
V I S UA L A N A LY T I C S A P P L I E D T O I M A G E A N A LY S I S

paulo eduardo rauber

From Segmentation to Classi�cation

Cover: A two-dimensional classi�cation dataset and the corresponding
decision boundary learned by a kernelized soft-margin support vector
machine.

Visual Analytics Applied to Image Analysis
From Segmentation to Classi�cation

Paulo Eduardo Rauber
PhD Thesis

This thesis is the result of a joint PhD between the University of Cam-
pinas and the University of Groningen.

isbn 978-90-367-9288-2 (printed version)
isbn 978-90-367-9287-5 (electronic version)

Visual Analytics Applied to Image
Analysis

From Segmentation to Classi�cation

PhD thesis

to obtain the degree of PhD at the
University of Groningen
on the authority of the

Rector Magni�cus Prof. E. Sterken
and in accordance with

the decision by the College of Deans.

This thesis will be defended in public on

Monday 20 February 2017 at 16.15 hours

by

Paulo Eduardo Rauber

born on 29 October 1989
in Concórdia, Brazil

Supervisors
Prof. A.X. Falcão
Prof. A.C. Telea
Prof. P.J. de Rezende
Prof. J.B.T.M. Roerdink

Assessment committee
Prof. N. Petkov
Prof. M. Biehl
Prof. R. da S. Torres
Prof. C. Sminchisescu

Life is short,
and Art long;
the crisis �eeting;
experience perilous,
and decision di�cult.

— Hippocrates, Aphorisms, 400 BCE

v

A B S T R A C T

We de�ne image analysis as the �eld of study concerned with extracting
information from images. This �eld is immensely important for com-
mercial and interdisciplinary applications.

The overarching goal behind the work presented in this thesis is en-
abling user interaction during several tasks related to image analysis:
image segmentation, feature selection, and image classi�cation.

In this context, enabling user interaction refers to providing mecha-
nisms that allow humans to assist machines in tasks that are di�cult to
automate. Such tasks are very common in image analysis.

Concerning image segmentation, we propose a new interactive tech-
nique that combines superpixels with the image foresting transform.
The main advantage of our proposed technique is enabling faster inter-
active segmentation of large images, although it also enables potentially
richer feature extraction. Our experiments show that our technique is
at least as e�ective as its pixel-based counterpart.

In the context of feature selection and image classi�cation, we pro-
pose a new interactive visualization system that combines feature space
exploration (based on dimensionality reduction) with automatic feature
scoring. This visualization system aims to provide insights that lead to
the development of e�ective feature sets for image classi�cation. The
same system can also be applied to select features for image segmen-
tation and (general) pattern classi�cation, although these tasks are not
our focus. We present use cases that show how this system may pro-
vide a kind of qualitative feedback about image classi�cation systems
that would be very di�cult to obtain by other (non-visual) means.

We also show how our proposed interactive visualization system can
be adapted to explore intermediary computational results of arti�cial
neural networks. Such networks currently achieve state-of-the-art re-
sults in many image classi�cation applications. Through use cases in-
volving traditional benchmark datasets, we show that our system may
enable insights about how a network operates that lead to improve-
ments along the classi�cation pipeline.

Because the parameters of an arti�cial neural network are typically
adapted iteratively, visualizing its intermediary computational results
can be seen as a time-dependent task. Motivated by this, we propose a
new time-dependent dimensionality reduction technique that enables
the reduction of apparently unnecessary changes in results due to small
changes in the data (temporal coherence). Preliminary experiments
show that this technique is e�ective in enforcing temporal coherence.

vii

S A M E N VAT T I N G

Wij de�niëren beeldanalyse als het extraheren van informatie uit beel-
den. Dit veld is extreem belangrijk voor een scala aan commerciële en
interdisciplinaire toepassingen.

Gegeven dit veld, het hoofddoel van het werk in dit proefschrift dekt
de toepassing van gebruikersinteractie tijdens verschillende beeldana-
lyse taken zoals beeldsegmentatie, featureselectie en beeldclassi�catie.
In dit context refereert gebruikersinteractie naar mechanismes die men-
sen stelt in staat om machines te dienen voor moeilijk automatiseerbare
taken, zoals het vaak gebeurt in beeldanalyse.

Voor beeldsegmentatie stellen wij voor een nieuwe interactieve tech-
niek die superpixels combineert met de zogenaamde image foresting
transform. Het voordeel van onze techniek is dat het segmenteren van
grote beelden sneller gaat, met als extra waarde het extraheren van
potentieel rijkere features. Onze experimenten tonen dat onze techniek
tenminste zo e�cient is als haar pixel-gebaseerde alternatief.

Voor featureselectie en beeldclassi�catie stellen wij een nieuwe in-
teractieve visualisatiemethode voor die de exploratie van featurespa-
ces, gebaseerd op dimensionaliteitsreductie, combineert met automati-
sche feature-scoring. Ons systeem verstrekt inzichten die de ontwikke-
ling van e�ectieve featureverzamelingen voor beeldclassi�catie moge-
lijk maakt. Naarnaast kan ons systeem toegepast worden om featurese-
lectie te doen voor beeldsegmentatie en algemene patroonclassi�catie.
Wij demonstreren ons systeem door middel van use-cases die laten zien
hoe kwalitatief feedback over beeldclassi�catie te verkrijgen is dat zeer
moeilijk te verkrijgen is via andere (non-visuele) middelen.

Ons voorstel tot interactieve visuele exploratie kan ook aangepast
worden om intermediaire rekenresultaten van arti�ciële neuraalnetwer-
ken te ontdekken, die state-of-the-art resultaten bereiken ten opzichte
van beeldclassi�catie. Wij gebruiken traditionele benchmarks om te la-
ten zien hoe ons systeem inzichten verzamelt over de operatie van een
dergelijk netwerk, die leiden tot verbeteringen van een classi�catiesys-
teem.

Gegeven dat de parameters van een arti�cieel neuraalnetwerk ty-
pisch aangepast worden op een iteratieve wijze kan het visualiseren van
dergelijke intermediaire resultaten gezien worden als een tijdsafhanke-
lijk proces. Dit leidt ons tot het voorstellen van een nieuwe dimensio-
naliteitsreductietechniek voor tijdsafhankelijke datasets die onnodige
veranderingen in haar resultaten, veroorzaakt door kleine veranderin-
gen in haar inputs, minimaliseert (temporale coherentie). Experimenten
laten zien hoe deze techniek e�ectief is in het creëren van temporale co-
herentie voor dergelijke multidimensionale datasets.

viii

R E S U M O

Análise de imagens é o campo de pesquisa preocupado com a extração
de informações a partir de imagens. Esse campo é bastante importante
para aplicações cientí�cas e comerciais.

O objetivo principal do trabalho apresentado nesta tese é permitir in-
teratividade com o usuário durante várias tarefas relacionadas à análise
de imagens: segmentação, seleção de atributos, e classi�cação.

Neste contexto, permitir interatividade com o usuário signi�ca prover
mecanismos que tornem possível que humanos auxiliem computadores
em tarefas que são de difícil automação.

Com respeito à segmentação de imagens, propomos uma nova téc-
nica interativa que combina superpixels com a transformada imagem-
�oresta. A vantagem principal dessa técnica é permitir rápida segmen-
tação interativa de imagens grandes, além de permitir extração de ca-
racterísticas potencialmente mais ricas. Os experimentos sugerem que
nossa técnica é tão e�caz quanto a alternativa baseada em pixels.

No contexto de seleção de atributos e classi�cação, propomos um
novo sistema de visualização interativa que combina exploração do es-
paço de atributos (baseada em redução de dimensionalidade) com ava-
liação automática de atributos. Esse sistema tem como objetivo revelar
informações que levem ao desenvolvimento de conjuntos de atributos
e�cazes para classi�cação de imagens. O mesmo sistema também pode
ser aplicado para seleção de atributos para segmentação de imagens e
para classi�cação de padrões, apesar dessas tarefas não serem nosso
foco. Apresentamos casos de uso que mostram como esse sistema pode
prover certos tipos de informação qualitativa sobre sistemas de classi�-
cação de imagens que seriam difíceis de obter por outros métodos.

Também mostramos como o sistema interativo proposto pode ser
adaptado para a exploração de resultados computacionais intermediá-
rios de redes neurais arti�ciais. Essas redes atualmente alcançam resul-
tados no estado da arte em muitas aplicações de classi�cação de imagens.
Através de casos de uso envolvendo conjuntos de dados de referência,
mostramos que nosso sistema pode prover informações sobre como uma
rede opera que levam a melhorias em sistemas de classi�cação.

Já que os parâmetros de uma rede neural arti�cial são tipicamente
adaptados iterativamente, a visualização de seus resultados intermediá-
rios pode ser vista como uma tarefa dependente de tempo. Com base
nessa perspectiva, propomos uma nova técnica de redução de dimen-
sionalidade dependente de tempo que permite a redução de mudanças
desnecessárias nos resultados causadas por pequenas mudanças nos da-
dos. Experimentos preliminares mostram que essa técnica é e�caz em
manter a coerência temporal desejada.

ix

P U B L I C AT I O N S

This thesis is based on work that has appeared previously in the follow-
ing publications:

• P. E. Rauber, A. X. Falcão, T. V. Spina, and P. J. de Rezende. Inter-
active segmentation by image foresting transform on superpixel
graphs. In Proceedings of the 2013 XXVI Conference on Graphics,
Patterns and Images, SIBGRAPI ’13, pages 131–138, Washington,
DC, USA, 2013. IEEE Computer Society.

• P. E. Rauber, R. R. O. Silva, S. Feringa, M. E. Celebi, A. X. Falcão,
and A. C. Telea. Interactive Image Feature Selection Aided by Di-
mensionality Reduction. In EuroVis Workshop on Visual Analytics
(EuroVA). The Eurographics Association, 2015.

• P. E. Rauber, A. X. Falcão, and A. C. Telea. Projections as visual
aids for classi�cation system design, 2016. Submitted to Informa-
tion Visualization (IVI).

• P. E. Rauber, S. G. Fadel, A. X. Falcão, and A. C. Telea. Visualizing
the hidden activity of arti�cial neural networks. IEEE Transactions
on Visualization and Computer Graphics (Proceedings of the Visual
Analytics Science and Technology 2016), 23(01), January 2017.

• P. E. Rauber, A. X. Falcão, and A. C. Telea. Visualizing time-
dependent data using dynamic t-SNE. In EuroVis Short Papers,
2016. Honorable mention.

Other publications during the development of this thesis include:

• R. R. O. Silva, P. E. Rauber, R. M. Martins, R. Minghim, and A. C.
Telea. Attribute-based visual explanation of multidimensional
projections. In EuroVis Workshop on Visual Analytics (EuroVA).
The Eurographics Association, 2015.

• J. Koehoorn, A. Sobiecki, P. E. Rauber, A. Jalba, and A. C. Telea.
E�cient and e�ective automated digital hair removal from der-
moscopy images. Mathematical Morphology - Theory and Appli-
cations, 1, 2016.

• R. R. O. Silva, P. E. Rauber, and A. C. Telea. Beyond the third
dimension: Visualizing high-dimensional data with projections.
IEEE Computing in Science & Engineering, 18(5):98–107, 2016.

xi

publications

• R. R. O. Silva, E. F. Vernier, P. E. Rauber, J. L. D. Comba, R. Minghim,
and A. C. Telea. Metric evolution maps: Attribute-driven ex-
ploration of software repositories. International Symposium on
Vision, Modeling and Visualization (VMV 2016), 2016.

xii

C O N T E N T S

1 introduction 1
1.1 Image segmentation 2
1.2 Image classi�cation and feature selection 2
1.3 Image classi�cation by arti�cial neural networks 3
1.4 Time-dependent data visualization 3
1.5 Research question 4
1.6 Thesis structure 4

2 related work 7
2.1 Preliminaries 7
2.2 Image segmentation 10
2.3 Pattern classi�cation 11

2.3.1 K-nearest neighbors 13
2.3.2 Logistic regression 15
2.3.3 Support vector machines 18
2.3.4 Decision trees 22
2.3.5 Arti�cial neural networks 25

2.3.5.1 Multilayer perceptrons 26
2.3.5.2 Convolutional neural networks 31

2.4 Feature selection 34
2.4.1 Mutual information 35
2.4.2 Randomized logistic regression 36
2.4.3 Recursive feature elimination 38
2.4.4 Random forest scoring 38

2.5 High-dimensional data visualization 39
2.5.1 Table lenses 40
2.5.2 Scatterplot matrices 41
2.5.3 Parallel coordinate plots 41

2.6 Dimensionality reduction for visualization 42
2.6.1 Principal component analysis 43
2.6.2 Linear discriminant analysis 45
2.6.3 Multidimensional scaling 49
2.6.4 T-distributed stochastic neighbor embedding 50
2.6.5 Visualizing projections 51

3 interactive image segmentation using superpix-
els 57
3.1 Image foresting transform 58
3.2 Segmentation techniques 59

3.2.1 Superpixel-based segmentation 61
3.2.2 Pixel-based segmentation 65

xiii

contents

3.3 Experiments 66
3.3.1 Robot Users 66

3.3.1.1 Geodesic robot 66
3.3.1.2 Superpixel robot 67
3.3.1.3 Pixel robot 68

3.3.2 Results 69
3.4 Conclusion 72

4 interactive feature selection assisted by pro-
jections 75
4.1 Preliminaries 76
4.2 Related work 77
4.3 Proposed approach 78

4.3.1 T1: predicting system e�cacy 78
4.3.2 T2: improving system e�cacy 79
4.3.3 Visual analytics work�ow 80

4.4 T1: Predicting system e�cacy 80
4.4.1 Experimental protocol 80
4.4.2 Madelon dataset 83
4.4.3 Melanoma dataset 86
4.4.4 Corel dataset 89
4.4.5 Parasites dataset 91
4.4.6 Conclusion 92

4.5 T2: Improving system e�cacy 93
4.5.1 Proposed methodology and tooling 94
4.5.2 Madelon: relationship between relevant fea-

tures 96
4.5.3 Corel: class-speci�c relevant features 98
4.5.4 Melanoma: alternative feature scores 99
4.5.5 Parasites: importance of projection error mea-

sures 101
4.5.6 Proposed work�ow 102

4.6 Discussion 103
4.7 Conclusion 105

5 visualizing artificial neural networks using
projections 107
5.1 Preliminaries 108
5.2 Related work 110
5.3 Experimental protocol 111
5.4 T1: relationships between activations 114

5.4.1 MNIST: exploring e�ects of training 114
5.4.2 SVHN: interpreting visual clusters 116
5.4.3 CIFAR-10: interpreting confusion zones 121
5.4.4 Evolution of learned representations 122

5.5 T2: relationships between neurons 126

xiv

contents

5.5.1 MNIST dataset 126
5.5.2 SVHN dataset 127

5.6 Discussion 128
5.7 Conclusion 130

6 visualizing time-dependent data using projec-
tions 133
6.1 T-SNE 134
6.2 Dynamic t-SNE 134
6.3 Evaluation 137

6.3.1 Multivariate Gaussians 137
6.3.2 Hidden layer activations 139

6.4 Conclusion 140

7 conclusion 143
7.1 Image segmentation 143
7.2 Image classi�cation and feature selection 144
7.3 Image classi�cation by arti�cial neural networks 144
7.4 Time-dependent data visualization 145

bibliography 147

acknowledgments 161

xv

1I N T R O D U C T I O N

We de�ne image analysis as the �eld of study concerned with extracting
information from images. According to this de�nition, image analysis
is highly related to other large �elds of study, such as image processing
[53], computer vision [145], and pattern recognition [111].

Image analysis is immensely important for commercial and interdis-
ciplinary applications [31, 53]. Physics, engineering, and biology have
all bene�ted from its advancements.

In the last decades, signi�cant advancements have been made in sev-
eral image analysis tasks, such as image segmentation (Sec. 1.1) and
image classi�cation (Sec. 1.2). Despite these advancements, humans still
outperform machines in many seemingly simple tasks that require high
�exibility [145]. In general, if intelligence is de�ned as a measure of the
ability of an agent to achieve goals in a wide range of environments [90],
then cooperation between machines and users will remain relevant for
as long as machines lack human-level intelligence.

The overarching goal behind the work presented in this thesis is en-
abling user interaction in image analysis tasks. In this context, enabling
user interaction refers to providing mechanisms that allow humans to
assist machines in tasks that are di�cult to fully automate.

In particular, we advocate the use of visual analytics to incorporate
user expertise into the design and operation of image analysis methods.
In simple terms, visual analytics is a �eld of study concerned with the
application of interactive visualization techniques to assist in data anal-
ysis [78]. This �eld has recently been advocated as an e�ective solution
for analyzing black-box methods [110], which include many methods
employed in image analysis.

This thesis focuses mainly on three tasks in image analysis: image
segmentation, feature selection, and image classi�cation. Such focus is
justi�ed by the importance of these tasks, and relatively high complex-
ity of the corresponding solutions. However, it should be clear that vi-
sual analytics is not limited to these tasks.

This chapter is organized as follows. Sections 1.1, 1.2, and 1.3 intro-
duce the tasks that we address using visual analytics. Section 1.4 de-
scribes the task of visualizing time-dependent data, which is highly re-
lated to the task introduced in Sec. 1.3. Section 1.5 presents the main
research question that uni�es our work. Finally, Section 1.6 describes
how this thesis is organized, and details our contributions towards the
tasks introduced in the previous sections.

1

introduction

1.1 image segmentation

In simple terms, image segmentation is the task of partitioning an image
into objects of interest [53]. This task may be an ultimate goal (e.g., seg-
menting a person to be copied onto another image), or part of a larger
image analysis pipeline (e.g., segmenting a skin lesion to be automati-
cally classi�ed as benign or malignant [73]).

Image segmentation is extremely di�cult to automate [53], particu-
larly because objects of interest are generally ill-de�ned. This leads to
an ideal application for interactive methods.

In interactive image segmentation, the user indicates the approxi-
mate localization of an object of interest (e.g., by placing markers), while
the machine performs careful delineation of this object based on image
characteristics or pre-de�ned models [19, 41, 42, 106, 123]. Such delin-
eation is typically the most error-prone and time-consuming step in
manual segmentation.

As we detail in Sec. 1.6, in this context, we are interested in enabling
e�ective and e�cient interactive segmentation.

1.2 image classification and feature selection

Image classi�cation is the task of assigning a class label to an image
based on generalization from examples (available in a so-called training
set). The typical solution to this task involves representing each image
by an observation (real vector), whose features (elements) correspond
to measured characteristics related to colors, textures, and shapes [32].

Feature selection is crucial for e�ective image classi�cation. In broad
terms, feature selection is the task of �nding a subset of candidate fea-
tures that is small and su�cient for a particular purpose. While using
too few features can lead to poor generalization, using too many fea-
tures can be prohibitively expensive to compute, or even introduce con-
founding information into the training data [60, 94].

Human experts generally evaluate choices involved in designing clas-
si�cation systems using cross-validation [111]. However, this approach
is typically limited by the feedback that numeric classi�cation e�cacy
measures can provide. As a consequence, when suboptimal results are
obtained, these experts are often left unaware of which aspects limit
classi�cation system e�cacy, and what can be done to improve these
systems. This and other issues have been referred to as the “black art”
of machine learning [34].

As we detail in Sec. 1.6, in this context, we are interested in enabling
interactive feature selection for image classi�cation system design, and,
most importantly, providing insights that lead to the improvement of
such systems.

2

1.3 image classification by artificial neural networks

1.3 image classification by artificial neural networks

Although the traditional features mentioned in the previous section are
still widely employed in image classi�cation, particularly when large
training sets are unavailable, arti�cial neural networks recently became
able to achieve extraordinary results in raw (or pre-processed) image
classi�cation, bypassing traditional feature selection [133].

However, choosing appropriate pre-processing steps, architectures,
and hyperparameters for these networks is a challenging task. This
is con�rmed by the vast literature on the subject [12, 116], and the
widespread use of heuristics that are poorly understood according to
their own proponents (e.g., DropConnect [154]).

The di�culty in designing e�ective arti�cial neural networks is ar-
guably related to the di�culty in interpreting how such networks arrive
at decisions for a given input image. As an extreme example, it is easy
to create images of unrecognizable objects that a particular network
classi�es with absolute certainty [114].

As we detail in Sec. 1.6, in this context, we are interested in enabling
the inspection of arti�cial neural networks using visual analytics, and,
most importantly, once again providing insights that lead to improve-
ments along the image classi�cation pipeline.

1.4 time-dependent data visualization

Our visual analytics approach towards the tasks described in Secs. 1.2
and 1.3 is highly dependent on visualizing datasets composed of high-
dimensional vectors (observations).

Our approach also depends on representing such a dataset, seen as
a sequence of observations, by a two-dimensional projection obtained
through dimensionality reduction. In this context, we de�ne a two-
dimensional projection as a sequence of points in the plane, which
correspond to the observations in a dataset. Although dimensionality
reduction techniques vary in speci�c goals, they all attempt to represent
some aspect of the so-called structure of a dataset in its projection. This
structure is characterized by distances between observations, presence
of clusters, and overall spatial data distribution [89, 96]. In comparison
to other high-dimensional data visualization alternatives, dimension-
ality reduction is remarkably scalable with respect to the number of
observations and features.

As will become clear, because the parameters of an arti�cial neural
network are typically adapted iteratively, our visual analytics approach
towards these models becomes time-dependent. Such time-dependent
process can be represented by a sequence of datasets, where each
dataset corresponds to a particular time step, and each observation has
a corresponding observation across time.

3

introduction

Unfortunately, visualizing a sequence of datasets using traditional di-
mensionality reduction techniques is not always straightforward. For
instance, although it is possible to create a projection independently for
each dataset in such a sequence, this strategy (and similar alternatives)
often leads to temporal incoherence: signi�cant variability in the result-
ing sequence of projections that does not re�ect signi�cant variability
in the sequence of datasets. This is mostly due to the fact that many di-
mensionality reduction techniques are highly sensitive to small changes
in their inputs [49]. This issue a�ects a state-of-the-art dimensionality
reduction technique called t-SNE [99], which is widely employed in our
work. Therefore, temporal incoherence compromises one of our funda-
mental contributions by potentially leading to incorrect insights.

As we detail in Sec. 1.6, in this context, we are interested in enabling
the reliable visualization of time-dependent high-dimensional data.

1.5 research qestion

Considering the tasks outlined in Secs. 1.1-1.4, we can state our central
research question as follows:

How can we provide actionable insights about the design and operation
of image analysis methods through visual analytics?

In this context, actionable insight refers to information that enables
a user to improve a process.

The next section describes how this thesis is organized, and details
contributions that aim to address our central research question.

1.6 thesis structure

This thesis is organized as follows.
Chapter 2 provides an overview of related work in image segmenta-

tion, pattern classi�cation, feature selection, and high-dimensional data
visualization. This overview is complemented by more speci�c descrip-
tions of related work within each following chapter.

Chapter 2 also thoroughly details the techniques that are employed
in our work. With exceptions that are clearly mentioned, the reader
is welcome to skip the highly technical sections, and refer back on the
basis of necessity, since the following chapters are mostly self-contained
in a higher abstraction level.

As an implicit goal, Chapter 2 shows that many widely used tech-
niques demand non-trivial choices that require signi�cant expertise,
which is important to motivate our application of visual analytics.

Chapter 3 proposes a new interactive segmentation technique based
on the successful image foresting transform (IFT) [43]. The IFT algo-
rithm can be applied to segment multiple objects of interest in linear

4

1.6 thesis structure

or linearithmic time on the number of pixels in an image. Notably,
segmenting multiple objects simultaneously is NP-hard using other
widespread segmentation approaches that �nd optimum cuts in graphs
[26, 82].

Our contribution to IFT-based interactive segmentation is the intro-
duction of superpixels. A superpixel is typically a small region within
an image, whose pixels are uniform with respect to some criteria (e.g.,
color, texture). In this context, the main bene�t of using superpixels
(as atomic units instead of pixels) is reducing the computational time
required by interactive segmentation. Although superpixels require sig-
ni�cant upfront computational time, which can be allocated before user
involvement, such cost is amortized during interactive segmentation.
Our experiments also suggest that superpixels are capable of achieving
at least comparable e�cacy to pixels.

Another potential advantage of superpixels is enabling richer feature
extraction [102, 148, 157]. In this context, feature extraction refers to
the task of representing each superpixel by an observation (real vector).
Each element in such an observation corresponds to a feature, and repre-
sents a characteristic measured from the corresponding superpixel (e.g.,
mean red color component). Because our segmentation approach relies
on distances between observations, the choice of features is crucial to
its success. We return to the problem of feature selection in the context
of image classi�cation in Ch. 4.

Conducting signi�cant user studies to evaluate interactive methods is
generally a di�cult and costly process. However, the evaluation of inter-
active image segmentation methods is a very particular exception, be-
cause automated experimentation is straightforward. Concretely, con-
sider a set of images whose segmentation (ground truth) is known. In
this case, it is possible to simulate interactive segmentation by having
the machine act as a so-called robot user. In Chapter 3, we also propose
novel robot users that employ distinctive strategies to evaluate interac-
tive segmentation methods.
Chapter 4 proposes a system that enables interactive feature selec-

tion for image classi�cation. The system integrates feature space ex-
ploration with automatic feature evaluation, and attempts to provide
insights that lead to the development of e�ective feature sets. The same
system can also be employed to select features for other tasks, such as
image segmentation or (general) pattern classi�cation.

The proposed interactive system employs dimensionality reduction
to visually represent a dataset (sequence of observations) by a two-
dimensional projection. As we already mentioned, a projection attempts
to represent some aspect of the so-called structure of a dataset, and is
remarkably scalable with respect to the number of observations and
features.

The experiments presented in Chapter 4 indicate that projections
may provide a kind of qualitative feedback about classi�cation systems

5

introduction

that would be very di�cult to obtain by other (non-visual) means. Al-
though there is no guarantee that a projection will provide insightful
feedback about a particular dataset, as we also exemplify in Ch. 4, the
proposed approach requires only a small upfront user e�ort investment.
Chapter 5 shows how the approach originally proposed to visualize

inputs to an image classi�cation system can be adapted to visualize in-
termediary computational results of an arti�cial neural network. Fortu-
nately, the computations carried by arti�cial neural networks produce
convenient intermediary results. Concretely, each layer of arti�cial neu-
rons transforms an input vector (or image) into an output vector (or im-
age). The parameters that control these transformations are adjusted to
obtain correct classi�cations in a training set. Therefore, in broad terms,
the output of a given layer for an input image can be interpreted as an
alternative representation learned by a network. Since these learned
representations (also called activations) can be represented by real vec-
tors, they can be explored using the approach proposed in Chapter 4.

Chapter 5 also presents experiments performed in established arti�-
cial neural network benchmark datasets. The results indicate that our
interactive approach may enable insights about how a network operates
that lead to improvements along the classi�cation pipeline.
Chapter 6 describes a new time-dependent dimensionality reduction

technique that allows a controllable trade-o� between temporal coher-
ence and spatial coherence (de�ned as preservation of structure at a
particular time step).

As we alluded to in Sec. 1.4, in a broad sense, the activations of an
arti�cial neural network for a given a set of inputs represent a partic-
ular stage of a time-dependent process, since the parameters of a net-
work are typically adapted iteratively. This time-dependent process can
be represented by a sequence of datasets, such that each dataset corre-
sponds to a particular time step, and each observation (activation) has
a corresponding observation (activation) across time. As we also men-
tioned in Sec. 1.4, visualizing a sequence of datasets using traditional
dimensionality reduction techniques may lead to temporal incoherence:
signi�cant variability in the resulting sequence of projections that does
not re�ect signi�cant variability in the sequence of datasets.

Therefore, although temporal incoherence is not strictly related to
visual analytics, it impairs our proposed visual analytics approach to
explore arti�cial neural networks applied to image classi�cation.

The preliminary experiments presented in Chapter 6 suggest that our
new technique is successful in enforcing temporal coherence and en-
couraging smooth changes between projections.
Chapter 7 summarizes our contributions and suggests future work.

6

2R E L AT E D W O R K

This chapter summarizes related work, and organizes it into four cat-
egories: image segmentation (Sec. 2.2), pattern classi�cation (Sec. 2.3),
feature selection (Sec. 2.4), and high-dimensional data visualization
(Secs. 2.5 and 2.6). This chapter also serves another important purpose:
describing in detail the techniques that are used to a signi�cant extent
in the next chapters, or that are highly related to the tasks that we ad-
dress. Understanding some of these techniques is not strictly required
for reading the next chapters, which are mostly self-contained. There-
fore, the reader is encouraged to refer back to the technical sections
in this chapter based on demand. Our goal is to provide a complete
and contextualized description that allows discussing the assumptions
underlying the well-known techniques. Such description also allows
a concrete presentation of the lesser known techniques, which often
requires the provided background. An additional goal of this chap-
ter is to show that many widely used techniques demand non-trivial
choices that require signi�cant expertise, which will help motivate our
application of visual analytics.

2.1 preliminaries

In this text, we distinguish between real vectors and real column ma-
trices. We denote vectors by lower case bold letters, and matrices by
upper case bold letters. Exceptionally, we let xT denote the row matrix
corresponding to the vector x.

The inner product between vectors u and v is denoted by uv =∑
i uivi , where ui is the i-th element of vector u. The typical operations

between matrices and vectors (addition, multiplication) treat vectors as
if they were column matrices, and result in matrices.

The gradient function ∇f : RD → RD of a di�erentiable function
f : RD → R of multiple variables x1, . . . ,xD is given by

∇f (a) =
(
∂

∂x1
f (a), . . . ,

∂

∂xD
f (a)

)
, (2.1)

for every a ∈ RD . When ambiguity is impossible, we also let ∇f (x)
denote the gradient of f at point x = (x1, . . . ,xD), which overloads
variable names with their corresponding values.

We denote random variables by upper case letters, and random vec-
tors by upper case bold letters. We let X ∼ pX denote that the random
variable X is distributed according to the probability density (or mass)
function pX . The set of valid assignments to the random variable X is

7

related work

denoted by Val(X). The expected value of random variable X is a scalar
denoted by E[X], and its standard deviation is the scalar std[X]. The ex-
pected value of a random vector X = (X1, . . . ,XD) is a vector denoted
by E[X], whose elements correspond to the expected value of each ran-
dom variable in X.

The covariance cov[X ,Y] between random variablesX andY is given
by cov[X ,Y] = E[(X − E[X]) (Y − E[Y])]. The (Pearson) correlation
coe�cient corr[X ,Y] between random variables X and Y is given by

corr[X ,Y] =
cov[X ,Y]

std[X] std[Y]
, (2.2)

when std[X] std[Y] > 0, and is always between −1 and 1. A high cor-
relation coe�cient (in absolute value) indicates a highly linear relation-
ship between X and Y , and the sign indicates whether the variables are
proportional or inversely proportional. In particular, | corr[X ,Y]| = 1
implies Y = aX + b for some a,b ∈ R, where a , 0. If X is independent
of Y , denoted by X ⊥⊥ Y , then corr[X ,Y] = 0. However, the converse
is not generally true, and therefore the correlation coe�cient is not an
appropriate measure of dependence between random variables [111].

The covariance matrix of a random vector X = (X1, . . . ,XD) is given
by cov[X] = E[(X − E[X]) (X − E[X])T], where ZT denotes the ran-
dom row matrix corresponding to a random vector Z. In other words,
cov[X]i, j = cov[Xi ,X j]. The correlation matrix is analogous.

We will employ a widespread abuse of notation that vastly simpli-
�es the presentation in the next sections [15, 111]: probability func-
tions will sometimes omit the subscripts that relate them to variables.
For instance, the probability density associated to the joint assignment
X = x and Y = y given Z = z will be written as either pX ,Y |Z (x ,y, z)
or p (x ,y | z). This implies that the same letter may denote di�erent
probability functions depending on arguments, although we are always
careful to avoid excessive ambiguity.

The concept of an independent, identically distributed (iid) dataset
will be useful in the next sections, and is reviewed next. It is worth
noting that we represent unknown parameters using random variables,
which is typical in Bayesian statistics [15, 82, 111].

Consider a non-empty sequence of random vectors D = X1, . . . ,XN ,
and a random (parameter) vectorΘ. Let X−i denote the set of all random
vectors in D excluding random vector Xi . Furthermore, suppose that
each of the random vectors in the sequence D is distributed according
to the same probability function, which is conditional on a particular
assignment to Θ. Concretely, if we let θ ∗ ∈ Val(Θ) denote the (possibly
unknown) true parameter vector, then Xi ∼ p (· | θ ∗), for all i , for some
conditional probability function p (· | θ ∗). If Xi ⊥⊥ X−i | Θ for all i ,
then D is an independent, identically distributed sample according to
p (· | θ ∗).

8

2.1 preliminaries

Intuitively, a sample D is iid if any parameter vector θ determines
the probability function associated to each random vector in D com-
pletely, such that knowledge about the other random vectors becomes
irrelevant.

A dataset D = x1, . . . , xN is iid according to p (· | θ ∗) if it corre-
sponds to a sequence of assignments to the sequence of random vectors
in the sample D, as de�ned above. For our purposes, the likelihood of
the dataset D given the parameter θ (traditionally called the likelihood
of the parameter θ) is de�ned as the probability/density p (D | θ) of
the dataset D given θ . In other words, the likelihood is the probabili-
ty/density of the dataset D assuming that θ ∗ = θ , which is given by

p (D | θ) =
N∏
i=1

p (xi | x1, . . . , xi−1,θ) =
N∏
i=1

p (xi | θ), (2.3)

where the �rst equality follows from the chain rule of probability (with
no further assumptions), and the second from our assumption that Xi ⊥⊥

X−i | Θ, for all i . Notice the abuse of notation, sincep represents distinct
probability functions in the equation above (except if N = 1).

Consider an iid dataset D = x1, . . . ,xN distributed according to p.
If X ∼ p and its expected value E[X] exists and is �nite, the law of
large numbers [155] guarantees that N −1 ∑

i xi → E[X] as N → ∞. In
other words, the mean of a (very large) iid dataset is probably a good
approximation to the expected value of X . This is a particular case of
Monte Carlo approximation, which can be used to approximate the ex-
pected value of any function of random variables (which is always itself
a random variable).

For instance, if x̄ is a Monte Carlo approximation of E[X] consider-
ing the dataset D, the variance var[X] of X can be approximated by
N −1 ∑

i (xi − x̄)2. It can be shown that this approximation underesti-
mates var[X] on average (in a very precise sense, particularly when N
is small), precisely because it also requires an estimate of E[X] [15, 155].
It can also be shown that this bias is corrected through multiplying the
approximation by N

N−1 .
Considering an iid dataset D = x1, . . . , xN distributed according to p,

a Monte Carlo approximation to the covariance matrix is given by

Σ̂ =
1
N

N∑
i=1

(xi − x̄) (xi − x̄)T , (2.4)

where x̄ is the empirical mean (Monte Carlo approximation of the ex-
pected value of a random vector X ∼ p). The bias in this approximation
is also corrected through multiplication by N

N−1 [155].

9

related work

2.2 image segmentation

Image segmentation is the task of partitioning an image into objects
of interest (see Fig. 2.1). The concept of object of interest is highly de-
pendent on context. Precisely for this reason, user interaction still is
essential for e�ective segmentation.

Figure 2.1: Segmented image. Di�erent hues represent di�erent segments.

Image segmentation can be further divided into two tasks: recogni-
tion and delineation [44]. Recognition corresponds to establishing the
approximate localization of the objects of interest, while delineation cor-
responds to discovering precisely which pixels belong to each of these
objects.

Since recognition is very dependent on context, humans usually out-
perform machines, but the latter have great potential for the minutiae
involved in delineation. Accordingly, several approaches have explored
a combination of user and machine e�ort [19, 41, 42, 106, 123]. A com-
mon strategy in several of these approaches is called operator-assisted
synergistic segmentation. This strategy consists in the creation of seeds
(sets of pixels corresponding to the same object of interest) by the user,
and automatic delineation by the machine. Such delineation can be cor-
rected interactively with the addition (or removal) of seeds. Thus, the
�nal accuracy depends on the quality of the delineation and on the ef-
fort devoted by the user to the task.

It is useful to categorize segmentation methods into three groups [26]:
purely image-based, appearance model-based, and hybrid.
Purely image-based: These methods delineate objects based on infor-
mation that can be entirely obtained from the image and/or user input.
Such methods include level sets, active boundaries, fuzzy connected-
ness, graph cuts, watersheds, clustering and Markov random �elds [26].
Perhaps the most widespread family of methods are graph cuts based on

10

2.3 pattern classification

the maximum �ow algorithm. However, this algorithm has severe lim-
itations. For instance, the cost function minimized by some graph cut
variants tends to favor smaller boundaries [26]. More importantly, si-
multaneously segmenting more than two objects using graph cut meth-
ods is an NP-hard problem [26, 82]. While it is possible to segment each
object individually, merging the resulting segmentation is not trivial. In
contrast, segmentation algorithms based on the image foresting trans-
form (IFT) are capable of segmenting multiple objects in linear time, and
do not favor smaller boundaries [26, 43]. This transform is a tool for the
design of operators based on optimum connectivity, and has been suc-
cessfully applied to the development of algorithms for image processing
[43], pattern classi�cation [118], data clustering [130], and active learn-
ing [132]. It is interesting to note that fuzzy connectedness methods,
which can be e�ciently implemented using the IFT algorithm, also de-
�ne an optimum cut in a graph given a particular energy function [26].
We will present the image foresting transform together with a new seg-
mentation approach in Chapter 3.
Model-based: These methods use information about objects encoded
into models to perform the segmentation. These methods include ac-
tive shape models [28] and atlas-based models [48], which have been
applied to segmentation of anatomic structures of the brain given mag-
netic resonance images [36, 56].
Hybrid: As the name implies, hybrid methods combine these two pre-
vious approaches, attempting to overcome their individual weaknesses
[95]. The clouds model [107] is an example of such approach, which was
applied to segment magnetic resonance images. Both model-based and
hybrid methods, however, are less generally applicable than the purely
image-based segmentation methods, which are most bene�ted by user
interaction.

2.3 pattern classification

In supervised learning, a sub�eld of machine learning, the important
task of pattern classi�cation consists on assigning a class label to a
high-dimensional vector based on generalization from previous exam-
ples [111]. In broad terms, this task is typically solved by �nding param-
eters for a classi�cation model that maximize a measure of e�cacy.

More concretely, consider an iid dataset D = (x1,y1), . . . , (xN ,yN).
Every pair (xi ,yi) ∈ D is composed of an observation xi ∈ RD , and a
class yi ∈ {1, . . . ,C}, whereC is the number of classes. The j-th element
of xi corresponds to feature j. For instance, the observations may cor-
respond to images of animals, and the classes to the C distinct species
present in the images.

The typical goal is to �nd a classi�er f : RD → {1, . . . ,C} that maps
observations to classes based on the (training) set D, and generalizes
well to new observations. Although generalization can be de�ned pre-

11

related work

cisely in the context of Bayesian decision theory [111], it is typically
evaluated by the e�cacy on a so-called test set. A test set D′ is a dataset
that was not considered to �nd the classi�er f , and is iid according to
the same distribution as the training set D.

A common measure of e�cacy is the accuracy of the classi�er f on
the test set D′, which is given by

1
N ′

∑
(x,y)∈D′

I(f (x) = y), (2.5)

where N ′ is the number of observations in D′, and I is the indicator
function, which is 1 if its argument is true, and 0 otherwise. In words,
the accuracy is the fraction of correct classi�cations on the test set.

