, it is worth to say that although systems usually present a
mixture of both deterministic and stochastic observations, this the-
sis focused on exploring predominantly deterministic time series4
due to the typical chaotic/cyclical behavior of natural phenom-
ena (Andrews and Herzberg, 1985).

4 We add artificial noise in most of our experiments when dealing with deter-
ministic generating rules.
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2.3.2 Orbits And Attractors

Let F be a function that represents either a map or a flux after
solving the describing differential equations (Equation 2.4). Given
a state pt ∈ S ⊂ Sd, its k-trajectory or k-orbit is the set of states
{pt, F (pt), F

2(pt), . . . F
k(p)} that defines the temporal evolution

of pt to pt+k. A state pt is called fixed if F (pt) = pt, and k-periodic
when F k(pt) = pt. A fixed state is also stable or unstable if its
nearest states are attracted or repelled to it during the course of
their orbits, respectively. Moreover, due to the required notion of
distance to measure nearest neighbors, states are assumed to lie in
some metric space, such as the Euclidean space Ed, which implies
Sd ⊆ Ed. Thus, the state pt′ is a neighbor of pt if it lies in the
interior of the open ball B(pt, ε), centered in pt and with radius ε,
in form

B(pt, ε) = {pt′ ∈ Ed : ‖pt − pt′‖2 < ε}, (2.7)

where ‖·‖2 is the Euclidean norm. In this context, if
limk→∞ F k(p′t) = pt, then pt is a sink or an attractor. On the other
hand, if states of the image F (B(pt, ε)) become more distant from
pt than when they were in B(pt, ε), i.e., they are repelled from pt
along their orbits, then such point is called a source state. The basin
of attraction is the region formed by the smallest, but sufficient ra-
dius ε, such as neighbors of pt are attracted to it. Moreover, fixed
points can behave differently across dimensions, such that saddles
may be formed (for Sd>1), as illustrated in Figure 2.4.

Figure 2.4: Different types of attractors. From left to right: pt is (a) an
attractor point or sink; (b) a repelling point or source; or
(c) a saddle point. Adapted from Alligood et al. (1996).

Based on the above concepts, one may realize that it is not un-
common to find multiple and different types of attractors that,
together, define the dynamics of a system. Such orbits sometimes
evolve into nonlinear trajectories that are useful to visualize (for
low dimensions) and measure important features on the space (Sec-
tion 2.6). For instance, two-dimensional attractors can be depicted
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2.3 dynamical systems

by cobweb plots, while isolated circuits are called limit circles (Al-
ligood et al., 1996). Moreover, periodicities of high-dimensional
systems may form d-dimensional tori. On the other hand, more
complex structures like fractals (Section 2.6.1) and manifolds (Sec-
tion 2.4) are known as strange attractors (Mandelbrot, 1977; Alli-
good et al., 1996; Lee, 2003), as it is the case of the famous Lorenz
system (Equation 2.6). In the latter case, any initial point p0 will,
eventually, converge and be bounded to the trajectories of the at-
tractor, as illustrated in Figure 2.5.
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Figure 2.5: Example of different orbits of the Lorenz system using 20 ran-
dom initial points p0. As it is noticed, all trajectories even-
tually converge to the attractor, never leaving afterwards. In
order to simplify the visualization, only a two-dimensional
system is shown.

Despite different types of generating rules can lead to previously
mentioned attractors, strange attractors are typically found in
chaotic systems due to their sensitiveness to the initial conditions.
In such scenarios, two almost identical states ‖pt′ − pt‖ ≤ ε→ 0+

tend to evolve to completely different orbits (even though remain-
ing restricted to the form of the attractor) as time elapses, even-
tually getting close to each other again after a certain number of
iterations. Such factor makes those systems especially hard to pre-
dict, as minimum errors/fluctuations in data sampling and model-
ing (even in the limited capacity of float number representation)
may be enough to change orbit trajectories.

2.3.3 Phase Space

A deterministic generating rule R(·) maps the state pt ∈ S ⊂ Sd to,
ideally, a single state pt+1 in the future. Conversely, unpredictable
factors such as random processes can disrupt such mapping for
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stochastic systems. Therefore, for deterministic data, the analysis
of this rule offers, as main advantage, a more consistent approach
to: i) identify patterns, cycles and trends; ii) forecast observations;
and iii) correlate systems. The quality of such analyses directly
depends on the number of states in S and how they are rearranged
in the space. For the case when S is characterized by a sufficient set
of states representing all possible dynamics of Sd, then S is called
the phase space of Sd. When such a phase space is extracted from
the time series, the variable time has no longer influence on the
system (Pagliosa and de Mello, 2017). Therefore, the phase space
can be used to interpret how the analyzed phenomenon behaves
along any given period of time, thereby considerably simplifying
the analysis and, in particular, the prediction. Note that if S is a
phase space, then it may be represented by a finite set of states
with potentially lower dimension than d, as the dynamics of the
system may converge to its attractor.
Although Figure 2.1(b) already exemplifies the phase space of

the Lorenz system, let us reinforce this concept using another, sim-
pler, example given by the nonlinear motion of the pendulum

∂2θ

∂t2
+ ω sin θ = 0, (2.8)

where θ defines the angle between the pendulum rod and the ver-
tical line, ω =

g

L
is the motion frequency, g is the gravitational

acceleration, and L gives the pendulum length. Such a system can
be expressed in terms of the angle x = θ and the angular velocity

y =
∂θ

∂t
, as the other parameters remain constant. Thus, one can

use these two variables to reconstruct the phase space according
to the relation

∂

∂t

[
x

y

]
=

[
y

−ω sinx

]
, (2.9)

which represents all possible combinations between angle and an-
gular velocity that a pendulum may have.
Despite the visualization of phase states (in the form of

two/three-dimensional trajectories) is usually enough to analyze
patterns and behaviors for well-defined structures, a vector field
(the gradients of Equation 2.9) represents a more intuitive visual
depiction to track the dynamics of the system when analyzing
dense spaces, as illustrated in Figure 2.6. From this figure, it is
observed the existence of sink and source states that can be useful
to predict cycles and future observations (Boccaletti and Bragard,
2008). Additionally, more refined approaches such as feature detec-
tion methods (Post et al., 2003), geometric methods (McLoughlin
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2.4 immersion and embedding

et al., 2010), and texture-based methods (Laramee et al., 2004) can
be applied to highlight deeper insights.

Figure 2.6: Vector field of the phase space of the simple pendulum, given
by Equation 2.9. Small dashes represent the gradients of
states. For simplicity, the arrows were removed, but the over-
all orientation of states is depicted by solid lines. Using this
picture, one can interpret, for instance, that with greater
velocities the pendulum has enough energy to rotate, while
preserving an oscillating pattern at lower speeds, eventually
converging to an equilibrium point when its velocity reaches
zero.

Finally, it is worth to say that phase-space analysis is also possi-
ble when the generating rule is unknown, as shown in more detail
in Section 2.5.

2.4 immersion and embedding

This section presents the basic concepts regarding topology
and diffeomorphism, which later inspired Takens to propose his
embedding theorem to reconstruct the phase space from univariate
time series (Takens, 1981).

Topological space: A topological space is a set of open sets that,
following axioms based on set theory, characterizes one of the
most general structures of mathematical spaces. As an open set is
an abstract concept that generalizes the notion of an open interval
in R, a topological space is mainly defined by a set of points
and their relation with their neighborhoods. Thus, other spaces
such as the metric and normed spaces are specializations of the
topological space, since additional constraints and measures are
defined (Mendelson, 1975). Further, more complex spaces where
the concept of distance and direction may be needed in order to
perform deeper analyses. Normally, this space is the Euclidean
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space Ed (or equivalently the real space Rd), where the notion of
neighborhood is given as in Equation 2.7.

Manifolds: The correspondence between topological and Eu-
clidean spaces may be given through manifolds. More precisely,
a d-manifold M is a topological space such that each of its open
sets p ∈M can be mapped to a point p ∈ Ed and vice-versa, i.e.,
p ≈ p, without loosing any topological property (neighborhood re-
lationships). Under those circumstances, a d-manifold is said to be
locally homeomorphic to Ed (Mendelson, 1975; Lee, 2003; LaValle,
2006). By this definition, examples of unidimensional manifolds
consist of open intervals in E and circles in E2, respectively, while
surfaces such as planes, spheres, and tori in E3 are representations
of two-dimensional manifolds.

Differentiable manifolds: A differentiable manifold is a manifold
locally defined by a set of Ck differential equations that provide
additional information to the abstract topological spaceM. With
these functions, one can unambiguously define directional deriva-
tives and tangent spaces to perform infinitesimal calculus and de-
form manifolds. Some of those deformations, which are in the form
F : M → N , receive special attention depending on the proper-
ties they preserve. For instance, if TpM is the tangent space (Lee,
2003) on the point p in the manifold M, then an immersion is a
function whose derivative ∂pF (partial of F with respect to p) is
everywhere injective

∂pF : TpM→ TF (p)N , (2.10)

which guarantees the resulting image (N ) has well-defined deriva-
tives in all its domain (M). However, the image of an immersion is
not necessarily a manifold. Figure 2.7 illustrates the possible sce-
narios involving an immersion. An embedding, on the other hand, is
a transformation that, besides being an immersion, is an injective
function itself that also creates a diffeomorphism5 betweenM and
N . Therefore, in contrast to immersions, the image of an embed-
ding is always a manifold, as illustrated in Figure 2.8. Moreover, if
the manifold is compact6 (as is the case of most attractors), then
every injective immersion is an embedding.
The motivation behind these deformations is to transform the

topological properties of a manifold into a more intuitive, and eas-
ier to process, representation such as a surface in the Euclidean
space. One of the most famous examples to illustrate this concept

5 A diffeomorphism is an invertible function that maps one differentiable mani-
fold to another, such that both the function and its inverse are smooth.

6 A manifold is compact if it is finite and has limit points.
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Figure 2.7: Example of immersions. (a) The eight-shaped closed curve
is an immersion of the open set (−π

2
, 3π

2
) into E2. (b) The

cuspidal cubic (middle) is not an immersion, as the partial
of f(t) is not injective in 0. (c) The nodal cubic (bottom)
is an immersion: f ′(t) = (2t, 3t2 − 1) = (0, 0) has no solution
in t. All images are non manifolds. Adapted from Tu (2010).

is the immersion of the Klein bottle, a 2-manifold whose topol-
ogy can be described by an identification (LaValle, 2006) in the
form of a square. In this representation, points near edges should
remain together so that the orientation of similar arrows match.
Thus, despite the topological space has enough information to de-
scribe how points behave, the immersion of the Klein bottle into
E3 (Figure 2.9) turns it much easier to understand and study, even
if the resulted image is not a manifold. Similarly, one can embed
the Klein bottle into E4 to remove the observed self-intersections.
Finding a space in which a manifold can be embedded is not

a trivial task in most cases. In this context, Whitney (1936) pro-
posed a theorem saying that E2d+1 is a sufficient space to embed
a d-manifold, since no two points from a d-dimensional manifold
could be mapped to the same point in the (2d + 1)-dimensional
space (Ghomi and Greene, 2011; Forstnerič, 2011). It is worth to re-
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Figure 2.8: The function is not an embedding in R2, but it is in R3. In
this example, t ∈ (−π

2
, 3π

2
). Adapted from Tu (2010).

Figure 2.9: Identification of the topological space (left) and the resulting
image of the immersion of the Klein bottle into E3 (right).
Points in this topology should be close to each other such
that the orientation of similar arrows are equal.

inforce, however, that this theorem elaborates a sufficient, but not
necessary condition, such that lower dimensions may be enough to
embed a manifold, as it is the case of the Klein bottle. According to
Whitney’s theorem, such 2-dimensional manifold can be embedded
in E5, but E4 is already enough.
Extending this study, Takens (1981) proposed his own embed-

ding theorem, described next. Let M be a compact manifold of
dimension d7. For pairs (ϕ, y), where ϕ : M →M is a diffeomor-
phism and y :M→ R is a smooth function, it is a generic property
that the map Φ :M→ E2d+1, in the form

Φ(ϕ,y)(p) = (y(p), y ◦ ϕ(p), · · · , y ◦ ϕ2d(p)), (2.11)

is an embedding. In other words, the main contribution of Takens’
theorrem was to show that a single quantity of the manifold M
is enough to embed it in E2d+1. However, like Whitney, Takens’
theorem elaborates a sufficient, but not a necessary condition. As
matter of fact, the space E2d+1 is usually an overestimation, and

7 The dimension here is the Euclidean space in which the manifold lies, not the
dimension it is homeomorphic to.
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finding a lower, simpler embedding dimension, from now on re-
ferred to as m, is desirable in order to decrease the computational
costs involved in modeling and prediction, especially when deal-
ing with large volumes of continuously collected data, also known
as data streams (Muthukrishnan, 2005). For instance, a sufficient
space to embed the 2-manifold, 3-dimensional Lorenz system, ac-
cording to Takens is E7, but Em=3 is already enough to unfold the
Lorenz attractor dynamics.

2.5 reconstructing phase spaces

The previous sections have introduced the mathematical support
on dynamical systems and immersions. Next, this section combines
those concepts and describes how a time series can be embedded
in practice.
As previously discussed, the process of finding a finite set S ⊂ Sd

resembling the dynamics of Sd is known as unfolding or reconstruct-
ing the phase space of Sd. If one knows R(·), the reconstruction
becomes quite straightforward after generating enough states of
the respective map or discretized flux. However, this process be-
comes more difficult when the generating rule is unknown, as it
is the case of real-world data sampled from some arbitrary time-
dependent phenomenon. Additionally, an even more problematic
issue is the lack of information on the data: humans tend to model
phenomena in terms of the variables they observe and know, which
usually tend to be an insufficient and inaccurate representation of
the underlying phenomenon. Separately, data measurements may
in practice be corrupted or have missing values, forcing the analyst
to disregard them. Summarizing, one may face several scenarios in
which only a small number of dimensions is available for analysis.
In the limit, we consider the case where just a single dimension
i ∈ [1, d] of Sd is considered8.
A dynamical system Sd, especially when modeling natural phe-

nomena, usually presents recurrent patterns and observations. In
addition, it is expected that variables composing such a system do
not only impact themselves, but directly or indirectly affect other
variables along time. Such correlation can indeed be noticed in the
Lorenz system (Equation 2.6) and in the simple pendulum map
(Equation 2.9). Further, if one represents the ith (i ∈ [1, d]) com-
ponent of all phase states as the time series Ti, it is reasonable to
expect that such observations have, even that implicitly, informa-

8 There exist methods that analyze the impact of using more than one time
series to reconstruct the phase space (Cao et al., 1998). However, this matter
is out of the scope of this thesis.
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tion related to other variables of R(·)9. In order to take advantage
of this relation, one can rely on Takens’ embedding theorem (Tak-
ens, 1981) to embed a d-dimensional manifold M into E2d+1 ac-
cording to Equation 2.11, where y(·) is interpreted as a direct map
to access the observations of Ti. Thus, according to Takens, a time
series Ti can be embedded into a space that is diffeomorphic to Sd
or, more precisely, to its phase space S. In this situation, the phase
space will be represented by the Ni × (2d + 1) trajectory matrix,
denoted from now on to as Φi, in form

Φi =



y(p0) y ◦ ϕ(p0) y ◦ ϕ2(p0) · · · y ◦ ϕ2d(p0)

y(p1) y ◦ ϕ(p1) y ◦ ϕ2(p1) · · · y ◦ ϕ2d(p1)

y(p2) y ◦ ϕ(p2) y ◦ ϕ2(p2) · · · y ◦ ϕ2d(p2)

y(p3) y ◦ ϕ(p3) y ◦ ϕ2(p3) · · · y ◦ ϕ2d(p3)
...

...
...

. . .
...

y(pNi−1) y ◦ ϕ(pNi−1) y ◦ ϕ2(pNi−1) · · · y ◦ ϕ2d(pNi−1))


,

(2.12)

so that, mathematically

Ti → Φi ≈ S ⊂ Sd. (2.13)

In this context, Takens also proposed a convenient diffeomorphic
function ϕ in the form

ϕτ (p) : p→ τp, τ ∈ I+, (2.14)

later commonly known as the method of delays due to its time
displacement characteristics. Assuming the manifold is discretized
as a non-uniform grid (see Figure 2.10), such a direction could be,
for instance, the dimension i, so that ϕ shifts the point p ∈ M
τ units to the right. Finally, the function y(·) merely maps the
component pt,i from the phase state pt to x(t) ∈ Ti, as illustrated
in Figure 2.11.
Therefore, given the time series Ti = {x(0), · · · , x(ni − 1)}, the

phase space Φi with Ni states can be reconstructed according to
Equation 2.12. More precisely, the method of delays reconstructs
each phase space as

φi(t) = [x(t), x(t+ τ), x(t+ 2τ), · · · , x(t+ 2dτ)], (2.15)

where τ is the time delay, as defined in Section 2.2. Moreover,
it is worth to note that, because Φi ≈ S, i.e., the reconstructed

9 As consequence, it is worth to mention that the quality of the reconstructed
phase space depends on the amount of influence Ti brings about other vari-
ables.
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Figure 2.10: Example of diffeomorphism between manifolds. The rota-
tion of a manifold is a transformation whose image is dif-
feomorphic to the original manifold (sphere). The states pt,
pk, and pj are mapped to τ = 4 units in the direction of
the rotation (in this case, to the right). The sphere has been
discretized to facilitate understanding.

phase space is diffeomorphic to S, it is known that Equation 2.15
locally preserves neighboring properties of phase states. According
to our notation, this relation is expressed as

Φi(t) ≈ pt. (2.16)

Other strategies to reconstruct the phase space are either mod-
ifications of Equation 2.15 (Broomhead and King, 1986) or based
on different diffeomorphism functions. For instance, Packard et al.
(1980) proposed the method of derivative coordinates, where each
row in Equation 2.12 is defined as

ϕτ (p) : p→ ∂τF (p)

∂iτ
, τ ∈ I+. (2.17)

This method creates phase states similarly to the method of delays
but uses infinitesimal time delays, which is impractical when the
generating rule is unknown. Nevertheless, one can assume the time
series is structured as Ti = {x(−hi), · · · , x(0), · · · , x(hi)}, where
hi = (ni − 1)/2, and approximate Equation 2.17 by finite differ-
ences (Canuto and Tabacco, 2008) as

φi(t) =

[
x(t),

x(t+ τ)− x(t)

τ
,
x(t+ τ)− 2x(t) + x(t− τ)

τ2
, · · ·

]
.

(2.18)

Figure 2.12 illustrates both methods for the Lorenz system.
While there is no clear evidence about which of these methods
is the most appropriate, Ravindra and Hagedorn (1998) elaborate

25



fundamentals

Figure 2.11: Diffeomorphism according to the method of delays. The
method of delays allows the reconstruction of the phase
space using a single dimension i, represented as the time
series Ti. In the proposed coordinate system, i represents
the first dimension/component.

that the method of delays produces better results when analyzing
nonlinear time series. In fact, the method of delays is the most used
approach in the literature (Stark, 1999; Yap and Rozell, 2011; Yap
et al., 2014). It is worth to say that the method of delays, as orig-
inally proposed (Equation 2.15), assumes an uniform τ . Nonethe-
less, there are articles that investigate the usage of multiple time de-
lays (Breedon and Packard, 1992; Manabe and Chakraborty, 2007).

Figure 2.12: Despite the different results, the reconstructed phase space
using either the method of delays (a) and derivatives (b)
preserve topological properties and, most importantly, the
dynamics of the original Lorenz system (Figure 2.3(b)). The
reconstruction was performed using m = 3 and τ = 8 in
both methods. For simplicity, only the first two dimensions
are visualized.
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2.6 phase space features

Based on reconstructed phase space, several methods were pro-
posed to identify and predict chaotic time series (Farmer and
Sidorowich, 1987; Andrievskii and Fradkov, 2003; Boccaletti and
Bragard, 2008; de Mello and Yang, 2009). Next, concepts such
as correlation dimensions and Lyapunov exponents, important to
these two types of analysis, are described.

2.6.1 Fractal Dimension

Following the Gestalt principles (Chang et al., 2007), a geomet-
rical object (shape) can be described in term of its patterns and
how these are arranged in space. Further, a pattern can be defined
as a feature that repetitively occurs at ε spatial units of measure.
For instance, patterns can be defined in function of length, area,
or volume, in one, two, and three-dimensional spaces, respectively.
Therefore, if a D-dimensional object presents N patterns, as illus-
trated in Figure 2.13, one can notice the relation of proportionality
(∝)

N ∝ εD ∴ D ≈ logN/ log ε. (2.19)

With the above, a fractal can be defined as an object whose

Figure 2.13: Relation between dimension and geometry for one (a), two
(b) and (c) three-dimensional objects. The number of pat-
terns N , the scaling factor ε and the dimension of the object
D are correlated by Equation 2.19.

patterns are given in function of the object itself (Mandelbrot,
1977). If patterns are perfect replicas occurring at every scale
ε, the fractal follows a self-similar pattern, as it is the case of
the Koch snowflake (Figure 2.14). Differently from other shapes,
fractals usually do not have a uniform relation between ε and N ,
so that D, also called the fractal dimension, is often a real number.
Despite not being unique, this quantity turns to be an important
space descriptor, as it abstracts the complexity of a shape.

Use for dynamical systems: In the scope of dynamical systems,
one can compute the fractal dimension D based on the orbits of the
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Figure 2.14: The Koch snowflake is a fractal that replicates itself 4 times
per iteration (from left to right: 1, 4, 16 triangles). Each
pattern occurs after dividing each edge in 3 equally-length
pieces. Thus, N = 4, ε = 1/3 and D = 1.2619.

phase states to quantify the structure of Sd. Among other applica-
tions, the fractal dimension becomes useful to distinguish determin-
istic/chaotic from stochastic systems, as explained next. Suppose
we have a dynamical system with a d′-dimensional attractor. The
fractal dimension of such an attractor is less or equal to d′, i.e.,
D ≤ d′ (due to the finite data, noise, and no self-similar patterns).
If the attractor is embedded or lies in some higher dimension, the
fractal dimension stays the same. Therefore, the fractal dimension
of a reconstructed phase space is invariant to the embedding dimen-
sion m. If the generating rule is guided by a stochastic process,
e.g., a Normal distribution, the space has greater probability to
be equally filled by states, leading the fractal dimension to always
be equal to the embedding dimension. In summary, the following
relation is noticed:

1. if the fractal dimension D does not vary with the embedding
dimension m, then m is greater than the dimension of the
attractor, and Ti has more probability to be deterministic
(chaotic or not);

2. if the fractal dimension D is equal to the embedding dimen-
sion m for different values of m, either the space does not
unfold the dynamics of the attractor or Ti is stochastic (non-
deterministic).

Unfortunately, the fractal dimension D cannot be exactly com-
puted in practice. Because fractals may change patterns as ε→ 0,
one would need an infinity amount of data (N → ∞) to find the
true value of D. Thus, several approaches were proposed to esti-
mate the fractal dimension of an object. These include the box-
counting dimension D0; information dimension D1; correlation di-
mension D2 andDL Lyapunov dimension DL (Clark, 1990; Theiler,
1990; Ding et al., 1993; Alligood et al., 1996).

While all these dimensions have relative advantages, the corre-
lation dimension D2 is one of the most used methods in the liter-
ature (Kantz and Schreiber, 2004). Nonetheless, there is evidence
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that D2 and DL are numerically close to each other and less prone
to be affected by noise for small datasets (Otani and Jones, 1997).
As consequence, we next detail the D2 method, followed by the DL

method (Section 2.6.3).

2.6.2 Correlation Dimension

The correlation dimension of the system Sd is based on the corre-
lation integral

Ĉ(ε) =

∫ ∫
θ(ε− ‖pt − pt′‖2)dH(pt)dH(pt′), (2.20)

where ε is an open-ball radius, ‖·‖2 is the Euclidean norm, and H(·)
is the invariant distribution of Sd. As we have Φi ≈ S ∈ Sd, the
correlation sum, proposed by Grassberger and Procaccia (1983),
aims to estimate the correlation integral for the discrete set of N
phase states, embedded using parameters (m, τ), as

C(m, ε) =

N−1∑
t<t′

θ(ε− ‖pt − pt′‖2)
2

N ∗ (N − 1)
, (2.21)

where θ is the Heaviside step function

θ(x) =

{
0, if x < 0,

1, otherwise.
(2.22)

The correlation dimension D2 is then estimated from the fractal
integral (Equation 2.19) as

lim
ε→0

lim
N→∞

C(m, ε) ≈ εD2 ∴ D2 ≈ lim
ε→0

lim
N→∞

logC(m, ε)

log ε
. (2.23)

However, as the phase space is represented by a finite set of
states, one cannot infinitely decrease the radius ε, also referred to
as scaling factor in this case. Thus, the most common approach is
to assume the fractal to have self-similar patterns and extrapolate
it as ε→ 0. Among the alternatives, this estimation is obtained by
computing the slope of the regression line that best fits the points
in the plot logC(m, ε) versus log ε, as shown in Figure 2.15. In
addition, as the correlation dimension should not vary for chaotic
attractors (as it is the case for the Lorenz system) when m ≥ D, a
better estimate can be achieved by taking the average slope for mul-
tiple embeddings. For instance, this approach estimates D2 = 2.04
for the Lorenz system, where the true fractal dimension is known
to be 2.05 (Grassberger and Procaccia, 1983). Despite the good re-
sult for this particular case, estimating the correlation dimension
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is not trivial for general systems, as the algorithm is sensitive to
several parameters including the number of observations N , the
scaling factor ε, and the interval from where the slope is computed.

Figure 2.15: The correlation dimension of the Lorenz system (τ = 8) can
be estimated as the average slope of the log-log plot between
the correlation sum versus the scaling factor ε, over differ-
ent embedding dimensions (from top to bottom:m = [3, 6]).
The interval used to compute the slope is bounded by bolder
lines.

2.6.3 Lyapunov Exponents

Let Jt be the d× d-Jacobian matrix in the form

Jt =



∂f1
∂pt,1

· · · ∂f1
∂pt,d

...
. . .

...

∂fd
∂pt,1

· · · ∂fd
∂pt,d


, (2.24)

where F = {f1, f2, · · · , fd} is a d-dimensional function applied to
the point pt. Among several applications, the Jacobian matrix can
be used as a transformation to linearly approximate states through
Taylor expansion (Canuto and Tabacco, 2008) as

F (pt + h) ≈ F (pt) + Jth, (2.25)

where h → 0 is an infinitesimal displacement vector. Moreover,
if (λi,vi), i ∈ [1, d] are eigenpairs of the Jacobian Jt, then the
eigenvalues λi are the coefficients of the linear combination
Jt = λ1v1 + · · ·+ λ2v2 · · ·+ λdvd that quantifies the rate of
variation pt has in each dimension. In other words, the Jacobian
can be used as an approximation of the derivatives of F .

Use for dynamical systems: In the scope of dynamical systems,
F represents the map or discretized flux of the generating rule
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R(·) describing the dynamics of Sd, and pt is a phase state on
that system. In that sense, if pt and another state are separated
h units of measurement after k iterations of their orbits, so that
δ(k) = ‖[δ(k)1, · · · , δ(k)d]‖2 = ‖h‖2 is the norm of such distance
(Figure 2.16), the divergent rate for each dimension i ∈ [1, d] can
be described by the corresponding eigenvalue λi of Jkt , defined from
the chain rule (Alligood et al., 1996) as

Jkt = Jt+k−1Jt+k−2 · · ·Jt. (2.26)

For the case of chaotic time series, however, close trajectories are
known to exponentially diverge from each other after k iterations
(Figure 2.16), such that

lim
k→∞

δ(k)i ≈ δ(0)i exp(λik), (2.27)

is the divergence rate for dimension i. As consequence, the average
variation between states along the dimension i, per iteration, is
roughly approximated as λ1/ki .

Figure 2.16: Divergence of initially close orbits in chaotic systems. State
trajectories tend to diverge exponentially in chaotic sys-
tems, so that two states, initially close, evolve to completely
different orbits after k iterations. In this example, k = 3.

The relation among chaotic trajectories has motivated the defi-
nition of the ith local Lyapunov exponent as

Li = lim
k→∞

1

k
log λi, (2.28)

in attempt to quantify the amount (and in which direction) the
dynamical system is varying. Kaplan and Yorke (1979) proposed
to rank local Lyapunov exponents, in the form of L1 ≥ L2 ≥ · · · Ld,
and use them to estimate the Lyapunov dimension DL as

DL = j +

∑j
i=1 λi

λj + 1
, (2.29)

where j is the largest integer so that λ1 + λ2 + · · ·+ λj ≥ 0.
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Besides estimating the fractal dimension, Lyapunov exponents
are used to measure a system sensitivity to initial conditions, i.e.,
chaos (Alligood et al., 1996). More precisely, if one computes the
(global) Lyapunov exponent as the most representative dispersion
of Jkt (some authors use the trace of Jkt , i.e.,

∑d
i=1 λi, instead), we

define

λ = max(Li), (2.30)

and then the system either tends to converge to attractor points
(λ < 0), be conservative (λ = 0), or present unstable and chaotic
behavior (λ > 0) after k iterations. In this context, λ is also used to
define the prediction horizon, i.e., the maximum number of future
observations one can forecast within a reliable margin of confidence,
as

H = − logE

λ
, (2.31)

given a training error E. To exemplify this concept, assume that an
algorithm models a time series achieving training error E = 0.001
for a λ = 0.692 system. Despite the small training error, by Equa-
tion 2.31, only H = − log 0.001

0.692 = 9.98 ≈ 10 observations can be pre-
dicted with enough confidence. Without knowing that, one may
wrongly assumed that the algorithm overfitted, being uncapable of
generalization (Vapnik, 1998; Luxburg and Schölkopf, 2011). Actu-
ally, the algorithm has likely learned the data well, but its forecast-
ing capabilities are limited by the chaotic nature of the analyzed
system. Thus, small divergences in the representation of initial con-
ditions lead orbits to exponentially diverge after k iterations, es-
pecially if one uses recursive forecasting to respect the butterfly
effect (Brock et al., 1992).
Unfortunately, the Lyapunov dimension is unfeasible to compute

in practical scenarios when generating rules are unknown and/or
when the Jacobian matrix is not computable. In order to overcome
this issue, one needs to first reconstruct the phase space from a time
series Ti ∈ [1, d] and compute Equation 2.27 for several reference
states. Similarly to the correlation dimension, one can extrapolate
k → ∞ when dealing with finite datasets by taking the slope of a
linear region on the Si(k) versus k plot, where S(k) = λk.

2.7 final considerations

This chapter introduced the main concepts associated with this
thesis, starting with the definition of time series to later cover
important dynamical-systems characteristics such as trajectories,
orbits, and attractors. As highlighted, a fundamental concept and
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tool for the analysis of such systems is the phase space, for which
several reconstruction methods have been outlined. By unfolding
the dynamical behavior in such space, one can reveal important
features about the underlying phenomenon and, therefore, reach a
better understanding of the series and its properties. In addition,
due to the map between phase states and time-series observations,
one can take advantage of modeling phase-space trajectories to
forecast chaotic time series.
However, characterizing dynamical systems by analyzing their

phase-space representations is challenging. First and foremost, it
is not evident how to reconstruct a phase space in practice, given
a sampled time-dependent phenomenon. Secondly, this reconstruc-
tion is subject to various parameters and quality metrics, and it
is not evident how to compute, or even define, which is the op-
timal reconstruction (apart from relatively simple dynamical sys-
tems having well-known generating rules). Therefore, the concepts
described in this chapter were important to either understand the
related work and ii) to formulate the proposed research questions
in Chapter 1
Based on the concepts introduced here, we next exemplify the

challenges involved in interpreting dynamical systems by introduc-
ing more complex examples (Chapter 3). Further on, we describe
techniques for estimating embedding parameters in Chapter 4.
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3.1 initial considerations

In the previous chapter, we illustrated the concepts and challenges
of attractors, phase spaces, and their features by using two quite
simple dynamical systems – the Lorenz system and the mechanical
pendulum. The Lorenz system has become the typical example
in studies on phase-space reconstruction and dynamical systems,
mainly due to its easy-to-understand visual structure (Rosenstein
et al., 1994; Tucker, 1999; Manabe and Chakraborty, 2007).
As also mentioned in Chapter 2, a major challenge in validating

a phase-space reconstruction and, as consequence, its embedding
parameters m and τ , is by having the ground truth to assess it.
That is, for a given dynamical system in general, we can compute
a multitude of embeddings. How do we know when an embedding
is good enough and which one is the best (if any)? Answering
this question is of key importance for our work, as in the next
chapters we move to explore and propose methods for computing
such optimal embeddings.
To approach this question, we will consider as ground-truth sets

of well-known dynamical systems and datasets. By “well known”,
we mean the following:

• the generating rule R(·) is known, hence embedding param-
eters can be obtained by trial-and-error after comparing the
original and reconstructed phase spaces;

• a specialist in the area of the respective dynamical system
defined the phase space that best represents the dynamics of
the studied phenomenon; or

• the embedding dimensions and corresponding embedding pa-
rameters (m, τ) were estimated according to state-of-the-art
methods which are well documented and accepted in the re-
lated literature. Those methods are described next in Chap-
ter 4.

Following Chapter 2, we consider two main classes of systems. Sec-
tion 3.2 presents systems of discrete maps and function types. Sec-
tion 3.3, on the other hand, describes continuous systems (fluxes).
For each system, we compute a dataset that captures its dynam-

ics. Those datasets were used in our experiments described from
Chapter 5 onwards. For completeness and replication purposes,
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we outline below practical considerations involved in computing
such datasets.

Parameters: For each of the systems discussed next, we report
its default parameters and constants (Equations 3.1–3.5). Those
were chosen to simulate some chaotic behavior according to the
literature. This led to structures to form in the phase space, such
as fractals (Mandelbrot, 1977) and manifolds (Lee, 2003), as
discussed in Chapter 2. Nonetheless, one could use any different
set of parameters to simulate a different scenario, without loss of
generality.

Presentation: For presentation purposes, components from
the first dimension (usually represented as the variable x in
most cases) are used to represent the time series. Therefore,
Ti = x(t),∀t ∈ [0, ni − 1].

Implementation: All partial equations were solved using the sam-
pling time ts = 0.01 in the R language (Hegger et al., 1999; Antonio,
2013; Garcia and Sawitzki, 2015). All time series were analyzed us-
ing a sufficient length (time duration) to preserve the dynamics
of the unfolded phase space. Concretely, at least n = 1000 obser-
vations were used in most cases. However, to facilitate the under-
standing and avoid clutter, we use fewer observations (e.g., 100) to
illustrate some time series in this chapter.

3.2 discrete maps and function-based systems

3.2.1 Sinusoidal Function

Given a right-triangle angle, the sinusoidal function represents the
ratio between the length of the opposite side of that angle and the
hypotenuse, in form

x(t) = A(t) sin(2πt/n) + θ) + U(a, b), (3.1)

where A(t) is the amplitude along time (represented by n sam-
ples, t = 0, . . . , n− 1), θ is the sinusoidal phase, and U(a, b) intro-
duces noise following a uniform probability distribution in range
[a, b]. Due to its periodical and conservative behavior, this func-
tion is typically considered to model time-recurrent phenomena,
such as sound and light waves, sunlight intensity, and day dura-
tion (Bracewell, 1978). In this situation, stochastic components
might be added to represent spurious influences along data collec-
tion, which is common in real-world scenarios, such as the lack of
sensor precision or any other unexpected fluctuations.
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The phase space for the sinusoidal function follows an ellipse
shape when properly unfolded with (m = 2, τ = [1, 20]). The range
of acceptable time delays varies according to the sampling time,
and its mainly responsible for the radius of the ellipsoidal attractor,
so that greater values are required to overcome lower signal-to-
noise ratios (Pagliosa and de Mello, 2017). Figure 3.1 illustrates
the phase space reconstructed with (m = 2, τ = 1) for the default
parameters A(t) = 1,∀t, θ = 0, U(0, 0), n = 1000.
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Figure 3.1: Time series (a) and phase space (b) of the sinusoidal func-
tion. Adapted from Pagliosa and de Mello (2017).

