
V I S UA L A N A LY T I C S F O R M A C H I N E L E A R N I N G

francisco caio maia rodrigues

Computing and Leveraging Decision Boundary Maps

Cover: Decision zones, boundary maps, and distances to boundaries for
the classi�cation of the MNIST dataset.

Visual Analytics for Machine Learning
Computing and Leveraging Decision Boundary Maps

Francisco Caio Maia Rodrigues
PhD Thesis

This thesis is the result of a joint PhD between the University of São
Paulo and the University of Groningen.

Universidade de São Paulo

Visual Analytics for Machine
Learning

Computing and Leveraging Decision Boundary Maps

PhD thesis

to obtain the degree of PhD at the
University of Groningen
on the authority of the

Rector Magni�cus Prof. C. Wijmenga
and in accordance with

the decision by the College of Deans,
and

to obtain the degree of PhD at the
University of São Paulo
on the authority of the

Rector Magni�cus Prof. V. Agopyan.

Double PhD Degree

This thesis will be defended in public on
Wednesday 14 October 2020 at 18.00 hours

by

Francisco Caio Maia Rodrigues
born on May 4th, 1989

in Fortaleza, Brazil

Supervisors
Prof. A. C. Telea
Prof. R. Hirata Jr.

Assessment committee
Prof. M. Biehl
Prof. R. Marcondes Cesar
Prof. A. X. Falcão
Prof. N. Petkov

A B S T R A C T

Machine learning classi�ers construct decision boundaries that parti-
tion data space into a set of regions to which labels are assigned. Under-
standing these decision boundaries can notably help the actual practical
usage of such classi�ers (by answering questions such as showing how
a certain model is expected to behave on an empty region), as well as
give insights on how to improve the training of a given model (by an-
swering questions such as telling where should more training data be
provided). In this thesis we propose and explore visual analytics meth-
ods for the explicit creation, construction, and use of decision zones of
machine learning classi�ers.

Current methods employed to visualize how a classi�er behaves on a
dataset mainly use color-coded sample scatterplots, which do not ex-
plicitly show the actual decision boundaries or confusion zones. We
propose an image-based technique to improve such visualizations. The
method samples the 2D space of a projection and color-codes rele-
vant classi�er outputs, such as the majority class label, the confusion,
and the sample density, to create a dense visual depiction of the high-
dimensional decision boundaries. Our technique is simple to imple-
ment, handles any classi�er, and has only two simple-to-control free
parameters. We demonstrate our proposal on several real-world high-
dimensional datasets, classi�ers, direct and inverse projection tech-
niques. To our knowledge, our work is the �rst that can create such
explicit depictions of decision boundaries and decision zones for any
dataset and any classi�er, without explicit knowledge of the classi�er’s
internals.

Based on these visual depictions of decision boundaries, we devel-
oped a visual analytics work�ow and associated tooling that allows
users to perform two common techniques in machine learning – data
augmentation and interactive labeling of unseen samples. We show that
our approach can be used to perform guided data augmentation in order
to shape the decision boundaries learned by a classi�er according to the
user’s input. For interactive labeling, we show that our proposed visual
depiction of decision boundaries helps in producing improved labeling
in an active learning scenario.

v

S A M E N VAT T I N G

Machinaal leren classi�catoren bouwen beslissingsranden die de data-
ruimte partitioneren in een verzameling van gebieden waaraan etiket-
ten toegekend kunnen worden. Het begrijpen van deze beslissingsran-
den kan het praktisch gebruik van classi�catoren verhelpen, bijvoor-
beeld door het laten zien hoe een model zich gedraagt over een leeg da-
tagebied; en kan ook inzichten geven tot het verbeteren van de training
van een gegeven model, door het beantwoorden van vragen zoals waar
meer trainingsgegevens nodig zijn. Dit proefschrift presenteert en ex-
ploreert visual analytics methoden voor de expliciete creatie, construc-
tie, en gebruik van beslissingsranden van classi�catoren in machinaal
leren.

Huidige methoden visualiseren hoe een classi�cator zich gedraagt
over een gegevensverzameling gebruiken typisch gekleurde scatterplots
van data punten; deze laten niet expliciet zien waar de beslissingsranden
of confusiegebieden zich bevinden. Wij verbeteren dit door het gebruik
van image-based visualisatie. De methode meet de 2D ruimte van een
projectie en codeert via kleur de relevante resultaten van een classi�-
cator, zoals de dominante klasse-etiket, de confusie, en de sampledicht-
heid. Dit genereert een dichte visuele afbeelding van de hoogdimensi-
onale beslissingsranden. Onze techniek is makkelijk te implementeren,
werkt voor alle classi�catoren, en heeft maar twee eenvoudig te con-
troleren parameters. Wij demonstreren ons voorstel voor verschillende
hoogdimensionale datasets met reële gegevens, evenals voor directe en
inverse projectietechnieken. Tot zover wij weten is onze techniek de
eerste die dergelijke expliciete afbeeldingen van beslissingsranden en
beslissingsgebieden kan creëren voor elk dataset en classi�cator, zon-
der kennis van de details van de classi�cator.

Wij gebruiken de visuele afbeelding van beslissingsranden om een vi-
sueel analyse work�ow en implementatie te ontwikkelen die gebruikers
in staat stelt om twee standard operaties in machineleer toe te passen –
data augmentatie en interactieve labeling van ongeziene samples. Onze
techniek kan gebruikt worden om data augmentatie uit te voeren om
de beslissingsranden van een classi�cator vorm te geven volgens de in-
put van de gebruiker. Voor interactieve labeling laten wij zien dat ons
voorgestelde visuele afbeelding van beslissingsranden verhelpt de con-
structie van verbeterde etiketten in een activeleer scenario.

vi

R E S U M O

Modelos de aprendizado de máquina chamados classi�cadores cons-
troem fronteiras de decisão que particionam um certo espaço de dados
em um conjunto de regiões, associando-as a um rótulo. Entender a es-
trutura e forma de tais fronteiras de decisão pode ser de grande ajuda
no uso prático de tais classi�cadores, respondendo, por exemplo, ques-
tões sobre como espera-se que certo modelo se comporte em uma região
vazia do espaço. Além disso, tal entendimento pode ajudar a dar ideias
que levem a melhoria do treino de um certo modelo, por exemplo atra-
vés da indicação de onde mais dados de treino poderiam ser coletados.
Nessa tese, propomos e exploramos métodos de visualização para a cri-
ação e o uso de modelos visuais das fronteiras de decisão inferidas por
classi�caores de aprendizado de máquina.

Atualmente, métodos utilizados para visualizar o comportamento de
um classi�cador treinado em um certo conjunto de dados fazem uso
scatterplot, colorindo os pontos de acordo com a classe atribuida pelo
modelo. Nesta tese, propomos uma técnica baseada em imagens para
aprimorar tais visualizações. Nosso método amostra o espaço 2D de uma
projeção, codi�cando nas cores dos pixels aspectos relevantes de um
classi�cador treinado, como a maioria dos rótulos naquela região, o grau
de confusão e a densidade de amostras, criando uma imagem densa das
fronteiras inferidas em espaços de alta dimensão. O método proposto é
simples de implementar, funciona para qualquer classi�cador e possui
apenas dois parâmetros intuitivos. Demonstramos o uso da técnica pro-
posta em diferentes datasets de alta dimensionalidade, classi�cadores,
projeções diretas e inversas. No nosso conhecimento, nosso trabalho é
o primeiro capaz de criar tais visualizações explícitas das fronteiras de
classi�cadores, para qualquer dataset e classi�cador, sem necessidade
do conhecimento do funcionamento de detalhes internos dos modelos.

Baseado nas descrições visuais das fronteiras de decisão, nós desen-
volvemos um work�ow de visual analytics e uma ferramenta grá�ca
que permite aos usuários realizarem a rotulagem interativa de amos-
tras. Mostramos ainda que o nosso método proposto de visualização é
capaz de ajudar em cenários de rotulação, como é o caso de aprendizado
ativo.

vii

P U B L I C AT I O N S

This thesis is the result of the following publications:

• F. C. M. Rodrigues, N. S. T. Hirata, A. A. Abello, L. T. de la Cruz,
R. M. Lopes, and R. Hirata Jr. (2018) Evaluation of transfer learn-
ing scenarios in plankton image classi�cation. Proc. 13th Interna-
tional Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications, volume 5 (VISAPP), pages 359-
366. SciTePress

• F. C. M. Rodrigues, R. Hirata, and A. C. Telea (2018) Image-based
visualization of classi�er decision boundaries. Proc. 31st Confer-
ence on Graphics, Patterns, and Images (SIBGRAPI), pages 353-360.
IEEE

• M. Espadoto, F. C. M. Rodrigues, and A. Telea (2019) Visual ana-
lytics of multidimensional projections for constructing classi�er
decision boundary maps. Proc. 14th International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and
Applications, volume 3 (IVAPP), pages 136-145. SciTePress

• M. Espadoto, F. C. M. Rodrigues, N. S. T. Hirata, R. Hirata Jr., and
A. C. Telea (2019) Deep Learning Inverse Multidimensional Pro-
jections. Proc. EuroVisWorkshop on Visual Analytics (EuroVA). The
Eurographics Association

• F. C. M. Rodrigues, M. Espadoto, R. Hirata Jr, A. Telea (2019)
Constructing and Visualizing High-Quality Classi�er Decision
Boundary Maps. Information 10(9), pages 280-297. MDPI

ix

C O N T E N T S

1 introduction 1
1.1 Classi�er design in machine learning 1
1.2 Decision Zones and Decision Boundaries 2
1.3 Visualizing Decision Boundaries 3
1.4 Research Questions 7
1.5 Thesis Structure 9

2 related work 11
2.1 Machine Learning 11

2.1.1 Logistic Regression 15
2.1.2 Support Vector Machines 17
2.1.3 k-Nearest Neighbors 20
2.1.4 Random Forests 23
2.1.5 Neural Networks 26

2.2 Visual Analytics for Machine Learning 30
2.2.1 High-Dimensional Data Visualization 31
2.2.2 Dimensionality Reduction 34

2.2.2.1 LAMP: Local A�ne Multidimen-
sional Projection 37

2.2.2.2 t-SNE: t-Distributed Stochastic
Neighbor Embedding 39

2.2.2.3 UMAP: Uniform Manifold Approxi-
mation and Projection 40

2.2.3 Inverse Projection Techniques 42
2.2.3.1 Inverse LAMP 43
2.2.3.2 RBF based Inverse 44

2.2.4 Visual analytics techniques for classi�er engi-
neering 45
2.2.4.1 Class-centric techniques 46
2.2.4.2 Observation-centric tech-

niques 46
2.2.4.3 Architecture-centric tech-

niques 48
2.2.5 Conclusions 49

3 deep feature extraction evaluation 51
3.1 Introduction 51
3.2 Problem Context 51
3.3 Deep Feature Extraction 52
3.4 Experiment Setup 53
3.5 Datasets and Networks 55

xi

contents

3.5.0.1 Kaggle’s National Data Science
Bowl 56

3.5.0.2 ImageNet 57
3.5.1 CNN MODELS 58

3.5.1.1 AlexNet 58
3.5.1.2 Deep Sea’s Model 59

3.5.2 Feature extraction 59
3.5.2.1 Deep features 59
3.5.2.2 Shape Features 60

3.6 Classi�er Evaluation 60
3.7 Discussion and conclusion 63

4 constructing decision boundary maps 67
4.1 Dense maps 68
4.2 Decision Boundary Map Construction 71

4.2.1 Parameter setting 73
4.2.2 Implementation details 75

4.3 Experimental results 75
4.3.1 Segmentation dataset 75
4.3.2 MNIST dataset 77

4.4 Discussion 80
4.5 Conclusion 82

5 evaluating decision boundary maps 83
5.1 Preliminaries 84
5.2 Experiment Setup 85
5.3 Analysis of Evaluation Results 87

5.3.1 Phase 1: Picking the Best Projections 88
5.3.2 Phase 2: Re�ned Insights on Complex

Data 91
5.4 Discussion 93

6 inverse projections for decision boundary
maps 97
6.1 Inverse Projection by Neural Networks 98
6.2 Experiments and Results 99

6.2.1 Scalability in training and inference 100
6.2.2 Quantitative Assessment of Quality 101
6.2.3 Qualitative Assessment of Quality 102

6.3 Discussion and Conclusion 104

7 visual refinements of decision boundary
maps 107
7.1 Projection Filtering 108
7.2 Distance-enriched Dense Maps 111

7.2.1 Image-based Distance Estimation 112

xii

contents

7.2.2 Nearest-neighbor Based Distance Estima-
tion 113

7.2.3 Adversarial Based Distance Estimation 114
7.2.4 Visualizing Boundary Proximities 115

7.2.4.1 Enridged Distance Maps 117
7.3 Discussion 118

8 end to end evaluation 123
8.1 Semi Supervised Learning 123
8.2 Visual analytics for semi supervised learning 125
8.3 Manual labeling experiments 128

8.3.1 Classi�ers description 128
8.3.2 Datasets description 129
8.3.3 Experimental set-up 131

8.4 Manual labeling results 132
8.4.1 Comparison with automatic labeling 134

8.5 Discussion 138

9 conclusion 141
9.1 Deep Feature Extraction Evaluation 141
9.2 Decision boundary maps 142
9.3 Impact of direct projections on DBMs 142
9.4 Impact of inverse projection on DBM formation 143
9.5 Visual re�nements of DBMs 143
9.6 End to end application 144
9.7 Future work 144

bibliography 147

curriculum vitae 161

acknowledgments 163

xiii

1I N T R O D U C T I O N

1.1 classifier design in machine learning

Machine Learning (ML) is a branch of the Arti�cial Intelligence �eld
whose main objective is to create algorithms that induce models, i.e.,
learn, from data. ML methods are showing huge success when solving
problems in many application areas such as medical diagnosis [62, 72,
109], recommendation systems [103], text classi�cation [128], games
[133], facial recognition [94], among many others. Recently, approaches
known as deep learning achieved breakthrough results when solving
hard computer vision problems [50], in special image classi�cation [73].

Traditionally, machine learning tasks are divided into three major
types [2]: supervised learning, reinforcement learning and unsuper-
vised learning. Supervised learning uses labeled data, that is, data sam-
ples which have additional information associated to them. A successful
algorithm in supervised learning must learn how to imitate the labeling
process. In general, this process is done by presenting a set of exam-
ples (multidimensional vectors) and the expected output (label), the so-
called training set, to the algorithm. Thus, a supervised learning method
seeks for the model that optimally �ts this mapping of points to labels.
In unsupervised learning, the job of the algorithm is to induce a model
from interactions with an environment. The idea is that good decisions,
that is a series of actions that lead the system to a desirable state, are
rewarded, while bad decisions are punished. Finally, unsupervised learn-
ing uses unlabeled data as input. In this case, the methods seek to �nd
so-called structural characteristics of the data, such as clusters or its
generative distribution.

Supervised learning can also be further split into two types of prob-
lems: classi�cation and regression. In classi�cation problems, the labels
are discrete; labels usually have categorical values; and the set of possi-
ble labels is small. In regression problems, labels are in general contin-
uous quantities. Another possible classi�cation of ML techniques sepa-
rates them into active versus passive learning. While a passive learner
builds its knowledge from the information given to it, an active learner
may query the user at training time, asking, for example, for the user to
label certain dubious data samples [129].

This thesis mainly focuses on supervised learning, speci�cally on
classi�cation problems. In this context, the training phase of a ML al-
gorithm can be usually reduced to the optimization task of �nding a
function д in a set of hypothesis H that minimizes a certain error mea-
sure for the training set. A learning algorithm is successful when the

1

introduction

model obtained from it can be used to make inferences on new data,
not originally part of the training set. To estimate how a predictor will
behave in practice, i.e. when applied to solve a real world problem, it is
a common practice to evaluate error on a so-called test or validation set,
which is not used during the training.

1.2 decision zones and decision boundaries

A classi�er training process can be seen as dividing the high-
dimensional data space into so-called decision zones. All samples from
a given zone will be seen as similar, in the sense that they receive
the same label. Such decision zones are separated by so-called deci-
sion boundaries. These are, in general, curved surfaces embedded in
the high-dimensional space. Figure 1.1 illustrates the above concepts.
Figure 1.1(a) presents a simple two-class 2D toy dataset composed of
red squares and blue circles. Figure 1.1(b) shows a non-linear deci-
sion boundary (black curve) that partitions this space into two decision
zones, corresponding to the red, respectively blue areas. The objective
of a classi�er algorithm is to �nd this border so that (a) all training sam-
ples, represented by the squares and circles Figure 1.1(a), fall within
the correct decision zone; and (b) unseen (test, validation) samples, not
available during the training phase, will also fall within their correct
respective decision zones.

A successful training of a classi�er can, thus, be seen as a process
that leads to the construction of the “correct” decision boundaries (or
decision zones, given that the former imply the latter and conversely).
However, doing this is a fundamental open problem in machine learning
for a number of reasons. Not exhaustively, these include

• a �tting problem: Given a labeled training set and a classi�er
model, how can one tune the internal parameters of the model
so that decision zones emerge that precisely contain all samples
of each class in the same decision zone? This is relatively easy to
do when the number of classes is small, and when their training
samples are well separated in the data space – that is, same-class
samples are close to each other, while di�erent-class samples are
far away from each other. Simple classi�ers such as logistic re-
gression have limited freedom herein, since their decision bound-
aries are by construction hyperplanes. However, such classi�ers
are simple to train since they have few parameters. Slightly more
complex classi�ers, such as k-nearest neighbors (kNNs) are very
similar with respect to their decision boundaries, as these corre-
spond to the faces of an-dimensional Voronoi diagram in the data
space whose sites are the labeled samples. Conversely, more com-
plex classi�ers such as neural networks [76] have massive free-
dom in creating very complex decision boundaries, which can be

2

1.3 visualizing decision boundaries

curved piecewise-manifold surfaces embedded in the data space.
However, such classi�ers are more complex to train since they
have thousands up to millions of parameters. In general, it is far
from clear how to actually control the training process of a clas-
si�er so that it creates decision boundaries there where they are
needed to obtain maximal accuracy on the training set;

• a generalization problem: Even for the favorable cases where one
can train a classi�er to optimally partition samples from the train-
ing set, it is far from clear whether the so-constructed decision
surfaces will perform well on unseen test and/or validation data.
When this is not the case, a process of �ne-tuning of the classi�er
kicks in. Such a process involves many operations, such as tuning
the training parameters and the so-called hyperparameters of the
model itself; and changing the training set by adding, deleting,
or changing samples and/or their labels. This tuning process can
be tedious, lengthy, and is not guaranteed to converge to a good
result.

(a) (b)

Figure 1.1: Simple toy dataset with two-class samples (a). A possible boundary
decision a classi�er might have induced from this training data (b).

1.3 visualizing decision boundaries

As we have seen in the previous section, the (successful) training of a
classi�er is intimately related to the process of constructing the correct
decision boundaries. However, as also explained there, the complexity
of this process is intuitively proportional with the complexity of
the decision boundaries. In the above, we can roughly partition clas-
si�ers (and the above-mentioned challenge) into two classes, as follows.

Explicit boundaries: These are classi�ers whose models are simple
enough so that one can compute, and reason about, their decision

3

introduction

boundaries in an explicit way. For instance, linear classi�ers induce
from a n-dimensional dataset, a n-dimensional hyperplane that splits
data space into regions. Given a data point in this space, the question
of to which class it belongs could be answered simply by checking
whether this point lies to one side or the other of the hyperplane.
Moreover, the con�dence of classi�cation can be well approximated by
the distance of the point to its closest hyperplane boundary, something
which is simple to compute and reason about analytically. The same
can be said about other simple classi�ers such as kNNs, given that one
can explicitly compute, and reason about, following their underlying
Voronoi diagram model: Given a new data point, it will be assigned the
same class as the point closest to it in the training set. However, the
decision boundaries of such simple classi�ers are also very limited in
their �exibility to “squeeze between” complex distributions of labeled
samples present in the data space so as to successfully partition them.

Implicit boundaries: Formally speaking, even complex classi�ers
such as neural networks do create explicit decision boundaries. The
problem is that one cannot extract an analytical formulation of such
boundaries, as that would involve complex equations having thousands
up to millions of parameters (the network weights), which also do not
have an intuitive meaning. Hence, the decision process used by the
classi�er is not simple to understand. For instance, it can be challenging
for a user to understand why two apparently similar data points (i.e.,
having similar coordinates in the data space) were assigned di�erent
labels – that is, why a decision boundary “squeezed through” these
two points. Even though, formally, a decision boundary is explicitly
computed by the classi�er, in practice, one can only implicitly assess
where this boundary is, by evaluating the classi�er with samples (e.g.,
test and validation) and seeing which labels are produced. Hence,
we cannot (easily) reason analytically about the decision boundaries
for such models in the same way we could for the explicit decision
boundaries of simpler classi�ers. In the �eld of machine learning,
such models are commonly regarded as black boxes, given the di�-
culty to explain the logic behind some of their decisions in simple terms.

The black-box nature of deep learning models is highly related to how
they are trained. Take image classi�cation tasks as an example. While
a “classic” image classi�cation pipeline requires manually designed fea-
tures to be de�ned, current deep learning approaches take images di-
rectly as input and output a class label. In this case, features are implic-
itly learned during training process and they may not match exactly
domain experts de�nition [166]. In other words, classic methods would
require a user to specify what patterns the classi�er should seek for,
e.g., roundness, corners, or speci�c textures; while deep learning mod-
els are trained in a end-to-end fashion, de�ning as the process unfolds

4

1.3 visualizing decision boundaries

which features are important. Understanding decision boundaries is, for
the deep learning case – or more generally, for cases where the input
features are numerous and/or not easy to reason about – additionally
challenging.

Given the above mentioned challenges of complex classi�ers, which
do not allow one to analytically study their decision boundaries, how
can we approach this problem?
Visualization is a �eld of Computer Graphics that seeks to convey

into images information about data. Visualization is mainly focused on
creating insightful �gures that help users understand and even discover
new patterns and behavior present in a given dataset. More generally, vi-
sualization aims to leverage the user’s visual system ability to recognize
complex patterns to solve data-related problems that cannot be easily
mapped to explicit queries or analyses suitable to computer automation.

Visualization is traditionally divided into two operational sub�elds:
Scienti�c visualization (SciVis) focuses on addressing problems related
to data which is spatially embedded in two or three dimensions and
comes from continuous processes such as measurements of physical
quantities. SciVis has shown huge success, being vastly applied on
data from medical science, civil engineering, geosciences, and physics
[54, 150]. Information Visualization (InfoVis) focuses on addressing
problems related to data which is either embedded in high-dimensional
spaces, or which does not even have a spatial nature [90]. Moreover, In-
foVis data can be of more than the quantitative type covered by SciVis
– its data values can be of any type, e.g., ordinal, integral, categorical,
text, images, video, or relations. Such datasets include social network
feeds, and news (text data), hospital patient data, software quality met-
rics, and business data (tabular data), information �ows in a network,
�ight destinations, subway maps, and software systems structure (rela-
tional data). In general, handling InfoVis data is considered harder than
handling SciVis data, given its typical non-spatial nature, high dimen-
sionality, and mix of attribute types

Figure 1.2: Tensor�ow visualization of decision boundaries for a simple neural
network classi�er for 2D two-class data. See Sec. 1.3.

5

introduction

Visual analytics (VA) builds up on techniques from SciVis and Info-
Vis by creating interactive methods and tools to allow users to explore
a complex data space and underlying hypotheses (questions) [69, 152].
Key to VA is the exploration process: Simply put, while both SciVis and
InfoVis o�er tools and techniques where users can interactively change
various parameters to create di�erent views of the data, VA places this
exploratory process, and its support by interactive tools and techniques,
in the center. As such, VA solutions are, in general, speci�c to a given
problem and application, aiming to provide both tools and work�ows,
i.e., procedures that empower users to obtain the answers to their prob-
lems by methodologically following an iteration of hypothesis posing,
(in)validation, and re�nement steps.

Given the challenge of training classi�cation models for cases where
boundaries cannot be computed and/or reasoned explicitly about; and
given the power of InfoVis for helping users to reason with complex,
high-dimensional, and abstract data – characteristics that our ML clas-
si�cation data fully share – we advocate that it is interesting to consider
InfoVis and VA for depicting, explaining, and understanding such deci-
sion boundaries.

The added value of visualization for this task is illustrated by Figure
1.2, generated with TensorFlow [138]. Here, a simple two-dimensional
dataset is considered. In this dataset, points are of two classes, and the
goal is to train (and understand) a neural network classi�er for this data.
The actual points in the training set follow a checkerboard pattern, as
shown by the orange and blue points in the visualization at the right.
A simple two-hidden-layer neural network is used to learn a classi�-
cation model from this pattern. The image to the right shows, in the
background, a coloring of the two-dimensional data space by the labels
that the classi�er would assign to every (x ,y) possible data point in
this space. As visible, this shows the apparition of two decision zones
– a compact one for the blue label and one consisting of two blobs for
the orange label, respectively. The two zones nicely contain the training
samples of the two classes, i.e., the classi�er has maximal accuracy on
the training set. Besides that, activation maps are displayed as thumb-
nails for all units in all layers, showing which class label these would
produce for any possible data point. Additionally, users can vary the ar-
chitecture, training and test data, and hyperparameters of the network
interactively and see how the visualization changes.

Figure 1.2 is a good example of how one can use visualization of the
decision boundaries and decision zones to understand the operation of a
classi�er. Unfortunately, the underlying techniques used to produce this
visualization are not generalizable to data higher than two dimensions,
nor is the visualization clearly scalable for datasets having thousands
of samples or more. This example, and the previous considerations out-
lined in this section, leads us to the formulation of our main research
questions described next.

6

1.4 research qestions

Classification

model

User

Decision boundary maps (1)training and test data

insights adapt
training data (2A)

adapt
training
process (2B)

Figure 1.3: Work�ow of this thesis capturing its two research questions – visu-
alizing the decision boundaries (1) and creating a VA loop for gath-
ering insight to improve training (2A,2B). See Sec. 1.4.

1.4 research qestions

In this thesis, our focus is on developing new visualization and visual
analytics techniques speci�cally suited for understanding and improv-
ing ML classi�ers. Our �rst research question can be thus stated as:

How to use information visualization and visual analytics to get more
insight into a classi�er’s operation and performance?

There are many ways in which the operation of a classi�er can
be thought of. Similarly, performance of a classi�er can be measured
by many di�erent metrics [139] and subject to many parameters, e.g.,
the size, quality, and distribution of samples in the training and test
sets, and setting of the many hyperparameters of the underlying
model. However, in our work, we focus on the link outlined in
Sec. 1.3 between a classi�er’s operation and the decision boundaries it
constructs. Speci�cally, we further re�ne the above question to become:

How can we depict the decision boundaries of a classi�er and use these
to understand its operation and performance?

Answering the above question helps the users of a classi�er to under-
stand why, for instance, a classi�er performed well (or not) in a given
situation, that is, a given pair of training and test sets and a given setting
of its hyperparameters. Information visualization is the key enabling in-
strument for answering this question, as we will need to create explicit,
visual, depictions of the high-dimensional and complex decision bound-
aries, decision zones, and related quantities, e.g. the distance of samples
to their closest decision boundaries. Simply put, answering this ques-

7

introduction

tion aims to create, for any dataset and classi�cation problem, images
as simple as the ones shown in Fig. 1.1b. Figure 1.3(1) outlines this re-
search question: We start with training and test data, and create a clas-
si�cation model. Next, we visualize its decision boundaries to get more
insights in its operation.

However, in the case classi�er performance is not optimal, the
natural goal is to next try to improve this situation. Hence, we state
our second research question as follows:

How to use visual analytics, supported by decision boundary visualiza-
tions, to improve a classifer?

Visual analytics will also play an important role in answering this
question (see also Fig. 1.3(2)): Based on the visual representation pro-
posed by the answer to the �rst question (step (1) in the �gure), we
will add interactive mechanisms to inspect classi�cation problems, sug-
gest their causes (hypotheses), and allow the user to iteratively explore
several alternative solutions to these problems, such as changing the
training data (step (2A) in the �gure) and/or changing the model’s hy-
perparameters (step (2B) in the �gure), so as to ultimately leading to an
improved classi�er.

We aim to answer our research questions in the broadest possible
sense. This adds several so-called non-functional requirements (to use
a well-known terminology in requirements engineering) to the func-
tional ones related to depicting decision boundaries and using this in-
formation to understand and improve a classi�er. These non-functional
requirements are as follows:

• Generality: Our solutions should be applicable to the widest pos-
sible family of classi�er techniques.

• Genericity: Re�ning generality, we ideally want to treat a classi�er
as a functional “black box” that receives training and test data and
outputs a sample labeling. That is, our solutions should not need
to know the internals and/or implementation details of a speci�c
classi�er technique. This way, we can apply them easily to satisfy
the generality requirement.

• Ease of use: Our solutions should be easily deployable and usable
by users who have only limited knowledge of machine learning,
no speci�c knowledge of the internals of a particular classi�er
technique, and no intimate knowledge of information visualiza-
tion technicalities.

• Scalability: Our solutions should scale well, both computationally
and in terms of the screen size required to display the results, to
datasets containing tens of thousands of samples (or more), each
having hundreds up to thousands of dimensions.

8

1.5 thesis structure

• Replicability: Our results should be easily replicable by interested
users. This imposes subsequent constraints on their ease of use,
description of their parameter setting, and availability of third-
party components of our end-to-end pipeline, such as classi�ca-
tion technique implementations.

As we shall see starting with Chapter 4, answering our research ques-
tions under these assumptions will introduce additional technical and
conceptual challenges that need speci�c algorithms and techniques to
be developed to be addressed.

1.5 thesis structure

Following the two research questions outlined in Sec. 1.4, we structure
the remainder of this thesis as follows:

Chapter 2 presents the necessary theoretical background on machine
learning, information visualization, and visual analytics that are rele-
vant to our work. This chapter also discuss existing visualization tech-
niques that have machine learning in their focus, outlining limitations
thereof that we will aim to alleviate.

Chapter 3 presents a typical ML scenario in which one wants to de-
velop a good classi�er for a speci�c dataset, starting from a pre-trained
model on di�erent data. The main contribution of this chapter is the
comparison of how di�erent Deep Neural Networks used as feature ex-
tractor impact classi�cation accuracy. The material in this chapter also
serves as a concrete illustration for the types of di�culties that machine
learning practitioners face when trying to understand, and further tune,
“black box” classi�ers, and hence supports the claims for the added value
of exploring the visual analysis of decision boundaries which are ex-
panded on further in the thesis.

Chapter 4 presents the idea of computing and depicting the inferred
decision boundaries of any given classi�er by a dense, or image-based,
approach. Two possible directions to achieve this objective are dis-
cussed, and one of them is chosen upon re�ections on strengths and
weaknesses of both with respect to the non-functional requirements
outlined at the end of Sec. 1.4. The output of this technique is an im-
age called a Decision Boundary Map (DBM), that explicitly depicts the
continuous nature of the actual decision zones and their decision bound-
aries that a classi�er implicitly constructs during its training.

Chapter 5 explores in detail the DBM concept and idea introduced
in Chapter 4. Speci�cally, since the computation of DBMs depends cru-
cially on the choice and parameterization of so-called dimensionality re-
duction techniques, or projections, we explore here empirically which
such techniques provide the best results for DBM computation for a
range of datasets and classi�er models. The chapter concludes propos-

9

introduction

ing good con�gurations for the DBM computation process which we
will use next in our work.

Chapter 6 explores a second (and last) technical aspect of the DBM
computation, namely the use of inverse projection methods. Together
with the (direct) projection methods, whose e�ect is discussed in Chap-
ter 5, inverse projections equally a�ect the quality and computational ef-
fort required to create DBMs, thus directly relate to our non-functional
requirements. We explore here the suitability of several inverse projec-
tion methods known in the literature for DBM computation and outline
their limitations. Considering these, we also propose a novel method for
computing inverse projections based on deep learning which has favor-
able quality and speed properties as compared to existing methods, and
can be also used in any generic inverse projection task. We compare our
method with existing ones for the task of computing DBMs.

Chapter 7 re�nes the basic DBM model introduced in Chapter 4 (and
further re�ned in Chapters 5 and 6). While the previous two chapters fo-
cused on computational aspects of DBMs, we now focus on their visual
presentation. Speci�cally, we propose a set of mechanisms to increase
the amount of information displayed by DBMs by highlighting regions
and distances on these maps that serve various tasks related to under-
standing the behavior of a classi�er model. Hereby, we conclude our
addressing of the �rst research question, which covers Chapters 4 to 7.