Alternatively, it is also possible to model the conditional probability
p (y | x) of class y given the observation x, for every (x,y) ∈ RD ×

{1, . . . ,C}. The advantage is that this approach provides a measure of
uncertainty about classi�cations [15, 111]. The corresponding classi�er
f may be given by f (x) = arg maxy p (y | x).

Pattern classi�cation is a challenging task, partly due to its extremely
large design space. For our purposes, this task can be divided into rep-
resentation and learning, as follows.

The representation task is concerned with how objects of interest
are modeled as observations. In general, elements of these vectors cor-
respond to measurable characteristics (features) of the objects. Usually,
many di�erent features can be considered, and it is unclear which of
them are valuable for generalization. For example, consider the task of
image classi�cation. A wide variety of color, texture, shape, and local
features can be extracted from images [32]. Using too few features can
lead to poor generalization; while using too many features can be pro-
hibitively expensive to compute, or even introduce confounding infor-
mation into the training data [60, 94]. Deep neural networks recently
became able to bypass feature design by dealing directly with raw im-
ages [11, 85]. However, such networks require very large amounts of
labeled (training) data, which are not always available, and pose addi-
tional design challenges of their own [12]. Therefore, feature selection
for classi�cation system design still is a very important problem. We
return to this issue in Section 2.4.

Once a representation is available, the learning task consists on se-
lecting, applying, �ne-tuning, and testing learning algorithms. A huge
number of such algorithms exists, based on a wide variety of principles,
and no single algorithm is the best for every situation [156]. Learning al-
gorithms such as k-nearest neighbors, naive Bayes, support vector ma-
chines, decision trees, arti�cial neural networks, and their ensembles,
have been applied in a wide variety of practical problems [111].

Since the objective of pattern classi�ers is to generalize from previ-
ous experience, hyperparameter search and e�cacy estimation are usu-
ally performed using cross-validation [80, 111], which we introduce in

12

2.3 pattern classification

Sec. 2.3.1. However, this approach is bounded by the limited feedback
that numerical (classi�cation) e�cacy measures can provide. As a con-
sequence, when suboptimal results are obtained, designers are often left
unaware of which aspects limit classi�cation system e�cacy, and what
can be done to improve these systems. This and other issues have been
referred to as the “black art” of machine learning [34].

Diagnosing the cause of poor generalization in classi�cation systems
is a hard problem. Options include using cross-validation to compute ef-
�cacy indicators (e.g., accuracy, precision and recall, area under the ROC
curve), and learning curves, which show generalization performance for
an increasing training set. In multi-class problems, confusion matrices
can also be used to diagnose mistakes between classes [45]. Information
visualization systems can also be helpful in this diagnostic process, as
we discuss in Chapter 4.

The following sections describe �ve supervised learning techniques
in detail: k-nearest neighbors (KNN), logistic regression (LR), support
vector machines (SVM), decision trees (DT, including random forest
classi�ers and extremely randomized trees), and arti�cial neural net-
works (ANN, including multilayer perceptrons and convolutional neu-
ral networks). Some of these techniques will be directly used in Chapter
4 (KNN, SVM, DT), while others are pre-requisites for understanding
feature selection techniques that we employ (LR, SVM, DT). Arti�cial
neural networks are the main subject of Chapter 5.

As noted previously, understanding the details behind these tech-
niques is not strictly required for the next chapters, which are self-
contained. Therefore, the reader is welcome to the skip technical details,
and refer back to these sections whenever necessary. One exception is
Section 2.3.1, which is used to introduce important concepts in super-
vised learning, including hyperparameters, the curse of dimensionality,
and model selection.

2.3.1 K-nearest neighbors

K-nearest neighbors is arguably the simplest widespread classi�cation
technique [111]. Given a dataset D, this technique assumes that the
probability p (y | x) of class y given observation x is given by

p (y | x) =
1
K

∑
(xi ,yi)∈N (x,D,K)

I(yi = y), (2.6)

where I is once again the indicator function, and N (x,D,K) is a subset
of D whose observations are the K closest to x (ties broken arbitrarily),
according to a distance function on RD (e.g., Euclidean distance). In
other words, p (y | x) is the fraction of the K nearest neighbors of x in
D that belong to class y. For an illustrative example, see Fig. 2.2.

Clearly, a 1-nearest neighbor classi�er achieves perfect accuracy on
the training set (assuming there are contradictory observation-class

13

related work

Figure 2.2: K-nearest neighbors (K = 3) decision boundary for a 2D dataset.
Each point corresponds to an observation, and is colored according
to its class. The region in orange/blue contains points that would be
assigned to the orange/blue class during testing.

pairs). However, this does not imply that the classi�er generalizes well.
Although K-nearest neighbors can generalize well given an appropriate
distance function and su�cient data, it can also su�er from the curse of
dimensionality, a di�culty that may arise in high-dimensional spaces
[15]. As an example of this curse, consider a hypercube with unit vol-
ume. A hypercube with side l ≤ 1 inside such unit hypercube occupies
a fraction F (l) = lD of the unit volume. Thus, to occupy a fraction
r of the volume of the unit hypercube, a hypercube must have side
L(r) = D

√
r . In the case of D = 100, to occupy r = 1% of the volume of

the unit hypercube, the smaller hypercube must have sides larger than
0.95. This example aids the intuition that a technique like K-nearest
neighbors may base its decisions on neighbors that are considerably
distant in the high dimensional space (depending on the dataset). Other
techniques may achieve better generalization by making particular as-
sumptions about the dataset. For the same reason, there is no single
best learning algorithm for every practical situation [111, 156].

Notice that K-nearest neighbors requires �xing K before the classi-
�er f can be obtained from the training set, which makes K a hyperpa-
rameter. The general task of choosing hyperparameters that generalize
well is called model selection [111]. As already mentioned, generaliza-
tion cannot be evaluated on the training set. Hyperparameters should
not be chosen based on performance on the test set either, because do-
ing so would introduce an optimistic bias. In short, it would not be clear
how hyperparameters chosen for a particular test set would generalize
for other test sets.

A typical solution to the problem of model selection is to partition
the training set into a validation set and an e�ective training set. For
each choice of hyperparameters, the classi�er is �tted to the e�ec-

14

2.3 pattern classification

tive training set, and evaluated in the validation set. This procedure is
called cross-validation. In F-fold cross-validation, the training set is par-
titioned into F subsets (folds). Each fold is used as a validation set while
the others are used as e�ective training sets, and the hyperparameters
that achieve best (average) e�cacy results over each validation fold are
selected. The selected hyperparameters are used to �t a classi�er to the
whole training set, which can be �nally evaluated on the test set.

In summary, K-nearest neighbors is a simple classi�cation technique,
which requires choosing a number of neighbors K and an appropriate
distance function. This section also introduced important concepts in
machine learning: hyperparameters, curse of dimensionality, model se-
lection, and cross-validation.

2.3.2 Logistic regression

Consider a dataset D = (x1,y1), . . . , (xN ,yN), which is iid according to
p (· | θ ∗) for some unknown parameter vector θ ∗. Furthermore, suppose
yi ∈ {0, 1}, for all i . Consider the task of binary classi�cation, which
corresponds to predicting binary targets from observations based on
generalization from D.

Logistic regression [111] is a technique that assumes that the prob-
ability p (y | x,w) of class y ∈ {0, 1} given observation x and weight
vector w is given by

p (y | x,w) = σ (wx)y (1 − σ (wx))1−y , (2.7)

where σ is the sigmoid function given by

σ (t) =
1

1 + e−t
, (2.8)

for all t ∈ R.
Intuitively, a logistic regression model assigns more probability to

class 1 whenever wx > 0, and each elementw j of w indicates how much
feature j contributes (or detracts) to the detection of class 1. Because
the probability of the distinct classes given x is the same if and only if
wx = 0, the so-called decision boundary of this classi�cation technique
is the hyperplane S = {x ∈ RD | wx = 0}. For an illustrative example,
see Fig. 2.3.

Although the assumptions made by logistic regression appear very
restrictive, an input observation x can be transformed by a pre-de�ned
feature mapϕ : RD → RD′ before the technique is applied. In that case,
we say the probability p (y | x,w) is given by

p (y | x,w) = σ (wϕ (x))y (1 − σ (wϕ (x)))1−y . (2.9)

Therefore, the decision boundary is no longer (necessarily) a hyper-
plane on the original space.

15

related work

Figure 2.3: Logistic regression (λ = 1) decision boundary for a 2D dataset.

In what follows, we assume that the observations were already trans-
formed by a feature map. It is advisable to at least pre�x each original
observation x by the constant 1, leading to a transformed observation
x′ = (1, x). In this case, the decision boundary on the original space
becomes an a�ne hyperplane S = {x ∈ RD | w0 +w1:Dx = 0}.

The (conditional) likelihood p (D | w) of the weight vector w given
the dataset D is given by

p (D | w) =
N∏
i=1

p (yi | xi ,w) =
N∏
i=1

σ (wxi)yi (1−σ (wxi))1−yi . (2.10)

Notice that this likelihood is not based on the joint density over ob-
servations and classes, which is irrelevant for our purposes. Instead,
p (D | w) is the probability associated to the particular assignment
y = (y1, . . . ,yN) when the observations x1, . . . , xN are seen as con-
stants (according to D), and Yi ⊥⊥ X−i ,Y−i | Xi ,W.

The log-likelihood `(w) = logp (D | w) is given by

`(w) = log
N∏
i=1

σ (wxi)yi (1 − σ (wxi))1−yi (2.11)

=

N∑
i=1

log
[
σ (wxi)yi

]
+ log

[
(1 − σ (wxi))1−yi

]
(2.12)

=

N∑
i=1

yi logσ (wxi) + (1 − yi) log(1 − σ (wxi)). (2.13)

It can be shown that there is no analytical expression for the maxi-
mum (log-)likelihood estimate ŵ for a logistic regression model [111].
However, the log-likelihood ` is concave, and so there is at most one
local (and global) maximum. Maximization of ` can be attempted by

16

2.3 pattern classification

gradient ascent, although there are more elaborate alternatives based
on the Hessian matrix [111]. Gradient ascent iteratively updates an es-
timate w by the rule w← w + η∇w`(w), where η is the learning rate.

For any k , the partial derivative ∂`(w)/∂wk of ` at w with respect to
the variable wk is given by

∂`(w)

∂wk
=

N∑
i=1

yi
∂

∂wk

[
logσ (wxi)

]
+ (1 − yi)

∂

∂wk

[
log(1 − σ (wxi))

]

(2.14)

=

N∑
i=1

yi

∂
∂wk

[
σ (wxi)

]

σ (wxi)
+ (1 − yi)

∂
∂wk

[
1 − σ (wxi)

]

1 − σ (wxi)
(2.15)

=

N∑
i=1

yi (1 − σ (wxi))xi,k − (1 − yi)σ (wxi)xi,k (2.16)

=

N∑
i=1

(yi − σ (wxi))xi,k , (2.17)

using the fact that σ ′(t) = σ (t) (1 − σ (t)).
Thus, the gradient of ` with respect to w is given by

∇w`(w) = XT (y − σ (Xw)), (2.18)

where the sigmoid function σ is applied element-wise, X is the de-
sign matrix (where each observation corresponds to a row), and y =
(y1, . . . ,yN). This completes the description of logistic regression.

However, the formulation of logistic regression presented above can
lead to extremely large coe�cients in the resulting parameter estimate
ŵ, particularly when the data is linearly separable, which may cause
over�tting. It is possible to penalize large coe�cients by a hyperparam-
eter λ, leading to the task of maximizing the regularized log-likelihood
`λ given by

`λ (w) = `(w) − λ | |w| |2. (2.19)

This objective function also has a (Bayesian) probabilistic interpreta-
tion (under a particular prior density function for W), although we re-
fer to [111] for details. If each observation was pre�xed by the constant
1, the corresponding weight should not be penalized, since it does not
make the classi�er more sensitive to small changes in its inputs. Logis-
tic regression can also be generalized to deal with multi-class problems
[111].

In summary, logistic regression is appropriate for binary classi�ca-
tion when there is a hyperplane that separates observations from dis-
tinct classes. In such cases, the data is considered linearly separable. Reg-
ularization is commonly employed to discourage large coe�cients that

17

related work

(a) (b)

Figure 2.4: Soft-margin support vector machine (C = 1) decision boundary for
a 2D dataset. (a) Linear kernel. (b) RBF kernel (γ = 0.5).

may cause over�tting, which introduces a hyperparameter λ. Given an
appropriate choice of feature map ϕ, logistic regression may also be
applied when the data is not linearly separable.

In Section 2.4.2, we discuss how logistic regression may be applied to
feature selection.

2.3.3 Support vector machines

Consider the iid dataset D = (x1,y1), . . . , (xN ,yN), where yi ∈ {−1, 1},
and the task of binary classi�cation. A hard-margin support vector ma-
chine (SVM) is a classi�cation technique that assumes that there is a
hyperplane that separates the observations in such dataset by class [15].
Furthermore, the technique �nds the separating hyperplane such that
its distance to the nearest observation is maximum, a choice motivated
by statistical learning theory [15]. For an illustrative example, see Fig.
2.4a.

Any (a�ne) hyperplane S in RD can be written as S = {x ∈ RD |

wx + b = 0}, for some nonzero weight vector w ∈ RD , and intercept
b ∈ R. Consider any x, x′ ∈ S . Clearly, wx + b = wx′ + b, which
implies w(x−x′) = 0. Intuitively, w is orthogonal to any vector pointing
between vectors in S .

Consider any vector x ∈ RD , and let x⊥ denote its closest vector in S .
Recall that x can be written as [8]

x = x⊥ + r
w
| |w| |
, (2.20)

18

2.3 pattern classification

where r ∈ R is the so-called signed distance between x and S . By intro-
ducing w and b into the equation above,

wx + b = wx⊥ + b + r
| |w| |2

| |w| |
(2.21)

wx + b
| |w| |

= r , (2.22)

since wx⊥+b = 0. Notice that the signed distance between S and the
origin is given by b

| |w | | .
Consider again the dataset D, and the task of �nding the parameters

w and b of a separating hyperplane S such that wxi +b > 0 ifyi = 1 and
wxi + b < 0 if yi = −1, for all i , assuming that such hyperplane exists.
This task is equivalent to �nding parameters that satisfy the constraint
yi (wxi + b) > 0, for all i .

The marginm(w,b) of a hyperplane S = {x ∈ RD | wx + b = 0} that
satis�es the constraints is de�ned as

m(w,b) = min
i

yi (wxi + b)
| |w| |

=
1
| |w| |

min
i
yi (wxi + b). (2.23)

Because we assumed that the hyperplane S satis�es the constraints,
the margin corresponds to the (unsigned) distance between the hyper-
plane S and the closest observation in D.

Notice that if the hyperplane S de�ned by w and b satis�es the con-
straints, then the hyperplane S ′ de�ned by κw and κb also satis�es the
constraints, for any κ > 0. Both S and S ′ also have the same margin,
since

m(κw,κb) = min
i

yi (κwxi + κb)
| |κw| |

=
κ

κ | |w| |
min
i
yi (wxi + b).

(2.24)

Consider the task of �nding the parameters w∗ and b∗ of a separat-
ing hyperplane with maximum margin. In other words, maximizing
m(w,b) with respect to w and b subject to yi (wxi + b) > 0, for all i .
The marginm(w∗,b∗) of such a hyperplane is given by

m(w∗,b∗) =
1
| |w∗ | |

min
i
yi (w∗xi+b∗) = max

w
max
b

1
| |w| |

min
i
yi (wxi+b).

(2.25)

Consider also the task of maximizing m(w,b) with respect to w and
b subject to mini yi (wxi + b) = 1. This constraint is clearly stronger
than the constraint that yi (wxi + b) > 0, for all i . Suppose that a hy-
perplane S de�ned by w and b satis�es the weaker constraints, and let
κ = 1/mini yi (wxi + b), where the denominator is certainly positive.

19

related work

Consider the hyperplane S ′ de�ned by κw and κb. As shown previously,
m(w,b) =m(κw,κb). Since

min
i
κyi (wxi + b) = min

i

yi (wxi + b)
minj yj (wxj + b)

= 1, (2.26)

any hyperplane S that satis�es the weaker constraints has a correspond-
ing hyperplane S ′ with the same margin that satis�es the stronger con-
straint. Thus, we can maximizem(w,b) with respect to w and b subject
to the stronger constraint without loss of generality.

The constraint mini yi (wxi + b) = 1 implies that the maximum mar-
gin hyperplane de�ned by w∗ and b∗ is given by

m(w∗,b∗) = max
w

max
b

1
| |w| |

min
i
yi (wxi + b) = max

w

1
| |w| |
. (2.27)

Instead, we consider the equivalent, and more convenient, task of min-
imizing 1

2 | |w| |
2 with respect to w and b subject to the same constraint.

We will change constraints one last time. Consider minimizing
1
2 | |w| |

2 with respect to w and b subject to yi (wxi + b) ≥ 1, for all
i . These constraints are apparently weaker than the previous. However,
suppose that w andb minimize 1

2 | |w| |
2, andyi (wxi +b) > 1, for all i . Let

κ = 1/mini yi (wxi + b). A hyperplane de�ned by κw and κb satis�es
the new constraints, since yi (κwxi + κb) = κyi (wxi + b) ≥ 1, for all i .
However, 1

2 | |kw| |2 < 1
2 | |w| |

2, since 0 < κ < 1, which is a contradiction
because we assumed w and b corresponded to a minimum. Therefore,
a minimum that satis�es the new constraints also satis�es the previous
constraint.

In summary, the parameters of the separating hyperplane with max-
imum margin are given by minimizing 1

2 | |w| |
2 with respect to w and b

subject to yi (wxi + b) ≥ 1, for all i . Given the optimum w and b, a new
observation x can be classi�ed as 1 if wx + b > 0, and as −1 otherwise.

The optimization task stated above is a convex quadratic program-
ming problem [15], a class of widely studied optimization problems.
However, an important aspect of support vector machines requires
restating this optimization task using the Lagrangian dual, which we
cover next.

Let the generalized Lagrangian L corresponding to our problem be
given by

L(w,b, a) =
1
2
| |w| |2 −

N∑
i=1

ai
[
yi (wxi + b) − 1

]
. (2.28)

The Karush-Kuhn-Tucker conditions state that if w and b correspond
to a local minimum subject to the constraints, then ∇L(w,b, a) = 0 for

20

2.3 pattern classification

some vector a whose elements are all nonnegative [14]. The relevant
gradients are given by

∇wL(w,b, a) = w −
N∑
i=1

aiyixi (2.29)

∂

∂b
L(w,b, a) =

N∑
i=1

aiyi . (2.30)

Therefore, if w and b correspond to a local minimum subject to the
constraints, then

w =
N∑
i=1

aiyixi (2.31)

0 =
N∑
i=1

aiyi , (2.32)

for some a whose elements are all nonnegative.The Lagrangian dual L̃
is obtained by substituting the expressions above into the generalized
Lagrangian L, and is given by

L̃(a) =
N∑
i=1

ai −
1
2

N∑
i=1

N∑
j=1

aiajyiyjxixj . (2.33)

It can be shown that if a maximizes L̃ subject to ai ≥ 0, for all i , and∑
i aiyi = 0, then the corresponding w =

∑
i aiyixi is the desired lo-

cal minimum subject to constraints, and thus represents the maximum
margin separating hyperplane [15].

The support vectors are the observations in D that are closest to the
maximum margin separating hyperplane. It can be shown that only the
coe�cients ai associated to these vectors are nonzero [15]. Therefore,
given the expression for w in terms of a, only the support vectors di-
rectly a�ect classi�cation. Intuitively, the other observations in D can
move freely as long as they do not a�ect the margin, resulting in the
same maximum margin separating hyperplane. The intercept b can be
obtained by noting that yi (wxi + b) = 1, for any support vector xi .

Although maximizing the Lagrangian dual is also a quadratic pro-
gramming problem, it has a highly valuable characteristic. As with logis-
tic regression, it would be possible to transform each input observation
x by a pre-de�ned feature map ϕ : RD → RD′ . In that case, the max-
imum margin separating hyperplane in the transformed space would
not necessarily be a hyperplane in the original space.

However, notice that the observations inD only a�ect the Lagrangian
dual through inner products. Let a kernel k : RD ×RD → R be a func-
tion given by k (x, x′) = ϕ (x)ϕ (x′), for a pre-de�ned feature mapϕ, and

21

related work

any x, x′ ∈ RD . Clearly, as long as the kernel k is known, it is possible to
�nd the desired maximum margin separating hyperplane in the trans-
formed space without ever evaluating ϕ directly. This is the so-called
kernel trick, which vastly extends the applicability of support vector
machines (and other techniques) [15]. The same trick can be applied
for classifying new observations, since

wϕ (x) + b =
∑
i

aiyiϕ (xi)ϕ (x) + b =
∑
i

aiyik (xi , x) + b, (2.34)

for any x ∈ RD .
There are many known su�cient conditions for de�ning valid ker-

nels disregarding ϕ [15]. A common choice is the radial basis function
kernel k given by

k (x, x′) = exp(−γ | |x − x′ | |2), (2.35)

whereγ is a hyperparameter. For an illustrative example, see Fig. 2.4b. A
support vector machine whose kernel corresponds to the inner product
in the original feature space is said to be linear.

There are two very simple strategies to adapt support vector ma-
chines for classi�cation problems withC > 2 classes. One of them is to
train C one-vs-rest classi�ers, and to classify a new observation by the
class for which the observation is further away from the corresponding
maximum margin separating hyperplane (on the correct side). Another
heuristic is to train C (C − 1)/2 one-vs-one classi�ers, and to classify a
new observation according to the class that receives more votes. Both
strategies o�er few guarantees in the general case [15].

A soft-margin support vector machine is a technique that �nds a sep-
arating hyperplane that may leave some observations on the wrong side,
as long as doing so increases the margin. The trade-o� is controlled by
a penalty hyperparameter (typically denoted by C). Intuitively, this al-
ternative formulation is more robust to outliers [15].

In summary, in its simplest formulation, a support vector machine
is appropriate for binary classi�cation of linearly separable data. The
introduction of feature maps through the kernel trick easily allows bi-
nary classi�cation of data that is not linearly separable, and requires
choosing a kernel function and its hyperparameters. Soft-margins make
support vector machines generally more robust to outliers, introducing
yet another hyperparameterC . Finally, support vector machines can be
adapted to multi-class classi�cation tasks through simple heuristics.

In Section 2.4.3, we discuss how support vector machines can be ap-
plied to feature selection.

2.3.4 Decision trees

A (classi�cation) decision tree assigns observations to classes according
to a sequence of logical tests that involve their features. We focus on

22

2.3 pattern classification

building classi�cation trees that perform inequality tests using the so-
called CART (classi�cation and regression trees) approach [64].

A classi�cation tree is a full rooted binary tree T = (V ,E). By de�ni-
tion, T either has a single vertex (root), or can be built by connecting
(by two edges) a single vertex (root) to the roots of two other binary
trees.

Consider the task of classifying observations in RD . Each vertex u in
the classi�cation tree T is associated to a set Ru ⊆ RD . Suppose v and
w are children of u. The vertex v is associated to the set Rv = {x ∈ Ru |
x j < τ }, and w is associated to the set Rw = {x ∈ Ru | x j ≥ τ }, for some
feature j and constant threshold τ . The root r is associated to the set
Rr = RD . Therefore, the leaves ofT partition RD into hyperrectangular
regions. If each leaf of T is also associated to a class, an observation x
can be classi�ed by �nding the leafu such that x ∈ Ru , by following the
appropriate branches starting from the root. For an illustrative example,
see Fig. 2.5.

Figure 2.5: Decision tree decision boundary for a 2D dataset.

Consider the iid dataset D, and the task of building a classi�cation
tree that is expected to generalize well to new observations. A typical
strategy is to �nd a pure classi�cation treeT , whose leaves are all pure.
A leaf u is pure if Ru contains only observations from D that belong to
the same class [111].

Suppose a dataset has as many distinct classes as there are observa-
tions. In that case, de�ne the cost of a pure classi�cation tree T for the
dataset D as the cumulative number of tests required to classify each
observation in D using T . Determining whether there is a classi�ca-
tion tree with cost less or equal to k given D and pre-de�ned pairs of
features and thresholds is an NP-complete problem [72], among other
related problems. The computational burden of �nding optimal trees is
typically avoided by employing greedy heuristic methods.

We now describe a common heuristic to choose the feature j∗ and
threshold τ ∗ for the root of a classi�cation tree given the dataset D.

23

related work

For each feature j and threshold τ , de�ne the costC (j,τ) of partition-
ing a dataset D into non-empty datasets Dv = {(x,y) ∈ D | x j < τ } and
Dw = D − Dv = {(x,y) ∈ D | x j ≥ τ } as

C (j,τ) = c (Dv) + c (Dw), (2.36)

where c is a pre-de�ned cost function, which we discuss later. We choose
by exhaustive search a feature j∗ and threshold τ ∗ such that

C (j∗,τ ∗) = min
j

min
τ

C (j,τ). (2.37)

Notice that the costC of at mostD (N −1) pairs of features and thresh-
olds needs to be computed to �nd j∗ and τ ∗, even if the features are
real-valued (since at most N − 1 distinct thresholds would a�ect the
partitioning of D into non-empty Dv and Dw , for each feature).

A typical choice of cost function c is the entropy of the empirical
distribution of classes in D, given by [64, 111]

c (D) = −
∑
y

πy logπy , (2.38)

where πy is the fraction of observations in D that belongs to class y,
and 0 log 0 is substituted by 0. Intuitively, such entropy is minimized
whenever all observations in D belong to the same class. We discuss
entropy in more detail in Section 2.4.1.

After choosing j∗ and τ ∗ for the root vertex, its children u and w
can be seen as roots of two distinct classi�cation trees. By restricting
each children v to its corresponding dataset Dv ⊂ Rv , the procedure
described above can be applied recursively. The procedure should not
create children for a root when the dataset is already pure, since that
would not a�ect future classi�cations. This completes a recursive algo-
rithm for building a classi�cation tree.

It is also possible to stop creating children whenever a pre-de�ned
tree depth is achieved, or whenever the remaining dataset contains few
observations [64]. In such cases, a new observation x is classi�ed accord-
ing to the class majority in the leaf u such that x ∈ Ru . The objective of
these stop criteria is to make the classi�er more robust to small changes
in the training data. Another way to prevent over�tting is to prune the
resulting classi�cation tree, by eliminating branches according to their
e�ect on training set accuracy [64]. In all of these cases, the associated
hyperparameters may be chosen by cross-validation.

Classi�cation trees have some highly desirable properties. For in-
stance, they are insensitive to monotonic transformation of features,
since they are based on thresholds. More importantly, classi�cation
trees are more interpretable than many other classi�ers, whose outputs
cannot be easily understood in terms of the original features [64].

Consider sampling N elements (with replacement) from the elements
in the dataset D to create each dataset in a sequence D1, . . . ,DS , and

24

2.3 pattern classification

training a distinct classi�cation tree for each dataset in this sequence.
Suppose also that any observation x ∈ RD is classi�ed according to the
class that receives more votes from the S independent classi�ers. This
strategy is called bagging, and the meta-classi�er is a type of ensemble.
Intuitively, aggregating votes from classi�cation trees trained using dis-
tinct datasets is typically more robust than depending on a classi�cation
tree that learned rules that may be overly speci�c for a particular dataset
[23].

A random forest classi�er (RFC) is an ensemble of classi�cation trees
based on bagging [23]. Each classi�cation tree in the ensemble also con-
siders only a random subset of d < D features in each step of �nding
a (locally) optimum pair of feature j∗ and threshold τ ∗. As before, the
goal is to create robust meta-classi�ers.

Similarly to a random forest classi�er, an extremely randomized tree
classi�er is an ensemble classi�er that introduces randomness into the
learning process in an attempt to reduce over�tting [51]. However, ex-
tremely randomized trees typically do not perform bagging. Instead, the
technique �ts S distinct classi�cation trees to the entire dataset. In each
step that requires choosing a feature j∗ and a threshold τ ∗ to split the
remaining dataset D, only a random subset F ⊆ {1, . . . ,D} containing
d ≤ D features is considered. Furthermore, for each feature j ∈ F , a sin-
gle threshold τ is chosen uniformly at random in the range of j (in the
remaining dataset D). From these candidates, the feature j∗ and thresh-
old τ ∗ with the lowest cost C (j∗,τ ∗) are chosen, as usual.

Both random forests and extremely randomized trees have shown
remarkable empirical e�cacy results [23, 51].

In summary, although building pure classi�cation trees requires few
choices, such as the cost function c , it is generally important to in-
troduce hyperparameters that control tree complexity. Ensembles of
classi�cation trees are particularly e�ective, and introduce even more
choices.

In Section 2.4.4, we discuss how extremely randomized trees can be
applied to feature selection.

2.3.5 Arti�cial neural networks

Advances in computational power and techniques for building and
training arti�cial neural networks have allowed these models to achieve
state-of-the-art results in many applications related to pattern recogni-
tion [133]. We will present two models of feedforward neural networks:
multilayer perceptrons (due to their simplicity), and convolutional neu-
ral networks (due to their state-of-the-art image classi�cation results).
These models are the focus of Chapter 5.

25

related work

2.3.5.1 Multilayer perceptrons

Multilayer perceptrons compose the most widely known class of arti�-
cial neural networks [15, 115].

Consider an iid dataset D = (x1, y1), . . . , (xN , yN), where xi ∈ RD ,
and yi ∈ {0, 1}C . In this context, given a pair (x, y) ∈ D, we assume
yj = 1 if and only if observation x belongs to class j. As usual, we also
assume that each observation belongs to a single class.

Let L represent the number of layers in the network, and N (l) repre-
sent the number of neurons in layer l , with N (L) = C . These hyperpa-
rameters determine the so-called network architecture. We will refer to
a neuron in layer l by a corresponding number between 1 and N (l) . The
neurons in the �rst layer are also called input units, the neurons in the
output (last) layer called output units, and the other neurons called hid-
den units. Networks with more than 3 layers are called deep networks.

Let w (l)
j,k ∈ R represent the weight reaching neuron j in layer l from

neuron k in layer (l − 1). The order of the indices is counterintuitive,
but makes the presentation simpler. Furthermore, let b (l)j ∈ R represent
the bias for neuron j in layer l .

Consider a layer l , for 1 < l ≤ L, and neuron j, for 1 ≤ j ≤ N (l) . The
weighted input to neuron j in layer l is de�ned as

z (l)j = b
(l)
j +

N (l−1)∑
k=1

w (l)
j,ka

(l−1)
k , (2.39)

where the activation a (l)j of neuron j in layer 1 < l < L is de�ned as

a (l)j = σ (z
(l)
j), (2.40)

for some di�erentiable activation function σ . We consider the sigmoid
activation function de�ned by σ (z) = 1

1+e−z .
We will also consider a so-called softmax output layer, where the ac-

tivation a (L)j of neuron j is given by

a (L)j =
ez

(L)
j∑C

k=1 e
z (L)k

. (2.41)

It will be useful to de�ne some vectors and matrices that represent
quantities associated to each neuron in a given layer. The weighted in-
put for layer l > 1 is de�ned as z(l) = (z (l)1 , . . . , z

(l)
N (l)), and the activation

vector for layer l is de�ned as a(l) = (a (l)1 , . . . ,a
(l)
N (l)). Furthermore, we

de�ne the bias vectors as b(l) = (b (l)1 , . . . ,b
(l)
N (l)), and the N (l) × N (l−1)

weight matrices W(l) such that W(l)
j,k = w

(l)
j,k .

26

2.3 pattern classification

Using these de�nitions, the output of each layer 1 < l < L can be
written as

a(l) = σ (W(l)a(l−1) + b(l)), (2.42)

where the activation function is applied element-wise (see Fig. 2.6).

in
p

u
t

d
a

ta
se

t
D

o
u

tp
u

t
cl

a
ss

 a
ss

ig
n

m
e

n
ts

hidden

layer(s)

Figure 2.6: Schema of multilayer perceptron with three layers and three neurons
per layer.

The output of a multilayer perceptron when a(1) = x is de�ned as the
activation vector a(L) of the output layer. Notice how a(L) is implicitly
dependent on x.

This completes the de�nition of the model. We now focus on learning
parameters for classi�cation given a dataset.

Suppose the dataset D is iid according to p (· | θ ∗), for an unknown
parameter vector θ ∗. Furthermore, suppose the probability of any class
y given any observation x is given by the corresponding output neuron
of a particular multilayer perceptron with a �xed architecture when
a(1) = x. More concretely, suppose

p (y | x,θ ∗) = a (L)y , (2.43)

such that the unknown θ ∗ de�nes the parameters (weights and biases)
of a multilayer perceptron (among the prior probabilities of observa-
tions, which are irrelevant for our purposes). It is important to notice
that a softmax output layer would yield a valid probability mass func-
tion for any choice of observation, weights and biases.

27

related work

The (conditional) likelihood p (D | θ) of the parameter vector θ given
the dataset D may be written as

p (D | θ) =
N∏
i=1

p (yi | xi ,θ), (2.44)

by ignoring for a moment that we encoded the target classes using vec-
tors. Once again, this likelihood is not based on the joint density over
observations and classes, which is irrelevant for our purposes.

A natural goal is to �nd the weights and biases that minimize the
(average) negative log-likelihood J , which is given by

J = −
1
N

logp (D | θ) = −
1
N

∑
(x,y)∈D

C∑
k=1

yk loga (L)k , (2.45)

where a(L) is the output activation when the network parameterized
according to θ receives x as input. Notice that a single yk is nonzero
inside the second summation. Furthermore, notice that −yk lna (L)k →

∞ when yk = 1 and a (L)k → 0, which characterizes a prediction error
(a (L)k > 0 due to the softmax output layer).

If we let E = −
∑

k yk loga (L)k be a cost variable implicitly associated
to a pair (x, y) ∈ D, then J = N −1 ∑

(x,y) E. The fact that the cost J
can be written as an average of costs E for each element of the dataset
will be crucial to the proposed optimization procedure. The procedure
requires the computation of partial derivatives of the cost with respect
to weights and biases, which are usually computed by a technique called
backpropagation .

Let the error1 of neuron j in layer l for a given (x, y) ∈ D be de�ned
as

δ (l)j =
∂E

∂z (l)j

. (2.46)

Similarly, the error for the neurons in layer l is denoted by δ (l) =(
δ (l)1 , . . . ,δ

(l)
N (l)

)
.

Backpropagation is a method for computing the partial derivatives of
the cost function of a multilayer perceptron with respect to its parame-

1 This arguably misleading term is widely employed [115].

28

2.3 pattern classification

ters [115]. Given our choice of activation functions, the method is based
solely on the following six equalities:

δ (L) = a(L) − y, (2.47)

δ (l) = ((W(l+1))Tδ (l+1)) � σ ′(z(l)), (2.48)
∂E

∂b (l)j

= δ (l)j , (2.49)

∂E

∂w (l)
j,k

= a (l−1)
k δ (l)j , (2.50)

∂J

∂b (l)j

=
1
N

∑
(x,y)∈D

∂E

∂b (l)j

, (2.51)

∂J

∂w (l)
j,k

=
1
N

∑
(x,y)∈D

∂E

∂w (l)
j,k

, (2.52)

where � denotes element-wise multiplication. Notice how every
quantity on the right side can be computed easily from our de�nitions,
by starting with the errors in the output layer for every pair (x, y) ∈ D.
This originates the term backpropagation.

As an illustration, we will demonstrate Eq. 2.48, which states that

δ (l)j = σ
′(z (l)j)

N (l+1)∑
k=1

w (l+1)
k, j δ (l+1)

k , (2.53)

for 1 < l < L and 1 ≤ j ≤ N (l) . Since layer l < L only a�ects the
output through the next layer, and z (l+1)

k is a di�erentiable function of
z (l)1 , . . . , z

(l)
N (l) , and E is a di�erentiable function of z (l+1)

1 , . . . , z (l+1)
N (l+1) ,

δ (l)j =
∂E

∂z (l)j

=

N (l+1)∑
k=1

∂E

∂z (l+1)
k

∂z (l+1)
k

∂z (l)j

=

N (l+1)∑
k=1

δ (l+1)
k

∂z (l+1)
k

∂z (l)j

. (2.54)

By de�nition,

z (l+1)
k = b (l+1)

k +

N (l)∑
i=1

w (l+1)
k,i a (l)i , (2.55)

therefore,

∂z (l+1)
k

∂z (l)j

=
∂

∂z (l)j

[
w (l+1)
k, j a (l)j

]
= w (l+1)

k, j σ ′(z (l)j). (2.56)

This gives

δ (l)j =

N (l+1)∑
k=1

δ (l+1)
k w (l+1)

k, j σ ′(z (l)j) = σ ′(z (l)j)
N (l+1)∑
k=1

w (l+1)
k, j δ (l+1)

k , (2.57)

29

related work

as we wanted to show.
Intuitively, for each observation, backpropagation considers the ef-

fect of a small increase of ∆w on a parameter w in the network. This
change a�ects every subsequent neuron on a path to the output, and
ultimately changes the cost J by a small ∆J .

Gradient descent can be used as a heuristic to �nd the parameters
that minimize the cost J . More concretely, if we let ∇θ J (θ) denote the
gradient (direction of maximum local increase) of J given the parame-
ter vector θ (which represents weights and biases), the technique starts
at a parameter vector θ0 chosen arbitrarily, and visits the sequence of
parameter vectors given by

θt+1 = θt − η∇θ J (θt), (2.58)

where the learning rate η ∈ R+ is a small constant. Gradient descent is
not guaranteed to converge. Even if it converges, the point at conver-
gence may be a saddle point or a poor local minima. The choice of η
considerably a�ects the success of gradient descent.

In a given iteration t of gradient descent, instead of computing ∂ J
∂w (l)

j,k

and ∂ J
∂b (l)

j

as averages derived from a computation involving all (x, y) ∈

D, it is also possible to consider only a subset D′ ⊆ D of randomly cho-
sen observations. The dataset D may also be partitioned randomly into
subsets called batches, which are considered in sequence. In this case,
another random partition is considered once every subset is used. This
procedure, called mini-batches stochastic gradient descent, is widely
used due to its e�ciency [115]. Intuitively, the procedure makes faster
decisions based on sampling. Regardless of these choices, a sequence
of iterations that considers all observations in the dataset is called an
epoch.

The basic choices involved in learning the parameters for a multilayer
perceptron using mini-batches include at least the number of hidden
layers, the number of neurons in each hidden layer, size of the mini-
batches, the number of epochs, and the learning rate η.

The momentum technique is a common heuristic for training deep
arti�cial neural networks [115]. In momentum-based stochastic gradi-
ent descent, each parameter w in the network (weight or bias) has a
corresponding velocity v . The velocity is de�ned by v0 = 0 and

vt+1 = µvt − η

∂J

∂wt

, (2.59)

where vt and wt correspond, respectively, to v and w at iteration t of
stochastic gradient descent. At each iteration, the parameter w is up-
dated by the rule wt+1 = wt + vt+1. Intuitively, the momentum tech-
nique remembers the velocity of each parameter, allowing larger up-
dates when the direction of decrease in cost is consistent over many

30

2.3 pattern classification

iterations. The parameter 0 ≤ µ ≤ 1 controls the e�ect of the previous
velocity on the next velocity, and 1 − µ is commonly interpreted as a
coe�cient of friction. If µ = 0, the technique is equivalent to gradient
descent.