3.2.2 Logistic Map

The Logistic map

x(t+ 1) = rx(t)(1− x(t)), (3.2)

models the growth rate of populations like bacteria or hu-
mans (Robledo and Moyano, 2007). First, the population grows as
there are more resources available than consumed. After a while,
the population rate tends to decrease given struggles for resources
and diseases (if we are modeling humans, for instance) or treat-
ments (if we are modeling bacterias, instead). This trade varies
according to the population grow rate r, and, eventually, some bal-
ance is found before the beginning of another cycle.
Figure 3.2 illustrates the series (parameters are x(0) = 0.5 and

r = 3.8, n = 100) and its phase space, reconstructed with (m =
2, τ = 1).

3.2.3 Hénon Map

The Hénon map (Hitzl, 1981), whose generating rule is given by

x(n+ 1) = 1− ax(n)2 + y(n),

y(n+ 1) = bx(n),
(3.3)
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Figure 3.2: Time series (a) and phase space (b) of the Logistic map.
Adapted from Pagliosa and de Mello (2017).

represents the intersection of a periodic orbit of the Lorenz phase
space with a certain lower-dimensional subspace, transversal to
the flow of the system, also known as the Poincaré section (Diacu,
1999). This function can either approach a set of attractor points
or diverge to infinity, based on the starting point. Figure 3.3 shows
n = 100 observations generated using x(0) = −0.0064, y(0) =
−0.4735, a = 1.4, and b = 0.3; the phase space was generated
using (m = 4, τ = 1).
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Figure 3.3: Time series (a) and phase space (b) of the Hénon map.
Adapted from Pagliosa and de Mello (2017).

3.2.4 Ikeda Map

The Ikeda map, defined as

z(n+ 1) = a+ bz(n)eig,

g = k/(1 + z(n)2) + c,
(3.4)

was proposed as a model of light going around across a nonlinear
optical resonator (Ikeda, 1979), in which i is the imaginary unit;
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z(n) is the electric field inside the resonator at the n-th step of
rotation; a indicates the laser light applied from the outside; c is
the linear phase across the resonator; and, finally, b is the chaotic
parameter (when b ≤ 1 there is resonator loss; when b = 1 this map
becomes conservative). We initialize z(0) and z(1) with random
values and used a = 0.85, b = 0.9, c = 7.7, k = 0.4. The series with
n = 100 samples and its phase space, embedded with (m = 2, τ =
1), are illustrated in Figure 3.4.
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Figure 3.4: Time series (a) and phase space (b) of the Ikeda map.
Adapted from Pagliosa and de Mello (2017).

3.2.5 Sunspot Dataset

The real-world Sunspot dataset (Andrews and Herzberg, 1985) is
produced from the number of monthly average of sunspots col-
lected from 1749 until 2013. This time series measures the number
of sunspots s and groups of sunspots g observed on the Sun surface
by n different laboratories around the world. Each laboratory has
a relevance to determine the sunspot occurrence, which is based
on the facility location and instrumentation capabilities. On top
of this time series, previous studies discovered a cyclical solar be-
havior (known as the solar cycle) of approximately 11 years, close
to a sinusoidal signal with noise added. This type of study is rel-
evant since it allows to model, predict, and detect changes on the
Sun surface which produce side effects on the space as well as on
the Earth surface and atmosphere. In addition, as this series fol-
lows sinusoidal-like characteristics (sum of sinusoidal trends with
noise), the attractor is expected to have several concentric sharped-
elliptic-like trajectories. Indeed, this structured is acquired after
reconstructing the phase space using the same parameters for the
sinusoidal function, i.e., (m = 2, τ = 1). Nonetheless, greater val-
ues of τ are also accepted.
Also, it is worth to mention that the original series has a lot of

fluctuations that jeopardize the visualization of the attractor, as ex-
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pected from real-world observations. Using the raw data, the phase
space yields several concentric ellipses overlapping as approaching
the origin, leading to cluttered points that jeopardize the tracking
of trajectories. Therefore, Figure 3.5 shows a spline curve fit to
100 equally-spaced observations (10%) of the original series, and
the respective phase space. This shorter and smoother version still
reassembles the original series, but it makes easier to follow the
dynamics of the elliptical phase space.
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Figure 3.5: Time series (a) and phase space (b) of the Sunspot dataset.
Lines connecting consecutive states depict phase-space tra-
jectories. Adapted from Pagliosa and de Mello (2017).

3.3 continuous systems

3.3.1 Lorenz System

The Lorenz system, defined in Equation 2.6, models atmospheric
data to support weather forecasting (Tucker, 1999). This model
uses the heat flow between upper and lower surfaces of the observed
phenomena, having σ as the ratio of momentum and thermal dif-
fusivity, also known as the Prandtl number; β determines whether
the heat transfer is primarily in the form of conduction or con-
vection, also known as the Rayleigh number; and ρ is a geometric
factor. We used x(0) = −13, y(0) = −14, z(0) = 47, and σ = 10,
β = 8/3, ρ = 28. Its series and phase space with (m = 3, τ = 8)
are shown in Figure 3.6.

3.3.2 Rössler System

The Rössler system, whose generating rule is given by

∂

 x

y

z

 =

 −y − z
x+ αy

β + ρ(x− z)

 , (3.5)
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Figure 3.6: Time series (a) and phase space (b) of the Lorenz system
(only two dimensions are shown). Adapted from Pagliosa and
de Mello (2017).

was originally designed to behave like the Lorenz system, but pro-
viding an easier qualitative analysis (Rössler, 1976). Thus, it shares
the same optimal embedding parameters with Lorenz. Typically,
chaotic parameters are: x(0) = −2, y(0) = −10, z(0) = 0.2, and
α = 0.2, β = 0.2, ρ = 5.7. Figure 3.7 depicts the series as well as
the resulted phase space.
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Figure 3.7: Time series (a) and phase space (b) of the Rössler system
(only two dimensions are shown). Adapted from Pagliosa and
de Mello (2017).

3.4 final considerations

This chapter introduced the generating rules, series and phase
spaces used along the following chapters. The aim of selecting such
systems was to create a consistent set of datasets that describes the
behavior of dynamical systems for which ground truth is available
in terms of their optimal embedding parameters (m, τ). This way,
we can next validate the estimation of other methods.
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Apart from those dynamical systems, many more exist and have
been studied in the literature (Farzad et al., 2006; Korsch et al.,
2008). We refrained from including such additional systems in our
work, since they are less pervasive in benchmarks commonly used
in most analyses (Alligood et al., 1996; Tucker, 1999; Ott, 2002;
Kantz and Schreiber, 2004; Robledo and Moyano, 2007). As such,
the comparison with those additional systems could have be done,
without loss of generality.
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4RECONSTRUCTING PHASES SPACES

4.1 initial considerations

As introduced in Chapter 2, reconstructing the phase space from
a time series is a key step in dynamical systems analysis. For this
purpose, the embedding theorem proposed by Takens (1981), also
known as method of delays, is the most employed approach in the
literature (Packard et al., 1980). This chapter further discusses
methods for performing the phase-space reconstruction that are
associated with Takens’ theorem.
Before describing actual methods to compute embedding

parameters (m, τ), let us overview the general considerations that
underlie the computation of such embeddings. We outline three
points of interest: the use of a single vs multiple time delays τ ;
the effects of overestimating the embedding dimension m; and the
impact for the estimation if m and τ are correlated or not.

Single vs multiple time delay: Methods for computing
phase-space optimal embeddings of time series rely on the fact
that a time series Ti, whose observations are the components of
a single dimension i of Sd, is directly or indirectly influenced by
other non-measured variables j ∈ [1, d],∀j 6= i. While studying
natural phenomena, however, such influences among variables
may happen at different timestamps and intervals, leading to
nonlinear recurrences and chaos (Kantz and Schreiber, 2004).
Thus, one could use multiple time delays τ1, τ2, · · · to reconstruct
the attractor of S that resembles the features of Sd, as first
investigated by Breedon and Packard (1992) and more recently
by Manabe and Chakraborty (2007). However, this Ph.D. (as most
studies) is mainly concerned in estimating a single τ , which may
be interpreted as the most common or maximal time delay. Thus,
implications of using more than one time delay in phase-space
reconstruction is out of the scope of this thesis.

Overestimated embedding dimension: In order to reconstruct
the phase space S ⊂ Sd, an adequate pair of embedding parameters
m and τ is required to unfold the system dynamics. In that sense,
given that most real-world phenomena present low-dimensional
phase spaces (as shown in Chapter 3), underestimated embeddings
are difficult to occur in practice, at least in terms of m. Conversely,
estimations leading to an overestimated embedding dimension will
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reconstructing phases spaces

not impact the quality of the analysis (as the phase space will be al-
ready unfolded), but will increase the computational effort needed
for modeling, which is undesirable for real-time applications on
data streams. Thus, a minimal embedding pair (m, τ) is highly de-
sired. Complementary, an overestimated time delay may generate
misleading conclusions, especially when dealing with maps as it
is the case of the Hénon and Logistic time series. For instance, a
second-order polynomial regression (Björck, 1996) applied over the
phase space of Figure 1.3(a) gives

x(t+ 1) = −3.8x(t)2 + 3.8x(t)− 1.49236× 10−7, (4.1)

which is enough to get an approximation of the actual generating
rule built with r = 3.8 (Equation 3.2). With the generating rule
available, simpler and more reliable analyses can be performed
than when using the raw time series itself. Nonetheless, the attrac-
tor structure is lost in Figure 1.3(b), which resembles a phase space
from a stochastic process (Alligood et al., 1996). In such cases, no
simple regression model is capable of providing the generating rule.

Relation of the two parameters: Regarding embedding pa-
rameters, despite Takens proved that m and τ are independent
for infinite-length free-noise time series, there is no consent about
the true relation among such parameters for finite-noisy observa-
tions (Martinerie et al., 1992; Kim et al., 1999; Ma and Han, 2006;
Cai et al., 2008, etc.). Some researchers, for instance, focused on
finding one of those parameters at a time, assuming they are un-
correlated. Conversely, others believe that these parameters are
bounded by the time delay window tw = (m − 1)τ (a number
representing the total time spanned by the components of each
embedded point), thus making m and tw independent instead.
Next, we discuss methods that estimate these parameters as-

suming that they are uncorrelated (Section 4.2) or dependent (Sec-
tion 4.3). Lastly, Section 4.4 concludes the chapter with our final
considerations.

4.2 assuming independence of embedding parame-
ters

Methods to estimate the optimal time delay τ (Section 4.2.1) can
be mainly grouped in two categories: the ones that use series cor-
relation (Fraser and Swinney, 1986; Albano et al., 1987, 1991; Ma
and Han, 2006, etc.), and the ones based on the phase-space expan-
sion (Kember and Fowler, 1993; Rosenstein et al., 1994; Chen et al.,
2016, etc.). Despite their differences, such methods do not attempt
to estimate m in the process, usually performing computations on
the time series itself (which, roughly speaking, is the same as using
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4.2 assuming independence of embedding parameters

an embedding dimension m = 1) or on some predefined m. For
instance, when the generating rule R(·) is given, some authors de-
cide to use the minimal embedding dimension that satisfies Takens’
theorem (m = 2d+ 1).
When estimating the embedding dimension m (Section 4.2.2),

on the other hand, authors typically use τ = 1 or the time de-
lay found by one of the previously-mentioned methods (detailed in
Section 4.2.1). Also, those algorithms usually take decisions based
on phase-states distances. Therefore, the phase state is always as-
sumed to be endowed in the Euclidean space, unless stated differ-
ently.

4.2.1 Estimating The Time Delay

Several methods exist for estimating the time delay τ : Auto-
correlation Function (Section 4.2.1.1), Auto-Mutual Information
(Section 4.2.1.2), high-order correlations (Section 4.2.1.3), Singu-
lar Value Fraction (Section 4.2.1.4), Average Displacement (Sec-
tion 4.2.1.5), Multiple Autocorrelation Function (Section 4.2.1.6),
and Dimension Derivation (Section 4.2.1.7). These are described
next.

4.2.1.1 Autocorrelation Function

Let S = {x(t), x(t + 1), · · · } and Q = {x(t + τ), x(t + 1 + τ), · · · }
denote, respectively, the time series Ti and the same series τ -units
shifted along time, namely Ti,+τ . The Autocorrelation Function
(ACF) quantifies the amount of linear independence in the form

Rxx(τ) =
E[(S − µ)(Q− µ)]

σ2
, (4.2)

where E[·] is the expected value, µ is the mean, and σ2 is the
variance of Ti. In the scope of phase-space reconstruction, ACF
was used to estimate the value of τ that better unfolded the at-
tractor, since authors believed that the more independent states
were from each other (up to a certain limit), the greater it is the
probability of describing a deterministic rule and form a representa-
tive structure. Then, several approaches were proposed on Rxx(·)
to measure this limit. For instance, Albano et al. (1987); Abar-
banel et al. (1993) chose the first zero-crossing Rxx(·) to estimate
τ , while King et al. (1987) suggested the first inflection point of
Rxx(·) instead. Later, Albano et al. (1988) achieved more robust
results by choosing the time delay that causes Rxx(·) to first drop
to a certain fraction of its initial value. However, despite that auto-
correlation methods provide a good initial estimation for the time
delay in some scenarios, such approaches showed to be inconsistent
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for general systems, probably due to the low correlation among lin-
ear dependencies on the time series and the nonlinear structures
of the underlying dynamical system (Fraser and Swinney, 1986;
Martinerie et al., 1992).

4.2.1.2 Auto-Mutual Information

Fraser and Swinney (1986), already knowing the problems involv-
ing the linear dependencies of ACF (even earlier than the publi-
cation of corresponding articles), proposed a method to measure
the general dependencies among signals based on the Auto-Mutual
Information (AMI)

I(τ) =

∫
S

∫
Q

pSQ(s, q) log2

(
pSQ(s, q)

pS(s)pQ(q)

)
dxdy, (4.3)

where pS and pQ are marginal probability densities from the contin-
uous variables S e Q (representing Ti and Ti,+τ ), respectively, and
pSQ is the joint probability density function. Given a measurement
s ∈ S, the mutual information is the number of bits of q ∈ Q, on
average, that can be predicted. Thus, pS and pQ can be estimated
by respectively partitioning S and Q into bins and counting occur-
rences on them. Similarly, pSQ is usually computed by recursively
partitioning the plane SQ until each cell is uniformly distributed ac-
cording to some statistical criteria. As observed later by Rosenstein
et al. (1994), the authors used the auto-mutual information in at-
tempt to measure the shift from redundance to irrelevance on time
series. As the irrelevance error is more difficult to compute, Fraser
and Swinney (1986) associated the first local minimum of AMI to
the optimal τ (less redundant time delay).
Liebert and Schuster (1989) later showed that such minima coin-

cide with those found using the correlation integral (Theiler, 1987;
Wong et al., 2005). However, Martinerie et al. (1992) empirically
observed that neither ACF (using the previously described mea-
surements) nor AMI were consistent to find the optimal value of
tw (and, as consequence, a bound for m and τ), as illustrated in
Figure 4.1.

4.2.1.3 High-Order Correlation

Albano et al. (1991) noticed that time series deriving from multi-
variate systems should carry multivariate cumulants and moments.
By investigating the relations of high-order correlations on the
columns of the trajectory matrix (formed by states of the phase
space, as described in Equation 2.12), they observed that a number
of correlation functions, although not consistently the same ones,
have extrema occurring at the same time, later referred to as tc.
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Figure 4.1: Although a good estimation for the Rössler system is ob-
tained (a), the first minimum of AMI (left) overestimated
the time delay for the Logistic map (b), leading to a poor re-
construction of the attractor (right). Coincidentally, τ = 13
was found for both attractors (solid line).

As there are no previous reason for such coincidence, the authors
empirically defined tc as the time delay window tw = (m − 1)τ ,
which defines important attractor features. However, no patterns
were found to deterministically correlate tc with tw (and τ).

4.2.1.4 Singular Value Fraction

Kember and Fowler (1993) proposed the Singular Value Fraction
(SVF) method, which estimates the time delay when the attractor
is mostly expanded in all dimensions. As the expansion of an at-
tractor can be described by the spreading rate of its phase states,
i.e., in function of the singular values λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 of
the trajectory matrix (Equation 2.12), they attempt to find to the
(ideal) case when all eigenvalues are equal. Thus, given the function

Fsv(k) =

∑k
j=1 λ

2
j∑m

j=1 λ
2
j

, (4.4)

SVF is defined as

fsv(k) =
mFsv(k)− k

m− k
, (4.5)
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so that 0 ≤ fsv(k) ≤ 1 and fsv(m) = 1. By this definition,
Equation 4.5 only approaches zero when Fsv = k/m, meaning
λ2j = c,∀i ∈ [1,m], where c is a constant. For general attractors,
however, hardly ever fsv = 0, and, consequently, τ was defined
as the first timestamp SVF reaches a local minimum. Moreover,
the authors empirically observed that fsv(1), i.e., the average of
eigenvalues in function of the most spread dimension, led to better
estimations of the time delay. From our point of view, such ap-
proach was an early attempt to overcome the well-known “curse of
dimensionality” (Chen, 2009).
One interesting point about this method is that the plot of fsv(1)

versus τ gives a simple (but important) idea about the time-series
recurrences and the interval of its periodicities, as illustrated in
Figure 4.2(a). As it can be seen, this figure shows that the Rössler
system has cyclical behavior each 29 units of time, providing em-
pirical evidence that the first peak of SVF could be used to es-
timate the time delay window. Despite consistent results for dif-
ferent dimensions (including noisy data), the same strategy failed
for the Lorenz system, as shown in Figure 4.2(b). As a counter-
argument to this limitation, the authors were able to enhance re-
sults for the Lorenz series by powering the observations in the
form Tα=2

i = {x(t)2, x(t+ 1)2, · · · }, where α is the manifold genus
(number of voids or holes). However, this approach may be difficult
to be reproduced when there is no a priori knowledge about the
system.

Figure 4.2: (a) The SVF method found τ = 10 for the Rössler system
when embedded using m = 3, which is a good estimate for
the time delay. Also, a constant time-delay-window length
was found for different dimensions, empirically reinforcing
the belief that m and τ are independent to each other. (b)
On the other hand, SVF does not provide any useful infor-
mation for the Lorenz system: there is neither a minimum
nor a peak. From outer to inner curves, m = 2, · · · , 10 in
both plots.

Similarly, Chen et al. (2016) proposed Singular Entropy (SE), a
modified version of SVF. They based their algorithm on the same
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4.2 assuming independence of embedding parameters

principle of equality as SVF, but used the ratio of the entropy of
eigenvalues instead

E(k) =

k∑
j=1

∆Ej , (4.6)

where

∆Ej = −Pj logPj , Pj =
λj∑m
j=1 λ

. (4.7)

Given Equation 4.6 was based on Shannon’s entropy (Hammer
et al., 2000) of the singular values, the major difference between SE
and SVF is the sign of their results, and, therefore, the concavity
of their plots. Thus, similar results given by SVF, such as τ and
tw, were also obtained while analyzing inverse features of SE, i.e.,
the minimum of SVF becomes the maximum of SE and vice-versa,
as illustrated in Figure 4.3.

Figure 4.3: SE leads to similar conclusions as the SVF method for the
Rössler (a) and Lorenz (b) systems. From outer to inner
curves, m = 10, · · · , 2.

4.2.1.5 Average Displacement

An interesting discussion about irrelevance and redundance, as well
as the errors associated with both structural conditions, were con-
ducted by Rosenstein et al. (1994). Despite the difficulties in mea-
suring the irrelevance error (there are no guarantees the reconstruc-
tion will become less space-filling as the lag increases beyond the
optimal time delay), the authors assumed the irrelevance error to
be lower than the redundance error, therefore focusing on mini-
mizing the latter while searching for a proper time delay. In this
scenario, they inversely measure the relation between the redun-
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dance error and the attractor expansion in form of the Average
Displacement (AD) of phase states, as function of the time delay

Sm(τ) =
1

Ni

Ni−1∑
t=0

√√√√m−1∑
j=1

(x(t+ jτ)− x(t))2. (4.8)

As illustrated in Figure 4.4, it was observed that AD increases until
it reaches a plateau on the plot Sm(τ) versus τ , which indicates the
attractor is sufficiently expanded. Thus, the authors empirically ob-
served that a good estimation for τ was given when the slope of
such relation decreased by less than 40% of its initial value. Addi-
tionally, the authors also noticed that this criterion corroborated
with the assumption that τ and m are correlated within the time
delay window: increasing the values of m contributes to the early
formations of the plateau (and early estimations for τ). Indeed, the
pairs (m, τ) found for the Lorenz system (shown in the figure) were
{(14, 4), (8, 5), (5, 8), (3, 14)}. Despite those contributions, some au-
thors argued that the dependency on the slope of the AD method
may consider non-ignorable errors (Ma and Han, 2006).

5 10 15 20

0
5

10
15

20
25

30

Figure 4.4: Results of the average displacement for the Lorenz system.
Diagonal lines indicate the first time delay in which the slope
of the curve decreases by less than 40% of its initial value.
From outer to inner curves: m = 14, 8, 5, 3.

4.2.1.6 Multiple Autocorrelation Function

Rosenstein et al. (1994) also investigated the relation between AD
and ACF. They squared Equation 4.8 as follows

S2
m(τ) =

1

Ni

Ni−1∑
t=0

m−1∑
j=1

(x(t+ jτ)− x(t))2, (4.9)
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so that S2
m(τ) could be interpreted as a scaled version of Sm(τ)

as S2
m(τ) = f(τ)Sm(τ). Moreover, as ACF (Equation 4.2) from a

finite set can be approximated by

Rxx(τ) ≈ 1

ni − τ

ni−τ∑
t=0

x(t)x(t+ τ), (4.10)

it can be shown that, under some assumptions

S2
m(τ) ≈ c− 2Rmxx(τ), (4.11)

where c is a constant and Rmxx(τ) =
∑m−1
j=1 Rxx(jτ). After this

definition, Rosenstein et al. (1994) noticed that Rxx(·) has the
same shape as S2

m when m = 2, indicating the easier-to-compute
ACF should be used in the place of S2

m for two-dimensional systems.
However, as most systems are at least three-dimensional and S2

m

tends to become more sensitive to variations as m is increased,
the authors concluded that the Multiple Autocorrelation Function
(MACF), as later referred to S2

m, should lead to the poor estimation
of attractors for high-dimensional systems.

4.2.1.7 Dimension Derivation

More recently, Tamma and Lachman Khubchandani (2016) pro-
posed a method to find both embedding parameters m and τ from
a time series. However, as the method to find the embedding di-
mension m was very similar to FNN (Kennel et al., 1992), the
main contribution of their article was the estimation of τ , which
is based on the attractor expansion and the pointwise correlation
dimension, defined as

Dp(t, τ) = lim
ε→0

log(P (t, τ, ε))

log(ε)
(4.12)

where P (t, τ, ε) is the probability of two phase states, reconstructed
using a predefined m and the chosen τ , to be closer than the open
ball centered in φi(t) with radius ε, similar to (Equation 2.21).
Since Dp(t, τ) should be invariant to any chosen state φi(t) (Ott,
2002), a well-reconstructed phase space should present zero Dimen-
sion Deviation (DD) among their pointwise correlations, i.e.

f(τ) =
1

Ni

Ni−1∑
t=0

(Dp(t, τ)−Dp(t, τ))2 = 0, (4.13)

where Dp(t, τ) =
∑Ni−1
t=0 Dp(t, τ)/Ni.

Due to noise and floating point fluctuations, however, Equa-
tion 4.13 would hardly be equal to zero. Hence, the authors defined
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the first minimum of f(τ) (over a predefined range of time delays)
as the optimal time delay. However, results showed that neither
this method nor the choice of the first minimum are robust to es-
timate τ for general attractors, as illustrated in Figure 4.5. There,
the fourth minimum would led to the closest optimal estimation
for the Rössler system. Lastly, the authors claimed that a repre-
sentative set of states could be used instead of all phase states in
order to improve performance.
To check this out, we tested the DD algorithm using (roughly)

1000 phase states and 200 (representative) centroids. Following our
implementation, we found a smoother curve for the plot f(τ) versus
τ . This actually hindered the estimation for the time delay, as
depicted in Figure 4.6.
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Figure 4.5: Results of the DD method for the Rössler system (a) and
Logistic map (b) over the range of τ ∈ [1, 20]. Filled circles
represent the number of minima until the closest estimation
for the optimal time delay.

4.2.2 Estimating The Embedding Dimension

Methods to estimate the embedding dimension m comprise False
Nearest Neighbors (Section 4.2.2.1), Gamma test (Section 4.2.2.2),
and others based on the fractal dimension (Section 4.2.2.3), as
follows.

4.2.2.1 False Nearest Neighbors

Kennel et al. (1992) proposed False Nearest Neighbors (FNN) to
estimate the optimal embedding dimension m. By using the time
delay found after AMI (Section 4.2.1.2), the method reconstructs
the attractor using different dimensions m ∈ [mmin,mmax] and
computes, for each of them, the index set of the k-nearest neigh-
bors Nm(φi(t), k) for each phase state φi(t) ∈ Sm (the number of
phase states is kept constant for different embeddings). The opti-
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Figure 4.6: The DD method applied to the Lorenz system using m = 3.
(a) 200 centroids led to an acceptable time delay τ = 10,
but only when the fourth minimum of f(τ) is used. (b) The
first minimum yielded τ = 17 when all phase states are con-
sidered. As in Figure 4.5, filled circles represent the number
of minima until the closest estimation for the optimal time
delay.

mal dimension m is defined as the one in which a fraction of the
nearest neighbors in the attractor remains constant as the dimen-
sion increases, i.e., Nm(φi(t), k) = Nm−1(φi(t), k). This assump-
tion could be relaxed, however, by analyzing how many neighbors
(usually 30%) remained close to each other according to a threshold
rtol, as m is increased.
In other words, if the kth nearest neighbor of the phase state

φi(t) is φi(t′), then the Euclidean distance between them is given
by

R2
m(t, τ, k) =

m∑
j=1

(x(t+ jτ)− x(t′ + jτ))2. (4.14)

After adding one more dimension, we get

R2
m+1(t, τ, k) = R2

m(t, τ, k)+(x(t+(m+1)τ)−x(t′+(m+1)τ))2.

(4.15)

If the distance between such states become greater than rtol after
increasing one dimension, i.e.(

R2
m+1(t, τ, k)−R2

m(t, τ, k)

R2
m+1(t, τ, k)

)1/2

=

x(t+ (m+ 1)τ)− x(t′ + (m+ 1)τ)

R2
m+1(t, τ, k)

> rtol,

(4.16)

then the states are considered false neighbors of each other, as
illustrated in Figure 4.7.

53



reconstructing phases spaces

Figure 4.7: Example of false nearest neighbors. Representation of 100
states of the Rössler system. For the sake of simplicity, three
states are depicted by letters A,B,C. In the example, A
and C remain neighbors from each other after expanding
the space in one dimension. State B is labeled as a false
neighbor.

Kennel et al. (1992) stated that as long as there is some variation
in the attractor, the phase space is not completely unfolded and,
thus, the number of false neighbors is still too large. According to
their experiments, rtol ≥ 10 and k = 1 were enough to correctly
identify false neighbors1. A problem raised by the authors is the
lack of effectiveness of FNN in the presence of noise. A simple
example was performed using a white noise following the Normal
distribution N (0, 12), which is known to have a high-dimensional
(but finite) attractor. In this scenario, FNN tends to find greater
values of m as the number of states increases, i.e., N =∞→ m =
∞. This occurs mainly due to the curse of dimensionality (Chen,
2009), in which all states tend to become dissimilar to each other as
the dimension increases, never dropping the rate of false neighbors.
As observed, this is a contrast to commonly found low-dimensional
attractors, where more states in the phase space should contribute
to a better formation of its structure (and to the confirmation of
its dimension).
Although this method does not achieve consistent results for

general time series (which usually contain noisy observations), due
to seminal contributions and simplicity, FNN still remains as one
of the most used methods to estimate the embedding dimension.

1 It is not uncommon, however, to find algorithms that use rtol ≥ 20.

54



4.2 assuming independence of embedding parameters

4.2.2.2 Gamma Test

Otani and Jones (1997) proposed to use the Gamma test (or Γ
test) (Stefánsson et al., 1997) to find the optimal embedding di-
mension m. Let

y = f(X)+r ⇒ [y0, y1, · · · , yN ] = f([x0,x1, · · · ,xN ])+r, (4.17)

be a function applied over m-dimensional phase states
φi(t),∀t ∈ [0, Ni − 1], such that every pair (xt, yt) is defined as

([x(t), · · · , x(t+ (m− 2))τ ], x(t+ (m− 1)τ)). (4.18)

The adjust parameter r can be seen as the amount of noise in the
system or the lack of determinism of f . Therefore, if one assumes
a controlled level of noise, the variance of r, namely σ2

r , estimates
the quality of the reconstructed phase space. Given the statistic

γ =
1

2Ni

Ni−1∑
t=0

(yNm(yt,1) − yt)
2, (4.19)

where Nm(yt, 1) is the index of the nearest neighbors of yt, one
can show that γ → σ2

r as N → ∞. Let Nx = Nm(xt, k) and
Ny = Nm(yt, k) be the index vectors of the k-nearest neighbors of
xt and yt, respectively. If ‖·‖2 is the Euclidean norm, then

∆(k) =
1

k

k∑
h=1

1

Ni − 1

Ni−1∑
t=0

‖xNx
h
− xt‖22, (4.20)

computes the mean square distance of the (h ≤ k)-nearest neigh-
bors and

Γ(k) =
1

k

k∑
h=1

1

2Ni

Ni−1∑
t=0

‖yNy
h
− yt‖22, (4.21)

is an estimation of γ for the (h ≤ k)-nearest neighbors. Based on
both quantities, the Γ-test algorithm estimates γ → σ2

r by means of
the linear correlation of ∆(k) and Γ(k). In a perfect deterministic
scenario, where σ2

r = 0, xt should lead to exactly one yt, and
Nx = Ny. Therefore, the ideal plot of ∆(k) versus Γ(k) should
form a straight diagonal line for different values of k. Due to noise
and fluctuations, this plot becomes irregular in practice. After a
linear regression, the line y = mx+ Γ that best fits the plot is an
estimation of Equation 4.17, so that Γ ≈ σ2

r .
Otani and Jones (1997) noted that the phase space should be

described by non-deterministic states for small values ofm, yielding
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greater values for σ2
r . For a sufficient m, the attractor is unfolded

and should present the most deterministic structure (lower σ2
r). For

greater values of m, neighbors suffer interferences from different
orbits, again increasing σ2

r . Therefore, the optimal embedding was
defined as the dimension when Γ reaches its first minimum.
As the authors also observed, the less Γ approaches to zero, the

more non-deterministic are the state changes, and there is no guar-
antee in reconstructing the attractor accurately. This may happen
if the signal-to-noise ratio is low or when the choice of the time
delay is poor. With this in mind, rather than using an elsewhere
estimated time delay, one can propose an extended algorithm to
find (m, τ) using an acceptable trade-off between the smaller values
of Γ and m, assuming Γ initially decreases as m is increased.

4.2.2.3 Methods Based On The Fractal Dimension

As already explained at various points, the reconstruction of at-
tractors using the method of delays relies on the mathematical
framework proposed by Takens (1981). His theorem states that a
sufficient reconstruction is achieved by using at least m ≥ 2d+ 1
dimensions for a d-dimensional system. For common phenomena,
however, m is (usually) considerably smaller, i.e., m ≤ 2d + 1. In
addition, as stated by Otani and Jones (1997), the effective dimen-
sionality of some dissipative system is that of its attractor, which
may be lower than the number of variables specialists use to de-
scribe it. Therefore, if the dimension of the attractor is d′ ≤ d, then
m is at least d′ (Farmer and Sidorowich, 1987). Based on both facts,
the relation

d′ ≤ m ≤ 2d′ + 1, (4.22)

can be used to estimate or validate the embedding dimension m.
However, in order to apply Equation 4.22, one needs to rely on two
assumptions: i) embedding the phase space using m ≤ 2d + 1 is
enough to unfold the dynamics of the underlying system; and ii) the
attractor dimension d′ is well estimated by fractal-based methods
(see Section 2.6.1). Thus, methods based on this approach may be
inconsistent for, and not applicable to, general systems.

4.3 assuming dependence to estimate the embed-
ding parameters

A separate class of algorithms does not use previous estimations
or any other information about the underlying dynamical system.
Based on the assumption τ and m are correlated by the time de-
lay window tw = (m − 1)τ , some authors believe that important
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system features (e.g., correlation dimension) can be revealed us-
ing different combinations of (τ,m). Therefore, as some authors
strive on defining such window, others focus on directly finding
the simpler, but sufficient, set of parameters m and τ that pro-
vides a good reconstruction. Therefore, most algorithms rely on
Monte Carlo simulations (Landau and Binder, 2005; Rubinstein
and Kroese, 2007) to find both parameters. This makes such meth-
ods quite computationally expensive.
Methods that estimate m and τ assuming some dependence be-

tween them include: Wavering Product (Section 4.3.1), Fill Factor
(Section 4.3.2), C-C method (Section 4.3.3), Entropy Ratio (Sec-
tion 4.3.4), Non-Biased MACF, Gamma test (Section 4.3.5), and
neural networks (Section 4.3.6), as follows.

4.3.1 Wavering Product

The Wavering Product (WP) was one of the first methods designed
to find the embedding dimension m and the time delay τ at the
same time. Similarly to FNN, this method uses an expansion-based
approach relying on the fact that a well-reconstructed embedding
should have consistent topological structure, such as neighborhood
relationship. Differently from FNN, Liebert et al. (1991) used the
distances between the old Sm and new Sm+1 embeddings in their
method, as explained next.
In order to keep consistency with the previous presented nomen-

clature, let

R2
m(t, τ, k,m+ 1) (4.23)

be the Euclidean distance from the phase state φi(t) ∈ Sm to its
kth nearest neighbor, but measured in the embedding Φi ∈ Sm+1,
having the inverse applied to R2

m+1(t, τ, k,m). In this context, the
authors defined the ratio

Q1(t, τ, k,m) =
R2
m+1(t, τ, k,m)

R2
m+1(t, τ, k,m+ 1)

, (4.24)

so that Q1(t, τ, k,m) = 1 when the distance of φi(t) to its
kth nearest neighbor remains equal in both embeddings, and
Q1(t, τ, k,m) > 1 otherwise. Nonetheless, even when φi(t) has
the same set of p-nearest neighbors for greater dimensions, Equa-
tion 4.24 becomes sensitive to the order of how neighbors are rear-
ranged. Such an order may oscillate from one dimension to another
as well as due to the presence of noise (hence the name wavering).
In order to mitigate this, the authors applied

Pi(m, τ) =

(
p∏
k=1

Q1(t, τ, k,m)

)1/p

(4.25)
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over all p-nearest neighbors. However, as Pi does not tend to 1
even for sufficiently-known embeddings, the authors introduced a
second ratio

Q2(t, τ, k,m) =
R2
m(t, τ, k,m)

R2
m(t, τ, k,m+ 1)

, (4.26)

analogous to Q1, but calculated using the old embedding. Thus,
the wavering product, defined as

Wi(m, τ) =

(
p∏
k=1

Q1(t, τ, k,m)Q2(t, τ, k,m)

)1/2p

, (4.27)

should be approximately equal to 1 for sufficient reconstructions,
as states in such attractor should have the same set of neighbors
in both old and new embeddings.
Liebert et al. (1991) defined W (m, τ) = log 〈Wi(m, τ)〉s as the

WP average deviation over a sufficient number of s reference points,
such as 10% of the whole dataset. Finally, they applied W (m, τ)/τ
versus τ over a range of embedding dimensions, and according to
their experiments, the first minimum of each curve provided a good
estimation for τ . In addition, as m was increased, curves tended to
assume a constant value, such that the first dimension before the
constant curves should be used as an estimation for m (and the
minimum of this curve should define τ). Although curves converge
to constant values for greater time delays (allowing the definition
of upper bounds for τ), no further patterns were found to correlate
curves to the embedding dimension m.