Chapter 8 addresses the second research question by proposing a
visual analytics tool that uses the DBMs created with techniques pre-
sented in the previous chapters to support the process of improving a
classi�er. Our tool and underlying methodology allow detecting clas-
si�cation problems on the DBM, determining the order in which the
user may want to address these problems, and subsequently perform
user-driven labeling to create a better training set. We demonstrate the
working and added value of our VA approach on several classi�cation
problems involving real-world data.

Finally, Chapter 9 presents a brief summary of our contributions and
how they are related to each other to attempt answering the two re-
search questions proposed above. We close this chapter, and the thesis,
by proposing directions for future work.

10

2R E L AT E D W O R K

In this chapter we present a summary of the theoretical background re-
quired for this thesis, as well as related works which aim at a similar
objective to ours, that is, the use of visualization to support the under-
standing (and improvement) of machine learning classi�ers as outlined
in Chapter 1. In Section 2.1 we give the basic de�nitions related to Ma-
chine Learning that we are going to use throughout this thesis. Besides
that, a brief explanation of the main classi�cation techniques that we
use in the remaining of this thesis is presented. Next, in Section 2.2
we discuss information visualization techniques for machine learning.
In particular, we dedicate attention to Dimensionality Reduction (DR)
and Inverse Projection (IP) techniques, which are fundamental to the in-
terpretability of a model. We dedicate special attention to several such
techniques, such as t-SNE and UMAP, as these are the ones most fre-
quently used in the other chapters of the thesis. Similarly, we explain
in detail two inverse projection methods, as they will be referred to in
Chapter 6 when we compare our novel inverse projection method to
them.

2.1 machine learning

This brief summary of supervised machine learning is not intended as
a complete reference, instead its purpose is to contextualize di�erent
techniques that will be needed in the next chapters. For a complete back-
ground on machine learning, we refer to standard textbooks in the area
[2, 16, 129].

As mentioned in Chapter 1, classi�ers are part of a branch of
supervised learning that attempts to induce a mapping from data
points to labels.

Preliminaries: Formally put, let D a dataset of N ordered pairs (xi ,yi),
i.e. D = {(x1,y1), . . . , (xN ,yN)}, generated by a real or simulated phe-
nomenon modeled as a distribution P (y |x). The set of observations,
or samples, is denoted as X = {x1, . . . , xN }, where xi ∈ Rn , and n
can be tens, up to thousands, of dimensions. Each such observation
xi = (x1

i , . . . ,x
n
i) can be thus seen as a n-dimensional feature vector.

We call x ji , with 1 ≤ j ≤ n the jth attribute, or dimension, or variable,
of point xi . The sets Xj = {x ji }, 1 ≤ i ≤ N , are called the attributes, or
dimensions, of the entire set of samples X . Hence, X can be represented
as a data table with rows corresponding to observations xi and columns

11

related work

corresponding to the attributes Xj , respectively. For each observation
xi , a label yi can be attributed to it accordingly to distribution P (y |x).
Let Y = {y1, . . . ,yN } be the set of samples’ labels.

As outlined in Chapter 1, for classi�cation problems, these samples
take values typically in a categorical set whose values indicate the
di�erent classes (types) of samples. The goal of supervised learning is
to �nd a function д : X → Y , that best approximates the outcomes
of P (y |x) from the �nite dataset D. The search for д is performed by
a learning algorithm on the space of the Hypothesis Set H, in general
guided by an error measure computed on the candidate functionsh ∈ H.

Error measures: An error measure gauges how well д represents
the outcomes of P (y |x). An error function can be de�ned for the
whole dataset, and denoted hence as E (д(X),Y), or alternatively in
a point-wise fashion, denoted as a function e (д(xi),yi). Supervised
machine learning algorithms will seek for a function that minimizes
the error, often also called loss or cost. Besides guiding the learning
algorithm on the exploration of H, error measures also serve the
purpose of evaluating model’s performance.

Performance measuring: For classi�ers, a measure of performance
that is similar to computing the error over a �nite dataset is accuracy.
Accuracy of a classi�er is simply the count of correct guesses over the
total number of samples in the dataset, i.e. Acc = 1

N
∑N

i=1~д(xi) = yi �,
where ~·� is one ifд(xi) = yi and zero otherwise. While accuracy is sim-
ply the percentage of correct guesses, error functions in general depend
of the computation of probabilities and may not be as easy to grasp. As
such, accuracy values are simpler to interpret, and used more often to
understand, classi�ers than the respective error values.

Although an error function computed on D guides the search for
the best model, a machine learning program is useful if it is capable of
making correct inferences when applied in a production environment,
specially on new, unseen, data. In other words, in machine learning we
are interested in �nding a model that will generalize to samples outside
the training set. A simple algorithm that memorizes every entry in
D would not be interesting even with E = 0.0, as the out of sample
error will most likely be high, i.e. this model would not generalize. In
practice, error measured on the set of samples using for training is not
completely useless, as the memorization algorithm just mentioned is
not practical, and is still used to estimate a model’s performance.

Training, testing, and validation: When the performance measured
in production of a trained model does not re�ect the error obtained dur-
ing training, we say over�tting has occurred. That is, the model works
very well on the training data, but generalizes poorly on di�erent data.
A common approach in machine learning to avoid over�tting is to split

12

2.1 machine learning

D into two sets, one for training and another for testing. As the samples
in the test set were not seen by the model during the training phase,
computing the error or accuracy on this set serves as a better proxy to
the true classi�er error expected in production mode.

A slight variation of the above is to split D into three sets: training,
validation and test. In this setting, a model is trained using the samples
from training, but di�erent hyperparameters or con�gurations can be
experimented with, reporting the achieved accuracies or error values
on the validation set. This dataset partition can be used even to compare
and choose between di�erent models. When the best con�guration is
chosen, the �nal model is trained again using all the samples from both
training and validation sets and �nal accuracy or error is then reported
on the samples from the test set, which were not used before.

A generalization of this technique is called cross validation. Cross
validation consists in partitioning a dataset D of size N into K sets
of sizes N

K , which is known as K-fold cross validation. In this setting,
there are K con�gurations in which one of those sets is left out for
validation, and the remaining K − 1 sets are used to train a model.
The set left out is used to evaluate performance (accuracy or error)
for each con�guration, and since there are K of them, a good out of
sample performance can be estimated averaging their values. In one
extreme scenario with K = N , sets of one element are set up, leading
to a good out of sample accuracy estimate. However, this leave one
out strategy is impractical due to the computational resources needed,
thus in general, 3 ≤ K ≥ 10 is a commonly chosen value. Such cross
validation strategies seek to balance the search performed by the
learning algorithm to minimize error in the data by estimating the
true expected error the model will present when applied in real scenar-
ios. Hence, cross validation techniques aim at improving generalization.

Regularization: Besides cross validation, another heuristic commonly
employed to prevent over�tting is regularization. Regularization con-
sists in limiting the search for candidate functions in the hypothesis
set H, allowing to train on a space of complex, i.e. �exible, functions,
but avoiding candidates that would over�t to the training data. Ar-
guably, the most usual path to implement a regularization mechanism
into a learning algorithm is by adding a penalty term to the error func-
tion in order to prevent undesirable con�gurations, as Enew (д(X ,Y) =
Eold (д(X),Y) + λR (д), where R (д) is the regularization term and λ a
weight to gauge the importance of regularization to the task. An usual
example of such a restriction during the training phase of a parametric
model is enforcing the preference for simpler candidate functions by
penalizing large parameter values. In this type of scenario, that is, in-
ducing a parametric model д(x) that depends on parameters w, a com-
monly applied regularization is R (д) = wTw. By penalizing large values
of w, simpler models are expected to be inferred as some elements of

13

related work

the vector of parameters will be too small or even zero. Intuitively, reg-
ularization can be seen as adding a certain “sti�ness” to the function
learned by the model, so as to balance between �tting well the train-
ing data, but allowing su�cient �exibility to approximate well the test
(unseen) data.

Two other types of regularization mechanisms that are commonly
used in ML, in particular when training neural networks, are early
stopping and dropout [141]. Early stopping can be used for iterative
methods and consists in monitoring the error on a validation set at
each iteration, and halting the training if this error starts to increase.
Highly adaptable and �exible models could still decrease the error
on the training set, but if the validation error increases, then the
model must be over�tting to the training data. The second heuristic
mentioned, dropout, consists in removing each neural network’s node,
with a probability 1 − p, at each training iteration. In this setting,
the parameter associated with that node will not be updated in this
training phase, but the node will be reinserted into the network in the
next iteration. During testing, or deployment, each node output will be
weighted by p, the probability that the node would not be removed in
any given iteration.

Choice of techniques:At this point, we revisit our main research ques-
tion introduced in Sec. 1.4. As stated there, we aim to use visualization
to get insight into a classi�er’s operation and performance. Also, we
aim to do this in a general and generic fashion, i.e., without having
to rely upon implementation details or knowledge of the operation of
speci�c classi�cation techniques. However, during this process, we will
also need to test our proposed solutions, and for this purpose we need
to choose a number of classi�cation techniques. While, in theory, any
subset of the universe of all possible classi�cation techniques would do
for testing, we prefer a reasoned selection in order to better assist our
testing task. Speci�cally, we will choose classi�er techniques to test our
visualization solutions against based on the following criteria:

• Relevance: We aim to include techniques which, albeit not among
the modern state-of-the-art, are well battle-tested, deployed, and
known in the ML community. Simple techniques will also help us
in understanding how our visualizations works. Indeed, since for
such techniques, we do have a good understanding of the decision
boundaries they create, as outlined in Sec. 1.3, we can use this
“ground truth” knowledge as a way to gauge our visualization
results.

• Variation: We aim to include techniques that use very di�erent
underlying implementations, rather than using many instances
of the same type of technique (e.g., di�erent architectures of a
deep learning model). This way, we arguably “sample” the uni-

14

2.1 machine learning

verse of classi�cation techniques better, and thus test our visual-
ization proposals more exhaustively.

• Replicability: We aim our work to be readily replicable, both in
terms of reproducing the results of our experiments, but also
allowing interested users to set up similar pipelines using the
same software implementations of e.g. classi�cation techniques
(see the replicability requirement in Sec. 1.4). Hence, we fa-
vor classi�cation techniques that exist as part of well-known,
well-documented, publicly available, ML libraries, such as scikit-
learn [104] and Keras [23].

Based on the above requirements and rationale, we have selected sev-
eral classi�cation techniques to investigate next in our work. These are
described in detail in the following. We order these in increasing order
of their complexity – that is, start by the arguably simplest techniques
and end by the more complex, but also more powerful, ones.

2.1.1 Logistic Regression

Linear models are functions of the form l (x) = wT x. In this section, we
assume that x is a bias-augmented vector, that is, x = (1, x′)T , where
x′ is original feature vector in the dataset and the �rst coordinate of
w is the bias, or independent term. Where w is a vector of real-valued
parameters induced by the learning algorithm. Such functions de�ne a
hyperplane in which every point x that satis�es l (x) = 0 lies on it. In
addition, one can check whether x lies to one side or another of this
hyperplane by evaluating the signal of l (x). In this case, the simplest
classi�cation rule possible for a two-class problem with labels −1 and
+1, would be given by the function

д(x) =

−1, if l (x) < 0;

+1, otherwise.
(2.1)

Such classi�cation rule imposes a hard threshold on the linear com-
bination of model’s parameters and input values. A smoother version,
more used in practice, outputs class probability values in the range [0, 1].
Intuitively put, such probabilities describe how certain the model is that
a given sample is of a given class. Logistic Regression is likely the best
known probabilistic model of this type. For this type of learning method,
the hypothesis set H is composed of functions of the form θ (wT x),
where θ : R → [0, 1] is de�ned as θ (s) = es

es+1 is a logistic function
and e is Euler’s number. As stated earlier in Sec. 2.1, the objective of

15

related work

supervised machine learning is to approximate P (y |x). For that, we can
use the function h(x) just described, leading to the probability

P (y |x) =

θ (wT x) for y = 1;

1 − θ (wT x) for y = −1.
(2.2)

Given that we assume class labels to be either +1 or −1 and noting
that 1 − θ (x) = θ (−x), Eqn. 2.2 can be compactly written as

P (y |x) = θ (ywT x).

Hence, the probability of correctly assigning labels to every sample in
a �nite dataset is given by

N∏
n=1

θ (ywT x). (2.3)

Thus, to �t the best model according to the logistic regression rules
just presented, it is necessary to �nd the set of parameters w that max-
imize the product in Eqn. 2.3. This is equivalent to minimizing the fol-
lowing expression:

1
N

N∑
n=1

ln

(
1

θ (ynwT xn)

)
. (2.4)

Replacing the logistic function de�ned earlier in Eqn. 2.4, an error func-
tion for a Logistic Regression learning model can be de�ned as

E (w) =
1
N

N∑
n=1

ln
(
1 + e−ynwT xn

)
. (2.5)

The parameters w that minimize the error function in Eqn. 2.5 can
be found with ease applying standard optimization methods. The usual
choice in this context is to apply gradient based methods, such as Gradi-
ent Descent, or Stochastic Gradient Descent. As the gradient of a func-
tion is a vector that points to the direction of greatest increase, those
methods consist in iteratively updating the set of parameters towards
the opposite direction of the gradient of the error function, e�ectively
minimizing the error. Such methods are capable of returning global min-
imum of a convex function, as is the case for LR error function. When
the function is not convex, the absolute minimum value is not guaran-
teed to be found, i.e., a local minimum point is found (we return to that
on Sec. 2.1.5, when discussing Neural Networks). We refer to [18] for a
more extensive explanation of gradient methods, in special Stochastic
Gradient Descent, in ML.

16

2.1 machine learning

Arguably, Logistic Regression’s key added values are its simplicity of
implementation and ease of understanding how it operates. Basically,
for two-class problems, we can think of it as drawing a hyperplane that
best separates samples of the two classes, according to a probabilistic
de�nition of separation. Using this intuition, we can also immediately
see the limitations of this technique – namely, the fact that it cannot
separate (well) more complex sample distributions. Nevertheless, the
method’s simplicity and intuitiveness make it an ideal candidate for test-
ing our visualization methods introduced later in this thesis.

2.1.2 Support Vector Machines

Support Vector Machine (SVM) is a popular linear classi�er frequently
used in practice. While a Logistic Regression model seeks for param-
eters that maximize a probability measure, SVM employs a geometric
approach and seeks for the parameters that lead to the hyperplane that
best separates data. In this sense, the best separating hyperplane is the
one that maximizes the distance it is placed to the data points. Intu-
itively, the larger the distance from the separator plane to the nearest
data points the more robust the model is to noise and errors in general.

We use next a slightly di�erent notation from Sec. 2.1.1 in order to
simplify the presentation, making the bias term b of the parameters ex-
plicit. We de�ne a hyperplane as h = (b,w), where w is a normal vector
to the hyperplane, and any point x′ that lies on the plane must satisfy
wT x′ + b = 0. The distance between any point x and the hyperplane
h can be computed as the scalar projection of the vector (proj) x − x′,
where x′ is any point that lies on the surface of the hyperplane. Thus,
this distance can be computed as

dist(x,h) = proj(x − x′) w
‖w‖

=

���w
T (x − x′)���
‖w‖

=

���w
T x + b���
‖w‖

. (2.6)

Assuming −1 and +1 as class labels for a two-class problem, and using
Eqn. 2.6, we can write the distance from any data point xi to the hyper-
plane h as

dist(xi ,h) =
yi (wT xi + b)
‖w‖

A hyperplane that completely separates a dataset into two sets of
points having di�erent labels is such that yi (wT xi + b) > 0 for ev-
ery pair (xi ,yi) ∈ D. This inequality can be modi�ed by normalizing
the hyperplane’s parameters (w and b). In particular, one can normal-
ize a hyperplane to ensure that yi (wT xi + b) ≥ 1. This can be accom-
plished by modifying the weights as follows: Let v > 0 be the smallest
value of wT xi + b among all data points, create another hyperplane

17

related work

h′ = (b/v,w/v). In this case h and h′ are equivalent regarding classi�-
cation rules, i.e., checking whether samples fall on one side or the other
of the hyperplane, but now the smallest value of the signal wT xi + b is
1.

Considering such normalized hyperplane, the distance of the closest
data point to it is given by

dist(x,h) = 1
‖w‖
. (2.7)

Thus, �nding the hyperplane that separates the dataset and such that
it is of maximum distance to the closest point is equivalent to maximiz-
ing the quantity in Eqn. 2.7. The maximum-margin separating hyper-
plane can be similarly found solving the minimization problem

minimize
b,w

1
2w

Tw

subject to yn (wT xn + b) ≥ 1.
(2.8)

The formulation in Eqn. 2.8 assumes that data is linearly separable.
For non-separable datasets, the problem above can be reformulated by
introducing so-called slack variables ξi ≥ 0 that allow a number of data
points to violate the separability condition yi (wT xi + b) ≥ 1 − ξi . This
way, the minimization problem can be written as

minimize
b,w,ξ

1
2w

Tw +C
N∑
n=1

ξn

subject to yn (wT xn + b) ≥ 1 − ξn
ξn ≥ 0

(2.9)

In Eqn. 2.9,C is a user-de�ned parameter that controls the amount of
separability violation that is acceptable.

Optimization problems may be viewed from two closely related per-
pectives: a primal problem and a dual problem. In general, the solution
for the dual problem provides a lower bound to the primal. The solution
for the primal optimization problem posed in Eqn. 2.8 and its dual ver-
sion are equivalent, that is, the hyperplane obtained from one of them
is exactly the same that would be obtained from the other. Consider de
canonical quadratic minization problem below:

minimize
u

1
2u

TQu + pT u

subject to aT u ≥ c,

18

2.1 machine learning

which is equivalent to the following:

minimize
u

1
2u

TQu + pT u +max
α ≥0

α (c − aT u),

where α is the Lagrangian multiplier. The problem above can be com-
pactly written as:

min
u

max
α ≥0

L(u,α), (2.10)

where L(u,α) = 1
2u

TQu+ pT u+α (c − aT u) is the Lagrangian function.
Hence, the Lagrangian dual formulation for the linearly separable

SVM presented in Eqn. 2.8 is:

L(b,w,α) =
1
2w

Tw +
n=N∑
n=1

αn (1 − yn (wT xn + b)).

From Eqn. 2.10, we have that we must minimize L with respect to b
and w and maximize it with respect to α . By deriving and setting the
derivatives to zero, we obtain the following Lagrangian:

max
α ≥0

L(α) = −
1
2

N∑
m=1

N∑
n=1

ynymαnαmxTnxm +
N∑
n=1

αn . (2.11)

Solving this maximization problem will return the optimal parameters
α , which can be used to obtain the hyperplane parameters w and b.

The dual formulation for SVM allows non-linear transformations to
be easily perfomed, thus resulting in a non-linear classi�cation rule,
through the technique known as the kernel trick. Notice that Eqn. 2.11
depends on the dot product xTnxm and hence one can use kernel func-
tions to obtain non-linear separating hyperplanes. A kernel function
has the following form

Kϕ (x, x′) = ϕ (x)Tϕ (x′),

where ϕ is a non-linear transformation function. The main bene�t of
using the kernel trick is that the actual transformation does not need to
be computed. For instance, consider the following non-linear transfor-
mation

ϕ (x) = exp(−x2) *
,
1,

√
21

1!x ,
√

22

2!x
2,

√
23

3!x
3 . . . +

-
19

related work

it is not feasible to be computed in practice, as it is an in�nite dimen-
sional transformation. However, the inner product between two vectors
that would be transformed to this space can be obtained e�ciently as

Kϕ (x, x′) = exp
(
−γ ‖x − x′‖2

)
.

Hence, the dual formulation of SVM enables for the application of the
kernel trick, allowing non-linear data classi�cation in a computationally
e�cient manner.

Overall, Support Vector Machines can be seen as generalizing the
hyperplane separation idea of Logistic Regression models by using a
di�erent de�nition of what a “good” separation hyperplane is, based on
the minimal separation distance. While a discussion of the exact di�er-
ences is not within our scope, one intuitive way to summarize these is
to note that Logistic Regression uses all the samples equally to deter-
mine the placement of the hyperplane. In contrast, for Suppot Vector
Machines the only data points that a�ect how the method induces the
hyperplanes are the ones closest to it, i.e. the so-called support vectors.

In our context, we consider Support Vector Machines as a good can-
didate for testing our visualization proposals for the same reasons we
included Logistic Regression – namely, intuitive understanding of the
algorithm, presence in the ML literature and practice, and readily avail-
able implementations.

2.1.3 k-Nearest Neighbors

Di�erent from the two previous classi�ers presented, k-Nearest Neigh-
bors (kNN) is a nonparametric learning model. While Logistic Regres-
sion and SVM go through an optimization process to �t a set of param-
eters that are combined with data points to form a classi�cation rule,
thus are regarded as parametric models, kNN does not depend on such
parameters to be used on its classi�cation function. Instead, the classi�-
cation function depends on distances computed in data space, returning
the label common to the majority of its k closest samples in the dataset.
For k = 1, such a classi�cation rule induce a known tessellation of data
space known as Voronoi diagrams [15]. Simply put, the ndimensional
space in which the samples (called sites in Voronoi terminology) exist
is split into convex polyhedra, called cells. Each cell contains a single
sample. Cell faces are hyperplane segments (polygons) that are at equal
distance between two samples. That is, all points within a cell are closest
to that cell’s site than to any other sites in the dataset.

Figure 2.1 illustrates Voronoi diagrams. The �rst image (a) shows a
2D site-set (white points) and their corresponding cells, color-coded
for clarity. The visualization is created by an open-source code sam-
ple [145]. Brightness is modulated at every point to re�ect the distance

20

2.1 machine learning

a) b)

c) d)

Figure 2.1: Examples of 2D Voronoi diagrams. a) Classical diagram of a point set.
b) Generalized diagram of a set of complex sites (in white), with dia-
gram in black and distance �eld color mapped. c) Classical diagram
with its multiplicat-weighted distance counterpart (d).

to the closest site. In detail, let S be the site-set we consider. The function

DTS (x) = min
y∈S
‖x − y‖, (2.12)

also called the distance transform (DT) of point y, gives the 2D Euclidean
distance between from x to the closest site in S [25]. Note that here
y ∈ R2, which is di�erent from y a discrete class label used before. This
site is given by the so-called feature transform of the set S

FTS (x) = arg min
y∈S

‖x − y‖. (2.13)

The image (a) shows, at each pixel, the values of FTS color-coded cate-
gorically, and the values of DTS encoded by pseudo-shading. In detail,
DTS is passed through a transfer function to construct an e�ect sim-
ilar to di�usely-illuminated equal-radii spheres which are centered at
the sites as viewed from above. While not exactly encoding DTS , ev-
ery Voronoi cell is thereby rendered as a convex shaded cushion, which
allows one to easily visually separate adjacent cells. Shaded cushions

21

related work

know a long history in information visualization [155] for the visualiza-
tion of various types of partitions of, and structures embedded in, 2D
space [146, 148, 159]. We shall use variations of shaded cushions in our
visualization proposals in Chapter 7. Classical Voronoi diagrams, that
is, computed by using standard Euclidean distance to the site-set, can
be created by computational geometry methods [15], but also by image-
based techniques [60, 142].

However, such diagrams are not directly re�ecting the context of
kNN classi�ers. Indeed, for these classi�ers, the actual decision zones
would not be the same as the cells of a classical Voronoi diagram, since
each such cell corresponds to the in�uence area of a single sample.
Rather, we need to consider Voronoi cells that are created by a collec-
tion of all sites having the same labels. This corresponds to so-called
generalized Voronoi diagrams, where sites can be arbitrary collections
of points or even higher-order primitives (curves, surfaces) embedded
in some space. Figure 2.1(b) shows such a generalized Voronoi diagram.
Here, the sites are the structures marked in white, which correspond to
curves describing the furniture placed in a building, including the build-
ing’s walls. The corresponding Voronoi cells, computed by the image-
based method in [142], are the curves drawn in black. As visible, these
are (far) more complex than the straight lines that delimit Voronoi cells
in classical diagrams. A second complication implied by the decision
boundaries of kNNs is that k is typically set to values higher than 1. The
corresponding Voronoi diagrams created by this extension have, thus,
more complex shapes, and a more complex interpretation. Attempts to
visualize such diagrams have been made [148]; however, their visual
complexity still remains very high.

Voronoi diagrams can be generalized also in other respects besides
the de�nition of their sites. Two well-known generalizations replace
the Euclidean distance transform (Eqn. 2.12) by additively-weighted, re-
spectively multiplicatively-weighted versions, where each site has a cor-
responding weight. These generalizations, known under the names of
Johnson-Mehl diagrams and Apollonius diagrams respectively [9], are
very relevant in the context of decision boundaries of kNNs, since such
classi�ers also typically use similar weighting in their construction. Fig-
ure 2.1 (d) shows the Apollonius (multiplicatively-weighted) diagram
corresponding to the classical Voronoi diagram in Fig. 2.1(c). The green
highlights in image (d) give the relative weights of the sites. As visi-
ble, this weighting causes cell boundaries to curve, yielding thus more
complex shapes.

All above show that, albeit having a simple de�nition, kNN classi-
�ers can create quite complex decision boundaries. Indeed, to the com-
plexities mentioned above, we should add the fact that kNNs work in
high-dimensional spaces, whereas all above examples discuss Voronoi
diagrams in 2D only. To our knowledge, there is no generic way to com-
pute such generalized Voronoi diagrams in any dimension – let alone

22

2.1 machine learning

to visually explore them. Hence, understanding the boundaries of such
classi�ers is clearly challenging.

For kNN classi�ers, k is the only user de�ned hyperparameter. The
decision boundaries induced by the method will be highly dependent
the chosen k . In one extreme setting, for k = 1, a model very suscep-
tible to errors due to noise or outliers will be inferred, while for larger
values of k smoother decision boundaries will be formed. For too large
k values, however, important information in the data might be ignored
as small data clusters might be ignored. Cross validation, as mentioned
earlier in this chapter, can be employed to assist the selection of this
hyperparameter.

The computational costs of kNN can be relatively high as distance
computations for large datasets of high dimensional data is expensive.
However, acceleration techniques exist here, which compute the ap-
proximate nearest neighbors (ANNs) [7]. Conceptually speaking, such
techniques trade o� a small user controlled tolerance ϵ when evaluat-
ing Eqns. 2.12 and 2.13. This allows them to e�ectively partition the
high-dimensional space into hierarchical structures such as BSP trees
or kd-trees. These can next be searched top-down to yield the k near-
est neighbors very e�ciently. This way, while formally speaking, the
kNN learning method has no “training” phase, the training costs can
be thought of being the costs required to build the search structures
for ANN. For more information of e�cient k nearest neighbors search
structures, we refer to recent surveys [156].

kNN is a simple yet very powerful classi�cation method for smooth
target functions, which same class points are clustered together. Ar-
guably the most common distance metric used with this method is the
Euclidean distance. Depending on the data, other similarity measures
might perform better, as they better re�ect data points relations in orig-
inal data space. As discussed in this section, kNN decision boundaries
have intimate connections to Voronoi diagrams and, for simple cases,
can also be visualized this way. Given these aspects, we included kNN
in the set of classi�er techniques we study next. In Chapter 7, we will
explore further the relation between distance transforms, feature trans-
forms, and the decision boundaries of such classi�ers.

2.1.4 Random Forests

Decision Trees (DT) are another type of nonparametric classi�ers. The
classi�cation rule employed by this model consists in traversing a tree
from the root to a leaf, where the class labels are stored. During the
traversal, each intermediate node, i.e. non-leaf nodes, in the path splits
input space at a certain feature according to a rule the controls what is
the next node to follow on the path. Arguably, the most common rule
for real valued features consists in thresholding, such as ~x ji < t�, where
t is the threshold, i is the index of the data point, and j is the index of

23

related work

a feature in a data point vector x. Another common rule, but for binary
(or categorical) features would be ~x ji = 1�. As x ∈ Rd , this kind of rule
is in fact partitioning input space along dimension i . Each path from
the root to a leaf node de�nes a unique region of data space, thus the
number of regions created by the DT method are equal to the number of
leaves in the tree. Trees with many leaves may over�t to the data as the
thresholding rules will be in fact memorizing the dataset and, in order
to avoid that, it is important to penalize large trees.

Figure 2.2: Simple representation of a Decision Tree. Internal nodes, which per-
form a decision, are represented by circles and leaf nodes, which hold
labels, are drawn as squares. A traversal in this tree moves to the left
if the condition is satis�ed, or to the right child if it is not.

As an optimal tree construction algorithm is unfeasible, several
heuristics, e.g. greedy search, are used that lead to acceptable perfor-
mances [129]. One example of such algorithms is Iterative Dicotomizer
3 (ID3), described in Algorithm 1, which seeks to repeatedly split the
dataset along the feature that has the most information gain (or entropy),
that will be reviewed after the algorithm presentation. ID3 is a recursive
algorithm that stops when either all samples in the dataset have the
same label, every feature has been split or there are no more samples
with respect to which split the dataset.

Information gain function can be computed using Shannon entropy:
E (Y) =

∑
y∈Y −p (y) logp (y), where p (y) is the probability of label y.

The idea is to measure the di�erence in entropy of the label distribution
after a certain feature is removed:

G (X ,Y, i) = E (Y) −
∑
v

P (x ji = v)E (Y | fi = v).

P (x ji = v) is computed by dividing the number of samples for which
the jth feature is equal to v by the total number of samples.

Due to the stop conditions de�ned, the algorithm above usually build
large trees, which leads to over�tting. To avoid over�tting a common
strategy is to prune the induced trees, reducing its size, traversing the

24

2.1 machine learning

Algorithm 1 ID3(D, A)
Input: Dataset D, index set of features A ⊆ [n]
Output: Node n of the tree
if yi = yj∀yi ,yj ∈ Y then
return leaf node n with label yi

end if
if A = ∅ then
return leaf node n with label argmaxk ∈C

∑
yi ∈Y~yi = k�

end if
if D = ∅ then
return leaf noden with same label as most common class in parent
node.

end if
G = InformationGain(XA) {//Find feature that maximizes informa-
tion gain}
i = arg maxG

i
{//Split dataset at that feature}

Dl = {(xij ,yj) ∈ D, x
i
j < t }

Dr = {(xij ,yj) ∈ D, x
i
j ≥ t }

A′ = {A \ {i}}
New node n
Left child of n is nl = ID3(Dl ,A

′)
Right child of n is nr = ID3(Dr ,A

′)
return n

tree multiple times starting from the leaves to the root, merging nodes
that would not a�ect the generalization error.
Random Forests is a classi�er that consists in combining a set of De-

cision Trees. The classi�cation rule outputs the label returned by the
majority of the individual trees when queried to label a data point, as
follows

h(x) = argmaxk ∈C
M∑
i

~DTi (x) = k�,

where M is the number of Decision Trees employed and C is the list of
all possible labels.

In order for the trees to induce di�erent models, a common strategy,
known as bagging in the literature, is to build them using di�erent train-
ing sets, randomly sampled from the original input dataset, and also dif-
ferent possible lists of available features for each of those sets. In this
strategy, di�erent trees will be constructed using di�erent data points
while also taking into consideration di�erent features for inference.

While it is easy to visualize and explain the decision process of a
single Decision Tree, it might be challenging to understand the �nal

25

related work

ensemble of classi�ers, which is the case for Random Forests. Hence
this model belongs to a potentially interesting area of classi�ers to be
inquired by the visualization methods.

2.1.5 Neural Networks

Neural Network models are conceptually inspired from the functioning
of a biological human brain and are based on the combination of neu-
rons as basic computing units. Analogous to their biological counter-
parts, the arti�cial neuron (the so-called perceptron) receives stimulus
(inputs) and might �re a reponse (output) according to its inner work-
ings (activation function).

Figure 2.3: Representation of a perceptron. An input vector xi is linearly com-
bined with a weight vector w and the output is return by a funtion
θ .