Dropout [142] is another common heuristic for training deep arti�-
cial neural networks. At every iteration of stochastic gradient descent,
half the hidden neurons are removed at random. In most implemen-
tations, this can be accomplished by forcing the outputs of the corre-
sponding neurons to be zero. The modi�ed network is applied as usual
to the observations in a mini-batch, and backpropagation follows, as
if the network were not changed. The resulting partial derivatives are
used to update the parameters of the neurons that were not removed.
After training is �nished, the weights incoming from hidden neurons
are halved. This heuristic is believed to make the network robust to the
absence of particular features, which might be particular to the training
data [142]. Dropout is considered related to regularization for trying to
reduce over�tting [142].

There are many more heuristics for implementing multilayer percep-
trons that will not be described in detail in this text [115]. Although
we focused most of the discussion on sigmoid neurons, recti�ed linear
neurons have achieved superior results in important benchmarks [52].

In summary, training a multilayer perceptron involves a large num-
ber of hyperparameters, such as number of layers, number of neurons
per layer, learning rate, momentum coe�cient, mini-batch size, and
number of epochs. The success of multilayer perceptrons is highly de-
pendent on these hyperparameters, and their choice requires signi�cant
expertise [12]. We return to this issue in Chapter 5.

2.3.5.2 Convolutional neural networks

Convolutional neural networks were �rst developed for image classi�-
cation, which is the focus of this section, although they have also been
successfully applied to other tasks [115, 133].

A two-dimensional image may be represented by a function f : Z2 →

Rc . An element a ∈ Z2 is called a pixel, and f (a) is the value of pixel a.
If f (a) = (f1 (a), . . . , fc (a)), then fi is called channel i .

A window W ⊂ Z2 is a �nite set W = [s1, S1] × [s2, S2] that corre-
sponds to a rectangle in the image domain. The size of this windowW
is denoted by w ×h, where w = S1 − s1 + 1 and h = S2 − s2 + 1. Because
the domain Z of images of interest is usually a window, it is possible
to �atten an image f into a vector x ∈ Rc |Z | . In this vector, there is a
scalar value fi (a) corresponding to the value of each channel i of each
pixel a ∈ Z .

Consider an iid dataset D = (x1, y1), . . . , (xN , yN), such that xi ∈
RD , and yi ∈ {0, 1}C , where each vector xi corresponds to a distinct
image Z2 7→ Rc . Also, suppose that all images are de�ned on the same

31

related work

window Z , such that D = c |Z |. The task of image classi�cation consists
on assigning a class label for a given image based on generalization from
D.

A convolutional neural network is particularly well suited for im-
age classi�cation, because it explores the spatial relationships between
pixels (organization in Z2) [115]. Similarly to multilayer perceptrons,
a convolutional neural network is also a parameterized function, and
the parameters are usually learned by stochastic gradient descent on a
cost function de�ned on the training set. In contrast to multilayer per-
ceptrons, there are three main types of layers in a convolutional neural
network: convolutional layers, pooling layers and fully connected lay-
ers (see Fig. 2.7) [115].

Figure 2.7: Schema of convolutional neural network including convolutional
layers, pooling (sub-sampling) layers, and fully connected layers.
Source: [86].

A convolutional layer receives an input image f and outputs an im-
age o. A convolutional layer is composed solely of arti�cial neurons.
Each arti�cial neuron h in a convolutional layer l receives as input the
values in a windowW = [s1, S1] × [s2, S2] ⊂ Z of size w × h, where Z is
the domain of f . The weighted output z (l)h of that neuron is given by

z (l)h = b
(l)
h +

c∑
i=1

S1∑
j=s1

S2∑
k=s2

w (l)
h,i, j,ka

(l−1)
i, j,k . (2.60)

In the equation above, a (l−1)
i, j,k = fi (j,k) is the value of pixel (j,k) in

channel i of the input image. Also,b (l)h is the bias of neuronh andw (l)
h,i, j,k

is the weight that neuronh in layer l associates to fi (j,k). The activation
function for a convolutional layer is typically recti�ed linear [115], so
a (l)h = max(0, z (l)h). The de�nition of z (l)h is similar to the de�nition of
the weighted input for a neuron in a multilayer perceptron. The only
di�erence is that a neuron in a convolutional layer is not necessarily
connected to the activations of all neurons in the previous layer, but
only to the activations in a particularw ×h windowW . Each neuron in
a convolutional layer has cwh weights and a single bias.

A neuron in a convolutional layer is replicated (through parameter
sharing) for all windows of sizew×h in the domainZ whose centers are

32

2.3 pattern classification

o�set by pre-de�ned steps. These steps are the horizontal and vertical
strides. The activations corresponding to a neuron replicated in this way
correspond to the values in a single channel of the output image o (ap-
propriately arranged in Z2). Thus, an output image o : Z2 → Rn is ob-
tained by replicating n neurons over the whole domain of the input im-
age. The total number of free parameters in a convolutional layer is only
n(cwh + 1). If the parameters in a convolutional layer were not shared
by replicated neurons, the number of parameters would bemn(cwh+1),
wherem is the number of windows of size w × h that �t into f (for the
given strides).

The weighted outputs (minus the bias) of replicated neurons corre-
spond to an output channel that is analogous to the discrete (multichan-
nel) convolution of the input f with a particular image д. The values of
д correspond to the (shared) weights of the replicated neurons (appro-
priately arranged in Z2). This assumes that the horizontal and vertical
strides are 1 and that the domain of the resulting image is always re-
stricted to the window domain of f . In other words, each channel ou
in the output o of a convolutional layer corresponds to a (multichan-
nel) convolution with an image дu , which is also called a �lter. This is
the origin of the name convolutional network [115]. Therefore, to de-
�ne a convolutional layer, it is enough to specify the size of the �lters
(window size), the number of �lters (number of channels in the output
image), horizontal and vertical strides (which are usually 1).

Each channel in the output of a convolutional layer can also be seen
as the response of the input image to a particular (learned) �lter. Based
on this interpretation, each channel in the output image is also called
an activation map.

Backpropagation can be adapted to compute the partial derivative of
the cost with respect to every parameter in a convolutional layer [115,
133]. The fact that a single weight a�ects the output of several neurons
must be taken into account. We omit the details of backpropagation for
convolutional neural networks in this text.

A pooling layer receives an input image f : Z2 → Rc and outputs an
image o : Z2 → Rc . A pooling layer reduces the size of the window do-
mainZ of f by an operation that acts independently on each channel. A
typical pooling technique is called max-pooling [115]. In max-pooling,
the maximum value of channel fi in a particular window of size w × h
corresponds to an output value in channel oi . To de�ne a max-pooling
layer, it is enough to specify the size of these windows and the strides
(which usually match the window dimensions). The objective of reduc-
ing the spatial domain of the image is to achieve similar results to using
comparatively larger convolutional �lters in the next layers [115]. This
supposedly allows the detection of higher-level features in the input
image with a reduced number of parameters [115]. It is also believed
that max-pooling improves the invariance of the classi�cation to trans-
lations of the original image [115]. In practice, a sequence of alternating

33

related work

convolutional and max-pooling layers has obtained excellent results in
many image classi�cation tasks [133, 140]. Backpropagation can also be
performed through max-pooling layers.

In summary, a max-pooling layer receives an input image f : Z2 →

Rc and outputs an image o : Z2 → Rc de�ned by

oi (j,k) = max
a∈Wj,k

fi (a), (2.61)

where i ∈ {1, . . . , c}, (j,k) ∈ Z2, Z is the window domain of f , and
Wj,k ⊆ Z is the input window corresponding to output pixel (j,k).

A fully connected layer receives an input image f : Z2 → Rc or an
input vector x and outputs a vector o. A fully connected layer is pre-
cisely analogous to a layer in a multilayer perceptron [115], and can
only be succeeded by other fully connected layers. The �nal layer in a
convolutional neural network is always a fully connected layer with C
neurons, which is responsible for representing the classi�cation. Back-
propagation in fully connected layers is analogous to backpropagation
in multilayer perceptrons.

Deep convolutional neural networks are usually trained in large la-
beled datasets, requiring (non-trivial) e�cient implementations, which
include all the improvements mentioned in the previous section [133].
After training a convolutional neural network for a particular dataset,
it is possible to re-use the parameters of the network (up to its last fully
connected layer) as a starting point for another classi�cation task. This
technique decouples representation learning from a speci�c image clas-
si�cation problem, and has been very successful in practice [133].

In summary, convolutional neural networks are highly specialized
models that were originally conceived for image classi�cation. The
choice of hyperparameters (including types of layers, number of layers,
�lters per layer, �lter sizes, strides, and the usual training procedure
hyperparameters) is crucial for e�cacy [115, 133, 140]. We return to
this issue in Chapter 5.

2.4 feature selection

As already mentioned, extracting appropriate features from the objects
of interest is crucial to the success of pattern classi�cation. Using too
few features can lead to poor generalization, while using too many fea-
tures can be computationally prohibitive, or even introduce confound-
ing information into the training data [60, 94].

Because there are 2D − 1 distinct non-empty subsets of a set of D
features, evaluating the e�cacy of every feature subset using cross-
validation is generally infeasible. Instead, feature selection is typically
performed by heuristic methods. Feature selection techniques are typi-
cally divided intowrappers, which are based on learning algorithms, and

34

2.4 feature selection

�lters, which rely on simpler metrics derived from the relationships be-
tween features and class labels. We refer to [94] for an extensive list of
techniques.

The next sections introduce feature selection techniques (wrappers)
that will be employed in Chapters 4 and 5. These methods were chosen
for being su�ciently inexpensive (computationally) to aid in interactive
feature selection.

One exception is Section 2.4.1, which introduces the concept of mu-
tual information. Although mutual information is ideal to select (dis-
crete) features individually, it fails to take into account whether features
are important when considered together with others (unless feature sub-
sets are considered, which becomes intractable). However, Sec. 2.4.1 is
also used to introduce important concepts in information theory, which
will be useful again in Sec. 2.6.4.

2.4.1 Mutual information

The entropy (in bits) H [X] of a discrete random variable X ∼ p is given
by [100]

H [X] = E[− log2 p (X)] = −
∑
k

p (k) log2 p (k), (2.62)

where p (k) > 0 for every k . If p (k) = 0 for some k , 0 log2 0
is conventionally replaced by 0, which is justi�ed by the fact that
lima→0 a log2 a = 0. It is also common to denote H [X] by H [p].

Consider the task of transmitting an iid dataset D = x1, . . . ,xN dis-
tributed according to a probability mass function p. Shannon’s source
coding theorem states that, as N → ∞, the entropy H [p] is a lower
bound on the average number of bits required to transmit each obser-
vation (after the encoding is established) [100].

The cross-entropy H [p,q] between two probability mass functions p
and q is de�ned as H [p,q] = −

∑
k p (k) log2 q(k), where 0 log2 0 is again

replaced by 0. Considering the transmission task mentioned above, the
cross-entropy H [p,q] can be interpreted as the average number of bits
required to transmit an observation when the encoding is ideal for q
(instead of p) [100, 111].

The Kullback-Leibler divergence KL(p | |q) between two probability
mass functions p and q is de�ned as

KL(p | |q) =
∑
k

p (k) log2
p (k)

q(k)
= H [p,q] − H [p], (2.63)

where p (k),q(k) > 0 for every k . If either p (k) or q(k) are 0, the cor-
responding term in the summation is again replaced by 0. Considering
again the transmission task, the Kullback-Leibler divergence KL(p | |q)
can be interpreted as the increase in the average number of bits required

35

related work

to transmit an observation when the encoding is ideal for q (instead of
p) [100, 111].

Consider two discrete random variables X ∼ pX and Y ∼ pY . The
conditional entropy H [X | Y] of X given Y is de�ned as

H [X | Y] = −
∑
y

pY (y)
∑
x

p (x | y) log2 p (x | y) =
∑
y

pY (y)H [X | Y = y],

(2.64)

where 0 log2 0 is replaced by 0. It is possible to show that H [X | Y] ≤
H [X] for any X and Y [111].

The mutual information I (X ;Y) between X and Y is de�ned as

I (X ;Y) = KL(pX ,Y | |pXpY) =
∑
x

∑
y

pX ,Y (x ,y) log2
pX ,Y (x ,y)

pX (x)pY (y)
, (2.65)

where pX (x), pY (y) and pX ,Y (x ,y) are non-zero for all x ,y. If any
of them is zero, the corresponding term inside the summation is again
replaced by 0. It is easy to show that [111]

I (X ;Y) = H [X] − H [X | Y] = H [Y] − H [Y | X]. (2.66)

Intuitively, the mutual information I (X ;Y) between X and Y measures
the amount of information that Y has about X (dependence between X
and Y). Clearly, I (X ;Y) = I (Y ;X), and I (X ;Y) ≥ 0 [82, 111]. It is also
possible to show that I (X ;Y) = 0 if and only ifX andY are independent
[82, 111].

In the context of feature selection for classi�cation tasks, the mutual
information I (X j ;Y) can be used to measure how much information a
discrete feature variable X j ∼ pX j has about the class variable Y ∼ pY .
This requires approximating the (typically unknown) probability mass
functions pX j ,pY and pX j ,Y by their corresponding empirical distribu-
tions given an iid dataset D. However, these approximations may be un-
reliable, particularly when the number of observations inD is small. Fur-
thermore, notice that this approach does not take into account whether
a feature is important when taken together with other features.

2.4.2 Randomized logistic regression

Recall that logistic regression is a binary classi�cation technique that
assumes that the probability p (y | x,w) of class y ∈ {0, 1} given obser-
vation x and weight vector w is given by

p (y | x,w) = σ (wx)y (1 − σ (wx))1−y , (2.67)

where σ is the sigmoid function.
Given an iid dataset D, we have also shown how an appropriate

weight vector w∗ can be found by maximizing the log-likelihood `(w) =

36

2.4 feature selection

logp (D | w) with respect to w. We also mentioned that this maximiza-
tion objective can lead to a weight vector w∗ with very large coe�-
cients. This leads to a classi�er that is very sensitive to small changes
in the input observations, which may be over�tted to the training data.
This issue can be circumvented by maximizing the l2-regularized log-
likelihood given by `(w) − λ | |w| |2, for some penalty λ > 0.

Another alternative is to maximize the l1-regularized log-likelihood
given by `(w) − λ

∑
j |w j |. In comparison to the l2-regularized log-

likelihood, this alternative objective favors a sparse solution w∗ (where
many elements are zero) [64].

Randomized logistic regression is a feature scoring heuristic based on
the idea that if w∗ is the weight vector that maximizes the l1-regularized
log-likelihood, and w∗j = 0, then feature j is not relevant for classi�ca-
tion [105]. Notice that this heuristic takes into consideration that a fea-
ture may be discriminative when combined with others even if it is not
discriminative by itself.

However, notice thatw∗j = 0 does not necessarily imply that a feature
is not relevant for classi�cation. For instance, a feature k that is always
identical to feature j could exist, and w∗k could be nonzero. Clearly, this
example generalizes to groups of features. Although this behavior is
appropriate for selecting subsets of features, it is not appropriate for
scoring features individually.

Randomized logistic regression deals with this issue by introducing
randomness into the learning process. We discuss one possible imple-
mentation of the original approach, which is based on stability selection
[105].

Consider a sequence of datasets D1, . . . ,DS , each obtained by ran-
domly choosing subsets composed of N ′ < N elements from an origi-
nal iid dataset D = (x1,y1), . . . , (xN ,yN). Suppose a logistic regression
classi�er is �tted independently for each of these datasets, resulting in
a sequence of weight vectors w∗1, . . . ,w

∗
S . This approach is similar (but

not equivalent) to bagging, which we already introduced in Sec. 2.3.4.
The score sj of feature j is de�ned as the fraction of classi�ers where

feature j was associated to a signi�cant coe�cient, and is given by

sj =
1
S

S∑
i=1

I(|w∗i, j | ≥ ϵ), (2.68)

where I is the indicator function, and ϵ ≥ 0 is a small constant. In-
tuitively, the variability introduced by subsampling is likely to a�ect
which features are used by each classi�er, avoiding the issue involving
related features [105].

So far, we have omitted the main idea in stability selection applied
to logistic regression, which is penalizing each feature di�erently when
considering each dataset. This idea can be implemented by maximizing,

37

related work

for each dataset Di , the l1-regularized log-likelihood with respect to w
considering randomized penalties, which is given by

l (w) − λ
∑
j

|w j |

ωj
, (2.69)

where λ is the usual penalty hyperparameter, but each ωj is chosen uni-
formly at random from the set {r , 1}, where 0 < r < 1 is a hyperparam-
eter of the feature selection method. Intuitively, this introduces even
more variability in the set of features that is likely to be used by each
classi�er [105].

2.4.3 Recursive feature elimination

Recursive feature elimination (RFE) is a simple greedy heuristic method
that attempts to rank features according to their discriminative capac-
ities. The method consists on training a classi�er on a dataset D, elim-
inating the feature(s) with lowest importance according to some crite-
ria, and repeating the process recursively until all features have been
eliminated [61]. RFE is an instance of the traditional backward feature
selection strategy [61].

In (linear) support vector machine RFE [61], which is a common im-
plementation, the parameters w∗ and b∗ of a maximum margin separat-
ing hyperplane for the dataset D are obtained as usual, and the feature
j with lowest absolute weight coe�cient |w∗j | is eliminated. The proce-
dure continues recursively without feature j. The score (inverse rank)
sj of feature j is simply the iteration at which it was eliminated.

Similarly to randomized logistic regression, this method assumes that
features with small associated coe�cients are unimportant for classi�-
cation. However, SVM RFE does not address the fact that a relevant
feature might have been replaced (by the classi�er) by a highly related
feature (or group of features), as detailed in the previous section. There-
fore, it is not appropriate for scoring features individually.

2.4.4 Random forest scoring

A simple heuristic method can be employed to compute the importance
of each feature given a classi�cation tree �tted to a dataset [22].

Recall that any vertex u in a classi�cation tree T = (V ,E) �tted to a
dataset D is associated to a region Ru . De�ne the weighted decrease in
cost ∆u at a non-leaf vertex u as

∆u = |Du |c (Du) −
[
|Dv |c (Dv) + |Dw |c (Dw)

]
, (2.70)

wherev andw are the children of u inT , c (Dz) is the cost (impurity) as-
sociated to dataset Dz , and Dz = {(x,y) ∈ D | x ∈ Rz }, for z ∈ {u,v,w }.

38

2.5 high-dimensional data visualization

In other words, ∆u is the di�erence between the cost associated to ver-
tex u, and the combined costs of its two children u and w . Each cost
is also weighted by the size of the dataset that reaches the particular
vertex during the procedure that builds the tree.

The unnormalized score ŝj of feature j given a classi�cation tree T
�tted to a dataset D is de�ned as

ŝj =
∑
u ∈Uj

∆u , (2.71)

where Uj ⊆ V is the subset of (non-leaf) vertices in the classi�cation
treeT that partition the remaining dataset considering feature j during
the procedure that builds the tree. In other words, for any u ∈ Uj with
children v and w , Rv = {x ∈ Ru | x j < τ }, and Rw = {x ∈ Ru | x j ≥ τ },
for some threshold τ .

Intuitively, features with high unnormalized scores contributed sig-
ni�cantly to the decrease in impurity, possibly while the procedure that
builds the tree was still considering a large remaining dataset.

It is usually more convenient to consider the normalized score sj of
feature j, which is given by

sj =
ŝj∑
k ŝk
. (2.72)

A random forest classi�er [23] or extremely randomized tree [51]
may compute feature scores by averaging the normalized scores given
by the individual trees that comprise the ensemble. As in randomized
logistic regression, this heuristic attempts to avoid associating a high
score to a single important feature in detriment of other highly related
features.

Notice that these feature scoring methods based on classi�cation
trees are naturally capable of dealing with any number of classes, and
do not suppose that the decision boundary is an a�ne hyperplane,
in contrast to both randomized logistic regression and SVM recursive
feature elimination.

2.5 high-dimensional data visualization

High-dimensional data visualization is a subarea of data visualization
that is concerned with creating visual depictions of high-dimensional
datasets. For an extensive overview of the �eld, we refer to the recent
survey by Liu et al. [97].

There are many alternatives for visual exploration of high-dimensional
data, such as parallel coordinate plots [67], radial layouts [69, 77, 91],
table lenses [124], and scatterplot matrices [10]. A common challenge
for these methods is scalability to datasets with relatively modest num-
bers of observations and dimensions, as will become clear in the next

39

related work

sections. We introduce dimensionality reduction as an alternative to
these methods in Sec. 2.6.

2.5.1 Table lenses

Consider a dataset D = x1, . . . , xN , such that xi ∈ RD , and its corre-
sponding N × D design matrix X, where each observation corresponds
to a row. A natural way to visualize such dataset is to represent the
design matrix by a traditional numeric table.

The e�ectiveness of a simple numeric table can be greatly enhanced
by basic interactivity, such as allowing the user to sort groups of ob-
servations (rows) by a speci�c feature (column). Instead of represent-
ing the feature values using numbers, it is also possible to use a visual
metaphor, such as an appropriately scaled (and possibly colored) bar.
Through zoom and panning, the user becomes able to visualize a larger
number of observations at once, at an appropriate level of detail. A com-
bination of these and related improvements leads to an interactive visu-
alization method called table lens [124, 147] (see Fig. 2.8).

Figure 2.8: Table lens showing baseball player statistics. Source: [124].

Although this method is scalable with respect to the number of ob-
servations, it provides limited insight about complex structures that in-
volve several features, such as clusters (groups of similar observations).
In this sense, it has limited scalability with respect to the number of fea-
tures. Its e�ectiveness is also highly dependent on the ordering of the
columns. For instance, even simple relationships (e.g., linear correlation)
between features can be obscured when the corresponding columns are
placed far apart.

40

2.5 high-dimensional data visualization

2.5.2 Scatterplot matrices

Consider a dataset D = x1, . . . , xN , such that xi ∈ RD . A scatterplot
matrix is a D × D table T composed of scatterplots. Each scatterplot
Ti, j shows each observation in D restricted to a pair of features i, j ∈
{1, . . . ,D} in Cartesian coordinates [10] (see Fig. 2.9). The scatterplots
in the diagonal of T are often substituted by feature histograms.

Figure 2.9: Scatterplot matrix showing a three-dimensional dataset. Source:
[10].

This visualization method allows detecting some types of clusters and
dependence between features. However, it is incapable of (directly) rep-
resenting relationships between more than two features, and its scala-
bility with respect to the number of features is severely limited.

2.5.3 Parallel coordinate plots

Consider a dataset D = x1, . . . , xN , such that xi ∈ RD . A parallel coor-
dinate plot is composed of D parallel line segments (axes), typically po-
sitioned vertically and equally spaced [67] (see Fig. 2.10). Each of these
axes represents the range of values of a single feature. Furthermore,
each observation xi is represented by a polyline (sequence of connected
line segments) whose vertex j intersects the axis corresponding to fea-
ture j precisely at the position that represents the value xi, j .

A parallel coordinate plot is useful to detect the presence of clusters
or outliers, and also to detect dependence between features. However,
the e�ectiveness of a parallel coordinate plot is highly dependent on

41

related work

the (visual) order of the features, and the method does not scale well to
more than a few dozen features.

Figure 2.10: Parallel coordinates showing three di�erent orderings of features.
Source: [66] (adapted).

2.6 dimensionality reduction for visualization

Dimensionality reduction (DR) techniques e�ectively address the scala-
bility issues of the previously discussed high-dimensional data visualiza-
tion techniques by �nding a low-dimensional representation of the data
that retains structure, which is de�ned by relationships between points,
presence of clusters, or overall spatial data distribution [89, 96, 97, 99].
In this text, we refer to the representation obtained by DR by the term
projection. For the purposes of visualization, DR techniques typically
reduce the number of dimensions to two or three.

More concretely, dimensionality reduction techniques typically ad-
dress the task of representing an iid dataset D = x1, . . . , xN , where
xi ∈ RD , by a projection P = p1, . . . , pN , where pi ∈ Rd , d < D,
and each point pi corresponds to observation xi . Di�erent techniques
attempt to preserve di�erent aspects of the dataset D in the projection
P .

The resulting projections can be represented as scatterplots, which al-
low reasoning about clusters, outliers, and trends by direct visual explo-
ration. These and other tasks addressed by DR-based visualizations are
detailed by Brehmer et al. [21]. Visual exploration of high-dimensional
datasets via projections has been widely applied to many types of data,
such as text documents [119], multimedia collections [75], gene expres-
sions [24], and networks [25].

DR techniques are typically divided into linear (e.g., PCA, LDA, clas-
sical MDS) and non-linear (e.g., Isomap, LLE, t-SNE) [30, 89, 99], based
on the properties of the mapping from RD to Rd . Although many tra-
ditional DR techniques are computationally expensive, highly scalable
techniques have also been proposed (e.g., LSP [119], LAMP [75], LoCH

42

2.6 dimensionality reduction for visualization

[40]). These techniques are currently capable of dealing with hundreds
of thousands of high-dimensional observations (or more), although vi-
sual clutter eventually becomes a problem. Guidelines for choosing suit-
able DR methods for a particular task are outlined by Sedlmair et al.
[136]. In Chapter 4, we will introduce several visualization techniques
that have been proposed to help the interactive exploration of projec-
tions.

The next sections describe four widespread dimensionality reduc-
tion techniques in detail: principal component analysis (PCA), linear
discriminant analysis (LDA), multidimensional scaling (MDS), and t-
distributed stochastic neighbor embedding (t-SNE). Although PCA and
LDA are not employed in the next chapters, presenting these techniques
is justi�ed by their popularity. LDA is particularly interesting as the
only supervised dimensionality reduction technique that we discuss.
MDS and t-SNE will be employed in Chapters 4 and 5.

Finally, consider the task of visualizing a sequence of datasets that
represents a time-dependent process using dimensionality reduction. If
a DR technique is applied independently for each time step, the result-
ing sequence of projections may present variability that does not re�ect
signi�cant changes in the structure of the data. We refer to this issue as
temporal incoherence, which signi�cantly impairs the visualization of
temporal trends. Temporal incoherence will a�ect any DR technique
that is sensitive to relatively small changes in their inputs [49]. We ad-
dress this issue in Chapter 6, focusing on t-SNE.

2.6.1 Principal component analysis

Principal component analysis (PCA) is a widely used dimensionality re-
duction technique [15, 30]. Consider a dataset D = x1, . . . , xN . Firstly,
notice that the mean projection onto the vector u1 ∈ RD of the obser-
vations in D can be written as

1
N

N∑
i=1

u1xi = u1
1
N

N∑
i=1

xi = u1x̄, (2.73)

where x̄ is the empirical mean. Consider the task of �nding an unit
vector u1 such that the variance

v (u1) =
1
N

N∑
i=1

(u1xi − u1x̄)2 (2.74)

of the projections onto u1 of the observations in D is maximum. It can
be easily shown that v (u1) can also be written as

v (u1) =
1
N

N∑
i=1

[
(u1xi)2 − 2(u1xi) (u1x̄) + (u1x̄)2

]
= uT1 Σu1, (2.75)

43

related work

where Σ = 1
N

∑N
i=1 (xi − x̄) (xi − x̄)T is the empirical covariance matrix

of the dataset D.
The maximization task outlined above corresponds to �nding the

maxima of v restricted to the D-dimensional unit sphere S = {u1 ∈

RD | д(u1) = 0}, where д(u1) = 1 − u1u1. The Lagrange multiplier
theorem states that if u1 is a local maximum of v restricted to S , and
∇д(u1) , 0, then

∇v (u1) + λ1∇д(u1) = 0, (2.76)

for some λ1 ∈ R. Thus,

0 = ∇u1

[
uT1 Σu1

]
+ λ1∇u1

[
1 − u1u1

]
(2.77)

= (Σ + ΣT)u1 − 2λ1u1 = 2Σu1 − 2λ1u1, (2.78)

where (Σ+ ΣT) = 2Σ because Σ is symmetric. Therefore, if u1 is a local
maximum of v restricted to S , then Σu1 = λ1u1 for some λ1. In other
words, u1 is an eigenvector of Σ with eigenvalue λ1. Because the vari-
ance v (u1) corresponding to such an eigenvector u1 is the correspond-
ing eigenvalue λ1 = uT1 Σu1, the eigenvector with maximum associated
eigenvalue is the desired global maximum restricted to S , although we
will not show that this condition is indeed su�cient.

Consider an orthonormal list Li = (u1, . . . ui) containing the largest
eigenvectors (with respect to their corresponding eigenvalues) of an em-
pirical covariance matrix Σ, sorted in non-increasing order, for some
1 ≤ i ≤ D. It can be shown by induction that uj is a vector with max-
imum variance v (uj) among all unit vectors that are orthogonal to all
the vectors in the list (u1, . . . , uj−1) [15].

Using such a list of eigenvectors Ld , any point xi ∈ RD can be repre-
sented by a point pi = (u1xi , . . . , udxi) in Rd . Therefore, PCA performs
a linear mapping between RD and Rd . For an illustrative example, see
Fig. 2.11.

In practice, it is essential to transform an original dataset D′ into a
dataset D with empirical mean x̄ = 0 before applying principal com-
ponent analysis, since the increase in variance along a direction due to
translations is usually irrelevant. In that case, principal component anal-
ysis also �nds the linear map with minimum reconstruction error [30].
In many applications, the dataset D should also have the same empirical
variance across each feature (i.e., the dataset D′ should be standardized)
to minimize the e�ect of the choice of units.

Projections obtained by principal component analysis may fail to pre-
serve structures of interest. For instance, Fig. 2.11 presents a case where
two evident clusters are merged in a 1D projection. Analogously to pat-
tern classi�cation, because each technique is concerned with preserv-
ing di�erent aspects of a dataset in its projection, there is no single best
dimensionality reduction technique.

44

2.6 dimensionality reduction for visualization

(a) (b)

Figure 2.11: (a) Original 2D dataset. (b) 1D PCA projection represented by one
semi-transparent histogram per class. Notice the poor separation
between observations from distinct classes in the projection.

2.6.2 Linear discriminant analysis

Linear discriminant analysis can be used as a dimensionality reduction
technique that takes class information into account [64, 111]. This may
result in projections where the classes are better separated when com-
pared to projections obtained by techniques that ignore such informa-
tion.

We present linear discriminant analysis from a slightly unusual per-
spective, which is mostly based on [111] and [64]. Although the tech-
nique was originally proposed as the solution to �nding a linear map
that maximizes inter-class variance while minimizing intra-class vari-
ance, our presentation explicits its underlying assumptions. We refer to
[64] for further details.

The multivariate Gaussian joint probability density function N (· |
µ, Σ) is de�ned on RD as

N (x | µ, Σ) =
1√

(2π)D |Σ|
e−

1
2 (x−µ)

T Σ−1 (x−µ), (2.79)

where µ ∈ RD is the mean vector and Σ is the D × D (positive de�nite)
covariance matrix. Indeed, if X ∼ N (· | µ, Σ), then E[X] = µ and
cov[X] = Σ.

Consider the task of creating a classi�er given the dataset D =

(x1,y1), . . . , (xN ,yN), which is iid according to p (· | θ ∗), for an un-
known θ ∗. Consider also that xi ∈ RD , and yi ∈ {1, . . .C}.

Gaussian discriminant analysis assumes that the density p (x | y,θ)
associated to observation x given the class y and the parameter vector
θ is given by [111]

p (x | y,θ) = N (x | µy , Σy). (2.80)

45

related work

Note that µy and Σy are represented in θ , for every y. In words, the
technique assumes that the observations in each class are distributed
according to distinct multivariate Gaussian distributions.

For a particular estimate θ̂ of the parameters (maximum likelihood,
for instance), classi�cation uses the fact that

p (y | x, θ̂) =
p (x | y, θ̂)p (y | θ̂)

p (x | θ̂)
∝y p (x | y, θ̂)p (y | θ̂) = N (x | µ̂y , Σ̂y)π̂y ,

(2.81)

for all x andy. Note that π̂y = p (y | θ̂) is also represented in θ̂ , for every
y. The symbol ∝y denotes proportionality with respect to variable y.

Consider the task of �nding the maximum (log-)likelihood estimate
for Gaussian discriminant analysis. By de�nition, the log-likelihood
logp (D | θ) of θ given D is

log
N∏
i=1

p (xi | yi ,θ)p (yi | θ) =
C∑
y=1

N∑
i=1 |yi=y

logN (xi | µy , Σy)+
C∑
y=1

Ny logπy .

(2.82)

Because the �rst summation can be maximized (with respect to the
mean vectors and covariance matrices) independently for each class, the
maximum likelihood estimates are simply given by [111]

µ̂y =
1
Ny

N∑
i=1 |yi=y

xi (2.83)

Σ̂y =
1
Ny

N∑
i=1 |yi=y

(xi − µ̂y) (xi − µ̂y)
T (2.84)

π̂y =
Ny

N
, (2.85)

where Ny is the number of observations in D that belong to class y.
We say µ̂y is the class y centroid. If there are insu�cient observations
in class y, the covariance matrix estimate Σ̂y may be non-invertible,
and thus invalid as a covariance matrix. Even if Σ̂y is invertible, it may
over�t the data.

Linear discriminant analysis (LDA) addresses this issue by assuming
that the covariance matrix is the same for all classes [64, 111]. Thus, for
a particular estimate θ̂ ,

p (y | x, θ̂) ∝y π̂yN (x | µ̂y , Σ̂) ∝y π̂y exp
[
−

1
2
(x− µ̂y)T Σ̂

−1
(x− µ̂y)

]
,

(2.86)

46

2.6 dimensionality reduction for visualization

for all x and y. Using the distributivity of matrix multiplication over
addition,

p (y | x, θ̂) ∝y π̂y exp
[
µ̂Ty Σ̂

−1
x −

1
2
µ̂Ty Σ̂

−1
µ̂y −

1
2

xT Σ̂
−1

x
]

(2.87)

= e log π̂y exp
[
µ̂Ty Σ̂

−1
x −

1
2
µ̂Ty Σ̂

−1
µ̂y

]
exp

[
−

1
2

xT Σ̂
−1

x
]

(2.88)

∝y exp
[
µ̂Ty Σ̂

−1
x −

1
2
µ̂Ty Σ̂

−1
µ̂y + log π̂y

]
. (2.89)

Letting βy = µ̂Ty Σ̂
−1

and γy = − 1
2 µ̂

T
y Σ̂
−1
µ̂y + log π̂y ,

p (y | x, θ̂) =
eβyx+γy∑C

y′=1 e
βy′x+γy′

, (2.90)

since
∑
y p (y | x, θ̂) = 1, for any x and θ̂ .

Consider the set S composed of all x such that p (y | x, θ̂) = p (y ′ |
x, θ̂), for a particular choice ofy , y ′ and θ̂ . Clearly, eβyx+γy = eβy′x+γy′ ,
and βyx+γy = βy′x+γy′ . Rearranging the terms, (βy −βy′)x = γy′ −γy .
Thus, the decision boundary S between any such y and y ′ is an a�ne
hyperplane, which originates the term linear discriminant analysis [64].

An appropriate covariance matrix estimate Σ̂ is given by [64]

Σ̂ =
1

N −C

N∑
i=1

(xi − µ̂yi) (xi − µ̂yi)
T . (2.91)

Suppose such covariance matrix estimate Σ̂ obtained from a dataset
D is the identity matrix I. In this case, because Σ̂ = Σ̂

−1
= I,

p (y | x, θ̂) ∝y exp
[
µ̂yx −

1
2
| |µ̂y | |

2 + log π̂y
]
. (2.92)

Recall that the squared Euclidean distance between the centroid µ̂y
and observation x is given by | |µ̂y −x| |2 = | |µ̂y | |2+ | |x| |2−2µ̂yx. There-
fore, maximizing µ̂yx − 1

2 | |µ̂y | |
2 with respect to y corresponds to mini-

mizing | |µ̂y − x| |2. In other words, in the case of an identity covariance
matrix and uniform prior class probabilities, classifying an observation
by linear discriminant analysis corresponds to �nding the class with the
closest centroid [64].

The idea outlined in the previous paragraph is at the core of dimen-
sionality reduction based on linear discriminant analysis [64, 111]. Next,
we introduce the whitening transform, which will be required to obtain
a dataset with the desired identity covariance matrix.

Let X be a D-dimensional random vector such that Σ = cov[X] is
positive de�nite and E[X] = 0. Consider the eigendecomposition Σ =

47

related work

UΛUT , where each column j of the D × D matrix U is an eigenvector
uj of Σ, and Λ is a diagonal matrix such that Λj, j = λj is the eigenvalue
that corresponds to uj . Furthermore, U is chosen so that UTU = I ,
which means that (u1, . . . , uD) is an orthonormal basis for RD . Let Λ−

1
2

denote the diagonal matrix such that Λ−
1
2

j, j = 1/
√
λj . It can be shown

that if W = Λ−
1
2UT X, then E[W] = 0 and cov[W] = I [64]. In other

words, the so-called whitening matrix Λ−
1
2UT maps a random vector X

to a column matrix W (which may be seen as a random vector) whose
covariance matrix is the identity.

Consider a centered iid dataset D = (x1,y1), . . . , (xN ,yN), such that∑
i xi = 0. Let Σ̂ = UΛUT denote the eigendecomposition of the covari-

ance matrix estimate given by linear discriminant analysis (Eq. 2.91). If
we suppose such estimate is correct, then the corresponding covariance
matrix estimate for the whitened dataset D′ = {(Λ−

1
2UT x,y) | (x,y) ∈

D} should be the identity matrix [64]. As a consequence, a transformed
observation can be classi�ed according to the closest transformed cen-
troid (assuming uniform prior class probabilities).

Let D′µ = µ′1, . . . , µ
′
C denote a dataset composed of the transformed

centroids. Note that this sequence of vectors is not linearly independent,
since

∑
y ayµ

′
y = 0, for some ay > 0, which follows from the fact that

D is centered. As a consequence, they span a subspace of dimension at
most C − 1.

The main step in dimensionality reduction based on linear dis-
criminant analysis is to perform principal component analysis on
the transformed centroids D′µ , which results in an orthonormal list
LC ′ = (u1, . . . uC ′) composed of C ′ < C vectors [64]. Projecting the
transformed centroids onto these directions leads to maximum variance
in a very speci�c sense, as already explained in the previous section. In-
tuitively, projecting the transformed observations onto these directions
may preserve class separation better than unsupervised dimensionality
reduction. For an illustrative example, see Fig. 2.12.

Finally, each observation xi ∈ RD in the original (centered) dataset
D can be represented by the point pi ∈ RC ′ given by

pi = (uT1 Λ
− 1

2UT xi , . . . , uTC ′Λ
− 1

2UT xi), (2.93)

where C ′ < C . If C > 2, the �rst d = 2 elements of pi are typically
chosen for the purposes of visualization [64]. Notice that dimensionality
reduction by linear discriminant analysis is also a linear mapping from
RD to RC ′ .

In contrast to PCA (Fig. 2.11), a 1D projection obtained by LDA is ca-
pable of preserving the clusters in the example illustrated by Fig. 2.12
(using cluster information). However, it should be clear that such sepa-
ration between clusters is not guaranteed in the general case.

48

2.6 dimensionality reduction for visualization

(a) (b)

Figure 2.12: (a) Original 2D dataset. (b) 1D LDA projection represented by one
semi-transparent histogram per class. Notice the good separation
between observations from distinct classes in the projection.

2.6.3 Multidimensional scaling

Multidimensional scaling (MDS) methods attempt to represent dissimi-
larities between pairs of objects of interest by distances between points
placed in a low-dimensional space [17].

Consider a dataset D = x1, . . . , xN composed of D-dimensional ob-
servations. The goal of absolute (metric) multidimensional scaling [17]
is to compute a projection P = p1, . . . , pN where the distances between
observations in D are preserved, considering that each pi ∈ Rd corre-
sponds to an observation xi ∈ RD .