4.3.2 Fill Factor

Buzug and Pfister (1992a) proposed two methods to find the em-
bedding parameters for a time series: Fill Factor (FF) and Local
Integral Deformation (LID). While both rely on the expansion of
states, the former is based on the volume of the attractor, whereas
the latter on the trajectories evolution2.
Given a candidate pair (m, τ), the FF method selectsm+1 phase

states φi(tr1),φi(tr2), · · · ,φi(trm+1
), where the subscript rj is a

randomly selected index j ∈ [1, Ni]. Then, defining a pivot state,
namely φi(tr1), the m-dimensional vector

dj(tr1) = φi(trj )− φi(tr1), j ∈ [1,m+ 1], (4.28)

2 LID is just cited in here, as FF is more robust and well-known. In addition,
LID is more complicated to be implemented and computationally expensive.
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can be seen as one edge of the hyperparallelepiped described by the
m × m matrix Mm,r1(τ) = (d1(tr1),d2(tr1), · · · ,dm(tr1)), whose
volume is given by the determinant

Vm,r1(τ) = |det[Mm,r1(τ)]| . (4.29)

To compute an average volume over s parallelepipeds from the
reconstructed attractor (the authors used s = 2% of states), the
quantity

Fm(τ) =

1

s

∑s
k=1 Vm,rs(τ)

(max(Ti)−min(Ti))m
(4.30)

is used, so that the logarithmic fraction of volume

fm(τ) = log10 Fm(τ) (4.31)

is defined as the fill factor. By analyzing the plot fm(τ) versus τ ,
results empirically led the authors to chose the first non-constant
line as m, and the maximum of FF in that dimension as the best
time delay. Despite that Buzug and Pfister (1992a) achieved good
estimations for the Duffing system (Korsch et al., 2008) using FF,
they noticed this method is not robust when applied to attractors
with more than one unstable focus, as the Lorenz system (see result
in Figure 4.8). Based on this last figure, it is clear that neither
patterns nor effective maximum were found to proper estimate the
embedding dimension and the time delay. As those attractors are
not uncommon, FF becomes, at least as proposed, infeasible to be
applied for general systems. Additional drawbacks of FF and LID
are found in (Rosenstein et al., 1994).

2 4 8 10

2
4

6
8

10

6

Figure 4.8: Fill Factor applied on the Lorenz system. No patterns were
generated by our implementation testing this method, which
raises concerns about its reproducibility in all cases. Due
to the difference of magnitudes while assessing FF results
for different dimensions m, values were normalized in range
[m,m+ 1].
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4.3.3 C−C Method

Kim et al. (1999) proposed the C−C method to find the optimal
time delay τ and the time delay window tw. Nonetheless, both
parameters can also be used to estimate the embedding dimension
as well, since tw = (m− 1)τ . The authors were inspired by the
BDS statistic (Brock et al., 1992), which can be used to test the
null hypothesis that a time series is independently and identically
distributed (i.i.d.). Briefly speaking, Brock et al. (1992) noticed
that if a ni-length time series Ti was generated from a completely
stochastic process, then the reconstructed phase space Φi respects
the following power rule

C(m, τ, r, ni) = Cm(1, τ, r, ni), r > 0, (4.32)

where C(m, τ, r, ni) is the correlation dimension (some extra ar-
guments were put in evidence, when compared to Equation 2.23)
of Φi embedded with (m, τ), measured with decreasing radius ε.
Therefore, the C−C method quantifies

S(m, τ, ε, ni) = C(m, τ, ε, ni)− Cm(1, τ, ε, ni), (4.33)

which yields zero for infinite i.i.d. time series. However, for
finite-length observations collected from natural phenomena,
S(m, τ, r, ni) 6= 0 due to nonlinear correlations. Therefore, the
C−C method is concerned to measure dependencies on a
time series. In order to eliminate spurious temporal corre-
lations, the approach subdivided Ti in τ disjoint sub-series:
[{x(t), x(t+ τ), · · · }, {x(t+ 1), x(t+ 1 + τ), · · · }], and computes

S(m, τ, r, ni) =
1

τ

τ∑
s=1

[Cs(m, τ, r,
ni
τ

)−Cms (1, τ, r,
ni
τ

)], (4.34)

where Cs is the correlation integral for the sth sub-series. Then, if
Ti is i.i.d., any fixed values of m and τ respect the relation

S(m, τ, ε) =
1

τ

τ∑
s=1

[Cs(m, τ, ε)− Cms (1, τ, ε)] = 0, (4.35)

for all ε.
On the other hand, for general time series, Kim et al. (1999)

defined that the best representation of independence among a fi-
nite set of observations is either given by the first zero-crossing of
S(m, τ, r) or when S(m, τ, r) shows the least variation of ε, in the
form

∆S(m, τ) = max{S(m, τ, ε)} −min{S(m, τ, ε)}. (4.36)
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In addition, the zero-crossing of S(m, τ, ε) should be nearly the
same for all m and ε, as well as the minimum of ∆S(m, τ) for all
values of m. With this in mind and after defining representative
ranges for m ∈ [mmin,mmax] and ε ∈ [εmin, εmax]3, the averages

S(τ) =

∑mmax
m=mmin

∑εmax
ε=εmin

S(m, τ, ε)

(mmax −mmin)(εmax − εmin)
, (4.37)

and

∆S(τ) =

∑mmax
m=mmin

∆S(m, τ)

mmax −mmin
, (4.38)

were used to estimate τ and tw, respectively. As tw should describe
the interval for optimal independence on series observations, and
τ should be the first locally optimal time, the authors defined τ as
the first zero-crossing of S(τ) or the first local minimum of ∆S(τ),
and tw as the time instant when both measures are close to zero,
i.e., the minimum of the quantity

Scor = ∆S(τ) + |S(τ)|. (4.39)

Despite the contribution on proposing a different point of view
to find τ and tw, the results presented by Kim et al. (1999) over-
estimated τ and m. For instance, they reported that the C−C
method estimated m = 8 and τ = 18 for the Lorenz system, which
is known under the presented circumstances to have a representa-
tive attractor with m = 3 and d = 8. Later, Cai et al. (2008) listed
more drawbacks of the C−C method and proposed improvements
which led to a new strategy called C−C−1. However, there is, to
our knowledge, no evidence that any of the above two methods can
handle general purpose systems.

4.3.4 Entropy Ratio

Gautama et al. (2003) proposed Entropy Ratio (ER), a method
based on minimizing the ratio between the entropy of the phase
spaces from the original series and its surrogates4. The authors
realized that a deterministic attractor should have a well-formed
structure and, therefore, low entropy. In this scenario, they use the
Kozachenko-Leonenko entropy to measure the amount of disorder
in the phase space

H(Φi,m, τ) =

Ni−1∑
t=0

ln(NiR
2
m(t, τ, 1)) + ln 2 + 0.5572, (4.40)

3 In that article, ε was defined in function of the standard deviation of the time
series.

4 Due to its relation to entropies, the concept of the ER method was the closest
to our hypothesis.
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where R2
m(t, τ, 1) is the distance of the tth phase space to its nearest

neighbors (Equation 4.14).
In attempt to overcome the curse of dimensionality, the method

chooses the pair (m, τ) that minimizes the entropy ratio after su-
perimposing the Minimum Description Length (Rissanen, 1978)

Rent(m, τ) = I(m, τ)

(
1 +

m lnNi
Ni

)
, (4.41)

where

I(m, τ) =
H(Φi,m, τ)

〈H(Φij ,m, τ)〉s
, (4.42)

and 〈.〉s is the mean of all the s surrogates of Ti, referred to as
Tij , j ∈ [1, s].
Initially creating surrogates based on random permutation of Ti,

the authors observed that the ER usually led to a time delay equals
to one. To improve this result, they applied the iterative Amplitude
Adjusted Fourier Transform (Schreiber and Schmitz, 1996) instead,
as this method attempts to preserve both the distribution and the
spectrum of the original series, as illustrated in Figure 4.9.
However, according to our own implementation of the ER

method, the entropy ratio is still prone to estimate τ = 1 even
when using the iAAFT.

Figure 4.9: ER creates surrogates using the iAATF method, which iter-
atively creates a new series (b) in attempt to preserve the
same distribution and spectrum from the original one (a).
The example shows the sinusoidal function (Section 3.2.1).

4.3.5 Non-Biased MACF And Gamma Test

Although the Γ test (Section 4.2.2.2) was adapted by Otani and
Jones (1997) to estimate the optimal embedding dimension m, Ma
and Han (2006) noticed that it also could be used to validate τ .
In this sense, based on the fact that AD (Section 4.2.1.5) can be
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applied to reveal correlations on higher-order systems, overcom-
ing restrictions on ACF-based methods5, the authors initially used
it to have a “guesstimation” on the time delay. Nonetheless, the
authors later noticed that AD may struggle with inconsistencies
while computing the slope of the plateau. To overcome this issue,
they proposed the Non-Biased Multiple Autocorrelation Function
(NB-MACF)

Cmxx(τ) = Rmxx(τ)− (m− 1)µ2
i , (4.43)

where µi is the mean value of the time series Ti. The algorithm then
was divided in three steps based on the interval m ∈ [mmin,mmax].
Firstly, for each dimension, τ is estimated using the NB-MACF.
Secondly, the Γ test is used to estimate the corresponding embed-
ding dimension m for the previously found time delay. Finally, the
optimal embedding pair is defined as the first one to reach the min-
imum value of Equation 4.43. By using this approach, Ma and Han
(2006) achieved good results for the Hénon map and the Lorenz sys-
tem. However, this method still needs further validation on other
systems.

4.3.6 Neural Networks

Taking advantage of Multilayer Perceptron (MLP) (Delashmit and
Manry, 2005; Haykin, 2009), Karunasinghe and Liong (2006) pro-
posed to train an MLP network in order to find the best model to
predict chaotic time series. Due to chaos, they tried to predict an
observation ρ = 1, 3, 5 step(s) in the future, so that x̂(t) denotes
the predicted value for x(t), given a chosen leap-time ρ. In this con-
text, they implemented s feed-forward, back-propagation sigmoidal
MLPs for each leap time and selected the best pair resulting in the
smallest prediction error, as illustrated in Figure 4.10. Denoting by
µi the mean value of the time series Ti with ni observations, they
used the Normalized Root-Mean-Square Error (NRMSQ)√√√√ni−1∑

t=0

(x(t)− x̂(t))2/

ni−1∑
t=0

(x(t)− µi)2 (4.44)

as loss function in order to train the network. Additionally, they
reported the Mean-Absolute Error (MAE)∑ni−1

t=0 |x(t)− x̂(t)|
ni

(4.45)

5 Although ACF measures linear dependencies between x(t) and x(t+τ), nothing
is inferred on x(t) and x(t+ 2τ).
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Figure 4.10: The pipeline proposed by Karunasinghe and Liong (2006).
Several neural networks were used to find the best set of
embedding parameters. Figure adapted from their article.

in their experiments to rely on both global (NRMSE) and local
(MAE) measurements. They search space considered varies the
range of embedding dimension m ∈ [1, 10] with combination of
fixed values of τ = {1, 3, 6, 9}.
As reported by its authors, this method found (m = 7, τ = 6)

for free-noised observations from the Lorenz system, which yielded
to better predictions, (according to the NRMSE and MAE errors)
when compared to other methods (Farmer and Sidorowich, 1987;
Abarbanel et al., 1993). While sufficient, the embedding dimen-
sion is known to be overestimated. In addition, three other (usual)
drawbacks of neural networks must be mentioned: i) long compu-
tational time required to train MLPs (they varied τ over a small
set of values in attempt to overcome this issue and used s = 5); ii)
costly and/or delicate hyperparameter tunning, including the num-
ber of epochs, error threshold, and adaptive learning rate. In order
to mitigate such issues, after some trial-and-error procedure, the
MLPs were defined with the following architecture: m units at the
input layer, 100 units at the hidden layer, and 1 unit at the output
layer; and (iii) no guarantees that forecasting results are due to
the embedding parameters or to other reasons. For instance, the
output could vary depending on the random initialization of the
layers weights.
Later, Bhardwaj et al. (2010) proposed a similar approach

for training a neural network, but using Hidden Markov Mod-
els (Meyn and Tweedie, 2009) instead. More recently, Manabe and
Chakraborty (2007) estimated m and τ directly from the neural-
network architecture after training interactions. Due to its impor-
tance and relatively good results (compared to other estimation
methods), such article has inspired us when tackling RQ5 (more
details in Chapter 9).
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4.4 final considerations

This chapter provided a detailed and, to our knowledge, comprehen-
sive overview of existing methods designed to estimate the optimal
embedding dimension m and time delay τ to reconstruct phase
spaces based on Takens (1981), either assuming they are indepen-
dent (Section 4.2) or not (Section 4.3) on each other. For complete-
ness, we should mention that a number of additional methods, not
mentioned here, exist in the literature. We did not cover those as
they are variants of methods already discussed here; or methods
which present less validation, or had otherwise lower impact, than
the methods discussed here. For the interested reader, we direct
further reading to Rosenstein et al. (1994), who discuss additional
approaches to estimate τ ; and to Otani and Jones (1997), who men-
tion additional strategies to compute m. A summary of algorithms
to find both parameters (either simultaneously or not) is also found
in (Buzug and Pfister, 1992b; Ma and Han, 2006).
From this overview, we can draw several conclusions, as follows.

Validation difficulty: It is difficult to define the set of attributes
(e.g., homogeneity and distribution of phase states) that generally
describes the optimal phase space, especially since this phase
space can manifest itself in notorious different ways (as shown
in Chapter 3). The computation of metrics based on entropy,
correlation dimension or attractor expansion struggle with several
inconsistencies related to the partition of the space, computation
of probabilities, curse of dimensionality, and the presence of noise.
These aspects reinforce the difficulty in defining a set of properties
to look at when validating phase spaces. Those issues are the main
factors for the lack of robustness in state-of-the-art methods that,
despite contributions and good estimations for some datasets, are
not adequate to be use in general scenarios. Nonetheless, FNN and
AMI are still among the most common methods to estimate m and
τ , respectively. These difficulties are one of the main reason why
we chose a small set of systems, which are well-understood in the
literature, and for which consensus exists on optimal embeddings
(described in Chapter 3) to compare our work (described in the
next chapters) against.

Complexity: This chapter has overviewed different methods to
estimate m and τ . All methods are based on extensive sets of
heuristics and involve numerous parameters. Some are also com-
putationally expensive. Hence, the quest is still open for designing
simple to understand (and use), robust, and fast estimation meth-
ods. These requirements are among the main drivers that underlie
our work presented in the next chapters.
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5APPLY ING A KERNEL FUNCTION ON
TIME -DEPENDENT DATA TO PROVIDE
SUPERVISED -LEARNING GUARANTEES

5.1 initial considerations

In Chapter 1, we introduced our hypothesis and subsequently re-
fined it into five research questions (RQ1–RQ5). Chapters 2 to 4
have introduced the fundamentals of dynamical systems, bench-
mark datasets used for evaluating such systems and their optimal
embeddings, and techniques for computing such embeddings, re-
spectively.
In this chapter, we start exploring our first research question:

RQ1. “Does the optimal phase space have indeed low levels of
entropy?”

To tackle RQ1, we initially considered to use (and combine) dif-
ferent types of entropies, measured in function of states in the phase
space, to propose an optimization problem that once solved would
lead to the optimal embedding (Section 5.7). However, as stated in
Chapter 1 and further refined in Chapter 4, computations in the
phase space are not trivial in practical scenarios, as they depend
on several parameters and conditions that may drastically vary
according to the attractor, such as how the space is partitioned
and the considered open-ball radius for the computation of nearest
neighbors, among others.
In order to bypass those limitations, we relied on the correlation

the entropy has with the independence among phase states (My-
ers et al., 1992) – a high-entropy configuration refers to indepen-
dent states (in phase space), whereas a low-entropy configuration
is associated with less independent states – to tackle the problem
from a different perspective. However, measuring independence of
states is itself complicated. Therefore, instead of estimating the
independence of phase states explicitly (which should be great for
optimal embeddings), we based on the Statistical Learning Theory
(SLT) (Vapnik, 1998; Luxburg and Schölkopf, 2011), a mathemati-
cal framework that supports learning with supervised classifiers, to
measure it intrinsically. Within SLT, a highly-independent set of
samples should realize better learning than a highly-dependent set
of samples. So, at this point, we propose to estimate independence
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by looking at the accuracy of a classifier trained and tested on the
respective set of samples.
To this end, we test different embedding pairs and chose the one

that leads to the best forecasting accuracy under the prediction
horizon, computed using the Lyapunov exponents (Section 2.6.3)
of its attractor. Next, we provide both theoretical and experimental
results based on a cross-validation strategy as evidence of general-
ization, which allows us to assume that input data is independent.
This is an important finding, since SLT can only be used if sev-
eral assumptions about the input data hold, among which data
independence is required (as detailed in Section 5.2).
The structure of this chapter is organized as follows. In Sec-

tion 5.2, we introduce the Statistical Learning Theory (SLT). Sec-
tion 5.3 connects SLT with our domain of interest, i.e., dynamical
systems. Section 5.4 discusses the issue of data independency. Sec-
tion 5.5 details on how to forecast time series. Section 8.5 reports
experiments that demonstrate how our proposal works. Section 5.7
defines entropy and presents multiple ways to model and compute
it, and comments on the correlation of entropy values with (near)
optimal embeddings. Finally, Section 5.8 concludes this chapter.

5.2 statistical learning theory

The Statistical Learning Theory (SLT) provides the theoreti-
cal foundation to enable machine learning in supervised scenar-
ios (Luxburg and Schölkopf, 2011). This framework considers an
input space X and an output space Y in which every xi ∈ X cor-
responds to a data sample (or feature vector) and yi ∈ X is its ex-
pected class or label. For simplicity, we next consider that xi ∈ R,
yi ∈ R. SLT assumes a joint probability distribution P (X × Y) for
all possible combinations of input examples in X and classes in Y.
In this context, learning is defined as the process of finding a classi-
fier f : X → Y that provides the minimum risk (error) as possible.
The best classifier corresponds to the function that best represents
the joint probability distribution P (X × Y).
From this perspective, supervised learning requires the definition

of a loss function to measure the risk of a classifier f ∈ F , in which
F is the algorithm bias, i.e., the set of all functions used by the
supervised learning algorithm to represent every possible classifier.
For example, the bias of Naïve Bayes (Raschka, 2014) is composed
of linear and orthogonal hyperplanes, while the Multilayer Percep-
tron (Haykin, 2009) may have a more complex bias consisting of
hyperplanes not necessarily orthogonal to the feature-space dimen-
sions.
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The two most common functions used in supervised learning
are the 0− 1 loss function and the squared-error function, defined
respectively as

l(xi, yi, f(xi)) =

{
1 iff f(xi) 6= yi,

0 otherwise,
(5.1)

and

l(xi, yi, f(xi)) = (yi − f(xi))
2. (5.2)

Then, learning algorithms typically adapt the classifier by chang-
ing its parameters to minimize such losses, which in practice often
corresponds to shifting the decision hyperplanes following the gra-
dient of the loss function (Bergstra et al., 2011).
However, can one guarantee that an algorithm that performs

perfectly on training data, i.e., for which the training error is
equal to zero, performs similarly on unseen examples? SLT aims
to answer this question. To this end, Vapnik (1998) proves several
properties to ensure the generalization of supervised learning algo-
rithms. These, however, only hold if the following assumptions are
respected:

A1. examples must be independent from each other and sampled
in an identical manner;

A2. no assumption is made about the joint probability distri-
bution P (X × Y), otherwise one could simply estimate its
parameters;

A3. labels y ∈ Y can assume nondeterministic values due to noise
and class overlapping;

A4. the joint probability distribution is fixed over time;

A5. the joint probability distribution is unknown at training
time; it must be estimated using training examples.

Assumptions A1 and A4 are mandatory given Vapnik decided
to use the Law of Large Numbers to build up the Empirical Risk
Minimization Principle (ERMP), which ensures that

P (|R(f)−Remp(f)| > ε)→ 0, n→∞, (5.3)

where | · | is the absolute-value norm. The remaining assumption
A5 gives general purpose to his analysis. As result, Equation 5.3
states that the empirical risk Remp(f) ∈ [0, 1] of a classifier con-
verges, probabilistically, to the real risk R(f) ∈ [0, 1] (also known
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as expected risk or, simply, risk) as the sample size n goes to infin-
ity. In this context, the empirical risk corresponds to the training
error (computed using the training set), defined as

Remp(f) =
1

n

n∑
i=1

l(xi, yi, f(xi)), (5.4)

while the (expected) risk is defined as

R(f) = E(l(X ,Y, f(X ))), (5.5)

with E(·) as the expected value.
The motivation for Equation 5.3 came from the definition of

generalization as |R(f)−Remp(f)|, which means a classifier f is
expected to provide a similar risk (error) over training data and
unseen examples, otherwise it overfits and, therefore, it does not
model the target problem. Note that a classifier with good gener-
alization is not necessarily the one that provides a low risk but
the one in which the empirical risk (training error) is a good es-
timator for the expected risk (over all possible inputs, including
unseen ones). Finally, learning only happens when f generalizes
and its empirical risk Remp(f) is small enough according to some
problem-specific criterion.
Vapnik observed the need to define an upper limit for such prob-

ability in order to ensure learning for any supervised algorithm. He
proved the following bound to be valid

P (sup
f∈F
|R(f)−Remp(f)| > ε) ≤ 2N (F , 2n)e−nε

2/4, (5.6)

which considers the worst-to-best convergence scenario as the sam-
ple size n→∞, if and only if the algorithm bias F is characterized
by a polynomial shattering coefficient N (F , 2n). This coefficient, or
function, must grow polynomially, otherwise learning is not guar-
anteed according to ERMP (Equation 5.3). This is one of the most
important formal steps for machine learning, as it ensures the learn-
ing conditions for supervised algorithms.
Following the above theoretical foundation, Equation 5.6 can be

rewritten as

P (sup
f∈F
|R(f)−Remp(f)| > ε) ≤ δ, (5.7)

where δ = 2N (F , 2n)e−nε
2/4, thereby defining the probability P for

which both risks do not diverge more than ε measurement units,
i.e., the empirical risk approximates the expected one. Solving the
above for ε yields

ε =

√
4

n
(logN (F , 2n)− log δ). (5.8)
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This gives the divergence between the empirical and the expected
risks as

R(f) ≤ Remp(f) + ε, (5.9)

which is also referred to as the Generalization Bound. The main
goal of any supervised learning algorithm is to obtain the small-
est combination of empirical risk and ε, so that the expected risk
will also be small and one will obtain the optimal classification
performance.

5.3 connecting slt and dynamical systems

According to Bayes’ theorem (Raschka, 2014), every data sam-
ple x ∈ X must have meaningful attribute values to estimate
the output class y ∈ Y. Hence, input attributes must present
some dependency level on the expected outcome (Bishop, 2006).
In our context, such dependence is revealed after applying
a kernel function (e.g., Takens’ embedding theorem) on the
time series to unfold the phase space. In this setting, states
intrinsically represent the temporal dependencies of observa-
tions, but they do not depend on each other1. More precisely,
if the phase space is reconstructed using the embedding pair
(m, τ), then for each state φi(t),∀t ∈ [0, Ni]− 1, the pair
({x(t), · · · , x(t+ (m− 2)τ)} = xt ∈ X , x(t+ (m− 1)τ) = yt ∈ Y)
(Equation 4.18) contains such a dependency. For illustration
purposes, Table 1 this dependency for the Logistic map phase
space.

Table 1: Time-series observations organized in a tabular form after ap-
plying the kernel function. For simplicity, a phase space given
by the embedding parameters m = 2 and τ = 1 is considered.

State X Y
(x(t), x(t+ 1)) x(t) x(t+ 1)

(x(t+ 1), x(t+ 2)) x(t+ 1) x(t+ 2)

(x(t+ 2), x(t+ 3)) x(t+ 2) x(t+ 3)

(x(t+ 3), x(t+ 4)) x(t+ 3) x(t+ 4)

(x(t+ 4), x(t+ 5)) x(t+ 4) x(t+ 5)
...

...
...

The important consequence of the above is that one can uni-
formly sample phase states in any order to infer some classification

1 We remind the reader that deterministic systems define a unique state in the
future.
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or regression model, a process which can be seen as a selection of
points under the same probability distribution (Carlsson and Mé-
moli, 2013). Moreover, if we have enough states to represent the
attractor, we also ensure they are identically distributed into its
structure, as illustrated in Figure 5.1).
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Figure 5.1: Uniform sampling of states in the Logistic map phase space.
Circles illustrate regions respective states (in the center of
each circle) were sampled from. Adapted from (Pagliosa and
de Mello, 2017).

In the above context, assumptions A1 and A4 of SLT can be
satisfied after applying such a kernel function, once phase states
are now seen as i.i.d. data inputs. Assumptions A2, A3, and A5
are straightforwardly fulfilled. If we assume we are dealing with
samples coming from a single phenomenon, the joint probability
distribution is time-independent, which satisfies A4. Chapter 7 ad-
dresss separately the case of concept drift scenarios (Gama et al.,
2014) in which time-series samples may derive from different phe-
nomena (with distinct joint probability functions).
Since we now have satisfied all prerequisites needed to treat

our problem in a machine learning setting, we can perform regres-
sions on the reconstructed phase space. For this, we use a simple
Distance-Weighted Nearest Neighbors (DWNN) supervised learn-
ing algorithm, which builds a classifier f : X → Y in form

f(xnew) =

∑Ni−1
t=0 wtyt∑Ni−1
t=0 wt

, (5.10)

in which wt is the Gaussian-based distance between the new state
xnew and the known sample xt, defined as

wt = e−|xnew−xt|22/2σ
2

, ∀t, (5.11)

where σ is the dispersion of the radial-basis activation function.
This function produces values in [0, 1], having 1 when xt is at the
same space location as xnew and 0 when they are very far from
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each other, i.e., σ is too small to include xt in the neighborhood
of xnew.
We next analyze the behavior of DWNN with respect to the value

of σ. By setting σ → 0+, we have the smallest open ball (Mendelson,
1975) around the new state that contains no other neighbor but
itself, so Equation 5.11 yields 0 for all examples. Consequently, we
have that

f(xnew) =

∑Ni−1
t=0 wtyt∑Ni−1
t=0 wt

=
0

0
, (5.12)

which characterizes an undefined situation. Hence, there is no learn-
ing guarantee in this scenario. This is the situation in which the
classifier learns to handle only the training samples (Luxburg and
Schölkopf, 2011), or, in other words, it memorizes outputs and
only reports correct label when xnew = xt, for all t. This classifier
would never generalize to further unseen data, which represents a
typical case of overfitting.
On the other hand, when σ → +∞, Equation 5.11 tends to 1 for

all samples, we have

f(xnew) =

∑Ni−1
t=0 wtyt∑Ni−1
t=0 wt

=

∑Ni−1
t=0 1yt∑Ni−1
t=0 1

≈ µyt∈Y , (5.13)

so our classifier f always outputs the average class referred to as
µyt∈Y . This is the situation where the classifier underfits data, lead-
ing to poor regressions. For the sake of illustration, given a binary
classifier, this is equivalent to flipping a coin in attempt to hit its
output.
We conclude there is a need for a balance between F = Fall

and |F | = 1 to model a target problem adequately (both extremes
are illustrated in Figure 5.2). This trade-off is also known as Bias-
Variance Dilemma in Machine Learning literature (Geman et al.,
1992; Luxburg and Schölkopf, 2011). For DWNN, the bias is mainly
described by the value of σ. Finding a good stationary point be-
tween under and overfitting should be in agreement with the Statis-
tical Learning Theory (Luxburg and Schölkopf, 2011). Separately,
we should set σ large enough to contain sufficient neighbor states
for every unseen sample, so that the classifier is capable of extrap-
olating from these to the unseen points.

5.4 on the kernel function to deal with data de-
pendencies

Takens’ embedding theorem is a dynamical system tool to re-
construct data from the temporal space into the phase space. If
this reconstruction is adequate, we assume states in the phase
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Figure 5.2: DWNN biases: (a) the space contains every possible classi-
fier in Fall as σ → 0+. ii) (b) the space contains only one
classifier when σ → +∞.

space to be independent on each other, as they can be sampled
in an independent-and-identically-distributed (i.i.d.) manner (see
Figure 5.1). Then, to evaluate the independence of points in the
phase space, we relied on the SLT framework as it ensures learning
only when training-data samples are independent from each other.
To this end, we proceed as follows. We conducted several exper-

iments to produce an extensive set of phase spaces, using Monte
Carlo simulation (Landau and Binder, 2005) for the embedding
parameters, which were evaluated in terms of their ability to build
regressive functions (those behave in the same manner as discrete-
based label classifiers). For each embedding, we have selected ran-
dom states in the phase space (with replacement to keep data
distribution unchanged, as discussed in (Luxburg and Schölkopf,
2011)) to build learning models using the DWNN supervised algo-
rithm. We chose this method as it holds all properties of SLT and,
therefore, it is guaranteed to learn when σ does not overfit (when
training samples are represented) nor underfit (when all training
samples are considered simultaneously). In addition, DWNN allows
to change its bias by adapting σ, and measure its influence in terms
of training and test errors to confirm the occurrence of both cases.
We define the ideal independent phase space as the embedding

for which DWNN learns the most while respecting the Generaliza-
tion Bound (Equation 5.9). In other words, we have chosen the set
of kernel function parameters – namely the embedded dimension
m, time delay τ , and radius σ – that minimized both the empirical
risk (training error) and ε to ensure Remp(f) is a good estimator
of R(f). After defining such embedding, we verify if this space is
indeed capable of generalizing for unseen data in practical scenar-
ios, which allows us to confirm whether over or underfitting have
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happened. To prove that, we use a ghost sample as supported by
the symmetrization lemma (Vapnik, 1998)

P (sup
f∈F
|R(f)−Remp(f)| > ε) ≤

2P (sup
f∈F
|Remp(f)−R′emp(f)| > ε/2) ≤ δ

(5.14)

having R′emp(f) as the empirical risk computed for the ghost sam-
ple.
This lemma states that if two independent samples have empiri-

cal risks that do not diverge more than ε, then it is expected that
the empirical risk is also a good estimator for the expected risk. To
employ the symmetrization lemma, we use the recently-computed
optimal parameters to embed two independent, randomly-sampled
subseries from Ti. Moreover, in order to be in accordance with
ERMP, we simulate the growing of the input space (i.e., n → ∞)
by equally increasing the length of both sets, starting with 10×H
(H is the prediction horizon (de Mello and Yang, 2009) estimated
using the Lyapunov exponent as defined in Equation 2.31) up to
the total number of ni/2 observations. Finally, we compute using
DWNN, for each round, the respective empirical risks for both se-
ries, representing Remp(f) and R′emp(f), respectively.
Thus, we validate the choice of the optimal embedding by tak-

ing the difference between both empirical risks. If this difference is
small, then a small ε satisfies Equation 5.14 and, based on the Gen-
eralization Bound (Equation 5.9), the expected risk R(f) is also
small. Besides, if Equation 5.14 is held for most cases, the shat-
tering coefficient N (F , 2n) grows polynomially along n, which im-
proves consistency for the learning algorithm (Vapnik, 1998). This
aspect ensures learning, providing empirical evidence that ideal
phase spaces contain independent points. This is a very important
step towards supervised learning when it comes to time-dependent
data.
In our experiments, we show that when the ideal (i.e., the best

setting for m and τ) phase space is found after applying Takens’
embedding theorem as kernel function, the supervised learning al-
gorithm models unseen data with significant low errors. Those ex-
periments considered time series produced by synthetic systems.
Consequently, we know their generation rule (i.e., the equation
R(·) used to generate data) and the most common setting for the
embedding dimension m and the time delay τ to reconstruct phase
spaces (the ideal kernel function parametrization). Therefore, we
can compare other possible reconstructions against the mostly used
ones and measure their generalization capabilities (prediction of un-
seen observations). In this manner, the analysis of synthetic data
allows to take conclusions based on well-known expectations. In

75



supervised learning guarantees for time-dependent data

addition, we also considered the Sunspots dataset (Andrews and
Herzberg, 1985) to illustrate how our approach addresses a real-
world scenario.

5.5 concrete example: predicting time series

As discussed earlier in Section 5.2, the risk of a classifier f for any
supervised algorithm is defined using a loss function l(xi, yi, f(xi)),
in such a way that the best classifier achieves the smallest expected
risk R(f). Moreover, such a loss function should be defined accord-
ingly to the problem goal, space, and restrictions. In the context of
time-series modeling, the 0−1 loss function (Equation 5.1) and the
squared-error one (Equation 5.2) may be inadequate to compute
the error (the difference between two series) since time-shifted ob-
servations can still preserve the nature of the series. To improve
comparison, we used instead the Mean Distance from the Diago-
nal Line (MDDL) (Rios, 2013). MDDL uses Dynamic Time Warp-
ing (DTW) to ideally match expected-to-forecasted observations,
which produces a path in the two-dimensional space having each
series along one axis (Figure 5.3(a)). Next, MDDL calculates the av-
erage distance from each path to the diagonal line (Figure 5.3(b)),
providing a final distance estimation.
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Figure 5.3: (a)DTWwarping path between series. (b)MDDL computes
the cumulative distances from the warping path to the diag-
onal line (shaded). Adapted from (Pagliosa and de Mello,
2017).

An advantage of MDDL is that it summarizes the distance be-
tween series considering time displacements (such as time-series
trends), improving upon both the traditional Euclidean distance
and DTW. For instance, Figure 5.4 illustrates a sinusoidal function
with a stochastic process defined by a Normal probability distribu-
tion N (0, 0.722) (with 0 mean and 0.72 standard deviation2) added
to it, and two possible forecasted series: i) the mean-valued series,

2 Usually, the Normal distribution is represented by N (µ, σ2). However, most of
our routines in R simulating data distribution received as input the standard
deviation. Thus, we decided to report, from now on, Normal distributions
highlighting the standard deviation, i.e., explicitly showing it in the form σ2.
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and ii) the noise-free series. When considering the DTW distance,
the mean-valued series would be taken as more similar (normal-
ized distances to (i) and (ii) are 0.31159 and 0.30894, respectively),
which implies DTW does not take into account trend components
(very important when analyzing time series). In contrast, MDDL
would indicate the sinusoidal series as the most adequate solution:
distances are 5.84667 and 170.65778 for (i) and (ii), respectively. It
is fair to mention that DTW-D (ratio between the DTW and the
Euclidean distance) could also have been used in this scenario.
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Figure 5.4: Two forecasted series are compared against the expected
sinusoidal series with noise added to it (represented by
the dashed line with sinusoidal form): the noise-free series
(solid line) and the mean-valued one (straight-dashed line).
Adapted from (Pagliosa and de Mello, 2017).

We then consider MDDL as loss function to propose the k-Fold
Time Cross Validation (kFTCV), a novel approach to validate time-
series classification and forecast time series. Given a time series Ti
and its phase space Φi, the algorithm splits Ti into k subseries as
Ti = {S1, S2, · · · , Sk} (we assume k = 10 in our experiments), then
it uses one of those subseries Sj as expected data (test samples) and
the remaining observations to infer a classifier (training samples),
as illustrated in Figure 5.5.
To predict new observations and compare against one of the

folds, we perform the following steps: i) we use DWNN to build
up a regression function with 90% (because k = 10) of the points
in phase space; ii) we predict the first instance for the remaining
10% of points (Sj); iii) we employ the newly predicted value to
recursively forecast next observations (note that the error will ac-
cumulate along predictions); iv) we repeat step (iii) h times. Due
the chaotic behavior, h assumes the prediction horizon h = H for
each series, or any constant h ≤ H. Finally, the forecasted series
is compared to the expected one using MDDL, and the average
MDDL value over all folds is used as empirical risk.
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Figure 5.5: Execution of 3-Fold Time Cross Validation on our system.
For each fold (dashed line in (a)–(c)), the algorithm trains
with the remaining series (solid line) to recursively predict
H observations (crossed line). Notice that by increasing
the number of folds, the learning confidence also increases.
Adapted from (Pagliosa and de Mello, 2017).

The best set of embedding parameters is defined as the one whose
respective phase space provides the smallest risk. In other words,
we select the embedding dimension m and time delay τ (i.e., the
kernel function parametrizations) that best unfold the phase space
and transform time-series observations into i.i.d. instances. Lastly,
we confirm the true risk to be also small in terms of the symmetriza-
tion lemma (Equation 5.14).