Figure 2.3 shows a basic neuron that outputs a signal y = θ (∑w j ∗

x ji) = θ (wT xi), where θ is an activation function1. Here, x =

{x1, . . . ,xn } is the n-dimensional vector containing the inputs x j of the
neuron, and w = {w1, . . . ,wn } is a corresponding weight vector. In
its basic form, the perceptron computes a linear model, as the Logistic
Regression discussed in Sec. 2.1.1 selecting θ as the logistic function,
or even the basic linear model presented in Eqn. 2.1. The classi�cation
power of a single perceptron is small, as it is a simple linear combi-
nation of parameters and inputs. However, perceptrons are capable of
inducing complicated and �exible decision boundaries when combined
into a computational graph (or network) in which the output of a given
neuron becomes the input of one or several other neurons.

At a basic level, perceptrons can be combined into a so-called Multi
Layer Perceptron (MLP), a model in which neurons are stacked into lay-
ers as in Fig. 2.4. An input data point x is said to be the input layer. The
last layer is called the output layer. All layers between input and output
are known as hidden layers. The decision rule is computed by feeding
the output of a given layer as input to the next, in a procedure known
as forward pass. As the number of neurons in each layer vary and based
on the choice of the activation function, each layer e�ectively performs
subsequent data transformations, even modifying the feature vector di-
mension in the path up to output layer.

1 As with Logistic Regression, we assume that x is a bias augmented vector.

26

2.1 machine learning

Figure 2.4: Graph representation of the computation carried out by a Multi
Layer Perceptron. Input layer l0 is a data point x, followed by k hid-
den layers l1, . . . , lk , and an output layer is lk+1, which returns the
classi�cation decision.

The forward pass, i.e., the decision rule, of a MLP model can be ef-
�ciently computed by consecutive matrix-vector multiplications. At a
certain layer l , let xl−1 be the input vector to layer l of dimensiondl−1+1,
that is, the bias-augmented output of the previous layer (l − 1). LetW l

be a matrix of dimensions dl−1 + 1 × dl , where dl is the number of neu-
rons in l . W l represents the weights that connect the outputs of layer
l − 1 to every unit in layer l , as the rows ofW represent a single output
unit from l − 1 (plus another row for the bias term) and the columns of
W are the neurons in l . With these notations, the output ol of layer l is
given by

ol = θ
((
W l

)T
xl−1

)
.

The bias-augmented input to the next layer l + 1 is then

xl+1 =

1
ol

,

hence, a MLP that is formed by k hidden layers, as in Fig.2.4, com-
putes a decision rule h(x) = Lk+1 (. . . (L2 (L1 (x)))) = y. We can see
the set of all parameters of this model in a vectorized fashion as w =
W 1,W 2, . . . ,W k+1. This notation allows us to compactly, and in accord
to previous sections, refer to an error function for this model as E.

A typical error function used to train di�erent Machine Learning
models, which is well suited for MLP, is the mean squared error (MSE),
de�ned as

E (w) =
1
N

N∑
n=1

(h(x) − y)2 . (2.14)

Similarly to the other methods discussed previously, the training al-
gorithm searches for the parameters w that minimize Eqn. 2.14 by gra-
dient based optimization. However, di�erent from Logistic Regression

27

related work

(LR) or SVM, the minimum possible error, i.e. global minimum, for a
given dataset is not guaranteed to be found as E (w) in Eqn. 2.14 is not a
convex function [24]. Hence, gradient based optmization methods will
likely �nd a set of parameters that lead to a local minimum for Neural
Networks, while the same methods can �nd the global minimum error
for LR and SVM due to the convex nature of the error functions em-
ployed. However, in practice, this is not usually a problem, as neural
network training algorithms can �nd weights that achieve reasonable
performance.
Backpropagation is the algorithm used to update the weights of a neu-

ral network during the training phase. As the output of a single percep-
tron depends on the output of the layer behind it, the backpropagation
algorithm consists in computing the partial derivatives of the errors
with regard to each weight by successively applying the chain rule. The
idea behind this algorithm is to compute the partial derivatives starting
from the output layer back to the input, performing a backward pass
that computes the partial derivatives of a layer l using those of layer
l + 1.

Besides MLP, other layouts (also called architectures) are possible
with Neural Networks. In particular, the so-called Convolutional Neu-
ral Networks (CNNs) are composed of convolutional layers, max pool-
ing layers, and regular fully connected layers. This type of architecture
achieved breakthrough performance on diverse computer vision tasks
and is now the standard tool for image classi�cation problems [73, 76].

A convolutional layer is composed of stacked masks that apply con-
volutions on the layer’s input to output a “�ltered signal” to the next
layer. In a simpli�ed setting, the parameters of a convolutional layer
are the number of �lters K , their size F , stride S and the amount of zero-
padding P . Stride controls how many units the mask will move when
sliding on the input volume, thus a stride of 1 will visit every input (e.g.,
pixel of an image), while a value of 2 of this parameter will skip one
pixel as the mask moves. The zero-padding parameter sets how many
pixels are added to the borders of the input dataset (with a value of 0).
Without zero-padding, the output is necessarily smaller than the input
since it is not possible to center a mask over every pixel. F determines
the width and height of the �lters, while their depth must necessarily
match the depth of the input to the layer.

The input to a convolutional layer is a volume, such as an image of
dimensions W × H × C , where W is the width, H is the height, and C
is the number of channels, e.g., 1 for grayscale images or 3 for color
(e.g., RGB) images, respectively. The output of a convolutional layer is
a volume of dimensionsW ′ × H ′ ×C ′, which is the transformed input

28

2.1 machine learning

layer by each of the K �lters stacked together. The dimensions of the
output volume can be computed as

W ′ = (W − F + 2P)/S + 1;
H ′ = (H − F + 2P)/S + 1;
C ′ = K .

A convolution is computed between the input and the weights of a �lter.
For a single input coordinate (i, j) of the image (or volume) space, the
output of a convolution is

д(w,h) =
K∑
l=1

F∑
di=−F

F∑
d j=−F

Ii+di, j+d j,lMdi,d j,l , (2.15)

where M is a certain mask and I is the input volume. Note that as the
input and the �lter have the same depth, we do not consider variations
across that dimension. A full convolution is the result of the application
of Eqn. 2.15 to every coordinate (i, j) of the input volume.

A max pooling layer is usually placed after a convolutional layer, or a
sequence of convolutional layers, and its objective is to reduce the size
of the feature maps. The parameters of a max pooling layer are its size
F and the stride S , similar to the parameters of a convolutional layer. In
this type of layer, a mask of size F × F is applied to each slice of the
volume along its depth, i.e. number of �lters K in the previous convolu-
tional layer. As the mask de�ned by the max pooling layer slides over a
slice of sizeW ×H , only the maximum value among the F × F features
under the mask is kept to the next layer, discarding the remaining. No-
tice that a max pooling layer does not contain any weight that will be
learned during the training phase of the network.

A depiction of the data transformation performed by the layers of
CNN is shown in Fig. 2.5. In this example, the input is a (grayscale) im-
age of a handwritten digit from the MNIST dataset [75]. Data is trans-
formed by consecutive layers until it is linearized into a feature vector.
From that point onward, regular fully connected layers can be applied
to compute a decision rule and output a data label in a classi�cation
scenario.

In the context of our work, neural networks are arguably the most
interesting ML model to study. The reason is two-fold: (a) they are state
of the art methods that deliver high-quality results for many challeng-
ing classi�cation and regression problems; and (b) these models are, in
general, typically seen as “black boxes”, due to the lack of interpretabil-
ity of their decision function. Opening this black box is seen as highly
valuable in a wide range of �elds [10, 35, 130, 170].

29

related work

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2.5: Data transformation performed by a CNN. Yellow volumes represent
the output of a convolutional layer. Red volumes are the output of
max-pooling layers. In this example, the network takes a grayscale
image as input (a) and the �rst convolutional layer transforms it into
a volume of stacked �ltered signals (b). After that, a max-pooling
layer reduces the size of the volume along two dimensions and out-
puts the new volume in (c). The sequence of convolutional and max-
pooling layers continue to perform data transformations (d) - (g) –
until the volume is “linearized” in (h).

2.2 visual analytics for machine learning

Information visualization has been largely applied to the visualization
and understanding of high-dimensional data. As such, it relates to our
context in two di�erent ways. First, since machine learning inherently
deals with high-dimensional data, visualization methods that generi-
cally enable users to see the structure of such data and reason about
it, are of evident interest. Secondly, more speci�c techniques have been
proposed in the visual analytics context for explaining and improving
classi�ers. At a high level, the second class of techniques can be seen as
relying upon, but also specializing, the �rst class.

We structure this discussion as follows. First, we brie�y overview in
Sec. 2.2.1 a number of general-purpose information visualization tech-
niques for high-dimensional data. While these techniques are used in
some applications related to machine learning, they are not the �rst
or most-encountered candidates for such tasks in practice. We explain
their limitations, and based on these, our reasons for not subsequently
considering them in our work. Section 2.2.2 introduces dimensionality
reduction techniques. These have several key advantages when dealing
with high-dimensional data, and thus form the mainstream of visual-
ization approaches used in machine learning. As such, we also chose
to base our visualization work next on techniques in this class. We ex-

30

2.2 visual analytics for machine learning

plain further in this section a few of the techniques in this class that
we further consider in our work. Section 2.2.3 presents a separate class
of techniques – inverse projections – which perform the inverse oper-
ation to dimensionality reduction. We outline several salient examples
of these techniques and explain how they can contribute to our visu-
alization goals. Finally, Section 2.2.4 presents specialized visual analyt-
ics techniques and tools designed to support tasks in machine learning
such as explaining and improving classi�ers.

2.2.1 High-Dimensional Data Visualization

In the preliminaries de�nitions for Machine Learning in Sec. 2.1, we
de�ned a high dimensional dataset D to be composed of pairs of obser-
vations (xi) and labels (yi). For visualization purposes, we refer to X as
our dataset of interest, and the de�nitions described earlier still apply.

High-dimensional data visualization is a subdomain of information
visualization (Infovis) which aims at creating visual depictions of such
high-dimensional datasets X [68, 80, 90, 150]. In general, and within
suitable simpli�cations required by a brief presentation, such tech-
niques can be classi�ed between two extremes, as follows. At one ex-
treme, dimension-centric techniques aim to explicitly encode the dimen-
sions Xj of X in the available visual space. Thereby, such techniques
support well tasks and questions which are intrinsically related to di-
mensions, such as �nding (groups of) strongly correlated dimensions,
seeing how the sample values change along a given dimension, and �nd-
ing extremal or outlier values of these values along one or more dimen-
sions. However, reasoning about speci�c observations is not (always)
easy with such techniques, since the observations are not (saliently) dis-
played by the visual representation. A very simple example of such a
technique would be a correlation matrix showing, for each dimension-
pair (i, j) ∈ [1,n] × [1,n] the Pearson correlation of Xi and Xj . We
can see these correlations explicitly, but we do not know how the ob-
servations contribute to them. At the other extreme, observation-centric
techniques do the opposite: They explicitly encode the observations xi
of X in the visual representation, but leave little space for explaining
their dimensions. These techniques, thus, support well tasks where rea-
soning about a speci�c observation is important. One simple example
hereof is a classical Excel table view: In this table, we can search for a
given observation (row) and fully see all its details. However, we cannot
(easily) reason about entire columns (dimensions).

In practice, high-dimensional visualization techniques are always in
between the above-mentioned two extremes. We next discuss three of
the most used, and best known, such techniques.
Table lenses [113] generalize the simple idea of Excel (or similar) ta-

ble views. Figure 2.6(a, left) shows such a table view in which several
tens of rows (observations) are displayed, each having seven attributes

31

related work

a) b)

c)

Figure 2.6: Examples of high-dimensional visualizations. a) Table view and its
corresponding zoomed-out table lens. b) Scatterplot matrix. c) Paral-
lel coordinates plot.

(columns). As explained above, such a detailed table view allows one
to precisely reason about the observations, but not much more. Fig-
ure 2.6(a, right) shows the underlying idea of a table lens. Simply put,
this is a zoomed-out view of the detailed view, where each row is shrunk
to become a single horizontal pixel line. In this design, cell text is no
longer visible. However, the actual cell values can be mapped to col-
ors and/or bar lengths. This way, essentially each column is reduced to
a line or bar chart. Hence, users can reason about entire dimensions
at a time, by seeing trends in the respective charts. For example, in
Figure 2.6(a, right), we can easily see that several columns show very
similar charts, thus have strongly correlated attributes. Conversely, the
leftmost two columns show opposite-pattern charts, thus, indicate in-
versely correlated attributes. The “lens” idea comes in next, by allow-
ing users to select a speci�c point (row) in the charts, upon which rows
close to that point are rendered atop the zoomed-out view to show de-
tails on demand. Table lenses scale very well to datasets of hundreds of
thousands of observations by using suitable aggregations of contiguous
table rows that would have otherwise subpixel size [149]. However, the
number of dimensions (columns) this technique can handle is limited to
roughly 10..20. Moreover, table lenses cannot easily show more complex
data patterns such as groups of samples (rows) that are similar.

32

2.2 visual analytics for machine learning

Scatterplot matrices [21], or SPLOMs, are closer to a dimension-
centric technique than table lenses. Simply put these use a small-
multiple design that creates a table of scatterplots, one for each pair
of dimensions (Xi ,Xj , with 1 ≤ i ≤ n, 1 ≤ j ≤ n. Figure 2.6b shows
such a scatterplot matrix for a n = 7-dimensional dataset. The table
allows one to see how each such dimension-pair is correlated (or not),
but also whether di�erent dimension-pairs exhibit similar correlation
patterns. Note that the displayed matrix is symmetric by de�nition so,
strictly speaking, displaying only its upper-triangular half, or the other
half, would be enough. However, SPLOMs are not very e�ective when
supporting observation-centric tasks. An observation, actually, does not
even have a clear visual identity in this metaphor, as it is represented by
a set of n2 points, one located within each SPLOM cell. While SPLOMs
have been further enhanced by various interaction and visualization
mechanisms [117, 163], their usage can become cumbersome when the
number of dimensions exceeds roughly d = 10. This poses a clear limi-
tation in the context of our work.
Scagnostics [154, 160] recognize the aforementioned problem of

SPLOMs and aim to address it, for large n, by explicitly searching,
among the set of all possible n2 scatterplots, for a small subset of “in-
teresting” ones. Upon �nding such plots, they are presented to the user
for further inspection. Interest can be de�ned, and computed, by using
many types of metrics, which essentially search for speci�c patterns
in the scatterplot, related to speci�c tasks that the user is interested
in [29, 77, 99]. Simple patterns include distributions close to lines (show-
ing thus strong direct or inverse correlations), clumpiness (showing the
presence of well-separated data clusters), or the presence of outliers.
However, such techniques have several limitations. One must, in gen-
eral, compute all n2 possible scatterplots to search for interesting pat-
terns, which is expensive. The detection of patterns is also far from be-
ing a trivial process. More importantly in our context, �nding patterns
which are spanned by more than a few dimensions, but do not appear
in any of the corresponding two-dimensional scatterplots, is problem-
atic [137]: If we are to search for such patterns, the search complexity
explodes; and even if we can �nd them, how to show them using scat-
terplots only? Several additional techniques related to scatterplots, and
thus scagnostics exist. Principal curves and their variations allow sim-
plifying a scatterplot distribution to a set of curves, thereby making de-
piction more compact and also allowing to search for structural patterns
in the data [47, 56, 97]. Summarizing the above, and especially given the
fact that we do not know which exact patterns we are looking for in the
high-dimensional data of our machine learning applications (to display
decision boundaries), we do not consider scagnostic techniques further.
Parallel coordinate plots [64], or PCPs, are the fourth and last type of

technique we discuss here. PCPs use a similar layout to table lenses (see
Fig. 2.6d): They create n vertical axes, one per dimension, and use the

33

related work

values of x ji to place points along these axes for all samples. Next, they
connect all values x ji for a given sample xi to depict this sample as a
polyline. The overall design allows several analyses. First, one can look
at each axis j to see the distribution of values along Xj , or compare sev-
eral such axes to reason about their distribution di�erences. More inter-
estingly, the rendered polylines show patterns describing relations be-
tween dimensions. For instance, an X-like pattern, as visible in Fig. 2.6d
between the leftmost two axes, indicates a strong inverse correlation.
Parallel-line patterns, such as between the two axes in the middle of
the image, indicate a strong direct correlation. In contrast to SPLOMs,
reasoning about speci�c observations is easier in PCPs, as these can
be directly selected or brushed over to examine them – such as the
observation marked in red in the �gure. Despite these features, PCPs
also have limitations. Just as table lenses, they cannot show more than
roughly 10..20 dimensions. Moreover, ordering dimensions is necessary
to be able to examine correlation patterns between adjoint dimensions
in the visualization. Finally, PCPs can easily create clutter since every
observation takes signi�cant screen space. Given our work context, we
also do not see how PCPs could be leveraged to reason about patterns
formed by multiple observations together, beyond those such a simple
correlations and similar, and thus we do not consider PCPs further.

Figure 2.7: Using projections in machine learning. From a high-dimensional
dataset (left), a projection (right) is created using the independent
data attributes (features). Next, one can color map the dependent
data attribute (class label) to see how the features succeed (or not) to
predict it.

2.2.2 Dimensionality Reduction

Interesting problems often involve high-dimensional data, such as im-
age recognition (where every pixel represents a value along one dimen-
sion) or medical task related to genomic data, where millions of com-
binations are possible. Even trivial tasks, such as hand written digit

34

2.2 visual analytics for machine learning

recognition (MNIST [75]) from 28 × 28 pixels grayscale images already
requires the handling of 784-dimensional data.

The curse of dimensionality is an important concept for every task
that handles data in high-dimensions. As the number of dimensions
grow, our human intuitions are no longer (fully) valid, since a �nite
set of samples can only sparsely cover a high-dimensional data space,
as its volume grows exponentially with the number of dimensions n.
Moreover, the computational power needed to train ML models also in-
creases with the number of dimensions. As the complexity of many al-
gorithms depends on the number of dimensions, high dimensional data
also poses a problem due to scalability.

Although most real problems are high-dimensional, the samples are
often restricted to a small region of data space. Consider the example of
MNIST dataset cited above, where the set of samples are contained in
a 784-dimensional space, i.e. xi ∈ 255784, only a small fraction of all the
possible points in this space are valid digits.

One approach to handle such a scenario is through the use of dimen-
sionality reduction techniques. The basic idea is to transform data from
a high dimensional space into a lower-dimensional one, while keeping
important properties from the original space in the new space. Formally
put, given a set of N n-dimensional samples X , we want to create an
identical-size set P (X) = {yi }, 1 ≤ i ≤ N , where each sample yi ∈ Rm

is embedded within a (far) lower dimensional space, that is, m � n.
In the above process, it is very important to mention that there is a
one-to-one correspondence of original and low-dimensionality samples,
i.e., yi corresponds to xi . This can be denoted by writing yi = P (xi).
When referring to a dimensionality reduction context, we denote the
set Y = {y1, . . . , yN } as the set of samples in a lower dimensional space,
di�erent from Sec. 2.1 where Y was a set of labels. With that we aim at
preserving the notation used most commonly by dimensionality reduc-
tion community.

Here, P can be seen as the dimensionality-reduction (DR) operation,
also called sometimes multidimensional projection. Note, however, that
this notation does not imply that the projection of yi can be solely com-
puted by knowing xi . Rather, we can speak, in functional terms of the
entire dataset P (X) being computed by projecting the entire dataset X .

Making inferences in this new, low-dimensional, space should be eas-
ier as the dimensionality is lower, since computing various characteris-
tics of the data is easier. A particular instance of this statement refers
to visualization. Indeed, when m ∈ {2, 3}, we can directly draw P (X),
e.g., as a scatterplot. Then, by visualizing this scatterplot, we can �nd
(hopefully) patterns which exist in the high-dimensional space and the
projection operator P managed to preserve.

In our context, projections are particularly interesting instruments.
Figure 2.7 illustrates this schematically. Consider a high-dimensional
dataset, represented by the table left in the image. Assume this table has

35

related work

n+1 columns, wheren columns represent the data features, and the �nal
column represents the class labels, such as present in a training or test
set. The n feature vectors can be used to generate a projection, such as
shown on the right. Assuming that the projection technique P used for
this will preserve data structure – which typically means that samples
which have similar feature vectors are projected close to each other –
the projection can help us with two main tasks. First, if we see groups,
or clusters, of points forming in the projection, it means that the data
is not uniformly distributed in the high dimensions, but rather consists
of sets of clusters too. This is already an important unsupervised ma-
chine learning insight: Indeed, if the data (as represented by its feature
vectors) were uniformly distributed in this space, then it would not be
likely that we can use the respective features to “split” the data into dif-
ferent classes. Secondly, we can color the projection by the values of the
class attribute (column). If we, next, see that clusters of points (in the
projection) have the same color, it means that the respective samples,
which are similar given their feature vectors, are of the same class, and
hence the feature vectors are likely suitable to predict the class attribute.
Conversely, if we see that such clusters consist of a mix of colors, the
respective features may have trouble in building a good classi�cation
model. By extension, seeing a few “outlier” points – having one color
but surrounded by many points of a di�erent color – indicates us po-
tential classi�cation problems. Finally, plotting the actual misclassi�ed
points atop of such a projection allows us to reason about which data
attributes these have and how these may have caused problems to the
classi�er. These, and other, scenarios have been recently examined in
recent literature [114–116]. In particular, Rauber et al. [115] show that
projections can be used as good predictors for the ease of constructing a
good classi�er from a given training set. The idea is further developed
in [13], who show how projections can be used to improve an existing
classi�er by semi-supervised training.

Hence, given all above observations, we deem projections to be the
most suitable method for further exploring for our research goals. Also,
at this point, we can further connect our speci�c visualization aims –
depicting decision zones – to the projection metaphor. Consider again
Fig. 2.7. If, as in that �gure, we observe that our machine learning
dataset projects into a set of well-separated clusters, and coloring these
by the class labels inferred by a trained classi�er shows compact same-
color point groups, it is clear that the decision boundaries fall some-
where in between these colored groups. However, projections – depicted
as class-label-colored scatterplots – do not explicitly show where such
boundaries occur, leaving this task to the intuition, and largely imagina-
tion, of the user to place them in the blank space between points. As we
shall see starting from Chapter 4, our goal will be to construct and ex-
plicitly visualize such decision boundaries atop of, and using, projection
scatterplots.

36

2.2 visual analytics for machine learning

In the past decades, tens of projection techniques have been proposed.
These are discussed in detail in several surveys [27, 36, 48, 61, 83, 91, 110,
140, 164]. These surveys have emerged from various �elds, such as data
science, statistics, machine learning, and information visualization. As
such, they cover di�erent aspects, such as proposing taxonomies to clas-
sify projection techniques according to their underlying algorithms and
models; ways to de�ne and measure the errors created by projections;
types of patterns that speci�c projection techniques are good at cap-
turing; and assumptions about the input high-dimensional data these
techniques expect. It is impossible, and arguably of little use to summa-
rize these �ndings and relate them to our concrete research context.

Rather, for choosing which dimensionality reduction we will next use
in our work, we will consider a separate recent survey [37]. In this sur-
vey, the authors analyze 44 actual implementations of projection tech-
niques against 20 datasets, using six di�erent quality metrics from the
literature. The presented experiments, done by performing extensive
grid searches over the projections’ hyperparameters, provide several
important insights in the quality, and computational complexity, of the
respective algorithms. Following their analysis, we selected next three
projection techniques to consider in our research work. These are de-
scribed next.

2.2.2.1 LAMP: Local A�ne Multidimensional Projection

Local A�ne Multidimensional Projection (LAMP) [66] is a parametric di-
mensionality reduction method that aims at preserving in the lower
dimensional embedding the Euclidean distance observed between the
points in the original, high dimensional, data space.

To accomplish this, LAMP algorithm constructs an a�ne mapping for
each of the high-dimensional data points xi by using a set of so-called
control points. Control points are a small subset of the entire dataset
that is already be projected. More formally, we denote the set of con-
trol points as XS = {xS1 , . . . , x

S
k }, XS ⊂ X . Let YS = {yS1 , . . . , y

S
k },

YS ⊂ R2, be the projections of XS . These projections can be constructed
by any suitable method, be it one of the multidimensional projection
techniques known in the literature, or even by having the user manually
place the points in YS in the 2D space to re�ect perceived similarities.
The key idea of LAMP is that constructing a projection for the control
point set XS is much easier (and/or faster) than constructing a projec-
tion for the typically far larger dataset X . Hence, LAMP “extrapolates”
the control-point projection YS to project the entire dataset X , by an
a�ne mapping.

37

related work

For every point x, LAMP de�nes an a�ne mapping of the form
fx (p) = pM + t. The matrix M and the vector t are found by solving
the following optimization problem

minimize
M,t

k∑
i=1

αi
fx (x

S
i) − y

S
i)

2

subject to MTM = I

with αi =
1

x
S
i − x

2 .

(2.16)

Hence, for each point x to be projected, the objective of LAMP is to �nd
a mapping that best matches the projection done for the set control
points XS , weighted by the distances from x to each control point.

As shown in the original publication [66], the minimization problem
in Eqn. 2.16 is equivalent to the minimization problem below

minimize
M

k∑
i=1

αi x̂iM − ŷi2

subject to MTM = I

with x̂i = xi −
∑k

i=1 αixi∑k
i=1 αi

,

ŷi = yi −
∑k

i=1 αiyi∑k
i=1 αi

.

(2.17)

After M is found by solving the optimization problem in Eqn. 2.17,
the projection of a given point is obtained as

P (x) = *
,
x −

∑k
i=1 αixi∑k
i=1 αi

+
-
M +

∑k
i=1 αiyi∑k
i=0 αi

. (2.18)

LAMP can be modi�ed to work as a local projection method by re-
stricting the number of points from the control set XS used when in-
ducing M . For this, a common choice is to consider in Eqn. 2.18 only a
(small) number of the nearest control points to the current point x to
project.

LAMP is an easy to implement and relatively fast method, as the min-
imization problem can be solved by employing Singular Value Decom-
position (SVD). However, the fact that LAMP relies on the projection
of a control point set can be a problem. If the control point set XS does
not describe well the total dataset X to be projected, then LAMP may
create a poor quality projection. This can happen, for example, when
X samples a much larger region of the high-dimensional data space

38

2.2 visual analytics for machine learning

than XS . This issue is not unique to LAMP; all other projection meth-
ods based on control points (or landmarks) su�er from the same lim-
itation [22, 91, 132]. Interestingly, recent projection methods based on
deep learning also exhibit the same limitation [40]. The analogy here is
that a learning algorithm can extrapolate the information learned from
a training set only up to a maximal “distance” to this training set.

A second important ingredient of LAMP is the assumption of an in-
verse projection method, i.e., a mapping from a point y ∈ R2 to a point
x ∈ Rn that would project at (or close to) y. We discuss this inverse pro-
jection separately in Sec. 2.2.3.1, as inverse projections will be central
to our own work in visualizing decision zones.

2.2.2.2 t-SNE: t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) [82] is a nonpara-
metric, nonlinear projection technique based on minimizing the di�er-
ence between the distributions of data points similarity in high and
low dimensions. That is, similarities inferred for the 2D space must
be as close as possible to that of the original nD data space. This
method is popular and frequently employed for the visualization of
high-dimensional datasets due to its underlying neighborhood preser-
vation property, that is, it is likely that neighbor points in nD will be
projected closely in 2D. As a consequence, if one has a dataset in which
reasonably well separated sample clusters exist (in Rn), then t-SNE will
create a projection in which these clusters also appear well separated.
t-SNE has few hyparameters, from which perplexity is the most impor-
tant one, as discussed next.

In the t-SNE algorithm, data similarity in Rn is computed for each
pair of data points xi and xj . In detail, the method computes the prob-
ability that xi picks xj as its neighbor, sampled from a Gaussian distri-
bution centered at xi and of standard deviation σi as

pj |i =
exp

(
−

xi − xj

2
/2σ 2

i

)
∑

k,i exp
(
− ‖xi − xk ‖2 /2σ 2

i

) ,

where pi |i = 0. The parameter σi is computed based on perplexity π
which is a hyperparameter of the method de�ned by the user. First, pj |i
is computed for a prede�ned value σi . The next step consists in �nding
σ values that satisfy

π = 2
∑
j pj |i log2 pj |i . (2.19)

The σi values are found by solving Eqn. 2.19 by numerical methods, e.g.,
using bisection.

After this step, a symmetric version of the similarities is computed as

pi j =
pj |i + pi |j

2n .

39

related work

Similarity for the projected data P (xi) is separately modeled by a Stu-
dent’s t-distribution

qi j =

(
1 + yi − yj

2)−1

∑
k,l

(
1 + yk − yl 2)−1 , (2.20)

As for the similarity of the high-dimensional points, qii = 0 and qi j =
qji .

Having now de�ned similarities of points in the high-dimensional
space and in the 2D projection, the aim is to construct a mapping that
minimizes di�erences between them. This di�erence is measured by
computing the Kullback-Leibler divergence between the respective dis-
tributions of P and Q , i.e.

KL(P | |Q) =
∑
i

∑
j

pi j log
pi j

qi j
. (2.21)

To minimize this di�erence, t-SNE starts from a random initial state, or
random projection Y = {y1, . . . , yn }, and next iteratively updates the
projected points yi by moving them downstream in the gradient of the
cost function (Eqn. 2.21).

In contrast to other projection techniques, t-SNE is strictly used for
data visualization rather than dimensionality reduction from n dimen-
sions to some other number of m � n dimensions. The reason for this
is that the similarity model used for the projected points (Eqn. 2.20) is
speci�cally tailored to two (maximally three) dimensions, so as to repel
dissimilar data points while grouping similar ones in the projection.

As mentioned, t-SNE’s strongest point is the ability to depict the pres-
ence of well-de�ned clusters of similar samples, when such clusters ex-
ist in the high-dimensional data. However, an important drawback of
the method is the di�culty to �nd a good value for the perplexity π ,
which can strongly depend on the input dataset. Also, t-SNE is rela-
tively computationally expensive. Still, we weigh t-SNE’s advantages as
being larger than its limitations, and therefore consider it in our work
in visualizing decision boundaries.

2.2.2.3 UMAP: Uniform Manifold Approximation and Projection

UniformManifold Approximation and Projection (UMAP) [87] is a dimen-
sionality reduction technique based on the theoretical framework of al-
gebraic topology. In contrast to t-SNE, presented in the previous section,
UMAP is suitable for general dimensionality reduction. Also, UMAP
can be used to create projections with out-of-sample capability. That is,
UMAP can learn a mapping from Rn to R2 (rather than a projection of
a single dataset X to P (X)), which can then be used to project multiple
datasets, or multiple versions of the same dataset.

40

2.2 visual analytics for machine learning

While discussing the theoretical foundations of UMAP is outside the
scope of this thesis, we present next a brief description of the algorithm.
Similarly to t-SNE, UMAP induces a representation of the high dimen-
sional input dataset X based on a similarity measure d : X × X → R+.

The algorithm starts by computing for each data point xi ∈ X its k
nearest neighbors NN i

k = {xi1 , . . . , xik } with respect to the similarity
measure d , where is k a hyperparameter of the algorithm.

For each xi , let

ρi = min
xij ∈NN i

k

{d (xi , xi j)},

be the minimal distance d between xi and its nearest neighbors.
Similar to t-SNE, UMAP aims to numerically �nd the value σi that

satis�es

k∑
j=1

exp *.
,

−max
(
0,d

(
xi , xi j

)
− ρi

)
σi

+/
-
= log2 (k).

Using ρi and σi , a weighted directed graph Ḡ = (V ,E,w) is constructed.
The vertices are the samples from the input dataset X . Edges are created
from each xi to its neighbors in NN i

k , with edge weights computed as

w (xi , xi j) = exp
(
−max(0,d (xi , xi j) − ρi)

σi

)
.

Note that Ḡ is a directed graph. To symmetrize the problem, an undi-
rected graphG is computed using the adjacency matrixA of Ḡ. We refer
to the adjacency matrix of G as B, which is computed as

B = A +AT −A ◦AT , (2.22)

where M ◦ N denotes the pointwise product between matrices M and
N . The projected points yi are now computed as the layout, i.e. vertex
positions, of the graphG, represented by the matrix B in Eqn. 2.22. In de-
tail, yi are initialized randomly and next iteratively updated according
to attraction and repulsion rules.

Similarly to t-SNE, UMAP can produce projections that exhibit
clearly separated visual clusters for data points which are separated in
the high-dimensional space. The method is computationally less expen-
sive than t-SNE, has easy-to-set parameters and, as already mentioned,
has the out-of-sample capability, which is important when one wants to
project the same (or related) dataset(s) multiple times and compare the
projections. A more detailed comparison of t-SNE and UMAP is given
in [37, 87]. Given all above, we also consider UMAP, along with LAMP
and t-SNE, in our work next.