Let di, j = | |xi − xj | | denote the Euclidean distance between observa-
tions xi and xj . Analogously, let ri, j = | |pi − pj | |.

The goal of absolute multidimensional scaling may be achieved by
minimizing the so-called (raw) stress cost C with respect to the projec-
tion P , which is given by [17]

C =
N−1∑
i=1

N∑
j=i+1

(di, j − ri, j)
2. (2.94)

Intuitively, mismatch between the corresponding distances in the two
spaces is penalized.

Highly specialized methods have been applied to optimize this and
other multidimensional scaling objectives [17], which are out of our
scope. Many MDS variants also admit dissimilarities between objects
of interest, in contrast to distances in the strict sense [17].

49

related work

2.6.4 T-distributed stochastic neighbor embedding

The goal of t-distributed stochastic neighbor embedding (t-SNE) is to
compute a projection P = p1, . . . , pN where the neighborhoods from a
dataset D = x1, . . . , xN are preserved [99], considering that each pi ∈
Rd corresponds to xi ∈ RD .

Once again, we will let di, j = | |xi −xj | | denote the Euclidean distance
between xi and xj . Analogously, ri, j = | |pi − pj | |.

Firstly, consider a random process where observations are visited in
sequence. Furthermore, let the probability P (X ′ = j | X = i) of choosing
the next observation xj given the current observation xi be given by

P (X ′ = j | X = i) =
exp

(
−

d2
i, j

2σ 2
i

)
∑

k,i exp
(
−

d2
i,k

2σ 2
i

) , (2.95)

except for i = j, when P (X ′ = j | X = i) = 0.
Each parameter σi > 0 is chosen in such a way that the (conditional)

perplexity κ = 2H [X ′ |X=i] matches a pre-de�ned value, where H [X] de-
notes the entropy of X . This is typically accomplished by binary search
[99]. As an intuitive aid, notice that an uniformly distributed discrete
random variable X that admits K distinct assignments has perplexity
2H [X] = K . In simpli�ed terms, P (X ′ = j | X = i) is high whenever xj
is near xi relative to the observation density near xi .

Consider also a distinct random process where the probability P (X ′ =
i,X = j) of choosing a pair (xi , xj) ∈ D × D is given by

P (X ′ = i,X = j) =
P (X ′ = j | X = i) + P (X ′ = i | X = j)

2N
. (2.96)

Intuitively, P (X ′ = i,X = j) is high whenever P (X ′ = j | X = i) or
P (X ′ = i | X = j) is high.

In Rd , the probability P (Y ′ = i,Y = j) of choosing a pair (pi , pj) ∈
P × P in yet another random process is given by

P (Y ′ = i,Y = j) =
(1 + r 2

i, j)
−1∑

k
∑
l,k (1 + r 2

k,l)
−1 , (2.97)

except for i = j, when P (Y ′ = i,Y = j) = 0. Clearly, P (Y ′ = i,Y = j) is
high whenever pi and pj are close.

T-SNE aims at minimizing the Kullback-Leibler divergence C be-
tween P (X ′,X) and P (Y ′,Y) with respect to P , which is given by

C =
∑
i

∑
j,i

P (X ′ = i,X = j) log

P (X ′ = i,X = j)

P (Y ′ = i,Y = j)

. (2.98)

Recall from Section 2.4.1 that such Kullback-Leibler divergence can
be interpreted, in a very speci�c setting, as the increase in the average

50

2.6 dimensionality reduction for visualization

number of bits required to transmit an assignment to X ′ and X when
the encoding is ideal for P (Y ′,Y) instead of P (X ′,X). For our purposes,
it su�ces to notice that C heavily penalizes P (X ′ = i,X = j) � P (Y ′ =
i,Y = j) for some i and j, which corresponds to placing neighbors in D
far apart in P . In analogy with data compression, this corresponds to as-
sociating long codes to frequently occurring symbols. For the converse,
notice that associating short codes to infrequent symbols is only an is-
sue insofar as it prevents frequent symbols from having even shorter
codes.

The cost C is usually minimized with respect to P by (momentum-
based) gradient descent [99]: from an arbitrary initial P , for a number
of iterations, each pi ∈ P is moved in the direction −∇piC .

The gradient ∇piC of C with respect to a point pi ∈ P is given by

∇piC = 4
∑
j

(pi − pj)
P (X ′ = i,X = j) − P (Y ′ = i,Y = j)

1 + r 2
i, j

. (2.99)

Geometrically, ∇piC is a combination of vectors pointing in the direc-
tion pi −pj , for every j. Each vector pi −pj is also weighted by whether
pj should be moved closer to pi to preserve neighborhoods from D, and
by whether pj is close to pi .

T-SNE can be considered a state-of-the-art dimensionality reduction
technique [99, 150], and is widely employed in following chapters. As a
technique that attempts to preserve neighborhoods, it bene�ts from not
having to preserve (large) distances particularly well, while still being
appropriate for reasoning about groups of similar observations (clus-
ters). However, as we already mentioned, there is no single best dimen-
sionality reduction technique, and our work involving projections is
mostly independent of choosing t-SNE.

2.6.5 Visualizing projections

The previous sections described several ways to obtain a d-dimensional
projection P = p1, . . . , pN , where pi ∈ Rd , to represent a dataset D =
x1, . . . , xN , where xi ∈ RD . This section discusses how such projections
may be visually represented.

Many dimensionality reduction techniques allow an arbitrary target
dimension d ≤ D. For d > 3, a d-dimensional projection may be vi-
sualized using typical high-dimensional data visualization techniques
(discussed in Sec. 2.5), which is recommended by some authors [136].
However, notice that the elements of pi are generally di�cult to inter-
pret, in contrast to the elements of xi , which often correspond to mean-
ingful features.

Two-dimensional projections are arguably the most widespread alter-
native [136]. Such projections are typically represented by scatterplots
in Cartesian coordinates. This representation is illustrated by Fig. 2.13,

51

related work

where each point pi is also colored according to a pre-de�ned category
yi assigned to its corresponding observation xi .

Figure 2.13: Projection represented by a scatterplot.

Notice how Fig. 2.13 allows assessing the relationships between
points, presence of (visual) clusters, and overall data distribution. Nat-
urally, because dimensionality reduction techniques generally provide
few quality guarantees, projections must be interpreted cautiously.

A three-dimensional projection can be represented by an interactive
two-dimensional scatterplot where the user chooses the viewpoint (see
Fig. 2.14). This alternative has been heavily criticized [136], mostly be-
cause some viewpoints may lead to severely misleading representations.
This issue has motivated the development of speci�c visual aids for ex-
plaining such projections [27]. However, such visual aids still have in-
terpretation challenges, which justi�es our focus on two-dimensional
projections.

Instead of coloring each point pi according to its category yi , it is
also common to color each point pi according to xi,k , the value of fea-
ture k in observation xi . As an example, this allows assessing whether
a (visual) cluster is uniform with respect to a particular feature. In inter-
active scatterplots, the user is also commonly able to select (brush) sets
of points to inspect the corresponding observations.

Examples of visualizations commonly integrated with projection
scatterplots include biplot axes [27, 47], which generally attempt to
represent the direction of increase in each feature, and axis legends,
which attempt to explain the relationship between each feature and the
Cartesian coordinate axes [27] (see Fig. 2.14).

Several visualizations are also dedicated to explaining the semantics
associated to (visual) neighborhoods. For instance, the visualization pro-
posed by Silva et al. [138] attempts to represent which features are

52

2.6 dimensionality reduction for visualization

Figure 2.14: Three-dimensional projection represented by an interactive two-
dimensional scatterplot, including biplot axes and axis legends.
Source: Coimbra et al. [27].

most responsible for the neighborhoods observed in a projection (see
Fig. 2.15).

Figure 2.15: Projection represented by a scatterplot. The labels and colors in-
dicate which features are most responsible for the neighborhoods.
Source: Silva et al. [138].

In its simplest de�nition, clustering is the task of partitioning the ob-
servations in a dataset into clusters (sets of observations), such that sim-
ilar observations belong to the same cluster [111]. In some cases, it may
also be useful to cluster a projection (rather than a dataset). For instance,
Paulovich et al. [120] cluster projections of text-document datasets, and
represent each (visual) cluster by a word cloud obtained from the cor-
responding observations, as illustrated by Fig. 2.16. This representation

53

related work

also aims to provide an intuitive overview of the semantics associated
to each visual cluster.

Figure 2.16: Projection of a text document dataset. Each visual cluster is re-
placed by a word cloud. Source: Paulovich et al. [120].

As we already mentioned, dimensionality reduction techniques gen-
erally o�er very few guarantees with respect to preserving the data
structure in a projection. Therefore, the task of assessing projection
quality is highly important. If a projection was created using a tech-
nique that is based on minimizing a cost function, a possibility is to
inspect the resulting cost. However, this o�ers only a very coarse sum-
mary of projection quality, which may be very hard to interpret. Alter-
natively, several works have proposed metrics that evaluate a projection
in a �ner level of detail [7, 103, 104, 134].

For instance, Martins et al. [103, 104] propose views that highlight
missing and false projection neighbors. Figure 2.17 illustrates the miss-
ing neighbors view. This view connects a selected point pi to its missing
neighbors, which are de�ned as points that should be placed closer to
pi according to some criteria based on the original dataset D.

It is important to emphasize that such projection error visualizations
address a very di�erent task in comparison to the previous examples,
which were mostly concerned with explaining projections.

54

2.6 dimensionality reduction for visualization

Figure 2.17: Projection represented by a scatterplot. The bundled trails connect
a selected point to its missing neighbors. Source: Martins et al.
[103].

55

3I N T E R A C T I V E I M A G E S E G M E N TAT I O N U S I N G
S U P E R P I X E L S

As already mentioned in Sec. 2.2, user interaction is essential for e�ec-
tive image segmentation. We will focus on purely image-based segmen-
tation, where the user aids the machine mostly in recognition (as op-
posed to delineation). Recall that we de�ned recognition as establishing
the approximate localization of the objects of interest, and delineation
as discovering precisely which pixels belong to each of these objects.

This chapter presents a new interactive segmentation technique
based on the image foresting transform (IFT, introduced in Sec. 3.1).

Our interest on the image foresting transform for segmentation stems
from several advantages that the IFT algorithm has over other tech-
niques that �nd optimum cuts in graphs [26]. For instance, some graph
cut variants tend to require more seeds, since they tend to favor smaller
boundaries [26]. Most importantly, IFT-based segmentation methods
are capable of segmenting multiple objects in linear or linearithmic time
[43], while simultaneously segmenting more than two objects using
graph cut methods based on the maximum �ow algorithm is an NP-hard
problem [26, 43].

Our technique extends existing IFT-based segmentation techniques
by employing superpixels as atomic units (as opposed to pixels). Super-
pixels are small, cohesive regions within an image, which are expected
to belong to a single object of interest [102, 148, 157].

This new technique has two main advantages over its pixel-based
counterparts. Firstly, it enables faster graph-based interactive segmen-
tation of very large images. Secondly, it potentially enables extracting
better features than those extracted from �xed-size windows around
pixels [102, 148, 157]. However, �nding appropriate superpixel features
for image segmentation has proved a challenging task in preliminary
experiments, and partially motivates our interest in feature space ex-
ploration (Ch. 4).

Our proposed segmentation technique can be summarized as follows.
Firstly, the input image is oversegmented into superpixels. Seed pixels
de�ned by the user associate a label to some of these superpixels. A
superpixel graph is created to represent the oversegmentation: each su-
perpixel corresponds to a vertex, and edges connect superpixels that

This chapter is based on the following publication:
P. E. Rauber, A. X. Falcão, T. V. Spina, and P. J. de Rezende. Interactive segmentation by im-
age foresting transform on superpixel graphs. In Proceedings of the 2013 XXVI Conference
on Graphics, Patterns and Images, SIBGRAPI ’13, pages 131–138, Washington, DC, USA,
2013. IEEE Computer Society.

57

interactive image segmentation using superpixels

are adjacent in the input image. An image foresting transform is then
applied to associate a label to each superpixel, exploring the a�nity be-
tween labeled and unlabeled superpixels.

We have compared our new technique to a pixel-based counterpart,
already established in the literature [106], and found it very promising.
Our proposal can be enhanced in several ways, which are noted in the
appropriate sections, and can be explored by future works.

Another contribution described in this chapter is the development
of novel robot users to facilitate the evaluation of interactive segmen-
tation methods. The idea of robot users has already been explored in
the literature [81], with the main objective of avoiding the costs and
biases involved in evaluation by real users. These robots work by creat-
ing seeds from the segmentation ground truth, and simulate interactive
segmentation by real users. We have developed two robot users that at-
tempt to mimic the behavior of users with expertise on the presented
techniques. We also implemented one of the robots described in [81],
which uses a strategy that may be more similar to that of non-expert
users.

This chapter is organized as follows. Section 3.1 explains the image
foresting transform, and is essential to understanding the segmentation
techniques described in Section 3.2. Section 3.3 details the robot users,
and the results obtained by our technique. Finally, Section 3.4 summa-
rizes our �ndings.

3.1 image foresting transform

The image foresting transform (IFT) is a method employed by several
techniques based on graph connectivity. These techniques have been
successfully applied to solve problems in diverse areas, such as image
processing [43], image analysis [43], pattern classi�cation [118], and
data clustering [130]. Given a graph and a suitable path cost function,
the IFT algorithm �nds an optimum-path forest, which represents the
path with the lowest cost ending at each vertex [43]. Section 3.2 de-
scribes how graphs may be created from images, while this section de-
tails the general IFT algorithm, which can be seen as a generalization
of Dijkstras’s algorithm [33].

Consider the �nite graph G = (V ,E), and let v ∈ V be a vertex. We
denote a path πv ending at v by a sequence of (consecutively adjacent)
vertices. We denote by πu · (u,v) the extension of a path πu ending at
u ∈ V by an edge (u,v) ∈ E. A path πv = v is said to be trivial.

Let f be a real-valued path cost function that assigns a cost f (πv) to
any path πv in G. For our purposes, a path πv ending at v is said to be
optimum if f (πv) ≤ f (τv) for any other path τv ending at v in G. In
other words, a path ending at v is optimum if no other path ending at
v has lower cost. Since paths may have completely arbitrary costs, the
optimum paths are not necessarily trivial.

58

3.2 segmentation techniqes

If we let Πv (G) denote the set of all paths in G ending at v , the cost
C (v) of an optimum path ending at v is given by

C (v) = min
πv ∈Πv (G)

f (πv). (3.1)

As long as the path cost function f is smooth, as de�ned in [43], the
IFT algorithm may be used to �nd a solution to this minimization prob-
lem. In such cases, any solution may be represented by a corresponding
directed acyclic graph called optimum-path forest (OPF). Examples of
smooth functions include those used in the next sections, and the typi-
cal sum of non-negative edge weights in Dijkstra’s algorithm.

The OPF may be represented by a predecessor function P , which as-
signs each vertexv ∈ V to its predecessor P (v) ∈ V in an optimum path.
Exceptionally, if P (v) = ∅, then the trivial path πv = v is optimum, and
v is said to be a root of the forest.

The IFT algorithm is presented in Alg. 1. The root R (v) associated to
each vertexv could be obtained using the predecessor function P . How-
ever, it is more e�cient to obtain this information during the procedure
that �nds the OPF. In lines 12 and 18, πu denotes the (optimum) path
from R (u) to u given by the current predecessor function P .

Lines 1–8 initialize estimates to consider trivial paths. The vertices
with �nite costs are inserted into Q , as root candidates. The vertices
with optimum trivial paths will become roots of the forest. The main
loop (lines 9–22) �nds an optimum path from the eventual roots to each
vertex u, in non-decreasing order of cost. At each iteration, a path of
minimum cost C (u) is obtained, for some vertex u, and u is removed
from the priority queue Q . Importantly, ties in minimum cost in Q are
typically broken using a �rst-in-�rst-out policy. The remaining lines
evaluate whether the path that reaches a vertex v through u has lower
cost than the current estimate for optimum path ending atv , and update
Q , C (v), R (v) and P (v) accordingly.

We refer to [43] for further considerations about the performance and
correctness of the IFT algorithm.

3.2 segmentation techniqes

This section presents our segmentation technique based on superpixels
(Sec. 3.2.1), and the technique based on pixels (Sec. 3.2.2) that we used
as baseline for comparison. These techniques receive an image and a set
of labeled pixels (seeds) for each object of interest, which can be drawn
by the users using brushes of di�erent colors (see Fig. 3.4).

We let a d-dimensional image I be a function I : DI → Rc , where
DI ⊆ Zd is the image domain, and c is the number of channels. An
element u ∈ DI is called a pixel, and I (u) ∈ Rc is the value of pixel u.
If we let I (u) = (I1 (u), . . . , Ic (u)), then Ij : DI → R is called channel j.

59

interactive image segmentation using superpixels

Algorithm 1 General IFT Algorithm
Input: Graph (V ,E), path cost function f , empty priority queue Q .
Output: Predecessor function P , optimum cost function C , root func-

tion R.
1: for each v ∈ V do
2: P (v) ← ∅
3: R (v) ← v
4: C (v) ← f (v)
5: if C (v) , +∞ then
6: Insert v into Q
7: end if
8: end for
9: while Q , ∅ do

10: Remove u from Q such that C (u) is minimum
11: for each v such that (u,v) ∈ E and C (u) < C (v) do
12: if f (πu · (u,v)) < C (v) then
13: if C (v) , +∞ then
14: Remove v from Q
15: end if
16: P (v) ← u
17: R (v) ← R (u)
18: C (v) ← f (πu · (u,v))
19: Insert v into Q .
20: end if
21: end for
22: end while

60

3.2 segmentation techniqes

In this chapter, we are mostly concerned with two-dimensional (d =
2) color images (c = 3). We employ the YCbCr color space, although
any other color space may be equally appropriate. In case c = 1, we
also denote an image I simply by I .

We represent a segmentation by an image L : DI → {1, . . . ,C} that
maps every pixel of I to one of the C objects of interest.

3.2.1 Superpixel-based segmentation

The �rst step in our method is to generate an oversegmentation of the
input image (see Fig. 3.1). Any method may be used for this purpose. We
describe here an approach based on the IFT-watershed from grayscale
markers [98].

Figure 3.1: Oversegmentation superimposed on input image.

Firstly, we compute a so-called gradient magnitude image F ′ : DI →

R that highlights the edges in the input image I : DI → R3 (see Fig.
3.2). The image F ′ is given by

F ′(u) =
∑

v∈E (u)

[c∑
j=1

α j (Ij (u) − Ij (v))2
] 1

2

, (3.2)

where E (u) is the set of 8-neighbors of pixel u in the image domain DI .
The scalars αi ∈ [0, 1] can be used to attribute di�erent weights to each
color component. In YCbCr, for instance, they may assign less weight
to the intensity component Y, making F ′ more robust to changes in illu-
mination. Based on previous experience with IFT-based segmentation
methods, we chose α1 = 1/5 and α2 = α3 = 1. Next, we obtain an image

61

interactive image segmentation using superpixels

Figure 3.2: Gradient magnitude image corresponding to Fig. 3.1.

F by rescaling F ′ into a pre-de�ned discrete range of values, which is
required for the next step.

The next step is an IFT-watershed from grayscale markers. A classi-
cal watershed transform on F can be imagined as a process where the
image surface is �ooded by water originating at each local minima. The
water from each source reaches several level sets until it contacts wa-
ter from other sources, at locations that correspond to the ridges of F .
These ridges de�ne boundaries between regions (superpixels).

The sizes of these superpixels may be (indirectly) controlled by build-
ing a component tree and removing basins with volume below a cer-
tain threshold τ [112], resulting in an image H : DI → R such that
H (u) ≥ F (u) for all u ∈ DI . The threshold τ is a hyperparameter of our
new method.

After the unwanted basins are removed, the IFT-watershed from
grayscale markers considers a graph G = (V ,E), where V = DI is the
set of pixels, and (u, v) ∈ E if and only if u is a 8-neighbor of v. The
path cost function f for this transform is given by

f (u) =

H (u) if u ∈ R

H (u) + 1 if u < R

f (πu · (u, v)) = max{ f (πu), F (v)}. (3.3)

The set R = {u < Q | P (u) = ∅} contains the de�nitive roots of the
optimum-path forest, and is updated on-the-�y during the algorithm.
This detail enables a single root to conquer its entire plateau in the image
surface [98].

62

3.2 segmentation techniqes

The IFT algorithm results in a root map R that partitions the original
domain DI into a set of superpixels (regions) S , such that each super-
pixel su ∈ S is given by su = {v ∈ V | R (v) = u}, for some root u ∈ R.
Intuitively, the root map R maps each pixel to the �ooding source that
conquered it. If R is seen as an image, its connected components corre-
spond to the superpixels.

Regardless of the method employed to oversegment the image into
a set of superpixels S , the next step is to associate a feature vector (or
observation) xi to each superpixel si ∈ S . For simplicity, we consider
the mean color of the superpixel si as its feature vector xi , which is
given by

xi =
1
|si |

∑
u∈si

I (u). (3.4)

However, superpixels enable extracting features from cohesive regions,
which may be better than those extracted from �xed-size windows
around pixels [102, 148, 157]. As we already mentioned, �nding such
features has proved a challenging task in preliminary experiments, and
partially motivates the work presented in the next chapters.

The next step in our segmentation method requires another image
foresting transform. We will rede�ne some mathematical objects to
keep the notation succinct and consistent with Alg. 1.

In this step, we consider a graph G = (V ,E), where V = S is the set
of superpixels, and (u,v) ∈ E if and only if a pixel in u is 4-neighbor of
a pixel in v . Denoting by L(u) the label given by the user to the super-
pixel u, and letting L(u) = 0 when the superpixel u is not labeled, the
connectivity function f is given by

f (u) =

0 if L(u) , 0

+∞ if L(u) = 0

f (πu · (u,v)) = max{ f (πu),w (u,v)}, (3.5)

where w (si , sj) is the (weighted) Euclidean distance between the cor-
responding superpixel feature vectors xi and xj . We employ the same
weights αk used in Equation 3.2.

Intuitively, the path cost function f makes large di�erences between
adjacent superpixels act as barriers in paths that go through them.

The desired segmentation can be obtained from the root map R that
results from the IFT algorithm. Each unlabeled superpixel s is associated
to the label L(R (s)) associated to its root R (s), which is always labeled.
See Figure 3.3 for an illustrative example.

Note that a user could potentially label a single superpixel with mul-
tiple labels using brushes. However, this should be infrequent, since the
oversegmentation should respect the borders of the correct segmenta-
tion. We do not address this issue in our experiments, and arbitrarily

63

interactive image segmentation using superpixels

Figure 3.3: Illustrative optimum-path forest with two roots (top left and center).
Superpixels are larger than usual.

choose one of the labels associated to each superpixel. This could be ad-
dressed by applying an oversegmentation on a �ner scale in ambiguous
superpixels.

Our method allows multi-object segmentation in time O (|V | log |V |)
[43], and this time complexity could be further improved by discretiz-
ing the edge weights given by the function w . This is a remarkable
advantage in comparison to graph-cut methods that are based on the
maximum-�ow algorithm [26]. Figures 3.4 and 3.5 present multi-object
segmentation results based on our method.

Figure 3.4: Seeds drawn by a user for multi-object segmentation.

64

3.2 segmentation techniqes

Figure 3.5: Resulting superpixel-based multi-object segmentation. Di�erent
hues represent di�erent segments.

Further e�ciency gains can be obtained by a di�erential IFT, which
is capable of adapting an optimum-path forest to label changes between
iterations [41].

Although our presentation focuses on two-dimensional image seg-
mentation, we have also implemented volumetric segmentation based
on supervoxels (see Fig. 3.6).

Figure 3.6: Rendering of supervoxel-based volumetric segmentation of teeth im-
ages. Di�erent hues represent di�erent segments.

3.2.2 Pixel-based segmentation

The pixel-based segmentation method is very similar to the method
based on superpixels, and may be seen as its counterpart. Given an im-
age I : DI → R3, this method is based on a graph G = (V ,E), where
V = DI is the set of pixels, and (u, v) ∈ E if and only if pixel u is a
4-neighbor of pixel v.

65

interactive image segmentation using superpixels

The path cost function f for the corresponding image foresting trans-
form is analogous to the one in the previous section. The feature vector
x for pixel u is simply given by its color x = I (u).

It is important to note that the graph G has considerably more ver-
tices than its superpixel counterpart. This is a major disadvantage with
respect to time complexity. Although creating the superpixel graph also
requires time, this step can be conducted before the interactive segmen-
tation procedure begins.

Both pixel and superpixel techniques can be enhanced by the combi-
nation of supervised and unsupervised learning described in [106].

3.3 experiments

This section describes the experiments conducted to evaluate our new
technique. Seeking to reduce costs and biases associated with evalua-
tion by real users, we have developed robot users that, given the segmen-
tation ground truth, attempt to simulate expert and non-expert users.
These robots are described in Section 3.3.1, and the experimental results
are described in Section 3.3.2.

3.3.1 Robot Users

We have implemented three robot users that employ di�erent strategies
to label pixels. Two of them are original contributions. A comparison
between the behavior and e�cacy of our robots and real users could be
explored in future works.

Although both segmentation techniques that we consider can be used
for multi-object segmentation, we have compared them in the context
of binary segmentation (labeling pixels as either object of interest or
background), since this is the scenario most often used to evaluate seg-
mentation techniques. In these evaluations, the segmentation is com-
pared to a ground-truth image, and a measure is used to quantify the
e�cacy of the particular segmentation technique.

Each robot user creates an ordered list P of seed candidates (pixels).
The order de�nes the priority for labeling a given candidate. This list
can be used in several ways, one of which is described in Section 3.3.2.

3.3.1.1 Geodesic robot

The geodesic robot was introduced by [81], and is the simplest that we
consider (see Fig. 3.7). We employ this robot as an attempt to mimic
the behavior of an untrained user trying to segment an image employ-
ing very little e�ort. Di�erently from [81], we do not start from pixels
labeled by real users, making our method completely automatic.

66

3.3 experiments

Figure 3.7: Discs centered on seed pixels generated by the geodesic robot. At
each iteration, indicated by the numbers, the error components are
found, and a number (up to a �xed limit) of seeds is chosen in their
geodesic centers.

In the �rst iteration of interactive segmentation, this robot creates a
list P that contains the geodesic center of every region of interest (in
our case, object and background), computed from the ground truth.

In the next iterations, this robot computes an image E, such that
E (u) = 0 if pixel u was correctly labeled by the previous segmentation,
and E (u) = λ if the correct label for u is λ. The goal is to create a list P
containing the geodesic center of every (incorrectly labeled) connected
component in the image E in decreasing order of minimum distance
between such center and the border of its component. In other words,
larger error regions should have higher priority for labeling.

The robot accomplishes this last step by using E to �nd every con-
nected component with the same label through a breadth-�rst search.
Using the Euclidean distance transform (EDT), which can be e�ciently
implemented by the IFT [43], the robot �nds the geodesic center for
every component and sorts them into the list P .

3.3.1.2 Superpixel robot

The superpixel robot attempts to mimic an expert in superpixel-based
segmentation (see Fig. 3.8).

Firstly, the robot oversegments the input image into superpixels. The
robot then �nds superpixels on the borders of the ground truth (i.e., ad-
jacent to superpixels with a di�erent correct label). These superpixels
are sorted in increasing order of minimum distance between their fea-
ture vectors and the feature vector of some adjacent superpixel with a
di�erent label. The idea behind this heuristic is that larger similarity

67

interactive image segmentation using superpixels

between adjacent superpixels with di�erent labels indicates a higher
risk of mislabeling by our segmentation technique based on superpix-
els. Finally, the robot creates the ordered list P containing the geodesic
centers of these superpixels.

Figure 3.8: Discs centered on seed pixels generated by the superpixel robot. Sim-
ilar superpixels with di�erent labels have higher priority for labeling.
The numbers indicate iterations.

3.3.1.3 Pixel robot

The pixel robot attempts to mimic an expert in pixel-based segmenta-
tion (see Fig. 3.9). Its objective is to create seed pixels near pixels on
a ground truth border that have low gradient magnitude considering
the original image (weak edges). This heuristic is based on the idea that
labeling these places avoids leakages.

The robot begins by computing a gradient magnitude image F from
an original image I : DI → R3, as in Section 3.2.1. Then, a binary image
B : DI → {0, 1} is created, such that B (u) = 1 if and only if | |u−v| | ≤ α ,
for a pixel u ∈ DI , a pixel v ∈ DI on a ground truth border, and a
parameter α . Intuitively, every pixel located on a ground truth border
is the center of a disc of radius α in B.

For every pixel u such that B (u) = 1, and u has some neighbor v such
that B (v) = 0, the robot associates the gradient magnitude F (w), where
w is the nearest pixel to u that is on a ground truth border. Intuitively,
each pixel on a border of B is associated to the gradient magnitude of
its nearest pixel on the border of the ground truth. This is analogous to
eroding/dilating the ground truth and associating the gradient magni-
tude of the original pixels on the ground truth border to the correspond-
ing eroded/dilated pixels.

68

3.3 experiments

Figure 3.9: Discs centered on seed pixels generated by the pixel robot. Each
seed is associated to the gradient magnitude of its nearest pixel in
the ground truth border. Lower gradient magnitude indicates higher
priority for labeling. The numbers indicate iterations.

The robot then creates a list P of pixels on the border of B, sorted in
increasing order of gradients from their associated pixels on the ground
truth border.

3.3.2 Results

We have chosen three widespread datasets to compare the techniques
that we presented: grabcut [16, 131], geodesic star [59] and Weizmann
(single object, �rst human subject) [4]. These datasets contain, respec-
tively, 50, 151, and 100 photographies and ground truths.

The experiments were conducted as follows. For a total of T itera-
tions, given the listP created by a robot and a parametern, we chose the
�rst n/2 seeds inside an error component from the object and n/2 seeds
inside an error component from the background. We correctly label a
disk (marker) of a given radius around these seeds, which are used in
the next iteration of interactive segmentation. Note that the seed candi-
dates are generated only once by the pixel and superpixel robots, while
the geodesic robot needs to compute the geodesic centers of the error
components at each iteration.

Moreover, we consider some constraining details when placing mark-
ers: if the marker is too near a ground truth border (as de�ned by a pa-
rameter), its size is reduced. This is done since the ground truth images
are often imperfect, and including markers too near the ground truth
border could create arti�cial leakages that would not be created by real
users. We also chose not to draw a marker centered on seed pixels that

69

interactive image segmentation using superpixels

are already labeled, since that would disproportionately reduce the total
area labeled by the pixel robot.

As in [4], we have chosen the f-score as a measure of e�cacy. For a
given image, the precision can be understood as the proportion of pixels
labeled as belonging to the object (as opposed to the background) that
were correctly labeled, while the recall can be understood as the pro-
portion of object pixels that were correctly labeled. The f -score is the
harmonic mean between these two quantities, which combines them
into a single scalar that balances the di�erent types of errors. Naturally,
the f -score lies in the interval [0, 1] and higher values are desirable.

We have chosen the following parameters for our experiments: for
each technique, using each robot, we ran T = 8 iterations, choosing up
to n = 8 pixels at each iteration. The radius of the discs centered on the
seeds was 5 pixels, and could be reduced to 1 whenever the seed was
too near a ground-truth border (2 pixels from a ground truth border was
considered a safe distance). The superpixel robot had a volume thresh-
old of τ = 15000. For the pixel robot, we chose α = 15 (erosion/dilation
radius). We removed a total of �ve images from the datasets, since they
had objects of interest too small for the pixel robot. Figures 3.7, 3.8 and
3.9 illustrate some markers created by the robots (for the superpixel seg-
mentation method) until the �fth iteration. Note that, for that particular
image, markers created by the pixel and superpixel robots were chosen
only up to the second iteration, at which point there were no longer
seed candidates inside error components.

The volume threshold for our superpixel segmentation technique,
which controls superpixel size, was chosen as τ = 150. However, dif-
ferent image categories may bene�t from di�erent choices.

The small number of seeds per iteration allows us to see the quality
of the generalizations made by each method. The seeds created by the
superpixel and pixel robots are purposefully far from the ground truth
border to highlight di�erences in delineation. The parameters were also
chosen to enable for good convergence and to create interactions (sub-
jectively) similar to what would be expected from real users. As noted
earlier, empirically establishing these parameters to match real users
could be explored by future works.

Our results are summarized in Figures 3.10, 3.11 and 3.12. The graphs
display the mean f -score obtained by the two techniques for every com-
bination of dataset and robot.

70

3.3 experiments

(a) (b) (c)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

M
e
a
n

 f
-s

c
o
re

Iteration

Superpixel Seg.
Pixel Seg.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

M
e
a
n

 f
-s

c
o
re

Iteration

Superpixel Seg.
Pixel Seg.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

M
e
a
n

 f
-s

c
o
re

Iteration

Superpixel Seg.
Pixel Seg.

Figure 3.10: Mean f -score for images in the Weizmann dataset (a) Superpixel
Robot (b) Pixel Robot (c) Geodesic Robot

(a) (b) (c)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

M
e

a
n

 f
-s

c
o

re

Iteration

Superpixel Seg.
Pixel Seg.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

M
e

a
n

 f
-s

c
o

re

Iteration

Superpixel Seg.
Pixel Seg.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

M
e

a
n

 f
-s

c
o

re

Iteration

Superpixel Seg.
Pixel Seg.

Figure 3.11: Mean f -score for images in the geostar dataset (a) Superpixel Robot
(b) Pixel Robot (c) Geodesic Robot

Our superpixel-based technique achieved higher e�cacy (with re-
spect to mean f-score) in the majority of cases, most notably on the
Weizmann dataset, and in the �rst iterations. In the few cases where the
mean f -score was lower at some iteration, its results were not consider-
ably inferior. Although these e�cacy results are certainly positive, we
only intend to claim that our superpixel-based technique is promising.
For the sake of perspective, Figures 3.13 and 3.14 illustrate a di�erence
of 9.5% in f -score.

We also timed a single (manually seeded) iteration of interactive seg-
mentation considering a reasonably large image composed of 4096 ×
4096 pixels, using the same parameters employed in the previous ex-
periments (which consider smaller images). On a typical desktop com-
puter (Intel i7-2600 at 3.4 GHz), the superpixel-based technique requires
approximately 16417ms (milliseconds) for setup (including volume �l-
tering, IFT-watershed from grayscale markers, and superpixel graph
creation), but only approximately 128ms per iteration (averaged over
three runs). The pixel-based technique requires only 817ms for setup,

71

interactive image segmentation using superpixels

(a) (b) (c)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

M
e
a
n

 f
-s

c
o
re

Iteration

Superpixel Seg.
PixelSeg.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

M
e
a
n

 f
-s

c
o
re

Iteration

Superpixel Seg.
Pixel Seg.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

M
e
a
n

 f
-s

c
o
re

Iteration

Superpixel Seg.
PixelSeg.

Figure 3.12: Mean f -score for images in the grabcut dataset (a) Superpixel Robot
(b) Pixel Robot (c) Geodesic Robot

Figure 3.13: Superpixel-based segmentation, f -score: 0.985.

but 7958ms per iteration (approx. 62 times the time required by its su-
perpixel counterpart). This makes our superpixel-based technique par-
ticularly attractive for interactive segmentation of large images, since
its setup may be conducted before user involvement, and generally sev-
eral iterations are required to achieve satisfactory results. Reducing the
number of superpixels would increase even more the advantage of our
method.

3.4 conclusion

In this chapter, we presented a new interactive segmentation technique
based on superpixels, and compared it to its pixel-based counterpart.
The experimental evaluation shows that our new technique is promis-
ing, particularly due to its advantages on e�ciency and potential for
use in conjunction with more powerful feature descriptors.

72

3.4 conclusion

Figure 3.14: Pixel-based segmentation, f -score: 0.89. The seeds are the same as
the ones used in Figure 3.13.

We have also presented novel robot users that can be employed to
evaluate interactive segmentation methods. Empirically establishing
the similarities between these robots and real users could be explored
by future works.

As future works, we also suggest comparing our new technique with
other established techniques, the study of superpixel descriptors, mul-
tiscale oversegmentation, and superpixel-based di�erential IFT [41].

73

4I N T E R A C T I V E F E AT U R E S E L E C T I O N A S S I S T E D B Y
P R O J E C T I O N S

This chapter focuses on the task of pattern classi�cation, which we in-
troduced in Sec. 2.3. Recall that we divided pattern classi�cation into
two subtasks: representation and learning.

The representation task consists on representing objects of interest as
observations (high-dimensional real vectors). In this context, selecting
features that are valuable for generalization is a very important problem.
For instance, consider image classi�cation. Using too few features can
lead to poor generalization; while using too many features can be pro-
hibitively expensive to compute, or even introduce confounding infor-
mation into the training data [60, 94]. Although deep neural networks
recently became able to bypass feature design by dealing directly with
raw images, these models pose their own challenges, as we will discuss
in Chapter 5. As we have mentioned, feature selection is also challeng-
ing in image analysis tasks that are typically considered outside the
scope of machine learning, such as image segmentation.

The learning task consists on selecting and �ne-tuning learning algo-
rithms once the observations are available. As we have seen in Sec. 2.3,
no single algorithm is the best for every situation. Practitioners usually
compare algorithms and hyperparameter choices using cross-validation
[111]. However, this approach is bounded by the limited feedback that
numerical (classi�cation) e�cacy measures can provide. As a conse-
quence, when suboptimal results are obtained, designers are often left
unaware of which aspects limit classi�cation system e�cacy, and what
can be done to improve these systems. This and other issues have been
referred to as the “black art” of machine learning [34], and motivate our
interest in interactive techniques for classi�cation system design.

In the context of high-dimensional data visualization, dimensional-
ity reduction is an important class of highly scalable techniques, which
we introduced in Section 2.6. These techniques �nd a projection that at-
tempts to preserve the so-called structure of a high-dimensional dataset.
This structure is characterized by distances between observations, pres-
ence of clusters, and overall spatial data distribution [89, 96]. For the pur-
poses of visualization, dimensionality reduction techniques typically re-
duce the number of dimensions to two or three. The resulting projec-
tions can be visually represented by scatterplots, and enable insight into
the structure of the original data [99].

This chapter is based on the following publication:
P. E. Rauber, A. X. Falcão, and A. C. Telea. Projections as visual aids for classi�cation
system design, 2016. Submitted to Information Visualization (IVI).

75

interactive feature selection assisted by projections

Many types of data have been explored using projections, such as text
documents [119], multimedia collections [75], gene expressions [24],
and networks [25]. However, projections are rarely used for the task of
classi�cation system design. In this context, we propose an interactive
visual analytics approach based on dimensionality reduction that sup-
ports two (highly interrelated) tasks: predicting classi�cation system
e�cacy, and improving classi�cation systems through feature space ex-
ploration.

This chapter is organized as follows. Section 4.1 reviews our notation
and de�nitions. Section 4.2 places our e�ort in the contexts of informa-
tion visualization and machine learning. Section 4.3 summarizes and
compares our approach to related works. Section 4.4 details our �rst
contribution: showing how projections can be used as insightful pre-
dictors of classi�cation system e�cacy. Section 4.5 details our second
contribution: showing how the visual feedback given by projections can
be integrated into an interactive and iterative work�ow for improving
system e�cacy through qualitative and quantitative data exploration.
Section 4.6 provides a critical analysis of the experiments, limitations,
and weaknesses of our approach. Importantly, it outlines cases where
projections are known to fail as predictors of classi�cation system e�-
cacy, and why such cases do not contradict our proposal. Finally, Section
4.7 summarizes our �ndings and suggests directions for future work.