5.6 experiments

The Distance-Weighted Nearest Neighbors (DWNN) algorithm, a
variation of the k-nearest neighbors, was used to perform exper-
iments because it holds, for an adequate σ, the principles estab-
lished by the Statistical Learning Theory (Luxburg and Schölkopf,
2011). Two different types of experiments were conducted. The
first one assessed different phase-space reconstructions (kernel
function parametrizations) for synthetic and real-world data, and
then we proceeded by selecting the space producing the best
classifier, i.e., with the greatest generalization capacity given by
|R(f) − Remp(f)| ≈ 0. In the second one, we used the recently
above-found kernel parametrization to quantify the accumulated
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error and evaluate the generalization capacity in terms of recur-
rent forecasting.
Our assumption is that if:

i) time-series dependencies are intrinsically defined in terms of
every data sample (phase state);

ii) data samples can be uniformly selected to compose a training
set in order to infer a classification or regression model;

iii) we obtain good enough results, measured by cross-validation
for training and test sets,

then we can conclude that the kernel function produced an immer-
sion in a multidimensional space which is capable of translating ob-
servations into independent-and identically-distributed (i.i.d.) ex-
amples. As a consequence, a supervised learning algorithm, such as
DWNN, is capable of modeling uniformly-sampled states from the
phase space and, consequently, predict unseen observations (which
are associated to class labels).
This section is structured as follows. First, we describe the setup

of the entire experiment, including algorithmic choices and param-
eter settings (Section 5.6.1). Next, we describe the first set of ex-
periments, aimed at selecting the optimal phase-space embedding
for a given time series, from both synthetic and real-world data
(Section 5.6.2). Finally, we use this optimal embedding to show
how the learned model can be used to generalize, i.e., predict, or
forecast, time series data (Section 5.6.3).

5.6.1 Experimental Setup

To avoid underfitting and overfitting, we set σ as the minimal pair-
wise distance containing an average percentage of nearby states
in state space. In order to define the best percentage, 20 values
equally spaced from 0.001 to 0.2 were processed by a Monte Carlo
simulation. In addition, to break eventual time dependencies, we
randomized the training examples and applied the 10-Fold Time
Cross Validation (Section 5.5) to compute the empirical risk. We
also made sure every σ was sufficiently large to include at least one
neighbor, avoiding a memory-based, overfitting, classifier.
We penalized high embedding dimensions and time delays to

simplify (in the parsimony sense of Occam’s razor (Rasmussen and
Ghahramani, 2001)) as much as possible the phase space. We then
selected classifiers (regression functions) by assessing the risk com-
puted by MDDL as described in Section 5.5. We look for the best
embedding while varying m and τ in range [2, 15] and [1, 15], re-
spectively. However, we only changed the embedding parameters
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m and τ when this risk was smaller than the current (best) risk
according to a threshold (here defined as 5× 10−2 when increasing
space dimensions and 1×10−2 when increasing time delays). In or-
der to estimate a fair upper limit for the expected risk, we defined
ε as the 20% quantile of all absolute differences of two training sets
(as we increased the input length n) in an attempt to hold Equa-
tion 5.14 and, therefore, obtain a polynomial shattering coefficient
N (F , 2n).
We also defined a constant for the number of forecasted observa-

tions h, which is justified by: i) the fact that Lyapunov exponent
estimators (Kantz, 1994; Rosenstein et al., 1993) might overesti-
mate the prediction horizon; ii) when h ≤ H, we have a higher
confidence in forecasting (less accumulated errors); iii) to avoid
h > H, and consequently lead to poor results, we defined h = 10
during the training stage (to estimate the best classifier), which is
expected not to surpass H for most cases.
The final design decision regards the selection of the Relevant

Neighbors (R), which we explain next. When learning, DWNN
requires the definition of pointwise neighborhoods in order to es-
timate a class for unseen examples. This process involves the
weighted mean for all neighbors under the influence of a Gaus-
sian activation function (Equation 5.11) with standard deviation
σ. Thus, even after narrowing σ, distant neighbors may still have
more influence that they should have. For instance, suppose a state
having two nearest neighbors equally far away; DWNN will assign
to this state the mean class of both neighbors, no matter how far
they are. This is inadequate in our scenario in which labels are real
values. In such situations, we have experimentally concluded that
such a point with no relevant neighbors should be discarded.
Our experiments suggest that R can be smaller for conservative,

deterministic, and dense embeddings, whereas it should be greater
for spread-out and noisy phase spaces. Although we have achieved
good results, we reinforce that each state (or group of states) should
have its (or their) own parameter(s) R, considering a phase space
can be formed by local structures. We have relied our selection
for R on the fact that the Gaussian activation function can be
interpreted as a Normal probability distribution, thus, by setting
R = 1.5 (i.e., setting the distance for relative neighbors to be as far
as 1.5× σ), the closest states are considered relevant if and only if
they are at most 1.5 standard deviations from the mean (the mean
is defined by the position of the unseen sample under analysis).
According to the z-table (Schefler, 1988), this setting takes an area
of 86% of data into account (Figure 5.6). Interestingly, a similar
discussion appears when selecting the so-called perplexity parame-
ter when reducing data dimensionality using the t-SNE projection
algorithm (van der Maaten and Hinton, 2008). Globally put, the
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selection of a “good” perplexity value (which should consider only
a given range of nearest neighbors for a high-dimensional point) is
conceptually similar to our discussion of selecting a “good” σ value
for our classification purposes.
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Figure 5.6: Even after mitigating the influence of far states by decreasing
σ in Equation 5.11, distant neighbors (triangles) can still
jeopardize the classification of unseen examples (circle) when
using DWNN. In this form, only relevant neighbors (squares)
should be taken into account. Adapted from (Pagliosa and
de Mello, 2017).

5.6.2 Assessing Phase-Space Reconstruction

In the first set of experiments, we assessed different phase-space
reconstructions for synthetic and real-world data. Next, we pro-
ceeded with the selection of the space Φi that produces the most
generalizing classifier. Before showing our results, it is worth to
remind that the discrete nature of maps like Logistic, Ikeda and
Hénon imposes an ideal phase-space reconstruction. Consequently,
the embedding dimension m and time delay τ are well-known. On
the other side, the continuous nature of systems such as Lorenz
and Rössler determines different kernel function parametrizations
depending on the rate of data sampling. For these systems, we use
a default sampling rate of ts = 0.01.

5.6.2.1 Synthetic Time Series

Table 2 summarizes all relevant results from kFTCV. Columns de-
scribe, from left to right: the time series Ti; embedding dimension
m; time delay τ ; σ used in DWNN; relevant neighbors R; empiri-
cal risk Remp(f); divergence parameter ε; and the upper limit for
the expected risk R(f) (namely R(f)∗), computed as described in
Equation 5.9 for the best-learning phase space Φi.
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Table 2: Using the Statistical Learning Theory to find the best embed-
ding parameters for the kernel function (Takens’ immersion the-
orem).

Ti m τ σ R Remp(f) ε R(f)∗

Logistic 2 1 0.00318 1.96 0.13719 0.02734 0.16

Ikeda 3 1 0.13277 1.3 0.60625 0.03432 0.64

Hénon 4 1 0.07924 1.5 0.36391 0.04017 0.4

Lorenz 3 8 0.81707 4 1.30174 0.02440 1.32

Rössler 3 8 0.26946 1.5 0.44782 0.03017 0.47

Sinusiodal 2 1 0.00001 0.5 0 0.04143 0.04

Sunspots 2 4 1.52 1.5 1.15081 0.03577 1.18

According to Table 2, we observe that the parameters found af-
ter the phase-space assessments match the commonly used ones
(ground-truth parameters) in almost all cases. For clarity, let us
mention that researchers typically use m = 2 for the Ikeda and
Hénon maps only for visualization purposes; while the real embed-
ding dimensions for them are m = 3 and m = 4, respectively.
Moreover, it is worth mentioning that if we had proceeded with-

out recursive forecasting, different embeddings would have been
found. This is due to the fact one-step prediction creates a bias
that forces the algorithm to (usually) estimate τ = 1 (which is
indeed enough to predict a next but not a recursive sequence of
observations).

5.6.2.2 Synthetic Time Series With Noise Added

In an attempt to correlate noise components with the time de-
lay, we have added signals produced by two Normal distributions
N (0, 0.052) and N (0, 0.12) to the data produced using the sinu-
soidal function, whose embeddings with m = 2 and τ = 1 are illus-
trated in Figure 5.7. As expected, noise wrongly correlates phase-
space trajectories, leading to poor learning results. This situation
is overcome when time delay τ is increased, stretching the phase
space and deviating embedding points. Nonetheless, the embedding
dimension m is also affected, as more dimensions are necessary to
stabilize false nearest neighbors (Kennel et al., 1992). As a conclu-
sion, we state that supervised algorithms tend to find more complex
embeddings when dealing with noisy observations.
Figure 5.8 illustrates the phase space with the smallest empirical

risk for each case, having the pair (m = 2, τ = 9) for both cases
in Figure 5.8. This scenario illustrates how even a small amount
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Figure 5.7: Embedding of sinusoidal series with N (0, 0.052) (a) and
N (0, 0.12) (b) added to it. Forced correlated (seen as
misplaced) points misleads DWNN classification. Adapted
from (Pagliosa and de Mello, 2017).

of noise significantly changes the ideal embedding (m = 2, τ =
1) (de Mello and Yang, 2009).
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Figure 5.8: In order to learn, DWNN demands a more complex phase
space when analyzing noisy data. For the sinusoidal series
with N (0, 0.052) and N (0, 0.12) noise added, the best found
phase space-reconstruction parameters were (m = 2, τ = 9)
in both cases. Adapted from (Pagliosa and de Mello, 2017).

5.6.2.3 Real-World Data

Let us now highlight the importance of the number of relevant
neighbors (R) and how this parameter influences our analysis. For
real-world scenarios, the area under the Gaussian activation func-
tion (Equation 5.11), used to define the relevant neighbors, may
vary depending on the phase-space behavior. Different aspects must
be considered: i) if phase-space points are affected by noise, de-
creasing R may be the best strategy so that only closest points are
considered by DWNN; however, ii) if the phase space is formed by
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spread points, R should be large enough to involve distant neigh-
bors.
In addition, when predominately deterministic, dense, and con-

tinuous phase spaces are analyzed, more points could be taken as
neighbors to build the classifier. Take the Logistic map as example.
Its phase space is very smooth, forming a well-structured attractor.
This structure allows us to set DWNN to consider more neighbors
in such a space. In fact, better results were observed when we set
R = 1.96σ (i.e., covering 95% of neighbors). On the other hand, we
defined R = 4 for the Rössler system (see Figure 5.9). Although
this space has a well-defined structure, some regions must take
more neighbors into account to correctly classify points due to the
local point density. Therefore, we conclude that R should be de-
fined locally on every point or on attractor regions.

Figure 5.9: Rössler three-dimensional phase space. Despite its determin-
istic structure, regions in which points are located more apart
from each other (darker-thicker lines) force greater values for
R, so distant neighbors can be correctly involved during clas-
sification. Therefore, different values ofR should be assign to
different points, depending on their locations and attractor
neighborhoods. Adapted from (Pagliosa and de Mello, 2017).

As we know, the Sunspot dataset was produced by a natural
phenomenon, so we expect that data-measurement errors and un-
expected behavior may occur. In addition, we also know this data
behaves similarly to a sinusoidal function with noise added to it.
As a consequence, we assumed R = 1.5 to form pointwise neighbor-
hoods, which allows us to find embedding dimension m = 2 and
time delay τ = 4. We believe that this is a good approximation
considering that this dataset contains sinusoidal influences (the si-
nusoidal function is typically embedded using (m = 2, τ = 1). As
previously discussed, real-world scenarios lead to more complex
phase spaces (a greater value for τ , in this case), typically due to
the presence of noise.
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5.6.3 Evaluating The Generalization Capacity When Forecasting

We now measure the generalization capacity of the found embed-
dings (obtained as described in Section 5.6.2). This allows us to
assess whether learning has indeed happened as desired. For this,
we computed MDDL for different training samples with 60%, 70%,
80% and 90% of the total number (ni) of observations from Ti. For
the sake of brevity, we only illustrate the last scenario, i.e., training
with 90% of data, as the other cases yielded similar results. Fig-
ure 5.10 shows the MDDL average result for all training set sizes.

Figure 5.10: Forecasted (dotted lines) and expected (solid lines) obser-
vations. From (a) to (h): Logistic, Ikeda, Hénon, Lorenz,
Rössler, sinusoidal, sinusoidal with N (0, 0.052) noise added,
Sunspot. In all plots, observation values were normalized to
[−1, 1]. Adapted from (Pagliosa and de Mello, 2017).
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As expected, all results (estimators of the real risk) were smaller
than the upper limit bound given by Table 2. This strongly indi-
cates all phase spaces provided a good generalization capacity for
the supervised learning algorithm and, therefore, DWNN was ca-
pable of learning. Also, it is worth mentioning that results became
worse as time elapses due to the error accumulated during the re-
cursive forecasting (something expected and measurable using the
Lyapunov exponent). However, when testing with other values for
parameters m, τ , σ and R, we observed generalization was jeop-
ardized. This indicates that the method we proposed earlier in
Section 5.6.2 to find optimal parameter values is indeed reliable.

5.7 entropies and probabilities

For completeness, let us turn back to the initial point mentioned in
Section 5.1, i.e., directly estimating the entropy. As it was stated,
doing this is complicated. In this section, we detail on this matter
and show some of the difficulties in deterministically correlating
such measurement with optimal embeddings.
Entropy can be measured in several ways. Among the most com-

mon methods, Shannon’s entropy (Hammer et al., 2000) is defined
as

Esh = −
n∑
j

Pj logPj , (5.15)

where Pj is a probability function. In the context of phase-space
reconstruction, Equation 5.15 can be translated to

Esh(φi) = −
Ni−1∑
t=0

P (φi(t)) logP (φi(t)), (5.16)

where P (φi(t)) is a probability function over each phase state φi(t).
Such probability can also be measured in different ways. Among
alternatives, we initially estimate P (φi(t)) throughout the complex
network given by the graph G(V,E) (Newman, 2003), where V is
the set of vertices representing each state, such that vt = φ(t)i,
and e(vt, vn) ∈ E is the set of edges where vt is connected to vn
only if φ(t)i is a predecessor of φ(k)i, i.e., when

|x(t+ tw)− x(k)| ≤ ε, (5.17)

where ε is a radius factor, and tw = (m − 1)τ is the time delay
window, respectively. From a different perspective, Equation 5.17
tries to keep track on the intersections of states trajectories with
the phase-space hyperdiagonal, as illustrated in Figure 1.2. More-
over, if phase states are represented in a tabular form as in Table 1,
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then Equation 5.17 will hold when the last column (the mth com-
ponent) of φ(t)i matches the first component of φ(n)i according
to ε. Then, the probability P (φ(t)) is set as a function of the num-
ber of edges, i.e., the valency or degree of vt, namely Vt. Thus,
one can naively define P (φ(t)) = 1/Vt, but other options may be
considered (Buhmann and Buhmann, 2003; Delashmit and Manry,
2005).

Alternatively, one can describe the uncertainty (and, as conse-
quence, the level of determinism) in the phase space, embedded
with the pair (m, τ), in terms of Von Neumann’s entropy (Han
et al., 2012), described as

Evn(φi) = −
m∑
j

λj log λj , (5.18)

where λj is one of the eigenvalues of φi. Moreover, Equation 5.18
can also be defined in function of the probability of the eingen-
vaules, as presented in Equation 4.7. In both cases, the entropy
will be higher when the attractor fully expands in all directions,
and lower when an a subset of dimensions mainly describes the
phase space.
Lastly, a third possible way to compute the entropy in the phase

space is to partition it into m-dimensional cells and count the num-
ber of occurrences (states) inside of them. In that form, the par-
tition usually follows some criterion. For instance, the space can
be recursively and equally divided into quadtrees or octrees (Sper-
ber, 2017) according to a minimal density of states n (if a cell
has more states than n, it is split again), or using other geomet-
rical property (Mount, 2010). A relation between the number of
empty and non-empty cells can be used to formulate a probability
function. Using the same example that the space was split using
the density of states, Equation 5.15 could be computed for differ-
ent values of n. This approach goes in the same direction of the
correlation dimension D2 (Equation 2.23), but presented from a
different perspective.
The last entropy modeling approach above also motivated us to

consider an entropy definition based on the conditional probability
of Naive Bayes (Raschka, 2014). Given a uniform partition of the
space Φ = [X ,Y], for instance, where X and Y are the output and
input subspaces (Equation 4.18 and Table 1), respectively, then nm
m-dimensional cells ci,j∈[1,n] can be created, so that the following
relation is expected to be maximal for optimal phase spaces

P (Y|X ) =
P (X |Y)P (Y)

P (X )
=
P (Y,X )

P (X )
=

n∑
i=1

n∑
j=1

nci,j
nci

, (5.19)
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where nci represents the total of occurrences in the ith subspace
of X , and ci,j is number of occurrences in the intersection of such
space with the jth subspace of Y (joint probability). Figure 5.11
illustrates an example of such computation for the cell c1,3 in two
scenarios. Although such approach is expected to work in theory, as
the output space should be strongly dependent on the input space
for deterministic embeddings, i.e., the conditional probability of Y
to happen given X should be high, unfortunately our experiments
led to unsatisfactory results: no consistent patterns were observed
for general systems.

Figure 5.11: Conditional probability computation on the phase space for
2D (a) and 3D (b). The cell c1,3 is highlighted in red for
both cases, whereas the ith subspace of X is represented in
gray. For the 3-dimensional plot, X = [X1,X2].

Summarizing, estimating the entropy is dependent on some pre-
requisites, such as the radius ε in Equation 5.17 and how the space
is partitioned. This makes computing entropy difficult. Moreover,
all entropies referenced in this section struggle from two additional
problems: they are not unique descriptors and they suffer from the
curse of dimensionality (Chen, 2009). In order to mitigate the last
drawback, the Singular Entropy (SE) method (cf Section 4.2.1.4)
relies on the first eigenvalue (Equation 4.7).
We have next tried to use those entropies to estimate the optimal

embedding. Firstly, we aimed for a phase space where the number
of intersections in the cobweb plot was minimal, so that

Hsh(φ) = minimize (Esh(φ)) . (5.20)

However, usually the hyperdiagonal-based attractor is found for
this optimization problem, since this structure has the maximum
determinism among its states (Rosenstein et al., 1994).
Apart from the above, Von Neumann’s entropy could be used in

an alternative way to find the most spread attractor in form

Hvn(φ) = maximize (Evn(φ)− β‖v‖2) , (5.21)
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where v = [α1, α2, · · · , αm] is a vector indicating which dimensions
should be used, i.e.

αi =

{
1 dimension i composes the phase space,
0 otherwise.

(5.22)

Here, v is a penalty factor to decrease the importance of higher
dimensions in Equation 5.21. However, this process is complex to
implement and compute.
Thirdly, we considered to combine Equation 5.20 to Equa-

tion 5.21 in order to find some balance between under (redudance)
and overestimated (irrelevance) phase spaces, in the form

H(φ) = maximize (Hvn(φ)− C ×Hsh(φ)) , (5.23)

where C ∈ [0, 1] is a constant weight that defines the trade-off
between both quantities.
Although a solution is guaranteed to exist for Equation 5.23

(both entropies have concave characteristics (Boyd and Vanden-
berghe, 2004)), they are not ensured to converge to benchmark
embeddings.
To test whether RQ1 holds, we computed the above entropies for

well-known embeddings of the described in Chapter 3. The hypoth-
esis was that, when optimal embeddings (as known by the literature
for specific datasets) are used, then the computed entropies would
be smaller when compared to other embeddings. The results of this
experiment, however, proved inconsistent: we did not observe the
expected correlation between minimal entropy and optimal embed-
ding (again, the latter as given by the literature) for the analyzed
datasets (Chapter 3). A similar behavior was reported for the SE
algorithm (Section 4.2.1.4), where inconsistencies were found for
attractors with genus more than one.
However, the fact that RQ1 was disproved in the above form

does not mean that the reconstructed embeddings, estimated with
these measurements, are not good enough to unfold phase spaces
in some cases. Regressions on non-ideal phase spaces can still lead
to adequate models and forecasting, if the estimated embedding
is not too much far from the optimal. However, we have always
aimed for an estimation as closest as possible to the generating
rule R(·), such that overestimated embeddings (mainly in terms of
τ) are not acceptable as valid. Chapter 9 will present a different way
for estimating optimal embedding parameters, using deep learning,
which has led to consistent results for all tested datasets.

As a final (and side) note, based on Equation 5.21, we have also
considered to apply the Least Absolute Shrinkage and Selection
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Operator (LASSO) (Tibshirani, 1996) to estimate the embedding
pair, which models the problem as

b = arg min
b∈Rm

1

Ni
||y−Xb||22 + C × |y|1, (5.24)

whereX and y are matrix representations of X and Y, respectively.
The goal is to find a vector b of m coefficients

yj = b0+XT
j b = b0+xj,1b1+xj,2b2+· · ·+xj,mbm+εj ,∀j ∈ [0, Ni−1],

(5.25)

so that the sum of the squares of the differences between the depen-
dent and exploratory variables is minimized. In order to use Equa-
tion 5.24, firstlyX is standardized and y centered. Later, states are
overembedded so the penalty factor will shrink some coefficients in
b to zero. As consequence, we filter the most representative dimen-
sions out by the absolute values of b, and estimate τ according to
the lags among non-zero coefficients. However, LASSO performs
a linear regression, which leads to the fact that estimations are
not consistent for nonlinear systems. As a refinement of this idea,
we also considered to apply a kernel function to map nonlinear
phase spaces into linear attractors. The idea was to find a map
that would lead states into a linear space, preserving as much as
possible their topological properties, perform LASSO on this space,
and then perform an inverse mapping into the found coefficients of
b to have an estimation with respect to the original space. Whether
this approach leads to consistent results is, however, still subject
to research.

5.8 final considerations

The goal of this chapter was to show that states are organized
in an independent-and-identically manner (i.i.d.) in the optimal
phase space, so that low levels of entropy are observed. To find
this optimal space, we used the Statistical Learning Theory (SLT).
Simply put, we construct a series of regressors, for different val-
ues of the embedding parameters m and τ , and choose as optimal
embedding the one for which the constructed regressor generalizes
best to unseen test data.
As a consequence, instead of relaxing the assumption of data in-

dependence in the context of time-series modeling as performed in
other studies (Faria et al., 2013; Tan et al., 2011; Al-Khateeb et al.,
2012), the usage of a kernel function to reconstruct time series into
phase spaces is also important to ensure supervised learning in
those scenarios. To the extent of our knowledge, there is no previ-
ous work that tackles this goal.
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To prove the above statement, we show that forecasted series
generated by building regression functions on phase spaces produce
small empirical risks and ε, which restricts the expected risk to
small upper limits and should be enough to theoretically prove
learning. However, we also show in practical experiments that good
forecasting results were generated, giving us strong evidences that
learning occurred. According to SLT, however, learning can only be
proven if examples are independent and identically sampled (given
other assumptions are already held – as is the case). This allows us
to conclude that our kernel function (Takens’ embedding theorem),
under the best parametrization, unfolds data observations into i.i.d.
examples.
To confirm that points in ideal phase spaces are independent

and identically distributed, we conducted experiments by produc-
ing an extensive set of phase spaces, using Monte Carlo simulation
for the embedding parameters, which were evaluated in terms of
their ability to build regressive functions. Training to predict the
label of one single unseen observation at a time instant led to wrong
phase-space parameters and poor prediction results. To find more
reliable spaces, we therefore recursively predicted h ≤ H obser-
vations (given H is the prediction horizon). This latter approach
results in optimal phase spaces, which match the most commonly
used embedding parameters from the literature (Ikeda, 1979; Hitzl,
1981; Rössler, 1976). We also noticed that comparing forecasted
and expected series using the Euclidean distance could lead to
wrong results (a subject previously discussed in (Rios, 2013)), as
mean-valued observations could be classified as more similar to the
expected series than when comparing noisy observations. To over-
come such scenarios and also consider data trends, MDDL was
used as loss function.
In addition, to provide a fair training using different time in-

stants of the series, we selected the best phase space that produced
the lowest accumulative according to our k-Fold Time Cross Valida-
tion, whose steps can be summarized as: i) forecast h observations;
ii) use MDDL as loss function; iii) proceed with a k-cross folding.
As a main contribution, this chapter provides theoretical and

empirical evidences that phase spaces transform time-series obser-
vations into i.i.d. examples. Moreover, the answer to (RQ1) is,
partially, positive: as low levels of entropy correlates to
higher levels of independence among phase states, opti-
mal phase spaces can (consequently) be described in terms
of such measurements. However, it is still difficult to come up
with a single definition (and way of computing) of entropy of an
embedding, and we could not conclude that optimal embeddings
(for the cases where such information was known) generate minimal
entropy values over all possible embeddings.
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Another consequence of this work is that supervised learning
can be performed and ensured for time-dependent data. With this
knowledge one can, for instance, employ supervised-learning algo-
rithms to tackle classification or regression tasks in time series
and have learning guarantees according to SLT. Other classifiers
can also be used instead of DWNN. As main drawback, our ap-
proach requires at least thousands of observations to proceed with
the phase-space reconstruction and obtain a meaningful attractor.
However, this should not be a problem in practice, when dealing
with real-world applications which already have access to large (big
data) collections of measurements.
There are several directions of possible future work based on the

results presented in this chapter: i) adapting the joint probability
distribution so one can rely on learning guarantees to proceed with
concept drift detection on data streams; ii) an adaptive strategy
to define values for σ and/or R according to different attractor
points or regions, by exploiting information on how points are lo-
cally spread over the phase space (Rios, 2013); iii) designing a more
robust approach to penalize higher embedding dimensions as well
as time delays to avoid unnecessarily complex phase spaces; and,
finally, iv) using the proposed approach to forecast data from other
real-world datasets from climate, biology, medicine, and other do-
mains.
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6SEMI - SUPERVISED T IME -SER IES
CLASS IF ICAT ION ON POS IT IVE AND
UNLABELED PROBLEMS US ING
CROSS -RECURRENCE QUANTIF ICAT ION
ANALYS I S

6.1 initial considerations

Chapter 5 showed how optimal phase spaces can be character-
ized and computed using techniques and methods from Statistical
Learning Theory and Machine Learning. The good results obtained
in this process motivated us to extend our investigation on Dynam-
ical Systems, which led to our second research question:

RQ2. “Is it better to use phase-space rather than time-series
modeling?”

After measuring the forecasting accuracy to tackle RQ1, we next
decided to validate phase-space analysis on classification scenarios.
More precisely, we focused on the problem of Positive and Unla-
beled (PU) data in dealing with semi-supervised learning. In this
case, few labeled examples P from a single class of interest are
available to proceed with the classification of unseen instances U ,
according to their similarities with the known class.
In the scope of time series, most of the current studies propose to

address this topic using a self-training approach based on similarity
measurements on the time domain, such as the Euclidean Distance
(ED) or the Dynamic Time Warping-Delta (DTW-D), to provide
features for the self-training classification stage, which is typically
performed with the 1-Nearest Neighbor (1-NN) algorithm (Wei
and Keogh, 2006; Ratanamahatana and Wanichsan, 2008; Chen
et al., 2013). Self-training is employed to accumulate knowledge
and, consequently, improve the classification of new instances. De-
spite the relevant contributions of time-domain measurements, we
claim that such approaches do not consider temporal recurrences
commonly found in natural phenomena (e.g., population growth,
climate studies) and are more sensitive to local noise and fluctua-
tions, as already mentioned in Chapter 5.
To exemplify and reinforce such drawbacks of time-domain mea-

surements, consider the analysis of a cyclical phenomenon, whose
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behavior is described by a sinusoidal signal (Equation 3.1, repeated
below for ease of reading)

x(t) = A(t) sin(2πt/n) + θ) + U(a, b), (6.1)

where A(t) is the amplitude along time, sampled at moments
t = 0, . . . , n− 1; θ changes the sinusoidal phase; and U(a, b) adds
noise to the samples following a Uniform probability distribution
in range [a, b].
Now consider that we create three examples of time series with

the same length n = 200. The first series is a free-noise sinusoidal
function with A(t) = 1 ∀t, θ = 0 and U(0, 0). The second is a dis-
sipative sine whose observations were produced using A(t) = n−t

n ,
θ = π/2 and U(−0.1, 0.1). The third series represents a random
noise following a Uniform probability distribution U(−0.5, 0.5). All
series are illustrated in Figure 6.1. Note that, although we made
a couple of changes in the second signal, it remains sinusoidal-like.
This simulates a real-world scenario in which we have two signals
collected from the same phenomenon representing distinct behav-
iors at different time instants. The first series corresponds to the
time interval in which the phenomenon is conservative. After some
interaction (coupling) with another system, the signal begins to
lose power eventually converging to zero, such in the case of the
damped harmonic oscillator (Alligood et al., 1996). This leads us
to the second signal.

Figure 6.1: Examples of two series produced by variations of the sinu-
soidal function (a,b) and another series generated using a
uniform distribution (c). Assuming the first signal as the
initial known positive example, time-domain measurements
(see Section 6.3) may consider the conservative series (a) as
more similar to the uniform distribution (c) than to the dis-
sipative one (b), thereby misleading a classifier. Adapted
from (Pagliosa and de Mello, 2018).

Assume some specialist told us that the first series belongs to
the positive set P , which was already studied in the context of
our application domain (i.e., cyclical phenomena), and that the
other two series compose the unlabeled dataset U . Next, assume,
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for the sake of example, that we use a self-training strategy to
label the most similar time series in U to P , using a 1-NN algo-
rithm (other learning algorithms can be used as well). Although
we know that the dissipative sine should be classified as a posi-
tive instance, time-domain measurements provide us the undesired
result that the random noise should be added to the positive set
instead (more details in Table 3). As discussed further in this chap-
ter, besides not comparing recurrences (a feature that should be
considered when dealing with natural phenomena), time-domain
measurements are more sensitive to local differences enhanced by
noise and mean-valued observations, so they can mislead classifica-
tion. In a self-training scenario, this can lead to inconsistent and
undesired results.
The above issues have motivated us to investigate the use of

phase-space representations as an alternative to time-series repre-
sentations for building classifiers of temporal data. In detail, we
propose the use of the Maximum Diagonal Line of the Cross-
Recurrence Quantification Analysis (MDL-CRQA), applied on
phase spaces (Takens, 1981), as similarity measurement for clas-
sification. By comparing phase spaces rather than the series them-
selves, we can assess how their trajectories change along time (Mar-
wan and Webber, 2015), including their periodicities and temporal
cycles, as well as decreasing noise influences.
The remaining of this chapter is organized as follows. Section 6.2

shows the related work of time-series semi-supervised learning. Dif-
ferent methods typically used to compare time series are described
in Section 6.3. Our approach is given in Section 6.4. We perform
experiments comparing time-domain and phase-space domain in
Section 8.5, to later discuss our results in Section 6.5.4 and finally
draw conclusions.

6.2 related work for semi-supervised learning in
time series

Despite the proposal of semi-supervised techniques like self-
training (Li and Zhou, 2005), generative models (Baluja, 1999),
co-training (Blum and Mitchell, 1998), density-based (Bennett and
Demiriz, 1998), graph-based (Blum and Chawla, 2001), outlier de-
tection (Janssens et al., 2009), and their extensions/modifications
to tackle specific scenarios (Nigam et al., 2000; Chapelle and Zien,
2005; Zhu et al., 2009; Chapelle et al., 2010; Daneshpazhouh and
Sami, 2014; Wang et al., 2016; Sheikhpour et al., 2017; Pereira and
da Silva Torres, 2018; Wu and Prasad, 2018, etc.), to the extent of
our knowledge, few studies addressed semi-supervised classification
for time-series analysis in the literature.
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The first study related to semi-supervised time series was pro-
posed by Wei and Keogh (2006). By starting with a single posi-
tive instance s representing the positive set P , their self-learning
method classifies a new positive instance belonging to the unla-
beled dataset U as the most similar series in U to P , and the pro-
cess continues until some stopping criterion is met. Despite their
seminal contribution to the area, their approach has a couple of
problems: i) they used the Euclidean Distance (ED) to compute
the 1-NN algorithm, which is known to be less accurate than the
Dynamic Time Warping (DTW) method in the presence of time-
displacements (Ratanamahatana and Keogh, 2004); and ii) their
stopping criterion (later referred to as Minsofar) was confirmed to
be inadequate in several scenarios (Ratanamahatana and Wanich-
san, 2008). Based on these observations, Ratanamahatana and
Wanichsan (2008) proposed the Stop Criterion Confidence (SCC),
which despite improving upon Minsofar, is not yet ideal, as it yields
early termination for multiple datasets. Separately, Chen et al.
(2013) used DTW-D (ratio of DTW by ED) to compare similar-
ities between time series, improving the results reported by Wei
and Keogh (2006).
Alternatively, Nguyen et al. (2011) relied on the method pro-

posed by Wei and Keogh (2006) to classify a positive initial (train-
ing) set to later run k-means on the unlabeled dataset. Afterwards,
the method applies PCA on both labeled and unlabeled sets to fi-
nally classify clusters based on their similarities provided by eigen-
pairs. Zhong (2004) uses self-training with Hidden Markov Models
(HMM) to summarize time-series information. The algorithm first
initializes the number of states using parameter k, from k-means,
then maximizes the likelihood estimation for the HMM using posi-
tive labeled examples. Unlabeled instances are set as positive when
their accumulated transition probability (similarity) is high for the
trained positive model.
Out of the scope of self-training approaches, few other techniques

exist for this problem. Marussy and Buza (2013) proposed a cluster-
and-label multi-class algorithm which computes a minimum span-
ning forest (using DTW) among all instances, so that each tree has
one labeled instance as root. Each tree starts with one labeled in-
stance, proceeding with the addition of further nodes. At the end,
series belonging to a tree are labeled according to the label of its
root.
In short, we found that the majority of studies tackling semi-

supervised time-series classification on PU problems have used the
1-NN algorithm with a self-training approach, including the sem-
inal research proposed by Wei and Keogh (2006). Therefore, we
also decided to follow this approach in order to support a fair com-
parison of results. A detailed analysis of the sensitivity of the 1-
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NN classifier and a comparison thereof against other classification
methods are out of the scope of our work.
More importantly, we also noticed that all related methods use

time-domain measurements, such as ED and DTW, to measure sim-
ilarities among time series. As already outlined above, this strategy
may be not the best approach in many situations, especially when
time series present strong cyclical patterns and trends. Hence, in
contrast to existing research, we propose a novel self-training ap-
proach to tackle semi-supervised PU time-series classification us-
ing MDL-CRQA as similarity measurement, applied on the series
phase spaces rather than on the series themselves. This allows us
to assess and compare time-series recurrences more fairly, as we
describe in Section 6.4. Our approach can also be extended to use
other classification algorithms rather than 1-NN, without loss of
generality.

6.3 time-domain similarity measurements

Current self-training methods use time-domain measurements to
find the most similar instance to be labeled as a positive example
throughout iterations. For instance, given two unidimensional time
series Ti, Tj with ni, nj observations each, the Euclidean Distance
(ED) computes the similarity between them as

ED(Ti, Tj) =

√√√√ni−1∑
t=0

(xi(t)− xj(t))2. (6.2)

Despite simple, ED is not suitable to compare time-displaced se-
ries, additionally requiring both series to have the same length
ni = nj (although this constraint can be relaxed via interpolation
approaches (Ratanamahatana and Keogh, 2004)).
Dynamic Time Warping (DTW) was proposed to address the

comparison of time-displaced series, by finding the best match be-
tween shifted observations along time by computing

DTW(Ti, Tj) =

√√√√ni−1∑
t=0

pi,j(t)
2
, (6.3)

where pi,j(t) = xi(t+α(t))−xj(t+β(t)) corresponds to the shortest
warping path, with α(t), β(t) ∈ Z.