41

related work

2.2.3 Inverse Projection Techniques

In Sec. 2.2.2, we presented the overall idea of projections as functions
which associate to every point x in the high-dimensional space a corre-
sponding point y = P (x) in the low-dimensional space. Given this func-
tional view, an interesting (and natural) question comes: Can we de�ne,
and compute, an inverse function P−1 that, given a point y in the low
dimensional space, returns the point x that would have projected to y
by using the mapping P? Or, putting it simpler: What would be the table
row, in Fig. 2.7, that would correspond to any 2D point selected in the
right image?

Before explaining why inverse projections are useful, it is important
to understand that, in the above, we cannot speak about an inverse func-
tion, in the strict mathematical sense of the word, for several reasons.
First, certain projection techniques do not propose a mapping from the
Rn to the low-dimensional Rm space, but a mapping from the high-
dimensional dataset X to the low-dimensional scatterplot (thus, also
dataset) P (X). When X changes, the mapping P changes too. Stronger,
even when the same projection algorithm is run several times on a given
dataset X , non-parametric algorithms can generate di�erent scatter-
plots P (X), subject to various stochastic initializations. Examples hereof
are LAMP and t-SNE, discussed earlier. Hence, if we aim to compute an
inverse by considering any point y ∈ Rm , we actually need a map-
ping between the spaces Rm and Rn . Graphically put: If we select to
inversely-project a point y that corresponds to empty space in the scat-
terplot in Fig. 2.7, there is no actual data sample that P projected there.
Hence, P−1 will have to somehow interpolate between the actual data
samples inD. Secondly, projection techniques do not need to be injective
mappings: It is very well possible that, given two points x1 ∈ X , x2 ∈ X ,
x1 , x2, these get projected in the same location, i.e., P (x1) = P (x2).
Principal Component Analysis (PCA) [67] is a simple example of an al-
gorithm that can generate such issues. Hence, when considering P (x1),
what should be its inverse?

Regardless of the fact that we cannot formally de�ne P−1 as an inverse
function of P , the inverse idea can be de�ned in a weak sense. That is,
given a projection P of a dataset D, an inverse projection should, ideally

• associate, for every y ∈ P (X), the point x ∈ X that projected
there (if such a single point projected at that place) or, more
loosely, a suitable blending (interpolation) of all points in X that
project at, or close to, y;

• behave in a continuous, interpolating, fashion. That is, a point
y′ ∈ Rm which is close to several points y ∈ P (X) should in-
versely project close to the points x ∈ X , where y = P (x).

Within the above weak de�nition of inverse projections, such tech-
niques have a number of uses. For example, assume a projection where

42

2.2 visual analytics for machine learning

each point visually depicts a high-dimensional data instance, such as a
shape. Clicking somewhere close to a set of existing shapes, e.g. in the
middle of their respective scatterplot points, would generate, by inverse
projection, a shape that suitably blends to the existing shapes projected
there. This type of technique can be very e�ective for generating ad-
ditional data from a given, �nite-size, dataset [124]. Similarly, imagine
that the projected data points represent presets of the parameters of
some simulation or process. Clicking somewhere between a set of such
presets would generate a parameter-set that suitably blends between
the respective presets [96, 147]. By extrapolation, we �nd inverse pro-
jections a very interesting mechanism to study in the context of explor-
ing the decision spaces of classi�ers, if these spaces are presented by
means of projection scatterplots.

In contrast to (direct) projections, only a few inverse projection algo-
rithms exist in the literature. We present the two such algorithms we
are aware of next. In Chapter 6, we will propose a new method for in-
verse projections and compare it with these two algorithms presented
below.

2.2.3.1 Inverse LAMP

Inverse Local A�ne Multidimensional Projection (iLAMP) is an inverse
projection technique based on the same theoretical foundations of
LAMP, discussed in Sec. 2.2.2.1. As with LAMP, for each new point
y ∈ R2 to be inverted (or inversely projected), a new a�ne transfor-
mation has to be induced, based on a subset of the projected data points
from the entire projection Y and their high dimensional counterparts
in X .

The iLAMP algorithm starts by �nding the set YS = {y1, . . . , yk } of
the k closest points to y in the projection, i.e. YS ⊂ Y , and their nD
counterparts XS = {x1, . . . , xk } ⊂ X . The goal of the algorithm is to
�nd an a�ne transformation of the form fy (p) = pM + t, where the
matrix M and the vector t depend on y, and are such that they obey the
following condition

minimize
M,t

k∑
i=1

αi
fy (yi) − xi)

2

subject to MTM = I

with αi =
1

y
S
i − y

2 .

43

related work

The above optimization problem is equivalent to the minimization
below

minimize
M

k∑
i=1

αi ŷiM − x̂i2

subject to MTM = I

with x̂i = xi −
∑k

i=1 αixi∑k
i=1 αi

,

ŷi = yi −
∑k

i=1 αiyi∑k
i=1 αi

.

Given M , found by solving the optimization problem above, the inverse
projection of the 2D point y is given by

P−1 (y) = *
,
y −

∑k
i=1 αiyi∑k
i=1 αi

+
-
M +

∑k
i=1 αixi∑k
i=1 αi

.

As with LAMP, the algorithm to �nd M relies on SVD, which has
fast and readily available implementations in many numerical methods
packages.

2.2.3.2 RBF based Inverse

As an alternative to iLAMP, Amorim et al.[5] use radial basis functions
(RBFs) to interpolate among 2D and nD data points to output a high-
dimensional candidate for a given point in the 2D projection plane. RBFs
are real valued functions that depend only on the distance of the argu-
ment to a given point, i.e., satisfy the property φ (x) = φ (‖x−c‖), where
c is a reference point and ‖·‖ is a distance metric.

While iLAMP performs data interpolation weighted by Euclidean dis-
tance, RBF-based inverse projection uses kernels to estimate data simi-
larity. Kernels commonly used in practice are the Gaussian φ (r) = e−ϵr

2

and Multiquadrics φ (r) =
√

1 − (ϵr)2, where ϵ is a parameter control-
ling the kernel’s shape. Let P−1 (y) = (P−1

1 (y), . . . , P−1
n (y)) be the nD

inverse of the 2D point y. The kth coordinate (1 ≤ k ≤ n) of the inverse
of a given 2D point y is obtained by interpolation as follows

P−1
k (y) =

N∑
i=1

λki φ (‖yi − y‖) (2.23)

The coe�cients λki from Eqn. 2.23 are determined from the constraint
that the inverse mapping suits the data for which we know actual projec-
tion locations, i.e., given by P (X) = Y . That is, for a 2D point yj ∈ Y and

44

2.2 visual analytics for machine learning

its high dimensional counterpart xj ∈ X , RBF-based inverse method
�nds λ that satisfy

P−1
k (yj) =

N∑
i=1

λki φ (‖yi − yj ‖) = xjk (2.24)

The coe�cients λki for a given coordinatek can thus be found by solving
the linear system of equations below

φ1,1 φ1,2 · · · φ1,N

φ2,1 φ2,2 · · · φ2,N
...

...
. . .

...

φN ,1 φN ,2 · · · φN ,N

λk1
λk2
...

λkN

=

xk1
xk2
...

xkN

(2.25)

where φi, j is the value of the RBF φ for reference point i and evalua-
tion point j and x ji is the jth dimension of point i of X . Thus, to �nd
all coe�cients λ needed to evaluate the interpolation in Eqn. 2.23, it is
necessary to solve n systems of equation, where n is dimensionality of
X .

This method can achieve smoother and more natural-looking inverse
projections than iLAMP, as demonstrated by several use-cases [5]. How-
ever, its computational costs are also higher than iLAMP. Given this
trade-o�, which is, we argue, application dependent, we will use both
iLAMP and the RBF method to invert projections in our work further
on.

2.2.4 Visual analytics techniques for classi�er engineering

Even before the advent of what is currently known as Explainable Arti-
�cial Intelligence (XAI) [3], numerous techniques have been proposed
at the crossroads of Machine Learning, Arti�cial Intelligence, data sci-
ence, and visualization for helping the engineering – that is, selection,
construction, �ne-tuning, and validation – of classi�ers. We discuss be-
low a number of salient techniques in this family. As with projections
(Sec. 2.2.2), the complete set of such techniques is too wide to summa-
rize here. As such, we focus below on methods which are either broadly
accepted and used (thus, with which our own proposals will compete),
or methods which are technically related to our proposals. We organize
the surveyed techniques into three groups, depending on the kind of
information they focus on (classes, observations, or the classi�er’s ar-
chitecture), and by analogy with how we organized the more general
visualization techniques for high-dimensional data (Sec. 2.2.1), as fol-
lows.

45

related work

2.2.4.1 Class-centric techniques

Class-centric techniques focus on understanding how a classi�er be-
haves in relation to the classes it is supposed to infer from data. That is,
it allows one to reason about aspects such as the general classi�cation
accuracy (how well the classi�er infers correct labels for all the present
classes), per-class accuracy (how well the classi�er infers correct labels
for a speci�c class), and how these accuracies depend on various param-
eters. Techniques in this family include measuring aggregated metrics
for an entire dataset (or class in the dataset), such as precision, recall,
sensitivity, F1 score, and speci�city [153]. These can be next presented
by means of simple graphical metaphors such as truth tables and con-
fusion matrices. At a more re�ned level, Receiver Operating Character-
istic (ROC) plots [45] can be created to show how sensitivity and speci-
�city relate to each other for a whole range of model hyperparameters,
therefore allowing users to make informed trade-o�s between the two
parameters.

Class-centric techniques are the earliest, and still most used, explo-
ration techniques for classi�ers, for a number of good reasons. Follow-
ing the set of requirements we outlined in Sec. 1.4, these techniques are
de�nitely simple to use and interpret, generic (work for any classi�er),
and computationally very scalable. Their visual presentation is also very
compact and uses only simple means such as tables, charts, and func-
tion plots, which users are expected to understand easily. However, they
also have disadvantages: They only tell aggregated insights at class, or
higher, level. We can see for instance what a certain accuracy is for an
entire test set, but we cannot see which parts (in terms of sample sub-
sets) of the respective test set are more (or less) prone to classi�cation
problems. By implication, this means that these techniques are good for
telling us how well a classi�er works, but in the case its performance
is unsatisfactory, they do not generally help one with engineering the
classi�er to improve its performance. More speci�cally to our research
goals, they do not tell anything about where the decision boundaries
exist in the data space and/or how these are created from the training
samples.

2.2.4.2 Observation-centric techniques

Observation-centric techniques recognize the above-mentioned limita-
tions of class-centric techniques and proceed di�erently towards expla-
nation. Rather than selecting classes, they select (groups of) instances xi
or feature vectors X j as the element to base explanations on. The sim-
plest, and widely used, such observation technique is the scatterplot,
constructed by a projection, of samples, colored by class or misclassi�-
cation information discussed in Sec. 2.2.2). As outlined there, such scat-
terplots already can show which samples are prone to misclassi�cation,
either in general, or speci�c to a given class.

46

2.2 visual analytics for machine learning

While such scatterplots are simple and e�cient to compute, they have
a major drawback: Depending on the size of S (sample count), how it is
distributed over the space, and how well the projection P preserves dis-
tances or neighborhoods, gaps will appear between the points of the re-
sulting 2D scatterplot. One can only guess what happens between such
samples.

To mitigate this general issue of scatterplots, so-called image-based
methods, or dense maps, have been proposed. The key idea is to color
every pixel pi ∈ R2 of the target image to represent information per-
taining to that pixel in the data space Rn . There are several ways to “�ll
in” these pixels and thereby create a dense, compact, image from the
sparse, discrete, scatterplots, as follows.

Prior to applications in ML, several researchers have recognized that
the discrete nature of scatterplots poses interpretation problems, es-
pecially when the underlying data is drawn from a continuous phe-
nomenon. Early techniques converted scatterplots S (not necessarily
coming from a projection) to continuous scalar �elds ϕ : R2 → R+ us-
ing so-called kernel density estimation (KDE) methods [134]. This can
be done by simply convolving points x ∈ S by a suitably chosen (typi-
cally, Gaussian or Epanechnikov) 2D isotropic kernel. The kernel radius
acts as a low-pass �lter: Small values yield relatively discrete images,
showing concentrated peaks on the image ϕ where many samples in S
are close to each other. Larger values “blur” the KDE, by showing coarse-
scale groups and structures. The produced density map ϕ can be next
visualized by mapping it to color, brightness, or opacity, leading to the
well-known “heatmaps” in visualization. This way, one can easily spot
high-density regions of samples in a scatterplot at a user-chosen scale,
given by the kernel radius parameter. Early examples of such techniques
include graph splatting [78] for visualizing graph drawings.

Closer to our machine learning context, Martins et al. propose several
dense maps to encode the per-pixel errors created by dimensionality
reduction methods [85, 86]. Similar dense map methods are used to en-
code the (categorical) identity of dimensions that make close points in
a projection similar to each other [131]. Variants of this idea have been
proposed to handle categorical data, using a Voronoi cell sampling of the
image space, rather than a uniform pixel grid [8, 19]. Key advantages of
image-based methods are their ability to use every available pixel to
show information, which increases the chance that complex data pat-
terns are spotted without the need for the user to “guess” what hap-
pens between discrete samples; the lack of occlusion present in discrete
methods, such as scatterplots; and the ability to handle large datasets
by aggregating data over the available pixels. Given the above, we deem
that image-based techniques are ideally suited for our goal of visualiz-
ing classi�er decision zones and boundaries.

However, while such methods can handle arbitrary high-dimensional
datasets, none of them was adapted to show classi�er decision

47

related work

boundaries, with one notable exception: The well-known TensorFlow
toolkit [1] contains a simple application which creates a dense map
where pixel pi is color-coded to indicate the class label, and correspond-
ing weight, that a neural network achieves for a sample xi that would
correspond to pi. Figure 1.2 discussed in Chapter 1 shows an example
of this visualization. However, this works only because the input space
(for the toy examples used in [138]) is two-dimensional, so the Rn to
R2 mapping is trivial and invertible, being the identity function.

Closer to our scope, Hamel has proposed dense self-organizing image-
based maps to visualize classi�er decisions for high-dimensional feature
spaces [53]. However, this method only handles Support Vector Ma-
chine (SVM) classi�ers. More importantly, the actual decision bound-
aries, while plotted on the respective maps, seem to be manually con-
structed by the user rather than by the method. Migut et al. actually
construct and visualize such decision boundaries for high-dimensional
data classi�cation [88]. However, they use for this a sequence of 2D pro-
jections, each along a pair of dimensions; hence, the user has to mentally
infer the actual position of the high-dimensional boundaries by interac-
tively correlating multiple projections.

Last but not least, the LIME technique [118] proposes an ambitious set
of techniques for “explaining the predictions of any classi�er”. Brie�y
put, given such a classi�er, which has a globally complex, and generally
unknown, decision boundary, LIME locally approximates this boundary
by densely sampling the prediction function and next �tting a linear
boundary to the obtained labels. This way, while it is still not possi-
ble to get insights in the global decision boundaries, good (linear) local
approximations can be computed on demand. In terms of visualization,
LIME uses various standard instruments, such as tables and charts high-
lighting the types of observations that are most relevant for a given
classi�cation decision. Alternatively, when the feature space is easy to
represent visually, such as in the case of images processed by deep learn-
ing (where each pixel is basically a feature), so-called activation maps
can be computed, which highlight pixels in a given input sample (im-
age) that have been most responsible for its classi�cation in a certain
category. Overall, LIME is a very powerful technique for analyzing the
behavior of a classi�er. However, it does not explicitly bring new in-
sights into how the respective decision boundaries look like.

2.2.4.3 Architecture-centric techniques

A third and last class of explanatory techniques focuses on the architec-
ture, or internals, of a classi�er. Such techniques are especially useful in
case of classi�ers that have (very) complex architectures, such as neural
networks. These consist of thousands up to hundreds of thousands of
units (neurons) connected by up to millions of weights. As such, their
overall operation is largely still a black box. Explanatory techniques in

48

2.2 visual analytics for machine learning

this class aim to shed light upon the roles of various layers, units, and
connections during both training and inference, and therefore both un-
derstand how and what the network has learned, and how to improve
this process. A recent survey of techniques in this class is given in [49].

The area of architecture-centric techniques is growing very fast, with
tens of such techniques launched in recent years, fed by the growing in-
terest in deep learning. However, from the perspective of the research in
this thesis, such techniques occupy a peripheral roles, for two reasons.
First, they are speci�c to neural networks (or any other given architec-
ture) only, whereas we aim at generic explanatory techniques. Secondly,
these techniques do not explicitly aim to visualize the place, shape, and
nature of decision zones in the data space, but rather concentrate on un-
derstanding the intermediate (latent) representations that are generated
by a given classi�er.

2.2.5 Conclusions

In this chapter, we have reviewed related work to the areas at the cross-
roads of which our research question lies, namely machine learning
(with a focus on classi�cation) and visualization and visual analytics
(with a focus on assisting classi�er engineering). Focusing on the sec-
ond of the above topics – which is related directly to our aim – we
conclude that multidimensional projections are a better candidate than
other high-dimensional data visualization techniques for visually ex-
ploring the type of high-dimensional datasets encountered in classi�er
engineering. Within this area, we have identi�ed three projection tech-
niques and two inverse projection techniques which present good prop-
erties in terms of results’ quality, computational scalability, genericity,
and ease of use. Separately, we have seen that image-based visualiza-
tion methods match well, on the one hand, with the type of data we
encounter in classi�cation problems, and on the other hand with the
visual metaphor used by projections. Hence, these methods are interest-
ing candidates to study further when addressing our research question.

In the same time, we have seen that the problem of visually depicting
(and further exploring) the decision boundaries and decision zones of
any classi�cation models is barely touched in the literature. In the re-
mainder of this thesis, we will therefore focus on the above-mentioned
instruments – direct and inverse projections and image-based visualiza-
tion methods – and show how we can combine, adapt, and extend, such
methods to address our goals.

49

3D E E P F E AT U R E E X T R A C T I O N E VA L UAT I O N

3.1 introduction

As explained in Chapter 2, deep learning methods are among the state
of the art techniques for constructing classi�cation models for complex
data. However, as also explained there, engineering such models is, in
general, far from trivial, and raises questions related to the suitable se-
lection of training sets, network architecture, and hyperparameter val-
ues. In the following chapters, we will introduce several visual analytics
techniques that aim to help this process, speci�cally by depicting deci-
sion zones and boundaries and showing how these can provide feedback
to the model engineer. In this chapter, we aim to justify the need for such
assisting techniques by an actual example of classi�er engineering. For
this, we pick a real-world image classi�cation problem, and show the
steps required for the construction of a non-trivial end-to-end classi�-
cation model for that problem. By doing this, we outline the types of
questions and challenges that model engineers are typically confronted
with in their work, and also outline the limitations of classical support
tools available in this process – thereby indirectly motivating our claim
for the need for better tools.

3.2 problem context

Deep Learning methods are the current state of the art tool to perform
natural image classi�cation, as well as other pattern recognition tasks
such as speech recognition and shape analysis, among others. The in-
�uential work of Krizhevsky et al. [73] has demonstrated how Graph-
ics Processing Units (GPUs) could make the training of complex Deep
Convolutional Neural Networks feasible in acceptable time frame. More
importantly, they achieved breakthrough results on ImageNet Chal-
lenge [123], results largely impacting computer vision and neural net-
works by stimulating novel research in the area. Since the proposal of
AlexNet [73], a number of other Deep Neural Networks were developed

This chapter is based on the following publication:
F. C. M. Rodrigues., N. S. T. Hirata., A. A. Abello., L. T. de la Cruz., R. M. Lopes., and R. H.
Jr.. Evaluation of transfer learning scenarios in plankton image classi�cation. In Proceed-
ings of the 13th International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications - Volume 5: VISAPP,, pages 359–366. SciTePress, 2018

51

deep feature extraction evaluation

and achieved ground-breaking results on di�erent image classi�cation
challenges [58, 135, 144].

To properly train Deep Neural Networks, a large amount of data is
necessary, besides extensive parameter-tuning, since such models often
consist of millions of parameters. To avoid over�tting, diverse and rich
datasets are often mandatory. However, in many real-world scenarios,
labeled data is costly and scarce. One example of such scenario is the
study of plankton populations, an important research area as they form
the basis of aquatic food webs and exert a major in�uence on material
cycles relevant to global climate change, such as carbon dioxide and
methane. To precisely estimate the spatial and temporal distributions
of planktonic organisms in the ocean, challenging image acquisition ef-
forts are necessary. In order to employ obtained images to train Machine
Learning models, the time-expensive task of manual image labeling is
necessary, which requires trained domain-expert individuals.

In ML, an usual approach to deal with the above mentioned prob-
lem of training data unavailability is Transfer Learning (TL) [98]. TL
expresses the concept of using or adapting a model induced in a speci�c
context to another context. For instance, using or adapting a model in-
duced using a plankton dataset from Atlantic ocean to classify another
one from the Paci�c ocean.

In this chapter, we present how to employ the simplest form of trans-
fer learning based on Deep Neural Networks to solve a real problem
of plankton classi�cation. By leveraging on the public availability of
labeled planktonic data, DNNs can be used to help the training of clas-
si�ers on local in-house collected data, that are usually small. We note
that plankton image classi�cation using CNNs started to be considered
only recently [4, 28, 112] and, in particular, transfer learning of features
computed by CNNs [93] has not been explored much yet in this context.
Hence, we also aim at deepen our understanding of transfer learning, in
special for planktonic data.

The remainder of this chapter is organized as follows. Section 3.3
presents a more detailed description of TL using DNNs. Section 3.4 ex-
plains how di�erent TL scenarios were setup to train and compare dif-
ferent models and datasets. Section 3.5 gives a brief explanation of the
source and target datasets used as well as the DNN models employed
in the following experiments. Section 3.6 presents the results obtained
for each dataset/network combination. Finally, Section 3.7 presents how
one could extract useful insights from this experiment and points to lim-
itations of this approach, motivating the need for better visual analytics
tools to perform classi�er engineering and understanding.

3.3 deep feature extraction

Representations learned by CNNs are reported to be very useful for the
classi�cation of data, even in distinct domains [14, 165]. The usual ap-

52

3.4 experiment setup

proach to exploit this is to select an intermediate layer as a target layer,
freeze it and its preceding layers and adjust the subsequent layers. The
earlier the layer chosen, the more general and therefore, more trans-
ferable the representation is [165], but also the more data is necessary
to adjust it, since it has a higher dimension. The adjustment of subse-
quent layers may be done via �ne-tuning, continuing training with new
samples, or by training an entirely new classi�er from scratch using
the output of the intermediate target layer as features, which is called
(deep) feature extraction. In this work we chose the latter option, using
pre-trained CNNs as feature extractors.

3.4 experiment setup

Plankton communities form the basis of aquatic food webs and exert
a major in�uence on material cycles relevant to global climate change,
such as carbon dioxide and methane. Therefore, it is essential to un-
derstand the spatial distribution and temporal variability of planktonic
organisms in the ocean.

Deep feature extraction based approaches to data classi�cation en-
ables the easy application of deep learning techniques to solve di�er-
ent problems, specially when the process of labeled data acquisition is
costly, as is the case for many important “local” problems.

Planktonic image classi�cation is an example of such problem. Under-
standing the spatial distribution and temporal variability of planktonic
organisms in the ocean is essential to the study of di�erent important
topics, such as global climate change.

Thus, to classify our in-house dataset, which we refer to as LAPSDS,
we resort to adapt pre-trained models as feature extractors by taking
advantage of the fact that there exists a public available massive dataset
of plankton images used in Kaggle’s National DataScience Bowl (NDSB)
competition, via the In Situ Icthyoplankton Imaging System (ISIIS)1, and
deep neural networks trained on it.

Although there are di�erences in the datasets with respect to the
classes of plankton species they include, either because a particular
species or class in one of the datasets is not in the other or because
some arti�cial classes are created based on other criteria not related to
taxonomy, it is reasonable to expect that they could be e�ciently classi-
�ed by similar sets of features. To further investigate the quality of the
features obtained from this process, we also employ a di�erent CNN
trained on this same dataset and on ImageNet [123], which contains
images from a completely distinct domain. By using CNNs and exter-
nal domain source datasets, we would like to understand how transfer
learning performs and whether an external dataset will help or not the
classi�cation of our data.

1 https://www.kaggle.com/c/datasciencebowl

53

https://www.kaggle.com/c/datasciencebowl

deep feature extraction evaluation

The choice of the datasets is justi�ed by the fact that a relatively ma-
ture stage of CNN development has been already achieved for both do-
mains. In addition, the �rst dataset is of a similar domain to ours, while
the second is of a completely distinct domain (several images collected
from the Internet).

The experiments have been designed to answer the following ques-
tions:

• how DeepSea trained on ISIIS (NDSB competition) –
DeepSea(ISIIS) – will perform on our in-house dataset (LAPSDS)?

• how classi�ers using features extracted from DeepSea(ISIIS) will
perform on LAPSDS?

• how classi�ers using features extracted from AlexNet trained on
ISIIS – AlexNet(ISIIS) – will perform on LAPSDS?

• how classi�ers using features extracted from AlexNet trained on
ImageNet – AlexNet(ImageNet) – will perform on LAPSDS?

In addition to these TL scenarios, we also consider the traditional
feature extraction approach that will serve as a baseline. Diagram in
Fig. 3.1 summarizes the scenarios to be evaluated. Four sets of features
are extracted from LAPSDS and they are used to train SVM classi�ers
as detailed ahead in Section 3.4.

ISIIS

train DeepSea

DeepSea(ISIIS)

apply

CNN feature
extraction

F1

train AlexNet

AlexNet(ISIIS)

apply

CNN feature
extraction

F2

ImageNet

train AlexNet

AlexNet(ImageNet)

apply

CNN feature
extraction

F3

LAPSDS

shape feature
extraction

F4

Figure 3.1: Deep feature extraction scenarios considered here. ISIIS ImageNet
and LAPSDS denote image datasets, gray shaded nodes indicate the
pre-trained CNNs, and CNN feature extraction consists of extracting
the values from a speci�c layer of a CNN, after a forward pass of
samples in LAPSDS.

54

3.5 datasets and networks

3.5 datasets and networks

In situ plankton images have been acquired with a submersible instru-
ment developed at our lab LAPS-IOUSP2. The instrument has been ver-
tically deployed between surface and 30m depth o� the lab base3 and
gray-scale images were acquired at approximately 15 frames per second,
with dimensions of 2448 × 2050 pixels and resolution of ∼5µm. Image
stacks belonging to the same vertical pro�le were converted into video
�les to mitigate data storage and management. A total of 230,000 Re-
gions of Interest (ROI) were extracted from 16 selected videos and 5175
ROIs were used in the creation of in-house dataset. A labeling process
was carried by plankton experts belonging to the same lab.

LAPSDS is composed of 20 classes containing at least 100 samples
each, and as expected, the number of images varies from class to class.
Table 1 shows the class distribution of the dataset, as well as the name
and the identi�er number of each class. Instances of some of the classes
are shown in Fig. 3.2.

ID H classes Size ID H classes Size
0 appendicularia_shape_s 216 10 detritus_uf_stick_bw 286
1 appendicularia _curve 114 11 dino�agellates_tripus_2 242
2 cladocera 435 12 dino�agellates_tripus 316
3 copepod_calanoid 315 13 nauplii 465
4 copepod_cyclopoida 106 14 phytoplankton_0 259
5 copepod_poecilostomatoida 163 15 phytoplankton_1 127
6 detritus_df_bk 288 16 phytoplankton_5 159
7 detritus_uf_dot_bk 344 17 chaetocero 546
8 detritus_uf_dot_bw 274 18 diatoms_coscinodiscus 120
9 detritus_uf_stick_bk 152 19 shadow 249

Table 1: Histogram of classes of the LAPSDS.

In-situ images are prone to natural variability in illumination, turbu-
lent �ow and turbidity, among other factors, which may compromise
image quality because ROIs from di�erent videos may have di�erent
background intensities (see Fig. 3.2). Thus, for convenience, the back-
ground of the ROIs have been removed using a technique of background
subtraction adapted to deal with illumination changes [65]. An example
is shown in Fig. 3.3.

2 Laboratory of Plankton Systems, Oceanographic Institute, University of São Paulo, Brazil
3 (lat:-23.499913, long:-45.119381)

55

deep feature extraction evaluation

Figure 3.2: Image sample from LAPSDS. Number on the ROI indicates the class
that they belong to.

3.5.0.1 Kaggle’s National Data Science Bowl

The National Data Science Bowl (NDSB) was a competition hosted by
Kaggle in a collaboration with Oregon State University’s Hat�eld Ma-
rine Science Center. Several research teams competed to develop and
train supervised classi�ers, given a dataset provided by the Hat�eld Ma-
rine Science Center [26].

According to the competition organizers, the images were collected
in the Straits of Florida using an underwater imaging system called ISIIS

(a) (b)

Figure 3.3: Background removal example: (a) Original image, labeled as “appen-
dicularia_shape_s” and (b) result of the background removal of im-
age in (a).

56

3.5 datasets and networks

(In Situ Ichthyoplankton Imaging System). It captured high-resolution
continuous images that were parsed in 2048x2048 pixel frames. The re-
sulting frames were thresholded and segmented. Finally, regions of in-
terest were extracted and became the images that comprise the dataset
after being annotated by the Marine Science Center’s personnel.

The dataset was divided by taxonomy, behavior and shape into 121
classes. Each class contained between 9 and 1979 individual examples,
totaling 30,336 images.

.

Figure 3.4: Assorted plankton from the ISIIS dataset. Each sample is from a dif-
ferent class. Note the absence of background.

.

3.5.0.2 ImageNet

ImageNet is a dataset that became one of the benchmarks for object
classi�cation and detection. It is comprised of over 14 million images
divided into 1000 classes hierarchically subdivided [123]. The classes
subjects range from human persons to animals and fungi to everyday
objects, constituting a very general dataset. Since 2010 a competition
including diverse tasks such as classi�cation and detection on pictures
or video on this dataset is held each year.

57

deep feature extraction evaluation

3.5.1 CNN MODELS

The two network architectures used in this work are from winning
teams in computer vision competitions. They are the AlexNet [73],
from the 2012 ImageNet Large Scale Visual Recognition Competition
(ILSVRC), and a model from the "Deep Sea" team, that won Kaggle’s
NDSB in 2014.

(a) AlexNet

(b) DeepSea’s convroll4 network

Figure 3.5: Neural Networks architectures used in the experiments. Although
DeepSea’s model is much deeper than AlexNet, it has less parame-
ters (i.e. �lters in Convolutional layers and units in Fully Connected
layers) to �t during the training. The dashed boxes indicate which
layer was used in the transfer learning experiments.

3.5.1.1 AlexNet

AlexNet is a Convolutional Neural Network model that was introduced
in the ILSVRC held in 2012. Under the team name of “SuperVision”, it
won both the classi�cation and localization tasks by a large margin4,
being the �rst case of success in applying this kind of model in the
competition and establishing a strong trend of its use in the next years.

This model introduced and popularized a lot of novelty features
for improving training time, performance and reducing over�tting in-
cluding, but not limited to: ReLU nonlinearity as activation function,
Dropout as means of reducing over�tting and Local Response Normal-
ization. We refer to the original paper for a more detailed explanation of
these innovations and their impact [73] (see Fig. 3.5(a) for a representing
diagram of the CNN).

We did not explicitly train AlexNet model in the ImageNet dataset,
but used instead a pre-trained model with available weights online 5. In
order to feed our images to this model, a couple minor modi�cations
were required. First, ImageNet samples are RGB images, hence to feed
our in-house dataset, which is composed of grayscale images, to this net-
work we chose to repeat the same values across the three input channels.
Second, since the required input is much larger than the average of ours
images, we decided to resize them via a wrap padding tactic, in which

4 http://image-net.org/challenges/LSVRC/2012/results
5 https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

58

http://image-net.org/challenges/LSVRC/2012/results
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

3.5 datasets and networks

the image was centered and repeated across each axis. Furthermore we
also subtracted each channel with the mean of the training set of said
channel, as this information was also available to us.

The AlexNet implementation that was trained on ISIIS dataset was
heavily based on DeepSea’s model, following exactly the same training
procedure for both networks (i.e. data preprocessing and data augmen-
tation). Thus, this network’s input expects grayscale images with size
95x95 and its �nal layer contains 121 units.