4.1 preliminaries

The following is a concise review of de�nitions introduced in Ch. 2.
A (supervised) dataset D is a sequence D = (x1,y1), . . . , (xN ,yN).

Every pair (xi ,yi) ∈ D is composed of an observation xi ∈ RD , and a
class label yi ∈ {1, . . . ,C}, where C is the number of classes. The j-th
element of xi corresponds to feature j, and is typically measured from
an object of interest.

We denote the set of all features under consideration by F =

{1, . . . ,D}. For any F ′ ⊆ F , having D ′ ≤ D features, we denote by
DF ′ the dataset corresponding to D with features restricted to F ′.

A learning algorithm �nds a function, called classi�er, that maps ob-
servations to classes based on generalization from a training (data)set
D. Generalization is usually evaluated by cross-validation, which con-
sists on partitioning the available data into a set for model learning and
a set for model evaluation. Feature selection aims at �nding a small fea-
ture subset F ′ ⊆ F such that the restricted training set DF ′ is su�cient
for generalization.
Dimensionality reduction �nds a projection P = p1, . . . , pN , where

pi ∈ Rd , that attempts to preserve the structure of an original (unsu-
pervised) dataset D = x1, . . . , xN , considering that each observation xi
corresponds to point pi . For the purposes of visualization, d is usually
2 or 3.

76

4.2 related work

4.2 related work

Our focus on high-dimensional data visualization based on dimension-
ality reduction is justi�ed by the scalability of projections with respect
to the number of observations and features, which we already discussed
in Sections 2.5 and 2.6.

Several visualization techniques have been proposed to help the inter-
active exploration of projections. Most notably, Tatu et al. [146] propose
a process for �nding interesting subsets of features, and displaying the
results of dimensionality reduction restricted to these features, with the
goal of aiding qualitative exploration. Yuan et al. [160] present an inter-
active tool to visualize projections of observations restricted to selected
subsets of features. Additionally, in their tool, features are placed in a
scatterplot based on pairwise similarities. This is analogous to the rep-
resentation we propose in Section 4.5. However, clear di�erences exist:
Yuan et al. [160] aim at subspace cluster exploration, while our goal is to
provide support for classi�cation system design. This di�erence is man-
ifested by our additional mechanisms, which include feedback from au-
tomatic feature scoring techniques and classi�cation results. The work
of Turkay et al. [149] also combines scatterplots of observations and fea-
tures for high-dimensional data exploration, and is also concerned with
tasks that are unrelated to classi�cation system design.

Pattern classi�cation is one of the most widely studied problems in
machine learning. Since the objective of pattern classi�ers is to general-
ize from previous experience, hyperparameter search and e�cacy esti-
mation are usually performed using cross-validation, as we already dis-
cussed in Sec. 2.3. Diagnosing the cause of poor generalization in classi-
�cation systems is very di�cult. Options include using cross-validation
to compute e�cacy indicators (e.g., accuracy, precision and recall, area
under the ROC curve), and learning curves, which show generalization
performance for an increasing training set. In multi-class problems, con-
fusion matrices can also be used to diagnose mistakes between classes
[45].

In this context, Talbot et al. propose the visual comparison of con-
fusion matrices to help users understand the relative merits of various
classi�ers, with the goal of combining them into better ensemble clas-
si�ers. In contrast to their work, we o�er �ner-grained insight into
a single classi�cation system by using projections as a visualization
technique. Other visualization systems also aim at integrating human
knowledge into the classi�cation system design process. Decision trees
are particularly suitable for this goal, as they are one of the few easily in-
terpretable classi�cation models [37]. In contrast, Schulz et al. [135] pro-
pose a framework that can be used to visualize (in a projection) the de-
cision boundary of a support vector machine, a model which is usually
hard to interpret. Other works also propose visualizations that consider
classi�cation systems as black-boxes. They usually provide an interface

77

interactive feature selection assisted by projections

to study the behavior of such systems under di�erent combinations of
data and parameterizations. In this context, Paiva et al. [117] present
a visualization methodology that supports tasks related to classi�ca-
tion based on similarity trees. Similarly to projections, similarity trees
are a high-dimensional data visualization technique that maps observa-
tions to points in a 2D space, and connects them by edges to represent
similarity relationships. In contrast to our methodology for system im-
provement, their methodology focuses on visualization of classi�cation
results and observation labeling. Finally, the use of visualization tech-
niques to “open the black box” of general algorithm design, including
(but not limited to) classi�cation systems, is advocated by Mühlbacher
et al. [110].

Active learning refers to a process where the learning algorithm iter-
atively suggests informative observations for labeling. The objective of
this process is to minimize the e�ort in labeling a dataset. Because this
is an iterative and interactive process, visualization systems have been
proposed to aid in the task, and sometimes include a representation of
the data based on projections [65, 68]. However, in these examples, pro-
jections do not have a role in improving classi�cation system e�cacy.

Feature selection is another widely researched problem in machine
learning, because the success of supervised learning is highly depen-
dent on the predictive power of features, as we discussed in Sec. 2.4.
The work of Krause et al. [83] is an example of visualization system that
aids feature selection tasks by displaying aggregated feature relevance
information, which is computed based on feature selection algorithms
and classi�ers.

4.3 proposed approach

Our visualization approach aims to support two tasks (T1 and T2),
which we introduce in the following sections.

4.3.1 T1: predicting system e�cacy

Consider the works presented in Sec. 4.2 that use projections to repre-
sent observations in classi�cation tasks (e.g., [65, 68]), or the projections
of traditional pattern classi�cation datasets (e.g., [99]). If a projection
shows good visual separation between the classes in the training data,
and if this is expected to generalize to test data, it is natural to suppose
that building a good classi�er will be easier than when such separation
is absent.

However, there is little evidence in the literature to defend the use
of projections as predictors of classi�cation system e�cacy. As a conse-
quence, it is unclear whether and, even more importantly, how insights
given by projections complement existing methods of prognosticating

78

4.3 proposed approach

and diagnosing issues in the classi�cation pipeline. In Section 4.4, we
present a study that focuses precisely on these questions. It is impor-
tant to emphasize the term predictor : we aim at obtaining insights on
the ease of building a good classi�cation system by using projections
before actually building the entire system.

We are aware of a single previous work that studies how projections
relate to classi�er e�cacy [20], which provides evidence that projec-
tions showing well-separated classes (as measured by the so-called sil-
houette coe�cient) correlate with higher classi�cation accuracies. How-
ever, that study has signi�cant limitations. Firstly, characterizing a pro-
jection by a single numerical value (the silhouette coe�cient) is coarse
and uninsightful. To support understanding how a classi�cation sys-
tem relates to what a projection shows on a �ner scale, we perform
and present our analyses at the observation level. Secondly, the silhou-
ette coe�cient used in [20] can be severely misleading, since it may
be poor (low) even when good visual separation between classes exists.
This happens, for instance, when the same class is spread over several
compact groups in a projection. Thirdly, we present a way to improve
classi�cation system e�cacy (T2), whereas [20] only conjectures this
possibility.

Consider simple alternatives to visualize classi�cation system issues,
such as confusion matrices [45], or listing misclassi�ed observations to-
gether with their k-nearest neighbors. While simple to use, these mech-
anisms have signi�cant limitations: confusion matrices become hard to
inspect for a moderate number of classes, while listing does not scale
well to hundreds (or even tens) of observations. Most importantly, these
alternatives do not encode spatial information about observations in
confusion zones, which we de�ne in Sec. 4.4.

4.3.2 T2: improving system e�cacy

In Section 4.5, we propose a projection-based methodology for interac-
tive feature space exploration that allows selecting features to improve
the e�cacy of a classi�cation system (T2). This methodology is highly
dependent on the use of projections as predictors of classi�cation sys-
tem e�cacy (T1).

We implement this methodology in a visual analytics tool that links
views of projections, representations of feature relationships, feature
scoring, and classi�er evaluation, in an attempt to provide a cost-
e�ective and easy-to-use way to select features for arbitrary (“black-
box”) learning algorithms. The visual analytics work�ow supported by
our system, detailed in Sec. 4.5, is di�erent from those enabled by pre-
viously mentioned feature-space exploration systems [129, 149, 160].

79

interactive feature selection assisted by projections

4.3.3 Visual analytics work�ow

Figure 4.1 illustrates how our approaches towards addressing T1 and
T2 interact in a (simpli�ed) visual analytics work�ow that supports the
overall goal of building better classi�cation systems. The entire process
can be summarized by a 10-step �owchart. We start our work�ow by
considering a set of objects of interest (images, for instance). Next, we
extract a number of features from these images, transforming them into
observations (1). These observations are projected into a 2D view (2).
To asses whether we can trust the projection, we may evaluate the var-
ious projection error metrics proposed in [103, 104]. If the errors are
too high, we repeat step 2 using a di�erent dimensionality reduction
technique or parameter settings. Upon obtaining a good quality pro-
jection, we assess the visual separation between the classes using our
proposed visual tools. If the separation is poor (4), we use our iterative
feature exploration/selection tools (T2) to prune the feature set under
consideration (5). If visual separation is satisfactory (3), we proceed in
building and testing a classi�er, using the traditional machine learning
protocol (6). If testing yields good performance (7), the pipeline ends
with a good classi�cation system that can be used in production. If test-
ing reveals poor performance (8), we apply again the visual exploration
tool to study what has gone wrong (9), and proceed to designing new
features, repeating the process from the beginning (10).

4.4 t1: predicting system efficacy

As outlined in Sec. 4.3, we start by studying how projections can be
used to predict classi�cation system e�cacy (T1). For this purpose, we
conducted experiments on several datasets, which are presented in Secs.
4.4.2 - 4.4.5. Section 4.4.1 details the aspects of the experimental protocol
that hold for every dataset under consideration.

4.4.1 Experimental protocol

The �rst step in our protocol is to randomly partition a dataset into
training and test sets (one third of the observations). Following good
practice in machine learning, the partitioning is strati�ed [50], i.e., the
ratio of observations belonging to each class is preserved in the test set.
Projections can be created independently for the training and for the

test data. These projections can be represented by scatterplots, where
each point is colored according to its class label. When displaying clas-
si�cation results for a test set in a scatterplot, we will use triangular
glyphs to represent misclassi�ed observations, colored based on their
(incorrect) classi�cations, and rendered slightly darker (for emphasis).

80

4.4 t1: predicting system efficacy

in
pu

t o
bj

ec
ts

fe
at

ur
es

pr
oj

ec
tio

n
cl

as
si

fie
r

de
si

gn
cl

as
si

fie
r

te
st

in
g

pr
oj

ec
t

go
od

se
pa

ra
tio

n?

ba
d

se
pa

ra
tio

n?

ite
ra

tiv
e

fe
at

ur
e

se
le

ct
io

n

fe
at

ur
e

su
bs

et

fe
at

ur
e

ex
tr

ac
tio

n

go
od

pe
rf

or
m

an
ce

?

cl
as

si
fic

at
io

n
sy

st
em

 r
ea

dy

cl
as

si
fie

r
to

ol

tr
ai

ni
ng

da
ta

to
o

lo
w

pe
rf

or
m

an
ce

?

fe
at

ur
e-

se
t

re
-d

es
ig

n

re
pe

at
 c

yc
le

 w
ith

 n
ew

ly
de

si
gn

ed
 fe

at
ur

es

tr
ai

ni
ng

da
ta

fe
at

ur
e-

vs
-o

bs
er

va
tio

n
st

ud
y

1
2

3

4

5

6

7
8

9

st
ud

y
pr

ob
le

m
ca

us
es

1
0

T
1

T
2

va
lid

at
io

n
da

ta
va

lid
at

io
n

da
ta

Fi
gu

re
4.

1:
Cl

as
si

�c
at

io
n

sy
st

em
de

si
gn

vi
su

al
-a

na
ly

tic
sw

or
k�

ow
pr

op
os

ed
in

th
is

ch
ap

te
r(

se
e

Se
c.

4.
3)

.

81

interactive feature selection assisted by projections

In addition to showing these scatterplots, we also display a metric
called neighborhood hit (NH) [119]. For a given number of neighbors k
(in our experiments, k = 6), the NH for a point pi ∈ P is de�ned as
the ratio of its k-nearest neighbors (except pi itself) that belong to the
same class as the corresponding observation xi . The NH for a projection
is de�ned as the average NH over all its points. Intuitively, a high NH
corresponds to a projection where the real classes (ground truth) are
visually well separated. Therefore, the NH metric is a good quantitative
characterization of a projection for our purposes.

The DR technique that we employ in this work is a fast approximate
implementation of t-distributed stochastic neighbor embedding (t-SNE,
described in Sec. 2.6.4), using default parameters. We chose t-SNE due to
its widespread popularity, and demonstrated capacity to preserve neigh-
borhoods in projections [99]. However, our proposal does not depend
on this particular technique, and other DR techniques can be used with
no additional burden. For instance, we employed LSP [119] in our early
work, but decided in favor of t-SNE due to its ability to preserve clusters
in projections.

Our work�ow requires a projection that preserves well neighborhoods
from RD in R2. This can be assessed through the projection quality met-
rics described in [103, 104]. If a projection shows poor quality, it should
be discarded (Fig. 4.1, step 2) and not used further in the work�ow. In-
stead, the measures outlined in [103, 104] should be used to improve
projection quality. Conversely, if a projection shows good quality, it
becomes an excellent candidate for assessing the visual separation be-
tween groups, an can be used further in the work�ow (steps 3 and 4).
Feature selection will be performed in many of our experiments.

We will select a subset of features F ′ ⊆ F to investigate the e�ect of re-
stricting the input of the DR technique to these features – that is, we will
compare the projections of both D and DF ′ . We perform feature selec-
tion/scoring using extremely randomized trees [51], using the method
described in Sec. 2.4.4 with 1000 trees in the ensemble. Scores are as-
signed to features based on their power to discriminate between two
given sets of observations. As will become clear in the next sections,
the choice of feature selection technique does not a�ect our proposal.
Feature selection is always performed considering only the training set,
as this allows assessing the generalization of the selection to the test
set.
Learning algorithms will be used to evaluate whether good projec-

tions (with respect to perceived class separation) correspond to good
classi�cation systems. We consider three distinct algorithms: k-nearest
neighbors (KNN, Sec. 2.3.1, using Euclidean distances), soft-margin sup-
port vector machines (SVM, Sec. 2.3.3, using radial basis function ker-
nel) [18] and random forest classi�ers (RFC, Sec. 2.3.4) [23]. These tech-
niques were chosen for being both widely used in machine learning and
representative of distinct classes of algorithms. Note that any other clas-

82

4.4 t1: predicting system efficacy

si�cation technique can be used together with our approach, since the
techniques are treated as black-boxes, i.e., we assume no knowledge of
their inner workings.
Hyperparameter search is conducted by grid search on a subset of

the hyperparameter space for each learning algorithm. Concretely, we
choose the hyperparameters with highest average accuracy on 5-fold
cross-validation on the training set. For KNNs, the hyperparameter is
the number of neighbors k (from 1 to 21, in steps of 2). For SVMs, the hy-
perparameters are the penaltyC and the kernel parameter γ (both from
10−10 to 1010, in multiplicative steps of 10). For RFCs, the hyperparam-
eters are the number of trees (10 to 500, in steps of 50) and maximum
tree depth (from 1 to 21, in steps of 5). In the next sections, we use the
term classi�er to refer exclusively to a particular combination of learn-
ing algorithm and hyperparameters trained on the entire training set.
The hyperparameters are always found by the procedure outlined in
the previous paragraph. In summary, following good machine learning
practice, the test set does not a�ect the choice of hyperparameters.
Classi�cation results are always quanti�ed, in this chapter, by the

accuracy (AC, ratio between correct classi�cations and total classi�ca-
tions) on the test set.
Presentation of experiments is uniform across datasets. For each ex-

periment, a high-level claim is �rst stated. This claim is followed by sup-
portive images, showing projections and classi�cation results. In several
cases, some aspect of the problem is altered (e.g., features or observa-
tions under consideration), and we show how our projections re�ect
the expected outcome.
Limitations of our study are discussed in Section 4.6.

4.4.2 Madelon dataset

Data:Madelon is a synthetic dataset created by Guyon et al. [62], which
contains 500 features and 2 class labels. We split the Madelon training
set into training (1332 observations) and test (668 observations) sets, fol-
lowing our experimental protocol. The number of observations in each
class is balanced. This arti�cial dataset was created speci�cally for the
NIPS 2003 feature selection challenge. Only 20 of the 500 features are
informative, i.e., useful for predicting the class label. According to its au-
thors, this dataset was designed to evaluate feature selection techniques
when features are informative only when considered in groups [62].
Goal 1: Our �rst goal is to show that, for this dataset, poor separation
between classes in the projection corresponds to poor classi�cation ac-
curacy. While this correspondence may appear obvious, it is easy to
show that it does not always hold (see Sec. 4.6). Therefore, analyzing
the link between visual separation and classi�cation accuracy is worth-
while.

83

interactive feature selection assisted by projections

Consider the projection of the training data shown in Fig. 4.2a. The
two class labels, represented by distinct colors, are not visually sepa-
rated in the projection, as also shown by the low neighborhood hit of
53.9%.

training set test set

a
ll
 f

e
a

tu
re

s
 (

5
0

0
)

fe
a

tu
re

 s
u

b
s

e
t

(2
0

)

(a) poor separation and NH (b) poor separation and NH

(c) good separation, improved NH vs (a) (d) good separation, improved NH vs (b)

Figure 4.2: Madelon dataset. (a) Training set (NH: 53.9%). (b) Test set (NH:
50.97%). (c) Training set, feature subset (NH: 83.56%). (d) Test set,
feature subset (NH: 74.15%).

If our projection is representative of the distances in the high-
dimensional space, it is natural to interpret Fig. 4.2a as evidence that
the classi�cation problem is hard, at least if the learning algorithm
being used is based on distances. We will show that, for this example,
this observation holds even for learning algorithms that do not directly
work with distances in the high-dimensional space. This characteristic
is crucial if we want to use projections as visual feedback about the
quality of classi�cation systems that use such algorithms.

Figure 4.2b shows the projection of the test data, which also has a low
neighborhood hit (NH) and poor separation. Following the experimen-
tal protocol outlined in the previous section for hyperparameter search,
consider the best (in terms of average cross-validation accuracy) classi-
�er for each learning algorithm. If the hypothesis about the di�culty

84

4.4 t1: predicting system efficacy

of this classi�cation task is true, the expected result would be a low
accuracy on the test data.

Figures 4.3a and 4.3b show the classi�cation results for KNN (54.94%
accuracy) and RFC (66.17%). The SVM classi�er achieved 55.84% accu-
racy (not shown for brevity). Triangles in the scatterplots show mis-
classi�ed observations, colored based on their misclassi�cation. The ac-
curacies on the test set are considerably low, and both KNN and SVM
perform close to random guessing.

KNN classifier RFC classifier

a
ll
 f

e
a

tu
re

s
 (

5
0

0
)

fe
a

tu
re

 s
u

b
s

e
t

(2
0

)

(a) poor separation and low accuracy (b) poor separation and low accuracy

(c) good separation and higher accuracy (d) good separation and higher accuracy

Figure 4.3: Madelon classi�cation. (a) KNN (AC: 54.94%). (b) RFC (AC: 66.17%).
(c) KNN, feature subset (AC: 88.62%). (d) RFC, feature subset (AC:
88.92%).

Goal 2: Although these results show that the poor visual separation is
correlated to a low classi�cation accuracy, nothing we have shown so
far tells that good separation relates to high accuracy. Let us investigate
this next, speci�cally showing how we can select an appropriate subset
of features to obtain good class separation.

Using extremely randomized trees as a feature scoring technique,
consider a subset containing 20 of the original 500 features, chosen
based on their discriminative power in the training set. In other words,
we chose the best features F ′ ⊆ F to separate the two classes in the
high-dimensional space. Figure 4.2c shows the projection of the train-
ing set restricted to these features. Compared to the previous projection
of the training set (Figure 4.2a), the NH has improved considerably, and
the visual separation has also improved. This visual feedback gives ev-

85

interactive feature selection assisted by projections

idence that the classi�cation task may become easier using a feature
subset.

Figure 4.2d shows that feature selection also enhances the visual sep-
aration of the test set. Therefore, the visual separation after feature se-
lection generalizes well to the test data.

The �nal question is whether the good visual separation corresponds
to higher accuracy in the test set. Figures 4.3c and 4.3d con�rm this
hypothesis. Notice that, after feature selection, both learning algorithms
have greatly improved their results on the test set, with an increase of
nearly 34% for KNN and 22% for RFC. In comparison, the neighborhood
hit increased by almost 24% for the test set, and by almost 30% for the
training set. A similar increase happens in the case of the SVM, which
goes from 55.84% to 86.68% test accuracy after feature selection. In other
words, as could be expected, removing irrelevant features considerably
enhances the generalization capacity of the learned model.

Even more interestingly, after feature selection, we see that the mis-
classi�ed observations in the test set are often surrounded by points
belonging to a di�erent class (see triangular glyphs in Figs. 4.3c and
4.3d). Thus, these observations could be interpreted as outliers accord-
ing to the projection. Such feedback is hard to obtain from a traditional
machine learning pipeline, and is valuable for understanding classi�-
cation system malfunction. Manually inspecting misclassi�ed observa-
tions and their neighbors without the help of visualization would be
very time-consuming, and would not convey nearly as much insight
about the structure of the data. Alternatives such as confusion matri-
ces, for example, are di�cult to interpret even for a modest number of
classes (a confusion matrix for a 10-class problem has 45 independent
values). The feedback presented by projections can, for example, prompt
the users to consider special cases in their feature extraction pipeline.
Findings: In summary, the use case presented in this section shows
how projections can predict classi�cation system e�cacy. In this use
case, poor visual separation matches low classi�cation accuracy, and
good visual separation matches high classi�cation accuracy. Further-
more, points that appear as outliers in a projection are often di�cult to
classify correctly.

4.4.3 Melanoma dataset

Data: The melanoma dataset contains 369 features extracted from 753
skin lesion images, which are part of the EDRA atlas of dermoscopy [5].
Class labels correspond to benign skin lesions (485 images) and malig-
nant skin lesions (268 images). Note the considerable class unbalance in
favor of the benign lesions.

The feature extraction process is described by Feringa [46], and in-
volves interactive segmentation using the superpixel-based method in-

86

4.4 t1: predicting system efficacy

troduced in Chapter 3. This dataset was developed partially as a highly
challenging application for the approach proposed in this chapter.
Goals: The main goal of the experiments performed using this real-
world dataset is to show the type of feedback that can be obtained
through projections when the classi�cation problem is di�cult and the
visual class separation is poor.

Figure 4.4a shows the projection of the training data. We see that
the separation between classes is poor, which is con�rmed by a low
NH. Consider the set of 20 best features to discriminate between the
two groups in the training set, according to extremely randomized trees.
The corresponding projection of the training data restricted to these fea-
tures is shown in Fig. 4.4c. Arguably, the separation is slightly improved,
which is con�rmed by a higher NH value.

training set test set

a
ll
 f

e
a

tu
re

s
 (

3
6

9
)

fe
a

tu
re

 s
u

b
s

e
t

(2
0

)

(a) poor class separation (b) poor class separation

(c) slightly improved class separation vs (a) (d) poor class separation is maintained vs (b)

Figure 4.4: Melanoma dataset. (a) Training set (NH: 64.87%). (b) Test set (NH:
62.35%). (c) Training set, feature subset (NH: 72.38%). (d) Test set,
feature subset (NH: 62.55%)

Figures 4.4b and 4.4d show the projections of the test data before and
after feature selection, respectively. The poor separation is con�rmed
in the test data. More importantly, the separation does not seem to be
better in the test set after feature selection. In other words, feature selec-
tion does not appear to have generalized particularly well to the unseen
(test) data. From this evidence, we naturally suspect that classi�cation
accuracy is poor, and that feature selection will not enhance accuracy.
Our next experiments con�rm this suspicion.

87

interactive feature selection assisted by projections

Figure 4.5a displays the classi�cation results on the test set obtained
by the most e�ective learning algorithm (SVM, according to our proto-
col), using all the features. The class unbalance of the data places the
expected accuracy of always guessing the most frequent class at 64%.
Hence, an accuracy of 77.69% is not quite satisfactory. KNN also per-
forms poorly, achieving only 73.71% accuracy (Fig. 4.5b). This is evi-
dence that the classi�cation task is hard.

SVM classifier KNN classifier

a
ll
 f

e
a

tu
re

s
 (

3
6

9
)

fe
a

tu
re

 s
u

b
s

e
t

(2
0

)

(a) poor class separation and poor accuracy (b) poor class separation and poor accuracy

(c) accuracy slightly deteriorated vs (a) (d) accuracy improved vs (a)

Figure 4.5: Melanoma classi�cation. (a) SVM (AC: 77.69%). (b) KNN (AC:
73.71%). (c) SVM, feature subset (AC: 74.9%). (d) KNN, feature sub-
set (AC: 77.69%). The uniformity of blue classi�cations in the center
of the projections shown in (c) and (d) con�rms that distances in the
projection are good indicators of classi�er behavior.

Figures 4.5c and 4.5d show the classi�cation results obtained after
feature selection. As we see, feature selection improved the e�cacy of
the KNN classi�er (from 73.71% to 77.69%) to the same level as an SVM
using all features. On the other hand, the SVM results deteriorated after
feature selection.

Furthermore, notice the uniformity of blue classi�cations in the cen-
ter of the projections shown in Figs. 4.5c and 4.5d. This con�rms that
distances in the projection are good indicators of classi�er behavior in
this case, even when the learning algorithm does not directly use dis-
tances in the original high-dimensional feature space (Fig. 4.5c).

As anticipated, feature selection did not improve generalization ef-
�cacy. Even so, reducing the number of features to approximately 5%

88

4.4 t1: predicting system efficacy

of the original has bene�ts in computational e�ciency and knowledge
discovery. The reduced set of features contains valuable information to
the system designer, and indicates characteristics of the problem where
designers may decide to focus their e�orts. In other words, the use of
feature selection, while not directly improving classi�cation system ac-
curacy, added value by reducing costs through data reduction.

4.4.4 Corel dataset

Data: The Corel dataset contains 150 SIFT features extracted from 1000
images by Li et al. [93]. Class labels correspond to 10 image types: Africa,
beach, buildings, buses, dinosaurs, elephants, �owers, horses, moun-
tains, and food. The dataset is perfectly balanced between classes.
Goals: This experiment shows that projections can give insight into
class-speci�c behavior, and also provides more evidence that projec-
tions can predict classi�cation accuracy.

Figures 4.6a and 4.6b show projections of the training and test data,
respectively. Except for a confusion zone between the classes marked as
green, orange, yellow and brown, both projections show well-separated
clusters. This separation is con�rmed by a high NH value in both cases.

training set test set

a
ll
 f

e
a

tu
re

s
 (

1
5

0
)

fe
a

tu
re

 s
u

b
s

e
t

(1
0

)

(a) good separation (modulo small confusion zone) (b) good separation (modulo small confusion zone)

misclassification

(c) good separation of class 4 (d) good separation of class 4

confusion of green,
yellow, orange,
brown classes

class 4

class 4

Figure 4.6: Corel dataset. (a) Training set (NH: 85.7%). (b) Test set (NH: 82.73%).
(c) Training set, feature subset (NH: 28.68%, 4 vs rest NH: 100%). (d)
Test set, feature subset (NH: 22.18%, 4 vs rest NH: 99.34%).

89

interactive feature selection assisted by projections

These projections can be interpreted as evidence that the classi�ca-
tion task is easy. Con�rming this hypothesis, Fig. 4.7a shows the classi-
�cation results for the best classi�er (RFC). As expected, the accuracy
obtained is very high (91.81%), considering that this is a balanced 10-
class problem. More interesting, however, is the fact that many classi-
�cation errors occur in the confusion zone observed in the projection
of the test set. Thus, conclusions drawn from the visual feedback about
confusion zones in the training set do generalize to unseen (test) data.
Notice that the concept of confusion zone is only possible because the
data are spatially represented. It is, to our knowledge, not possible to de-
pict a confusion zone otherwise. This is another valuable characteristic
of our proposed projection-based representation.

all features (150) feature subset (10)

class 4

(a) good class separation, good accuracy (b) poor class separation, poor accuracy

(except for class 4 vs rest)

class 4

Figure 4.7: Corel classi�cation. (a) RFC (AC: 91.81%). (b) RFC, feature subset (AC:
34.55%, 4 vs rest AC: 99.7%).

We also use this dataset to consider an alternative scenario for pre-
dicting system e�cacy. This scenario shows, again, that projections are
reliable predictors of classi�cation system behavior. Consider the best
10 features to discriminate class 4 (purple) from other classes, according
to extremely randomized trees. The projection of the data restricted to
this set of features is shown in Fig. 4.6c. As expected, note how class
4 is very well separated (center left), while observations in the other
classes are poorly separated from each other. This is con�rmed by low
NH values (28.68%) and perfect binary NH values, when class 4 is con-
sidered against the rest. Figure 4.6d con�rms that this characterization
generalizes to the test data.

The poor separation between classes other than 4 leads us to expect
poor accuracy results. Figure 4.7b shows the classi�cation results using
the features selected to separate class 4 from the rest, in the multi-class
problem, which con�rm this expectation. In contrast, the binary clas-
si�cation accuracy is almost perfect (99.7%, image omitted for brevity).
There is a single mistake in the binary classi�cation, which is placed in

90

4.4 t1: predicting system efficacy

the top left corner of the projection (top left of Fig. 4.6d). The projection
was also able to predict the existence of this outlier.

4.4.5 Parasites dataset

Data: The parasites dataset contains 9568 observations and 260 classical
image features extracted from (pre-segmented) objects in microscopy
images of fecal samples [143]. We restricted ourselves to a subset of the
original data that contains only the protozoan parasites and impurities
(objects that should be ignored during analysis). Almost sixty percent
of the observations correspond to impurities, which gives a signi�cant
class unbalance.
Goal: We present here one last example of the predictive power of pro-
jections, using a medium-sized realistic dataset. In this case, the projec-
tion reveals the presence of a large number of confounding observations
that, when removed, increase classi�cation accuracy.

Figure 4.8a displays the projection of the training set. We immediately
see that impurities (marked pink) spread over almost the entire projec-
tion space. This is also seen in the projection of the test set (Fig. 4.8b).
In other words, we have weak evidence that the impurities may be con-
founded with almost every other class.

Figures 4.8c and 4.8d show the projections of the training and test
data, respectively, when the impurities are removed from the data.
Therefore, the other classes be reasonably well separated from each
other when impurities are ignored.

Considering again all observations, Figure 4.9a shows classi�cation
results for the best classi�er (SVM, according to our protocol). Given
the perceived poor visual separation, this result may be considered sur-
prisingly good, which shows that perceived confusion is not de�nitive
evidence. In Section 4.6, we will show an extreme example of this be-
havior. In a number of cases, however, we have seen that the evidence
is much stronger in the other direction: when the perceived visual sepa-
ration between classes in a projection is good, the classi�cation results
are also good.

Consider next our dataset restricted to all the classes except impuri-
ties. Figure 4.9d shows KNN classi�cation results, which are improved
from 82.29% to 89.49% accuracy. However, SVM results are not signi�-
cantly improved in this restricted task (approximately 2% accuracy in-
crease). Once again, note how the confusion zones contain the majority
of misclassi�cations. Apparently, the SVM learning algorithm is able to
deal better with the confusion between impurities and parasites. In this
case, the projection was better to anticipate the behavior of the distance-
based learning algorithm.

This is the largest dataset considered in our experiments. Note that
the projections of the training and test sets are somewhat similar (e.g.,

91

interactive feature selection assisted by projections

training set test set

a
ll
 o

b
s

e
rv

a
ti

o
n

s
o

b
s

e
rv

a
ti

o
n

 s
u

b
s

e
t

(w
it

h
o

u
t

im
p

u
ri

ti
e

s
)

(a) impurities (pink) spread all over (b) impurities (pink) spread all over

(c) good separation vs (a) (d) good separation vs (b)

63
78

 o
bs

er
va

tio
ns

31
90

 o
bs

er
va

tio
ns

25
68

 o
bs

er
va

tio
ns

12
84

 o
bs

er
va

tio
ns

Figure 4.8: Parasites dataset. (a) Training set (NH: 74.35%). (b) Test set (NH:
68.49%). (c) Training set, observation subset (NH: 87.22%). (d) Test
set, observation subset (NH: 82.31%).

Figs. 4.8c and 4.8d). This highlights the importance of using representa-
tive datasets to study a problem using projections.

The di�culty of separating impurities from other classes could also
be diagnosed from a confusion matrix. In practice, this insight could
be used by the designer to study the classi�cation of impurities as a
separate problem. However, projections provide a more compelling vi-
sual representation of the same phenomenon, allowing the designer to
inspect the observations in confusion zones. Such spatial information
about relationships is lost in a confusion matrix.

4.4.6 Conclusion

The experiments performed for the four datasets in this section sup-
port our claim that projections provide useful visual feedback about
the ease of designing a good classi�cation system. This visual feedback
helps �nding outliers, overall separation between observations in dis-
tinct classes, distribution of observations of a given class in the feature

92

4.5 t2: improving system efficacy

SVM classifier KNN classifier

a
ll
 o

b
s

e
rv

a
ti

o
n

s
 (

2
5

6
8

)
o

b
s

e
rv

a
ti

o
n

 s
u

b
s

e
t

(1
2

8
4

)

(a) poor separation but good accuracy (b) poor separation but good accuracy

(c) improved separation and accuracy vs (a) (d) improved separation and accuracy vs (b)

Figure 4.9: Parasites classi�cation. (a) SVM (AC: 92.7%). (b) KNN (AC: 82.29%).
(c) SVM, observation subset (AC: 94.55%). (d) KNN, observation sub-
set (AC: 89.49%).

space, and presence of neighborhoods with mixed class labels. Arguably,
the �rst two tasks have the most well-developed traditional feedback
mechanisms: outlier detection, manual misclassi�cation inspection, ef-
�cacy measures, and confusion matrices. The qualitative nature of the
last two tasks makes them more di�cult. This makes a strong case for
the use of projections, even if there is no hard guarantee that the visual
feedback o�ered by projections is de�nitely helpful for a given dataset.

4.5 t2: improving system efficacy

The previous section showed how projections can be useful for pre-
dicting classi�cation system behavior. If a particular system performs
well, there is no further e�ort required from the system designer. In-
stead, consider a classi�cation system that generalizes poorly to unseen
data. Because the design space (feature descriptors, learning algorithms
and hyperparameters) is immense, designers can bene�t from insight-

93

interactive feature selection assisted by projections

ful feedback about their choices. In that case, we have also shown that
qualitative feedback from projections can be highly valuable.

Building on the use of projections for the �rst task (T1), this section
focuses on the use of projections for the task of improving classi�ca-
tion system e�cacy (T2). In section 4.5.1, we present a visual feedback
methodology that enables T2. In Sections 4.5.2 - 4.5.5, we describe use
cases that employ this methodology. Finally, Section 4.5.6 summarizes
these examples by presenting a work�ow for our proposed classi�ca-
tion system improvement process.

4.5.1 Proposed methodology and tooling

Our methodology for classi�cation system improvement through inter-
active projections is implemented into a tool composed of six linked
views (Fig. 4.10), as follows.

observation view
feature view

observation projection view feature projection view

selected
observations

lens

 feature scoring view

features

re
le

va
nc

e

group view

low
relevance

high
relevance

Figure 4.10: Feature exploration tool, showing the Corel dataset. Shows the ob-
servation view, feature view, group view, observation projection
view (lensing observations, colored by classi�cation; yellow obser-
vations are selected), feature scoring chart (showing best features
to discriminate yellow class vs rest), and feature projection view
(showing best features to discriminate yellow class vs rest, using a
heat colormap).

Available in http://www.cs.rug.nl/svcg/People/PauloEduardoRauber-featured.

94

http://www.cs.rug.nl/svcg/People/PauloEduardoRauber-featured

4.5 t2: improving system efficacy

The observation view shows the image associated to each observa-
tion x in the dataset D, if any, which are optionally sorted by a feature
of choice. This provides an easy way to verify if a feature corresponds
to user expectations.

The feature view shows all features F , optionally organized as a
hierarchy based on semantic relationships. Within this view, users can
select a feature-subset F ′ ⊆ F to further explore.

The group view allows the creation and management of observation
groups by direct selection in the observation view or in the observation
projection view (discussed next).

The observation projection view shows a scatterplot of the pro-
jection of DF ′ , the dataset composed of all observations restricted to
the currently selected feature subset F ′. Points can be colored by a
user-selected characteristic (such as class label or feature value), and
are highlighted to show the selected set of observations.

Figure 4.10 also illustrates lensing, which optionally displays sec-
ondary characteristics on a neighborhood. In this particular case, the
secondary characteristic is classi�cation outcome (correct classi�ca-
tions in blue, incorrect in red).

The feature scoring chart ranks the features in F ′ by a relevance
metric chosen by the user. We provide a variety of feature scoring tech-
niques, including extremely randomized trees (Sec. 2.4.4, which we also
employed in Section 4.4) [51], randomized logistic regression (Sec. 2.4.2)
[105], SVM recursive feature elimination (Sec. 2.4.3) [61], and others.
The feature scoring view also allows the user to select a subset of F ′
through interactive rubber-banding.

The feature projection view presents one point for each feature in
F . Features are placed in 2D by a technique that tries to preserve the
structural similarity between features. For our purposes, we de�ne the
dissimilarity di, j between features i and j as di, j = 1− |ri, j |, where ri, j is
the (empirical) Pearson correlation coe�cient between features i and j.
This dissimilarity metric captures both positive and negative linear cor-
relations between pairs of features, although it has shortcomings that
we already discussed in Sec. 2.1. The dissimilarity matrix, which con-
tains the dissimilarity between all pairs of features, can be represented
in two dimensions by a projection, which is analogous to the projection
of observations. As already mentioned in Sec. 4.2, similar visualizations
already exist in the literature [149, 160]. However, we combine the fea-
ture projection view with task-speci�c information in a novel manner,
as shown in the next sections.

We chose (absolute metric) multidimensional scaling [17] to compute
feature projections (Sec. 2.6.3). According to preliminary experiments,
MDS presents more coherent relationships between features and classes
than t-SNE, which is important in the next sections. This is probably due
to the di�erence in goals between the two techniques: absolute metric
MDS attempts to preserve (global) pairwise dissimilarities [17], while

95

interactive feature selection assisted by projections

t-SNE is particularly concerned with preserving (local) neighborhoods
[99]. Alternative (dis)similarity metrics between features are also avail-
able in the tool, including mutual information (Sec. 2.4.1), distance cor-
relation [144], and Spearman’s correlation coe�cient [29]. The feature
projection view provides a counterpart to the observation projection
view, and enables several interactions that will be detailed in the next
sections.

Our visual analysis tool is implemented in Python, and uses Numpy
[152], Scipy [76], pyqt, matplotlib [70], scikit-image [153], scikit-learn
[121], pyqtgraph, and mlpy [2].

The next sections describe how our tool can be used to support the
task of classi�cation system improvement based on visual feedback ob-
tained from both observation and feature projections. For an overview
of tool usage, see Section 4.5.6.

4.5.2 Madelon: relationship between relevant features

Goal: In this section, we illustrate how the feature projection view can
be used to select features by considering relationships between relevant
features. As already mentioned, feature selection is a major challenge in
classi�cation system design. In particular, insight into the feature space
can be very valuable when hand-engineered (o�-the-shelf) features are
used.