However, there are scenarios in which ED and DTW lead to
incorrect results (Chen et al., 2013). To mitigate this drawback,
a combination of both approaches was proposed, referred to as
Dynamic Time Warping-Delta (DTW-D), computed by

DTW-D(Ti, Tj) =
DTW(Ti, Tj)

ED(Ti, Tj)
, (6.4)
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when compared to DTW and ED, DTW-D measurements improve
classification results in several contexts.
Finally, Mean Distance from the Diagonal Line (MDDL) (Rios

and de Mello, 2013) is another method to measure time-series sim-
ilarities, defined as

MDDL(Ti, Tj) =

ni−1∑
t=0

(pi,j(t)− di,j(t))2, (6.5)

where di,j(t) indicates the diagonal line (perfect match) in the
space found by DTW, as illustrated in Figure 5.3(b). MDDL is
adequate to compare time-series trends and disregard mean-valued
time series, similarly to DTW-D.

6.4 semi-supervised time-series classification us-
ing crqa

Let two phase spaces Φi and Φj be properly reconstructed after
applying Takens’ embedding theorem on time series Ti and Tj ,
respectively, as discussed in Chapter 5. A Cross Recurrence Plot
(CRP) between these two phase spaces yields the matrix R having
as entries the values

Ra,b =


1, if φi(a) is a neighbor of φj(b) according to an open ball

centered at φi(a) with radius ε,
0, otherwise,

(6.6)

which indicates when (and where in the attractor) states φi(a) ∈
Φi and φj(b) ∈ Φj are close enough to each other. The CRP ma-
trix R can also be used to measure for how long two phase spaces
remain similar to each other. For instance, horizontal or vertical
traces suggest trajectories on the given state are bound by an at-
tractor in one space, while changing “normally” in the other. Sim-
ilarly, sparse and small areas in R can indicate phase spaces do
not share trajectories. However, such interpretations are delicate
and require specialized domain knowledge. To avoid such complica-
tions, the Cross Recurrence Quantification Analysis (CRQA) was
designed to extract a set of predefined measurements based on the
CRP, which can be automatically used to reveal important features
such as patterns and statistical distributions between phase spaces.
Lastly, it is worth to say that, when computing the CRP, the num-
ber of states Ni and Nj may vary, but the dimension m must be
the same for both embeddings being compared.
Based on Serrà et al. (2009), we consider the Maximal Diagonal

Line (MDL) to indicate for how long the trajectories of two differ-
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ent phase spaces remain similar (close) to each other. In order to
compute MDL, we start by filling the first column and row of R
with zeros (R[∗,0] = R[0,∗] = 0) and define

Ra,b = Θ(εia−‖φi(a)−φj(b)‖2) Θ(εjb−‖φj(b)−φi(a)‖2), (6.7)

for a = 1, . . . , Ni − 1, b = 1, . . . , Nj = 1, where εia and εjb are open
ball radii for φi(a) and φj(b), respectively, and Θ(·) is a Heaviside
step function given by

Θ(v) =

{
0, if v < 0,

1, if v ≥ 0.
(6.8)

The radius εia is found by firstly computing the Euclidean distances
from state φi(a) ∈ φi to every other state φj ∈ φy. Then, we sort
all those distances out in increasing order and set εai = ε, having ε
as big enough to include the kth-nearest neighbor from φi(a). In
practice, we set k to 1% of the number of states in phase space.
This way, we ensure that every state in φi will always have the
same number of neighbors in the other phase space φj during the
similarity analysis. The finding of the radius εbj proceeds analo-
gously.
The orbits of similar phase spaces may suffer from noise or small

fluctuations. Thus, a perfect diagonal line may not occur in most
scenarios. To model this, we can relax the concept of similarity by
also allowing some “bumps” while computing the maximum diag-
onal in Equation 6.8. Thus, our next step consists of running a
Dynamic Programming algorithm to fill the matrix Q which ac-
cumulates and penalizes recurrence similarities stored in R. The
matrix Q is defined by its entries

Qa,b =



max{Qa−1,b−1, Qa−2,b−1, Qa−1,b−2}+ 1, ifRa,b = 1,

max{0,
Qa−1,b−1 − γ(Ra−1,b−1),

Qa−2,b−1 − γ(Ra−2,b−1),

Qa−1,b−2 − γ(Ra−1,b−2)}, otherwise.
(6.9)

We then use the Maximal Diagonal Line, defined as max(Q) to
compare two phase spaces. To compute Q, we initially set its two
first columns and rows to zero, and use the auxiliary function

γ(z) =

{
γo if z = 1,

γe if z = 0,
(6.10)
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with γo = 5, γe = 0.5 as disruption penalties1. As we are interested
in providing a dissimilarity measure, we consider the inverse of
MDL as 1/max(Q). Note that max(Q) is never zero.
We claim that measuring similarity in phase space (rather than

in the time domain) leads to better classification results in the
context of semi-supervised PU learning. In order to support our
claim, consider the three time series in Figure 6.1. In this situa-
tion, although the first two time series were produced by the same
generating rule (sinusoidal function), local differences enhanced
by different parametrizations lead time-domain similarities such
as ED, DTW, DTW-D and MDDL to wrongly classify unlabeled
instances.
Consider now performing comparisons in phase space rather than

in the time domain. If we know or discover that the positive class
contains sinusoidal-based time series, we could reconstruct the pos-
itive phase space using Takens’ embedding theorem and analyze
the similarity of this space against the other unfolded phase spaces
(from the unlabeled dataset) using the same embedding parame-
ters. More precisely, we use MDL from CRQA of two spaces, here
referred to as MDL-CRQA. Figure 6.2 shows the phase spaces for
the series in Figure 6.1 after reconstructing them using m = 2 and
τ = 1.
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Figure 6.2: Phase spaces obtained for the time series illustrated in Fig-
ure 6.1. Dark circles, blue triangles and red crosses represent
phase-space states of the first, second and third time series,
respectively. Adapted from (Pagliosa and de Mello, 2018).

Table 3 lists the dissimilarities of the above time series when us-
ing time-domain dissimilarity methods (ED, DTW, DTW-D, and
MDDL) as well as the phase-space-based MDL-CRQA. The results
confirm that MDL-CRQA supports a better classification than lo-
cal time-based measurements for this example.

1 Disruption penalties are heuristic weights used by Serrà et al. (2009) to improve
the measurement of the longest diagonal line such as in Edit distance (Ristad
et al., 1998).
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Table 3: Comparing time series by using different similarity measures.
We show the minimum, mean and maximum dissimilarities for
each series (after adding random noise to it) vs the target se-
ries over 30 experiments. We show, in bold, the most similar
“unknown” series that would be classified as the next positive
instance.

Measure Series Minimum Mean Maximum

ED Sine 1 / Sine 2 0.037 0.037 0.037
Sine 1 / U 0.034 0.033 0.035

DTW Sine 1 / Sine 2 0.266 0.262 0.269
Sine 1 / U 0.234 0.227 0.241

DTW-D Sine 1 / Sine 2 14.248 14.036 14.391
Sine 1 / U 13.712 13.199 14.331

MDDL Sine 1 / Sine 2 64.301 35.508 83.686
Sine 1 / U 22.396 10.137 53.695

MDL-CRQA Sine 1 / Sine 2 0.026 0.020 0.032
Sine 1 / U 0.158 0.111 0.200

The idea of above experiment is not to induce that time-domain
dissimilarities perform incorrectly in all scenarios and should be
discarded. Conversely, we just want to show that it might not be
difficult to find examples for which all these dissimilarities would
lead to wrong classification results. Additionally, we reinforce why
phase-space measurements should be included in time-series anal-
ysis.

In summary, our semi-supervised classification method requires
three initial settings: i) one initial positive example; ii) the embed-
ding dimension m; and iii) the time delay τ (both m and τ are
used to represent the phase space for the positive class). Given
those, we compute the embedding parameters for the single start-
ing positive example to unfold the phase space of the positive class
according to Takens’ embedding theorem. Next, we unfold any new
instance phase space using the same embedding parameters, and
compare it with the positive example using MDL-CRQA as simi-
larity function. As proposed by Wei and Keogh (2006), we use the
1-NN algorithm for classification, i.e., to specify the unlabeled in-
stance with the greatest probability to belong to the positive class.
As already mentioned, other classification algorithms can also be
easily used.
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6.5 experiments

In order to get additional insights on the behavior and performance
of our proposed phase-space dissimilarity, we performed three sets
of experiments: i) the first with synthetic time series to validate our
method; ii) the second with real-world time series; and iii) and a
third, also involving real-world data, that simulates a more difficult
scenario when non-positive time series have similar features both
in time and phase domains with the positive set.
Each experiment considers three dynamical systems. When such

systems are represented by generating rules R(·) in the form of
unidimensional signals/functions, such as the sinusoidal function
(Equation 6.1), we basically take n observations from R(·); when
dealing with multidimensional fluxes/maps, such as the Lorenz sys-
tem, we take n observations from the first dimension (any other
dimension could have been used equally well) to represent trajec-
tories in the phase space (Kantz and Schreiber, 2004). For all ex-
periments, we use n = 105 samples.
One of the functions in Chapter 3 is chosen to represent the

phenomenon under the positive class. A few other functions are
defined to compose the unlabeled dataset U . To create the training
and test datasets, we divide the positive and unlabeled series into
32 and 50 sub-series, respectively, with 200 observations each.

To test the classification performance in the presence of noisy
data, we generated time series using N (0, 12), i.e., a normal prob-
ability distribution with mean 0 and standard deviation 1, added
to 2/3 of all positive instances. In addition, we also included in
the unlabeled set time series representing the mean-valued series
from the positive series, as well series deriving from Normal distri-
butions N (0, 0.052) and N (0, 0.12). Summarizing, our experiments
use 32 positive instances and 232 unlabeled series (200 plus 32
mean-valued series from the positive set), as illustrated in Fig-
ure 6.3.
We used 50% of positive and 90% of unlabeled instances for train-

ing, leaving the remaining time series for testing. Only a single pos-
itive example was used to initiate the self-learning algorithm; the
remaining positive instances were added to the unlabeled dataset.
As the stopping criterion is an open problem in the PU literature,
we decided to employ the method proposed in (Chen et al., 2013)
to train our classifier until all positive instances (belonging to the
unlabeled dataset) were labeled. We then used the labeled training
series to classify the test observations using the 1-NN algorithm. As
the classifier can be influenced by the choice of the selected positive
instance, we ran it using different values for s multiple times. As
final results, the mean precision, recall and F1-score performances
over all experiments are reported.
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Figure 6.3: The set of unlabeled instances U is composed of: i) posi-
tive instances P but one randomly selected series s; ii) se-
ries from other systems; iii) two random series represent-
ing noise and iv) constant mean-valued series from P \ {s}.
The self-learning algorithm continues until all positive in-
stances are correctly classified, i.e., when P ⊆ P ′. Adapted
from (Pagliosa and de Mello, 2018).

6.5.1 Case Study 1: Synthetic Data

We start our experiments by analyzing synthetic time series in
order to validate our method. For such time series, their generat-
ing rules R(·) are well known. Hence, the embedding parameters
to reconstruct their phase spaces are also known. In this context,
we chose the Logistic map (Equation 3.2), the Hénon map (Equa-
tion 3.3), and the Lorenz system (Equation 2.6) to compose the
synthetic experiments.
Among all possibilities, we defined the Lorenz system to com-

pose the positive class, randomly choosing one series from it and
leaving all remaining series to form the unlabeled set. We used the
well-known embedding dimension m = 3 and time delay τ = 8
for reconstructing the phase space associated with the Lorenz sys-
tem. Classification performances are shown in Table 4. As one
can notice, time-domain measurements are more sensitive to local
disturbances, such as, but not limited to, noisy observations and
mean-valued series. Therefore, by comparing time-series trajecto-
ries and recurrences along a wider period of time, MDL-CRQA
becomes a global measurement that suffers less from those fluctu-
ations, achieving better classification results.

6.5.2 Case Study 2: Real-World Data

In this experiment, we consider the real-world Sunspot dataset (An-
drews and Herzberg, 1985) to belong to the positive set. As this se-
ries follows sinusoidal-like trajectories (but with significant noise),
we chose the embedding pair (m = 2, τ = 8) to define the positive
class phase space. The unlabeled set was formed by series deriv-
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Table 4: MDL-CRQA supports better classification results for the Case
Study 1: our method correctly classified 100% of the positive
instances.

Dissimilarity Precision Recall F1-score
ED 0.410 1.000 0.581

DTW 0.410 1.000 0.581
DTW-D 0.842 1.000 0.914
MDDL 0.444 1.000 0.615

MDL-CRQA 1.000 1.000 1.000

ing from the Rössler system and the Ikeda map (as well as the
mean-valued and noise series for the positive class).
The performance results are listed in Table 5. Similarly to the

first experiment, MDL-CRQA yielded the best classification perfor-
mance, achieving almost 20% more precision than DTW-D. The
best explanation for such results is again the presence of noise,
which usually misleads classification when time-domain dissimilar-
ities such as ED and DTW are used.

Table 5: MDL-CRQA supports better classification results for the Case
Study 2.

ED 0.410 1.000 0.581
DTW 0.410 0.992 0.581

DTW-D 0.787 0.898 0.820
MDDL 0.432 1.000 0.603

MDL-CRQA 0.962 1.000 0.979

6.5.3 Case Study 3: Recurrent Time Series

In the last experiment, we analyze how our method behaves when
non-positive time series have similar (up to a certain limit) recur-
rences of the positive instances. In other words, we simulate the
case where some unlabeled time series have similar phase spaces
to the positive instance, but should not be taken as positive due
to small variations. This case is more challenging than the first
two described so far, where the distinction between the classes is
sharper.
In order to construct this scenario, we used the same series from

previous experiment, i.e., the Sunspot dataset as the positive class,
and series deriving from the Rössler system and the Ikeda map de-
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fined the unlabeled set, respectively (as well as the mean-valued
and noise series). We also included a sinusoidal function with pa-
rameters A(t) = 1, θ = 0 and U(0, 0) and noise N (0, 0.052) added
to it. This last addition creates a non-positive phase space (the sine
phase space) whose dynamics partially mimics the Sunspot phe-
nomenon, as illustrated in Figure 3.5. Nevertheless, as observed in
this figure and in Figure 3.1, the Sunspot and the sine time series
model different phenomena. Consequently, sine instances should
not be classified as positive.
Although similarities between phase spaces may lead MDL-

CRQA to wrongly classify some positive instances, this measure-
ment still provides the best classification results, as shown in Ta-
ble 6. Therefore, we empirically conclude that our method is robust
enough to classify PU time series even when non-positive time se-
ries share some common patterns and recurrences with the positive
examples.

Table 6: Case Study 3: Although positive and unlabeled series (espe-
cially the ones generated from the sine function) present sim-
ilar trends and recurrences, MDL-CRQA still supports better
classification when compared to time-domain measurements.

Dissimilarity Precision Recall F1-score
ED 0.410 1.000 0.581

DTW 0.381 0.875 0.530
DTW-D 0.628 1.000 0.760
MDDL 0.444 1.000 0.615

MDL-CRQA 0.849 1.000 0.917

Even for unlabeled series with sinusoidal behavior, MDL-CRQA
was capable of separating those series from the Sunspot ones. This
happened since the Sunspost series are not a perfect sinusoidal
function and, in addition, it contains noise. If our classifier had
not achieved good results, we could also consider to overembed the
positive class to obtain a more representative phase space (Kantz
and Schreiber, 2004), i.e., increase the embedding dimension m in
order to unfold more complex data (such as data containing noise).
By adding extra dimensions to the phase space (up to a certain

limit), one can analyze the details of more complex dynamical sys-
tem trajectories (Alligood et al., 1996) and improve the separation
of Sunspot versus the sine series. Although the Sunspot resembles
sinusoidal, it is not as much sinusoidal as the sine function itself.
Therefore, the trend is that those phase spaces become more dis-
similar to each other as we increase their embedding dimensions.
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6.5.4 Discussion

According to our experiments, we confirmed that MDL-CRQA sup-
ports better classification results for both synthetic and real-world
time series whose data present recurrent observations. In order to
mitigate the influences of the starting positive instance in the self-
learning algorithm, we performed each experiment several times
varying the starting example, and reported the mean performances
achieved at each iteration as the final result. Nonetheless, we no-
ticed the results barely vary when different positive examples were
used.
As reported in Section 6.5.1, our method correctly classified

100% of the positive instances in the first experiment (synthetic
data with added noise). When dealing with the real-world Sunspot
dataset (Section 6.5.2), although making some errors, MDL-CRQA
still achieved the best classification results when compared to time-
domain measurements, even when non-positive time series share
common recurrences with the positive set (Section 6.5.3).
In addition, we also have tested our method with datasets from

the UCR collection (Chen et al., 2015), which contain several time
series commonly used as benchmark. Training and testing files are
already defined for each dataset in this collection. In this context,
we think two relevant aspects are worth to be mentioned. First,
the majority of those datasets were not designed to simulate PU
problems, bringing relevant issues when defining the positive class.
As consequence, the proper embedding parameters to unfold the
positive phase space were also unknown. In order to overcome those
issues, we naively defined all instances under the class label 1 as
positive (we observed this class usually has fewer observations) and
left all remaining classes as being part of the unlabeled dataset;
and, to create the phase space for positive instances, we relied
on current estimation methods (Kennel et al., 1992; Fraser and
Swinney, 1986). As in the previous experiments, we assume all
positive instances were unlabeled except one which was used to
start the self-training process. For these datasets, our results of
precision and recall did not surpass 0.5 on average. However, we
noticed that none of the time-domain measurements achieved good
results, to mention, they did not surpass 0.5 in terms of F1-score on
average. While DTW achieved better classification performances
for some datasets, DTW-D, MDDL, and even ED measurements
provided better results for others.
Although the results for the UCR datasets are far less positive

than the ones for the three types of datasets discussed in the pre-
vious sections, we report them here for two reasons: i) to confirm
one of the main motivations of our study here, namely that time-
domain measurements can lead to inconsistent results; ii) to high-
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light the importance of having a proper phase-space embedding
(we cannot get good dissimilarities if this embedding is not found).

Limitations of our method include a higher computational ef-
fort when compared to time-domain methods2, since MDL-RQA
needs to compare phase states (O(Ni)

2 steps) while time-domain
measurements perform computations only using the time series it-
self (O(n) and O(n2) steps for ED and DTW). Thus, despite the
computation of the Maximal Diagonal Line (MDL) demands ex-
tra processing time specifically when studying high dimensional
phase spaces, we believe this is not prohibitive in several practical
scenarios due the increase in the use of cluster computing, opti-
mization packages and parallel programming. As future work, one
could use more than one simultaneous measurement to enhance
classification results. As we stated, the unlabeled instances may
contain any time series outside the positive class. Therefore, even
MDL-CRQA may wrongly classify certain datasets. In this situa-
tion, one could use a co-training technique to learn from the time
domain using ED, DTW, DTW-D or MDDL and from the phase
domain using MDL-CRQA. Finally, the setting the stopping crite-
rion is a fundamental, but open, question in PU problems, which
still requires further research.

6.6 final considerations

The PU scenario is a well-known problem in semi-supervised clas-
sification (Wei and Keogh, 2006; Ratanamahatana and Wanichsan,
2008; Chen et al., 2013). Despite relevant contributions, current
methods tackling PU problems using measurements such as ED,
DTW and DTW-D do not compare temporal recurrences. This
feature may be of great importance when comparing time series, es-
pecially when observations repeat themselves as is the case of many
real-world scenarios, some of them studied along the manuscript
such as population growth, meteorological data and sunspot activ-
ity.
In this chapter, we investigated the comparison of time series

by using a dissimilarity measure, called MDL-CRQA, defined on
their phase spaces, computed by using suitable embedding parame-
ters. Our proposal, measured over two attractors in the same phase
space (where all possible scenarios are unfolded, and therefore re-
currences are easily modeled) is a feasible approach to measure
the amount of recurrence one time series has with another. This
approach attempts to mitigate local problems caused by mislead-

2 For example, the Case Studies took around 30 minutes while running on a
40-core Xeon processor at 2.8Ghz.
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ing noise, chaotic events and eventually different observations pro-
duced along the collection of the phenomenon of interest.
In order to apply our method, we require two parameters from

the user: the embedding dimension m and time delay τ for recon-
structing the series under the positive class according to Takens’
embedding theorem (Takens, 1981). These parameters can be ei-
ther known (for a given problem domain) or else estimated using
the methods discussed in Chapter 5.
Experimental results confirm MDL-CRQA improves classifica-

tion results for PU time series when compared against the mostly
used time-domain similarity measurements. This answers our re-
search question 2 (RQ2) positively: yes, phase-space meth-
ods do lead to better models of time series, when properly
unfolded. However, the answer needs to be nuanced: we have only
shown that phase-space methods are superior to time-domain mod-
eling for a subclass of problems, namely PU scenarios; and even
for those, there exist datasets for which both phase-space models
and time-domain models perform poorly. Lastly, refining our ini-
tial phase-space model, e.g., by using different distance measures
or better classifiers, is an open and interesting direction for future
work.
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7ON THEORETICAL GUARANTEES TO ENSURE
CONCEPT DRIFT DETECTION ON DATA
STREAMS

7.1 initial considerations

Chapter 6 showed that phase-space modeling is an effective tool, as
opposed to time-domain modeling, for applications such as semi-
supervised learning. However, the datasets and use-cases consid-
ered in such a chapter used measurements drawn from a single phe-
nomenon. We now focus on how to extend the learning paradigm
for time-dependent data derived from multiple phenomena, a prob-
lem mentioned as important also in Chapter 5. More precisely, in
Chapter 5, we relied on the SLT framework (Section 5.2) to per-
form regression in the phase space, assuming that input data was
given by a fixed distribution. However, such a constraint is not
always met when dealing with continuously collected observations
(data streams) in the context of concept-drift detection. As such,
in this chapter, we focus our work to answer the next question:

RQ3. “How to ensure learning in concept-drift scenarios?”

Formally, data streams are open-ended sequences of uni or mul-
tidimensional observations rather than batch-driven datasets (Dua
and Karra Taniskidou, 2019)1. These observations are generated
by processes modeled as stochastic and/or deterministic dynam-
ical systems (Section 2.3) which simulate several phenomena at
different timestamps such as temperatures at a given world region,
flood sensing, or motor and cognitive development (Agarwal, 1995;
Metzger, 1997; Rios et al., 2015). Those processes, or their pa-
rameters, may change along time due to some other phenomenon
interacting and/or acting on them, e.g., the effect of a medicine
on blood pressure (Andrievskii and Fradkov, 2003). Such data be-
havior changes are referred to as Concept Drift (CD), pointing
out decisive instants that some system or phenomenon should be
studied in order to comprehend anomalous behaviors.
Concept-drift algorithms compare features from current to next

observations to detect relevant changes (Gama et al., 2014). Such

1 In this chapter, we consider unidimensional streams only; however our work can
be extended to multiple dimensions, without loss of generality, following (Serrà
et al., 2009).
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features are usually modeled by classification performance (Gama
et al., 2004b; Baena-García et al., 2006; Bifet et al., 2009) or sta-
tistical measurements (Gama et al., 2014; Page, 1954; Bifet et al.,
2009). Although classification methods generally lead to more ro-
bust comparisons, they require class labels to perform supervised
learning, which may not always be available. Conversely, statistical
methods have the advantage of requiring no label, but they can-
not distinguish more complex processes from each other, especially
when dealing with non-stationary or chaotic phenomena (da Costa
et al., 2017).
More importantly, neither classification nor statistical methods

provide learning guarantees to support CD detection, even when
results use performance measures such as accuracy, Mean Time
Between False Alarms, and Mean Time for Detection (da Costa
et al., 2016). Such measures cannot be trustworthy when the algo-
rithm poorly generalizes (under or overfits). In other words, either
the CD algorithm may randomly issue drifts and still provide ade-
quate performance according to the considered metrics, or it may
overfit in order to provide the best possible result.
Instead of considering specific measurements on particular sce-

narios, in this chapter we propose a general and formal approach
to perform CD detection relying on Statistical Learning Theory
(SLT) (Vapnik, 1998). As consequence, our strategy provides the
necessary probabilistic foundation to ensure reported drifts are not
by chance.
We start by introducting the notations and terminology related

to Concept Drift (Section 7.2). Next, we adapt and map SLT re-
quirements (already introduced in Section 5.2) to the context of
CD algorithms (Section 7.3). This provides us a theoretical frame-
work for comparing actual CD algorithms. We next use this frame-
work to analyze and compare several state-of-the-art algorithms
(Section 7.4). This analysis shows us, interestingly, that no CD al-
gorithm, from the set of analyzed ones, complies perfectly with
SLT. Finally, Section 7.5 concludes this chapter.

7.2 concept-drift detection

Let a data stream D be defined as the sequence of observations

D = {x(0), x(1), x(2), · · · , x(∞)}, x(k) ∈ R, (7.1)

describing the behavior of some phenomenon along time. Differ-
ently from a time series (Equation 2.1), a data stream defines a
continuous flow of incoming data, whose observations are derived
from (potentially) multiple Joint Probability Distributions (JPDs).
Thus, a time series Ti can be seen as the jth window Wj of D,
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such that
⋃t→∞
j=0 Wj = D and Wt represents the current window

(see Figure 7.1). In this context, despite the fact that Ti = Wj ,
differentiating time series from data streams is necessary: whereas
the time-series subindex defines the phenomenon of interest (or,
from another perspective, the variable/dimension from the phe-
nomenon), the window subindex shows the “location” of Ti in D.
Additionally, although the configuration of windows may vary from
application to application, it is common to assume a fixed length n
for every window without the overlapping of observations, so that

Wj = {x(jn), x(jn+ 1), · · · , x(jn+ n− 1)}. (7.2)
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Figure 7.1: A data stream divided in 10 windows (red boxes) with no
overlapping, each containing n = 250 observations. In this
example, the data stream contains (up to the current mo-
ment) four different phenomena, namely: T1 = {W0,W1},
T2 = {W2,W3}, T3 = {W4,W5,W8,W9}, T4 = {W6,W7}.

If s denotes the initial window Ws (initially set to zero) describ-
ing some phenomenon, a CD algorithm induces the indicator func-
tion

gt−1 : φ(f[s,t))→ [0, 1], (7.3)

which basically classifies whether the incoming window Wt con-
tinues to represent the same phenomenon or not. For brevity, the
index of g is next omitted unless necessary to track its current time
(as in Section 7.4).

Next, let the function φ model the extraction of a vector of fea-
tures vj = φ(fj) from the model

fj : Xj → Yj , ∀j ∈ [s, t], (7.4)

where Xj and Yj are the input and class spaces of window
Wj , respectively, derived either after applying dynamical-system
reconstructions (Section 5.3) or by using statistical measure-
ments (Gama et al., 2014; Page, 1954; Bifet et al., 2009). Such
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features can be simply the result of fj itself so that φ is the iden-
tity function (e.g., if the model is based on the average, variance,
or entropy of a window) or the result of more complex filters and
feature extractors (e.g., when fj is represented by a Neural Net-
work (Haykin, 2009), features can be given by unit weights or values
of activation functions).
Formally, we define vt as the features obtained for the current

window Wt, and v[s,t) as the set of vectors including the same
features but from past windows W[s,t). In this context, a CD al-
gorithm, here responsible for inducing the function g, reports a
drift whenever vt significantly differs from v[s,t) by more than an
acceptable threshold λ. If the divergence between features is how-
ever small, g understands that vt and v[s,t) are from the same
phenomenon. Thus, the model g (Equation 7.3) is updated such
that v[s,t] = v[s,t) ∪ vt. Lastly, t is incremented to represent a new
window.

From the above, we see that drift detection depends on the diver-
gence computed on consecutive windows. Note, however, that v[s,t)
is much greater than vt. Thus, g must either perform aggregations
or apply kernel functions to be make sure v[s,t) has the same num-
ber of features than vt in order to proceed with a fair comparison.
In this context, the former strategy is commonly employed in the
form

g(vt) =


1, if ‖vt −

(
µv[s,t) + ησv[s,t)

)
‖2 > λ or

‖vt −
(
µv[s,t) − ησv[s,t)

)
‖2 > λ,

0, in case of no drift,

(7.5)

where µv[s,t) = 1/w
∑t−1
j=s vj and σv[s,t) =

√∑t−1
j=s

(vj−µv[s,t)
)2

w−1 are
the average and standard deviation of past features, respectively;
w = t−s−1 is the current number of windows describing the same
phenomenon; η ∈ R+ controls the sensitiveness of detection; and
‖·‖2 is the Euclidean norm.
The greater the value of η is in Equation 7.5, the smaller is the

number of reported drifts. Conversely, the lower the η, the easier
it is for the algorithm to detect false drifts. Figure 7.2 exemplifies
this trade-off for different values of η. In this example, the data
stream D contains (until the current time t = 3000) three sinusoidal
waves. Hence, two drifts should be reported: the first at x(1000)
owing the slightly changing in the wave frequency and amplitude;
and the second at x(2000), after a more drastic changing in these
parameters. As it can be seen, different outcomes might be derived
according to the sensitiveness of g to small/large variations.
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Figure 7.2: Alarms are depicted by red vertical lines. (a) The value of η
is too large, such that drifts derived from small changes are
not captured. (b) A better choice of η has led to the optimal
model g. (c) As η is decreased, the CD algorithm becomes
too sensitive, resulting in alerts of false drifts.

7.3 ensuring learning in concept-drift scenar-
ios

Our goal is to elaborate the necessary conditions a CD algorithm
should satisfy to ensure drift detections are the direct result of
actual changes in the phenomenon under analysis. It is worth to
make clear that we do not intend to propose any new CD algo-
rithm. Rather, we want to understand under which conditions an
existing CD algorithm works as intended, and analyze existing algo-
rithms in the light of these conditions. This allows us to determine
when a CD algorithm performs correctly, in which case we can next
safely use existing performance measures to validate the quality of
reported drifts.
To set up a theoretical framework for understanding how to

ensure learning for CD algorithms, we use, again, the Statistical
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Learning Theory (SLT) (Vapnik, 1998). Recalling from Section 5.2,
the assumptions of SLT are:

A1. examples must be independent from each other and sampled
in an identical manner;

A2. no assumption is made about the Joint Probability Distri-
bution (JPD), otherwise one could simply estimate its pa-
rameters;

A3. labels can assume non-deterministic values due to noise and
class overlapping;

A4. the JPD is fixed, i.e., it cannot change along time; and, fi-
nally,

A5. data distribution is still unknown at the time of training,
thus it must be estimated using data examples.

Finally, it is worth to mention that the algorithm bias F must
follow the Bias-Variance Dilemma (BVD) (Geman et al., 1992;
Luxburg and Schölkopf, 2011; de Mello and Moacir, 2018). Thus,
a balanced complexity of the function class is recommended to
achieve the best-as-possible risk minimization (Geman et al., 1992).
Assumptions A2, A3 and A5 are straightforwardly fulfilled in most
real-world scenarios. However, assumptions A1 and A4 are more
difficult to ensure, especially in the CD scenario, in which observa-
tions are time dependent, and different phenomena (with distinct
JPDs) are expected to happen.

7.3.1 Adapting The SLT To CD Scenarios

Our proposal starts by adapting the general concepts of SLT, de-
scribed in Section 5.2, to ensure learning bounds in the context of
CD detection. We remind that the class set Yj , typically assumed
when inferring fj : Xj → Yj on each window Wi, is mostly often
not available. This is due to the difficulty for a human specialist to
continuously label observations collected over time, especially for
high-frequency streams.
From the above, we conclude that class labels must be some-

how extracted on the fly from the data stream itself. Two possible
strategies can been used for this: (i) if fj is the result of a regres-
sion performed on the phase space Φi of window Wj , then each
input xk ∈ Xj is a tuple composed of the first (m− 1) components
of Φi(k), while the respective class label yk ∈ Yj is the last com-
ponent of such state, as already shown in Table 1; and (ii) when
the class information is merely the result of a measurable function
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m(xk), such as the average, variance, kurtosis, or similar, then ob-
servations themselves are the input data, such that Wj = Xj , and
the output is simply given as m(xk) = yk ∈ Yi (Bifet et al., 2009).
In the next step, function φ extracts the vector of features vj

from the inferred model fj , such that vj = φ(fj). Then, the in-
dicator function g is responsible for mapping every feature vector
into a binary space, indicating whether a drift has happened given
the current data window or not (Equation 7.3). If no drift is de-
tected, then g is expected to be updated based on the new features,
thereby ensuring model adaptation. Thus, the set of features con-
tinuously approximates the true set of features corresponding to
the analyzed phenomenon as time passes, allowing us to elaborate
the following connection to the ERMP (Equation 5.3)

P (‖v[s,+∞] − v[s,t)‖2 ≥ ε)→ 0, n→∞. (7.6)

In other words, if we assume the difference between the true and
empirical risks |R(f) − Remp(f)| decreases as the sample size in-
creases, then it is fair to expect that, simultaneously, the features
extracted along time also converge to the true features over the
entire data population. Ideally, we should use a window length
large enough to contain all observations from the analyzed phe-
nomenon (de Mello et al., 2019). However, this becomes a great
challenge as: (i) we do not have access to all observations from a
phenomenon (we cannot, among others, see what the future will
deliver), and (ii) several drifts are expected to happen in early
windows. Thus, we decided to adapt the Symmetrization lemma
(Equation 5.14), rewritten next for clarity as

P (sup
f∈F
|R(f)−Remp(f)| > ε) ≤

2P (sup
f∈F
|Remp(f)−R′emp(f)| > ε/2) ≤ δ

(7.7)

to represent learning in terms of windows features in the form

P

(
sup
fj∈F
‖v[s,+∞] − v[s,t)‖2 ≥ ε

)
≤ 2P

(
sup
fj∈F
‖vt − v[s,t)‖2 ≥

ε

2

)
≤ δ.

(7.8)

As v[s,t) represents an aggregation of all measurements for past
windows, the sample sizes of vt and v[s,t) are the same. Therefore, if
the difference ‖vt−v[s,t)‖ is held low as new windows are processed,
we have probabilistic support that g is actually learning from data.

7.3.2 Satisfying SLT Assumptions

In order to use on Equation 7.8, however, we must satisfy SLT
assumptions A1 and A4 listed in Section 5.2. Moreover, for practi-
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cal reasons, we also need to ensure such equation is consistent by
choosing a CD algorithm whose complexity is moderate, according
to the Bias-Variance Dilemma (BVD) (Vapnik, 1998).
Firstly, we draw attention to the fact that drifts will happen

only between windows, not among observations. According to our
approach, the algorithm responsible for inferring fj , using window
Wj , is expected to deal with A1, while model g faces the chal-
lenge A4. Moreover, models fj should employ some strategy to
map observations into a different space, ensuring data becomes
i.i.d. For instance, the Fourier transform (Bracewell, 1978) could
map windows into the frequency space, or the Takens’ embedding
theorem (Takens, 1981) could reconstruct observations into phase
spaces (Chapter 5). Following the research path of this thesis, we
believe that the latter is better as it allows a more diversified anal-
ysis (Section 2.6). Complementarily, model g assumes that each
data window may come from distinct but fixed/unique probabil-
ity distributions, so when this indicator function reports a drift,
any previous model should be discarded, allowing a fresh start to
analyze a next coming distribution while still ensuring learning
guarantees.
Regarding under/overfitting, one should choose functions fj and

g whose bias complexity is considered moderate according to the
BVD (Luxburg and Schölkopf, 2011). When fj is based on statisti-
cal measures, usually the search space consists of a single function,
making fj more prone to underfitting. Furthermore, such a model
is only effective to test particular hypotheses, e.g., when data is
statistically stationary (which we claim it is unlikely to happen
when dealing with real, nonlinear, and/or chaotic datasets (Kantz
and Schreiber, 2004)). Alternatively, when fj is inferred based on
Dynamical System approaches, the model usually relies on the dis-
tances among phase states and their neighbors inside the open-ball
radius ε (Equation 2.7). In this context, small values of ε typically
overfit as fj basically memorizes each state. Conversely, excessively
large radii make the model to learn from the attractor average, lead-
ing to underfitting (de Mello and Moacir, 2018). Thus, a balanced-
complexity model should be based on a fair and adaptive percent-
age of distances among states, e.g., ε can be defined in terms of
the k-nearest neighbors or as some quantile over the maximum dis-
tance of states (see Section 5.3). Regarding the indicator function
g, the comparison between windows should follow some strategy as
the one defined in Equation 7.5, otherwise simpler functions would
lead to underfitting and more complex indicators to overfitting.
In summary, the requirements to use SLT in CD scenarios are:

R1. the indicator function g should be updated based on past
data, so that the underlying phenomenon is better repre-
sented;
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R2. the model fj must receive i.i.d. data, something to be en-
sured by a pre-processing step (e.g., Fourier transform or
phase-space reconstruction);

R3. the function g should compare features from the same JPD.
When a different phenomenon is detected, a reset of g is
necessary;

R4. the algorithm bias from both g and fj should moderate,
following the BVD.