3.5.1.2 Deep Sea’s Model

Deep Sea was the winning team of the Kaggle NDSB competition. They
used an ensemble of multiple deep learning models with minor di�er-
ences to improve generalization. We used the most simple model avail-
able, consisting solely of a CNN, which here we call DeepSea.

The main innovation brought by the team was a couple of layers de-
signed to increase the network robustness to cyclic variation [33]. In
the "cyclic slice" layer the input is rotated four times and processed sep-
arately by the network from that point onward. Then, in the "cyclic
roll" layer, the feature maps from the four paths are permuted and in-
terchanged. Eventually, in the “cyclic pooling” layer the four network
paths are merged again into a single one. We again refer to the paper
on this architecture for a more detailed explanation [33] (see Fig. 3.5b
for a diagram of the CNN).

3.5.2 Feature extraction

Deep learning models are in general trained in a end-to-end fashion, that
is, images (or other raw data) are given as input in one end and classes
are returned as output in the other end, as mentioned in Chapter 2. The
last layer of a neural network classi�er simply performs the classi�ca-
tion task on its input, hence we can see the hidden layers as performing
suitable data transformations that will lead to a small classi�cation er-
ror, and the output of a given layer is a feature vector that is input to the
next. Next, we detail how we collect those features for each network, i.e.
de�ne from which layer we collect the output, and also describe the set
of shape features they will be compared to.

3.5.2.1 Deep features

Features FromDeepSea (ISIIS): The features were extracted from the
output of the last Cyclic Pooling Layer, as shown in Figure 3.5b high-
lighted by enclosing dashed lines, resulting in 256 features per images.
These features correspond to F1 in the diagram of Fig. 3.1. In a Cyclic
Pooling Layer the e�ect of rotations introduced by previous Cyclic Slice
and Cyclic Roll layers are undone, hence capturing the output from

59

deep feature extraction evaluation

this layer is the most appropriate choice since we can leverage on the
learned invariances.
Features from AlexNet (ISIIS) and AlexNet (ImageNet): From the
two pre-trained AlexNet, AlexNet(ISIIS) and AlexNet(ImageNet), fea-
tures were extracted from the �rst fully connected layer, as shown in
Figure 3.5a highlighted by enclosing dashed lines, resulting in 4096 fea-
tures per image. These features correspond to F2 and F3, respectively,
in the diagram in Fig. 3.1.

3.5.2.2 Shape Features

We extracted 74 features commonly used in traditional shape recogni-
tion procedures. They are divided into the following three categories:

• 54 shape features (area, perimeter, solidity, convexity, etc). Most
of the feature descriptors are implemented in the OpenCV library
and they are usually presented in automatic plankton classi�ca-
tion works that use shape features [17].

• 10 from Local Binary Patterns (LBP) histograms [92] extracted
using a 3 × 3 window.

• 10 from Haralick descriptors, extracted from the co-occurrence
matrix [55].

Shape and LBP features are extracted from the images segmented
using Otsu’s threshold [95]. Haralick’s descriptors are extracted from
graylevel images. These features correspond to F4 in the diagram in
Fig. 3.1.

3.6 classifier evaluation

To train and evaluate the SVM classi�ers with respect to each of the
four feature sets, namely features extracted from DeepSea (ISIIS), from
AlexNet trained with planktonic data (NDSB), from AlexNet trained on
natural images (ImageNet), and regular, “classic”, shape recognition fea-
tures. We performed a 9:1 train-test split that preserved class propor-
tions. This split resulted in a training set of 4658 and a test set of 517
samples.

Before training, a data normalization to convert all feature values to
the [0, 1] range was applied to each individual feature of the four feature
sets, that is a simple linear scaling in which the highest value for each
feature in the whole training set will be mapped to 1 and the lowest
value will be mapped to 0. The normalization parameters were inferred
using the training samples only in order to not add bias to the classi�er.
Test samples were then transformed by those same parameters.

60

3.6 classifier evaluation

Sklearn’s [104] grid search with cross-validation was employed to
explore the space of possible parameters for SVM, namely the ker-
nel type, value of C and, if a RBF kernel was used, γ values. In this
work, we considered linear and RBF kernels, C ∈ {1, 10, 100, 200} and
γ ∈ {0.01, 0.001, 0.0001, 1

nf }, where nf is the number of features, a well-
known heuristic for setting γ . The best parameters found for each fea-
ture set are displayed in Table 2. The same table also shows the overall
accuracies computed on the test set.

Feature extractor SVM parameters Acc.
kernel C γ

DeepSea(ISIIS) rbf 100 0.01 84%
AlexNet(NSDB) rbf 10 0.01 81%

AlexNet(ImageNet) rbf 100 0.0002 80%
Shape Features linear 100 - 72%

Table 2: Table summarizing the results obtained from di�erent transfer learning
scenarios. The value of 0.0002 for γ was selected because of the 1

nf
option. Accuracy refers to the test set.

Global accuracy alone, especially in cases such as ours, where the
compared methods present similar performance, is not too informative.
To better understand the results, we also plotted a confusion matrix
(Fig. 3.6) for each feature set.

As it can be seen in Fig. 3.6, the �rst (leftmost) plot corresponding
to DeepSea(ISIIS), which achieved the best performance, has a darker
diagonal compared to the other plots. Confusion is larger in the last
(rightmost) plot, which corresponds to the experiment using shape fea-
tures. In general, there is confusion between class 3 (copepod_calanoid)
and classes 4 (copepod_cyclopoida) and 5 (copepod_poecilostomatoida);
between classes 7 (detritus_uf_dot_bk) and 8 (detritus_uf_dot_bw), and
beween classes 9 (detritus_uf_skick_bk) and 10 (detritus_uf_stick_bw).

Figure 3.7(a) presents some examples of copepods subtypes that can
confuse the classi�ers. The �gure is organized in three columns, one
for each copepod subtype: column 1 shows four examples of calanoids;
column 2 shows three examples of cyclopoida; and column 3 shows
four examples of poecilostomatoids. Each image is labeled with zero
to four colored squares that indicate which of the four considered clas-
si�ers (DeepSea, AlexNet (ISIIS), AlexNet (ImageNet), and Shape Fea-
tures) could correctly classify that image. As one can see, the plank-
ton belonging to these classes are similar in several aspects and it is
not di�cult to understand why these classes cause confounding errors.
A similar scenario has been found for detrital particles. Figure 3.7(b)
presents a similar set of images of examples of detritus subtypes (detri-

61

deep feature extraction evaluation

Figure 3.6: Confusion matrices for each classi�er trained on di�erent sets of
features. Top row we shows the confusion matrix for the classi�er
trained on features from DeepSea network trained on ISIIS (left) and
AlexNet also trained on ISIIS dataset. Bottom row shows matrices
for AlexNet trained on ImageNet and for classic shape features.

tus_uf_dot_bk and detritus_uf_dot_bw) that can confuse several of the
considered classi�ers.

Figure 3.8 shows another view of the obtained results. We show here
a bar chart displaying the accuracy of each classi�er per class. Classes
2, 11, 12, 13, and 18 were well classi�ed by all the four classi�ers and
therefore they could be considered as the “easy” classes. On the other
hand, classes 4 and 9 are those where most classi�ers did poorly, and
thus they are the hardest ones. Classes 0 and 1 are those with the largest
variation between the best and worst performing classi�ers.

Hand designed features performed clearly worse than any of the CNN
extracted ones. Although no careful feature selection was performed,
it is also true that no careful deep feature extraction was performed.
Thus, in a situation where a quick solution is required, making use of a
pre-trained CNN could be more e�ective than using a large set of hand
designed feature extractors.

62

3.7 discussion and conclusion

(a) Cyclopoida, Calanoid, Poecilostoma-
toida

(b) uf_dot_bk, uf_dot_bw

Figure 3.7: Two sets of plankton images from confounding classes.

Figure 3.8: Class accuracy histogram.

3.7 discussion and conclusion

We have presented an evaluation of transfer learning scenarios in the
context of plankton image classi�cation. We have used CNNs pre-
trained on external datasets as feature extractors from our in-house
dataset images. In particular, we have considered two very distinct ex-
ternal datasets, one of plankton images (and thus similar to our data)
and another of natural images (ImageNet), and the corresponding “win-
ning” CNN architectures. Transfer learning experiments showed that
the architecture developed for plankton images (DeepSea) performed
better than the architecture developed for natural image classi�cation
(AlexNet), even when both were trained with the same plankton im-
age dataset. We also observed that AlexNet trained on natural images
performed almost as well as the same network trained on plankton im-
ages. These two observations indicate that, in transfer learning using
CNNs, the architecture may play an important role, even larger than

63

deep feature extraction evaluation

the dataset per se. To complement these observations, it would be in-
teresting to train DeepSea with ImageNet and evaluate how well it will
perform on our data.

As expected, features extracted from pre-trained CNNs performed
better than hand crafted ones. Although the experiments in this chapter
were designed to evaluate di�erent deep feature extraction scenarios, it
is clear that deep learning techniques can be promptly applied to di�er-
ent problems, even when dataset size is small. The available technology
is mature and accessible with respect to both software and hardware,
besides the public availability of data from di�erent domains, creating
a low-entry barrier environment to apply deep neural networks to dif-
ferent problems.

To support the analysis and comparison of the constructed classi�ers,
we used only simple visualization tools, which are typically encoun-
tered in many classi�er engineering work�ows. While providing useful
insights, we also noticed several clear limitations of these tools, as
follows:

Global metrics: Comparing accuracies across classi�ers is certainly
useful in providing a simple ranking between them (Tab. 2). However,
as already indicated there, such metrics are too aggregated for allowing
more �ne-grained interpretations. For instance, Tab. 2 shows us that
DeepSea (ISIIS), AlexNet (NSDB), and AlexNet (ImageNet) are very
close to each other, di�ering only by a few percentage points of
accuracy. This does not tell us how these classi�ers actually di�er from
each other, leaving the possibly wrong impression that they behave
similarly. We argue that these limitations are inherent for all other
global metrics besides accuracy.

Confusion matrices: This instrument re�nes the insights provided
by global metrics by providing information at class level (Fig. 3.6).
However, following the terminology introduced in Sec. 2.2.4, confusion
matrices are class-centric techniques: They show which classes are
easy (or hard) to classify, but not which are the kinds of observations
(in a class or several classes) that actually create classi�cation problems.
Also, they do not show whether certain classes are hard to classify
because their instances are, for example, quite similar to each other.

Individual observations: Figure 3.7 takes the opposite extreme
from the above two plots. Here, detailed information is presented
for individual instances (observations). This lets us see which are the
classi�ers that succeed, or fail, in handling these speci�c instances;
and also allows us to visually compare the instances themselves to
infer possible causes for the confusion. However, this visualization
is manually created, by having the user select (by browsing) a set of
interesting samples to examine. In other words: Once we know which

64

3.7 discussion and conclusion

are interesting samples, we can visualize them in detail this way, but
how to �nd the interesting samples in the �rst place? Moreover, this
visualization is not scalable, being able to accommodate a few tens of
images at best. Finally, while users can visually compare images to
elicit similarities, the visualization provides no insight in how the classi-
�ers actually see the images as being similar or not due to their features.

Class histograms: Figure 3.8 presents a �nal visualization of our
results, this time in terms of per-class accuracy for all classi�ers, all
classes. At a high level, the insights conveyed by this visualization
are quite similar with those from confusion matrices (Fig. 3.6). The
barchart design, however, allows for an easier comparison of accuracies
both across classes and across classi�ers. Still, just as the confusion
matrices, this visualization does not convey any observation-centric or
feature-centric information.

Summarizing the above, we see that classical visualization techniques,
albeit useful in conveying several insights, and answering several ques-
tions, related to classi�er engineering, also have clear limitations. In
particular, (a) such techniques convey little insight on how observa-
tions and/or classes resemble each other from the perspective of their
features; and (b) they do not convey any information on where, in the
feature space, a classi�er actually “�ips” to change the inferred class.
The visualization techniques presented in the following chapters aim
to address these limitations.

65

4C O N S T R U C T I N G D E C I S I O N B O U N D A R Y M A P S

In Chapter 3, we have presented an end-to-end application of clas-
si�er engineering using deep learning. While the presented results
show that, given suitable engineering, one can construct a classi�cation
model giving good results (in terms of overall and per-class accuracy),
the process of classi�er engineering itself raises several questions. First,
the visualization techniques used in this process – tables, matrix plots,
bar charts, and individual samples – provide only limited, and typically
aggregated, insights on the actual behavior of the models at hand. In
other words, we see what the overall behavior of a classi�er may be,
but not why the classi�er behaves that way. Secondly, in cases where
the performance of the classi�er is deemed insu�cient, these tools do
not tell us how to improve the performance (or help us in the improve-
ment process). We claim that, for both above tasks, di�erent, and more
�ne-grained visualizations, can help.

Related to our central research question stated in Chapter 1, we ar-
gue that visualizing the decision boundaries of a classi�er (Sec. 1.2) can
be one such instrument. More speci�cally, being able to better under-
stand how decision boundaries emerge in a feature space, and how they
are a�ected by the training process, can (a) convey useful information
on the e�ectiveness of the training process, and then (b) help the en-
gineer in taking decisions that steer the training towards the desired
optimal goal. For example, a visualization of such decision boundaries
can highlight areas in the feature space where the boundaries are not
suitable, e.g., too tortuous, fuzzy, uncertain, too close to certain samples,
or cutting wrongly through samples of di�erent classes. Seeing this, the
user can act upon the training data and/or classi�er hyperparameters,
triggering the recomputation of new boundaries. By monitoring this
“computational steering” loop, the user can arguably drive the classi�er
construction to the desired outcome.

To address the above goal, we propose in this chapter a method to
actually construct visual depictions of decision boundaries and decision
zones. For brevity, we refer to both of these next as decision boundary
maps. We proceed as follows. Section 4.1 formulates the construction of
decision boundary maps in an image-based (dense visualization) setting.
Section 4.2 details the actual techniques used to construct these maps.
Section 4.3 shows several results of our proposed technique for di�erent
This chapter is based on the following publication:
F. C. M. Rodrigues, R. Hirata, and A. C. Telea. Image-based visualization of classi�er de-
cision boundaries. In 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images
(SIBGRAPI), pages 353–360. IEEE, 2018

67

constructing decision boundary maps

datasets and classi�cation models. Section 4.4 discusses our technique.
Section 4.5 concludes this chapter.

4.1 dense maps

Let us revisit the core idea behind the de�nition and construction of
decision boundaries and decision zones for a classi�er. As already in-
troduced in Sec. 1.2, decision boundaries and decision zones are, typi-
cally, visualized only implicitly. As shown in Fig. 1.1, this can be done
by showing a scatterplot of a classi�ed dataset (constructed by using
dimensionality reduction, see Sec. 2.2.2), color-coded next by the class
values inferred by the model. The decision zones are then implicitly
perceived as areas of densely packed same-color points in the projec-
tion. By implication, the decision boundaries are imaginary (that is, not
explicitly drawn) curves that separate such decision zones, i.e., pass be-
tween points having di�erent colors. This process of imagining the de-
cision zones and their boundaries is clearly error prone, as the user is
forced to imagine the actual trajectory of the high-dimensional decision
boundaries purely based on the distribution of colors in a 2D scatterplot.

We propose to enhance this perception by drawing the decision
boundaries by �rst coloring each pixel in the 2D projection space accord-
ing to the output of the classi�cation function for the high-dimensional
point that corresponds to the respective pixel. We call the resulting im-
ages decision maps. The process of constructing such maps will e�ec-
tively “�ll in” the blank areas that exist between projected samples in
current scatterplots, thereby making the position of the decision bound-
aries explicit and pixel-accurate. Additionally, when high-dimensional
points having di�erent classes project to the same pixel, we will indi-
cate this by suitably mixing the class colors of the respective points,
and thereby indicate a fuzzy region of the classi�er – that is, a high-
dimensional data region in which the classi�er assigns di�erent labels.
Besides making the decision boundaries explicit, the dense map pro-
duced by the above method will give a hint to the user on what one
should expect when the classi�er is given samples outside of the train-
ing dataset. Those hints could in turn give the user knowledge about
where his/her classi�er is uncertain; the user could react by generating
more samples, targeted on these uncertain regions, to overcome this de-
�ciency. In turn, this will have the e�ect of shifting the decision bound-
aries as more training samples are added. The process loops in a visual
analytics fashion until the user is satis�ed with the achieved decision
boundaries and/or the corresponding classi�er accuracy.

Let us now formalize the process of constructing decision maps. Let
D ⊂ Rn be the data space input by a classi�er, e.g., the space of all
handwritten digit images for a MNIST-like problem. Let f : D → C
be a classi�er function, whereC is a categorical domain containing the
various labels assigned by f . For the MNIST example, C is the set of

68

4.1 dense maps

xi

yi

P

nD space

2D space

what to draw here?

xi

yi

P

nD space

2D space

a)

b)

νn(xi)

xi
P

nD space

2D space

c)

i

νn(xi)

ν2(yi)

yi

P
-1

Figure 4.1: Challenge of visualizing decision zones and boundaries represented
implicitly in a scatterplot (a). Dense map construction by scattering
(b) and gathering (c) approaches.

digits from 0 to 9. The function f is constructed via a so-called training-
set St ⊂ (D × C) and next extrapolated to the entire data space D. In
this setting, f can be seen as partitioning D into |C | decision zones Di ,
so that ⋃

i Di = D; Di ∩ D j = ∅,∀i , j; and all points in a given
zone Di have the same label in C . Consequently, decision boundaries
are precisely the boundaries of the compact zones Di .

Typically, decision zones and their boundaries are not directly com-
puted nor visualized in the above setting. Rather, one selects a �nite
point-set ST ∈ D, e.g., a test set for the classi�er. Then, one projects

69

constructing decision boundary maps

this point set to 2D by using any suitable projection method, and next
color-codes the resulting scatterplot by the label values f (x|x ∈ ST)
(Fig. 4.1a). As already explained, this is only a sparse sampling of the
actual classi�er behavior, and the user has to mentally reconstruct (or
guess) how the decision zones and their boundaries look like from the
scatterplot P (ST).

Ideally, a (two-dimensional) dense map that depicts the behavior of
the classi�er f would (a) map every point x ∈ D in the classi�er’s data
space to some point y in 2D, so that the entire space D is shown; and
(b) depict the value f (x) at the point y. However, achieving this is prac-
tically impossible in most cases for two reasons: Desiderate (a) above
would imply that we are able to map the entire nD space in D to 2D
space in some meaningful way1. Desiderate (b) above could imply that
we need to depict di�erent labels c1 ∈ C, c2 ∈ C, c1 , c2 at two 2D
points y1 ∈ R2, y2 ∈ R2 which are closer to each other than the avail-
able screen resolution.

Since creating a dense map that satis�es both conditions (a) and (b)
above is not possible in general, we resort to a sampling-based approxi-
mation. Let I ⊂ R2 be the (compact) domain represented by the screen
space in which we visualize the scatterplot – this corresponds to the
interior of the black rectangle in Fig. 4.1a (right). Ideally, the image of
D through P , denoted P (D), would cover the entire domain I , thereby
delivering (at least) one label f (x) |x ∈ D for any pixel y ∈ I .

To construct a dense map that covers all pixels of I , two approaches
can be taken. In the following, let T be and �nite set of sample values
from D. We call our two approaches gathering, respectively scattering,
following the terminology used in image processing for computing
convolutions of images (see e.g. [172]). These are as follows.

Scattering approach: In this approach, we can create new observa-
tions xj ∈ D by densely sampling the neighborhoods νn (xi) of all
samples in T , computing their labels f (xj), projecting xj to 2D, and
color-coding the pixels yj = P (xj) by the labels f (xj) (Fig. 4.1b). This
method of scattering data from Rn to R2 does not guarantee that all
pixels of I get covered, unless potentially very large neighborhoods
νn are used, which is computationally expensive. More speci�cally, a
scattering strategy is impractical as the number of samples needed
to cover the data space D grows exponentially with the number of
dimensions n. As it is usual for ML datasets to contain hundreds or
even thousands of dimensions, it is infeasible to generate such amount
of data by brute force.

1 Formally speaking, we can construct many continuous mappings that achieve the above.
However, in general, these would not allow one to decode properties of nD points, such
as similarities, from the 2D representation, thus would be not useful in practice.

70

4.2 decision boundary map construction

Gathering approach: An alternative to scattering is to supersample I
with N ≥ 1 samples per pixel y; �nd the point x ∈ D that projects to y,
by using an (approximate) inverse projection function P−1; and color y
to summarize all labels of points that project onto that pixel (Fig. 4.1c).
This gathering method guarantees that every pixel depicts information
from at leastN high-dimensional samples, with a limited computational
cost. Note that gathering strategies are also preferred to scattering ones
in image processing, as exempli�ed by [172].

4.2 decision boundary map construction

Given its computational advantage we choose for our goal the gathering
strategy, and implement it as follows. Let N be the user-speci�ed mini-
mal number of samples per pixel desired. Larger N values increases the
con�dence of our visualization, as we have more information to decide
the value of each pixel. Given a sparse labeled set of samples X , we �rst
compute its scatterplot P (X). This deliversn(y) labels per pixel y, where
n(y) = 0 for most pixels, given the above-mentioned sparsity. To ensure
our target of N samples per pixel, we synthesize max(N − n(y), 0) 2D
points randomly spread over each pixel y, and compute their Rn coun-
terparts using P−1. Pixels which are already densely covered by points
in P (X) need fewer additional samples, whereas pixels not at all covered
by P (X) receive N additional samples each.

At this point, every pixel is covered by at least N labels. We next
encode the sample density, classi�er confusion, and classi�er decision
at each pixel, as follows.

Decision: We de�ne the decision d for a pixel y as the majority class
label for all samples yi in y, i.e.

d (y) = argmaxk ∈C
∑
yi ∈y
~ f (P−1 (yi)) = k�, (4.1)

where ~·� denotes Iverson’s bracket. We encode d in the hue H (y) via a
categorical color map, as follows. For each class label k ∈ C , we de�ne
a basic hue HT (k) and a slightly lighter version thereof Hsynth (k). If
a pixel y has the majority label k , and there are points in the original
input dataset T that project over y, we set H (y) = HT (k), otherwise,
we set H (y) = Hsynth (k). This way, we can distinguish between pixels
covered by the scatterplot P (T), which use HT (k), and pixels for which
we needed to synthesize additional samples, which will use Hsynth (k).

Confusion: We de�ne the confusion c (y) for all samples of a pixel y as
the ratio between the number of samples of the class label having most
instances over y and the total sample count for that pixel, i.e.,

c (y) =
maxk ∈C

∑
yi ∈y[f (P−1 (yi)) = k]

n(y)
. (4.2)

71

constructing decision boundary maps

Higher c values indicate more consensus for the samples over a pixel,
whereas lower values indicate that the respective pixel is close to, or
on, a decision boundary. We encode confusion into the saturation S (y):
Colorful pixels indicate areas where f chooses consistently a single
label (depicted by hue, see above), whereas gray pixels indicate areas
close to decision boundaries.

Density: We de�ne the density of samples, ρ, for a pixel, y, as the total
number of samples covering this pixel’s extent. These can be either sam-
ples in T or additionally generated samples created as described above.
Visualizing ρ is useful as it tells us which dense-map areas have more in-
formation (samples), thus, we can be more con�dent about. Let ρmax be
the highest sample density over all pixels of I . We could directly encode
ρ into the value (brightness)V (y) = ρ/ρmax . However, a problem of this
design is that inherently darker hues, e.g. blue, will exhibit less bright-
ness variation than brighter hues, e.g., yellow, so density variations for
the dark-hue labels will be hard to see. Hence, we choose to encode ρ
in both brightness and saturation, as follows. First, we normalize ρ to
[0, 1] by computing

ρ = max
(

1
20

ρ

ρavд
, 1

)
,

where ρavд is the average sample density over all pixels in I . Next, if
ρ ∈ [0, 0.5], we compute V by linearly interpolating between a low
brightness value Vmin = 0.1 and the maximal V = 1. If ρ ∈ [0.5, 1],
we set V = 1 and compute the saturation S by linearly interpolating
between full saturation S = 1 and a low saturation Smin = 0.2. The net
e�ect is that low densities will appear as darker hues; average densities
will show the full brightness of the corresponding hue; and high den-
sities will increasingly brighten the respective hue towards white. The
values Vmin and Smin are chosen so that we do not reach pure black
or pure white, so the user does not confuse the emerging colors with
those corresponding to maximal confusion values (grays). The decision
zones of f will appear as “shaded cushions” whose domes indicate high
density areas, akin to the results shown (by a di�erent implementation
and for a di�erent goal) in [131].

Figure 4.2 summarizes the HSV color synthesis proposed above to en-
code decision, confusion, and density for a class label mapped to the hue
red (for illustration purposes). Along the y axis, we see how brightness
increases to map higher density values. When the normalized density
ρ is equal 0.5 and confusion is zero, we get a pure fully saturated red
color. Lower density values map to darker reds, while higher densities
map to increasingly whitish reds. Along the x axis, we see how satura-
tion decreases to map increasing confusion values. When confusion is
maximal, we only see gray tints.

72

4.2 decision boundary map construction

confusion c

d
e

n
s
it
y
 ρ_

0 1

0

0.5

1
low confusion,

high density

(S = Smin, V = 1)

low confusion,

low density

(S = 1, V = Vmin)

low confusion,

average density

(S = 1, V = 1)

high confusion,

high density

(S = 0, V = 1)

high confusion,

high density

(S = 0, V = 0.5)

high confusion,

high density

(S = 0, V = Vmin)

Figure 4.2: Color scheme encoding decision, confusion and density values.

4.2.1 Parameter setting

Our proposed dense map depends on two free user parameters: the res-
olution R of the target image I and the minimal desired number of sam-
ples per pixelN . We next explore the insights delivered by varying these
parameters on a simple two-class dataset. This dataset is a subset of the
well-known MNIST benchmark [75], created by keeping only the im-
ages of the digits 0 and 1 (for further details on MNIST, see Sec. 4.3.2).
For illustration purposes, we trained a Logistic Regression classi�er (f)
on this dataset, achieving a 99.8% accuracy. Any other classi�er could be
used – leading, of course, to di�erent dense maps showing the behavior
of that classi�er. For projection, we used LAMP [66].

Figure 4.3 shows the impact of varying R and N on the dense map.
Several observations follow, �rst and foremost, we see that the di�er-
ences between dense maps for di�erent parameter values are small and,
more importantly, vary continuously with the parameters. This tells
that our dense map construction is stable with respect to parameter
choice, which is very important for its practical usability. Secondly, we
see how the brightness bump, visible on the top-left image (N = 1,
R = 50 × 50 decreases as either R or N increase. This is expected, and
interpreted as follows: for low N and R values, density variations of the
raw input dataset D are visible, since there are no additional samples
needed to construct the dense map. For our example, the red brightness
bump tells that the “red” class samples are overall much denser than the
“blue” class samples. Such images can be seen as a direct, depiction of D.

73

constructing decision boundary maps

N=1 N=5 N=10 N=15

R
=

5
0

 x
 5

0
R

=
1

0
0

 x
 1

0
0

R
=

2
0

0
 x

 2
0

0
R

=
5

0
0

 x
 5

0
0

Figure 4.3: The e�ect of varying both resolution R (rows) and number of mini-
mum number of samples per pixel N (columns).

As either N or R increases, the number n(y) of samples in D per pixel
y will decrease becoming eventually lower than N (the minimal num-
ber of desired samples per pixel), so we need to synthesize additional
samples. When adding these extra samples, the overall spatial density
of samples over the image becomes relatively constant, converging to
N in the limit, so we see less brightness variation. We can interpret such
high-N , high-R images as converging to the actual continuous decision
boundaries in the limit. As R increases, we also see how the decision
boundaries become more re�ned, showing more �ne-scale details. Sep-
arately, the fact that we see few desaturated (gray) colors in the images
tells us that the depicted classi�er is quite consistent – that is, it assigns
the same class to close samples.

To better understand confusion zones, Fig. 4.4 shows a zoomed-in
view on the same dataset, but uses a simpler color coding than Fig. 4.3
– hue encodes the majority class label per pixel d (y) (Eq. 4.1) and satu-
ration encodes confusion c (y) (Eq. 4.2). Hence, whitish pixels indicate
zones where the classi�er has a high confusion. As we increase the sam-
pling density N , confusion bands appear more pronouncedly along the
red-blue decision boundary, which is expected, since close to this bound-
ary the classi�er needs to change decisions. We also see small confusion

74

4.3 experimental results

areas within the compact blue zone, which indicate that this classi�er
has likely “drawn” the decision boundary in a too simple and inaccurate
way.

N=1 N=5

N=10 N=15

Figure 4.4: Confusion zones (bright pixels) along the decision boundaries as
function of minimum samples per pixel N .

4.2.2 Implementation details

We implemented our dense maps in Python using t-SNE [82] and
LAMP [66] for the direct projection P and iLAMP [124] for the in-
verse projection P−1. LAMP and iLAMP are simple to implement, and,
as shown in several works, achieve higher accuracies in preserving
distances than similar-type projection methods [66, 85]. In contrast, t-
SNE has a better ability to separate high-dimensional clusters [82] than
LAMP. LAMP and t-SNE are further compared in Sec. 4.3.2.

4.3 experimental results

We illustrate our technique by applying it to two high-dimensional
datasets, four classi�ers, and two dimensionality reduction techniques,
as follows.

4.3.1 Segmentation dataset

The Image Segmentation Dataset [32] contains 2310 image instances
with 19 features each, divided into 7 classes. Features measure image at-

75

constructing decision boundary maps

tributes, e.g., color intensity mean, contrast, hue, and saturation. Classes
relate to types of outdoor images, i.e., brickface, sky, foliage, cement,
window, path and grass. We trained three di�erent classi�ers, i.e. Lo-
gistic Regression (LR), Support Vector Machine (SVM), and K-Nearest
Neighbors (KNN), all implemented in scikit-learn[104], on this dataset,
with the aim of comparing their decision boundaries. As parameters,
we used the default ones in scikit-learn, except radial basis functions
(SVM), and k = 5 nearest neighbors (KNN). Data was split into 70%
training samples and 30% test samples. The obtained accuracies were
89% (LR), 87% (SVM), and 95% (KNN).

Figure 4.5 (top row) shows three LAMP projections for the three clas-
si�ers, each categorically colored by the training and test-set labels.
This is a typical way that ML practitioners use to assess how the classi-
�ers “divide” the data space into di�erent zones for di�erent classes.
From these images, we only see small-scale di�erences between the
three classi�ers. Moreover, as already explained, such images are sub-
ject to occlusion and overplotting. Also, from these images, it is not clear
what a classi�er would decide for a sample which is relatively far away
from existing ones.

The dense maps, generated at a resolution R = 5002 pixels, and with
a minimum number of N = 5 samples per pixel, attempt to overcome
these issues (Fig. 4.5, bottom row). They show us several insights. First,
there is no overplotting in these images, so we are sure that each pixel
carries the exact information pertaining to the samples that fall over it.
Secondly, the di�erences between the decision zones corresponding to
the seven classes are now much easier to see. For instance, for all clas-
si�ers, class 1 (orange) has a quite smooth and clear decision boundary
touching mainly classes 3 (dark blue) and 5 (yellow-green). However,
subtle di�erences between the classi�ers also show up – for instance,
the class-1 decision zone of LR contains a few isolated islands for class
2 (green) and class 3 (dark blue). These islands are di�erent for SVM
and KNN. Separately, we see that the decision boundaries for the other
classes, most notably class 0 (blue) and class 5 (yellow-green) are much
more jagged, for all classi�ers. Verifying the actual classi�cation results
shows, indeed, that instances in these classes are harder to classify than
in e.g. class 1 or class 6.

Finally, we see some interesting di�erences between the dense map
of KNN and the other two (Fig. 4.5, white stippled lines): the decision
boundary of class 4 (purple) is visibly stretched upwards in zone A for
KNN, whereas for LR and SVM, the purple zone is much smaller and
does not protrude upwards through the class-0 (blue) area. Similarly,
the decision boundary of the same class 4 protrudes signi�cantly up-
wards in the green area in zone B for KNN, but not for the other two
classi�ers. Finally, the decision boundary for class-0 (blue) protrudes
signi�cantly downwards in the purple area for KNN, but not for the
other two classi�ers. Note that these di�erences cannot be explained by

76

4.3 experimental results

the projection, since we use the same projected points for all three clas-
si�ers. Overall, the decision boundaries of KNN show larger, and more
mixed, per-class areas, except for class 1. This explains both the increase
in accuracy of KNN vs the other two classi�ers, but also for which re-
gions (types of images) of the data space these di�erences occur. Note,
again, that spotting such di�erences using only standard color-coded
projection scatterplots is very hard, or even impossible.

a) Logistic regression (89%) b) Support vector machines (87%) c) k Nearest neighbors (95%)

0 1 2 3 4 5 6

A B

C

Figure 4.5: Projections (top) and dense maps (bottom) for segmentation dataset,
three classi�ers.