Consider a selection of the 20 best features to discriminate between
the two classes of the Madelon dataset (Sec. 4.4.2) , performed using the
feature scoring chart based on extremely randomized trees. The corre-
sponding projections of observations and features are shown, respec-
tively, in Figs. 4.11a and 4.11b. Each feature in the feature projection
view is colored according to its relevance score (darker colors repre-
sent higher relevance according to extremely randomized trees). The
20 selected features are outlined in black. Note that the most relevant
selected features (darker colors) are placed near the center of the fea-
ture projection, except for the least relevant one. This �nding is no-
table, since the feature projection is created without any information
about feature scores. This shows that relevant features are related (ac-
cording to the feature dissimilary and relevance scoring metrics) in this
dataset. Note that, in general, relevant features are not necessarily re-
lated. For instance, a feature can simply complement the discriminative
role of other features.

Showing the relationships between feature scoring and feature sim-
ilarity is a main asset of the feature projection view. Figures 4.11c and
4.11d show how such insight can be used: by removing the outlier fea-
ture (i.e., the feature that is apparently unrelated to the rest of the selec-
tion), visual separation is preserved. In other words, the feature projec-
tion view let us prune the feature space while maintaining the desired

96

4.5 t2: improving system efficacy

observation projection feature projection

fe
at

u
re

 s
u

b
se

t

(2
0

fe
at

u
re

s
se

le
ct

ed
)

(a) reasonably good separation (b) relevant features are related (except one)

(c) good separation maintained after
removing outlier feature

(d) relevant features after removal of

outlier feature

fe
at

u
re

 s
u

b
se

t

(1
9

fe
at

u
re

s
se

le
ct

ed
)

outlier
feature

lo
w

hi
gh

fe
at

ur
e

re
le

va
nc

e
lo

w
hi

gh
fe

at
ur

e
re

le
va

nc
e

Figure 4.11: Madelon training set. (a,b) Observation and feature projections, 20
features selected (NH: 83.56%). (c,d) Observation and features pro-
jections, one less feature (NH: 84.55%).

visual separation (and NH), thereby reducing the size of the data that
needs to be considered next.
Improvement: Table 1 presents the results of each learning algorithm
on the Madelon test set, following the protocol described in Sec. 4.4.1,
before and after removing the outlier feature mentioned above. As
conveniently anticipated by the observation projection of the training
set (Fig. 4.11c), the classi�cation e�cacy is maintained (and perhaps
slightly improved). In summary, the feature removal suggested by the
feature projection view has reduced the data size, but maintained clas-
si�cation accuracy.

Table 1: Madelon test set accuracies, feature selection according to Fig 4.11.

Features/Algorithm KNN RFC SVM
20 features 88.62% 88.92% 86.68%
19 features 88.92% 88.92% 89.22%

97

interactive feature selection assisted by projections

4.5.3 Corel: class-speci�c relevant features

Goal: This section shows how the feature projection view can be used
together with the observation projection view to �nd class-speci�c rel-
evant features, using the Corel dataset (Sec. 4.4.4) as an example. When
improving system e�cacy, such information is useful both for feature
selection and for understanding classi�cation system behavior.

We already showed (Sec. 4.4.4) that we can choose features that are
good to discriminate one of the classes in the Corel dataset (class 4,
which corresponds to dinosaur drawings), while making discrimination
between the other classes very di�cult. Figures 4.12a and 4.12b show
the corresponding observation and feature projections. Once again, we
see that the discriminative features are highly related.

observation projection feature projection

fe
at

u
re

 s
u

b
se

t
(4

 v
s

 r
es

t)

12
 f

ea
tu

re
s

se
le

ct
ed

(a) good separation of class 4 vs rest (b) relevant features are related

(c) good separation of class 3 vs rest (d) relevant features are related

fe
at

u
re

 s
u

b
se

t
(3

 v
s
 r

es
t)

14
 f

ea
tu

re
s

se
le

ct
ed

lo
w

hi
gh

fe
at

ur
e

re
le

va
nc

e
lo

w
hi

gh
fe

at
ur

e
re

le
va

nc
e

class 4 (purple)

class 3 (red)

Figure 4.12: Corel training set. (a,b) Observation and feature projections, feature
subset (4 vs rest, Binary NH: 99.73%). (c,d) Observation and feature
projections, feature subset (3 vs rest, Binary NH: 99.25%).

Consider an analogous feature selection aimed to discriminate class
3 (bus pictures) from the other classes. Figures 4.12c and 4.12d show

98

4.5 t2: improving system efficacy

the corresponding projections. Comparing the feature views (Figs. 4.12b
and 4.12d), we easily see that the sets of powerful discriminative fea-
tures for the two classes are disjoint. This information could not be
easily obtained from the feature scoring bar chart mentioned in Sec-
tion 4.5.1, since features are generally di�cult to locate in that visual-
ization. As inspecting the precise ranking of each feature is easier in
the bar chart, the two views are complementary. These interactions re-
quire very little e�ort from the user, who can inspect several feature
combinations in a few minutes.

If the user is interested in a rough estimate of classi�cation e�cacy,
our tool can also compute and display classi�cation results (for a cho-
sen learning algorithm) based on k-fold cross-validation. This process
partitions the current data into k disjoint validation sets, and a classi-
�er trained on the rest of the data is used to classify each validation-set.
Classi�cation results for the distinct validation-sets are aggregated and
displayed, leading to images similar to Fig. 4.7. These representations
do not replace proper evaluation in a held-out test set (as in Sec. 4.4),
but are useful feedback sources during the interactive feature analysis
process.
Improvement: Table 2 presents the result of each learning algorithm
on the Corel test set, following the protocol in Sec. 4.4.1, for the task
of discriminating classes 3 and 4 from the rest (i.e., classes 3 and 4 are
treated as a single class in a binary classi�cation task), for all features
and the subset of 26 features that were considered (separately) relevant
for classes 3 and 4. As predicted by the observation projections of the
training set shown in Figs. 4.12a and 4.12c, the classi�cation e�cacy is
preserved. In summary, our visual analysis methodology allowed us to
prune the feature space from 150 to only 26 features, and construct a
binary classi�er for classes 3 and 4 vs rest that has the same quality as
a classi�er that uses all features.

Table 2: Corel test set accuracies, classes 3 and 4 vs rest, relevant features ac-
cording to Fig. 4.12.

Features/Algorithm KNN RFC SVM
All (150) features 98.18% 98.79% 98.48%
26 features 98.48% 98.79% 98.79%

4.5.4 Melanoma: alternative feature scores

Goal: The joint display of feature similarity and relevance is useful in
other ways, as shown next. Here, our representation enables comparing
the results of di�erent feature scoring techniques. Since the techniques
are based on distinct principles, comparing their results to �nd features

99

interactive feature selection assisted by projections

that are consistently considered e�ective is a valuable task for improv-
ing system e�cacy.

Consider the feature projection view of the melanoma training set
(Sec. 4.4.3) shown in Fig. 4.13a. As usual, colors represent the relevance
of each feature to discriminate between the two classes present in the
dataset (according to extremely randomized trees). We see a concentra-
tion of relevant features between the center and the bottom right. Again,
the feature placement reinforces the feature scoring information. The
presence of zones of highly relevant features is highly suggestive for the
exploration of the feature space, as shown in Sec. 4.5.2.

feature projection

(randomized decision trees)

feature projection

(randomized logistic regression)

mostly relevant features mostly irrelevant features

lo
w

hi
gh

fe
at

ur
e

re
le

va
nc

e

(a) (b)

Figure 4.13: Feature projection for melanoma training set. (a) Feature scoring
by randomized decision trees. (b) Feature scoring by randomized
logistic regression

Consider an alternative feature (relevance) scoring obtained by an-
other technique – in this case, randomized logistic regression [105] (Sec.
2.4.2) – shown in Fig. 4.13b. We see that the distribution of relevancies
is very di�erent according to the second technique, which places higher
cumulative relevance into fewer features. However, note that the two
techniques agree on the irrelevance of the features in the bottom right
and top left. This visual metaphor, where similar features are placed
near each other, is a natural way to display such information.

The image features in this dataset have meaningful names, which
can be inspected by hovering over the points. Using this mechanism,
we �nd that the irrelevant peripheral points correspond mostly to his-
togram bins that have little (or even zero) variance across all images
in our dataset. As expected, these features have almost no predictive
power.
Improvement: Table 3 presents the result of each learning algorithm
on the Melanoma test set, following the protocol in Sec. 4.4.1, for all 369
features and the 58 (mostly) relevant features shown in Fig. 4.13a and

100

4.5 t2: improving system efficacy

4.13b. Although the KNN and SVM results deteriorated slightly, the RFC
result improved. Also, our method allowed us to discard a signi�cant
number of hand-engineered features. Besides saving signi�cant time
in feature extraction, the insight provided by our visual analysis of the
feature space helps in deciding which types of features are most relevant
for classi�cation.

Table 3: Melanoma test set accuracies, relevant features according to Fig. 4.13

Features/Algorithm KNN RFC SVM
All (369) features 73.71% 76.49% 77.69%
58 features 73.31% 77.29% 76.10%

4.5.5 Parasites: importance of projection error measures

Goal: In this section, we use the observation projection view to fo-
cus on a di�erent kind of visual feedback. Our tool also presents the
aggregate projection error, a per-point metric of distance preservation
after DR [103]. Intuitively, a point has a high aggregate error when
its corresponding high-dimensional distances to the other observations
are poorly represented by the low-dimensional distances in the projec-
tion. This feedback about the quality of a given projection is key to our
methodology. We illustrate this by a simple use case, where an interest-
ing observation is highlighted by its projection error.

Consider once again the parasites dataset restricted to non-impurities
(Sec. 4.4.5). Figure 4.14a shows the aggregate error for the test set
(higher errors in darker colors). We see a point near the center of the
projection with a relatively high aggregate error (square in Fig. 4.14a).
As colors map relative errors, this does not necessarily mean that the
absolute aggregate error is high. Yet, this point is clearly an outlier in
aggregate error when compared to its low-dimensional neighbors. In
Fig. 4.14b, we see that the point is surrounded by points belonging to
other classes. By our de�nition, this point is an outlier with respect
to its positioning given its class label. Note that the aggregate error is
computed without any information about class labels, and also draws
attention to this particular observation.

One possible explanation for a high aggregate error is that the pro-
jection placed a point in a poor manner. The corresponding observation
might not even be an outlier. In fact, the point is correctly classi�ed by
RFC and SVM, which weakly supports this hypothesis. However, KNN
classi�ed the point incorrectly (see inset in Fig. 4.14b). Therefore, it is
still unclear whether this point is a true outlier. The aggregate error
view was successful in focusing attention into an interesting observa-

101

interactive feature selection assisted by projections

tion, which warrants further inspection of its characteristics and fea-
tures.

low high
aggregate error

(a) (b)

aggregated projection error class information

K
N

N
 c

la
ss

ifi
ca

tio
n

Figure 4.14: Parasites test set, observation subset. (a) Aggregate error. (b) Orig-
inal classes, inset showing KNN classi�cation.

To enable similar feedback, our tool could potentially use several
other error metrics and visual depictions of projection quality (e.g., [7,
103]). As already mentioned in Sec. 4.4.1, such depictions are highly im-
portant for assessing how to interpret the visual feedback.

4.5.6 Proposed work�ow

We now summarize the value added by the insights described in Sec-
tions 4.4 and 4.5 by revisiting the high-level work�ow outlined in
Fig. 4.1.

Our work�ow begins when the user loads the data into our analysis
tool and considers the observation projection. If the perceived class sep-
aration in this projection is good, the classi�cation task is likely quite
simple (as discussed in Sec. 4.4). As an extreme example, consider the
projection of the Corel dataset, where even a 1-nearest neighbor algo-
rithm in the 2D projection space would achieve good results. In such
cases, the user can follow the traditional machine learning pipeline,
with a high expectation that the system will perform well.

A more interesting scenario occurs when the perceived class sepa-
ration in the projection is poor. In this case, the next step is to use the
mechanisms provided by our tool to �nd a feature subset that brings sep-
aration. This may require several iterations of feature scoring, analysis,
and backtracking. If no separation improvement can be found, there are
two possible scenarios: classi�cation e�cacy is satisfactory (the projec-

102

4.6 discussion

tion is misleading with respect to classi�er behavior) or unsatisfactory.
The �rst case is easy to diagnose, and consists on conducting experi-
ments following the traditional machine learning pipeline. The second
case is the most complicated. In this case, we have shown that the quali-
tative aspects of our proposed visualizations are crucial in enabling the
designer to diagnose the system. For this purpose, our tool provides
mechanisms to detect the presence of outliers and confusion zones, and
also to inspect classi�cation results based on a visual metaphor that rep-
resents observations in a consistent way. By inspecting the observation
projection, the designer receives visual feedback about which features
are important to eliminate confusion between classes. Furthermore, us-
ing the feature projection view and feature scoring methods, the de-
signer can reason about the discriminative power of features, and focus
e�ort on related (or complementary) feature descriptors. The new al-
ternatives devised during this analytic process can be fed back into the
tool, closing the cycle.

4.6 discussion

This section discusses several important aspects of our proposed
methodology and experiments.
Coverage: As any experimental study, many conclusions are limited to
the datasets that we presented. The particular random choice of train-
ing and test data also a�ects the results, although the amount of data
we considered diminishes this concern. Importantly, the extent of our
validation (i.e., experimental protocol, number of datasets and learning
algorithms) is in line with comparable works in visual analytics and
machine learning.

While we have conducted less organized experiments in additional
datasets, the four datasets discussed in this chapter illustrate well all
types of feedback that can be obtained from projections. We also exper-
imented with other dimensionality reduction techniques (namely, LSP
[119] and LAMP [75]), but obtained the best predictive feedback from
t-SNE [150]. Finally, our choice of learning algorithms for validation
(KNN, RFC, SVM) considers their widespread popularity, and aims to
make our approach appealing to a large number of practitioners. The
positive results obtained with these highly distinct algorithms suggest
that our approach is valuable for other learning algorithms.
Limitations: It is easy and instructive to construct a synthetic example
where projections do not provide valuable visual feedback for classi�-
cation system design, which we describe next.

Consider the task of classifying observations sampled from two 10-
dimensional parallel (a�ne) hyperplanes that correspond to distinct
classes. Consider also that the distance between these hyperplanes is
small when compared to the expected distance between any pair of
neighboring observations from the same hyperplane. By construction,

103

interactive feature selection assisted by projections

this classi�cation task is very easy for a linear SVM, which consistently
obtains 100% accuracy following the experimental protocol detailed in
Sec. 4.4.1. At the same time, a DR technique that tries to preserve the
original distances in the high-dimensional space will not show a clear
separation between the two classes, as shown in Fig. 4.15. In simple
terms, the visual feedback is misleading, because the classi�cation task
is easy, but there is no apparent visual separation between classes. It is
important to note that other learning algorithms did not perform well
on this test set (KNN: 51.20%, RFC: 54.94%). However, we believe it is
also possible to construct examples where the visual feedback is unhelp-
ful for those algorithms.

Figure 4.15: Planes classi�cation, Linear SVM (AC: 100%).

Despite this worst-case behavior, we argue that the results presented
in Secs. 4.4 and 4.5 support our claims that our proposed approach is
highly valuable, particularly considering the very low investment nec-
essary to explore data by our proposed methodology and tooling.
Scalability: Our feature space exploration approach bene�ts from the
visual scalability of projections to thousands of high-dimensional ob-
servations and features, although visual clutter eventually becomes an
issue for the quality of the visual feedback. The computational scalabil-
ity limits are imposed by the requirement of interactive response times.
The scenarios presented here can be explored in interactive time using
a typical desktop computer. The main bottleneck consists on recomput-
ing projections for di�erent subsets of features. For some dimensional-
ity reduction techniques [99], this issue becomes signi�cant in datasets
containing more than a few thousands of observations, while others are
able to deal with hundreds of thousands of observations at interactive
paces [75, 119].

104

4.7 conclusion

4.7 conclusion

In this chapter, we have shown that projections are useful tools for
predicting classi�cation system e�cacy in several real and synthetic
datasets. The visual feedback given by projections is especially helpful
in qualitative tasks. These tasks include inspecting the presence of out-
liers, overall separation between observations in distinct classes, distri-
bution of observations of a given class in the feature space, and presence
of neighborhoods with mixed class labels.

We also introduced a methodology that uses projections as a ba-
sis for an interactive system designed to give insight into the feature
space. This methodology, and associated tooling, can aid a classi�cation
system designer in improving classi�cation e�cacy. In particular, we
showed how a projection representing observations can be integrated
with an interactive representation of feature similarity to aid in this
task.

Future works may integrate speci�c capabilities of some dimension-
ality reduction techniques into our methodology, such as control point
positioning. Another worthwhile goal is providing visual support to
semi-supervised learning tasks, such as active learning.

105

5V I S UA L I Z I N G A R T I F I C I A L N E U R A L N E T W O R K S
U S I N G P R O J E C T I O N S

In Section 2.3.5, we mentioned that advances in computational power
and techniques for building and training arti�cial neural networks
(ANNs) have allowed these models to achieve state-of-the-art results
in many applications related to pattern recognition [133]. However,
successfully training ANNs is generally time-consuming, and requires
signi�cant expertise [12].

In this chapter, we demonstrate the potential of dimensionality re-
duction techniques to provide insightful visual feedback about ANNs.
Speci�cally, we employ the visualization approach proposed in the pre-
vious chapter to the following two tasks:

• T1: Exploring the relationships between alternative representa-
tions of observations learned by ANNs.

• T2: Exploring the relationships between arti�cial neurons.

Although we focus on multilayer perceptrons and convolutional neural
networks, our approach is extensible to other types of networks (e.g.,
LSTM or Elman networks [58]).

The projection-based visualization approach that we propose for T1
is (sparsely) found in the machine learning literature. However, such
projections are typically used for illustrative purposes. In contrast, we
show how projections can aid existing approaches for understanding
and improving ANNs (Sec. 5.4). Speci�cally, using three widely studied
benchmark image classi�cation datasets, we show how our visualiza-
tion approach is able to con�rm facts that are already known about
ANNs, and reveal previously unseen relationships between learned rep-
resentations. In this context, we also propose a novel visualization of
the evolution of such learned representations (Sec. 5.4.4).

Our approach towards T2 is completely new in the context of ANNs,
although it is related to techniques developed for feature-space explo-
ration discussed in the previous chapter (see also Sec. 5.2). Similarly
to our approach for T1, we use projections to represent similarities be-
tween arti�cial neurons (given a particular set of input observations).
We also propose a novel visualization of the relationships between ar-
ti�cial neurons and classes (Sec. 5.5.2). Although being presented sep-

This chapter is based on the following publication:
P. E. Rauber, S. G. Fadel, A. X. Falcão, and A. C. Telea. Visualizing the hidden activity
of arti�cial neural networks. IEEE Transactions on Visualization and Computer Graphics
(Proceedings of the Visual Analytics Science and Technology 2016), 23(01), January 2017.

107

visualizing artificial neural networks using projections

arately, our visualization approaches for T1 and T2 should be seen as
complementary for understanding ANNs, as we exemplify in Sec. 5.5.2.

This chapter is organized as follows. Section 5.1 brie�y reviews our
notation and de�nitions. Section 5.2 relates our work to previous work
in machine learning, information visualization, and visual analytics.
Section 5.3 details the protocol followed by our experiments. Section
5.4 presents the results of our projection-based visualizations of the re-
lationships between learned representations for di�erent datasets (T1),
highlighting valuable insights gained from visualization. Section 5.5
presents our projection-based visualizations of relationships between
arti�cial neurons (T2). Section 5.6 discusses the limitations of our work.
Section 5.7 summarizes our �ndings and suggests future work.

5.1 preliminaries

The following is a concise review of de�nitions introduced in Ch. 2 (spe-
cially Sec. 2.3.5).

A dataset D = (x1, y1), . . . , (xN , yN) is a sequence where xi ∈ RD is
an observation, and yi ∈ {0, 1}C is a target class assignment. If yi,c = 1,
observation xi belongs to class c . In this chapter, each observation cor-
responds to a raw 2D image (�attened into a real vector, as described in
Sec. 2.3.5.2) and belongs to a single class, although these are not limita-
tions of our proposal.

We consider two kinds of ANNs: multilayer perceptrons (MLPs) and
convolutional neural networks (CNNs). Such networks represent parame-
terized functions f : RD → (0, 1)C , which usually attempt to generalize
class assignments from the examples in D. Computation in these net-
works is performed by arti�cial neurons, which are typically organized
into layers, as detailed next.
Multilayer perceptrons: In these models, the weighted input to neu-
ron j in layer l is de�ned as z (l)j = b

(l)
j +

∑
k w

(l)
j,ka

(l−1)
k , wherew (l)

j,k ,b
(l)
j ∈

R are free parameters, and a (l−1)
k is the activation (output) of neuronk in

layer l −1 (Fig. 5.1). In other words, each neuron computes a linear com-
bination, plus a bias, of neuron activations from the previous layer. The
activation a (l)j depends on the activation function chosen for layer l [12].
In a sigmoid layer, a (l)j = 1/(1 + exp(−z (l)j)); in a recti�ed linear layer,
a (l)j = max(0, z (l)j); in a softmax layer, a (l)j = exp(z (l)j)/

∑
k exp(z (l)k).

The activation of layer l is de�ned as a(l) =
(
a (l)1 , . . . ,a

(l)
N (l)

)
, where

N (l) is the number of neurons in layer l . Thus, if we let f denote the
function computed by the network and L denote its number of layers
(including the input), we have f (x) = a(L) when a(1) = x. Any layer
between the �rst and the last is called a hidden layer. A network with
more than one hidden layer is called a deep neural network [11].

108

5.1 preliminaries

The activation of layer l > 1 can be seen as an alternative (learned)
representation of the input observation, since the activation of layer l
depends only on learned parameters and the activation of layer l − 1
(see Fig. 5.1). This fact is crucial to our approach. The activations of a
given layer for a set of observations (network inputs) is the focus of our
visualization.

in
p

u
t

d
a

ta
se

t
D

o
u

tp
u

t
cl

a
ss

 a
ss

ig
n

m
e

n
ts

hidden

layer(s)

Figure 5.1: Schema of MLP with three layers and three neurons per layer.

Convolutional neural networks: These models typically consist of at
least three types of layers: convolutional, (max-)pooling, and fully con-
nected. A convolutional layer receives as input aw×h image with c color
channels, and connects each of its neurons to a small window (all chan-
nels included) of the input. Neurons compute their weighted inputs and
activations as usual. However, each neuron is replicated (with parame-
ter sharing) for many input windows, given a pre-de�ned stride. When
the output of all corresponding replicas are organized into a single-
channel image, the operation is analogous to multichannel image con-
volution [85, 115]. The output of a convolutional layer is obtained by
stacking the outputs of sets of replicated neurons into a single mul-
tichannel image. The number of output channels can be seen as the
number of convolutional �lters. A max-pooling layer reduces the spa-
tial dimensions of a multi-channel image by keeping the highest-value
activation in a neighborhood (independently for each channel, for a pre-
de�ned stride), and also outputs a multichannel image. A fully connected
layer is analogous to an MLP layer, and is only followed by other fully
connected layers. The activation of such a layer can also be seen as a
learned representation of the input.
Network training: The weights and biases θ of an ANN are adapted to
minimize a cost function J that penalizes prediction errors on the train-

109

visualizing artificial neural networks using projections

ing set D. For example, a softmax output layer is typically combined
with the (average) negative log-likelihood cost function J given by

J = −
1
N

∑
(x,y)∈D

C∑
k=1

yk lna (L)k , (5.1)

where a (L)k is the activation of neuron k on the last layer L when the net-
work receives x as input, and N is the number of observations[11]. Note
that −yk lna (L)k → ∞ when yk = 1 and a (L)k → 0, which characterizes a
prediction error.

The process of minimizing J with respect to θ is called training. As
J is di�erentiable with respect to every network parameter, minimiza-
tion can be attempted by gradient descent. This technique iteratively
updates θ by the rule θ ← θ − η∇θ J , where η is the learning rate.
In our work, we use (momentum-based) mini-batch stochastic gradient
descent [12]. This technique partitions the dataset D into batches, and
approximates ∇θ J by using a single batch for each parameter update.
After each batch is considered, training has completed one epoch. The
hyperparameters (batch size, learning rate, number of layers, number
of neurons per layer, etc) are not a�ected by training, and are usually
chosen using previous experience and cross-validation.
Dimensionality reduction will be employed to create a projec-
tion P = p1, . . . , pN , with pi ∈ R2, from a layer-l activation set
A = a(l)1 , . . . , a

(l)
N , where each a(l)i ∈ RN (l) is the layer-l activation vector

corresponding to input observation xi ∈ RD (for a given ANN). Such
a projection P attempts to preserve the high-dimensional structure of
the activation set A, which is composed of learned representations.

5.2 related work

Machine learning experts have developed many strategies to design
and improve ANNs, since the success of these models is highly impacted
by the choice of preprocessing steps and several (interacting) hyperpa-
rameters. During training, a common approach is comparing model ac-
curacy on a validation set with accuracy on a training set [122]. This
helps diagnosing over�tting (low validation accuracy when compared
to training accuracy) and under�tting (low accuracy in both cases).

Manual choice of hyperparameters requires signi�cant expertise
and e�ort, and comprehensive guides have been written on the sub-
ject [12, 116]. The high dimensionality of the data and large number of
parameters make ANNs hard to interpret, and make improving mod-
els a challenging task. Although automatic hyperparameter search is
possible [141], it is generally (computationally) expensive.

The recti�ed linear activation function is not di�erentiable at 0, but that is usually irrele-
vant in practice.

110

5.3 experimental protocol

Visual analytics and information visualization systems have been
developed to inspect ANNs, since visual feedback is considered highly
valuable by practitioners. For instance, Zeiler and Fergus [161] show
how insight gained from visualizing ANNs has enabled them to outper-
form the state-of-the-art (at the time) on an major image classi�cation
benchmark. Their work aims to reconstruct an input image (observa-
tion) given a particular output channel of a convolutional layer (also
called a feature map).

Reconstruction from activations is also investigated by Mahendran
and Vedaldi [101]. Erhan et al. [38] search, through optimization, inputs
that cause high activations in particular neurons, with the goal of un-
derstanding their roles.

Yosinski et al. [159] visualize feature maps from CNNs trained for im-
age recognition as they receive an input video stream, which enables
the visual search for �lters that detect a particular object. They also
extend the work of Erhan et al. [38], showing how regularization tech-
niques can be used to generate more interpretable images that cause
high activations in a neuron. As will become clear, our approach is com-
plementary to these visualizations.
Dimensionality reduction has been previously applied to ANN visu-
alization, due to its scalability in number of dimensions and observa-
tions. For instance, Erhan et al. [39] use projections of learning trajec-
tories to study the e�ects of unsupervised pre-training. Each point in
such a trajectory corresponds to the concatenation of output layer acti-
vations for a whole dataset at a given training stage. Closer to our work,
projections of hidden layer activations, the subject of Sec. 5.4, have been
used as illustrative evidence of model e�cacy [35, 63, 108, 109, 142].
Aubry and Russell [6] visualize hidden layer activations using PCA,
aiming to understand their invariance with respect to several factors
present in real and synthetic images.

In contrast to these works, our work is the �rst to present a detailed
analysis of the insights on classi�cation systems obtainable by projec-
tions of hidden layer activations.

Separately, in Sec. 5.5, we use projections to explore relationships
between neurons in a hidden layer. This visualization approach is com-
pletely new in the context of ANNs, but related to previous work on
feature space exploration that we already discussed in the previous
chapter [149, 160]. However, in contrast to such previous work, which
explores relationships between input features (dimensions) to a pattern
classi�cation technique, we visualize relationships between features
(neuron activations) learned by such a technique.

5.3 experimental protocol

This section details the protocol followed by the experiments that eval-
uate our visualization approach, which is based on hidden layer acti-

111

visualizing artificial neural networks using projections

vations extracted from a network trained for a given dataset. Our ap-
proach is divided into two parts: creating projections from these activa-
tions (T1, Sec. 5.4), and depicting the relationships between the neurons
that originate these activations (T2, Sec. 5.5).
Datasets include three well-known image classi�cation benchmarks:
MNIST [87], SVHN [113] and CIFAR-10 [84]. MNIST has 50×103 train-
ing images, 10×103 validation images, and 10×103 test images (28 ×
28 grayscale images of handwritten digits). SVHN has 63.2×103 train-
ing images, 10×103 validation images, and 26×103 test images (32 × 32
color images of house number digits). CIFAR-10 has 30×103 training
images, 10×103 validation images and 10×103 test images (32× 32 color
photographs in ten object classes). Although the images in SVHN and
CIFAR-10 are quite small, which allows fast experimentation, these are
not toy datasets, and are widely used to evaluate state-of-the-art ANNs
[88, 154].
Neural networks of two types are considered, as follows:

1. Multilayer perceptron (MLP): 3072 (784, for MNIST) input neu-
rons, followed by four recti�ed linear hidden layers of 1000 neu-
rons each. The output layer is softmax with 10 neurons. Dropout
[142] is applied from the �rst hidden layer, growing from 0.2 to
0.5 in steps of 0.1 per layer.

2. Convolutional neural network (CNN): 32×32×3 input image (28×
28×1, for MNIST), followed by a convolutional layer with 32 3×3×
3 (or 3×3×1) �lters, a convolutional layer with 32 3×3×32 �lters, a
2×2 max-pooling layer (dropout 0.25), a convolutional layer with
64 3× 3× 32 �lters, a convolutional layer with 64 3× 3× 64 �lters,
a 2 × 2 max-pooling layer (dropout 0.25), a fully connected layer
with 4096 (or 3136) neurons (dropout 0.5), a fully connected layer
with 512 neurons, and a softmax output layer with 10 neurons.
All convolutional and fully connected layers (except the output)
are recti�ed linear.

While larger models (in number of layers and parameters) are used
for certain di�cult classi�cation tasks, the architectures sketched above
are fully realistic, typical for image classi�cation tasks, and su�ciently
complex to warrant exploration.
Training is performed by momentum-based mini-batch stochastic gra-
dient descent [12]. For MLPs, the batch size is 16, learning rate is 0.01,
momentum coe�cient is 0.9, and learning decay is 10−9. For CNNs, the
batch size is 32, learning rate is 0.01, momentum coe�cient is 0.9, and
learning decay is 10−6. Initial weights for a neuron in layer l are sam-
pled from an uniform distribution on [−s, s], where s = [6/(N (l−1) +

N (l+1))]1/2, and biases start at 0. We manually chose these hyperparam-
eters, together with the aforementioned architectures, based on cross-
validation using the pre-de�ned validation sets. After the hyperparame-

112

5.3 experimental protocol

ters were chosen, we trained the models again using all data except the
pre-de�ned test sets.

Table 4 summarizes the test set accuracy (AC, fraction of correctly
classi�ed observations) of our networks, and compares it to state-of-
the-art networks, some of which also use preprocessing and data aug-
mentation. Clearly, our networks achieve good accuracy on benchmark
datasets. As such, they should be seen as realistic from an application
perspective.

Table 4: Test set accuracies for our two architectures and three datasets.

Dataset/Model MLP CNN State of the art
MNIST 98.52% 99.62% 99.79% [154]
SVHN 77.38% 93.76% 98.08% [88]

CIFAR-10 52.91% 79.19% 91.78% [88]

Activations for a given layer, the subject of our analysis, are extracted
for a random subset of 2000 observations from the test sets, strictly to
facilitate visual presentation. This subset is always the same for a given
dataset. In two cases, we also extract activations from a random subset
of a training set (Sec. 5.4.2). For CNNs, we only extract activations from
fully connected layers.
Projections are created using a fast (approximate) implementation of t-
distributed stochastic neighbor embedding (t-SNE, Sec. 2.6.4) [150], us-
ing default recommended parameters. We chose this technique based
on its widespread popularity, and proven ability to preserve neighbor-
hoods and clusters in projections [99].

As in the previous chapter, we visualize projections as scatterplots,
with points colored to show class assignment. We measure projection
quality by the neighborhood hit (NH), which indicates how well classes
are visually separated [119]. For a given k (in our work, k = 6), the
NH for a point pi is the ratio of its k-nearest neighbors that belong
to the same class as its corresponding observation xi . The NH for a
whole projection is the average NH over its points. When displaying
classi�cation results for a test set in a projection, we use triangle glyphs
to show misclassi�ed observations (points), colored by their (incorrect)
classi�cations (e.g., inset in Fig. 5.3b).
Implementation of all our work is based on Python, Keras, Theano [9],
NumPy [152], and scikit-learn [121]. Our visual exploration was con-
ducted using the feature space exploration tool presented in the pre-
vious chapter.

Available in http://www.cs.rug.nl/svcg/People/PauloEduardoRauber-featured.

113

http://www.cs.rug.nl/svcg/People/PauloEduardoRauber-featured

visualizing artificial neural networks using projections

5.4 t1: relationships between activations

This section presents the results of the experiments conducted to eval-
uate our proposed visualization of relationships between learned rep-
resentations of observations (T1). For brevity, we focus on the most
distinctive results and insights obtained for each dataset (Secs. 5.4.1 -
5.4.3). In Sec. 5.4.4, we present a novel visualization of the evolution of
learned representations.

5.4.1 MNIST: exploring e�ects of training

The MNIST dataset is known as a relatively easy classi�cation bench-
mark. This is con�rmed by the clear visual separation between classes
in the (raw data) projection of a subset of 2000 test observations (784-
dimensional vectors), shown in Fig. 5.2. Points are colored according to
their classes.

Figure 5.2: Projection of observations, MNIST test subset (NH: 89.12%).

What untrained ANNs see: As already mentioned, we aim to under-
stand the relationships between the alternative representations learned
by ANNs trained for pattern classi�cation. Firstly, consider an untrained
MLP, whose parameters are randomly initialized according to Sec. 5.1.
It is reasonable to hypothesize that a projection of the hidden layer acti-
vations of this MLP would have a signi�cantly poorer visual separation
between classes than the one shown in the projection in Fig. 5.2.

In Fig. 5.3a, we show the projection of the last MLP hidden layer ac-
tivations before training, for the same test subset used in Fig. 5.2. The
hypothesis outlined in the previous paragraph was contradicted, since

114

5.4 t1: relationships between activations

both projections (Figs. 5.2 and 5.3a) show similar visual separation be-
tween classes. The good separation in Fig. 5.3a cannot be due to class
information, since class labels are not used by the dimensionality reduc-
tion technique. Thus, there must be a clear structure in the hidden layer
representations before training, which leads to the reasonably good NH
of 83.78%. We are unaware of previous visualizations showing this qual-
itative insight, which could be used to compare di�erent ANN initial-
ization strategies. While it would be possible to use the hidden layer
activations to train a separate learning algorithm and evaluate its accu-
racy on a test set, such approach would be more time-consuming, and
would not convey the structure of the data in an easily interpretable
manner. For instance, see the relationship between the visual clusters
that correspond to (visually similar) classes 4 and 9 in Fig. 5.3a.
Training e�ects: A second natural hypothesis is that visual separa-
tion between classes would become better after training. This is related
to the commonly-held view that ANNs learn to detect higher-level fea-
tures that are useful for class discrimination [11]. To study this hypoth-
esis, consider the projection of the last MLP hidden layer activations
after 100 training epochs (Fig. 5.3b). Compared to Figs. 5.2 and 5.3a, we
see a dramatic improvement in the visual separation between classes.
Hence, the learning process de�nitely arrived at an alternative repre-
sentation of the data that captures class structure, which is re�ected by
the projection.
Understanding misclassi�cations: Figure 5.3b shows several visual
outliers, i.e., points whose neighbors belong to a di�erent class. Assum-
ing the projection preserves the high-dimensional data structure, we
could suspect that such outliers would be misclassi�ed by the ANN. To
check this, we color all points by their classes, and mark misclassi�ca-
tions by triangle glyphs. The inset in Fig. 5.3b shows several such mis-
classi�cations. When inspected, the visual outliers often correspond to
observations that even humans would recognize as hard cases. For in-
stance, Fig. 5.3b shows how an image of the digit 3 is (understandably)
mistaken for the digit 5, and placed near the visual cluster correspond-
ing to digit 5. This example shows that, despite the fact that projections
may sometimes not fully preserve the data structure, as we discuss in
Sec. 5.6, they are often predictive about class assignment. In other words,
the similarities between hidden layer activations (shown by the projec-
tion) are a good predictor of the �nal class assignment by the ANN. This
type of feedback is particularly useful when projections are combined
with background knowledge and manual inspection of ANN inputs, as
we continue to show in the next section.

115

visualizing artificial neural networks using projections

a)

b)

tr
a
in

in
g

class: 5
prediction: 5

class: 5
prediction: 5

class: 3
prediction: 5

Figure 5.3: Projection of the last MLP hidden layer activations, MNIST test sub-
set. a) Before training (NH: 83.78%). b) After training (NH: 98.36%,
AC: 99.15%). Inset shows classi�cation of visual outliers.

5.4.2 SVHN: interpreting visual clusters

This section presents a compelling case for the visualization of learned
representations in a second dataset (SVHN). Visualization provides a
particular qualitative insight that is not easily available by other means.

The SVHN dataset is much more challenging for classi�cation than
MNIST. This is re�ected, before training, in the visual separation be-
tween classes in the projection of the last hidden layer activations of an
MLP, which is considerably poorer for SVHN (Fig. 5.4) than for MNIST
(Fig. 5.3a). This is also con�rmed by the corresponding NHs. Just as for

116

5.4 t1: relationships between activations

MNIST, the visual separation is signi�cantly improved after training, as
shown by Fig. 5.5b.

Figure 5.4: Projection of the last MLP hidden layer activations before training,
SVHN test subset (NH: 20.94%). Poor class separation is visible.

Comparing di�erent layers:The projections presented so far showed
activations of last MLP hidden layers. However, our MLP architecture
has four hidden layers. It is often hypothesized (but not usually sup-
ported by evidence) that a properly trained deep ANN has activations
at later layers that correspond to discriminative higher-level features
of the original observations [11]. We can verify this by inspecting acti-
vations of earlier layers which, in our case, have the same number of
neurons. Consider the projection of the activations of the �rst MLP hid-
den layer after training (Fig. 5.5a). Visual separation between classes is
clearly inferior to the one shown in the last hidden layer (Fig. 5.5b). We
saw this phenomenon for most of the ANNs trained in our study. This
is a new �nding, which is not documented in the existing literature on
ANNs. Note that there are no easy alternatives to obtain such an in-
sight. For instance, confusion matrices could be used to diagnose the
confusion between classes for a learning algorithm trained on the hid-
den layer activations. However, a confusion matrix would not convey
nearly as much information about the structure of the data as a projec-
tion. Furthermore, a confusion matrix for a 10-class problem (our case)
has 45 independent scalar values (after considering symmetries), which
makes it quite di�cult to inspect.

In comparison to the results obtained with the MLP (AC: 77.38%), the
CNN obtains considerably better classi�cation results on the test set
(AC: 93.76%). Figure 5.6 shows the projection of the last CNN hidden
layer activations after training. Clearly, visual separation and classi�ca-
tion results improved together (cf. Fig. 5.5b), which is another example
of the predictive power of projections.
Improvement based on visual feedback: We now present a partic-
ularly salient example of the value of the insight provided by projec-
tions. In Fig. 5.5b and (most notably) in Fig. 5.6, we notice a very distinc-
tive pattern: each class (color) seems to be split into two visual clusters.
Upon further inspection (brushing points), we found that one of the
same-colored visual clusters corresponds to dark digits on light back-
grounds, and the other to light digits on dark backgrounds (see exam-

117

visualizing artificial neural networks using projections

a)

b)

fo
rw

ar
d

pr
op

ag
at

io
n

Figure 5.5: Projection of the MLP hidden layer activations after training, SVHN
test subset. a) First hidden layer (NH: 52.78%). b) Last hidden layer
(NH: 67%).

ples in Fig. 5.6). We are unaware of previous work that documents such
a remarkable pattern (visual or otherwise) in learned representations
for the SVHN dataset, even though this dataset has been extensively
used to evaluate ANNs in hundreds of publications. This is an example
of how qualitative feedback can be hard to obtain by the typical quanti-
tative approaches used to evaluate ANNs.