7.4 analyzing state of art in cd algorithms

As discussed in Section 7.2, a CD algorithm has two components:
the first extracts features from data windows, using function fj ;
and the second compares those features using some indicator func-
tion g. Following this structure, we present state-of-the-art CD
algorithms and highlight how they approach requirements R1–
R4. In this discussion, we do not cover CD classification meth-
ods (Klinkenberg and Joachims, 2000; Mena-Torres and Aguilar-
Ruiz, 2014; Loo and Marsono, 2015; Jedrzejowicz and Jedrzejow-
icz, 2015; Krawczyk and Woźniak, 2015; Angel et al., 2016), given
they rely on explicit labeling information provided by external spe-
cialists. Also, we do not cover algorithms that only address the
optimization of processing costs (Hulten et al., 2001; Gama et al.,
2004b), as they take a far different and more empirical perspective
on CD detection comparesd to our more formal approach.
Several algorithms have been proposed to identify data sampled

from changing phenomena (Gama et al., 2014). We discuss next
several well-known algorithms in this collection.

Cumulative Sum: The Cumulative Sum (CUSUM) (Page, 1954)
algorithm reports a drift whenever an incoming observation is sig-
nificantly different from the sum of past data. Thus, knowing that
gs is initially set to zero, a drift occurs when

gt = max(0, gt−1 + x(t)) ≥ λ, (7.9)

in which λ is an acceptable threshold and x(t) consists of a
single observation, so that Wj = x(j) (window length n = 1).
In this scenario, fj : x(j) → x(j) and φ(fj) = x(j) corresponds
to the identity function while gt is a model directly correlated
to the average of such a phenomenon. A drift is reported when
gt results in a value larger than the threshold λ, and gs=t
resets the analysis for a new phenomenon (satisfying R3). If
negative values are considered, min(·) is used instead of max(·)
in Equation 7.9 and drifts are triggered when gt is smaller
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than λ. In summary, CUSUM respects R1 as g is updated as
new data arrives. However, fj infers a model based on the
time-series observations, not satisfying R2. Lastly, R4 is not
satisfied as fj overfits (memorizing the current observation) and g
underfits (too restrictive bias) data since a single cumulative lin-
ear model may not be enough to represent more complex behavior.

Page-Hinkley Test: The Page-Hinkley Test (PHT), also pro-
posed by Page (1954), is a variation of CUSUM (using the same
window configuration) in the sense it assesses data changes in terms
of standard-deviation measurements rather than its averages. Thus,
given the average estimation µt = 1/(t− s)

∑t
j=s x(j), where inter-

val [s, t] representing the evolution of some phenomenon from the
start (s) to the current window (t), PHT reports a drift whenever

gt = |mt −Mt| > λ, (7.10)

where mt =
∑t
k=s(x(k)− µk), Mt = min(m[s,t]) and | · | is the

absolute-value norm. In other words, a drift occurs whenever
the difference between the cumulative standard deviation is λ
units greater than the minimum standard deviation observed up
to the current moment. Similarly to CUSUM, g is updated as
new windows are processed and a reset occurs when a drift is
issued, so that both R1 and R3 are satisfied. However, since mt is
computed over a time-dependent sequence of observations, R2 is
not respected. In addition, despite PHT is slightly more complex
than CUSUM, it is still prone of overfitting (failing R4).

Adaptive Sliding Window: The Adaptive Sliding Window (AD-
WIN) method, proposed by Bifet et al. (2009), also comprises an
extension of CUSUM, but applied to different window configura-
tions. The data stream D is divided into two adaptive windows
W[s,k] = {x(s), · · · , x(k)} and W[k+1,t] = {x(k + 1), · · · , x(t)}. In
this context, ADWIN reports a drift whenever

gk = |µW[s,k]
− µW[s+1,t]

| > λ, ∀ k ∈ [s, t), (7.11)

where µW[a,b]
is the average of W[a,b]. As soon as a drift is issued,

then s = t in order to reset the past model and represent a
new phenomenon (respecting R3). However, the algorithm just
compares averages between consecutive windows, taking no
advantage from past data to update g (thus, R1 is not satisfied).
Further, as fj is inferred directly from data stream observations,
R2 is not respected either. Lastly, despite the search space of g
is larger than the ones considered by CUSUM and PHT (more
windows are taken into account), the usage of an average model
fj : W[a,b] → µW[a,b]

and the fact that g is too simplistic, make the
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whole algorithm still prone to underfit.

Unidimensional Fourier Transform: Vallim and De Mello
(2014) proposed the Unidimensional Fourier Transform (1DFT) to
infer the model fj : Cj → Cj , in which Cj = [cj,1, · · · , cj,(n−1)/2] is
the vector of Fourier coefficients (Bracewell, 1978) on Wj , defined
as

cj,k =
ε

n

n−1∑
c=0

x(jn+ k)e−ik2π
c

n−1 , ε =

{
1, j = 0,

2, j > 0,
(7.12)

where i is the imaginary unit and 0 ≤ j ≤ (n− 1)/2. In this con-
text, φ(fj) is the identify function and g reports a drift when

gt = ‖Ct−1 −Ct‖2 > λ, (7.13)

from which we conclude R1 is not satisfied as g simply compares
two consecutive windows, so that nothing is learned from past
data. R3 is automatically respected since g requires no reset.
Moreover, the method fulfills R2, as Fourier coefficients are
independent from each other. Lastly, this method is less prone
to underfitting as the Fourier coefficients better represent the
data than averages and standard deviations. However, despite
improving R4, this requirement is only partially fulfilled as fj
still memorizes data and g might be ambiguous, since completely
different sets of coefficients may lead to similar Euclidean distances.

Cross Recurrence Concept Drift Detection: da Costa et al.
(2016) proposed the Cross Recurrence Concept-Drift Detection
(CRCDD) algorithm, which compares two phase spaces using the
Cross-Recurrence Analysis (Marwan et al., 2007; Marwan andWeb-
ber, 2015). Initially, the embedding pair (m, τ) for the first win-
dow Ws is estimated using the FNN (Section 4.2.2.1) and AMI
(Section 4.2.1.2). Such a pair is then assumed for all remaining
windows until a drift is reported. Next, the method maps each
window to the phase space to quantify the difference between con-
secutive embeddings using the Maximum Diagonal Length (MDL)
(Section 6.4), i.e., the diagonal with maximum length represented
by consecutive values equal to 1 inR (Equation 6.7). Assuming the
current window Wt is represented by time series Ti, the inferred
model ft : Φi → Φi respects R2, as states are i.i.d. in the phase
space (Chapter 5). Moreover, φ(fj) is the identify function and g
has the form

gt = max(Qt) > λ, (7.14)

whereQt (details in Equation 6.9) is the penalized CRP comparing
the phase spaces from Wt and Wt−1.
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As a result, R1 is not fulfilled as no knowledge is accumulated
from past observations (R3 is automatically satisfied). As the
matrix R is computed using an open ball with radius set to
the average of the maximum distances from all logNi-nearest
neighbors of each phase state, R4 is respected for g, as the
algorithm bias is adapted to the size of the input data. However,
R4 is not satisfied for the memory function fj .

Multidimensional Fourier Transform: Finally, the authors of
CRCDD also proposed the Multidimensional Fourier Transform
(MDFT) (da Costa et al., 2017) to compare the Fourier coefficients
from phase spaces. Their method uniformly partitions each axis of
an m-dimensional phase space into n bins forming a grid, so that
nm cells are created. Then, the Fast Fourier Transform is computed
along each grid dimension, yielding the multidimensional complex
coefficients for each data window. Singular Value Decomposition
(SVD) is then applied on the coefficients of each window to obtain
the eigenvalues, which provides information about data variances
along each space dimension. Eigenvalues from the previous window
{λt−1,1, · · · , λt−1,m} and the ones obtained for the current window
{λt,1, · · · , λt,m} are then compared by

λc =
|λt−1,c − λt,c|

max(λt−1,c, λt,c)
, (7.15)

which measures the relative distortions for each dimension on both
phase spaces. From that, the Von Neumann’s entropy (Han et al.,
2012)

Evn(t) = −
m∑
c=1

λc log λc, (7.16)

is computed and used as criterion to identify drifts along time, so
that

gt = Evn(t) > λ. (7.17)

In summary, the algorithm is based on the model fj : Φi → Cj ,
such that the feature vector φ(fj) = Evn(j) is given to g alert drifts
based on past entropy values (see Equation 7.17). R1 is satisfied as
knowledge is accumulated from past observations. However, R3 is
not fulfilled given that no reset is considered when g detects drifts.
As the input data of fj is ensured to be i.i.d., R2 is fulfilled. Lastly,
R4 is respected as fj has enough information to represent each
window.

More CD algorithms exist in the literature (Gama et al., 2004a;
Baena-García et al., 2006; Wang et al., 2013; Bifet et al., 2010,
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etc.). Detailing and analyzing all of them here is out of our scope.
Rather, our analysis outlined above showed how a relevant set of
well-known CD algorithms can be compared against SLT criteria.
The results of this comparison are summarized in Table 7 in which:
(i) column “Update” shows if the indicator function g is updated
according to past data (R1); column “IID” means some space trans-
formation is performed to ensure fj is inferred from identically and
independently distributed data (R2); column “Fixed JPD” informs
whether the algorithm resets g whenever a drift is detected (R3);
column “BVD(fj , g)” depicts if the spaces of admissible functions
(a.k.a. algorithm bias) of both g and fj are in accordance with the
Bias-Variance Dilemma (R4). The interested researcher can extend
this table by considering additional algorithms.

Table 7: Comparison of CD algorithms vs requirements R1–R4.

Method Update (R1) IID (R2) Fixed JPD (R3) BVD(fj , g) (R4)
CUSUM Yes No Yes (No, No)
PHT Yes No Yes (No, No)

ADWIN No No Yes (No, No)
UDFT No Yes Yes (No, No)
CRCDD No Yes Yes (Yes, No)
MDFT Yes Yes No (Yes, Yes)

As summarized in Table 7, CRCDD and MDFT have the
strongest learning guarantees, meaning that their drifts are most
likely to be the result of actual changes in data behavior rather than
by chance. However, no single algorithm fulfills all criteria. Hence,
formally, we cannot state, for any of the analyzed algorithms, that
they will detect actual drifts in a hard sense of the word.

7.5 final considerations

This chapter proposes a methodology to overcome the complexity
involved in labeling data streams and the lack of theoretical learn-
ing guarantees in Concept-Drift (CD) scenarios, therefore answer-
ing research question 3 (RQ3).More precisely, a CD algorithm
can rely on the SLT framework to ensure learning when it meets
the following requirements:

R1. given that features from fj are extracted using function φ,
then the indicator function g must compare past against
current features and, in case no drift is issued, it should be
updated to improve the representation of the current phe-
nomenon;
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R2. window observations should be reconstructed into another
space in order to ensure data independence and allow i.i.d.
sampling. Among alternatives, we suggest to map them into
phase spaces, using dynamical system tools, to automati-
cally define spaces Xj and Yj . As discussed in Section 2.6,
several features derived from such space enhance the quality
of chaotic series (data streams);

R3. if a drift is confirmed, then the model g should be reset to
start the analysis of a new phenomenon based on fixed JPD;

R4. the biases of both g and fj should respect the BVD to avoid
under/overfitting.

We analyzed several state-of-the-art CD algorithms against these
requirements. Strikingly, none of them fulfilled them all, which
means that all such algorithms are prone to some extent to de-
tect drifts which are not actually existing in the data. Relatively
speaking, the MDFT and CRCDD algorithms provide the strongest
learning guarantees among the analyzed ones. Therefore, they are
most likely to detect actual changes in data behavior rather than
issue drifts by chance.
We expect this analysis to be helpful to other researchers who

intend to design new CD algorithms or evaluate the existent ones.
As future work, we envisage proposing new measures to evaluate
the performance of CD algorithms taking all four requirements into
account. This will arguably increase the quality of such evaluations
and comparisons beyond what is provided by currently used met-
rics such as Mean Time Between False Alarms and Mean Time for
Detection.
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8RADIAL V ISUAL IZAT IONS FOR
HIGH -D IMENS IONAL DATA

8.1 initial considerations

The previous chapters of this thesis have shown that time series
can be represented and analyzed both in the time domain and, al-
ternatively, in phase space. As discussed in detail, the phase-space
domain has several advantages, ranging from the ability to reason
about high-level features such as orbits and attractors, to more
technical points such as the ability to construct accurate classi-
fiers and regressors. However, one main challenge of using phase
spaces is that they are both abstract and high-dimensional. Hence,
practitioners may have significant trouble in understanding data
represented in such spaces. This brings us to formulating our re-
search question:

RQ4. “How to correlate time-series and phase-space at-
tributes?”

In this chapter, we take a different approach to answer our cur-
rent research question, as compared to previous chapters. Rather
than using the machinery provided by automated analysis (such as
classifiers) or reasoning about Dynamical Systems on a theoretical
level, we now turn to the problem of enabling users to actually
see their data at hand. Designing techniques and tools to visualize
high dimensional data is of growing interest to many communi-
ties in data science and Machine Learning. Overall, such tools do
not replace, but complement, automated analyses and theoretical
examination.
High-dimensional data visualization is an active area of re-

search (Van Leeuwen and Jewitt, 2000), with many types of tech-
niques being offered. However, no such technique can successfully
present both data dimensions (especially when these are many)
and highlight similarity patterns between data observations equally
well.

In our quest to push the state of the art in high-dimensional data
visualization, we chose as starting visual metaphor the so-called ra-
dial layout (Bertini et al., 2005), which is well known and accepted
in practice, simple to implement, and addresses the visualization
of both instances and dimensions simultaneously. However, such
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layout is far from optimal, struggling with ambiguity and scal-
ability problems (discussed along this chapter). Then, based on
several requirements to which radial-based visualizations should
comply, we proposed technical and algorithmic improvements to
satisfy them. As consequence, we developed a novel improved visu-
alization solution, from which we validate it on several real-world
high-dimensional datasets, not directly related to time-series anal-
ysis. As consequence, we created a generic visualization metaphor
that can be applied to any dataset consisting of a set of obser-
vations with several dimensions (measurements) per observation.
Nonetheless, we demonstrate that this visualization could be em-
ployed in the context of Dynamical Systems.
The structure of this chapter is as follows. Section 8.2 introduces

high-dimensional data visualization and visual analytics, and out-
lines the place of radial visualization techniques and their require-
ments. Section 8.3 elaborates on the above presenting the state-
of-the-art in radial visualizations, including their strengths and
limitations. Section 8.4 details our visualization, called RadViz++.
Section 8.5 demonstrates RadViz++ on several real-world datasets.
Section 8.6 discusses our proposed technique. Section 8.7 shows
another visualization to explore time-series embeddings. Finally,
Section 8.8 concludes this chapter.

8.2 background on visual analytics

Methods to study multidimensional datasets are a core topic in
Visual Analytics (Van Leeuwen and Jewitt, 2000). Analyses sup-
ported by such methods can be divided into three classes: (i) data-
to-data; (ii) data-to-variable; and (iii) variable-to-variable. The
first type of analysis generally consists of Dimensionality Reduc-
tion (DR) methods that project data into a low-dimensional space
to visually search for clusters and patterns (Nonato and Aupetit,
2018). While aiming to preserve data-to-data relationships, DR
methods by themselves do not explain the variable space or, e.g.,
which variables impact the projection the most – doing this re-
quires additional visual metaphors (Silva et al., 2015; Coimbra
et al., 2016; Pagliosa et al., 2016). On the other hand, methods like
Parallel Coordinate Plots (Inselberg, 2009) and Scatterplot Matri-
ces (Telea, 2014) help to perform data-to-variable analyses, but
problems such as visual clutter (excess and overlapping of compo-
nents) and limited usability tend to occur when tens of variables or
more are analyzed, hindering data-to-data correlation. Lastly, his-
tograms and box-plot-based metaphors (McGill et al., 1978) can
show distributions and similarities of variables, but are also lim-
ited for high-dimensional data as a large visual space is required
to fairly compare several variables.
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Overall, most high-dimensional visualization methods are mainly
designed to tackle one (two, at most) type of analysis. Conversely,
the Radial Visualization (RadViz), originally proposed by Hoffman
et al. (1997), is one of the most popular techniques (Bertini et al.,
2005) that perform all three types (i–iii) simultaneously. In this
metaphor, each variable is mapped as an anchor along the circle
such that data instances (represented as 2D points) are pulled to-
wards them according to their respective variable values. In this
context, while data information can be extracted by analyzing the
formation of clusters and outliers inside the circle (data-to-data),
those patterns can be explained by the proximity of data points to
the anchors (data-to-variable). In addition, variables are correlated
according to their distance or the order they appear in the circle
(variable-to-variable).

Despite benefits, however, RadViz-class methods can also lead
to misconceptions and clutter when different instances are mapped
into the same visual location. These so-called ambiguities (Bertini
et al., 2005; Rubio-Sanchez et al., 2015), the dependency to anchors
positioning, and the limited space in the circle contribute to a
generally lower ability to separate same-data-sample clusters than
e.g., DR methods (Nonato and Aupetit, 2018). In this context,
methods in the literature (Section 8.3.2) proposed to optimize how
anchors are ordered in the circle, but solutions are still restricted
for a relatively small number (few tens) of variables. In summary,
we identify the following possible improvements for RadViz-class
visualizations:

R1. be scalable in both the number of variables and instances;

R2. decrease and/or explain visual ambiguities they create in
data-to-variable analyses;

R3. show unambiguously variable relations to support variable-
to-variable analyses;

R4. separate data clusters well to support data-to-data analyses.

Based on those requirements we propose RadViz++, a novel
RadViz-class technique to support tasks (i-iiii) while better satis-
fying R1-R4. We order variables along the circle following the hier-
archical clustering based on variable correlations, and draw clusters
compactly using an icicle-plot metaphor (Kruskal and Landwehr,
1983). Scalability is addressed by allowing users to interactively ag-
gregate and/or filter out variables while exploring how this changes
data-to-data insights. We add histograms over each icicle-plot cell
to show its respective variable distribution. Besides showing this,
one can select histograms bins to filter data based on ranges of mul-
tiple variables. Conversely, we use a brushing-and-linking metaphor
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to select data points and explain them by their respective variable
bins, thereby decreasing ambiguity issues. We use an edge-bundling
technique (Holten, 2006) to show strongly correlated variable an-
chors, thereby clarifying variable-to variable relations. Finally, we
allow smoothly animating between the RadViz scatterplot and a
classical DR scatterplot to let users link cluster (best shown by the
latter) by variables that explain them (best shown by the former).

8.3 related work

We firstly describe the fundamental concepts and problems of
RadViz-class visualizations. Next, we present how state-of-the-art
methods tackled those issues, and where they can be improved.

8.3.1 Concepts And Background

Following the nomenclature of RadViz Deluxe (Cheng et al., 2017),
consider a multidimensional dataset, represented in matricial form
as

X =


x1,1 x1,2 · · · x1,n

x2,n x2,2
...

...
. . . . . . · · ·

...
xm,1 xm,2 · · · xm,n

 , (8.1)

where m and n are the number of instances (also called sam-
ples or observations) and variables (also called attributes, dimen-
sions, or features), respectively. In this context, a RadViz-class
visualization (Nováková and Štěpánková, 2011) maps the vari-
ables V1, · · · , Vn (class of each column in X) to so-called anchors
v1, · · · , vn on the circle boundary (with radius r) as

vj =

(
r cos

(j − 1)2π

n
, r sin

(j − 1)2π

n

)
, (8.2)

so that instances Di (rows of X) are represented by points Pi
according to

Pi =

n∑
j

xi,j∑n
j xi,j

vj . (8.3)

In this context, Pi is “pulled” towards the anchors vj propor-
tionally to the its positive value xij (Figure 8.1). If we use the
same logic, Pi should be repelled by the same force if negative val-
ues were allowed. Yet, this would be misleading, since repelling a
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point from an anchor vj inevitably pushes it to some other anchor
along the circle boundary, opposite of vj . Separately, normalization
of Equation 8.3 is needed to ensure all points are mapped inside
the circle, which is not guaranteed when negative Vj values are
involved. Therefore, negative values are usually handled by either
normalizing Vj to [0, 1] or taking their absolute values. However,
properly normalizing is hard as the proportionality of variables
over instances can be lost.

Figure 8.1: An instance is pulled towards the anchors proportionally to
its normalized variable values. Adapted from Pagliosa and
Telea (2019).

Nonetheless, visual ambiguities are still a problem even after the
above steps, see instances D1, D2, and D3 in Table 8, for instance.
As we can see, normalizing the variables of those three instances
(to remove negative values) maps D1 and D2 to the same point.
Similarly, D2 and D3 get overlapped if absolute variable values are
used. Thus, the most common form of ambiguity in RadViz-class
methods occurs when points are “pushed” to the circle center (even
when only positive values are used), either because instances have
equal variable values (D4) or when a subset of anchors is placed so
that their forces cancel each other (D5, D6). To alleviate this, sev-
eral methods try to optimize anchor placement and how points are
attracted to them (Section 8.3.2). Yet, inconsistencies will eventu-
ally occur, especially when the number of variables increases. This
is due to the inherent limits of the circular space along which an-
chors are placed. Due to these limits, we need ways to disambiguate
different instances that get mapped at similar locations.
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Table 8: Different inconsistencies that can occur in RadViz. Instances
D1, D2, D3 get mapped to the same point after procedures to
avoid negative numbers. On the other hand, instances D4, D5,
D6 show the typical sensitivity to anchor positioning in RadViz
designs.

Instance V1 V2 V3 V4

D1 0 −20 −60 −60

D2 20 40 80 80

D3 2 4 8 8

D4 0 0 0 0

D5 20 1 20 1

D6 100 5 100 5

8.3.2 Related Methods

As cyclic ordering is an NP-complete problem (Ankerst et al.,
1998), several heuristics were suggested to optimize circular an-
chor placement to decrease ambiguities. For example, to sepa-
rate different instances that get overlapped in a classical RadViz
plot, Nováková and Štěpánková (2009) propose a 3D RadViz de-
sign where instances are drawn into the xy plane via Equations 8.2
and 8.3, while their norms are mapped to the z axis. This addresses
R2, as instances like D5 and D6 (Table 8) can be distinguished
by their heights while viewing the 3D layout from different view-
points. Yet, this does not tackle scalability (R1) nor support deeper
variable-to-variable analysis (R3). Moreover, finding a suitable 3D
viewpoint can be hard, as even with the z map clutter might be
formed in that dimension.
The Mean Shift (MS) method (Zhou et al., 2015) partitions each

variable into several new variables according to its probability dis-
tribution function. The procedure repeats for each variable as fol-
lows. First, the distribution of Vj is discretized into a histogram of
p bins, whose density values are interpreted as 1D points. These
p points are clustered by a Gaussian-based technique that maps
points to the centroid of their neighbors (all points inside the kernel
bandwidth). After all bins converge to a centroid, Vj is partitioned
into new variables according to each centroid interval. Moreover,
Vj is removed from the visualization and the new variables added.
Finally, all variables are placed along the circle to optimize the
Dunn index (Dunn, 1974), exhaustively calculated for all possible
combinations of anchor positions. This method can be seen as an
extension of Vectorized RadViz (VRV) (Sharko et al., 2008), pro-
posed to analyze categorical data. Both MS and VRV aim to de-
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crease ambiguities (R2), higfight interval-basis similarities among
variables (R3), and aim to better cluster the data (R4). Yet, both
methods have an even lower dimension-scalability (R1) than clas-
sical RadViz as they need to accommodate more variables (from
the partitions) in the visual space.
Ono et al. (2015) propose Concentric RadViz (CRV), an interac-

tive tool for multitask classification. Variables are clustered accord-
ing to their tasks into concentric circles following (Di Caro et al.,
2010). Sigmoid normalization is applied to ensure all points remain
inside the circle, even when nested anchors are aligned. Users can
rotate anchors in any direction and at any level to analyze the for-
mation of patterns and correlate instances over multiple tasks. CRV
can also be seen as an extension of Star Coordinates (SC) (Kan-
dogan, 2000), where users can rotate and scale anchor positions at
will, starting from an initial equally-distributed anchor placement
along a single circle. Both CRV and SC handle well datasets with
a few tens of variables. For more variables, the interactive search
for a good anchor placement becomes hard as there is no visual
cue to guide users during this search (limited R1 support). More-
over, both methods eventually lead to clutter even when multiple
circles are used (problems with R1 and R2). However, structures
(clusters) are potentially better represented after interactions (R4).
Finally, R3 is partially addressed as users can correlate variables
not only by their distances but also by how they are aligned in the
circular hierarchy.
Also an extension of SC, iStar (Zanabria et al., 2016) is an in-

teractive tool that, besides allowing traditional scale/rotate opera-
tions of the variable axes, also supports the union and separation
of axis anchors at will, readjusting data points in real time. To
support R1 for large numbers of variables, these can be clustered
automatically by the k-means algorithm (Grira et al., 2004) based
on their variance, bidimensional PCA coordinates, or centroids of
classes (when class labels are present). Next, given the matrix M
of variable-pairwise similarities, a graph is created where nodes are
anchors and an edge connecting two anchors has its length defined
by the pairwise similarities Mij . The ordering of anchors around
the circle is then given by the optimal closing path connecting all
nodes, computed using a Genetic Algorithm (Wang et al., 2007).
The distance between adjacent anchors is given by their edge length
(similarity). Given their design, iStar axes are related to biplot axes,
well known in information visualization (Gower and Hand, 1995;
Greenacre, 2010; Gower et al., 2011). iStar supports R1 very well,
showing dataset examples of hundreds up to thousands of instances
and variables. Variable-to-variable analyses are also well supported
by the proposed clustering (R3). However, setting the number of
k clusters in k-means is no trivial task – this works well only if the
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user has beforehand a good idea of how many groups-of-variables
he/she would like to simplify the data into, which similarity metric
to use for the variables, and if the variables are indeed distributed
this way in the data. Similarly, despite that iStar allows users to
freely joint and split variable groups, there is no visual cue to guide
this process, besides the formation of point-group structures in the
plot after the respective user action was done. iStar does not tackle
R2 as there is no visual metaphor provided to explain ambiguous
points. Finally, iStar can achieve quite good cluster separation, as
demonstrated on many datasets (R4). However, this requires care-
ful user intervention in terms of selecting k, as well as manual
anchor arrangement, grouping, and filtering.
From a different perspective, Rubio-Sánchez et al. (2017) pro-

posed to use the user-defined anchor positions from SC to mini-
mize

∥∥PAT −X
∥∥2
F
, where A is the n× 2 matrix composed of 2D

anchor vectors, P is the m × 2 matrix containing the 2D coordi-
nates of the scatterplot points, and ‖ · ‖2F denotes the Frobenius
norm. The authors also apply a kernel function to A to make its
columns mutually orthonormal, which provides “a more faithful
representation of the data since it avoids introducing distortions,
and enhances preserving relative distances between samples". The
above minimization improves R4 and partially fulfills R2, as there
are no metaphors to explain data-to-variable analysis ambiguities.
Finally, the method does not extend variable-to-variable analysis
(R3) with new solutions, nor does it explicitly address dealing with
large numbers of variables (R1).
Recently, the RadViz Deluxe (RVD) (Cheng et al., 2017) method

aims to improve the quality of all analysis types (i) to (iii). RVD
proposes different methods to reduce errors of the low-dimensional
representation, namely variable-to-variable, data-to-variable and
data-to-data errors, in this order, as follows. First, anchor place-
ment along the circle is computed by an approximate Hamilton
Cycle solution (Bollobás et al., 1987), so that distances between
adjacent anchors reflect their pairwise correlations. Secondly, the
data-to-variable error is decreased by a series of iterative geomet-
rical operations. Finally, the data-to-data error is reduced by a
spring system similar to (Tejada et al., 2003), where an instance
Di is attracted (respectively repelled) to Dj if their distance in
nD space is smaller (respectively greater) than in the 2D visual
space. Despite improvements regarding R2 and R4, RVD still lacks
solutions for R1 (scalability) and R3 (variable-to-variable analysis).
Moreover, RVD reduces errors following a fixed pipeline. Hence, it
is likely that after changing the visualization to decrease one error
(e.g., data-to-data), other errors increase (e.g., data-to-variable and
variable-to-variable). Finally, let us recall that a main proposal of
RadViz is to explain the projected data and their variables. Con-
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sider Figure 8.2(a), generated by RadViz. Here, anchors correctly
describe (explain) data points. For instance, the black outlier point,
close to anchor v1, has variation only in variable V1. This expla-
nation is partially lost by RVD corrections, as data points are not
strictly represented by anchors anymore. Consider Figure 8.2(b),
generated by RVD. Point clusters are indeed better separated now.
However, anchors cannot be used to reliably explain the points. For
instance, the black outlier moved towards the center, which could
give the wrong impression that it may also have positive values in
V2, V3 or V4. Figure 8.2(c) shows the difference between the first
two figures.

Figure 8.2: (a) RadViz representation of a simple dataset showing clus-
ters (red and blue) and one outlier (black). (b) RadViz
Deluxe layout of the same data showing better cluster sepa-
ration but poorer explanation of the outlier. (c) Differences
highlighted between (a) and (b). Adapted from Pagliosa and
Telea (2019).

8.4 radviz++ proposal

To address the requirements listed in Section 8.2 and to allevi-
ate the observed limitations of current methods, we propose Rad-
Viz++, a novel radial-based visualization for high-dimensional
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data. RadViz++ allows users to interactively aggregate, separate,
and filter variables, and see in real time how this impacts the
layout on a data-to-data, variable-to-variable and data-to-variable
basis. We next introduce and explain the features of RadViz++
and outline how they address R1–R4 and also improve upon re-
lated RadViz-class methods. We use as running example the well-
known Segmentation dataset (Joia et al., 2011; Martins et al., 2014;
Dua and Karra Taniskidou, 2019), which has m = 2100 instances,
n = 18 variables, and 6 instance classes. For conciseness, the vari-
able names are next referred to as V1, V2, · · · , V18. Instances are
randomly-chosen 3×3 pixel blocks from seven manually-segmented
outdoor images. Variables are statistical image attributes, such as
color mean, standard deviation, and horizontal/vertical contrast,
often used in image classification. The class attribute denotes the
image type. Visual analysis tools use this dataset to discover how
specific sets of variables and/or variable ranges can explain the sim-
ilarity of groups of points (Tung et al., 2005; Coimbra et al., 2016).
In turn, this can help designing better feature-engineering-based
classifiers for such data.

8.4.1 Anchor Placement

As a baseline, we show the results of the original RadViz method
on the Segmentation dataset (Figure 8.3(a)). Here, anchors vi are
placed anticlockwise along the circle in the order their variables
Vi appear in the dataset. Here and next, scatterplot points are
color-coded on their class label. As visible, no clear cluster sep-
aration can be seen. Yet, we know that such a separation does
exist (Tung et al., 2005; Joia et al., 2011; Martins et al., 2014;
Coimbra et al., 2016). To see this separation, a better approach is
to order anchors based on the similarity of their variables. Among
many ways to compute this similarity, known in the time-series lit-
erature, e.g., AMI (Fraser and Swinney, 1986), DTW (Berndt and
Clifford, 1994; Ratanamahatana and Keogh, 2004; Müller, 2007),
ARIMA (Box and Jenkins, 2015), we choose the Pearson correla-
tion coefficient (Benesty et al., 2009), similarly to RVD, given its
simplicity. Hence, the similarity of Vi with Vj is given by

ρ(Vi, Vj) =
Cov(Vi, Vj)√

(Var(Vi)×Var(Vj)
. (8.4)

To obtain a similarity metric, we normalize ρ to [1, 0]. To
place anchors, we next compute the all-variable-pairs distance ma-
trix Aij = ρ(Vi, Vj), 1 ≤ i ≤ n, 1 ≤ j ≤ n, and next cluster the vari-
ables Vi via average-linkage Agglomerative Hierarchical Clustering
(AHC) (Rokach and Maimon, 2005). Figure 8.4(a) shows the clus-
ter dendrogram produced for our running dataset. In contrast to
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Figure 8.3: (a) RadViz with no variable ordering. (b) in RadViz++,
anchors are rearranged in the circle according to their cor-
relation coefficient. In our implementation, anchors are de-
picted by cells with the corresponding variable names above
them, and points are colored based on their classes. Adapted
from Pagliosa and Telea (2019).

RVD, we now arrange anchors around the circle in the order that
leaves appear in the dendrogram (Figure 8.3(b)). As visible, clus-
ters already get better separated than in the original RadViz layout
(Figure 8.3(a)). In addition, we show in Section 8.4.4.1 how we can
use the hierarchy to address scalability for many variables (R1), as
well as to better cluster separation and explanation (R4).

Despite this approach now leads to two clusters instead of one, it
is still not enough to achieve an optimal representation. Regarding
the distance among anchors, it is worth to mention that we accept
the fact that, as dimensionality increases, it becomes more difficult
to place all variables well separated in the circle according to their
similarities. Therefore (and also in contrast to RadViz Deluxe), we
make all anchors equally sized so neighbors have the same distance
among themselves so that we can fit more variables in the same
amount of visual space without clutter.

8.4.2 Variable-To-Variable Analysis

Atop of the hierarchical variable placement described in Sec-
tion 8.4.1, we propose two visual metaphors to help variable-to-
variable analysis in different levels, as follows.
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Figure 8.4: (a) Dendrogram built from variable correlation (Sec-
tion 8.4.1). (b) Simplified dendrogram (Section 8.4.2.1).
Adapted from Pagliosa and Telea (2019).

8.4.2.1 Variable Hierarchy

We draw the variable dendrogram using a circular icicle-plot
metaphor where all leaves are aligned at the same level. A similar
layout for hierarchical data was used by Holten (2006) for display-
ing different data types (software containment) and in a different
context (program comprehension). As a key difference, icicle-plot
cells in our case are groups of similar (correlated) variables, and
not data instances. Cell colors indicate variable similarity using a
blue-to-green-to-red (similar-to-dissimilar) ordered colormap. La-
bels atop cells show the variables these aggregate.
In this context, depicting the full dendrogram produced by AHC

typically demands too much space in the visual plot, since each bi-
nary clustering event creates a new level. Figure 8.5(a) shows the
resulting icicle plot for the dendrogram in Figure 8.4(a). Hence,
we simplify the dendrogram by aggregating variables (by summing
their respective values) having parents that are more similar than
δ = 10% of the root-cluster diameter. A similar approach was
used in a different context by Carlsson and Mémoli (2013). Fig-
ure 8.4(b) shows the simplified dendrogram for our running exam-
ple dataset. Thus, increasing this value yields a simpler dendrogram
which needs less visual space, but shows less details on how vari-
ables relate to each other. Conversely, decreasing this value yields
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more details on the similarity values of variable pairs, but requires
more visual space. Figure 8.5(b) shows the visualization of this
simplified dendrogram.

Figure 8.5: (a) Circular icicle plot showing the full dendrogram
(δ = 0%). (b) Plot of the simplified dendrogram (δ = 10%)
leading to a more compact layout. We acknowledge the diffi-
culty to read labels, but they are not important for the given
example (and others in the same format). Still, we keep them
for consistency. Adapted from Pagliosa and Telea (2019).