4.3.2 MNIST dataset

Our second dataset, MNIST, is a standard dataset in ML consisting of
70K handwritten digit images, commonly employed to evaluate the per-
formance of machine learning image classi�ers, split into 60K training
and 10K testing images [75]. Each 28 × 28 pixels grayscale image can be
interpreted as a point in a 784-dimensional space. We use this dataset
to explore two other questions, as follows.

First, we show that dense maps can also be used for deep learn-
ing classi�ers, apart from the more classical ones such as LR, SVM, or
KNN. For this, we built a simple Convolutional Neural Network (CNN)
composed of two convolutional layers, one max-pooling layer and two
densely connected layers. This CNN was implemented and trained us-
ing Keras [23], and obtained an accuracy of 99.2% on the test data after
14 training epochs. We next computed a 2D projection from a subset
of 2000 samples of the training dataset using t-SNE (Figure 4.6). We did

77

constructing decision boundary maps

0 1 2 3 4 5 6 7 8 9

A

B

X

Figure 4.6: MNIST projected using t-SNE, color coded by class labels.

not use the full training dataset as t-SNE is quite slow (quadratic in the
number of data points). If we had only this projection to analyze the
decision boundaries assigned by the classi�er, what would then be the
conclusions to be drawn?

For instance, consider the top-right class-2 (green) and class-0 (blue)
groups (marked A and B in Fig. 4.6). These appear equally well separated
from the rest of the projection, equally compact, and have a similar (low)
number of other-class points embedded in them. As such, with only the
sparse projection information, we would likely conclude that the deci-
sion areas and boundaries for these two classes are quite similar. Likely,
the user seeing this projection would draw the decision zones corre-
sponding to A and B much like the dashed lines shown in Fig. 4.6. Let
us look at the dense map for this dataset. Figure 4.7 shows it, at a resolu-
tion R = 3002 pixels, computed for four di�erent values of the per-pixel
sample density N . We see now that the decision zones and boundaries
of class-2 and class-0 are, in fact, much more complex than we could in-
fer from the scatterplot. In particular, we see a non-negligible number
of small “islands” corresponding to other labels than 0 and 2 embedded
in the zones for these two labels. Also, we see that the class-0 zone is
much more compact than class-2 – it contains a single small island for
class 5 (Fig. 4.7, marker C).

Separately, let us consider the question of what happens close to out-
lier training samples. Take, for instance, the point marked X in the scat-
terplot (Fig. 4.6). What label would be assigned to a digit image that
projects there? We see that we have an isolated class-3 outlier and the
closest samples are the relatively large class-8 group (orange). So, based
on the scatterplot, one would reckon that some class-3 decision bound-
ary surrounding the outlier point will be created. However, what is the
exact shape and size of this decision boundary? We cannot answer this
question using only the scatterplot. The dense map gives us precisely

78

4.3 experimental results

this answer: the point X falls within an “island” decision zone that cor-
responds to class 3 (dark blue). This island is quite large, so it tells us
that the impact of a single outlier in the training set is important in such
sparsely-sampled areas. Note that this is not an approximate result: our
method indeed synthesized a group of samples that project around (and
on) the point X, ran it through the classi�er, and obtained class 3 as a
result. Moreover, we see that the dense maps are practically identical
for di�erent per-pixel sample densities, which increases the con�dence
that the class-3 island we see is indeed there. We could not have ob-
tained this insight using the scatterplot only.

C

a) N=1 b) N=5

c) N=10 d) N=15
0 1 2 3 4 5 6 7 8 9

X

Figure 4.7: Dense maps for MNIST dataset classi�ed by CNN, di�erent sample
density values N .

Another use of our dense maps is in showing how the decision bound-
aries change during training of a classi�er. Figure 4.8 shows four such
dense maps, for four di�erent epochs (E) of training the CNN for the
MNIST dataset, using stochastic gradient descent, with a learning rate
of 0.001. For the �rst epoch (Fig. 4.8a), we see how the decision bound-
aries are highly jagged, while clear decision zones are mainly visible for
the outlier samples. This con�rms the insight that during a deep neural
network training, outliers are handled the easiest, as surrounding them
by decision boundaries is far easier than “drawing” such boundaries
through a compact area of very similar samples [116]. From epoch 5,
decision boundaries get signi�cantly more re�ned in the central dense-
sample region. The dense maps for epochs 10 and 15 clearly show how
the training converges, as the decision boundaries basically stabilize.

79

constructing decision boundary maps

The dense maps correlate very well with the testing accuracies reported
in Fig. 4.8. Such images generalize the simple 2D animations of 2D
dataset classi�cations provided by TensorFlow [1] to nD datasets and
arbitrarily complex networks. They help directly seeing when further
training does not bring added value (in our case, from E = 10 onwards).

a) E=1 (accuracy: 40%) b) E=5 (accuracy: 86%) c) E=10 (accuracy: 91%) d) E=50 (accuracy: 95%)

Figure 4.8: Dense maps for four training epochs E, CNN classi�er, MNIST
dataset.

Finally, let us consider the projection algorithm choice. In Sec. 4.2.1,
we have shown that LAMP is a good choice for a simple two-class
dataset. Above, we have shown that t-SNE works well for the high-
dimensional MNIST dataset. We consider the same MNIST dataset (and
classi�er), but use LAMP for the 2D projection instead of t-SNE. The re-
sulting projection (Fig. 4.9a) shows clearly more class mixing than the
t-SNE projection (Fig. 4.6). The explanation follows: t-SNE aims to pre-
serve the high-dimensional nearest neighbors in the projection. Also,
t-SNE pre-processes the data by PCA dimensionality reduction prior
to projection, to make the 2D embedding task easier [82]. In contrast,
LAMP aims to preserve high-dimensional Euclidean distances between
points. So, for hundreds of dimensions (like the 784 ones in MNIST),
LAMP yields far less cluster separation in the projection, even if the
high-dimensional data is well separated. A poor-separation projection
leads, next, to a dense map showing fragmented decision zones with
complex borders (see Fig. 4.9b, which uses the same N and R values as
Fig. 4.7d). So, we conclude that for low-dimensional datasets, LAMP and
t-SNE are comparably good (with LAMP being signi�cantly faster); for
high-dimensional datasets, t-SNE should be de�nitely used instead of
LAMP.

4.4 discussion

We discuss next several important aspects of our image-based visual-
ization of classi�er decision boundaries.

Genericity: Our dense maps work for any classi�er and dataset, as
long as the data can be represented by a feature vector in Rn , so
that we can project such features via generic methods such as LAMP
or t-SNE, respectively invert the projection via iLAMP. No speci�c

80

4.4 discussion

0 1 2 3 4 5 6 7 8 9a) b)

Figure 4.9: LAMP projection and dense map for MNIST dataset, CNN classi�er.

constraints on data dimensionality n, data type, classi�er internals,
or classi�er training process, exist. For instance, we can visualize the
decision boundaries of an insu�ciently trained classi�er and compare
them with those of a better trained one, to tell us how training shifts
these boundaries (see the example in Sec. 4.3.2).

Robustness: We have shown that our method is robust even for
sparsely-sampled data spaces (limited number of training samples).
Our dense map construction guarantees a user-speci�ed number of
labeled samples N per pixel, at a user-given resolution R. As N in-
creases, every point of the 2D image becomes equally densely sampled,
meaning that we also have the same con�dence everywhere on our
dense maps.

Projection: Our dense maps obviously depend on the quality, of the
projection being used. A projection that, for instance, does not respect
well high-dimensional distances or neighborhoods will also yield an
arti�cially confused dense map. Yet, two key observations must be
made. First, this (well known) limitation of projections applies equally
to using scatterplots when visualizing a classi�er’s results, so our dense
maps do not add any extra problem here. Secondly, the projection
space should be seen as an abstract, and not Euclidean, space, in which
decision zones are depicted. That is, topological tasks like �nding the
neighbors of a decision zone along its boundary, �nding islands, and
�nding confusion zones, can be completed well even if a projection
doesn’t perfectly preserve point neighbors and/or inter-point distances.
All our experiments showed that t-SNE is a good projection in this
respect, in line with earlier �ndings in the same direction [82, 83, 116].

Limitations: Our current implementation cannot handle tens of thou-
sands of points at interactive rates. The reason hereof is the already-

81

constructing decision boundary maps

mentioned high computational complexity of t-SNE. Yet, recent t-SNE
accelerations could be used [106, 107], when such techniques become
publicly available. Also, we need to compute the projection only once
for a given dataset. A separate limitations regards the methods used to
construct dense maps. So far, we only tested two projection methods
(t-SNE and iLAMP) and one inverse projection method (iLAMP). How
dense maps would di�er when computed using other method combina-
tions is a topic to be studied separately in Chapter 5.

4.5 conclusion

We have presented a technique to visualize decision boundaries of arbi-
trary machine learning classi�ers. For this, we propose an image-based
approach where every pixel of the 2D output space is attributed a color
to show the exact behavior of the classi�er in the corresponding re-
gion of the high-dimensional space. For this, we use a combination of
direct and inverse dimensionality-reduction methods, and we also pro-
pose several visual encodings of the classi�cation result, confusion, and
sample density. Our method is simple to implement and can handle any
classi�er and feature-based dataset with no changes. We demonstrate
our method on several datasets, classi�ers, and using two di�erent pro-
jection techniques.

Several directions of re�ning the dense maps are possible. As already
mentioned, decision maps can be constructed using di�erent combina-
tions of direct and inverse projections. We explore these topics in Chap-
ters 5 and 6. The decision boundary maps can be augmented to show
more information, such as explicit misclassi�cation regions, and high-
dimensional distances or neighborhoods. This would help understand-
ing why a classi�er constructed its decision boundaries in a certain way
and, thus, help in improving them. We will cover this aspect in Chap-
ter 7. Separately, decision boundary maps can be extended in an active
learning approach to propose to the user areas where new labels would
be needed to e.g. reduce confusion or increase classi�cation accuracy.
We study this last topic in Chapter 8.

82

5E VA L UAT I N G D E C I S I O N B O U N D A R Y M A P S

In the previous chapter, we presented a technique to construct and vi-
sualize the decision boundaries and decision zones induced by a given
classi�er. As described there, our technique depends on two main in-
gredients – the projection technique used to map the high-dimensional
data to the 2D visualization space, and the inverse projection technique
used to map points in this visualization space to the high-dimensional
data space. Since the resulting decision boundary map images will de-
pend strongly on the choice of these techniques, the question is which
are suitable combinations of direct and inverse projections that lead to
decision boundary map images that are easy to interpret and convey a
trustworthy impression of the actual decision boundaries that a classi-
�er has? For instance, a projection technique that preserves well neigh-
borhoods in the data space is, arguably, better for constructing decision
boundary maps that one that spreads such neighborhoods all over the
projection plane. However, the de�nition of a “best” projection for our
task may depend also on how the projection interacts with the actual
classi�er whose decisions we want to visualize.

The “design space” of all possible combinations for constructing de-
cision boundary maps is very large, as it involves direct projections,
inverse projections, classi�er techniques, actual datasets, and hyperpa-
rameter values. In related work, Espadoto et al. [37] have attempted to
analyze a related, but much lower-dimensional, space consisting of the
behavior of projection techniques for di�erent types of datasets and
hyperparameter values, and for this end they needed to evaluate thou-
sands of combinations. Given that our design space has more dimen-
sions, we will not attempt to densely sample it for evaluation. Rather,
we will focus, in this chapter, on gauging the e�ect of a single dimen-
sion, namely the type of direct projection technique used to construct
decision boundary maps. As such, we aim next to answer two questions:

1. How do the depicted decision boundaries di�er as a function of
the chosen projection technique?

2. Which projection techniques are best for a trustworthy depiction
of decision boundaries?

This chapter is based on the following publication:
M. Espadoto, F. C. M. Rodrigues, and A. Telea. Visual analytics of multidimensional pro-
jections for constructing classi�er decision boundary maps. In Proc. IVAPP. SciTePress,
2019

83

evaluating decision boundary maps

5.1 preliminaries

For easing the reader’s burden, we brie�y repeat here the construc-
tion of decision boundary maps, and associated notations, introduced
in Chapter 4. Let D ⊂ Rn be a data space of interest in a classi�cation
problem. Let f : D → C be a classi�cation model that maps from data
points inD to some label setC . The model f is constructed using a train-
ing set St ⊂ D and tested using a test set ST ⊂ D, ST ∩St = ∅. Let P be a
projection technique from D to R2, and let P−1 be an inverse projection
technique from R2 to D. A decision boundary map for f is an image I
constructed as follows (see also Fig. 5.1a):

For every pixel y ∈ I , we gather all data samples x ∈ D that
project into y, and, if their count Y is below a user-prescribed value
U , we add to them U − Y synthetically created points P−1 (y′), where
y′ are random points inside pixel y. Having now R = max(U ,Y)
data samples x1, . . . , xR for each image pixel y, we color y the labels
L = { f (x1), . . . , f (xR)} assigned by the model f . Compact same-color
areas in I indicate decision zones where the classi�er f infers the same
label, i.e., re�ect the underlying so-called contiguity hypothesis typical
in many ML contexts [84]; frontiers separating di�erent colors in I in-
dicate decision boundaries. Few compact zones with simple (smooth)
boundaries indicate that the classi�er has little di�culty in taking de-
cisions over D. Multiple disjoint same-color zones and/or zones with
tortuous boundaries indicate the opposite. Small-size “islands” of one
color embedded in large zones of di�erent colors suggest misclassi�ca-
tions and/or training problems.

However, the trustworthiness of our dense map technique heavily de-
pends on the direct (P) and inverse (P−1) projection techniques it uses.
Consider, for example, a toy two-class kNN classi�er for a 3D data space
D ⊂ R3 trained with a simple St consisting of one sample of each class.
We know in this case that the decision boundary should be a plane
halfway the two training samples. So, a good 2D projection P should
ideally lead to a decision boundary map image that shows two compact
decision zones separated by a straight line. Conversely, a poor P may
create several same-class zones having complex curved boundaries; if
we saw such an image, we would wrongly judge the behavior of this
simple classi�er.

As discussed in Chapter 2, tens of di�erent projection techniques P
exist. Which ones are best for constructing decision boundary maps
is, however, not evident. To �nd these, we can use, up to some extent,
the analysis of Espadoto et al. [37] that quantitatively compared over 40
such techniques against six di�erent quality metrics. However, the re-
spective quality metrics are chie�y aimed at gauging how well a projec-
tion succeeds in creating a scatterplot that faithfully conveys the high-
dimensional data structure. In our case, there is, formally speaking, no
scatterplot whose quality we want to maximize, but a dense map image.

84

5.2 experiment setup

Hence, it is not evident that projections deemed best by the survey of
Espadoto et al. are automatically best for our task.

A second evaluation problem exist in our context: How to gauge the
quality of a decision boundary map produced by a given projection tech-
nique P? For this, we need some ground truth to compare the map with.
In the survey of Espadoto et al., this was (relatively) easy to obtain, since
projections were compared with ground truth inferred from the high-
dimensional data points they represent. In our case, this is not possible,
since, except trivial cases, we do not know the shape and position of
decision boundaries of classi�ers in high-dimensional space.

Given the above, we approach the problem of determining the suit-
ability of projections for decision boundary map construction as a two-
phase process, as follows:

1. We construct maps (using all projections) for a simple dataset and
two-class classi�cation problem, for which we know how the de-
cision boundaries look like. We next rank the tested projections
in terms of how well they generate maps that correspond to our
prior knowledge on the decision boundaries for this simple prob-
lem;

2. We select a small subset of projections that perform best on the
experiment in the �rst phase, and assess how they behave on
more complex classi�cation problems and datasets. Since we do
not have ground truth here, we only assess the results qualita-
tively, in terms of noisiness and fragmentation of the resulting
decision zones and boundaries.

5.2 experiment setup

To answer the two questions stated at the beginning of this chapter,
we designed a two-stage experiment to study how dense maps depend
on dimensionality reduction (DR) techniques and classi�ers, covering
a combination of 28 DR techniques and 4 classi�ers (Figure 5.1b). The
ingredients of this experiment are as follows:

Data: We select two di�erent subsets of the Fashion MNIST [161], a
state-of-the-art ML benchmark with clothing and accessory images,
which supersedes complexity-wise the traditional MNIST dataset [75].
Both MNIST and Fashion MNIST have 70K grayscale images of 28 × 28
pixels, split into a training set (|St | = 60K samples) and a test set
(|ST | = 10K samples). The two subsets are as follows:

• S2: A two-class subset (classes T-Shirt and Ankle Boot) that we
hand-picked to be linearly-separable; the reason for this is that,
for such a simple con�guration, we know what to expect in the

85

evaluating decision boundary maps

Test data S
T

Augmented data

P
-1

P

Classifier f
scatterplot

pixel y

subsamples y’

nD sample x P(x)

newly created samples P
-1(y’)

dense map

labels f(x)

Fashion MNIST

subset S2

subset S10

4 x 28 = 112 dense maps

select 5 best
projections

4 x 5 = 20 dense maps

4 classifiers

28 projections

4 classifiers

5 projections

stage 1

stage 2

a)

b)

minimum
sample
density U

Figure 5.1: Two-phase experiment set-up.

corresponding decision boundary map. Namely, the respective
map should (ideally) partition the visual space into two regions
separated by a smooth boundary;

• S10: An all-class subset (T-Shirt, Trouser, Pullover, Dress, Coat, San-
dal, Shirt, Sneaker, Bag, and Ankle Boot). This is a non-linearly-
separable dataset.

Classi�ers: We consider the same classi�ers as in [120]: LR, RF, kNN
(implemented in scikit-learn, using their toolkit’s default parameters),
and CNN (implemented in keras). For CNN, we used two convolutional
layers with 64 �lters each and 3 × 3 kernels, followed by one 4096-
element fully-connected layer, trained with the Adam optimizer [70].
These classi�ers create very di�erent decision boundaries: At one
extreme, LR boundaries are linear (hyperplanes). kNN boundaries are
piecewise-linear (facets of nD convex polyhedra). RF creates typically
more complex boundaries than k-NN. At the other extreme, CNN
boundaries can have arbitrarily complex topologies and geometries,
due to the complex decision function f coded by the deep network
structure. However, CNNs are known to perform very well for clas-
sifying images like our dataset, while at the other extreme simple
classi�ers like LR are highly challenged by such data.

Training: The four classi�ers were separately trained on the two sub-
sets S2 (|St | = 2160 samples, |ST | = 240 samples) and S10 (|St | = 10800
samples, |ST | = 1200 samples). We veri�ed that the training yielded
good accuracies in all cases (Tab. 3). This is essential to know when we

86

5.3 analysis of evaluation results

Table 3: Accuracy of classi�ers, 2-class and 10-class problems.
Classi�er technique 2-class 10-class
Logistic Regression (LR) 1.0000
Random Forest (RF) 1.0000 0.8332
k-Nearest Neighbors (KNN) 0.9992 0.8613
Conv. Neural Network (CNN) 1.0000 0.9080

next gauge the dense maps’ ability to capture a classi�er behavior (see
stage 1 below).

Projections: Table 4 lists the 28 selected projection techniques (P) to
create dense maps as well as the parameter settings (default indicates
using the standard ones the algorithms come with). As inverse projec-
tion (P−1), we used iLAMP in all cases, just as in Chapter 4. As selection
criteria, we considered well-known projections of high quality (follow-
ing a recent survey [91]1), good computational scalability, ease of use
(P should come with well-documented parameter presets), and publicly
available implementation.

Dense maps: We use a two-stage creation and analysis of dense maps,
as follows (Fig. 5.1). In stage 1, for S2, we create dense maps using all 28
projections for all 4 classi�ers, yielding a total of 112 dense maps. All
maps have a 400 × 400 pixel resolution. Since S2 is quite simple (two
linearly separable classes), and since all classi�ers for S2 have very high
accuracies (Tab. 3), the resulting maps should display (ideally) two com-
pact zones separated by a smooth, ideally linear, boundary. We visually
verify which of the 112 maps best comply with these criteria, and next
select the �ve projections (of the 28 tested ones) which realize these
maps. These are shown in bold in Tab. 4. Next, in step 2 of the study, we
create dense maps, for all 4 classi�ers again, but using the more com-
plex S10 dataset. Finally, we explore these visually to gain �ne-grained
insights allowing us to further comment on the dense-map suitability
of these 5 hand-picked projections.

5.3 analysis of evaluation results

We next discuss the results and insights obtained in our two-stage ex-
periment.

1 The survey of Espadoto et al. [37] was not published at the date when we conducted
this work. However, upon a detailed comparison, we see that there are no high-quality
projections reported in Espadoto et al. which our evaluation did not include.

87

evaluating decision boundary maps

Table 4: Projections tested in phase 1 (Sec. 5.3.2). Projections tested in phase 2
(Sec. 5.3.2) are marked in bold.

Projection Parameters
Factor Analysis[67] iter: 1000
Fast Independent Component Analysis (FastICA)[63] fun: exp, iter: 200
Fastmap[44] default parameters
IDMAP[89] default parameters
Isomap[151] neighbors: 7, iter: 100
Kernel PCA (Linear) [125] default parameters
Kernel PCA (Polynomial) degree: 2
Kernel PCA (RBF) default parameters
Kernel PCA (Sigmoid) default parameters
Local A�ne Multidimensional Projection (LAMP)[66] iter: 100, delta: 8.0
Landmark Isomap[22] neighbors: 8
Laplacian Eigenmaps[11] default parameters
Local Linear Embedding (LLE)[122] neighbors: 7, iter: 100
LLE (Hessian)[34] neighbors: 7, iter: 100
LLE (Modi�ed)[167] neighbors: 7, iter: 100
Local tangent space alignment (LTSA)[168] neighbors: 7, iter: 100
Multidimensional Scaling (MDS) (Metric)[74] init: 4, iter: 300
MDS (Non-Metric) init: 4, iter: 300
Principal Component Analysis (PCA) [67] default parameters
Part-Linear Multidimensional Projection (PLMP) [101] default parameters
Piecewise Least-Square Projection (PLSP)[102] default parameters
Projection By Clustering[100] default parameters
Random Projection (Gaussian)[30] default parameters
Random Projection (Sparse)[30] default parameters
Rapid Sammon[105] default parameters
Sparse PCA[171] iter: 1000
t-Stochastic Neighbor Embedding (t-SNE)[82] perplexity: 20, iter: 3000
Uniform Manifold Approximation (UMAP)[87] neighbors: 10

5.3.1 Phase 1: Picking the Best Projections

As stated earlier, all four tested classi�ers yield almost perfect accuracy
for the simple 2-class problem S2 (Tab. 3). Hence, their decision bound-
aries are “where they should be”, i.e., perfectly separating the two
classes in S2. Moreover, since S2 is by construction linearly separable,
the dense maps constructed for these classi�ers should clearly show
two compact decision zones separated by a smooth, simple, boundary.
We use this as a visual criterion to rank how well the tested projection
techniques can achieve this. Figures 5.2 and 5.3 show the dense maps
for all 28 tested projections vs the four tested classi�ers, where red and

88

5.3 analysis of evaluation results

a) Logistic Regression

b) Random Forest

Figure 5.2: Dense maps for Logistic Regression (a) and Random Forest (b) clas-
si�ers on the 2-class S2 dataset, all 28 tested projections.

blue indicate pixels mapping samples classi�ed to one of the two labels
in S2. Interestingly, we see that even for this very simple problem not
all projections perform the same. Our key observations are as follows:

Stability: The dense maps are surprisingly stable for the same projec-
tion over all four classi�ers, except for LLE, LTSA, Random Projection
(Gaussian), and Random Projection (Sparse). Hence, we already �ag
these four projections as less suitable.

89

evaluating decision boundary maps

a) k Nearest Neighbors

b) Convolutional Neural Network

Figure 5.3: Dense maps for k-NN (a) and CNN (b) classi�ers on the 2-class S2
dataset, all 28 tested projections.

Smoothness: All projections have relatively smooth boundaries,
except Random Projection (Gaussian), Random Projection (Sparse),
and MDS (Non-Metric). Since we expect smooth boundaries, these
projections are less suitable. The projections which yield boundaries
closest on average to the expected straight line are MDS, UMAP,
Projection by Clustering, t-SNE, and PLMP.

Compactness: Projections succeed up to widely di�erent degrees in
creating the expected two compact, genus-zero, decision zones. t-SNE,
UMAP, Projection by Clustering, and IDMAP do this almost perfectly.

90

5.3 analysis of evaluation results

MDS (Non-Metric), the two Random Projections, LLE (Hessian), and
LTSA perform the worst.

Summarizing the above, we select MDS (Metric), PLMP, Projection
by Clustering, UMAP, and t-SNE as the overall best projections to ana-
lyze further in phase 2, discussed next. At this point, it is interesting to
remark that, three of the above �ve methods – Projection by Clustering,
UMAP, and t-SNE, were also ranked among the top projections in the
independent study of Espadoto et al. [37], which used di�erent quality
metrics than our work.

5.3.2 Phase 2: Re�ned Insights on Complex Data

We now examine how the �ve projections selected in phase 1 perform
on the 10-class dataset S10, which is a tough classi�cation problem [161].
We already see this in the lower achieved accuracies (Tab. 3). Hence, we
expect to have signi�cantly more complex boundaries. Figure 5.4, that
shows the dense maps for our 4 classi�ers for the 5 selected projections,
con�rms this. Several interesting patterns are visible, as follows.

Overall comparison: For a given projection, the dense map patterns
are quite similar over all four tested classi�ers. This is correct, since the
dense map is constructed based on the scatterplot created by that pro-
jection from the test set ST , which is �xed. The variations seen along
columns in Fig. 5.4 are thus precisely those capturing the di�erences
of decision boundaries of di�erent classi�ers. We see, for instance, that
LR tends to create slightly simpler boundaries than the other three clas-
si�ers. Conversely, variations along rows in Fig. 5.4 can be purely as-
cribed to the projection characteristics. Techniques designed to better
separate data clusters, such as t-SNE and UMAP, show more compact
decision zones with simpler boundaries than MDS, PLMP, and Projec-
tion by Clustering. Also, the choice of neighborhood used internally by
the projection technique to estimate points in the lower dimension (2D)
does not seem to play a key in�uence: MDS, which uses global neigh-
borhoods, shows similar pattern-variations along classi�ers to the other
four projections, all of which use local neighborhoods.

Another salient visual element of the dense maps in Fig. 5.4 is the
presence of many small color islands – that is, small-area compact zones
of some color (class) surrounded by larger-area zones of another color
(class). Let us analyze these in more detail. An island indicates that (at
least) one sample was assigned a label di�erent from the labels of sam-
ples that project close to it. In turn, this means that

a) the island does not actually exist in the high-dimensional space D,
so the projection P did a bad job in distance preservation when
mapping nD points to 2D; or

91

evaluating decision boundary maps

Figure 5.4: Dense maps for all classi�ers, 10-class dataset, �ve best-performing
projections.

b) the islandmay exist inD, i.e., there exist very similar samples that
get assigned di�erent labels. This case can be further split into
b1) the island actually exists in D, i.e. similar points in D do

indeed have di�erent labels, and the classi�er did a good
job capturing this; or

b2) the island does not exist in D, i.e., the classi�er misclassi�ed
points which are similar in the feature space but actually
have di�erent labels.

To understand which of these cases actually occur in Fig. 5.4, we plot
misclassi�ed points atop the dense map as half-transparent white disks.
Figure 5.5 shows this for the LR and CNN classi�ers, all projections.
Regions having many (densely packed) misclassi�cations show up as
white areas. The insets (t-SNE dense map) exemplify how islands point
to two of the above-mentioned issues: In Fig. 5.4a, we see two very small
color islands around the misclassi�ed samples A and B. These islands
indicate the extent up to which other samples, close toA orB, would also
get misclassi�ed. In contrast, the detail in Fig. 5.4b shows a (red) island
containing no white dots (misclassi�cations). This island either re�ects
a real variation of the label over similar points in D (case (b1) above), or
else re�ects a t-SNE projection artifact (case (a) above). To decide which
of these cases actually occurs, we need additional techniques. We will
present such techniques in Chapter 7.

92

5.4 discussion

Separately, we see that, overall, the LR dense maps have more white
dots than the CNN ones, which correlates with the lower LR accuracy
(Tab. 3). We also see that the white points are non-uniformly spread
over the dense maps by di�erent projections. MDS and PLMP show
many islands without white dots. As explained above, this either re-
�ects densely-packed di�erent-label points in D (case (b1)) or MDS and
PLMP projection errors (case (a)). At the other extreme, t-SNE, and even
more so UMAP, strongly pack the white dots, which tells that misclassi-
�cations actually occur for quite similar data samples. Densely-packed
white points e�ectively show the confusion zones, so one can use them
to decide which kinds of samples need to be further added to the train-
ing set to improve accuracy.

Another �nding is that hard samples on the dataset, i.e., the ones
located far away from their label group and which appears as “islands”
of one color inside another, are easy to spot and if classi�ed correctly,
shows that the classi�er did a good job on those.

C
o

n
vo

lu
ti

o
n

al
 N

eu
ra

l N
et

w
o

rk
L

o
g

is
ti

c
R

eg
re

ss
io

n

MDS(Metric) PLMP Projection by Clustering t-SNE UMAP

detail (a)

detail (b)

A BA

Figure 5.5: Classi�cation errors (white dots) shown atop of the dense maps, LR
and CNN classi�ers.

5.4 discussion

We summarize our �ndings and insights concerning the construction
and interpretation of classi�er decision maps as follows.

Best techniques: We evaluate the construction of dense maps using
28 direct projection techniques and 3 inverse projection techniques
respectively. To limit the amount of work required to analyze hun-
dreds of classi�er-projection combinations, we designed a two-phase
experiment where we pre-select the best projections (using a simple
classi�cation problem) to study next in detail. t-SNE and UMAP
appear to be the best projections for constructing dense maps in terms

93

evaluating decision boundary maps

of recognizability of decision boundaries in the produced patterns,
limited errors (spurious islands), and concentration of confusion zones
(misclassi�cations). Since UMAP has similar properties with t-SNE
but is signi�cantly faster, we label it as the optimal candidate for this
task. Interestingly, the survey of Espadoto et al. [37] on the quality of
projection techniques also �ags t-SNE and UMAP between the three
best techniques, although it gauges a di�erent task and uses di�erent
quality metrics. We believe that this is not by chance, but it actually
indicates that these two techniques are indeed among the best in
existence for a wide variety of tasks.

In�uence factors: As mentioned, dense maps depend not only on the
direct projection P but also on its inverse P−1. We studied in detail the
dependency on P , but only used a single P−1 implementation (iLAMP).
This is due to the fact that (at the time of doing this work) we were
not aware of any other scalable, generic, and publicly-available inverse
projection alternative. However, designing such alternatives is an
interesting topic. We will cover this point in Chapter 6.

Experiment coverage: Dense maps constructed using projections are
a novel technique in high-dimensional visualization. Besides their use
discussed here for showing classi�er boundaries, they are also used to
analyze projection quality [8, 85]. All such maps strongly depend on
the projection technique being used. To our knowledge, our current
work that evaluates how dense maps depend on the choice of 28
possible projection techniques, is the broadest evaluation of this type
in existence. To limit the amount of work required to analyze over
hundred classi�er-projection combinations, we designed a two-phase
experiment where we pre-select the best projections (using a simple
classi�cation problem) to study next in detail. This, of course, limits
the potentially interesting insights one can �nd. The same is true for
our choice of using a single (though, highly-recognized complex ML
benchmark) dataset.

Replicability and extensibility: To be useful, our work on evaluating
projection-based dense maps must be accessible, replicable, and exten-
sible. All involved materials and methods (projections, datasets, dense
maps, classi�ers, automated work�ow scripts) are available online 2. We
intend to organically extend this repository with new instances along
all above-mentioned dimensions.