Since the projection in Fig. 5.6 suggests that, for each class, there are
two kinds of images that have dissimilar internal representations, we
naturally suppose that removing such (apparently unnecessary) vari-
ability in the input images would improve classi�cation e�cacy. To
evaluate this, we preprocessed the images in SVHN in a simple man-
ner: we apply the Sobel operator, after a small Gaussian blur, to approx-
imate the gradient magnitude of the grayscale counterpart to each im-

118

5.4 t1: relationships between activations

Figure 5.6: Projection of the last CNN hidden layer activations after training,
SVHN test subset (NH: 85.02%). Insets show example observations
(images) from the visual clusters.

age. This yields grayscale images that are bright on the edges between
background and foreground, and avoids the task of detecting if a digit
is light or dark, which is not trivial given the high variability of the im-
ages. Next, we use the experimental protocol in Sec. 5.3 to classify the
preprocessed test set. We obtain an increase in accuracy of 3.96% (1030
test observations) with the MLP, and 0.65% (169 test observations) with
the CNN. While the CNN gain is small, we stress that it was obtained
by exactly the same network architecture that was used for the original
images. In contrast, the MLP gain is quite signi�cant. The di�erence in
gains for the two architectures can be explained by two facts. Firstly,
it is easier to obtain gains when a model is further away from ideal
performance, as in the MLP case. Secondly, our preprocessing is highly
related to the operation of convolutional layers. This can be su�cient to
enable good generalization in the CNN case, given the large amount of
labeled data available for training. Finally, we also note that, in contrast
to Figs. 5.6 and 5.5b, the corresponding projections of the preprocessed
test subset (omitted for brevity) do not show two distinct visual clus-
ters for each class. The increase in neighborhood hit (MLP 9.06%, CNN
1.43%) for those projections also mimics the increase in accuracy. Over-
all, these facts corroborate our hypothesis about the semantics of the
internal ANN representations.

We note that it is already known in the literature that preprocessing
this dataset (by local contrast normalization) sometimes leads to better
performance [54]. However, this procedure was never justi�ed by the

119

visualizing artificial neural networks using projections

foreground-background insight that we discovered. In the general case,
a practitioner might be unaware of important preprocessing steps for
a particular domain or dataset. In such situations, we claim that pro-
jections can provide highly valuable qualitative information about the
representations learned by ANNs. As we already argued, such feedback
is very hard to obtain by other (non-visual) means.
Explaining misclassi�cations: Consider the cyan point outlined in
Fig. 5.6, which corresponds to digit 9, but is placed near the green clus-
ter corresponding to dark digits 2 on light backgrounds. Notice how
the dark border to the right of the digit 9 could be interpreted as a mal-
formed digit 2. Knowing the semantics behind the green cluster, we can
explain the misclassi�cation more easily. While an experienced practi-
tioner may have guessed why the misclassi�cation occurred without
the visual feedback, the semantics assigned to the visual clusters (found
through visualization) provides extra evidence about the misclassi�ca-
tion. In the general case, misclassi�cation causes may be less obvious,
and the visualization of learned representations becomes even more use-
ful. Understanding the causes of misclassi�cations is useful both for im-
proving models and for deciding when a model has achieved satisfac-
tory performance.
Assessing training: All the projections presented so far were created
from activations from a subset of a test set. However, insight can also
be gained by inspecting projections of a subset of a training set. For
training data, it is natural to expect that the visual separation between
classes will be even better than in test data. To verify this, we compare
the projection of a subset of the SVHN training set activations in the last
MLP hidden layer (Fig. 5.7) with that of the corresponding test set (Fig.
5.5b). Indeed, we see a better visual class separation in the former, which
is also re�ected by a better NH (71.43% vs 67%). Comparing the two
visual separations (training vs test data) supports several assessments.
Firstly, a badly separated training set projection may indicate a poorly
trained network, which has low chances of performing well on test data.
A very well separated training set projection and a poorly separated test
set projection may indicate poor generalization (caused, for example,
by over�tting). Such assessments can also be restricted to parts of a
projection. In Fig. 5.7, for example, we see bad visual separation in the
center. This is also the area where most classi�cation errors (marked by
triangles) are found.

In the CNN case, similar results are obtained by comparing Fig. 5.8
(projection of last CNN hidden layer activations after training, for a
training subset) with Fig. 5.6 (corresponding projection for the test sub-
set). Comparing projections from di�erent architectures is also insight-
ful: in our case, we see that the CNN performs considerably better on the
training set than the MLP, which matches the perceived visual separa-
tion and NH for Figs. 5.7 and 5.8. In fact, the CNN yields only two train-
ing set misclassi�cations. By brushing them in the projection (Fig. 5.8),

120

5.4 t1: relationships between activations

Figure 5.7: Projection of last MLP hidden layer activations after training, SVHN
training subset (NH: 71.43%, AC: 81.65%).

we discover that one of them is incorrectly labeled (bottom right inset
in Fig. 5.8).
Discovering potential over�tting: Figure 5.8 provides a �nal interest-
ing insight. Consider the two gray points placed near the orange visual
cluster (top left). Although the CNN assigns the correct class to these
points (digit 7), the representation of the last hidden layer places them
near orange points (digit 1). This appears to be due to the fact that the
two images of the digit 7 actually resemble images of the digit 1. The
placement of these two points in the projection can be a sign that the
last layer learned to work around (over�t) the internal representation
(recall that we are looking at training data). This could mean that the
network will not work well in similar cases, classifying digits 7 as dig-
its 1. Naturally, care must be taken when drawing conclusions from the
placement of small sets of points, as we discuss in Sec. 5.6.

5.4.3 CIFAR-10: interpreting confusion zones

The CIFAR-10 dataset is considerably more challenging for classi�ca-
tion than the previous two (Tab. 4). This dataset provides another ex-
ample where poor visual separation between classes predicts low clas-
si�cation accuracy. The projection of the last CNN hidden layer activa-
tions after training shows signi�cant overlap between visual clusters
(Fig. 5.9), matching the somewhat low classi�cation accuracy (78.7%).
Similarly to Fig. 5.7, the area with poorest separation between classes,
or confusion zone, predicts well where most misclassi�cations occur (tri-
angles in the center of Fig. 5.9).

121

visualizing artificial neural networks using projections

Figure 5.8: Projection of last CNN hidden layer activations after training, SVHN
training subset (NH: 93.83%, AC: 99.9%).

As in Sec. 5.4.2, inspecting the visual outliers is also interesting. Con-
sider the outlier in the middle of the large cyan visual cluster in Fig.
5.9. Since the class in cyan corresponds to truck images, and the outlier
observation (automobile) looks very similar to members of that class, it
is not surprising that the corresponding point becomes a visual outlier
given the learned representation. Many other examples like this can be
found in the projection.

5.4.4 Evolution of learned representations

The previous sections presented projections of learned representations
(activations) for combinations of datasets, training stages (epochs), and
layers. However, a single projection does not show how these repre-
sentations evolve. The goal of this section is to introduce a compact vi-
sualization that summarizes two dimensions of evolution: inter-epoch
and inter-layer. Given an observation and a layer, inter-epoch evolu-
tion refers to the changes to the activations of that layer that are con-
sequence of learning (parameter changes as epochs progress). Given an
observation and an epoch, inter-layer evolution refers to the changes in
internal representation as the observation “�ows” through the layers of
the network.

122

5.4 t1: relationships between activations

Figure 5.9: Projection of last CNN hidden layer activations after training,CIFAR-
10 test subset (NH: 53.43%, AC: 78.7%).

Let A[1], . . . ,A[T] be a sequence of sets of (high-dimensional) acti-
vations, where each activation a[t] ∈ A[t] originates from the same
observation as a single activation a[t + 1] ∈ A[t + 1]. One way to visu-
alize the evolution in such sets of activations is dimensionality reduc-
tion, applied in such a way that changes in the resulting projections
will re�ect changes in the corresponding high-dimensional data. This
can be done by creating a projection P[t] for each activation set A[t].
When doing this, it is essential to eliminate variability between projec-
tions that does not re�ect changes in the high-dimensional data. The
(arguably) simplest way to do this is to compute P[t] independently
for each t , and use point-cloud registration [55] to align the resulting
projections. However, dimensionality reduction techniques, including
t-SNE, often yield large changes in global visual cluster placement for
small data changes, which registration cannot eliminate [49]. For itera-
tive techniques such as t-SNE, another intuitive strategy is to initialize
the positioning in P[t + 1] with the previously computed P[t]. We veri-
�ed that this is a poor alternative, as it signi�cantly biases the sequence
of projections to show the evolution due to initialization in a (likely)
better state with respect to the optimization goal.

In this section, we employed a simple strategy: computing a (ran-
domly initialized) projection P of A[1] using t-SNE, and using P to
initialize each P[t]. In Chapter 6, we propose a new technique to over-
come the issues with this and the previous strategies, which may be
combined with the visualization approach that we propose next.

123

visualizing artificial neural networks using projections

The resulting sequence of projections can be visualized in several
ways. We discard animation, since it is hard to track the motion of a
large number of colored points over many frames. An alternative is to
create a 2D trail for each sequence pi [1], . . . , pi [T] of corresponding
points. However, directly drawing these trails causes a large amount of
clutter and occlusion. We address this by using trail bundling. This is
analogous to earlier applications of bundling to visualize vehicle and
eye-tracking trails [71]. We employ a recent high-performance GPU-
based bundling algorithm [162], which allows a high degree of control
in real time. The following examples show how the resulting bundled
images can be explored.

Inter-layer evolution: Figure 5.10 shows the inter-layer evolution of a
MNIST test subset (after training). The bundled image summarizes a se-
quence of four projections, one per hidden layer, shown as thumbnails.
Trail hues encode classes, and edge brightness encodes layer number
(depth). Thus, the brightness gradient shows how activation data “�ow”
through the four network layers. The bundle shapes show that the vi-
sual clusters are quite stable over all layers. Hence, the network arrives
at a reasonably good separation between classes already at early layers.
The gradients also show that some visual clusters become more com-
pact in later layers (e.g., tight bright area in the green cluster, whose
evolution is indicated by the gray arrows in the �gure), and that some
clusters distance themselves from the others (e.g., brightness pattern
in the purple cluster). Thus, later network layers strengthen the class
coherence and separation achieved by the �rst layer. We also see that
there are only a few visual outliers (stray trails) that connect distinct
visual clusters. Therefore, only few observations change clusters as the
activation data �ow through the network. In summary, we infer that
the network layers after layer 1 mainly re�ne cluster coherence.
Inter-epoch evolution: We could employ the same ideas to visualize
inter-epoch evolution. However, our results (omitted for brevity) in this
case show that the images are signi�cantly harder to interpret. This
is due to a combination of large changes in the the very �rst epochs,
high intra-visual-cluster variance between epochs, and a much larger
number of frames (typically hundreds) to be summarized.

For this reason, we employed a di�erent strategy to visualize inter-
epoch evolution in this case. Consider again the sequenceA[1], . . . ,A[T]
of activation sets. For inter-epoch evolution, A[t] ⊂ Rk for a �xed k ,
for all t . Hence, we can create a projection for the set

⋃
t A[t], which

contains activations for all epochs. As we compute a single projection,
there is no spurious inter-frame variation. However, as we will discuss
in Chapter 6, this strategy also has signi�cant drawbacks.

Figure 5.11 shows the inter-epoch evolution for the last CNN hid-
den layer activations using this strategy, from epochs 0 to 100, in steps
of 20 (12 × 103 points in total). Hues indicate class, and brighter edge

124

5.4 t1: relationships between activations

layer 1 layer 4

Figure 5.10: Inter-layer evolution, four MLP hidden layers after training, MNIST
test subset. Brighter trail parts show later layers.

fragments correspond to later epochs. The thumbnails in Fig. 5.11 show
points from three selected epochs. It is interesting to note how the di-
mensionality reduction technique placed the points corresponding to
earlier epochs (darker) in the center of the projection, considering that
it does not explicitly receive this information. This phenomenon also
happens for SVHN and CIFAR-10.

training epochs

Figure 5.11: Inter-epoch evolution, last CNN hidden layer, epochs 0-100, in steps
of 20, MNIST test subset. Brighter trail parts show later epochs.

Finally, we note that our choice of bundling algorithm provides a high
degree of control over the level of trail simpli�cation [162], which leads
to a visualization that can also be explored in di�erent levels of abstrac-
tion.

125

visualizing artificial neural networks using projections

5.5 t2: relationships between neurons

The projections shown in Sec. 5.4 help understanding the relationships
between the learned representations of observations. However, they do
not represent relationships between the neurons in a given layer, or how
neurons interact to ful�ll their discriminative tasks. For this, we com-
plement the activation projections shown so far by neuron projections. In
a neuron projection, each point depicts a neuron. Points are placed in
2D based on the similarity between neurons. To our knowledge, this is
the �rst time that arti�cial neurons are visualized this way.

As in the previous chapter, we de�ne the dissimilarity di, j between
neurons i and j as di, j = 1 − |ri, j |, where ri, j is the (empirical) Pearson
correlation coe�cient between neurons i and j on a given set of layer-l
activations (recall that each element of an activation vector is a neuron
output). This metric captures both positive and negative linear correla-
tions between pairs of neurons. From the matrix of pairwise dissimilari-
ties, we compute a projection using (absolute metric) multidimensional
scaling (MDS, Sec. 2.6.3) [17]. As we con�rmed through preliminary ex-
periments, MDS presents more coherent relationships between neurons
that are discriminative for a particular class, which is important for a
neuron projection (see Secs. 5.5.1 - 5.5.2).

5.5.1 MNIST dataset

We use the MNIST dataset to introduce neuron projections. Figure 5.12c
shows the activation projection and Figure 5.12d the corresponding neu-
ron projection for the last CNN hidden layer activations, after training.
Ignoring the colors for now, we see no clear pattern in the neuron pro-
jection (Fig. 5.12d), except for some ill-de�ned visual clusters. We next
color each point (neuron) based on its ability to discriminate between
class 8 (marked yellow in Fig. 5.12c) and all other classes, computed
by a standard feature selection technique, using extremely randomized
trees [51] (Sec. 2.4.4). A very clear pattern emerges: all discriminative
neurons for class 8 are placed near each other in the neuron projection.
In contrast, consider the corresponding activation/neuron projections
for the same hidden layer before training (Figs. 5.12a,b): the discrimina-
tive neurons for class 8 are scattered over the neuron projection. This
shows that training creates sets of highly related neurons, which work
together in the classi�cation task. An analogous phenomenon can be
observed for all other classes (omitted for brevity).

We can use feedback about the relationships between neurons and
classes to diagnose the absence of specialization for a particular class
in a given layer. As a related example, consider dropout, a widespread
heuristic for training deep ANNs [142]. Dropout is often justi�ed by
its hypothesized capacity to inhibit co-adaptation of arti�cial neurons
[142]. We believe our approach could be applied to qualitatively investi-

126

5.5 t2: relationships between neurons

gate and compare this and similar heuristics (e.g., DropConnect [154]),
which still are poorly understood [154].

Figure 5.12: Activation and neuron projections of last CNN hidden layer acti-
vations before and after training, MNIST test subset. Neuron pro-
jection colors show the neurons’ power to discriminate class 8 vs
rest.

5.5.2 SVHN dataset

Many feature selection methods provide a score that may be employed
to measure the importance of a given neuron (feature) to discriminate
between a given class and other classes (see Sec. 2.4). We show next how
this information can be used to depict how each neuron contributes to
class discrimination.

For a given feature scoring technique (extremely randomized trees,
in our example), each neuron j receives a normalized score sc, j ∈ [0, 1],
which measures the power of neuron j, relative to other neurons, to
discriminate between class c and all other classes. We associate neuron
j to the class c∗j = arg maxc ′ sc ′, j . We depict this by coloring point j with
the hue associated to class c∗j , and with a saturation given by sc∗j , j . We
call this depiction a discriminative neuron map. Notice that the score sc, j
is normalized over neurons for each class, so a highly saturated point
in the visualization may have a low absolute discriminative power.

Figure 5.13 shows the discriminative neuron map for the SVHN test
subset, last hidden layer activations, after training. The presence of com-
pact visual clusters shows how the entire set of neurons can be (al-

127

visualizing artificial neural networks using projections

most) partitioned into groups with related discriminative roles (spe-
cializations), even though the neuron projection is created without any
class information.

Figure 5.13: Discriminative neuron map of last CNN hidden layer activations
after training, SVHN test subset.

The activation and neuron projections can be combined to elucidate
the role of particular neurons. Consider neuron 460, which is highly as-
sociated to class 3 according to Fig. 5.13. The activation of this neuron is
encoded using colors in Fig. 5.14, for all inputs in the test subset. Accord-
ing to that image, neuron 460 is responsible for �nding one of the two
red visual clusters in the projection (see bottom left inset in Fig. 5.14),
which corresponds to images of the digit 3 on a light background (as we
discovered through visualization in Sec. 5.4.2). It is also interesting to
note that an observation that has a high activation for that neuron, and
belongs to another visual cluster, resembles a digit 3 upon closer inspec-
tion (digit 5 on a light background, top left inset in Fig. 5.14). Obtaining
these informations by typical approaches employed in machine learn-
ing would be signi�cantly more di�cult and time-consuming, which is
key to the importance of our visual approach. Finally, as already men-
tioned in Sec. 5.1, understanding the role of particular neurons in ANNs
is considered a very important problem, for which the discriminative
neuron map is a novel approach.

5.6 discussion

In this section, we discuss several important aspects of our proposed vi-
sualizations and the experimental analysis conducted to evaluate them.

128

5.6 discussion

Figure 5.14: Activation projection of the last CNN hidden layer after training,
SVHN test subset. Color shows the activation of neuron 460, highly
associated to class 3 (see also Fig. 5.13).

Scalability: Although dimensionality reduction is among the most scal-
able methods for high-dimensional data visualization, it still has some
issues. Firstly, visual clutter occurs when visualizing a large number of
activations or neurons. Secondly, considering the activation projections,
although our particular choice of technique (Barnes-Hut t-SNE) is com-
putationally scalable, it still requires approx. 10 minutes to compute a
projection containing 70×103 50-dimensional observations [150]. For-
tunately, preliminary experiments with dimensionality reduction tech-
niques that are able to deal with hundreds of thousands of observa-
tions at interactive paces [75, 119] were also promising. Thirdly, we use
categorical color-coding to show class information. This creates well-
known clutter and color-distinguishing challenges in scatterplot visual-
ization when the number of classes is large.
Techniques: Our choice of (Barnes-Hut) t-SNE is justi�ed by its
widespread popularity and well-known ability to preserve clusters
and neighborhoods in projections [99]. Although the latter property is
very important to understand relationships between learned represen-
tations, our proposal is not highly coupled to t-SNE. Similarly, neuron
projections are not coupled to absolute metric MDS. In both cases, other
dimensionality reduction techniques can be used, provided that they
preserve neighborhoods and distances well, respectively.
Coverage: As an experimental study that involves many free parame-
ters, our conclusions are limited to the datasets and networks that we
presented. However, our �ndings for all datasets and networks were

129

visualizing artificial neural networks using projections

consistent. In particular, there were no cases where projections would
not provide any useful feedback. Additionally, the extent of our vali-
dation (i.e., experimental protocol, number of datasets) is in line with
comparable works in visual analytics and machine learning.
Validity: We employed good practices to train arti�cial neural net-
works in well-known benchmark datasets, and carefully detailed our
experimental protocol to maximize reproducibility.

It is extremely important to address a speci�c threat to the validity
of our approach: the fact that dimensionality reduction techniques pro-
vide few quality guarantees, and may introduce misleading visual arti-
facts [103]. For instance, di�erent initializations of t-SNE may or may
not yield the visual outliers presented in Sec. 5.4. To solve this issue,
users should primarily evaluate the quality of a given projection using
existing metrics, such as those presented in [7, 103], as already men-
tioned in the previous chapter. Such metrics support both global assess-
ment (overall quality of an entire projection) and local assessment (i.e.,
whether a subset of points is placed well).

If a projection (or some of its parts) has poor quality, it should be dis-
carded from further use. Conversely, if a projection (or some of its parts)
has high quality, the patterns it shows are actually present in the data,
an can be relied upon. As a side note, it should be clear that most inter-
esting phenomena observed in the projections in Secs. 5.4 and 5.5 would
be extremely unlikely artifacts (e.g., visual cluster separation, partition
of visual clusters between light/dark digits on dark/light backgrounds,
and partitioning of neurons into specialties). Finally, we note that the
feedback given by (activation) projections for classi�cation problems is,
in a sense, asymmetric: clear visual separation between classes surely
implies an easy classi�cation task, whereas unclear separation does not
necessarily imply a di�cult task.

5.7 conclusion

In this chapter, we have shown how dimensionality reduction can be
used to visualize the relationships between learned representations (T1)
and between neurons (T2) in arti�cial neural networks. Concerning
the �rst task, our visualizations support the identi�cation of confusion
zones, outliers, and clusters in the internal representations computed
by such networks. Separately, we also show how to visually track inter-
layer and inter-epoch evolution of learned representations. Concerning
the second task, we enable the inspection of relationships between neu-
rons and classes (specialization), and similarity between neurons. In ex-
periments on traditional benchmark datasets, we have shown that both
our contributions can provide valuable visual feedback for network de-
signers. This feedback may con�rm the known, reveal the unknown,
and prompt improvements along the classi�cation pipeline, as we have
shown through concrete examples.

130

5.7 conclusion

There are several possibilities for future work. They include visual-
izing representations learned by recurrent networks, which currently
achieve state-of-the-art results in many sequence-related tasks [57, 58].
The sequential nature of these networks introduces yet another chal-
lenge for visualization. Our approach for evolution visualization would
also bene�t from dimensionality reduction techniques designed speci�-
cally for time-dependent datasets. We address precisely this issue in the
next chapter.

131

6V I S UA L I Z I N G T I M E - D E P E N D E N T D ATA U S I N G
P R O J E C T I O N S

In the previous chapter, we attempted to visualize evolving (in a broad
sense, time-dependent) high-dimensional data using a standard dimen-
sionality reduction technique. In this chapter, we will discuss the draw-
backs of this approach in more detail, and propose an alternative.

Time-oriented data visualization is a widely researched subject. Ac-
cording to Aigner et al. [1], current techniques can be categorized
as abstract or spatial, univariate or multivariate, linear or cyclic, in-
stantaneous or interval-based, static or dynamic, and two or three-
dimensional. Our work is concerned with abstract, multivariate, and
instantaneous time-oriented visualization.

We de�ne a time-dependent dataset as a sequence of datasets cap-
tured at particular time steps. In such a sequence, each dataset is a se-
quence of observations, and each observation has a corresponding ob-
servation across time steps. In simple terms, each observation evolves
with time (or any other discrete parameter).

Consider the task of visualizing a time-dependent dataset. If a dimen-
sionality reduction (DR) technique is applied independently for each
time step, the resulting sequence of projections may present variabil-
ity that does not re�ect signi�cant changes in the structure of the data.
We refer to this issue as temporal incoherence, which signi�cantly im-
pairs the visualization of temporal trends. In this chapter, we will show
that this issue a�ects t-SNE [99], a technique whose importance was
already established in the previous chapters. Furthermore, temporal in-
coherence will a�ect any DR technique that is sensitive to relatively
small changes in their inputs [49].

In this context, we also propose dynamic t-SNE: an adaptation of t-
SNE that allows a controllable trade-o� between temporal coherence
and spatial coherence (de�ned as preservation of structure at a par-
ticular time step). Previous work on this trade-o� has been restricted
to the context of dynamic graph drawing [92, 158], even though there
are many examples of time-dependent high-dimensional data visualiza-
tions based on DR [3, 13, 74]. As will become clear, our approach can be
easily extended to other optimization-based DR techniques.

This chapter is organized as follows. Section 6.1 brie�y reviews our
notation and t-SNE. Section 6.2 explains the necessity for a controllable
bias towards temporal coherence, and presents our proposed solution.

This chapter is based on the following publication:
P. E. Rauber, A. X. Falcão, and A. C. Telea. Visualizing time-dependent data using dynamic
t-SNE. In EuroVis Short Papers, 2016.

133

visualizing time-dependent data using projections

Section 6.3 presents a preliminary evaluation of this proposal. Finally,
Section 6.4 summarizes our contributions and suggests future work.

6.1 t-sne

A dataset D = x1, . . . , xN is a sequence of observations, which are D-
dimensional real vectors. The goal of t-SNE is to compute a sequence
of points (projection) P = p1, . . . , pN where the neighborhoods from D
are preserved, considering that each pi ∈ Rd corresponds to xi ∈ RD .
Typically, d = 2 and D � d .

T-SNE aims at minimizing a particular cost C with respect to P . For
our purposes, it su�ces to note that C heavily penalizes placing neigh-
bors in D far apart in P . We refer to Sec. 2.6.4 for more details.

The cost C is usually minimized with respect to P by (momentum-
based) gradient descent: from an arbitrary initial P , for a number of
iterations, each pi ∈ P is moved in the direction −∇piC .

As we explained in Sec. 2.6.4, the gradient ∇piC of C with respect to
a point pi ∈ P can be interpreted as a linear combination of vectors
pointing in the direction pi − pj , for every j. Each vector pi − pj is
also weighted by whether pj should be moved closer to pi to preserve
neighborhoods from D, and by whether pj is currently close to pi .

6.2 dynamic t-sne

Consider the task of creating a sequence of projections P[1], . . . ,P[T]
for a (sequence of datasets) time-dependent dataset D[1], . . . ,D[T],
where each xi [t] ∈ D[t] corresponds to xi [t + 1] ∈ D[t + 1]. Although
we will say that the sequence of datasets represents a time-dependent
process, this task is meaningful whenever there is correspondence
between observations at di�erent steps.

We will letC[t] denote the usual t-SNE cost for dataset D[t] and pro-
jection P[t], as de�ned in Sec. 2.6.4. It is possible to apply t-SNE in-
dividually for each dataset in a sequence using at least four di�erent
strategies:

1. Initializing P[t] independently and randomly, for all t .

2. Initializing P[t] with the same random sequence, for all t .

3. Initializing P[1] randomly, and P[t +1] with the P[t] that results
from minimizing C[t], for all t > 1, or reversely.

4. Combining datasets from all time steps into a single dataset D,
and computing a single projection P .

However, each of these strategies has signi�cant drawbacks.
Strategies 1 and 2 often result in a sequence of projections with

major changes in positioning of corresponding points in adjacent time

134

6.2 dynamic t-sne

steps (temporal incoherence). This issue cannot be corrected by rigid
transformations (e.g., rotations, translations), is misleading, and makes
tracking the evolution of the data more challenging (see Sec. 6.3.1).
Strategy 3 is viable in some cases. However, it lacks a mechanism

to enforce temporal coherence after initialization. At the other extreme,
the initial bias may be di�cult for gradient descent to overcome, be-
cause of the diminished e�ect on ∇pi [t]C[t] of a point that is distant
from pi [t]. These two issues also a�ect the (unlisted) strategy employed
in the previous chapter, where we initialized P[t] with a projection cre-
ated for D[1], for all t (including t = 1).

Furthermore, returning to strategy 3, because t-SNE usually takes
many iterations to converge, the optimization of C[t] starts at a likely
advantaged state when compared to the optimization of C[t ′], for all
t ′ � t . In this case, the evolution due to the optimization process can
be mistaken for temporal evolution.

As an extreme example, consider a particular sequence of 100 iden-
tical datasets, each with 2000 observations in R512. Figure 6.1 shows
some projections that result from strategy 3, which are clearly mislead-
ing. Notice how there is signi�cant apparent evolution between time
steps 1 and 50 (103 and 5×104 gradient descent iterations, respectively).
In fact, the con�guration still changes between 5 × 104 and 105 itera-
tions, albeit more slowly. Running t-SNE for this many iterations (for
each projection) is impractical, and tweaking the parameters to achieve
faster convergence is not trivial. Although it su�ces to realize that there
is no actual temporal evolution in this time-dependent dataset, the ex-
perimental details are described in Sections 6.3 and 6.3.2.

In summary, the major issue with strategy 3 is the lack of control over
how the optimization is biased.

t = 1 t = 25 t = 50

Figure 6.1: Strategy 3 results on a sequence of identical datasets (last CNN hid-
den layer �xed at epoch 1, MNIST test subset).

Strategy 4 can be dismissed in many cases. Firstly, when the distance
matrix for D and all σi are given as inputs, and the target dimension d
is seen as a constant, t-SNE has time complexity O (N 2) for N obser-
vations. Thus, strategy 4 quickly becomes intractable. Secondly, it also
introduces signi�cant clutter, which cannot be eliminated by �ltering
points per time step, since that introduces misleading void spaces. Fi-

135

visualizing time-dependent data using projections

nally, depending on context, combining structures across di�erent steps
may be inappropriate.
Dynamic t-SNE, our proposal, is an alternative that overcomes the

drawbacks of the previous strategies. The dynamic t-SNE cost C tries
to preserve the neighborhoods from D[t] in P[t], for each t , but also
penalizes each point for unnecessarily moving between time steps. This
new cost introduces a hyperparameter λ ≥ 0 that controls the bias for
temporal coherence, and is given by

C =
T∑
t=1

C[t] +
λ

2N

N∑
i=1

T−1∑
t=1
| | pi [t] − pi [t + 1] | |2. (6.1)

Intuitively, each point is penalized in proportion to the total squared
length of the line segments formed by its movement through time. This
penalty is similar to the one proposed by Leydesdor� and Schank [92]
for dynamic graph drawing using multidimensional scaling (MDS).

Although it would be possible to penalize each movement in Rd in
proportion to the corresponding movement in RD , that would have
undesirable consequences. Firstly, supposing large variance in high-
dimensional movement, it could make the choice of λ considerably
more di�cult. Secondly, any transformation that moved observations
signi�cantly while preserving most pairwise distances would justify
signi�cant changes in the projection. This is undesirable because the
t-SNE cost depends solely on distances, which makes a projection con-
vey only relative positioning. Despite these issues, we believe that such
alternatives should be investigated in future work.

It is easy to show that the gradient∇pi [t]C ofC with respect to a point
pi [t] ∈ P[t] is given by

∇pi [t]C = ∇pi [t]C[t] +
λ

N
vi [t], (6.2)

where ∇pi [t]C[t] is the usual t-SNE cost gradient (with respect to pi [t])
when the dataset D[t] is considered separately, and vi [t] is given by

vi [t] =

2pi [t] − (pi [t − 1] + pi [t + 1]) if 1 < t < T ,

pi [t] − pi [t + 1] if t = 1,

pi [t] − pi [t − 1] if t = T .

(6.3)

Just as ∇pi [t]C[t], each vector vi [t] also has a geometrical interpreta-
tion. For 1 < t < T , the vector vi [t] has opposite direction to any vector
that points from pi [t] to the midpoint between pi [t − 1] and pi [t + 1].
Thus, in gradient descent, the parameter λ controls the trade-o� between
moving each pi [t] in a direction that tries to preserve neighborhoods
from D, and moving each pi [t] in a direction that minimizes the total
squared length of line segments in the polyline (pi [t−1], pi [t], pi [t+1]).

136

6.3 evaluation

6.3 evaluation

We implemented t-SNE and dynamic t-SNE in Python, using Theano
[9], Numpy [152], and scikit-learn [121] . Theano allows writing mathe-
matical expressions that can be automatically translated into optimized
(CPU or GPU) code and evaluated. Our implementation uses automatic
di�erentiation, which can be highly valuable for adapting t-SNE to a par-
ticular application. For instance, altering the symbolic expression that
de�nes the cost does not require manually �nding (possibly involved)
partial derivatives analytically, nor changing the optimization process.
Dynamic t-SNE requires roughly the same computational time as exe-
cuting t-SNE independently for each time step (Strategies 1-3). Using an
Intel i7-2600 at 3.4 GHz with a GeForce GTX 590, both (GPU) implemen-
tations require approx. 6 minutes per time step for the time-dependent
dataset in Sec. 6.3.1.

The remainder of this section presents our preliminary experimental
evaluation of dynamic t-SNE. The implementation details and hyperpa-
rameter choices are very similar to those of publicly available imple-
mentations [151]. We use momentum-based gradient descent for min-
imizing C , with a learning rate η = 2400 and momentum coe�cient
µ = 0.5, which change to η = 250 and µ = 0.8 at iteration 250. The
optimization is run for 1000 iterations, with a perplexity κ = 70. We
sample the initial coordinates of each point from a Gaussian distribu-
tion with zero mean and standard deviation 10−4. The binary search for
each σi lasts 50 iterations. For dynamic t-SNE, every projection P[t] is
initialized equally.

6.3.1 Multivariate Gaussians

We created the multivariate Gaussians dataset speci�cally as a con-
trolled experiment for dynamic t-SNE. Firstly, we sample 200 observa-
tions from each of 10 distinct (isotropic) 100-dimensional multivariate
Gaussian distributions with variance 0.1. We combine the resulting 2000
observations into a single dataset D[1]. Each multivariate Gaussian has
a distinct mean, which is chosen uniformly between the standard basis
vectors for R100. Given D[t], the dataset D[t + 1] is created as follows.
Each observation x[t + 1] ∈ D[t + 1] corresponds to an observation
x[t] ∈ D[t] moved 10% of the remaining distance closer to the mean of
its corresponding multivariate Gaussian. In simple terms, each of the
10 clusters becomes more compact as t increases. We consider T = 10
datasets.

The sequence of images in Fig. 6.2a shows dynamic t-SNE results for
λ = 0, which corresponds to strategy 2 (as de�ned in Sec. 6.2). Each
point pi [t] is colored, for illustration purposes, according to the distri-

Available in https://github.com/paulorauber/thesne.

137

https://github.com/paulorauber/thesne

visualizing time-dependent data using projections

bution from which xi [1] was sampled. Notice the large variability in
visual cluster positioning between time steps, even after the clusters be-
come well-de�ned. Because the process that originates the data simply
makes the clusters gradually more compact, this variability is mislead-
ing. We preserve the scatterplot scale between time steps, which is also
a signi�cant source of variability.

a) = 0 b) = 0.1

t
=

 1
t
=

 3
t
=

 6
t
=

 9

Figure 6.2: Dynamic t-SNE results on Multivariate Gaussians.

In comparison, consider the results shown in Fig. 6.2b, for λ = 0.1. No-
tice how each cluster stays at a similar relative position during all steps,
and only becomes more compact in later steps. When the projections
are inspected step by step, it becomes easier to notice the movement of
projection outliers, which is obscured when λ = 0.

Because each point is penalized for moving between projections,
clear visual separation between clusters in later projections is also able
to induce better separation in earlier projections. In simple terms, given
a similar spatial coherence in two alternative projections for time step t ,
the projection that is more temporally coherent with the projection for

138

6.3 evaluation

time t + 1 is preferred by the cost function. There is a trade-o�: a large
λ will induce unwanted bias, whereas a small λ will cause misleading
temporal incoherence. The major bene�t of dynamic t-SNE is precisely
the control over this trade-o�. Although the choice of λ depends on
context, we recommend �rst comparing λ = 0 with the results of an
arbitrary low value.

6.3.2 Hidden layer activations

The time-dependent dataset D[0], . . . ,D[T] considered in this section
is composed of neural network activation sets, which we introduced in
the previous chapter. Recall that an activation vector x[t] ∈ D[t] is a
D-dimensional real vector that represents the outputs of D neurons in a
particular layer of an arti�cial neural network given a particular input.
Such activation vector can be seen as an alternative representation of
the input, learned by the network through an optimization process. As
we have shown in the previous chapter, visualizing activation vectors
allows valuable insight into how a network learns and operates, which
is considered highly valuable by practitioners.

In this particular case, each network input belongs to a subset of 2000
test images from the SVHN dataset [113], a traditional image classi�ca-
tion benchmark, and is assigned to one of ten classes (according to the
digit seen in the image), which we use to color the projections (see Secs.
5.3 and 5.4.2 for more details).

For each t , an activation x[t] ∈ D[t] is a 512-dimensional real vector,
and corresponds to the last hidden layer activation of a convolutional
neural network (CNN) after t epochs of training (given a particular in-
put image). The time-dependent dataset represents the evolution of the
learned representations through 100 epochs. Earlier in the text, the pro-
jections shown in Fig. 6.1 correspond to a similar dataset based on 2000
MNIST [87] test images, and 100 copies of the same dataset after one
training epoch.

Figures 6.3a and 6.3b compare the results of dynamic t-SNE for λ = 0
and λ = 0.1, respectively. Notice that the projections for step t = 0,
which correspond to network activations before training, are notice-
ably di�erent from those that follow. Clearly, the early epochs of train-
ing have a signi�cant e�ect on the learned representations, which coin-
cides with most of the increase in validation accuracy (not shown). Al-
though both sequences show signi�cant variation between steps t = 25
and t = 100, the remarkable distinction is that the projections change
smoothly when λ = 0.1. For an example, compare the transition be-
tween steps 24 and 25 in Figs. 6.3a and 6.3b. This phenomenon can be
seen consistently through the whole sequence. The visual separation
between clusters does not seem to improve considerably after the early
epochs, although it is hard to state whether there is signi�cant variabil-
ity in the structure of the data. Because λ = 0.1 does not seem to intro-

139

visualizing time-dependent data using projections

duce a misleading bias in comparison to λ = 0, more evidence could be
obtained by increasing λ even further.

a) = 0 b) = 0.1

t
=

 0
t
=

 2
4

t
=

 2
5

t
=

 1
0
0

Figure 6.3: Dynamic t-SNE results on SVHN CNN.

6.4 conclusion

In this chapter, we have shown how dynamic t-SNE can be applied
to create sequences of projections with increased temporal coher-
ence, which facilitates tracking the evolution of high-dimensional
time-dependent data. The main advantage of dynamic t-SNE over t-
SNE is the control over the trade-o� between temporal coherence
(between successive projections) and spatial coherence (with respect
to high-dimensional neighborhoods). This control depends on a single
hyperparameter λ, which has a simple interpretation, and does not
introduce a signi�cant computational overhead. This approach can be
easily adapted for other optimization-based DR techniques. Our prelim-

140

6.4 conclusion

inary experiments show promising results in eliminating unnecessary
variability between projections.

Although we implemented dynamic t-SNE as an adaptation of tradi-
tional t-SNE, the Barnes-Hut approximation is signi�cantly more com-
putationally e�cient [150]. Future works that employ dynamic t-SNE
for large datasets should consider a similar optimization. The current
implementation has the advantage of being highly �exible with respect
to cost functions.

141

7C O N C L U S I O N

This thesis has explored several ways in which user interaction may
assist important tasks in image analysis: image segmentation, feature
selection, and image classi�cation.

Our contributions include a new interactive segmentation technique,
a new interactive visualization approach for feature selection and in-
spection of arti�cial neural networks, and a new dimensionality reduc-
tion technique for time-dependent data. These contributions are con-
nected by the application of visual analytics, and by the prevalence of
high-dimensional datasets. In this last chapter, we summarize these and
other contributions (Secs. 7.1-7.4).