8.4.2.2 Similarity Disambiguation

The icicle plot described above addresses the task of finding groups
of similar variables, as children of the same node in the plot. How-
ever, the plot does not (easily) support the task of finding how
similar a group of variables is to other groups. To see this, one
needs to carefully study the entire icicle-plot hierarchy, including
comparing the colors of multiple nodes. To support this task, we
adapt the Hierarchical Edge Bundling (HEB) (Holten, 2006) tech-
nique as follows. We consider a graph G where each node is an
anchor vi, and each edge is the similarity ρ(Vi, Vj) between vari-
ables Vi and Vj . We then construct the HEB bundling ofG, using as
hierarchy the one given by the (simplified) dendrogram, to draw it
such each edge has ρ encoded into its opacity. Figure 8.6 shows the
result. The less correlated two variables are, the more transparent
and closer to the circle center will be its bundled edge. Conversely,
strongly correlated variables will have dark (opaque) and far-from-
center bundled edges. Bundles thus show groups of variables which
are similar to each other.
Bundling serves an additional disambiguation task. As explained

in Section 8.4.1, for a sufficiently large variable count n, it becomes
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hard, and in the limit impossible, to assign positions for the an-
chors vi along a circle so that their distances accurately reflect
high-dimensional similarities of the variables Vi, no matter which
anchor placement strategy we use. This is the well-known distance
preservation problem in dimensionality reduction when going from
n dimensions to a single one. Moreover, the circular nature of Rad-
Viz designs will place variables which are at opposite ends in the
(simplified) cluster tree (V3 and (V11, V16) in Figure 8.4(b)) next
to each other along the circle (Figure 8.6). The same happens for
variables V4 and V17. Without any other visual cue, one may think
that these are very similar variables. The HEB bundles solve this:
as no dark bundle connects those cells in Figure 8.6, their respec-
tive variables are not similar.

Figure 8.6: HEB bundles and variable histograms in RadViz++.
Adapted from Pagliosa and Telea (2019).

8.4.3 Analyzing Variable Values

The mechanisms discussed so far show us which variables are sim-
ilar, but they do not explain in detail why. Moreover, one is of-
ten interested in explaining the similarity of instances not only in
terms of entire variables, but ranges of values thereof. To support
such tasks, we plot histograms over each icicle-plot cell to show
the respective variable distributions. By default, we use hdef = 10
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histogram bins. However, icicle-plot cells can have widely different
sizes, depending on the dendrogram clustering and total number
of variables. For over a few tens of variables, some cells become
too small to display 10-bar histograms. Varying the visual width
of a histogram bar on the cell size is not a good idea, as it makes
comparing histograms in different-width cells hard. Hence, we fix
the width of a histogram bar to wh, set in practice to 5 pixels, and
use h = min(hdef , wc/wh) histogram bins for a cell of width wc.
This way, smaller cells will display fewer-bin histograms (see e.g.,
Figure 8.6).
Besides seeing the value distributions of each variable Vi, his-

tograms have two other uses. First, they allow comparing different
variables. For instance, in Figure 8.6, we see that V5, V6, V7, and
V8 are strongly correlated (since linked by bundles and children of
a grandparent node colored dark-green), and they also have very
similar distributions, with mostly small values. In contrast, nodes
V15 and V18 show a similar correlation (same dark blue color), but
quite different distributions. Secondly, histogram bars can be inter-
actively clicked to select points whose values belong to the selected
bins. By doing this, the user can either explore which variable
ranges are responsible for certain patterns in the scatterplot, as
well as to de-clutter scatterplot areas where multiple points are
plotted atop each other.

8.4.4 Scalability And Level-of-Detail

We address both these issues by aggregating and filtering variables
and data points, as follows.

8.4.4.1 Aggregating Variables

The key purpose of the icicle plot is to show how the data can
be explained in terms of groups of similar variables. In the case
when the user decides that all child variables of a parent node
in this plot can be seen as a single one, displaying all of them
makes the visualization unnecessarily verbose. Clicking such a par-
ent node aggregates all its children variables, replacing them with
the centroid value of the respective AHC cluster, and regenerates
the visualization. Figure 8.7(a) shows this after we aggregate vari-
ables V2, V13, V15, V17, V18 (large brown cluster, Figure 8.6 bottom);
variables V6, V8 (Figure 8.6, top-left blue cluster); and variables
V9, V10, V11, V12, V14, V16 (Figure 8.6, top-right blue cluster). The
former aggregation, however, leads to more overlap in the scatter-
plot – hence, this simplification level may be too strong to allow
us to correctly interpret the data. To fix this, we do one step back-
ward by clicking on the large brown cluster in Figure 8.7(a) to split
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it into its direct children. The result (Figure 8.7(b)) shows a very
similar scatterplot to the original, unaggregated, one (Figure 8.6).
This plot is obtained by using only nine variables (either original
ones or aggregations) as compared to the original 18. Hence, we
obtain a 50% dimensionality reduction with little loss of the data
structure.

Figure 8.7: (a) Aggregation of several variables. (b) Refining the
aggregation for the bottom (brown) cluster. Adapted
from Pagliosa and Telea (2019).

8.4.4.2 Variable Filtering

While useful, variable aggregation has the problem that it actually
synthesizes new variables from existing ones. This is not always de-
sirable, e.g., when certain variables do not logically make sense to
be averaged together. Conversely, there are cases when we want to
completely eliminate, or filter away, certain variables, e.g., which
we recognize as not useful for the analysis. By clicking icicle-plot
cells the user can also filter away desired variables, after which
the remaining space is reallocated to the remaining variables. Fig-
ure 8.8 illustrates this. First, we decide that only variables in the
colored cells should remain after filtering (Figure 8.8(a)). We filter
away all other variables, keeping only 11 of the original 18, and ob-
tain the layout in Figure 8.8(b). The colors of the remaining cells
change to reflect the range of similarities present in the recomputed
dendrogram after filtering.

138



8.4 radviz++ proposal

Figure 8.8: (a) Variables to filter away (white). (b) RadViz++ af-
ter variable filtering (using 11 of the original 18 variables).
Adapted from Pagliosa and Telea (2019).

8.4.5 Data-To-Data And Data-To-Variable Analysis

As mentioned in Section 8.2, while RadViz-class methods are de-
sirable when one wants to explore both instances and variables
simultaneously, other dimensionality reduction (DR) methods ex-
ist. State-of-the-art methods, like the Local Affine Multidimen-
sional Projection (LAMP) (Joia et al., 2011) and the t-Distributed
Stochastic Neighbor Embedding (t-SNE) (van der Maaten and
Hinton, 2008), achieve in general a (much) better similar-point
cluster segregation, which is an important data-to-data analysis
task (Nonato and Aupetit, 2018). However, such methods do not
provide ways to explain how variables determine such clusters.
We combine the strengths of the RadViz metaphor (seeing both

instances and variables, explaining instances by variables) and DR
projections (better cluster segregation) by displaying in the inner
circle scatterplots created by any such DR methods, instead of the
force-based RadViz one. To explain projected groups, we next allow
users to smoothly animate the DR scatterplot towards the RadViz
scatterplot and vice-versa. This way, one can visually focus on a
point group, clearly shown in the DR scatterplot, then see where
the group goes in the RadViz scatterplot (following the anima-
tion), and finally use RadViz++ mechanisms to explain the points.
Figure 8.9 shows several frames from the animation between Rad-
Viz and LAMP scatterplots for the Segmentation dataset. Using
animation to link different displays of the same data, in particu-
lar merging insights obtained from different types of DR projec-
tions (Kruiger et al., 2017), but also for other data types such as
3D data volumes (Hurter et al., 2014), trail sets (Hurter et al.,
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2011), and 2D images (Brosz et al., 2013), has been proven to be
very effective. As demonstrated in all these works, animation is
superior to using (two) spatially-distinct views linked by classical
brushing-and-selection for the task of relating elements (groups of
data points) shown in the two views. The topic is further discussed
in (Hurter, 2015). Key to this are the facts that users (1) can focus
on a single view in the animation case, rather than having to con-
tinuously switch looking at two views; and (2) can spot structures
of interest, e.g., forming or splitting groups of points, that appear
at any moment during the animation, but are not visible in the end
views. Moreover, using a single view increases the visual scalability
of the method, i.e., allows it to show larger datasets in the same
screen space.
Differently from RVD, we do not show a static interpolation of

two projections (in its case, RadViz and a spring-based system) to
explain a better-clustered plot in terms of the anchors, as this may
misguide the user, as already discussed in Section 8.3.2. Therefore,
our combination of a DR projection with a RadViz explanation is
to our knowledge novel. However, when the LAMP plot is shown
(at the end of the animation), users may be confused by the vi-
sual presence of the anchors, and aim to interpret the positioning
of points in LAMP in terms of the anchors, which would be in-
correct. To alleviate this, we add a gray background behind the
anchors in the icicle plot. When the background is visible (gray), it
tells we are in LAMP mode, so the anchor positions should not be
considered (Figure 8.9 right); when it is invisible (white), it tells
we are in RadViz mode, so anchors explain the scatterplot point
positions (Figure 8.9 left). During the animation, the background
color linearly changes between its two end colors, indicating that
we have a transitional state. As alternative we considered to make
anchors transparent in LAMP mode. However, this did not allow
us to explain point groups by variable values.
Figure 8.10(a) shows the result of LAMP in RadViz++ for the

Segmentation dataset. Compared to the RadViz force-based layout
(Figure 8.8 and earlier), we now see a much better cluster separa-
tion. Animating this view towards the RadViz layout (Figure 8.8)
allows us to explain these clusters in terms of the data variables,
as discussed so far.
DR projections can also benefit from variable filtering (Sec-

tion 8.4.4.2). Figure 8.10(b) shows LAMP applied to the variables
selected after the filtering done in Figure 8.8. We see the same
cluster separation as when using LAMP on all 18 variables (Fig-
ure 8.10(a)). We obtain a DR projection having roughly the same
clustering quality as the original one, but with about half (11) of
the original 18 variables.
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Figure 8.9: Animation of RadViz scatterplot (left) towards the LAMP
scatterplot (right) for the Segmentation dataset. Interpola-
tion factors are 0.2, 0.4, 0.6, 0.8. While LAMP plots offer bet-
ter cluster segregation, RadViz plots explain the points bet-
ter in terms of their variables. Note how the icicle-plot back-
ground opacity changes to indicate the RadViz vs LAMP
mode of the scatterplot. The lack of details (e.g., it is diffi-
cult to see labels and histograms) is not prohibitive to un-
derstand the figure: the objective is to show how clusters
are better represented as the animation goes from RadViz
to Lamp layout. Adapted from Pagliosa and Telea (2019).

While force-based point positioning and variable-range filtering
(Section 8.4.3), implicitly explain all scatterplot points by variables
and their ranges, one often wants to explain a specific group of
points. We support this by a brushing-and-linking tool that links
brushed and/or selected points (in the scatterplot) to their his-
togram bins (in the circular icicle plot) where their values reside.
We show the linking by drawing lines between points and bins. To
reduce visual clutter, we use again bundling to group these lines.
Brushing-and-linking tool is bidirectional, as we can also select bins
and show all points having values therein, as shown in Figure 8.11.
We selected here two clusters in the LAMP scatterplot of the Seg-
mentation dataset. For each cluster, bundles show how its points
can be explained by specific ranges (bins) of the three variable-sets
used in the analysis.

8.5 experiments

We next illustrate the working and added-value of RadViz++ with
experiments on three different datasets. First, we validate our
method using a synthetic dataset, for which the ground truth is
known (Section 8.5.1). Next, we compare RadViz++ with other
high-dimensional visualization methods and show that we can
reach the same conclusions (Section 8.5.2). Finally, we present
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Figure 8.10: (a) LAMP scatterplot for the Segmentation dataset. (b)
LAMP after the variable filtering shown in Figure 8.8, lead-
ing to a better clustering, but using only 11 of the 18 vari-
ables. Adapted from Pagliosa and Telea (2019).

the analysis and obtained insights from a complex dataset (Sec-
tion 8.5.3).

8.5.1 Validation On Synthetic Data

We use the dataset described in (Pagliosa et al., 2016) to val-
idate our method. In their article, the authors proposed sev-
eral visual metaphors (different from ours) to explain the pro-
jected data by their variables. The dataset has m = 350 in-
stances, n = 3 variables, and |C| = 2n − 1 clusters. Each clus-
ter c ∈ C contains instances having variation in only a subset
of the n variables, while the rest is set to zero. In this sense,
clusters c1, · · · , c7 contain instances with variation in the vari-
ables {V1}, {V2}, {V3}, {V1, V2}, {V1, V3}, {V2, V3}, and {V1, V2, V3}.
Data variation in each cluster c follows a different Dormal distribu-
tion N (µc, σ

2
c ) centered at µc and with standard deviation σc. The

dataset was created with (µ1, · · · , µ7) = (0, 5, 7, 30, 40, 30, 20) and
σ1, · · · , σ7 = 0.5.
The authors visualized this dataset using LAMP (Fig-

ure 8.12(a)). The LAMP projection is binned on a uniform 2D
grid based on user settings, where a clustering algorithm takes
place. For each found cluster, histograms show the variance of the
variables of the contained data points. Briefly put, the method
shows clusters in the data and also which variables are (mostly)
responsible for their formation.
We next use RadViz++ to find and explain clusters in this

dataset (Figure 8.12(b)). For visual inspection, we color scatter-
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Figure 8.11: Brush-and-link explanation of the (a) blue and (b) brown
clusters in LAMP mode. Despite groups of points cannot
be correlated to anchors in the LAMP scatterplot, it still
valid to explain them in terms of variable ranges. Adapted
from Pagliosa and Telea (2019).

plot points by their respective cluster IDs. Here and next, these
IDs are not used as variables in RadViz++. In the result, we see
that the scatterplot contains 7 distinct point clusters c1, · · · , c7.
The positions of these clusters with respect to the 3 variables di-
rectly provide the needed explanations, without requiring more
complex interaction, linked-views, comparison of bars heights in
different histograms, or data gridding as in (Pagliosa et al., 2016).
Equally importantly, the explanations of clusters in terms of vari-
ables in our case are the same as those provided by Pagliosa et al.
(2016). However, in RadViz++ instances whose variation occurs
only in one variable, i.e., those in clusters c1, c2, c3, are mapped
to the same 2D locations, due to limitations of the RadViz force-
based placement scheme (see Section 8.3.1). To decrease this visual
ambiguity, we use the brushing-and-linking tool (Figure 8.13) to
select each such point-like cluster in the scatterplot. Since we see
edges going from a cluster to multiple bins in at least one variable,
this explicitly shows that there are multiple points mapped to the
same scatterplot location. A tooltip could inform details about the
selected points for further analysis.

8.5.2 Wisconsin Breast Cancer

This dataset is commonly used as benchmark in Visualization and
Machine Learning (see the extensive reference list in (Dua and
Karra Taniskidou, 2019)). It has m = 699 instances (patient tissue
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Figure 8.12: (a) Attribute-based analysis of 7 Gaussian clusters
dataset (Pagliosa et al., 2016). The variable “Dim i” maps
to Vi+1 in our notation. (b) RadViz++ leads to the same
conclusions with a cleaner and simpler layout. Adapted
from Pagliosa and Telea (2019).

samples), n = 9 variables (microscopic tissue data), and 2 labels
(cancer or lack thereof). The aim is to find which variables or ranges
of variables that help to predict the class labels, much as for the Seg-
mentation dataset. We again compare RadViz++ with (Pagliosa
et al., 2016) to verify whether we can achieve the same conclusions.
In their article, Pagliosa et al. (2016) concluded that both clus-

ters (for the two existing labels) mainly differ because of the vari-
ance of specific variables. This is shown by the box plots in Fig-
ure 8.14. The bottom (orange) cluster, corresponding to malignant
instances, is described by a high variance in almost all variables.
The top cluster (benign instances) has a low variance in all vari-
ables except Clump Thickness. In addition, one can also conclude
that Mitosis is the least discriminant variable between the two
clusters, as it has quite low variance in both.
We next use RadViz++ for this dataset (Figure 8.15(a)). The

edge bundles show directly that the Mitosis anchor is the only one
that has no edge to other anchors, which indicates that that vari-
able has the lowest correlation with all others. As we saw, this is
confirmed in Figure 8.14. Conversely, the most opaque edge con-
nects the variables Uniformity of Cell Size (UofCSize) and Uni-
formity of Cell Shape (UofCShape). Also, their high correlation is
depicted by their blue-parent node in the icicle plot. Note that the
visualization in Figure 8.14 cannot show this insight. Besides these
extremes, Figure 8.15(a) shows no other significant clusters or cor-
relation differences. This tells that the remaining variables have
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Figure 8.13: The brush-and-link tool helps explain clusters whose points
overlap in the scatterplot, thereby decreasing ambiguity
problems. For each selected cluster ci, bundles show that
its points have multiple values in at least one variable bins.
Adapted from Pagliosa and Telea (2019).

similar correlation coefficients. In this case, it is not a good option
to analyze this dataset using the force-based scatterplot metaphor
as proposed by RadViz, since this will map all instances close to
the circle center, as we indeed see in Figure 8.15(a).
To find which variables discriminate between the two clus-

ters, and why, we use the LAMP scatterplot in RadViz++ (Fig-
ure 8.15(b)). As expected, this scatterplot separates clusters. We
now use brushing-and-linking to explain these in terms of variables.
We first select points in the benign (blue) cluster (Figure 8.16(a)),
then in the malignant (orange) cluster (Figure 8.16(b)), and com-
pare the two views to find similarities and differences as follows.
First, we see that edges from the benign cluster (Figure 8.16(a))
go to multiple bins of the same variable in both cases, except for
variable Mitosis, where edges go mainly to the lowest-value bin.
Hence, Mitosis has a much lower variance for benign instances
than the other variables (confirmed in Figure 8.14). Secondly, we
see that bundles for the benign cluster (Figure 8.16(a)) are more
concentrated than bundles for the malignant one (Figure 8.16(b)).
Hence, variables have a higher variance for the latter than the for-
mer instances (again, confirmed by the box plots in Figure 8.14.
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Figure 8.14: Breast Cancer dataset analysis performed by Pagliosa et al.
(2016). The variance of the involved variables is the main
discriminative factor between the two clusters. All variables
contribute quite similarly to discrimination, except Mitosis,
which has a low overall variance. Adapted from Pagliosa
and Telea (2019).

Thirdly, we see that bundles go mainly to the low-side bins of
their respective histograms in Figure 8.16(a), while bundles in Fig-
ure 8.16(b) go more uniformly to all bins, and sometimes more to
high-side bins in their respective histograms. The figure illustrates
this for the variable UofCShape, but the same is visible for most
other variables. Hence, benign instances have overall lower variable
values than malignant ones. This finding also matches Figure 8.14.

We conclude that RadViz++ can lead to the same insights
as (Pagliosa et al., 2016). However, RadViz++ requires no mul-
tiple linked views, data gridding, or other user settings present in
the latter, which should make it easier to use. Moreover, RadViz++
allows a fine grained linking of variables, and their ranges (bins)
to user-specified sets of points in the scatterplot. The technique
in (Pagliosa et al., 2016) cannot do this – it only shows aggregated
box-plot statistics for entire classes.

8.5.3 Corel Dataset

Finally, we test our method using the Corel dataset (Martins et al.,
2014), composed of m = 1000 images, n = 150 SIFT descriptors
(V1, · · · , V150) and 10 class labels. As for the other datasets, vi-
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Figure 8.15: Breast Cancer dataset analyzed using (a) RadViz++
with force-based and (b) LAMP projection. Adapted
from Pagliosa and Telea (2019).

sual exploration aims to find correlations of variables (or their
properties, such as ranges or variance) with the respective image
classes, to further help classifier engineering. This is a much more
challenging dataset as the previous ones, not only because of the
larger number of classes, but because of its higher dimensionality.
In particular, methods such as RadViz, RadViz Deluxe, or the
other methods discussed in the related work cannot easily handle
150 variables.

Figure 8.17 shows RadViz++ visualization for this dataset,
which lets us draw several insights. First, we see that same-class
clusters get formed, although not well separated. However, we also
see that the 150 variables get partitioned quite clearly into 9 groups,
each indicated by a set of mutually bundled edges. This suggests
that we could strongly reduce the dimensionality of the data, by
variable aggregation and/or filtering, and thereby possibly achieve
a better cluster separation and, thus, explanation.
Following the above observations, we next proceed to aggre-

gate/filter variables. First, we aggregate variable-groups having
a medium-range correlation, by selecting their respective nodes,
marked green in the icicle plot. Figure 8.18(a) shows the start of
the selection process, where four such groups are highlighted by the
corresponding green-hue nodes in the icicle plot. After a few extra
aggregation operations, we obtain the simplification shown in Fig-
ure 8.18(b). The ten groups of variables present in the figure fairly
describe the underlying data, as each variable group describes well
one of the 10 classes, seen as “pulling” the points of the respective
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Figure 8.16: Breast Cancer dataset, explaining the (a) benign and (b)
malignant clusters by variables in LAMP mode. Adapted
from Pagliosa and Telea (2019).

class towards its anchor. To see if we can improve class separation,
we add a few more variable-groups to the selected ones (yellow “+”
signs in Figure 8.18(c)). However, this addition does not improve
the class separation – compare the scatterplot in this image with
the earlier one in Figure 8.18(b). Hence, we revert this step, going
back to the variable-groups shown in Figure 8.18(b). Finally, we cre-
ate a new layout using only the selected variables (Figure 8.18(d)).
We can see now how each class is strongly “pulled” towards a single
anchor, corresponding to the variable-set that describes it best. Of
course, the cluster separation is not perfect – there is still a number
of points in the center of the scatterplot, which require most of the
selected variables to be described. Finding such points is actually
useful, as these are difficult classification cases.
We can next use interactive variable selection to verify how each

of the 10 variable-groups we ended with (Figure 8.18(d)) indeed
explain the data clusters. For this, we deselect all these variable-
groups and next select (activate) them one-by-one. Figure 8.19(a)–
c show three such selection steps. We can now see quite well how
each variable-set is responsible for explaining a separate cluster, as
points having the respective cluster color get clearly “pulled” to-
wards the respective selected anchor. Indeed, if the variable-sets
we created did not explain data clusters well, then activating them
would pull points having mixed colors (of many different classes)
towards the respective anchors. Finally, we consider further aggre-
gating (simplifying) the variable-set we obtained so far. For this,
we aggregate the two variable-sets which are children of the red par-
ent node in the icicle plot in Figure 8.18(d). Figure 8.19(d) shows
the result. Even if the red color of the parent node had not been
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Figure 8.17: Corel dataset visualized using RadViz++. Adapted
from Pagliosa and Telea (2019).

a sufficiently strong warning that the respective variable-sets are
very dissimilar (uncorrelated), we can see in the scatterplot in Fig-
ure 8.19(d) that the top-right green and orange clusters, which were
quite well separated before aggregation (Figure 8.18(d)), now get
mixed up under the aggregated set of variables. Hence, we revert
this aggregation and end the exploration with the 10 variable-sets
shown in Figure 8.19(d) as being the best ones for explaining the
10 clusters in the dataset.

8.6 discussion

We next discuss our proposal vs. the requirements R1–R4:
R1: Our method is as scalable as all other scatterplot-based
visualization techniques in the number of instances, as every one
is mapped to a 2D point. Variable-wise, we argue that our method
scales far better than all existing RadViz-class techniques due to
the hierarchical variable aggregation and variable filtering. Two
aspects are related to this point, as follows. First, even when
hierarchical variable aggregation is not used, we can display
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Figure 8.18: Finding the most descriptive variables for 10 clusters in the
Corel dataset. Detailed description in the text. Adapted
from Pagliosa and Telea (2019).

up to roughly thousand variables along the plot circumference,
since each variable requires only a circle sector of a few pixels
width to be visible and distinct from its neighbors. This same
scalability has been demonstrated earlier by visual designs using
the same radial icicle plot, see e.g., (Holten, 2006; Hoogendorp
et al., 2009; Reniers et al., 2014) for applications visualizing
thousands of elements from software hierarchies. Secondly, as
explained in Section 8.4.2.1, we simplify the hierarchy produced by
agglomerative clustering based on a user-defined similarity factor
δ (preset to 10% of the root-cluster diameter). As explained there,
this factor controls the number of levels the simplified hierarchy
will show, so users can “flatten” arbitrarily large hierarchies in this
way up to the desired level of detail. Also, it is important to note
that we do not need to display, nor even compute, the full variable
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Figure 8.19: Verifying the explanatory power of each variable-set after
selecting its respective anchor (a–c). Further aggregating
these variables reduces cluster separation (d), so should be
avoided. Adapted from Pagliosa and Telea (2019).

hierarchy: if, during the bottom-up clustering process, we decide
that we reach a point where the dissimilarity of variable-groups
(roots of hierarchy subtrees computed so far) is larger than what
the user can tolerate, then we can simply stop clustering and only
use the hierarchy levels computed so far. This explicitly limits
the maximum number of levels (concentric rings in the icicle plot)
that will be present in RadViz++. Finally, users can always locally
refine the level-of-detail by choosing to aggregate certain groups
of variables (hierarchy subtrees) but show other ones in full detail.
The same techniques have been successfully used to visualize hier-
archies of tens of levels and thousands of leaf nodes, as mentioned
earlier (Hoogendorp et al., 2009; Reniers et al., 2014). In the same
time, the hierarchy allows a flexible variable-placement along the
RadViz circle where similar variables are placed close to each other.
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R2: We decrease ambiguities of data-to-variable analyses by
histogram bins and brushing-and-linking that show which vari-
ables (and their ranges) correspond to a user-specified given
subset (cluster) of scatterplot points. Separately, we decrease such
ambiguities by variable filtering and aggregation, which allocates
more visual space to explain fewer variables – thus, more space per
variable. We also bundle bin-to-cluster links to further decrease
visual clutter and associate data points to variable ranges (bins)
easier.

R3: Besides the aforementioned hierarchy-based anchor placement
and dendrogram of clustered variables, we use hierarchical edge
bundles (HEB) to explicitly show groups of similar variables. HEB
is spatially compact, intuitive, and also explains anchor-placement
ambiguities which are inherent to the RadViz circular layout.

R4: To better separate point clusters, we allow exploring data by
two different dimensionality-reduction methods. At one extreme,
the RadViz projection explains well instances in terms of variables,
but may not separate point clusters well. At the other extreme,
the LAMP projection achieves the opposite. Users can fuse
insights provided by the two projections by e.g., selecting clusters
of interest (in LAMP) and animate them back-and-forth to the
RadViz projection, which explains them in terms of variables (or
conversely).

Limitations: While scalable, simple to implement, and working
generically for any quantitative high-dimensional dataset, our pro-
posal also has several limitations. First, even when doing variable
aggregation and filtering, a certain amount of visual overlap of
different-value instances will occur into the scatterplot, due to in-
herent limitations of the RadViz placement (Equation 8.3). While
other placement methods may improve upon this, e.g., RadViz
Deluxe (Cheng et al., 2017), we chose to do this via a radically
different way, namely using a different DR method (LAMP) and
animation to link it with the anchor placement. Whether our ap-
proach is better than RadViz Deluxe in terms of ease of use and ac-
curacy of the obtained insights is an open problem requiring further
evaluations. Secondly, our approach cannot yet handle categorical
data; also, handling negative data values is subject to limitations
present, to our knowledge, in all other RadViz-class methods. Ex-
tending our hierarchical anchor placement based e.g., on similarity
metrics defined on categorical data (Broeksema et al., 2013) is an
interesting possibility yet to be explored.
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8.7 visualizing embeddings

Alternatively, we later tried to tackle RQ4 with a different visualiza-
tion approach. By simultaneously correlating several phase spaces
as function of embedding parameters and entropy (also investigat-
ing R1), the goal was to find out how similar to each other different
embeddings are, and what makes them different.
First, we predefine a range of possible values for

m ∈ [mmin,mmax] and τ ∈ [τmin, τmax] for the embedding pa-
rameters. Next, we create embeddings with all combinations
of (m, τ). Further on, we aim to create a plot, like the one
shown in the inner ring of RadViz++, where we can visually
compare embeddings. For this, we apply dimensionality reduction,
considering every embedding as a data point. In contrast to the
usage of LAMP for dimensionality reduction, presented in the
earlier sections, we now explore the usage of another dimension-
ality reduction algorithm, namely t-SNE (Section 8.4.5). This
is motivated by t-SNE better capability to separate clusters of
similar obsevations. The main drawback of t-SNE, namely its low
speed, is less relevant in this scenario (as opposed to the scenarios
discussed in the earlier sections), since we now aim to create a
single plot rather than interactively explore a sequence of plots.

In order to work, t-SNE must receive as input a similarity matrix
containing the similarities among all computed phase states, Using
the Cross Recurrence Plot (CRP) matrixR (Equation 6.7), defined
as

Ra,b = Θ(εia−‖φi(a)−φj(b)‖2) Θ(εjb−‖φj(b)−φi(a)‖2), (8.5)

is not suitable for this task, as it compares states with the same
number of components (dimensions). In other words, CRP accepts
different number of states Ni, Nj , but the embedding dimension m
for both spaces must be the same.
The Joint Recurrence Plot (JRP), defined by a matrix having as

entries

Ra,b = Θ(εia−‖φi(a)−φi(b)‖2) Θ(εjb−‖φj(b)−φj(a)‖2), (8.6)

tries to overcome this limitation. In our case, JRP has an inverse
behavior when compared to the CRP: The number of dimensions
mi,mj may be different, but the number of states Ni = Nj must
be the same. This is relatively easier to accomplish by e.g., re-
ducing the number of states in both phase spaces to min(Ni, Nj),
assuming that this amount is sufficient to unfold the dynamics of
both systems. Still, this approach is not useful to distinguish the
same time series embedded with different pairs (m, τ). This hap-
pens because the relation among their orbits remains roughly the
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same. For instance, three different embeddings of the Lorenz sys-
tem will have almost identical JRP matrices. As consequence, the
similarities among them (e.g., taking the Maximum Diagonal Line
(Section 6.4)) will not tell much about their phase-spaces differ-
ences, which is, as explained, what we want to visualize
As a third alternative, we propose the Average Neighbor-

ing Preservation (ANP), explained next. Let N(φi(a), k) and
N(φj(b), k) be the set of indices of the k-nearest neighbors of φi(a)
and φj(b), respectively. We take the intersection and union of both
sets to compute the Jaccard index between the two states as

Ja,b =
|N(φi(a), k) ∩N(φj(b), k)|
|N(φi(a), k) ∪N(φj(b), k)|

, (8.7)

where | · | is the set cardinality. This yields a similarity matrix J
based on the neighboring preservation of both embeddings. Next,
we use the average of J to represent the similarity of the two
embeddings. Note that this approach is invariant to rotations and
transactions of the phase spaces, which is not the case for CRP
and JRP. Thus, only the surroundings of states (within their own
attractor) are important, and not their distances with states from
another system.
The t-SNE projection of the set of phase spaces yields a scatter-

plot in which a point represents a phase space given by a particular
(m, τ) combination. To further see how m and τ impact the embed-
dings and their properties, we depict each point in the scatterplot
by a so-called tri-ring. This is a glyph consisting of two concentric
circles. We use the inner circle to depict Von Neumann’s entropy
Evn based on the first dimension (as proposed by the SE method),
coded by luminance. The ring area between the inner and outer
circle is divided vertically into two half-rings. We next color-code
the values of m, respectively τ , onto the left, respectively right,
half-rings, using a grey-red-blue colormap.
Figure 8.20 shows an example of our visualization, called Pro-

jection of Embedding (PoE), for the Logistic map using a range of
m, τ ∈ [2, 15]). Several types of information can be derived from
this plot. For instance, clusters of phase-space embeddings are
formed based on the time delay – indeed, points within such a clus-
ter share similar colors for their right ring-halves, so, they have
very similar τ values. Secondly, within a cluster, the m value ex-
plains the spread of points from the projection center towards its
periphery – this is visible in the luminance gradient of the left ring-
halves that is bright on points close to the projection center (low
m values) to dark on points far away from the projection center
(high m values). Thirdly, we see how clusters “curl” close to their
far-from-projection-center ends. This may indicate that the respec-
tive phase spaces have reached a plateau of dissimilarity, and now
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turn back to become similar to lower dimensions. Such behavior
can suggest the attractor was first completely unfold, then lost its
structure, and now it is starting to be unfolded again, which could
be used to estimate the time delay window tw.
Separately from the above, if we look at the color of the inner

rings in Figure 8.20, we see how these vary from roughly bright in
the projection center (low entropy values) to dark at the projection
periphery (high entropy values). This shows that the entropy grows
proportionally with the embedding dimension. A similar tree-like
structure was found for the Hénon system. Note also the optimal
embedding indicated by an arrow in Figure 8.20. Interestingly, this
is not located to the projection center, but to one of its extremes.
The fact that we see other points having similar low entropy (bright
inner circle) values far away from this optimal embedding in the
projection tells us something very important, namely that phase
spaces which are quite different (points far in the projection) have
very similar low-entropy values. This is an additional argument in
favor of the study in Section 5.7 that shows that low entropy is not
one-to-one correlated with an optimal embedding.

Optimal 
Embedding

Figure 8.20: PoE for the Logistic map. Clusters (two of which are
marked by closed curves) are formed mainly based on simi-
lar τ values. Points spread away from the center as the em-
bedding dimension m increases. The optimal phase-space
embedding (m = 2, τ = 1) is marked at the left.

However, quite different patterns were found for other time series.
For instance, Figure 8.21(a) shows the PoE plot for the Lorenz
system, which resembles a crescent-like structure. From this plot,
not much information could be extracted. In particular, we do not
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see the structuring of phase spaces in clusters that are explained by
the values ofm and τ . A similar unstructured plot was obtained for
the Rössler dataset. However, by increasing the range of acceptable
time delays (we remember that the the SE estimated a time delay
window tw = 29 for the Rössler system), we achieved another PoE
result, as shown in Figure 8.21(b).

Figure 8.21: PoE for the (a) Lorenz and (b) Rössler systems. In contrast
to PoE results for the Logistic map, far less structure in the
set of phase spaces is visible.

The less structured results for PoE plots in Figure 8.21 can have
several, not mutually exclusive, explanations. First, the difference
between trajectories in the phase spaces obtained for the respective
Lorenz and Rössler systems may, indeed, be far smaller than be-
tween trajectories in the phase spaces of the Logistic system. This
denotes, albeit implicitly, the difficulty of finding general charac-
teristics that define a good embedding for any system. Secondly, it
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is known that t-SNE results are quite sensitive to the setting of its
perplexity parameter (Wattenberg et al., 2016). This means that
it could be possible to obtain more insightful plots for the Lorenz
and Rössler systems by using other perplexity values.
Concluding this section, we found out that it is possible, indeed,

to visualize how phase spaces change with the embedding parame-
ters; low entropy values do not necessarily characterize embeddings
which are very similar to the optimal embedding; and significant
structure in the set of phase space does exist, but it cannot be
easily and reliably captured for all systems.

8.8 final considerations

We have presented RadViz++, a set of techniques for interactive ex-
ploration of high-dimensional data using a RadViz-type metaphor.
We designed our techniques to alleviate several types of problems
present in existing RadViz-class methods, as follows. We increase
variable scalability by using a variable-clustering technique and
simplified variable-hierarchy visualization, which allows us to eas-
ily handle over a hundred variables. We reduce ambiguities of the
RadViz circular layout, and also summarize variable similarities
by using a hierarchical edge-bundling approach. We explain data
clusters in terms of variables and variable-ranges by linking the
former with histogram bins representing the latter. Finally, we re-
duce visual clutter to better analyze data clusters by integrating
a separate dimensionality-reduction method, good at cluster seg-
regation, and linking its explanation with the RadViz metaphor
via animation. We show that our approach can lead to the same
insights on two different datasets as when using existing visualiza-
tion methods, but with less effort, and demonstrate scalability on
a third dataset.
Returning back to our research question RQ4, we recognize that

we have answered it partially, as we tackled a wider (but re-
lated) question: how to correlate observations with their attribute
values? The key reason for taking this more general (time-series-
independent) approach was to design a visualization solution that
is comparable with existing results in the Visual Analytics litera-
ture. As we found no specific visualization techniques (at least, not
in the context of Dynamical Systems and/or time series) in the ra-
dial class, the only way to validate our proposal was to compare it
with other techniques and on generic datasets.