In this chapter we have presented a methodology for evaluating the
quality of multidimensional projections for the task of constructing 2D
dense maps to visualize decision boundaries of ML classi�ers. To this
end, we have evaluated 28 well-known projections on a two-class, re-
spectively ten-class, subset of a well-known ML benchmark, using four

2 https://mespadoto.github.io/dbm/

94

https://mespadoto.github.io/dbm/

5.4 discussion

classi�ers often used in practice. Our evaluation shows wide, and to
our knowledge, not yet known, di�erences between the behavior of the
studied projections. The closest work to ours that we are aware of is
the projection benchmark study of Espadoto et al. [37], which evaluates
44 projection techniques from the perspective of quality metrics related
to the assessment of scatterplots constructed by projecting data. While
our task for which we use projections is di�erent (constructing deci-
sion boundary maps), and our evaluation criteria are also di�erent (we
want decision maps which faithfully re�ect prior knowledge on how
the decision boundaries look for speci�c datasets and classi�ers), it is
interesting to see that both our work and that of Espadoto et al. �nd a
common subset of “best” projections, namely UMAP, t-SNE, and Projec-
tion by Clustering.

Using a visual analytics methodology, we next re�ned our analysis
to a small set of �ve high-quality projections, and found that t-SNE and
UMAP perform best for this task. On the practical side, our results can
be used to drive the selection of suitable projections for other types
of dense maps used in high-dimensional visualization. On the method-
ological side, our work�ow can serve as a model for the exploration of
a large design space in similar visual analytics contexts.

As already pointed out several times in this chapter, decision bound-
ary maps depend both on the direct and the inverse projection tech-
nique used in their construction. In this chapter, we studied the e�ect
of the former. The e�ect of the latter, including improvements upon ex-
isting inverse projection techniques, is the topic of the next chapter.

95

6I N V E R S E P R O J E C T I O N S F O R D E C I S I O N B O U N D A R Y
M A P S

The construction of decision boundary maps introduced in Chapter 4
relies on two central techniques – direct projection and inverse projec-
tion. In Chapter 5, we studied the e�ect of the choice of direct projection
technique on the resulting maps, and shown that among the studied
techniques, t-SNE and UMAP deliver the best results. In this chapter,
we focus on the e�ect of the choice of inverse projection techniques.

The importance of inverse projections to the construction of decision
boundary maps has two components, as follows.

Computational e�ort: Following our usual notation, let D be a
�nite dataset, e.g., test set, used to assess the working of a classi�er
f . Let P be the projection technique used to project D to yield a two
dimensional scatterplot Y . Let P−1 be an inverse projection technique.
Finally, let I be an image of N pixels that stores the computed decision
boundary map. As explained in Chapter 4, computing this map implies
three steps: (a) projecting D to yield the scatterplot Y = P (D); (b)
for each pixel y ∈ I , subsample y to create R points; (c) for each of
these points y′, compute x = P−1 (y′), and next color y based on the
labels f (x). A typical test set D would contain thousands of samples
(which need to be projected via P), while a typical decision boundary
map would have a resolution N of several hundred thousand pixels.
Given that each such pixel is sampled N times, the cost of the entire
computation is dominated by the evaluation of f and the computation
of P−1 at each such pixel sample point. Hence, having an e�cient way
to evaluate P−1 is paramount for using decision boundary maps in a
visual analytics interactive setting.

Quality: As discussed in Chapter 5, the quality of decision boundary
maps strongly depends on the quality of the underlying projection tech-
nique P . Projections which exhibit many false neighbors and/or miss-
ing neighbors [85] will “mix up” data coming from unrelated regions in
the high-dimensional space when creating the scatterplot, thus lead the
undesired e�ects such as noisy decision boundaries and/or spurious is-
lands in decision zones. By following the same reasoning, it is clear that

This chapter is based on the following publication:
M. Espadoto, F. C. M. Rodrigues, N. S. T. Hirata, R. Hirata Jr., and A. C. Telea. Deep Learn-
ing Inverse Multidimensional Projections. In Proc. EuroVis Workshop on Visual Analytics
(EuroVA). The Eurographics Association, 2019

97

inverse projections for decision boundary maps

errors in inverse projections P−1 would lead to similar problems. Hence,
we need high-quality inverse projections for our goal.

In this chapter, we study the e�ect of inverse projections to the
construction of decision boundary maps, with two main contributions.
First, we study two existing inverse projection techniques, namely
iLAMP[124] (discussed in Sec. 2.2.3.1) and RBF based inverse projection
[5] (detailed in 2.2.3.2). Secondly, we propose a new inverse projection
method based on deep learning. We compare all three inverse projec-
tion methods from the viewpoints of computational speed and quality
of resulting decision boundary maps, and show that the neural-network
inverse projection – next dubbed NNinv – achieves the best quality and
speed from all three studied techniques.

This chapter is structured as follows. First, we detail the construc-
tion of our new inverse projection technique NNinv (Sec. 6.1). Having
presented this method, we now compare all three inverse projection
methods (iLAMP, RBF, and NNinv) using various datasets, classi�ers,
and direct projection techniques (Sec. 6.2). Section 6.3 concludes this
chapter by a discussion of our results.

6.1 inverse projection by neural networks

The idea of using deep learning to help dimensionality reduction tasks
is, in itself, not new. Early on, autoencoders have been proposed to re-
duce the dimensionality n of some data space, sampled by a training set,
to a (typically much) lower dimensionalitym � n [59]. If one setsm = 2,
this approach basically delivers a projection algorithm from nD to 2D.
Re�nements of this approach have been proposed in various works, e.g.
using variational autoencoders [71]. One of the important advantages
of deep learning is its parametric nature. Namely, the trained network
learns (from the provided training set) the structure of the space that
these samples imply, and next, during inference, behaves deterministi-
cally. That is, given the same (or slightly di�erent) input sample, the net-
work will infer the same (or slightly di�erent) output value. The added-
value of this is obvious when computing projections, which should be
stable with respect to small changes in the input data, to maintain the
user’s mental map. A detailed discussion of projections stability has re-
cently been proposed by Vernier et al. [157]. Van der Maaten has rec-
ognized this earlier, and proposed a modi�cation of the t-SNE method
to behave parametrically, using deep learning [81]. Closest to our work,
Espadoto et al. [41] have recently proposed deep learning to construct
direct projections based on a (small) training set projected with a user-
chosen method such as t-SNE, UMAP, or any other similar algorithm.
Our inverse projection method shares many commonalities with [41] –
the key di�erence being that we address the more challenging task of
learning a mapping from 2D to nD rather than one from nD to 2D.

98

6.2 experiments and results

In detail, our method (NNinv) works as follows. We start with a
dataset D ⊂ Rn and a projection technique P . Both can be freely chosen
by users depending e.g. on their application of interest and the features
that P should manifest, e.g., good cluster segregation, distance preser-
vation, or any other known quality metrics [27, 83, 91, 162]. We hypoth-
esize that the way in which P captures the data structure in D can be
used to create an inverse projection P−1 by using a small training set
St ⊂ D and its respective projection P (St) ⊂ P (D). We next construct
P−1 by training a neural network on the training set Ts = (St , P (St)),
with St selected by random sampling of D. We use the remaining data
Dp = (D \ St , P (D) \ P (St)), unseen during training, for validation. The
cost function aims to generate samples in D that are as close as possible
to the training ones in St . Summarizing, our method has three steps: In
step 1, we create the projection P (St) of the training samples St using
any desired projection technique P . In step 2, we train a neural network
using the training set Ts . In step 3, we validate the trained network us-
ing the test set Dp . The trained network is our inverse projection P−1.
For any given 2D point y, we can now infer its high-dimensional coun-
terpart by P−1 (y).

After extensive empirical testing, varying the number of layers, neu-
rons per layer, and activation functions, we set the architecture of P−1

to four fully-connected hidden layers, with 2048 units each, using ReLU
activation functions, followed by an n-element layer, which uses a sig-
moid activation to encode the inverse projection, scaled to the interval
[0, 1] for implementation simplicity – that is, we assume that our high-
dimensional data resides in [0, 1]n instead of Rn . We initialize weights
with the He uniform-variance scaling initializer [57], and bias elements
by a constant value 0.01, which showed good results during testing. We
use the Adam [70] optimizer to train P−1 for up to 300 epochs. We stop
training automatically on convergence, de�ned as the moment when
the validation loss stops decreasing. In practice, we need 150 epochs on
average for convergence (see Sec. 6.2.1). As cost function, we use mean
squared error, which showed better convergence speed during testing
than mean absolute error and log hyperbolic cosine (logcosh). To test
quality, we compare thenD inferred samples P−1 (Dp) with ground truth
Dp using the mean squared error metric.

6.2 experiments and results

We tested our method on the following materials:
Projections: We use for P t-SNE [82] and UMAP [87], which have
high-quality and are well known in the dimensionality reduction
community [91]. We also tested our method with other projections
such as PCA and LAMP. However, given that t-SNE and UMAP score as
the best techniques when used as direct projections for computing our

99

inverse projections for decision boundary maps

decision boundary maps (Chapter 5), we focus next on presenting and
discussing the results of NNinv with these two projection methods.

Inverse projections: We compare our method with two alternatives:
iLAMP [124] and RBF [5]). Besides PCA, these are the only inverse
projection methods we are aware of. PCA shows poor results as both
direct and inverse projections for data of high intrinsic dimensionality,
so we omit this from the presentation.

Datasets: We use one synthetic dataset and two well-known real-world
benchmark datasets in machine learning. The synthetic dataset (Blobs)
has 60K observations sampled from a Gaussian distribution with 5 dif-
ferent centers (clusters) and 50 dimensions. The MNIST dataset [75] has
70K observations of handwritten digits from 0 to 9, rendered as 28× 28-
pixel grayscale images, �attened to 784-element vectors. The Fashion
MNIST dataset [161] has 70K observations of 10 types of pieces of cloth-
ing, rendered as 28x28-pixel grayscale images, �attened to 784-element
vectors.

We next discuss our method in terms of scalability (Sec. 6.2.1), quan-
titative assessment of quality (Sec. 6.2.2), and qualitative assessment of
quality (Sec. 6.2.3)

6.2.1 Scalability in training and inference

Scalability implies the e�ort required to train our method and, sepa-
rately, the e�ort needed to infer P−1 (Y) as function of the size |Y | of
the dataset Y to inversely project. Table 5 shows the number of training
epochs needed to obtain convergence (de�ned as in Sec. 6.1) as func-
tion of the training set size |St |, for all three considered datasets and
P = t-SNE. The �gures for other projections (UMAP, PCA) are very
similar. Columns 2..4 indicate averages for multiple runs that select St
by randomly sampling D (see Sec. 6.1). Overall, we see that we obtain
convergence for roughly 150 epochs for all datasets and training-set
sizes, and also that this number of epochs is quite stable for training-set
sizes |St | larger than 1K samples.

Figure 6.1 shows the inference speed for all three datasets. Note that
speed does not depend on the projection method P , by construction.
Also, in this experiment, we consider any point y ∈ R2, i.e., not only
points in the test-set St , since we don’t need ground truth information
to assess speed, and since in actual use one would not have such ground
truth available. We see that both RBF and iLAMP have a superlinear be-
havior, while iNN (our method) is almost linear. More importantly, iNN
is roughly one magnitude order faster than RBF and nearly two orders
of magnitude faster than iLAMP for 40K samples or more. This speed-
up is crucial for applications that need to inversely project hundreds
of thousands of samples (or more), like in the construction of decision

100

6.2 experiments and results

Table 5: Training e�ort until convergence.
Average # epochs for each dataset D

training set size |St | Blobs Fashion-MNIST MNIST Avg.
500 268.0 214.0 213.5 192.5
1000 190.5 129.0 147.5 149.0
2000 153.0 112.0 111.0 112.5
5000 103.0 120.5 138.0 127.5
7000 127.0 118.5 151.0 144.0
10000 82.0 124.5 142.5 146.5

average |St | per D 153.9 136.4 150.6 145.3

boundary maps, presented in Chapter 4 (see [38, 120] and Sec. 6.2.3 next).
In such cases, iNN allows constructing such maps in seconds, whereas
iLAMP and RBF require (tens of) minutes, which makes human-in-the-
loop usage of such dense maps impossible in visual analytics scenarios
– which is one of the key reasons why dense maps are built in the �rst
place.

10

20

30

40

50

60

70

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40

10

20

30

40

50

60

70

10

20

30

40

50

60

70Blobs MNIST FashionMNISTiLAMP

RBF

iNN

iLAMP

RBF

iNN

iLAMP

RBF

iNN

ti
m

e
(s

ec
o

n
d

s)

number of samples to inversely project (x1000)

Figure 6.1: Inverse projection speed as function of number of samples.

6.2.2 Quantitative Assessment of Quality

Besides being fast, we want an inverse projection to be accurate. That
is, given some ground truth pair (x ∈ Rn , y = P (x) ∈ R2), unseen by
training, we want that P−1 (y) be as close as possible to x. This follows
the same idea as, on the one hand, normalized stress metrics used to
gauge the quality of projections in the literature [83, 140], and on the
other hand classical validation of inference models in machine learn-
ing. We measure quality in our case by computing the average inverse-
projection mean square error MSE = ‖x − P−1 (P (x))‖2/|Dp | over the
test set Dp . The closer MSE is to zero, the better P−1 is. Figure 6.2 shows

101

inverse projections for decision boundary maps

MSE for our three datasets, two projections (t-SNE and UMAP), three
tested inverse projections (iLAMP, RBF, and iNN). We also consider sev-
eral training-set sizes |St | to show how MSE depends on the training
amount. For Blobs, a relatively easy-to-project synthetic data, all meth-
ods have basically zero error, except RBF. MNIST and FashionMNIST
show similar behavior: Our method (iNN) achieves consistently lowest
error. The second-best method is iLAMP. Errors are larger for these real-
world complex datasets than for the synthetic Blob, which is expected.

0.06

0.07

0.08

2 5 7 10

Blobs MNIST FashionMNISTMSE

number of training samples (x1000)

0.05

0.04

0.03

0.02

0.01

iNN+t-SNE

iLAMP+tSNE
iLAMP+UMAP

iNN+UMAP

RBF+t-SNE

RBF+UMAP

10.5

all other methods

RBF+UMAP

RBF+t-SNE

2 5 7 101

MNIST

2 5 7 101

iNN+t-SNE and

iLAMP+tSNE

Figure 6.2: Mean square error of inverse projection (lower=better).

6.2.3 Qualitative Assessment of Quality

We now show why having a fast and accurate inverse projection is
important for our concrete application – understanding the decision
zones of classi�ers. For this, we construct decision maps for projections
P ∈ {tSNE,UMAP}, datasets D ∈ {Blobs,MNIST, FashionMNIST},
inverse projections P−1 ∈ {iLAMP,RBFp,RBFc, iNN}, and classi�ers
C ∈ {LR,CNN}. Here, RBFp and RBFc are two versions of the RBF
inverse projection, using �xed control points, respectively control
points de�ned as centers of clusters obtained from the input data D
(for details, we refer to the original paper [5]). LR is a simple logistic
regression classi�er, used since we know it produces piecewise-linear
decision boundaries and hyperpolyhedral decision zones; and CNN
is a convolutional neural network, which we know it works well for
image data like (Fashion)MNIST. All decision maps are images of 5002

pixels, so |Dp | = 250000 points (Fig. 6.3). Importantly, all maps were
constructed completely from unseen data – that is, we do not use any
of the data points or their projections present in the training set St . We
discuss our results next.

Blobs dataset: As expected, for this simple dataset, both t-SNE and
UMAP separate well the 5 clusters present in the data. The LR trained
on this dataset achieved 100% accuracy. All inverse projections P−1

102

6.2 experiments and results

Projection scatterplot P-1 = iLAMP P-1 = RBF clusters (RBFc) P-1 = RBF fixed control points (RBFp) P-1 = Our method (iNN)

B
lo

bs
 (

P
 =

 t
-S

N
E

,C
 =

 L
R

)
B

lo
bs

 (
P

 =
 U

M
A

P,
C

 =
 L

R
)

M
N

IS
T

 (
P

 =
 t

-S
N

E
,C

 =
 C

N
N

)
M

N
IS

T
 (

P
 =

 U
M

A
P,

C
 =

 C
N

N
)

F
as

hi
on

M
N

IS
T

 (
P

 =
 t

-S
N

E
,C

 =
 C

N
N

)
F

as
hi

on
M

N
IS

T
 (

P
 =

 U
M

A
P,

C
 =

 C
N

N
)

Figure 6.3: Dense maps constructed for combinations of classi�ers C , projec-
tions P , inverse projections P−1, and datasets. See Sec. 6.2.3.

appear as compact zones that surround the corresponding projection
scatterplots. For the LR classi�er, we know that the decision boundaries
should be piecewise linear. UMAP yields more concentrated clusters, so
the corresponding dense maps resemble very much Voronoi diagrams
of the respective cluster con�gurations – which is indeed expected,
and a positive sign of the correctness of the dense maps. For the t-SNE
projection, iLAMP and iNN are closest to such linear boundaries, while
RBFp and RBFc create more jagged boundaries. This is a �rst hint that
iLAMP and iNN are better inverse projections.

MNIST dataset: The CNN classi�er used obtained a 99.6% training-set
accuracy. As the projection (and underlying dataset) is more complex,
the inverse projections are more challenged. Recent studies have

103

inverse projections for decision boundary maps

empirically shown that decision zones of such neural networks, used
for natural-image dataset classi�cation, are connected, with relatively
smooth boundaries [46]. Hence, we expect our dense maps to show
this. In Fig. 6.3, we �rst observe that both iLAMP and iNN are closest
to the above properties, while RBFc generates highly noisy, sprayed-
points-like, disconnected, and complex-shaped decision zones (see
dashed-line annotations in �gure). These generate the false impression
that the classi�er has di�culties for such samples, which is not true,
given the observed accuracy. RBFp also generates noisy/disconnected
zones, albeit less than RBFc, but more than iLAMP and iNN. Both
RBFp and RBFc also generate visible “false islands”, i.e., signi�cant-size
areas in the decision maps that have a label which does not match any
signi�cant number of points having the same label in the scatterplots
(see continuous-line annotations in �gure). These convey the false
impression that the classi�er creates certain decision zones in areas
where actually nothing like this happens. While both above phenomena
exist also for iNN, this is to far smaller extents.

FashionMNIST dataset: The CNN classi�er used obtained a 98.7%
training-set accuracy. We can make the same observations made for
MNIST’s decision zones, even to stronger extents. RBFc and RBFp gen-
erate highly fragmented, jagged, and disconnected decision zones, with
RBFp being better than RBFc. iLAMP and iNN generate smoother, more
connected, and quite similar zones. This is quite interesting, since the
two methods are completely di�erent. However, iLAMP generates nois-
ier zones and more jagged boundaries (see annotations in �gure). Given,
again, the mentioned insights on how such zones/boundaries should
be [46], we �nd iNN being better than iLAMP.

6.3 discussion and conclusion

We have presented a new method – NNinv – for computing inverse
projections from 2D to high-dimensional data spaces by learning the
behavior of a direct projection method. Our method is generic (can han-
dle any direct projection method and type of high-dimensional dataset),
automatic (does not require any user parameters), one to two orders of
magnitude faster than existing inverse projection methods (RBF and
iLAMP), and simple to implement using existing out-of-the-box deep
learning toolkits [23]. We compared our method on three datasets, two
state-of-the-art projections (UMAP and t-SNE), against three inverse
projection methods (iLAMP, RBFc, and RBFp). We found our method to
deliver higher accuracy, and decision zones that match equally well or
better to known properties of such zones for both simple (linear regres-
sion) and more complex (convolutional neural network) classi�ers. As
such, we deem NNinv to be the solution of choice for inverse projection
when constructing decision boundary maps.

104

6.3 discussion and conclusion

The work on inverse projections is more general, and can be pursued
in more directions, than the construction of decision boundary maps. As
such, it is interesting to think of the implications and extensions of the
NNinv method in a broader sense. First, the design space of NNinv’s un-
derlying neural network can be better explored to reach higher accuracy
and/or less training e�ort. For this, the interested researcher could fol-
low the methodology proposed in [39] for the similar task of improving
the performance of deep-learned direct projections [41]. Secondly, dif-
ferent quality metrics can be used to deliver inverse projections which
are speci�cally suited for specialized tasks such as assessing confusion
zones of classi�ers. This is a particularly interesting topic from a theo-
retical perspective too, since, to our knowledge, there are no established
quality metrics for inverse projections – as opposed to many quality
metrics in existence for direct projections. Finally, one can apply our
inverse projection to support more applications beyond decision map
exploration in machine learning, following the use-cases and examples
in [5].

With the above presented comparison of di�erent inverse projection
techniques, speci�cally for the construction of decision boundary maps,
we close the loop on covering the two major technical dependencies
of the method we proposed back in Chapter 4. In the next chapter we
present how decision boundary maps can be enhanced to convey more
information, thereby making them more e�ective for analyses related
to classi�er engineering.

105

7V I S UA L R E F I N E M E N T S O F D E C I S I O N B O U N D A R Y
M A P S

The dense visualization provided by decision boundary maps allows
for an explicit representation and visual exploration of a classifer’s de-
cision boundaries and decision zones, an improvement in comparison
to plain color-coded scatterplots, as discussed in depth in Chapter 4. In
Chapters 5 and 6, we have studied the e�ect of choosing speci�c di-
rect, respectively inverse, projection techniques on the resulting dense
maps, for a variety of synthetic and real-world datasets and classi�er
techniques.

Overall, the key insight obtained by the above-mentioned experi-
ments is that, for simple datasets (where classes are very well separated
in the data space), decision boundary maps constructed by using t-SNE
or UMAP (for the direct projection) and our own NNinv (for the inverse
projection) match well the expectations we have, such as being smooth
for classi�ers where we know that this should be the case, such as LR or
KNN. However, such ideal conditions are quite far away from real-world
cases. Indeed, in practical classi�cation problems, one encounters a far
clearer separation of the classes; projections have di�culties in keeping
similar samples close to each other in the 2D space; inverse projections
su�er from related errors; and more complex classi�ers, such as deep
learning models, have boundaries which are far more complex in shape.

The experiments discussed in the previous two chapters show that,
for the above real-world cases, decision boundary maps su�er from im-
perfections that manifest themselves as jagged boundaries and numer-
ous small-scale color islands. These can be very problematic for the an-
alysts using such images to understand the behavior of a classi�er, as
they are not sure whether they are looking at an artifact of the visual-
ization (to be ignored, thus) or an actual problem of the classi�er (which
should be corrected).

In this chapter, we propose several re�nements of the construction
of decision boundary maps that aim to alleviate the above issues, as
follows. In Section 7.1 we propose to �lter out badly projected points,
according to a neighborhood based criterion, thereby reducing the
amount of island-like noise present in the visualization. In Section 7.2,
we enrich the visual encoding of decision boundary maps to display
information beyond the sample density and classi�er confusion. Specif-

This chapter is based on the following publication:
F. C. M. Rodrigues, M. Espadoto, R. H. Jr, and A. Telea. Constructing and visualizing high-
quality classi�er decision boundary maps. Information, 10(9):280–297, 2019

107

visual refinements of decision boundary maps

ically, we focus on displaying information showing the distance to de-
cision boundaries. This is motivated by the fact that points close to de-
cision boundaries are more prone to misclassi�cation, thus, such areas
are of higher interest to the classi�er engineer than “safe” zones located
deep inside decision zones. Section 7.3 closes the chapter with a discus-
sion of the proposed re�nements, as well as a summary of our contribu-
tions in relation to our �rst research question stated in Chapter 1 and a
comparison thereof with other approaches in the literature.

7.1 projection filtering

Throughout this thesis, we explored the construction of decision bound-
ary maps under a very di�erent settings. Even when training completely
di�erent classi�ers on very di�erent datasets, the resulting DBMs ex-
hibit patterns such as non-smooth decision boundaries and/or small is-
lands in the decision zones (, for example).

In Chapter 5, Sec. 5.3.2, we pointed to the presence of small-scale “is-
lands” on dense maps. These are visible in Fig. 5.4. Further examples of
such islands are to be seen in Fig. 4.7. As explained there, such islands
are regions of a color (class) completely immersed in a region of a dif-
ferent color (class). As outlined in Sec. 5.3.2, such islands correspond to
two di�erent situations:

a) the island does not actually exist in the high-dimensional space D,
so the projection P did a bad job in distance preservation when
mapping nD points to 2D; or

b) the islandmay exist inD, i.e., there exist very similar samples that
get assigned di�erent labels. This case can be further split into
b1) the island actually exists in D, i.e. similar points in D do

indeed have di�erent labels, and the classi�er did a good
job capturing this; or

b2) the island does not exist in D, i.e., the classi�er misclassi�ed
points which are similar in the feature space but actually
have di�erent labels.

Hence, such artifacts can be caused by either densely-packed
di�erent-label points in the data space D (case (b1)) or errors of the pro-
jection P (case (a)). For test data, for which we have ground-truth, we
can disambiguate between these two cases – islands containing (many)
misclassi�cations are likely due to case (b1), whereas the remaining is-
lands are likely due to case (a).

However, using this method to interpret dense map images is subop-
timal, since

• we need to interpret such maps also in actual inference mode (af-
ter testing), when no ground-truth labels are available;

108

7.1 projection filtering

• having to visually �lter dense map artifacts like decision bound-
ary jaggies and small islands is tedious.

Moreover, we note that such artifacts are very likely to happen any-
ways, even for a well-trained classi�er (few misclassi�cations): Due
to the ill-posed nature of dimensionality reduction (DR), even the
best performing projections P will eventually misplace points in a
2D scatterplot. This limitation is well known and discussed in several
works [8, 85, 86, 91]. In particular, the problem case (a) is created by
so-called false neighbors [85], i.e., points which are far away in the data
space (thus, likely, have di�erent labels) but project close to each other
(thus, create islands). Note that the other type of projection artifact dis-
cussed in [85],missing neighbors, i.e. points which are close in data space
but get projected far away in visual space, is also very likely to create
islands. Indeed, a missing neighbor must be projected somewhere in the
2D space, so it will become implicitly a false neighbor. Interestingly, this
quite obvious relationship between false and missing neighbors has not
been further discussed in [85]. The same limitations (concerning projec-
tion errors) are shared by the inverse projection P−1 [5, 42, 124].

We propose to alleviate such artifacts by �ltering the 2D scatterplot
based on a quality metric that computes, locally, how well P preserves
the high-dimensional data structure in D. Several such metrics exist,
such as trustworthiness, continuity, and normalized stress [91]; neigh-
borhood hits [66]; false neighbors, missing neighbors [85]; and the pro-
jection precision score [126]. Given our goals of characterizing how well
a nD compact neighborhood maps to a similarly-compact 2D neighbor-
hood, we use here the Jaccard set-distance [86] between the k-nearest
neighbors v2

k (i) of a point in the 2D projection and its neighbors vnk (i)
in nD, given by

JDk (i) =
|v2
k (i) ∩v

n
k (i) |

|v2
k (i) ∪v

n
k (i) |
, (7.1)

where | · | denotes set size.
The JD value of a point i ranges between zero (if none of the 2D

k-nearest neighbors of point i are among its nD k-nearest neighbors,
worst case) and one (if all of its 2D k-nearest neighbors are exactly the
same as its nD k-nearest neighbors, best case).

Having computed the JD rank (Eqn. 7.1), we next �lter out from the
projection low-ranked points and construct the dense map from the re-
maining points as usual. Setting an absolute removal threshold is how-
ever hard, and moreover depends on the neighborhood size k . To ex-
plain this, Fig. 7.1 shows the distribution of number of samples per JDk
value for the MNIST dataset projected by t-SNE for four di�erent k val-
ues. As visible, the distribution shape is relatively stable as function of
k . As k increases, the distribution shifts to the right, as the likelihood
that large neighborhoods coincide in 2D and nD increases – in the limit,

109

visual refinements of decision boundary maps

k k

k k

Figure 7.1: Histogram of JDk rank for varying values of k for MNIST dataset,
t-SNE projection.

when k equals to the total point count, JD = 1 for all points. Conversely,
ask decreases, the distribution slightly shifts to the left, as the likelihood
that neighbors of a point come in exactly the same order in 2D and nD
is very small.

Figure 7.1 shows a second, equally important, aspect, namely that
the signal JDk has a discrete nature. Indeed, for a given k , Eqn. 7.1 can
take at most k + 1 di�erent values. Hence, for low k , JDk splits the
projected points in k bins, with relatively more points per bin as when
using higher k values – compare e.g. the vertical axes of the images
in Fig. 7.1 for low vs high k values. In turn, this means that setting an
absolute threshold to eliminate low JDk value points is hard: A too low
threshold will eliminate too few points, while a slightly higher threshold
may eliminate too many points. Hence, we proceed by (1) using a higher
k value (roughly 10% of the dataset size), and next (2) we sort points on
their JDk value and remove the τ lowest-ranked points, where τ is a
user-given percentage of the total dataset size.

Figure 7.2 shows results for di�erent τ values for the MNIST dataset,
projected by t-SNE. Setting τ is intuitive: Small values keep more data
points, including potentially wrongly-projected ones, which cause is-
lands and boundary jaggies in the dense maps. Larger values �lter the
projection better, yielding smoother decision boundaries and/or fewer
islands due to projection problems, but show fewer data in the �nal im-
age. As visible, �ltering does not change overall size and shape of the
depicted decision zones, which is important, as it does not a�ect the
insights that the �ltered images convey. In practice, we found that τ
values in the range of 15% to 20% of the dataset size give a good balance
between removing island artifacts and keeping enough data to have an

110

7.2 distance-enriched dense maps

a) Removing τ = 1% (600) of all projected points b) Removing τ = 5% (3000) of all projected points

c) Removing τ = 10% (6000) of all projected points d) Removing τ = 20% (12000) of all projected points

Figure 7.2: Removing poorly projected points with low JDk ranks to �lter dense
map artifacts for the MNIST dataset, projected by t-SNE, inversely
projected by iLAMP.

insightful dense map. This is the setting used next in all images in this
chapter.

7.2 distance-enriched dense maps

The dense map �ltering e�ectively removes many of the confusing
small-scale islands created by projection errors, thus, creates simpler-to-
inspect decision zones. As already explained, a key use-case for these is
for users to see which points (in the data spaceD) are close, respectively
far away from, the decision boundaries. The distance-to-boundary in-
formation indicates the classi�cation con�dence – so, if a classi�er per-
forms poorly, one can use this distance to infer on what kind of data
in D such problems occur, and next alleviate this by e.g. adding more
training samples of that kind (class).

To analyze this further, let us introduce some notations. Let Z ⊂ Rn

be a decision zone in the data space, and let ∂DZ ⊂ Rn be the boundary
of this zone. The decision maps, constructed as explained so far, do not
show the distance dnD (x) from a sample x ∈ D to its closest decision
boundary ∂DZ in the nD space. Rather, the maps show how close the
projection P (x) of x is to the projection P (∂DZ) of the decision bound-
aries. Simply put, for every pixel y having some color (label), the user
can visually �nd the closest di�erently-colored pixel y′.

The distance

d2D (y) = min
y′ |f (y),f (y′)

‖y − y′‖ (7.2)

111

visual refinements of decision boundary maps

can thus be seen as a projection1 of the actual nD distance dnD (x) we
are interested in. The two distances are not the same, nor even lin-
early related, given the local compression and stretching caused when
mapping the nD space to 2D by nonlinear projections such as t-SNE or
UMAP [8, 91]. Note that Eqn. 7.2 is nothing but the so-called distance
transform [43] of the set of pixels that constitute the projections of the
decision zone boundaries ∂DZ .

An exact computation ofdnD is impossible in general, since we do not
have an analytic description of ∂DZ for typical classi�ers. Simply put,
we do not know where ∂DZ are located in data space – if we knew this,
our entire endeavor would have been solved from the beginning. Hence,
we next propose two classi�er-independent heuristics to estimate dnD
(Secs. 7.2.1 and 7.2.2) as well as a third, more exact, method, and bet-
ter suited for neural network classi�ers, based on adversarial examples
(Sec. 7.2.3).

Figure 7.3 compares the 2D distance-to-boundary d2D (computed by
Eqn. 7.2, implemented using the fast distance transform method in [20]),
with two versions of the dnD estimation we propose next, called d

imд
nD

and dnnnD respectively. In this �gure, distances are encoded by a lumi-
nance colormap for illustration purposes. The decision zones and dis-
tance maps in Fig. 7.3 depict a synthetic “Blobs” dataset with 60K obser-
vations sampled from a Gaussian distribution with 5 di�erent centers
(clusters), each one representing samples of one class, and 50 dimen-
sions. For classi�cation, a simple logistic regression model was used, so
as to create simple-to-interpret decision boundaries, which are best as
we next want to study the distance-to-boundary behavior. The same
dataset was used in Chapter 6 to test the quality of the NNInv inverse
projection.