Regarding our research question (Sec. 1.5), we successfully showed
how visual analytics can provide actionable insights about the design
and operation of image analysis methods. However, as we discuss in the
next sections, there are plenty of opportunities for future work.

7.1 image segmentation

Image segmentation is a crucial task in many practical applications, and
interactive methods remain indispensable when the objects of interest
resist a rigorous de�nition.

Chapter 3 presents a new interactive segmentation technique based
on superpixels that employs the IFT algorithm. This technique is moti-
vated by the advantages that this algorithm has over other algorithms
that �nd optimum cuts in graphs, such as linear (or linearithmic) time
multi-object segmentation [26]. In comparison to its pixel-based coun-
terpart, our new technique is signi�cantly more (computationally) e�-
cient for interactive segmentation. It also has the potential for explor-
ing feature descriptors based on superpixels. Finding appropriate super-
pixel descriptors remains an open problem, which partially motivates
our work in interactive feature selection.

Chapter 3 also introduces novel robot users, which serve as a testbed
for new interactive segmentation techniques, and attempt to avoid the
costs and biases involved in evaluation by real users. The relationship
between these robots and real users could be studied by future work.

We omitted the description of some implemented ideas that were not
su�ciently evaluated. They include supervoxel-based segmentation of
volumetric images, multiscale oversegmentation, and superpixel-based
di�erential IFT [41], all of which could be further developed.

143

conclusion

7.2 image classification and feature selection

In pattern classi�cation, representing objects of interest by observations
(real vectors) is generally a challenging task. In particular, selecting fea-
tures that enable good generalization is arguably harder than choosing
a learning algorithm that performs reasonably well. Feature selection
also a�ects tasks that are typically considered outside the scope of ma-
chine learning, such as image segmentation.

At the same time, dimensionality reduction is considered one of the
most scalable alternatives for high-dimensional data visualization. This
characteristic led us to consider using projections to assist in the di�-
cult task of (image) classi�cation system development.

Chapter 4 shows that projections may be useful for predicting classi�-
cation system behavior. The qualitative visual feedback provided by pro-
jections allows inspecting the presence of outliers, separation between
classes, and distribution of observations in the feature space. Such feed-
back is generally very di�cult to obtain by other (non-visual) means.
Although there is no guarantee that a projection will provide insightful
feedback about a particular dataset, our approach requires only a small
upfront user e�ort investment.

Chapter 4 also shows that such visual feedback may serve as a ba-
sis for a novel interactive system that assists classi�cation system de-
velopment. Our proposed system combines projections of observations
and features with traditional feature selection techniques. In several use
cases, this system allows eliminating a large number of candidate fea-
tures from consideration, which is highly valuable for deciding where
to focus e�ort in feature design.

One possibility for future work is employing projections as a basis to
assist active learning, a process where a learning algorithm iteratively
suggests which observations within a partially labeled dataset should
be labeled to enable e�ective generalization [65, 68]. This process �ts
perfectly into the typical visual analytics work�ow.

7.3 image classification by artificial neural networks

Although arti�cial neural networks recently became able to achieve ex-
cellent raw image classi�cation results [133], bypassing feature engi-
neering and selection, building and training these networks generally
requires signi�cant amounts of time, expertise, and labeled data.

Chapter 5 shows how the visualization approach proposed in Chap-
ter 4 can be adapted to visualize the relationships between learned rep-
resentations of observations and between neurons in arti�cial neural
networks. From another perspective, while Chapter 4 is concerned with
inputs, Chapter 5 is concerned with intermediary computational results.

Chapter 5 shows how our approach supports the identi�cation of con-
fusion zones, outliers, and clusters in the learned representations of ob-

144

7.4 time-dependent data visualization

servations. It also shows how the evolution of learned representations
may be tracked using a compact trail-based visualization.

Additionally, Chapter 5 shows how our approach enables the inspec-
tion of relationships between neurons and classes (specialization), and
similarity between neurons. Concrete examples show that these and the
previous visualizations may prompt improvements along the classi�ca-
tion pipeline, besides providing insight into how a network operates.

A possible direction for future work is visualizing representations
learned by recurrent networks, which currently achieve state-of-the-art
results in many sequence-related tasks [58].

7.4 time-dependent data visualization

Our approach towards visualizing representations of observations
learned by arti�cial neural networks naturally leads to our �nal contri-
bution.

When a traditional dimensionality reduction technique is applied to
visualize a sequence of datasets that represents a time-dependent pro-
cess, the resulting sequence of projections may present variability that
does not re�ect signi�cant changes in the structure of the data. This tem-
poral incoherence a�ects the visualization of temporal trends, leads to
incorrect insights, and will a�ect any traditional dimensionality reduc-
tion technique that is sensitive to relatively small changes to its inputs
[49].

Chapter 6 presents dynamic t-SNE, our proposed solution to temporal
incoherence in t-SNE, a state-of-the-art dimensionality reduction tech-
nique that was widely employed in Chapters 4 and 5. Our approach can
also be easily adapted for other optimization-based techniques.

Dynamic t-SNE enables a trade-o� between temporal coherence (be-
tween successive projections) and spatial coherence (with respect to
high-dimensional neighborhoods). This trade-o� depends on a coher-
ence hyperparameter, which has a simple interpretation, and does not
introduce a signi�cant computational overhead.

Possibilities for future work include studying alternative incoherence
penalty functions, and devising a principled way to choose the coher-
ence hyperparameter.

145

B I B L I O G R A P H Y

[1] W. Aigner, S. Miksch, H. Schumann, and C. Tominski. Visualiza-
tion of time-oriented data. Springer Science & Business Media,
2011.

[2] D. Albanese, R. Visintainer, S. Merler, S. Riccadonna, G. Jurman,
and C. Furlanello. mlpy: Machine learning python. arXiv preprint
arXiv:1202.6548, 2012.

[3] A. B. Alencar, K. Börner, F. V. Paulovich, and M. C. F. de Oliveira.
Time-aware visualization of document collections. In Proceedings
of the 27th Annual ACM Symposium on Applied Computing, pages
997–1004. ACM, 2012.

[4] S. Alpert, M. Galun, A. Brandt, and R. Basri. Image segmentation
by probabilistic bottom-up aggregation and cue integration. In
IEEE Transactions on Pattern Analysis and Machine Intelligence,
volume 34 number 2, pages 315–327, 2012.

[5] G. Argenziano, H. P. Soyer, V. De Giorgio, D. Piccolo, P. Carli,
M. Del�no, A. Ferrari, R. Hofmann-Wellenhof, D. Massi, G. Maz-
zocchetti, et al. Interactive atlas of dermoscopy. EDRA Medical
Publishing & New Media, 2000.

[6] M. Aubry and B. Russell. Understanding deep features with
computer-generated imagery. In ICCV, 2015.

[7] M. Aupetit. Visualizing distortions and recovering topology in
continuous projection techniques. Neurocomputing, 70(7):1304–
1330, 2007.

[8] S. J. Axler. Linear algebra done right, volume 2. Springer, 1997.

[9] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow,
A. Bergeron, N. Bouchard, and Y. Bengio. Theano: new features
and speed improvements. Deep Learning and Unsupervised Fea-
ture Learning NIPS 2012 Workshop, 2012.

[10] R. Becker, W. Cleveland, and M. Shyu. The visual design and
control of trellis display. J. Comp. Graph. Stat, 5:123–155, 1996.

[11] Y. Bengio. Learning deep architectures for AI. Foundations and
trends in Machine Learning, 2(1):1–127, 2009.

[12] Y. Bengio. Practical recommendations for gradient-based train-
ing of deep architectures. In Neural Networks: Tricks of the Trade,
pages 437–478. Springer, 2012.

147

bibliography

[13] J. Bernard, N. Wilhelm, M. Scherer, T. May, and T. Schreck. Time-
seriespaths : Projection-based explorative analysis of multivari-
ate time series data. In Journal of WSCG, pages 97–106, 2012.

[14] D. P. Bertsekas. Nonlinear programming. Athena scienti�c, 1999.

[15] C. M. Bishop. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006. isbn 0387310738.

[16] A. Blake, C. Rother, M. Brown, P. Pérez, and P. H. S. Torr. Inter-
active image segmentation using an adaptive GMMRF model. In
European Conference on Computer Vision (ECCV), pages 428–441,
2004.

[17] I. Borg and P. J. Groenen. Modern multidimensional scaling: The-
ory and applications. Springer Science & Business Media, 2005.

[18] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm
for optimal margin classi�ers. In Proceedings of the �fth annual
workshop on Computational learning theory, pages 144–152. ACM,
1992.

[19] Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal
boundary & region segmentation of objects in N-D images. In
Computer Vision, Eighth IEEE International Conference on, vol-
ume 1, pages 105–112, 2001.

[20] B. Brandoli, D. Eler, F. Paulovich, R. Minghim, and J. Batista. Vi-
sual data exploration to feature space de�nition. In Graphics, Pat-
terns and Images (SIBGRAPI), 2010 23rd SIBGRAPI Conference on,
pages 32–39. IEEE, 2010.

[21] M. Brehmer, M. Sedlmair, S. Ingram, and T. Munzner. Visualizing
dimensionally-reduced data: Interviews with analysts and a char-
acterization of task sequences. In Proc. IEEE BELIV, pages 68–76,
2014.

[22] L. Breiman, J. Friedman, C. Stone, and R. Olshen. Classi�cation
and Regression Trees. The Wadsworth and Brooks-Cole statistics-
probability series. Taylor & Francis, 1984. isbn 9780412048418.

[23] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[24] J. Caldas, N. Gehlenborg, A. Faisal, A. Brazma, and S. Kaski. Prob-
abilistic retrieval and visualization of biologically relevant mi-
croarray experiments. Bioinformatics, 25(12):145–153, 2009.

[25] L. Chen and A. Buja. Stress functions for nonlinear dimension re-
duction, proximity analysis, and graph drawing. JMLR, 14:1145–
1173, 2013.

148

bibliography

[26] K. Ciesielski, J. Udupa, A. Falcão, and P. Miranda. Fuzzy connect-
edness image segmentation in graph cut formulation: A linear-
time algorithm and a comparative analysis. Journal of Math-
ematical Imaging and Vision, 44:375–398, 2012. doi 10.1007/
s10851-012-0333-3.

[27] D. B. Coimbra, R. M. Martins, T. T. Neves, A. C. Telea, and F. V.
Paulovich. Explaining three-dimensional dimensionality reduc-
tion plots. Information Visualization, 15(2):154–172, 2016.

[28] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active
shape models – their training and application. Comput. Vis. Image
Underst., 61(1):38–59, 1995. doi 10.1006/cviu.1995.1004.

[29] G. W. Corder and D. I. Foreman. Nonparametric statistics: a step-
by-step approach. John Wiley & Sons, 2014.

[30] J. P. Cunningham and Z. Ghahramani. Linear dimensionality re-
duction: Survey, insights, and generalizations. Journal of Machine
Learning Research, 2015.

[31] R. Datta, D. Joshi, J. Li, and J. Z. Wang. Image retrieval: Ideas,
in�uences, and trends of the new age. ACM Computing Surveys,
40(2), 2008.

[32] T. Deselaers, D. Keysers, and H. Ney. Features for image retrieval:
an experimental comparison. Information Retrieval, 11(2):77–107,
2008.

[33] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[34] P. Domingos. A few useful things to know about machine learn-
ing. Comm ACM, 55(10):78–87, 2012.

[35] J. Donahue, Y. Jia, O. Vinyals, J. Ho�man, N. Zhang, E. Tzeng,
and T. Darrell. Decaf: A deep convolutional activation feature for
generic visual recognition. arXiv preprint arXiv:1310.1531, 2013.

[36] N. Duta and M. Sonka. Segmentation and interpretation of MR
brain images. an improved active shape model. Medical Imaging,
IEEE Transactions on, 17(6):1049–1062, 1998.

[37] S. van den Elzen and J. J. Van Wijk. Baobabview: Interactive con-
struction and analysis of decision trees. In Visual Analytics Sci-
ence and Technology (VAST), 2011 IEEE Conference on, pages 151–
160. IEEE, 2011.

[38] D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing
higher-layer features of a deep network. Dept. IRO, Université de
Montréal, Tech. Rep, 4323, 2009.

149

http://dx.doi.org/10.1007/s10851-012-0333-3
http://dx.doi.org/10.1007/s10851-012-0333-3
http://dx.doi.org/10.1006/cviu.1995.1004

bibliography

[39] D. Erhan, Y. Bengio, A. Courville, P. A. Manzagol, P. Vincent, and
S. Bengio. Why does unsupervised pre-training help deep learn-
ing? The Journal of Machine Learning Research, 11:625–660, 2010.

[40] S. Fadel, F. Fatore, F. Duarte, and F. Paulovich. LoCH: A
neighborhood-based multidimensional projection technique for
high-dimensional sparse spaces. Neurocomputing, 150:546–556,
2014.

[41] A. Falcão and F. Bergo. Interactive volume segmentation with
di�erential image foresting transforms. Medical Imaging, IEEE
Transactions on, 23(9):1100–1108, sept. 2004.

[42] A. Falcão, J. Udupa, and F. Miyazawa. An ultra-fast user-steered
image segmentation paradigm: live wire on the �y. Medical Imag-
ing, IEEE Transactions on, 19(1):55–62, jan. 2000.

[43] A. Falcão, J. Stol�, and R. de Alencar Lotufo. The image foresting
transform: theory, algorithms, and applications. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 26(1):19–29, 2004.

[44] A. X. Falcão, J. K. Udupa, S. Samarasekera, S. Sharma, B. E. Hirsch,
and R. A. Lotufo. User-steered image segmentation paradigms:
Live-wire and live-lane. Graphical Models and Image Processing,
60(4):233–260, 1998.

[45] T. Fawcett. An introduction to ROC analysis. Pattern Recognition
Letters, 27(8):861–874, 2006.

[46] S. Feringa. Comparison of features used in automatic skin lesion
classi�cation. Master’s thesis, Rijksuniversiteit Groningen, the
Netherlands, 2015.

[47] K. R. Gabriel. The biplot-graphical display of matrices with appli-
cations to principal components analysis. Biometrika, 58:453–467,
1971.

[48] K. A. Ganser, H. Dickhaus, R. Metzner, and C. R. Wirtz. A de-
formable digital brain atlas system according to Talairach and
Tournoux. Medical Image Analysis, 8(1):3–22, 2004. issn 1361-
8415.

[49] F. J. García Fernández, M. Verleysen, J. A. Lee, and I. Díaz Blanco.
Stability comparison of dimensionality reduction techniques at-
tending to data and parameter variations. In Eurographics Con-
ference on Visualization. The Eurographics Association, 2013.

[50] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian data
analysis, volume 2. Taylor & Francis, 2014.

150

bibliography

[51] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees.
Machine learning, 63(1):3–42, 2006.

[52] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse recti�er neural
networks. In International Conference on Arti�cial Intelligence and
Statistics, pages 315–323, 2011.

[53] R. C. Gonzalez and R. E. Woods. Digital Image Processing (3rd Edi-
tion). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006. isbn
013168728X.

[54] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and
Y. Bengio. Maxout networks. arXiv preprint arXiv:1302.4389, 2013.

[55] J. C. Gower and G. B. Dijksterhuis. Procrustes Problems. Oxford
Statistical Science Series 30, jan 2004. isbn 978-0-19-851058-1.

[56] V. Grau, A. Mewes, M. Alcaniz, R. Kikinis, and S. War�eld. Im-
proved watershed transform for medical image segmentation us-
ing prior information. Medical Imaging, IEEE Transactions on, 23
(4):447–458, april 2004.

[57] A. Graves. Generating sequences with recurrent neural networks.
arXiv preprint arXiv:1308.0850, 2013.

[58] A. Graves et al. Supervised sequence labelling with recurrent neural
networks, volume 385. Springer, 2012.

[59] V. Gulshan, C. Rother, A. Criminisi, A. Blake, and A. Zisserman.
Geodesic star convexity for interactive image segmentation. In
Computer Vision and Pattern Recognition (CVPR), IEEE Conference
on, pages 3129–3136, 2010.

[60] I. Guyon and A. Elissee�. An introduction to variable and feature
selection. The Journal of Machine Learning Research, 3:1157–1182,
2003.

[61] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection
for cancer classi�cation using support vector machines. Machine
Learning, 46(1-3):389–422, 2002. issn 0885-6125.

[62] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. Result analysis of
the NIPS 2003 feature selection challenge. In Advances in Neural
Information Processing Systems, pages 545–552, 2004.

[63] P. Hamel and D. Eck. Learning features from music audio with
deep belief networks. In Proc. ISMIR, pages 339–344, 2010.

[64] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Sta-
tistical Learning: Data Mining, Inference, and Prediction, Second
Edition. Springer Series in Statistics. Springer, 2009.

151

bibliography

[65] F. Heimerl, S. Koch, H. Bosch, and T. Ertl. Visual classi�er training
for text document retrieval. Visualization and Computer Graphics,
IEEE Transactions on, 18(12):2839–2848, 2012.

[66] J. Heinrich, J. Stasko, and D. Weiskopf. The parallel coordinates
matrix. EuroVis–Short Papers, pages 37–41, 2012.

[67] J. Heinrich and D. Weiskopf. State of the art of parallel coor-
dinates. In Eurographics State of the Art Reports, pages 95–116,
2013.

[68] B. Hoferlin, R. Netzel, M. Hoferlin, D. Weiskopf, and G. Heide-
mann. Inter-active learning of ad-hoc classi�ers for video visual
analytics. In Visual Analytics Science and Technology (VAST), 2012
IEEE Conference on, pages 23–32. IEEE, 2012.

[69] P. Ho�man, G. Grinstein, K. Marx, I. Grosse, and E. Stanley. DNA
visual and analytic data mining. In Proc. IEEE Visualization, pages
437–441, 1997.

[70] J. D. Hunter. Matplotlib: A 2D graphics environment. Computing
in science and engineering, 9(3):90–95, 2007.

[71] C. Hurter, O. Ersoy, S. Fabrikant, T. Klein, and A. Telea. Bundled
visualization of dynamic graph and trail data. IEEE TVCG, 20(8):
1141–1154, 2014.

[72] L. Hya�l and R. L. Rivest. Constructing optimal binary decision
trees is NP-complete. Information Processing Letters, 5(1):15–17,
1976.

[73] H. Iyatomi, H. Oka, M. Celebi, M. Hashimoto, M. Hagiwara,
M. Tanaka, and K. Ogawa. An improved internet-based
melanoma screening system with dermatologist-like tumor area
extraction algorithm. Comp Med Imag Gr, 32(7):566–579, 200820.

[74] D. Jäckle, F. Fischer, T. Schreck, and D. A. Keim. Temporal MDS
plots for analysis of multivariate data. IEEE Transactions on Visu-
alization and Computer Graphics, 22(1):141–150, 2016.

[75] P. Joia, F. V. Paulovich, D. Coimbra, J. A. Cuminato, and L. G.
Nonato. Local a�ne multidimensional projection. IEEE TVCG,
17(12):2563–2571, 2011.

[76] E. Jones, T. Oliphant, and P. Peterson. SciPy: Open source scien-
ti�c tools for Python, 2014. http://www.scipy.org.

[77] E. Kandogan. Star coordinates: A multi-dimensional visualization
technique with uniform treatment of dimensions. In Proc. IEEE
Infovis, pages 9–12, 2000.

152

bibliography

[78] D. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann, editors. Mas-
tering the information age: Solving problems with visual analytics
(VisMaster). Eurographics Association, 2010.

[79] J. Koehoorn, A. Sobiecki, P. E. Rauber, A. Jalba, and A. C. Telea.
E�cient and e�ective automated digital hair removal from der-
moscopy images. Mathematical Morphology - Theory and Appli-
cations, 1, 2016.

[80] R. Kohavi et al. A study of cross-validation and bootstrap for
accuracy estimation and model selection. In Proceedings of the
International Joint Conference on Arti�cial Intelligence, volume 14
number 2, pages 1137–1145, 1995.

[81] P. Kohli, H. Nickisch, C. Rother, and C. Rhemann. User-centric
learning and evaluation of interactive segmentation systems. Int.
J. Computer Vision, 100(3):261–274, 2012.

[82] D. Koller and N. Friedman. Probabilistic graphical models: princi-
ples and techniques. MIT press, 2009.

[83] J. Krause, A. Perer, and E. Bertini. Infuse: interactive feature selec-
tion for predictive modeling of high dimensional data. Visualiza-
tion and Computer Graphics, IEEE Transactions on, 20(12):1614–
1623, 2014.

[84] A. Krizhevsky and G. Hinton. Learning multiple layers of fea-
tures from tiny images, 2009. www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf.

[85] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classi�-
cation with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105, 2012.

[86] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha�ner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[87] Y. LeCun, C. Cortes, and C. J. Burges. The MNIST
database of handwritten digits, 1998. Available at
http://http://yann.lecun.com/exdb/mnist.

[88] C. Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-
supervised nets. arXiv preprint arXiv:1409.5185, 2014.

[89] J. A. Lee and M. Verleysen. Nonlinear dimensionality reduction
of data manifolds with essential loops. Neurocomputing, 67:29–53,
2005.

[90] S. Legg. Machine Super Intelligence. PhD thesis, University of
Lugano, 2008.

153

www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

bibliography

[91] D. J. Lehmann and H. Theisel. Orthographic star coordinates. Vi-
sualization and Computer Graphics, IEEE Transactions on, 19(12):
2615–2624, 2013.

[92] L. Leydesdor� and T. Schank. Dynamic animations of journal
maps: Indicators of structural changes and interdisciplinary de-
velopments. Journal of the American Society for Information Sci-
ence and Technology, 59(11):1810–1818, 2008.

[93] J. Li and J. Z. Wang. Automatic linguistic indexing of pictures
by a statistical modeling approach. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 25(9):1075–1088, 2003.

[94] H. Liu and L. Yu. Toward integrating feature selection algorithms
for classi�cation and clustering. Knowledge and Data Engineering,
IEEE Transactions on, 17(4):491–502, 2005.

[95] J. Liu and J. Udupa. Oriented active shape models. Medical Imag-
ing, IEEE Transactions on, 28(4):571–584, 2009.

[96] S. Liu, B. Wang, P. T. Bremer, and V. Pascucci. Distortion-guided
structure-driven interactive exploration of high-dimensional
data. CGF, 33(3):101–110, 2014.

[97] S. Liu, D. Maljovec, B. Wang, P. T. Bremer, and V. Pascucci. Visu-
alizing high-dimensional data: Advances in the past decade. In
Proc. EuroVis – STARs, 2015.

[98] R. Lotufo, A. Falcão, and F. Zampirolli. IFT-Watershed from gray-
scale marker. In Computer Graphics and Image Processing, 2002.
Proceedings. XV Brazilian Symposium on, pages 146–152, 2002.

[99] L. Van der Maaten and G. Hinton. Visualizing data using t-SNE.
Journal of Machine Learning Research, 9(2579-2605):85, 2008.

[100] D. J. MacKay. Information theory, inference and learning algo-
rithms. Cambridge university press, 2003.

[101] A. Mahendran and A. Vedaldi. Understanding deep image repre-
sentations by inverting them. In Proc. IEEE CVPR, 2015.

[102] F. Malmberg and R. Strand. Faster fuzzy connectedness via pre-
computation. In Mathematical Morphology and its Applications to
Image and Signal Processing (ISMM), 2013, in press.

[103] R. M. Martins, D. B. Coimbra, R. Minghim, and A. Telea. Visual
analysis of dimensionality reduction quality for parameterized
projections. Computers & Graphics, 41:26–42, 2014.

[104] R. M. Martins, R. Minghim, and A. C. Telea. Explaining neigh-
borhood preservation for multidimensional projections. In Proc.
Computer Graphics and Visual Computing (CGVC), 2015, 2015.

154

bibliography

[105] N. Meinshausen and P. Bühlmann. Stability selection. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 72
(4):417–473, 2010.

[106] P. A. V. de Miranda, A. X. Falcão, and J. K. Udupa. Synergistic
arc-weight estimation for interactive image segmentation using
graphs. Comput. Vis. Image Underst., 114(1):85–99, 2010. doi
10.1016/j.cviu.2009.08.001.

[107] P. Miranda, A. Falcão, and J. Udupa. Clouds: A model for syner-
gistic image segmentation. In Biomedical Imaging: From Nano to
Macro, 5th IEEE International Symposium on, pages 209–212, 2008.
doi 10.1109/ISBI.2008.4540969.

[108] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

[109] A. r. Mohamed, G. Hinton, and G. Penn. Understanding how deep
belief networks perform acoustic modelling. In Proc. IEEE ICASSP,
pages 4273–4276, 2012.

[110] T. Mühlbacher, H. Piringer, S. Gratzl, M. Sedlmair, and M. Streit.
Opening the black box: Strategies for increased user involvement
in existing algorithm implementations. IEEE TVCG, 20(12):1643–
1652, 2014.

[111] K. P. Murphy. Machine learning: a Probabilistic Perspective. MIT
Press, 2012.

[112] L. Najman and M. Couprie. Building the component tree in quasi-
linear time. Image Processing, IEEE Transactions on, 15(11):3531–
3539, 2006.

[113] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng.
Reading digits in natural images with unsupervised feature learn-
ing. In Proc. NIPS, volume 2011 number 2, page 5, 2011.

[114] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are
easily fooled: High con�dence predictions for unrecognizable im-
ages. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 427–436. IEEE, 2015.

[115] M. A. Nielsen. Neural Networks and Deep Learning. Determina-
tion Press, 2015.

[116] G. B. Orr and K. R. Müller. Neural networks: tricks of the trade.
Springer, 2003.

155

http://dx.doi.org/10.1016/j.cviu.2009.08.001
http://dx.doi.org/10.1109/ISBI.2008.4540969

bibliography

[117] J. G. S. Paiva, W. R. Schwartz, H. Pedrini, and R. Minghim. An ap-
proach to supporting incremental visual data classi�cation. Vi-
sualization and Computer Graphics, IEEE Transactions on, 21(1):
4–17, 2015.

[118] J. P. Papa, A. X. Falcão, and C. T. N. Suzuki. Supervised pattern
classi�cation based on optimum-path forest. International Jour-
nal of Imaging Systems and Technology, 19(2):120–131, 2009. doi
10.1002/ima.20188.

[119] F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz.
Least square projection: A fast high-precision multidimensional
projection technique and its application to document mapping.
IEEE TVCG, 14(3):564–575, 2008.

[120] F. V. Paulovich, F. Toledo, G. P. Telles, R. Minghim, and L. G.
Nonato. Semantic wordi�cation of document collections. InCom-
puter Graphics Forum, volume 31 number 3pt3, pages 1145–1153.
Wiley Online Library, 2012.

[121] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.
Scikit-learn: Machine learning in python. J Mach Learn Res, 12:
2825–2830, 2011.

[122] L. Prechelt. Early stopping-but when? In Neural Networks: Tricks
of the trade, pages 55–69. Springer, 1998.

[123] A. Protiere and G. Sapiro. Interactive image segmentation via
adaptive weighted distances. Image Processing, IEEE Transactions
on, 16(4):1046–1057, 2007. issn 1057-7149.

[124] R. Rao and S. K. Card. The table lens: Merging graphical and
symbolic representations in an interactive focus+context visual-
ization for tabular information. In Proc. ACM CHI, pages 318–322,
1994.

[125] P. E. Rauber, A. X. Falcão, T. V. Spina, and P. J. de Rezende. Inter-
active segmentation by image foresting transform on superpixel
graphs. In Proceedings of the 2013 XXVI Conference on Graphics,
Patterns and Images, SIBGRAPI ’13, pages 131–138, Washington,
DC, USA, 2013. IEEE Computer Society.

[126] P. E. Rauber, A. X. Falcão, and A. C. Telea. Projections as visual
aids for classi�cation system design, 2016. Submitted to Informa-
tion Visualization (IVI).

[127] P. E. Rauber, A. X. Falcão, and A. C. Telea. Visualizing time-
dependent data using dynamic t-SNE. In EuroVis Short Papers,
2016.

156

http://dx.doi.org/10.1002/ima.20188

bibliography

[128] P. E. Rauber, S. G. Fadel, A. X. Falcão, and A. C. Telea. Visualiz-
ing the hidden activity of arti�cial neural networks. IEEE Trans-
actions on Visualization and Computer Graphics (Proceedings of
the Visual Analytics Science and Technology 2016), 23(01), January
2017.

[129] P. E. Rauber, R. R. O. Silva, S. Feringa, M. E. Celebi, A. X. Falcão,
and A. C. Telea. Interactive Image Feature Selection Aided by Di-
mensionality Reduction. In EuroVis Workshop on Visual Analytics
(EuroVA). The Eurographics Association, 2015.

[130] L. M. Rocha, F. A. M. Cappabianco, and A. X. Falcão. Data cluster-
ing as an optimum-path forest problem with applications in im-
age analysis. International Journal of Imaging Systems and Tech-
nology, 19(2):50–68, 2009. doi 10.1002/ima.20191.

[131] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: interactive fore-
ground extraction using iterated graph cuts. In ACM SIGGRAPH
2004 Papers, pages 309–314, New York, NY, USA, 2004. ACM.

[132] P. T. Saito, P. J. de Rezende, A. X. Falcão, C. T. Suzuki, and J. F.
Gomes. Improving active learning with sharp data reduction. In
Proc. of the 20th Intl. Conf. in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG), pages 27–34, 2012.

[133] J. Schmidhuber. Deep learning in neural networks: An overview.
Neural Networks, 61:85–117, 2015.

[134] T. Schreck, T. Von Landesberger, and S. Bremm. Techniques for
precision-based visual analysis of projected data. Information Vi-
sualization, 9(3):181–193, 2010.

[135] A. Schulz, A. Gisbrecht, and B. Hammer. Using discriminative di-
mensionality reduction to visualize classi�ers. Neural Processing
Letters, pages 1–28, 2014.

[136] M. Sedlmair, T. Munzner, and M. Tory. Empirical guidance on
scatterplot and dimension reduction technique choices. IEEE
TVCG, 19(12):2634–2643, 2013.

[137] R. R. O. Silva, P. E. Rauber, and A. C. Telea. Beyond the third
dimension: Visualizing high-dimensional data with projections.
IEEE Computing in Science & Engineering, 18(5):98–107, 2016.

[138] R. R. O. Silva, P. E. Rauber, R. M. Martins, R. Minghim, and A. C.
Telea. Attribute-based visual explanation of multidimensional
projections. In EuroVis Workshop on Visual Analytics (EuroVA).
The Eurographics Association, 2015.

157

http://dx.doi.org/10.1002/ima.20191

bibliography

[139] R. R. O. Silva, E. F. Vernier, P. E. Rauber, J. L. D. Comba,
R. Minghim, and A. C. Telea. Metric evolution maps: Attribute-
driven exploration of software repositories. International
Symposium on Vision, Modeling and Visualization (VMV 2016),
2016.

[140] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[141] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian opti-
mization of machine learning algorithms. In Advances in neural
information processing systems, pages 2951–2959, 2012.

[142] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural net-
works from over�tting. J Mach Learning Res, 15(1):1929–1958,
2014.

[143] C. T. Suzuki, J. F. Gomes, A. X. Falcão, J. P. Papa, and S. Hoshino-
Shimizu. Automatic segmentation and classi�cation of human
intestinal parasites from microscopy images. Biomedical Engi-
neering, IEEE Transactions on, 60(3):803–812, 2013.

[144] G. J. Székely, M. L. Rizzo, N. K. Bakirov, et al. Measuring and test-
ing dependence by correlation of distances. The Annals of Statis-
tics, 35(6):2769–2794, 2007.

[145] R. Szeliski. Computer Vision: Algorithms and Applications.
Springer-Verlag New York, Inc., New York, NY, USA, 1st edition,
2010. isbn 1848829345, 9781848829343.

[146] A. Tatu, F. Maas, I. Farber, E. Bertini, T. Schreck, T. Seidl, and
D. Keim. Subspace search and visualization to make sense of al-
ternative clusterings in high-dimensional data. In Visual Analyt-
ics Science and Technology (VAST), 2012 IEEE Conference on, pages
63–72. IEEE, 2012.

[147] A. Telea. Combining extended table lens and treemap techniques
for visualizing tabular data. In Proceeding of the 2007 Eurographics
Conference on Visualization (EuroVis 2007), pages 51–58, 2007.

[148] J. Tighe and S. Lazebnik. Superparsing - scalable nonparametric
image parsing with superpixels. International Journal of Com-
puter Vision, 101(2):329–349, 2013.

[149] C. Turkay, P. Filzmoser, and H. Hauser. Brushing dimensions - a
dual visual analysis model for high-dimensional data. IEEE TVCG,
17(12):2591–2599, 2011.

158

bibliography

[150] L. Van Der Maaten. Accelerating t-SNE using tree-based algo-
rithms. The Journal of Machine Learning Research, 15(1):3221–
3245, 2014.

[151] L. Van Der Maaten. t-SNE - Laurens van der Maaten, 2016. Avail-
able at https://lvdmaaten.github.io/tsne.

[152] S. Van Der Walt, S. C. Colbert, and G. Varoquaux. The numpy
array: a structure for e�cient numerical computation. Computing
in Science & Engineering, 13(2):22–30, 2011.

[153] S. Van Der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne,
J. D. Warner, N. Yager, E. Gouillart, and T. Yu. scikit-image: image
processing in python. PeerJ, 2:e453, 2014.

[154] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Regulariza-
tion of neural networks using dropconnect. In Proc. ICML, pages
1058–1066, 2013.

[155] L. Wasserman. All of statistics: a concise course in statistical infer-
ence. Springer Science & Business Media, 2013.

[156] D. H. Wolpert. The lack of a priori distinctions between learning
algorithms. Neural computation, 8(7):1341–1390, 1996.

[157] C. Xu and J. J. Corso. Evaluation of super-voxel methods for early
video processing. In Computer Vision and Pattern Recognition
(CVPR), pages 1202–1209, 2012.

[158] K. S. Xu, M. Kliger, and A. O. Hero Iii. A regularized graph layout
framework for dynamic network visualization. Data Mining and
Knowledge Discovery, 27(1):84–116, 2013.

[159] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Un-
derstanding neural networks through deep visualization. In Proc.
ICML, 2015.

[160] X. Yuan, D. Ren, Z. Wang, and C. Guo. Dimension projection
matrix/tree: Interactive subspace visual exploration and analysis
of high dimensional data. IEEE TVCG, 19(12):2625–2633, 2013.

[161] M. D. Zeiler and R. Fergus. Visualizing and understanding convo-
lutional networks. In Proc. ECCV, pages 818–833. Springer, 2014.

[162] M. van der Zwan, V. Codreanu, and A. Telea. Cubu: Universal
real-time bundling for large graphs. IEEE Transactions on Visu-
alization and Computer Graphics, PP(99):1–1, 2016. doi 10.1109/
TVCG.2016.2515611.

159

http://dx.doi.org/10.1109/TVCG.2016.2515611
http://dx.doi.org/10.1109/TVCG.2016.2515611

A C K N O W L E D G M E N T S

I would sincerely like to thank the following individuals.
Mysupervisors, for their unwavering dedication to our work. When

we started, I certainly did not imagine how many responsibilities you
have, and how hard you must work to achieve your level of success. I
wish you even more success in the future.

The assessment committee, for accepting the often thankless task
of reviewing a thesis. I hope you found our work inspiring, or at least
interesting.
My colleagues at the University of Campinas and at the University

of Groningen, for their companionship, despite all the typical challenges
faced by graduate students.
My friends, old and new, for all the shared experiences. Specially

the laughs.
My mother and the rest of my family. I will always be grateful

for your support.

I would also like to thank CAPES (Coordination for the Improvement
of Higher Education Personnel), FAPESP (São Paulo Research Founda-
tion, process 2012/24121-9), and the Ubbo Emmius Fund (University of
Groningen) for the �nancial support.

161

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Final Version as of October 6, 2016 (classicthesis).

http://code.google.com/p/classicthesis/

	Abstract
	Samenvatting
	Resumo
	Publications
	Contents
	1 Introduction
	1.1 Image segmentation
	1.2 Image classification and feature selection
	1.3 Image classification by artificial neural networks
	1.4 Time-dependent data visualization
	1.5 Research question
	1.6 Thesis structure

	2 Related work
	2.1 Preliminaries
	2.2 Image segmentation
	2.3 Pattern classification
	2.3.1 K-nearest neighbors
	2.3.2 Logistic regression
	2.3.3 Support vector machines
	2.3.4 Decision trees
	2.3.5 Artificial neural networks
	2.3.5.1 Multilayer perceptrons
	2.3.5.2 Convolutional neural networks

	2.4 Feature selection
	2.4.1 Mutual information
	2.4.2 Randomized logistic regression
	2.4.3 Recursive feature elimination
	2.4.4 Random forest scoring

	2.5 High-dimensional data visualization
	2.5.1 Table lenses
	2.5.2 Scatterplot matrices
	2.5.3 Parallel coordinate plots

	2.6 Dimensionality reduction for visualization
	2.6.1 Principal component analysis
	2.6.2 Linear discriminant analysis
	2.6.3 Multidimensional scaling
	2.6.4 T-distributed stochastic neighbor embedding
	2.6.5 Visualizing projections

	3 Interactive image segmentation using superpixels
	3.1 Image foresting transform
	3.2 Segmentation techniques
	3.2.1 Superpixel-based segmentation
	3.2.2 Pixel-based segmentation

	3.3 Experiments
	3.3.1 Robot Users
	3.3.1.1 Geodesic robot
	3.3.1.2 Superpixel robot
	3.3.1.3 Pixel robot

	3.3.2 Results

	3.4 Conclusion

	4 Interactive feature selection assisted by projections
	4.1 Preliminaries
	4.2 Related work
	4.3 Proposed approach
	4.3.1 T1: predicting system efficacy
	4.3.2 T2: improving system efficacy
	4.3.3 Visual analytics workflow

	4.4 T1: Predicting system efficacy
	4.4.1 Experimental protocol
	4.4.2 Madelon dataset
	4.4.3 Melanoma dataset
	4.4.4 Corel dataset
	4.4.5 Parasites dataset
	4.4.6 Conclusion

	4.5 T2: Improving system efficacy
	4.5.1 Proposed methodology and tooling
	4.5.2 Madelon: relationship between relevant features
	4.5.3 Corel: class-specific relevant features
	4.5.4 Melanoma: alternative feature scores
	4.5.5 Parasites: importance of projection error measures
	4.5.6 Proposed workflow

	4.6 Discussion
	4.7 Conclusion

	5 Visualizing artificial neural networks using projections
	5.1 Preliminaries
	5.2 Related work
	5.3 Experimental protocol
	5.4 T1: relationships between activations
	5.4.1 MNIST: exploring effects of training
	5.4.2 SVHN: interpreting visual clusters
	5.4.3 CIFAR-10: interpreting confusion zones
	5.4.4 Evolution of learned representations

	5.5 T2: relationships between neurons
	5.5.1 MNIST dataset
	5.5.2 SVHN dataset

	5.6 Discussion
	5.7 Conclusion

	6 Visualizing time-dependent data using projections
	6.1 T-SNE
	6.2 Dynamic t-SNE
	6.3 Evaluation
	6.3.1 Multivariate Gaussians
	6.3.2 Hidden layer activations

	6.4 Conclusion

	7 Conclusion
	7.1 Image segmentation
	7.2 Image classification and feature selection
	7.3 Image classification by artificial neural networks
	7.4 Time-dependent data visualization

	Bibliography
	Acknowledgments
	Colophon