On the positive side, the evaluation of RadViz++ was done on
large, complex, high-dimensional real-world datasets consisting of
hundreds of dimensions and thousands of observations. Within this
context, RadViz++ has shown to fulfill the visual-analysis require-
ments identified for radial-class visualizations better than other
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visualization techniques in the same class. After such validation,
we conclude that RadViz++ could be used to tackle R4 directly,
further exploring the relations between time-series and phase-space
features.
Additionally, we investigate how to explore different phase spaces

simultaneously using t-SNE. The idea was to visualize interesting
patterns related to how phase spaces are similar to each other as
function of the embedding parameters, and how entropy correlates
with different phase spaces. However, a clear pattern was not found
in this analysis. From the current results, it is not possible to say if
the observed correlations and structures in the set of phase spaces
would hold for any (or at least, a large class of) Dynamical Systems.
We acknowledge that this topic is under-explored, and future re-
search is needed to consolidate and refine insights in this direction.
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9EST IMATING EMBEDDING PARAMETERS
US ING NEURAL NETWORKS

9.1 initial considerations

As outlined at numerous points in this Ph.D. thesis, the estimation
of an optimal embedding, captured by the embedding dimension
m and time delay τ parameters, is of paramount importance for all
subsequent applications that use a phase-space representation to
deal with dynamical systems, e.g., classification, regression, or vi-
sual exploration. Estimating m and τ is challenging. Chapter 4 dis-
cusses many methods to this end, none of which is ideal. Chapter 5
explores this topic even further, showing the correlation between
optimal embeddings and low entropy, but does not put forward a
definitive solution to the estimation problem.
In this chapter, we examine a different set of mechanisms, based

on deep learning, for addressing the optimal embedding estimation
problem. That is, we explore the research question:

RQ5. “Can neural networks estimate Takens’ embedding pa-
rameters?”

Before we proceed with detailing our deep-learning approach to
embedding estimation, we should first argue why deep learning
should be considered in this context. First of all, let us state the
arguments against it: despite the effectiveness of neural networks in
time-series forecasting (Chakraborty et al., 1992; Han and Wang,
2013; Firmino et al., 2014), such approaches should only be con-
sidered as a last resource, when there is no deterministic way to
tackle a given problem. The main reason for this is that there is no
detailed knowledge of what is precisely happening inside a neural
network while it is learning. Although some researches have tried
to derive and show information about the learning process using vi-
sualization methods (Zeiler and Fergus, 2014; Rauber et al., 2017),
it is still very hard to know what has led the neural networks to
converge to an acceptable risk and, hence, whether the network
has learned properly the task at hand.
Nonetheless, this context represents exactly our case: we do not

know which is the best set of attributes to define the phase space
– apart from Takens’ theorem which outlines maximal bounds for
the embedding parameters, but not which are optimal values for
these. Moreover, such optimal parameters vary in ways we do not
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know how to model across different phenomena. However, deep
learning was designed precisely with the aim of capturing patterns
and similarities which do exist in the data but which are hard
to describe by a set of explicit rules. Hence, we argue that using
deep learning to capture optimal embedding parameters is a valid
investigation proposal.
In this chapter, we propose a deep learning approach to esti-

mating the embedding parameters with the following contributions
with respect to existing state-of-the-art approaches:

R1. few user-defined parameters and settings involved in the
embedding estimation process;

R2. low sensitivity and complexity in performing searches on
the space of parameters;

R3. robust validation against ground-truth datasets.

The structure of this chapter is as follows. Section 9.2 discusses
the terms and concepts behind deep learning relevant to our con-
text, as well as related work from the perspective of requirements
R1–R3 on the usage of neural networks for phase-space reconstruc-
tion. Section 9.3 introduces our deep-learning method. Section 9.4
demonstrates the proposed method for the estimation of embed-
ding parameters for several dynamical systems for which ground-
truth embedding is known. Section 9.5 concludes this chapter.

9.2 review of the related work

Despite the importance of Takens’ embedding theorem (Sec-
tion 2.4), the respective work does not provide any additional infor-
mation on how to estimate the embedding parameters, only that
a sufficient dimension m should be at least twice larger than d to
properly unfold the phase space (although this is usually an over-
estimation). Several methods were proposed to estimate m and τ
under the assumption they are independent or bounded to the time-
delay window tw = (m− 1)τ . For a broader related work overview,
refer to Chapter 4.
Early methods (Albano et al., 1987, 1988; Abarbanel et al., 1993)

used ACFs (Section 4.2.1.1) to estimate τ , which have limited mod-
eling abilities given that only linear functions are used. Fraser and
Swinney (1986) tried to overcome these issues by using the first lo-
cal minimum of the nonlinear AMI function over different time de-
lays (Section 4.2.1.2). This simple approach respects R1 and R2 as
it scarcely contains any parameters. Nonetheless, Martinerie et al.
(1992) empirically observed that neither ACF nor AMI were con-
sistent to estimate the time-delay window tw (and, as consequence,
a bound for τ), violating R3.
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Kennel et al. (1992) proposed the FNN method (Section 4.2.2.1)
to estimate the optimal embedding dimensionm. By using the time
delay τ estimated using AMI, FNN reconstructs a time series using
different dimensions while computing the index set of the k-nearest
neighbors (Mucherino et al., 2009) for each phase state. The best
value for m is defined as the one for which the fraction of nearest
neighbors remains constant as the dimension increases. In spite of
being simple and requiring an acceptable number of parameters
(thus, satisfying R1), this method is very sensitive to the choice of
τ and noise, counterposing R2 and R3.
Rosenstein et al. (1994) employed the AD measure (Sec-

tion 4.2.1.5) to gauge the inverse relation between the redundancy
error and the attractor expansion as a function of the time delay.
They observed that AD increases until it reaches a plateau, indicat-
ing the attractor is sufficiently expanded. However, non-negligible
errors are typically introduced while analyzing general systems (Ma
and Han, 2006), which goes in disagreement with R3; similarly to
FNN, this method involves Monte Carlo simulations (Rubinstein
and Kroese, 2007) while scanning the space of parameters, failing
R2.
The expansion of an attractor can be also described in terms of

the spreading rate of its phase states, i.e., as function of its singular
values. In this context, Kember and Fowler (1993) proposed SVF
(Section 4.2.1.4) to estimate the time delay when the attractor
is maximally spread out, which ideally should happen when all
eigenvalues are equal. As this is unlikely to occur for real-world
scenarios, the time delay τ yielding the minimum SVF was defined
as the most adequate to represent the phase space. In summary,
this method is simple and demands no parameters to compute,
which satisfies R1 and R2. However, despite SVF shows consistent
results for different dimensions, as recently reinforced by a modified
version (Chen et al., 2016), it may not properly work for attractors
with genus (number of voids in the manifold) greater than 1, thus
it does not fully meet R3.
Gautama et al. (2003) realized that a deterministic attractor

should have a well-formed structure and, therefore, low entropy.
Thus, they proposed ER (Section 4.3.4), a method based on mini-
mizing the ratio between the entropy from the phase spaces of the
original series and a set of surrogates, providing a function simi-
lar to the Minimum Description Length (Rissanen, 1978). In this
scenario, R2 is not held as the method needs to reconstruct the
phase space for all parameter combinations in order to assess the
minimum ER. In addition, no consistency was achieved for such
approach either (failing R3). As also discussed in Chapter 5, en-
tropy is not a unique descriptor and might not be the best feature
to characterize phase spaces.
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In spite of several studies involving the prediction of time series
through the usage of neural network models (Chakraborty et al.,
1992; Karunasinghe and Liong, 2006; Bhardwaj et al., 2010; Han
and Wang, 2013), to the extent of our knowledge, only two of these
approaches attempted to estimate m and τ , as follows.
The first approach (Karunasinghe and Liong, 2006) (Sec-

tion 4.3.6) selected the set of embedding parameters over a densely-
sampled range of values based on forecasting accuracies, which vi-
olates R2. In addition, their results were overestimated for ground-
truth datasets, failing R3.
The second approach (Manabe and Chakraborty, 2007) proposed

a more consistent strategy for estimatingm and τ without the need
of exhaustive comparisons. They start using FNN and AMI to set
the maximum embedding bounds (MEB), i.e., the greatest values
for m and τ respectively, referred from now on as mmax and τmax.
The phase state is then reconstructed in the Provisional Embedding
Vector (PEV) form, as follows

φ(t) = [x(t), x(t+ 1), x(t+ 2), · · ·x(t+ (m− 1)τ)], (9.1)

so that |PEV| = (m− 1)τ + 1 components are taken into account.
Note that this approach is different from the Standard Embedding
Vector (SEV) presented in Equation 2.15, rewritten below for clar-
ity

φ(t) = [x(t), x(t+ τ), x(t+ 2τ), · · · , x(t+ (m− 1)τ)]. (9.2)

It is worth to mention that the subindex i on each phase state
(and, as consequence, on the phase space Φi), typically employed
so far in this thesis to refer to the time series Ti, was omitted in the
two equations above. This is because more variables are required to
explain the neural network architecture, so that variable i will have
a different meaning in the remainder of this chapter. This should
not cause any confusion, as this chapter assumes that observations
(samples) are derived from a single phenomenon with no concept
drift or influences of surrogate data.
Next, the PEV vector is used as input layer to be propagated

to a hidden layer (the number of neurons were not detailed by the
authors), and next to a single output neuron to forecast ρ steps
ahead, in the form

fNN(φ(t)) = x(t+ (m− 1)τ + ρ), (9.3)

where fNN : RPEV → R1 is the neural-network predictive map-
ping. After the network converges, embedding parameters were
estimated directly from the network architecture. Moreover, the au-
thors performed learning with forgetting, hidden unit clarification,
selective learning and pruning heuristics during training in attempt
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to provide a final skeletal network, so m and τ were computed
based on the most relevant (largest absolute magnitudes) weights
connecting input-to-hidden layers. Nonetheless, this approach re-
quires various thresholds and parameter settings that increase the
modeling complexity and chances of overfitting (violating R1 and
R2). Finally, no test was performed on more complex datasets such
as the Lorenz and Rössler systems, so that R3 was not fully cov-
ered.
From our point of view, the main contribution of Manabe and

Chakraborty (2007) (referred to from now on as MC) was to inferm
and τ without explicitly defining any phase-space features. Hence,
phase-space inconsistencies such as expansion rate, noise, genus,
and redundancy are disregarded in their approach. On the other
hand, the method is complex, as it requires expensive Monte Carlo
simulations for determining parameter values and, finally, it yields
to different results for multiple runs on the same input due to the
random weight initialization.

9.3 proposed method

In this section, we introduce our estimation method and compare
its differences and improvements against MC, which is the most
similar study found in the literature. Firstly, we describe our net-
work architecture and its settings (Section 9.3.1) to next discuss
how m and τ can be confidently inferred from this proposal (Sec-
tion 9.3.2).

9.3.1 Network Architecture And Settings

Our model is based on a fully-connected three-layer neural net-
work trained using the backpropagation algorithm (Figure 9.1).
The triple (N,L,M)1 represents the number of input, hidden, and
output neurons, respectively. Similarly to MC, our architecture is
based on PEV to forecast a single observation so that M is always
set equals to one. In contrast to MC, however, we restrict our input
layer to N = |PEV| − 1 neurons and force the last PEV observa-
tion to define the class label to be used by the output layer, such
that always ρ = 1 (Equation 9.3) in our architecture. Despite a
small detail, such restriction is important to avoid overfitting with
respect to the butterfly effect (Brock et al., 1992). In those cases,
a recursive forecasting should be used as discussed in Chapter 5.
In addition, we explicitly set L = log(N) + 1 to probabilistically

ensure the algorithm search space (a.k.a. bias) is in parsimony with

1 The variable N , commonly used so far to indicate the number of states in the
phase space, as a different meaning in this chapter.
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the Bias-Variance Dilemma (Section 5.2). In other words, by loga-
rithmically increasing L, we simultaneously avoid underfitting (the
search space gets bigger and more functions can be used to fit data)
and overfitting (it grows in a moderate pace based on the number
of input neurons, which holds the model complexity).

Figure 9.1: Architecture of our three-layer neural network. Terms wij
and wjk represent input-to-hidden and hidden-to-output
weights, respectively.

Moreover, our architecture includes learning with forgetting by
using the following cost function

C = min
φ(t)∈Φ

∑
t

E(φ(t)) + λ
∑
eij∈K

|wij |

 , (9.4)

in which E(φ(t)) is the error function given the input state φ(t),
wij is the weight for edge eij , and K is the set of all (N × L)
input-to-hidden network edges. Parameter λ sets the trade-off be-
tween weight minimization and accuracy performance. In such cir-
cumstance, the MC method chooses λ based on the Relative Nor-
malized Score (RNS) and Monte Carlo simulations. However, our
experiments suggest this step is not necessary, since a strong for-
getting threshold λ = 10−3 is enough to deliver relevant results
(Section 8.5).

Moreover, our model simplifies MC as it does not depend on hid-
den unit clarification, selective forgetting or pruning heuristics. By
removing such elements, the training stage became faster and more
robust as it required smaller search spaces while being less prone
to overfitting. Training was performed until cost C (Equation 9.4)
reached a predefined threshold Cmax or a maximum number of
epochs g (in our experiments, those parameters were set as 0.001
and 500, respectively).
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Lastly, we normalized our data in range [0, 1], such that our
network weights were randomly initialized using 10% of this range.
In other words, rather than taking the typical weight range [−1, 1],
as we suppose MC did as there is no additional information on this
matter, we considered just the interval [−0.1, 0.1] to bring solutions
closer to the quasi-convex region of the squared-error surface as
analyzed in (de Mello and Moacir, 2018) (this makes even more
sense given our data normalization). In practice, this initialization
strategy was confirmed to provide better accuracy results than the
most typical range of [−1, 1]. Table 9 lists our settings and compare
them against MC, including the momentum rate α and the step
size η, both employed by the gradient descent method.

Table 9: Network settings (n/a refers to missing information).

Parameter
Method MC Ours

Number of input neurons N |PEV| |PEV| − 1

Number of hidden neurons L n/a logN + 1

Number of output neurons M 1 1

Step size η 0.1 0.1

Momentum rate α 0.2 0.2

Forgetting parameter λ set by RNS 0.001

Number of epochs g 50000 500

Maximal error tolerance Cmax n/a 0.001
Interval of random weights n/a [-0.1, 0.1]

Our only free parameter is then the size N of the input layer
that, in contrast to MC, it was defined in advance using FNN and
AMI estimations. In that sense, the MC approach will work well
only when FNN and AMI overestimate the embedding parame-
ters. However, in case those methods underestimate m and τ , the
Provisional Embedding Vector (PEV) may be too short, result-
ing in a poor architecture and in not enough information to learn
about the underlying phenomenon. As an alternative, we propose
to use smaller-to-medium values for MEB to analyze both how
the dataset and the network behave for different embeddings (see
Section 9.4.3).

9.3.2 Visual Inspection Of Embedding Parameters

From a local perspective, each of the N input neurons of our neural-
network architecture corresponds to an observation of the PEV.
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From a global point of view, however, each input neuron can be
seen as a dimension of a representative basis. As our neural network
is fully connected, we measured the relevance of each dimension
i ∈ [0, N ] in terms of the sum Ii =

∑L
j=1 wij , in which wij is

the weight associated with the connections between the ith input
neuron to the jth hidden neuron. Such relevance can be depicted by
a bar chart, in which the length of the ith bar maps the magnitude
Ii of a given input neuron i (Figure 9.2).

0.
5

1.
5

2.
5

Figure 9.2: Bar chart representing the relevance of input dimensions.
Each bar corresponds to the sum Ii of connection weights
wij , given the input neuron i, to every hidden neuron identi-
fied with j. The dashed-blue and solid red lines illustrate the
thresholds εmax and εmin respectively, both used to determine
the embedding parameters, which were set as (m, τ) = (2, 7)
in this example. For simplicity, indexes I1, · · · , IN are not
shown in future plots.

We next use this bar chart to select the embedding parameters
m and τ inferred from our network model, as follows. Firstly, we
consider all dimensions (at least two) whose relevance exceeds a
quantile measure of εmax = 80% over all I1≤i≤N , as relevant enough
to represent parameter m. Secondly, distance |j − k| results in the
time delay τ which corresponds to the lag between the most and
the least relevant terms Ij and Ik, respectively. Notice Ik is not sim-
ply associated with the smallest value, but with the least relevant
dimension that lies above a minimum threshold of εmin = 10% of
Ij . If no delay is found, we set τ = 1 as, in practice, it is the small-
est possible value for the time delay. It is worth to mention that,
despite εmax and εmin are free parameters that should be modified
based on the search space, we suggest to set them as 80% and 10%
respectively, based on experimental analysis.
In summary, our method contributes to the related work in the

sense that it does not require any specific definition on phase-space
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features (such as rate of expansion, number of false neighbors, en-
tropy, etc.) to estimate the optimal m and τ . As we propose, the
neural network learns those properties while training on forecasting
errors, and we select the embedding parameters based on the final
architecture. On the other hand, despite our proposal shares simi-
larities with MC, we simplified the training process, improved the
network architecture and settings, proposed a different approach
to estimate m and τ from such architecture, and performed more
complex experiments regarding variations on the search space.

9.4 experiments

We performed experiments to assess our method in light of the re-
quirements R1–R3 (for more details, see Section 9.1). Next, we in-
troduce the datasets used in the evaluation process (Section 9.4.1),
while we discuss the obtained results and aspects of our proposal
from Section 9.4.2 to Section 9.4.5.

9.4.1 Datasets

In attempt to validate our method, we considered four benchmark
datasets, namely Logistic map (Section 3.2.2), Hénon map (Sec-
tion 3.2.3), Lorenz system (Section 3.3.1), and Rösler system (Sec-
tion 3.3.2). The systems were generated using a sampling rate of
0.01 (we assumed a sampling rate that preserves the dynamics of
the trajectories). Those datasets were chosen because their respec-
tive generating rules R(·) are known, and their expected attractors
can be fairly compared from the perspective of our approach. Addi-
tionally, we consider the Sunspot dataset (Section 3.2.5) to support
an empirical analysis based on real-world data. Although there is
no ground truth for this last dataset, there is strong evidence that
its attractor follows an ellipsoid structure as discussed by Pagliosa
and de Mello (2017). Finally, a discussion about how our method
behaves while analyzing stochastic data, following a Normal distri-
bution, is also performed.
We do not replicate the datails about used datasets (already de-

scribed in Chapter 3) but simply show their expected embedding
parameters and the values predicted by existing methods (when-
ever available) in Table 10. The embedding dimensions and time
delays were defined as single or multiple possible values accord-
ing to the extensive analysis provided in the related work (Rössler,
1976; Tucker, 1999; Robledo and Moyano, 2007, etc.). It is also im-
portant to mention that the results obtained with FNN were only
properly estimated after using the ground-truth values for the time
delay, depicting a clear limitation. Whenever τ was computed using
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AMI, as usually performed in conjunction with FNN, the expected
embedding dimension m was hardly ever found.

Table 10: Comparison of embedding parameters (m, τ). From left to
right: datasets tested, ground truth (expected values according
to the generating rule), results given by existing methods and
ours. As one may notice, some methods either only estimatem
or τ , whereas ER, MC, and ours estimate both. Terminology
n/a denotes datasets without a known ground truth (column
2) or which were not handled by MC (column 8).

Series Expected AMI FNNADSVF ER MC Ours
(m, τ) (τ) (m) (τ) (τ) (m, τ) (m, τ) (m, τ)

Logistic (2–3, 1) 13 2 3 1 (2, 1) n/a (2, 1)
Hénon (2–4, 1) 12 3 3 1 (3, 1) (2–3, 1–5) (2,1)
Lorenz (2–3, 5–12) 17 2 14 55 (5, 1) n/a (3, 8–12)
Rössler (3, 5–12) 13 2 11 10 (5, 1) n/a (3, 5)

Sunspot n/a 6 3 10 59 (2, 1) (2–4, 1–7) (2, 1)

All time series were composed of 1, 000 observations. We used a
5-resampling validation criterion in all experiments, always taking
75% of data for training and the remaining 25% for testing.

9.4.2 Logistic And Hénon: Consistency Along Resamplings

One of the drawbacks of neural networks is the output of differ-
ent results owing to the random weight initialization. While this
aspect is less important for pure classification or regression tasks,
it becomes crucial when information is extracted from the network
architecture, as in our case (Section 9.3.2).
We have tested that our approach yields consistent results for

different datasets and different initializations, reinforcing that a
stable pattern is being learned. Figure 9.3(a–e) show the relevances
while running the network for five resamplings on the Logistic map.
In this circumstance, we considered the search space provided by
(mmax = 5, τmax = 3).

Figure 9.3(f) shows the average of the five resamplings. Here
and next, box plots (McGill et al., 1978) are drawn on each bar to
indicate the variance of relevances along resamplings. Very similar
results were obtained for the other datasets (not included to avoid
redundancy). By analyzing Figure 9.3 while using the threshold
procedure outlined in Section 9.3.2, we observe that all resamplings
suggest, with high confidence as made evident by narrow box plots,
an embedding dimension m = 2 and time delay τ = 1, matching
the ground truth as desired (Table 10).
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Figure 9.3: (a–e) Results of five resamplings for the Logistic map. (f)
Aggregation of the five resamplings. The maximum embed-
ding dimensions, or MEB, were set as (mmax = 5, τmax = 3).

In order to reinforce the robustness of our method with respect
to network initialization, we performed three experiments with the
Hénon map, using three different random strategies, as outlined in
Section 9.4.1. In all situations, we defined the search space using
(mmax = 4, τmax = 4). Figure 9.4 shows the plots of aggregated
importance for these experiments. One may notice very similar
relevances and almost the same embedding parameters, regardless
the initialization.

9.4.3 Lorenz: Consistency Along The Search Space

The Lorenz series is produced from a nonlinear system which is
more complex than the Logistic and the Hénon maps. This dataset
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Figure 9.4: Results for the Hénon map under three different initializa-
tions. Respective estimatives from (a–c): (2, 4), (3, 4), (3, 4).

is used to study the robustness of our method with respect to
variations in the search space. In this sense, as the search space in
our case is represented by the number of input neurons, we ran our
network under different MEB parametrizations (mmax, τmax) and
analyzed how predictions (m, τ) varied under such conditions. All
other network settings remained the same as discussed in Table 9.
The experiment results, shown in Figure 9.5, reinforce that ex-

cessively small MEB values may create a network whose archi-
tecture is not big enough to capture the system dynamics (Fig-
ure 9.5(a)). Conversely, similar values of embedding parameters
can be estimated when smaller-to-medium values of MEB are used
(Figure 9.5(b-d)). On the other hand, by excessively increasing the
search space, it is more difficult to find a clear set of parameters
(m, τ) as the model captures more disturbances especially in non-
linear systems such as Lorenz. In such cases, in attempt to obtain
a highly confident estimation for (m, τ), one needs to increase the
threshold εmax from our model, as illustrated in Figure 9.5(e,f),
where we have increased the upper threshold εmax to 90% and
65%, respectively.
The experiment also suggests that the range of MEB is an im-

portant parameter, but no crucial for the estimation. After apply-
ing our method for smaller-to-greater values of MEB, we can see
that the network architecture led to similar patterns especially in
middle-range values (Figure 9.5(b-d)). This goes in accordance to
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the Bias-Variance Dilemma, which states that one should choose
an algorithm bias that is not too restricted (prone to underfitting)
nor too relaxed (where complex functions will tend to overfit/mem-
orize the data). For general systems, we suggest at first to use typ-
ical (according to the related work) values of MEB that lead to
|PEV| − 1 = [12, 30] input neurons.
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Figure 9.5: Robustness of the estimation of embedding parameters as
function of the initial search space (mmax, τmax). From (a–
f), MEB are: (3, 3), (5, 3), (7, 2), (3, 8), (6, 6), (8, 8). Respec-
tive estimated parameters: (2, ), (3, 8), (3, 9), (3, 11), (3, 11),
(3, 13).

In addition, as the network was trained using a different num-
ber of inputs (maximum embedding bounds) and its architecture
still led to similar outputs of m and τ , this experiment suggests
that even using different embeddings, the neural network is robust
enough to converge to the Lorenz dynamics (Figure 2.3(b)). This
goes in accordance the claiming that m and τ are bounded by the

171



estimating embedding parameters using neural networks

time delay window tw, and that several tuples (m, τ) can be used
to unfold the attractor.

9.4.4 Rössler: Forecasting Accuracy

Besides comparing the estimated embedding parameters with
known ground truth, a different way of assessing the performance
of the proposed neural network is by predicting data. We conducted
such strategy using the Rössler dataset, another well-known bench-
mark in the context of Dynamical Systems (Rössler, 1976). Starting
with an initial search space set in form (mmax = 4, τmax = 5), we
obtained the embedding parameters (m = 3, τ = 6) as shown in
Figure 9.6(a). We refer to Section 9.3.2 for details about the blue
and the red lines defining upper and lower bounds to support the
selection of embedding parameters.
Complementary, Figure 9.6(b) shows the predicted (blue-solid)

vs the expected (black-dashed) series for a single observation fore-
casting under 250 time steps. The image shows the forecasting
using the last k-folded network. As it can be seen, the experiment
suggests the network was capable to reveal the dynamics of the
dataset.
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Figure 9.6: Results for the Rössler system. (a) Relevance of input neu-
rons. (b) Comparison of the 250 forecasted (solid-blue) and
expected (dashed-red) observations.

Moreover, despite the forecasted series recovered trends and peri-
odicities, it is worth to mention that our model fails to predict fur-
ther observations following the butterfly effect (Brock et al., 1992),
i.e., when a predicted observation is fed in a recurrent fashion to
the dataset to be used as a new query. Such behavior is expected as
our neural-network architecture was built to predict a single obser-
vation in the future. Figure 9.7 shows the result, where the black-
dashed line is the original series and the red line illustrates our
forecasting. In that case, we recommend to use our method to esti-
mate the embedding parameters, reconstruct the phase space and
apply a different regression model to recursively predict the series.
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For instance, the blue line in Figure 9.7 shows the recursive fore-
casting using the Distance-Weighted Nearest Neighbors (DWNN)
(Equation 5.10) applied over the embedding (m = 3, τ = 6). As it
can be seen, results are better within the prediction horizon, i.e.,
the initial set of observations that can be recursively predicted un-
der some confidence level (Sano and Sawada, 1985; Alligood et al.,
1996).
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Figure 9.7: Recurrent forecasting of the Rössler system. The dashed-
black line indicates the original time series. The solid red line
represents the forecasting of our model, where as the solid
blue line shows the forecasting results provided by DWNN
under a phase space reconstructed using our estimation.

9.4.5 Sunspot And Normal Distribution: Analyzing Real-World
And Noisy Data

In our last experiment, we evaluated the effectiveness of our
method on the Sunspot series (Andrews and Herzberg, 1985), a
dataset formed with real-world observations, having a fragment of
it illustrated in Figure 9.8(a). In this situation, nothing is known
about the series generating rule R(·) and no ground truth is avail-
able for assessing the quality of the estimated embedding param-
eters. In those scenarios, one can rely on the visual analysis and
properties of both time series and embeddings (only seeing the first
two or three dimensions of it) in attempt to validate the parameter
estimation by their similarities to other well-known datasets.
Using our network approach on Sunspots with an initial search

space (m = 4, τ = 3), we found the embedding parameters
(m = 2, τ = 1), as illustrated in Figure 9.8. This estimation is
also reinforced by the fact that the Sunspot dataset contains sinu-
soidal characteristics, as it was already discussed in Section 3.2.5.

As a consequence of analyzing real-world datasets, we also con-
sider a pure-randomly generated time series following a Normal
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Figure 9.8: Relevance of dimensions for the Sunspot dataset.

distribution N (µ = 0, σ2 = 1), where µ and σ correspond to
the mean and the standard deviation, respectively. Here, we esti-
mated embedding parameters using an initial search space defined
as (mmax = 5, τmax = 5). Figure 9.9 shows the results. As one may
notice, there is no trivial way to select a subset with the most rele-
vant dimensions (which would provide m), nor a manner to point
out a minimum below εmin (which would give us τ). Moreover, the
variance of relevances is very large for most dimensions, which goes
in accordance with Chaos Theory (Alligood et al., 1996). In those
circumstances, it is expected that the attractor of stochastic series
is fully spread all over the embedding space in some hyperspherical
organization (de Mello and Moacir, 2018), such that m is always
equal to the maximum embedded dimension.
As a last experiment, we test the robustness of our method af-

ter adding Normal-based noise of N (0, {0.22, 22, 42}) to the Lorenz
system (similar results were obtained for other datasets), using a
network with MEB (mmax = 4, τmax = 5). Figure 9.10 illustrates
the results. For relatively low amount of noise (σ = 0.2), our
method is still capable of recovering the phase-space dynamics,
finding (m = 3, τ = 10) as embedding parameters, as shown in
Figure 9.10(a). As the signal-to-noise ratio decreases, i.e., as the
amount of noise increases, the estimation got twisted (as expected),
leading to a estimation of (m = 2, τ = 3) and (m = 2, τ = 5) for
σ = 2 and σ = 4, respectively. It is worth to mention, however,
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Figure 9.9: Relevance of dimensions for data produced using the Normal
distribution N (0, 12). There is no evident manner to select
the embedding parameters (m, τ) in this specific scenario.

that this problem leads to different inconsistencies when compared
to variations on the search space (Section 9.4.3). There, even when
too much dimensions were involved in the training, the variance
on the box plots remained low for most of the dimensions. Here,
the opposite scenario is observed: box plots show great variations
in their quantiles even for few dimensions. Therefore, this experi-
ment also shows that box plots are not just useful to show if the
network has converged to solution, but also to qualitatively mea-
sure the amount of randomness in the time series. In such context,
estimations from Figure 9.10(b) and Figure 9.10(c) are not trust-
worthy due to high variances over dimension relevances. Moreover,
in those cases, its better to first filter the dataset to later proceed
with further analysis.

9.5 final considerations

Several statistical approaches from the literature support time-
series analyses, especially in terms of forecasting (Box and Jenkins,
2015). However, these cannot deal with complex and chaotic data.
Dynamical Systems tackle such a problem by reconstructing time
series into phase spaces, unveiling the relationships among obser-
vations, consequently leading to more consistent models. Methods
have been proposed for the reconstruction of phase spaces by esti-
mating the embedding parameters m and τ , following Takens’ em-
bedding theorem (Takens, 1981). As a main drawback, those meth-
ods rely on predefined measurements to compare different phase
spaces and estimate the most adequate after analyzing a set of
possibilities.
As an alternative, we proposed in this chapter the usage of an

artificial neural network with a forgetting mechanism to implicitly
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Figure 9.10: From (a) to (c), our model estimated (m = 3, τ = 10),
(m = 2, τ = 3) and, (m = 3, τ = 5) after adding
N (0, {0.2, 2, 4}) to the Lorenz system.

learn the embedding parameters while mapping input examples
to their expected outputs. Despite similarities that our approach
share with the method of (Manabe and Chakraborty, 2007), our
method is simpler in the sense that it does not require hidden
unit clarification, selective learning, or pruning heuristics during
training. The single parameter our approach requires is the
maximum embedding bound (MEB), which is used to define the
length of the input layer. Moreover, we rely on a different normal-
ization of initial weights, as well as a different criterion to define
relevant dimensions, thus positively impacting the estimations of
m and τ . We have performed experiments to assess the sensitivity
of our approach to different random initializations and search
space settings. As made evident throughout the experiments, our
method achieved robust and consistent results for several datasets
and MEB values.

In conclusion, we claim to have positively answered research
question RQ5: neural networks can be used to estimate
the embedding pair.

Several possible improvements to our work exist, as follows. First,
one can attempt to tackle the butterfly effect (Brock et al., 1992) by
proposing a network to output recursive forecasting in a more ro-
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bust way. Secondly, as usual in deep learning, more data (available
by considering more dynamical systems for which ground-truth
embedding information is available from domain experts) can be
used for training, thereby likely leading to networks that generalize
better and across a larger palette of time-dependent phenomena.
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10CONCLUS ION

We now summarize the main findings on the research work de-
scribed in this thesis, as follows.
Firstly, we have explored the relationship between entropy and

the independence of phase states (Chapter 5). For this, we relied
on the Statistical Learning Theory (SLT) framework (Section 5.2)
to show some phase spaces (embedding with different parameters
m and τ) led to better learning models after applying the same
regression function. Further, as SLT requires the input space to be
formed by independent-and-identically-distributed (i.i.d.) data, we
empirically show that phase states have satisfied such an assump-
tion after testifying generalization. For this study, it was assumed
data to come from a controlled environment. Furthermore, we stud-
ied the correlation of entropy with different types of embeddings,
both numerically (Chapter 5) and visually (Chapter 8). Although
we found that optimal embeddings do have a low entropy, the rela-
tion was not one-to-one. For example, we found that very different
embeddings from the known optimal one can also have low entropy
levels. This raises the question of what is, actually, a good definition
of an optimal embedding. Intuitively, one would say that determin-
istic systems generally have well-designed structures in the phase
space, as one state maps to a single other in the future. Conversely,
stochastic processes tend to have phase states spread all over the
phase space, such that such patterns are rarer to happen. However,
as outlined above, we could not find a one-to-one correspondence
between the distance from an optimal embedding and the entropy
level. This means, also, that using entropy as a criterion to com-
pute the parameters of an optimal embedding is a very difficult, if
even possible, task.
As part of our studies concerning chaos theory and dynamical

systems, we wanted to prove the effectiveness of phase space mod-
els. We have performed experimental analysis in the context of time
series semi-supervised classification, where we have compared time
series and phase space methods using self-learning methods (Chap-
ter 6). As shown there, our method based on state spaces yields
more accurate results than state-of-the-art methods. As such, this
strengthens our belief that modeling dynamical systems via their
(optimal or near-optimal) embeddings in phase space is a useful
proposition.
We next revisited the context of the SLT, aiming to come up

with a set of criteria and methodology for qualitatively assessing

179



conclusion

how well learning is ensured by algorithms that attempt to detect
concept drift in data streams (Chapter 7). We adapted the SLT to
account for this more challenging type of data (as compared to time
series drawn from a single phenomenon) and next evaluated sev-
eral state-of-the-art concept-drift-detection algorithms. Saliently,
our evaluation showed that no algorithm (from the studied ones)
fully complies with our criteria, thus can ensure learning. This re-
sult points out some limitations of existing concept drift detection
methods (which should be overcome by future research), although
it also provides a new theoretical framework to evaluate all such
algorithms in a principled way.
On a more practical side, we examined the challenge of getting a

visual insight into large high-dimensional datasets such as created
by our time series. We proposed RadViz++, a visual exploration
tool that overcomes several limitations of existing data visualiza-
tion tools based on the radial metaphor (Chapter 8). We validated
this tool on several real-world high-dimensional datasets. Next, we
tried to visually explore (in another proposal) the set of phase
spaces generated by various embeddings. Our exploration revealed
several interesting (though, complex to interpret) patterns, and cor-
related positively with the difficulty of fully characterizing optimal
embeddings by low entropy levels.
Finally, we turned back to the problem of estimating optimal em-

beddings, and used artificial neural networks to address this task
(Chapter 9). The proposed approach is simple to implement, fast to
execute, has only a few parameters, and yields values for the opti-
mal embedding parametersm and τ which are very close to ground-
truth values stated by the literature. Given these results, and the
simplicity of our approach, we argue that exploring more refined
deep-learning architectures is a promising way forward phase-space
reconstruction.
Several future work is possible based on our results. From a

theoretical viewpoint, it is interesting (and valuable) to further ex-
plore the relationship between entropy and optimal embeddings.
By defining what an “optimal” embedding is (which may be a
problem-specific question to answer), we believe that stronger cor-
relations with entropy can be found. This aspect can benefit from
refining and extending our phase-space visualizations to e.g., show
not only how much two phase spaces are different, but what pre-
cisely makes them different. Along the same lines, methods to vi-
sually summarize large and complex trajectories in phase spaces
are of interest. Also, ways to visualize trajectories in phase spaces
having more than three dimensions, e.g., by the suitable use of
dimensionality reduction, are an interesting extension to consider.
At the practical endpoint, using different models fed by state-space
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features could improve the classification and prediction of time se-
ries, better than with the current methods employed in this thesis.
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