In Figure 7.3, we see that, while d2D and dnD are both low close to
the decision boundaries and high deep in the decision zones, they have
quite di�erent local trends. For instance, points which have the same
colors in Fig. 7.3b, i.e., are at the same distance-to-boundary (d2D) in
2D, can have quite di�erent colors in Figs. 7.3c,d, i.e., have di�erent dis-
tances dnD to the true nD decision boundaries. Hence, we cannot use
d2D as a “proxy” to assess dnD . We need to compute, and show, dnD to
the user so one can estimate how close (or far) from a decision boundary
an actual sample is.

7.2.1 Image-based Distance Estimation

For every pixel q in the dense map, we �nd the closest pixel r having a
di�erent label (Fig. 7.4a). Let Q and R be the sets of nD samples in ST
that map to q and r respectively via P−1. By construction, points in Q

1 We use projection here in the weak sense of the word. Indeed, we cannot formally say
that d2D (y) = P (dnD (x), since a projection P maps points, not distances.

112

7.2 distance-enriched dense maps

a) decision zones b) Euclidean distance transform d
2D c) Image-based distance d

nD

img
d) Neighbor-based distance d

nD

nn

Figure 7.3: Dense map (a) and various distance-to-boundary maps (b-d) for
Blobs dataset, computed using UMAP for P and NNInv for P−1.

and R have thus di�erent labels. Hence, the nD decision boundary ∂DZ
lies somewhere between these point-sets. To estimate where, for every
point pair (xQ ∈ Q, xR ∈ R), we compute the point xQR along the line
segment (xQ , xR) ⊂ D where the classi�er function f changes value, i.e.,
turns from the label f (xQ) to the label xR). For this, we use a bisection
search, as we assume that f varies relatively smoothly between xQ and
xR . We use a maximum number of T = 5 bisection steps, which proved
to give good results in practice. We then estimate the distance of q to
the closest decision boundary as the average

d
imд
nD (q) =

1
|Q | |R |

∑
xQ ∈Q,xR ∈R

‖xQ − xQR ‖. (7.3)

q

r

Q

R

x
Q

x
R

x
QR

∂DZ

2D image space nD data space

a)

q

Q
x
Q

∂DZ

2D image space nD data space

b)

x
R

Figure 7.4: Estimation of distance-to-boundary d
imд
nD (a) and dnnnD (b). See

Secs. 7.2.1 and 7.2.2.

Although Eqn. 7.3 is simple to evaluate, it can produce noisy estima-
tions of dnD . The main issue is that it assumes that the closest decision
boundary to some point q in the 2D projection (i.e. pixel r) corresponds,
by the inverse mapping P−1, to the closest decision boundary in nD to
P−1 (r).

7.2.2 Nearest-neighbor Based Distance Estimation

We can improve upon the dense map-based heuristic presented in
Sec. 7.2.1 by disposing of the dense map as a tool to computednD . Rather,

113

visual refinements of decision boundary maps

we rely on searching the nD data directly for nearest-neighbor samples
that have a di�erent label, as follows (Fig. 7.4b). For every pixel q in
the dense map, let again Q be the set of nD samples that map to it via
P−1. For each xQ ∈ Q , we next �nd the closest data point xR < Q that
is classi�ed di�erently than xQ , and then again apply bisection to �nd
where, along the line segment (xQ , xR), the classi�er f changes value.
Finally, we compute dnD (q) by averaging all distances from xQ to the
corresponding bisection points xQR . Formally put, we compute dnD as

dnnnD (q) =
1
|Q |

∑
xQ ∈Q,xR= arg min

x<Q |f (x),f (xQ)
‖x−xQ ‖

‖xQ − xQR ‖. (7.4)

EstimatingdnD this way is more accurate than using Eqn. 7.3 since we
do not rely on computing xR using the possibly inaccurate dense map,
but directly use thenD points S . We implement Eqn. 7.3 by searching for
nearest neighbors in nD space using the kd-tree spatial search structure
provided by scikit-learn [104].

7.2.3 Adversarial Based Distance Estimation

The third proposed heuristic is based on adversarial examples [51, 143].
An adversarial perturbation ϵ of a data sample x can cause a trained
classi�er to assign a wrong label to this so-called adversarial example
x+ϵ , i.e., a label di�erent from the one that it assigns to the unperturbed
sample x. By de�nition, the minimal length ‖ϵ ‖ of such a perturbation
is the distance from x to the closest decision boundary to x. Hence, we
can compute the distance-to-boundary for a dense map pixel q by �rst
gathering again all points Q that project to q, and next averaging their
distances to their closest nD boundaries computed as above. This de-
�nes

dadvnD (q) =
1
|Q |

∑
xQ ∈Q

min
f (xQ),f (xQ+ϵ)

‖ϵ ‖. (7.5)

Compared to the distance-to-boundary heuristics given by Eqns. 7.3
and 7.4, Equation 7.5 yields a mathematically accurate distance to
boundary, within the limits of sampling the perturbation space ϵ .
In practice, this demands extensive computational resources, roughly
three times more than evaluating Eqn. 7.4 and 30 times more than eval-
uating Eqn. 7.4. Moreover, the method is not guaranteed to yield a valid
adversarial perturbation for all possible samples x. Another limitation
is that this approach is only suitable for classi�ers f obtained through
an iterative gradient-based optimization process, such as neural net-
works [51].

114

7.2 distance-enriched dense maps

M
N

IS
T

F
as

hi
on

M
N

IS
T

a) decision zones b) image-based distance d
nD

img
c) neighbor-based distance d

nD

nn
d) adversarial-based distance d

nD

adv

Figure 7.5: Dense map and distance maps for MNIST (top row) and FashionM-
NIST dataset (bottom row), with projection P set to UMAP and P−1

to NNInv respectively.

Figure 7.5a shows the dense maps (a) for the MNIST (top row) and
FashionMNIST (bottom row) datasets respectively. Images (b-d) show
the three distance-to-boundary functions d

imд
nD , dnnnD , and dadvnD given

by Eqns. 7.3, 7.4, and 7.5, respectively, visualized using the same lumi-
nance colormap as in Fig. 7.3. Several observations follow. First, we see
that the nD distances dnD roughly follow the patterns of the 2D Eu-
clidean distances d2D , i.e., are low close to the 2D decision boundaries
and high deeper inside the decision zones. However, the nD distances
are far less smoothly varying as we get farther from the 2D boundaries.
This indicates precisely the stretching and compression caused by P

and P−1 mentioned earlier. Secondly, we see that dimдnD is signi�cantly
less smooth than dnnnD . This is explained by the lower accuracy of the
former’s heuristic (Sec. 7.2.1). A separate problem appears for dadvnD : For
the FashionMNIST dataset, the image shown is very dark, indicating
very low dadvnD values for most pixels. Upon further investigation, we
found that the neural network model trained for this case was too frag-
ile – for almost every sample, an adversarial sample could be easily ob-
tained. Moreover, as already mentioned, the cost of computing dnnnD is
far larger than for the other two distance models. Given all above, we
conclude that dnnnD o�ers the best balance of quality and speed, and we
choose next to use this distance-to-boundary model.

7.2.4 Visualizing Boundary Proximities

Visualizing the raw distance dnD by direct luminance coding (Fig. 7.5)
does not optimally help us in exploring the regions of space that are
close to decision boundaries. However, these are the areas one is most
interested in, since these are the regions where classi�ers may work in-

115

visual refinements of decision boundary maps

correctly, by de�nition. For this, we apply a nonlinear transformation
to dnD to compress the high-value ranges and allocate more bandwidth
to the low-value range. Also, we combine both decision zone informa-
tion (shown by categorical colors in earlier �gures) with the distance-
to-boundary information in a single image. For this, we set the S (sat-
uration) and V (value) color components of every pixel q in this image
to

V (q) = 0.1 + 0.9(1 − dnnnD (q)/dmax)
k1 (7.6)

S (q) = Sbase (1.0 − dnnnD (q)/dmax)
k2 (7.7)

Here, dmax is a normalization factor equal to the maximal value of
dnnnD over the entire dense map; k1 and k2 are constants that control the
nonlinear distance normalization; and Sbase is the original saturation
value of the categorical color used for q’s label. The H (hue) component
stays equal to the categorical-color encoding of the decision zone labels.
Figure 7.6 shows the e�ect of k1 and k2 for the MNIST and FashionM-
NIST datasets. Compared to showing only the decision-zone informa-
tion (Fig. 7.6a), adding the distance information highlights (brightens)
areas that are close in nD to the decision boundaries. Higher k1 values
highlight these zones more and darken areas deep in the decision zones
more. Higher k2 values strengthen this e�ect, as pixels close to decision
boundaries become desaturated. This allows us to ensure that such pix-
els will be bright in the �nal images, no matter how dark the original
categorical colors used to encode labels are.

a) decision zones

M
N

IS
T

F
as

hi
on

M
N

IS
T

b) blended map k
1
 = 0.5, k

2
 = 0.3 c) blended map k

1
 = 1.5, k

2
 = 0.7 d) blended map k

1
 = 2, k

2
 = 0.9

Figure 7.6: (a) Dense map for MNIST (top row) and FashionMNIST (bottom row)
datasets. (b-d) Combined dense map and distance-to-boundary maps
for di�erent k1 and k2 values.

Figure 7.6 is to be interpreted as follows: Dark areas indicate data sam-
ples deep inside decision zones, i.e., areas where a classi�er will very
likely not encounter inference problems. Bright areas indicate zones

116

7.2 distance-enriched dense maps

close to decision boundaries, where such problems typically appear, and
in which one should look for misclassi�cations and/or add extra labeled
samples to improve training. Thin bright areas tell that the nD distance
varies there much more rapidly than the perceived 2D (image-space) dis-
tance, so the projection compresses distances there. These are areas on
which one will typically want to zoom in, to see more details. In contrast,
thick bright areas tell that the nD distance varies there slower than the
perceived 2D distance, so the projection stretches distances there. Such
areas normally do not require zooming to see additional details.

a) b)

Figure 7.7: Misclassi�cations with opacity coding distance-to-boundary for the
(a) MNIST and (b) FashionMNIST datasets.

Figure 7.7 shows a di�erent use-case for distance maps. Atop of the
distance maps shown in Fig. 7.6 (k1 = 2,k2 = 0.9), we now plot the mis-
classi�ed points for MNIST and FashionMNIST, encoding their respec-
tive distance-to-boundary dnD in opacity. Misclassi�cations which are
close to decision boundaries show up thus as opaque white, while those
deeper in the decision zones show up half-transparent. We see now that
most misclassi�cations occur either close to the smooth decision bound-
aries (MNIST) or atop of small decision-zone islands (FashionMNIST).
Since islands, by de�nition, create decision boundaries, it follows that,
in both cases, misclassi�cations predominantly occur close to decision
boundaries. Hence, decision boundaries can serve as an indicator of ar-
eas prone to misclassi�cations, thus potential targets for re�ning the
design of a classi�er e.g. by data annotation or augmentation.

7.2.4.1 Enridged Distance Maps

Figure 7.6 encodes distance-to-boundary by luminance and saturation,
which are good visual variables for ordinal tasks, e.g., estimating which
points are closer or farther from decision boundaries. However, this
encoding is less suitable for quantitative tasks, e.g., estimating equal-
distance points or how much farther (or closer) a given point is to
its closest decision boundary than another point. We address these

117

visual refinements of decision boundary maps

tasks by using enridged cushion maps [159]. For this, we �rst slightly
smooth dnD by applying a Gaussian �lter with radiusK pixels. Next, we
pass the �ltered distance through a periodic transfer function f (x) =
(x mod h)/h and use the resulting value f (dnD) instead of dnD to
compute S and V via Eqns. 7.6 and 7.7. Note that the transfer func-
tion f is only piece wise continuous and, as shown in [159], requires
smooth signals as input to yield visually smooth cushions. Since our
high-dimensional distance dnD is not overall smooth, due to the already
discussed inherent projection errors and also due to the numerical ap-
proximations used when computing it (see Secs. 7.2.1 - 7.2.3), �ltering
is required. Besides �ltering, a second di�erence between our approach
and the original technique [159] is that we visualize directly the distance,
whereas [159] visualized a shaded height plot of the distance. We choose
in our case to visualize the distance directly as this is faster to compute
and more robust to noise – height plot shading requires normal com-
putations which, given our inherently noisy distance estimations, can
easily become unreliable.

Figure 7.8 shows the results for the MNIST and FashionMNIST
datasets. Each apparent luminance band in the image shows points lo-
cated within the same distance-to-boundary interval. Dark thin bands
are analogous to contours, or isolines, of the distance-to-boundary. Fi-
nally, the thickness of the bands indicate distance compression (thin
bands) respectively distance stretching by the projection (thick bands).
We also see how increasing the �lter radiusK progressively smooths the
image, removing projection artifacts and making it easier to interpret.

M
N

IS
T

F
as

hi
on

M
N

IS
T

a) decision zones b) no smoothing c) smoothing K = 2 d) smoothing K = 4 e) smoothing K = 6

Figure 7.8: Enridged distance maps for MNIST (top row) and FashionMNIST
(bottom row) datasets. Images (b-e) show the progressive noise-
smoothing e�ect of the �lter radius K .

7.3 discussion

The re�nements presented in this chapter – namely, the �ltering
of islands created by projection errors; and the visual depiction of

118

7.3 discussion

distance-to-boundary over the decision zones conclude our proposed
designs for visualizing decision boundary maps, and therefore our
technical contributions in answering the �rst research question posed
in Chapter 4, which we repeat below

How can we depict the decision boundaries of a classi�er and use these
to understand its operation and performance?

While a detailed discussion of our entire work is given in Chapter 9,
we present next a summary of our technical contribution, highlighting
its key assets.

Genericity: We can generically construct decision maps, including
the estimation of distance-to-boundary, for datasets having quantita-
tive values in any dimension and for any classi�er. This makes our
techniques easily usable for a wide range of applications in machine
learning.

Technical foundations: Our method is based on the application
of direct and inverse projections. We have explored both spaces of
techniques in Chapter 5 and 6, respectively, collecting insights on
which techniques work best for the construction of decision boundary
maps.

Limitations: Constructing accurate decision maps is an even harder
problem than the already di�cult task of accurately projecting high-
dimensional data into 2D. While our work showed that the (UMAP,
NNInv) combination of direct and inverse projection techniques yields
good results in terms of visually easy-to-identify decision zones, we
cannot guarantee such results for any high-dimensional dataset and
classi�er combination. More precisely, errors caused by the direct
and/or inverse projections can still manifest themselves as jaggy
boundaries and/or islands present in the resulting decision maps.
These errors can be decreased by further �ltering wrongly projected
points that lead to poor neighborhood preservation (Section 7.1). Also,
showing the distance-to-boundary (Section 7.2) can highlight the
presence of remaining errors.

Novelty:While dense maps have been used earlier in high-dimensional
data visualization to analyze projection quality [8, 85], they have not
been used for explicitly visualizing the decision zones of any classi�er.
Besides showing the actual decision zones by color coding, we also com-
pute and show the actual distance-to-boundary, which highlights zones
close to boundaries, where a classi�er is most prone to misclassify data.

The work of Schulz et al. [127] is closest to our work and, to our
knowledge, the only other method (apart from ours) which aims to ex-

119

visual refinements of decision boundary maps

plicitly visualize classi�er decision zones. However, several important
di�erences between our work and theirs exist, as follows:

• Computation of inverse projection P−1: In their method, this is done
by extending non-parametric projections P to parametric forms,
by essentially modeling P as the e�ect of several �xed-bandwidth
Gaussian interpolation kernels. This is very similar to the way iL-
AMP works. However, as shown in Chapter 6, iLAMP is far less
accurate and far slower than other inverse projection approaches
such as NNinv. In our work, we let one freely choose how P−1

is implemented, regardless of P . In particular, we use the deep-
learning inverse projection NNinv which is faster and more accu-
rate than iLAMP;

• Supervised projections P : For [127], the projection P is imple-
mented using so-called discriminative dimensionality reduction
which selects a subset of the nD samples to project, rather than
the entire set, so as to reduce the complexity of DR and thus make
its inversion more well posed. More precisely, label information
for the nD samples is used to guide the projection construction.
While this, indeed, makes P easier to invert, we argue that it does
not parallel the way typical practitioners work with DR in ma-
chine learning. Indeed, in most cases, one has an nD dataset and
projects it fully, to reason next about how a classi�er trained on
that dataset will behave. Driving P by class label is, of course,
possible but risky, since P next does not visualize the actual data
space. Moreover, discriminative DR is quite expensive to imple-
ment (O (N 2) for N sample points). Note that our outlier �ltering
(Section 7.1) achieves roughly the same e�ect as discriminative
DR but at a lower computational cost and with a very simple im-
plementation;

• Distance to boundary: In [127], this quantity, which is next essen-
tial for creating dense decision boundary maps, is assumed to be
given by the projection algorithm P . Quoting from [127]: “We as-
sume that the label f (x) is accompanied by a nonnegative real
value r (x) ∈ R which scales with the distance from the closest
class boundary.” Obviously, not all classi�ers readily provide this
distance. Moreover, getting hold of this information (for classi-
�ers which provide it) implies digging into the classi�er’s inter-
nals and implementation. We avoid such complications by provid-
ing ways to estimate the distance to boundary generically, that is,
considering the classi�er as a black box (Section 7.2).

• Computational scalability: Schulz et al. [127] does not discuss the
scalability of their proposal, only hinting that the complexity is
squared in the number of input samples. Complexity in the reso-

120

7.3 discussion

lution of the decision maps is not discussed. In contrast, we detail
our complexity (see Scalability above).

Applications: Currently, our decision maps can only show how a clas-
si�er partitions the high-dimensional space into decision zones corre-
sponding to its di�erent classes. This can help the practitioner to better
understand the behavior of such a classi�er but not directly to improve
the classi�er. Recent separate work has shown that projections are ef-
fective tools for data annotation purposes, that is, creating new labeled
samples for increasing the size of training sets with little human e�ort
by visually extrapolating labels of existing samples to close unlabeled
ones [13]. Our decision maps can very likely help such data annotation
by informing the user how to perform this visual extrapolation so as not
to cross decision boundaries. We explore this idea in the next chapter.

121

8E N D T O E N D E VA L UAT I O N

Over the previous chapters, decision boundary maps (DBMs) were pre-
sented as a tool to provide insights in the way classi�ers partition their
data space. The focus of our work so far has been in constructing DBMs
that represent the actual decision boundaries and decision zones as ac-
curately as possible, subject to the inherent limitations posed by direct
and inverse projections, as well as the �nite resolution of the images
used to synthesize the DBMs. By this, we have attempted to answer our
�rst research question outlined in Chapter 1.

In this chapter, we turn our attention to the actual usage of DBMs to
assist classi�er engineering. Speci�cally, we explore how DBMs can be
used to improve the accuracy of a given classi�er by analyzing a Semi-
Supervised Learning (SSL) with a human-in-the-loop scenario. For this,
we developed an interactive visual analytics tool, based on DBMs, that
allows the classi�er engineer to assign labels to a set of unlabeled sam-
ples. This is done based on the visual cues jointly presented by projected
samples and DBMs constructed using the visual re�nements from Chap-
ter 7. We next used this tool to conduct several experiments involving
di�erent datasets and classi�er models. These experiments aim to eval-
uate the usefulness DBMs: If a human user can correctly assign labels to
given data points, it means that the visual hints given by the tool were
su�ciently informative and accurately re�ect data behavior in original
data space. At a higher level, if by doing this one can improve the per-
formance of a classi�er, it means that DBMs have demonstrable added
value in classi�er engineering.

The structure of this chapter is as follows. Section 8.1 introduces
SSL and the added value of the human-in-the-loop model. Section 8.2
presents a visual analytics tool that we have designed to assist SSL, in
particular label propagation, in which DBMs play a key role. Sections 8.3
and details several experiments that we have conducted to assess the ef-
�ciency and e�ectiveness of our proposed visual tool. Section 8.4 details
the results of these experiments. Section 8.5 discusses our end-to-end
proposal.

8.1 semi supervised learning

A SSL setting commonly supposes that labeled data is scarce. In most
real-world problems, data is labeled by domain experts, thus creating
a dataset of annotated samples can be a costly activity. For many prob-
lems it is usual that abundant unlabeled data is available while little
labeled data is at disposal [136]. SSL approaches seek for ways to use

123

end to end evaluation

information present in the unlabeled dataset to build better machine
learning models than ones that could be inferred using only the little
amount of available labeled data.

Common methods for SSL involve heuristics to guess labels for a un-
labeled dataset U . The most naive approach consists of training a clas-
si�er f on the set of labeled samples L, using it to predict the labels of
data in the unlabeled set and training f again with the induced labels
L ∪ f (U). It is expected that iterative repetitions of those steps lead to
a robust model that learned from features present in U [136].

A second class of approaches propagates the labels from samples in
L to the samples inU by using information present in the data, such as
exploring neighborhood information [158], geometric information [12],
constructing similarity graphs from the data samples [6, 79], and met-
ric learning [52]. Detailing all these methods is beyond the scope of
this thesis. The interested reader can refer for this goal to various sur-
veys [108, 111, 169].

The key advantage of automatic label propagation techniques is that
they require little or no e�ort from the user to be deployed in order
to generate a rich enough labeled training set for the subsequent train-
ing of a classi�er. Such techniques have been demonstrated to be e�ec-
tive in many contexts where small labeled training sets were available.
However, from a conceptual viewpoint, such techniques make the same
(strong) assumption that classi�ers do – namely, that they can extrapo-
late information from a (small) given labeled dataset to points outside
it. One di�erence, in this context, between classi�ers and label propa-
gation techniques is that a classi�er does not know, at training time,
which are the points (test set or validation set) on which it will be used
next; in contrast, label propagators do typically know this as they have
the locations of the unlabeled data points that they need to propagate
to. Still, as said above, the automatic nature of both classi�ers and la-
bel propagators assumes that such techniques can correctly “guess” the
label of a data point based on the structure of the data around it.

A related, but di�erent, approach is taken by combining visual analyt-
ics (VA) with label propagation. The key idea behind this is that a human
can spot relevant structure in a high-dimensional dataset by visualizing
a (low dimensional) representation thereof, and, based on this structure,
can propagate labels better than an automatic method can. This was
demonstrated recently by Benato et al. [13]. Their work projects a high-
dimensional dataset to 2D using t-SNE and colors the resulting scatter-
plot by the labels of the (few) available samples. Next, the user infers
how to propagate labels based on the structure of data present in the pro-
jection. For instance, if one sees a compact cluster of unlabeled points in
which a few labeled points exist with label c , then one can decide (based
on additional information, e.g., exploring the actual samples by means
of image tooltips) to propagate c to the entire cluster. The authors have
compared this semi-supervised labeling strategy based on the human-

124

8.2 visual analytics for semi supervised learning

in-the-loop with automatic label propagation techniques such as Lapla-
cian Support Vector Machines (LapSVM [12, 136]) and Optimum Path
Forest (OPF-Semi [6]). They showed that the VA-based approach can
achieve superior performance – both in the label propagation accuracy
and in the accuracy of a classi�er trained with the propagated labels –
as compared to automatic label propagation techniques.

The above is a very interesting result, as it points to the fact that a
human user can discover more information (for label propagation, that
is) in a two-dimensional, and necessarily imperfect, projection, than
an automatic tool can do even when having access to the full high-
dimensional data. While Benato et al. do not further speculate or an-
alyze why this is so, we believe that this has to do with the fact that the
human user literally “sees” more complex data patterns, appearing at
di�erent scales, in the projection, than a typical automatic label prop-
agator can do. For instance, they report that the user will propagate
labels with a high con�dence when they see a “clearly separated” clus-
ter of observations which is also “far away” from other similar clusters;
in contrast, the user will be reluctant to propagate labels in areas in
the projection where one sees a mix of di�erent labels and/or which
are close to the fuzzy separation frontier of two clusters. Given our un-
derstanding of how automatic label propagation techniques work, such
patterns are not detected or used for propagation by such techniques,
which typically work in a more local fashion.

Our work in this chapter parallels (and extends) the work of Benato et
al.. Speci�cally, while Benato et al. used only a color-coded projection
scatterplot to perform the manual propagation, we use, for the same
task, the same projection scatterplots overlaid over the DBMs. We mea-
sure the added value of the visual hints provided by DBMs by several
experiments along the same lines as Benato et al..

8.2 visual analytics for semi supervised learning

Our proposal for a VA approach in a SSL setting consists in a visual
tool that conveys to the user information about a dataset and classi-
�er through the rendering of DBMs and color-coded projections. To
explain this tool, we introduce �rst some notations. Let D = (XnD ,Y)
be a dataset consisting of a number of n-dimensional samples XnD and
their corresponding categorical labelsY . LetX2D be the projection of the
dataset XnD computed by any suitable dimensionality reduction tech-
nique, e.g., t-SNE. Let f be the classi�er chosen by the user to engineer,
e.g., SVM.

Our tool creates and displays two main elements – the projection
X2D color coded by class labels and, optionally, misclassi�cation infor-
mation (when used in testing mode), and the DBM computed from D
and the trained classi�er f , using the techniques presented in Chapter 7.

125

end to end evaluation

Further on, the tool provides details-on-demand on speci�c samples by
mechanisms such as brushing and selection.

The visual analytics work�ow starts by loading the original dataset
D and selecting a classi�er f of interest. Next, the projection X2D is
computed, using either t-SNE or UMAP. The user then de�nes how the
data is going to be split into three sets: labeled (L), unlabeled (U), and
validation (V). The classi�er is trained using the samples in L, while the
labels of the samples in U are hidden from the user. Classi�er perfor-
mance is evaluated using all samples in L, which yields a training error;
and also using all samples in V , which yields a validation error. At this
point, the user can decide how to continue: If the training and validation
errors are low enough for the problem at hand, one concludes that the
training was successfully completed, and the process stops. If not, the
visual analytics process for improving the classi�er starts, as described
below.

Using the loaded data and trained classi�er, a DBM is computed and
rendered. On top of the DBM, the set of projected points X2D is shown.
In this set, misclassi�cations are highlighted by a white border. Next,
the tool renders in dark grey N = 20 unlabeled points at a time, in
order they appear in the unlabeled set. We next call these points the
working set. Keyboard shortcuts are provided allowing the user to show
additional working sets of N points, and to go forward and backward
through the list of unlabeled samples U . The user can next visually in-
spect the working set points in terms of their neighbors in the projection
and their location with respect to the decision boundaries. Since, as ex-
plained already at several moments, the projection technique P cannot
preserve all neighbors, we provide a tool to show the true nD neighbors
ν (x) of each point x in the working set by linking the projection P (x)
of x with lines to all points {P (y) |y ∈ ν (x)}. This e�ectively shows the
missing neighbors of x in the projection. A depiciton of the Graphical
User Interface of the tool, with all the feature just described, used to
label samples is shown in Fig. 8.1.

Based on all above visual hints, the user can next decide how to prop-
agate labels to points in the working set. The overall idea here is similar
to the proposal of Benato et al. [13]. That is, one would typically propa-
gate a label (of a point x ∈ L) to points inU which project close to P (x)
and are not in or close to confusion zones of the classi�er, as depicted
by the underlying DBM. They key di�erence between our work and Be-
nato et al. is that we provide more hints (in terms of the DBMs and true
neighbors) to the user besides the color-coded scatterplot. If one does
not �nd enough suitable points to propagate to, one can advance to the
next working set in U , as described above. We chose this working set
design rather than allowing the user to see all the unlabeled pointsU at
a time so as to limit overplotting and visual and interaction complexity.

Once the user assigns a label to a point in U , the point is moved out
ofU in a set of manually labeled points Lm . Initially, Lm is empty. Next,

126

8.2 visual analytics for semi supervised learning

Figure 8.1: Screen capture of the visual analytics tool designed to assist manual
labeling by using DBMs. A projection is shown on top of the deci-
sion map, with samples marked as labeled, unlabeled, or wrongly
labeled (by a trained classi�er). Users can analyze the positions of
these samples with respect to the underlying DBM to decide which
of the unlabeled ones they next want to label, and which labels to as-
sign to these.The left widget lists the unlabeled samples and allows
manually selecting labels from these from the drop-down menus. For
a selected unlabeled sample, the main window also shows its �ve
closest nD neighbors by black lines.

the user trains the same classi�er on the enriched label set L∪Lm and re-
evaluates the obtained performance. Three cases can occur concerning
this performance after retraining:

• Performance improves: In this case, the user likely keeps the labels
added in the last iteration of constructing Lm . If more training ef-
fort (time) is available and the performance is still not the desired
one, the user continues manual labeling with the next working
set;

• Performance degrades: In this case, the user likely undoes (re-
moves) the labels added in the last iteration of constructing Lm ;

• Performance stays constant: In this case, one typically keeps the
labels added in the last iteration of constructing Lm , even if per-
formance slightly drops. Indeed, it might be useful to keep the
label assignment, as this provides more information to the classi-
�er to learn from.

After each iteration, the user can decide whether to continue or not
the labeling process, based on the classi�er performance obtained so far
and the amount of e�ort one wishes to spend in manual labeling. If one
decides to continue, the next working set is examined. Since the classi-
�er is retrained after each iteration, a new DBM is computed for the new

127

end to end evaluation

classi�er and shown to the user. This way, one e�ectively sees how the
decision boundaries move due to the assignment (or removal) of labeled
points, thereby conveying an idea of how the learning process actually
uses the training set. As a side note, we completely retrain the classi-
�er after each batch of label assignment is �nished for implementation
simplicity. Alternatively, one could apply online training, i.e. update the
classi�er using the new labeled samples in the current iteration.

8.3 manual labeling experiments

We designed �ve experiments of di�erent dataset-classi�er combina-
tions in increasing order of complexity to assess the quality of man-
ual sample annotation. The scenarios go from simple linear classi�ers
to convolutional neural networks (Sec. 8.3.1); and from synthetic two-
class dataset to ten-class natural image data (Sec. 8.3.2).

To assess the quality of the manually assigned labels, we compare
these with an automatic label (AL) propagation technique, at two levels
of detail:

• Full automation: We �rst compare manual labeling against AL’ing
the entire U . This scenario answers the question: What is more
e�ective – to let AL handle all samples or to invest manual e�ort?

• Same e�ort: We next compare manual labeling with k randomly
drawn samples from AL, where k is the number of manually as-
signed labels. Note that in most cases k � |U |, as the user typi-
cally labels only a small fraction of all available unlabeled points,
either because manual labeling starts being time-consuming af-
ter a while, or because visual hints are not informative enough
to allow one to con�dentially label certain points. This scenario
answers the question: Given the same number of labels k , who
can produce better ones, AL or the user?

As AL method, we use a standard graph based label propagation
method [31], whose implementation is readily available in scikit-learn.
If desired, other AL methods can be immediately used, e.g., LapSVM [12,
136]) or OPF-Semi [6].

8.3.1 Classi�ers description

We used three types of classi�ers in the experiments: a Logistic
Regression (LR) model, a shallow Multi-Layer Perceptron (MLP) and a
small Convolutional Neural Network (CNN). A detailed description of
each of those classi�ers is presented next.

Logistic Regression: A linear classi�er is arguably one of the simplest
forms of machine learning discriminant. Intuitively, the rigid shape

128

8.3 manual labeling experiments

of the decision boundaries induced by such classi�er indicates that
supplying new labeled points might not be helpful to change them.
We used the scikit-learn implementation of this classi�er with default
parameters.

Multi-Layer Perceptron: Nonlinear classi�ers, in particular neu-
ral networks, allow for the formation of complex-shaped decision
boundaries in data space. Thus, it is reasonable to expect that labeling
new samples could cause modi�cations locally, allowing a user to
e�ectively in�uence (by manual labeling) the shape of the partitions
induced by the classi�er. In the experiments presented next, we used
MLP consisting of three hidden layers of sizes 32, 32, and 16 units
respectively, trained with early stopping and the Adam optimizer, as
provided by the Python package scikit-learn.

Convolutional Neural Network: CNNs are the most used model
for computer vision tasks, thus experimenting with such model is of
practical relevance. We used the PyTorch library to create a small CNN
with the following con�guration: a convolutional layer consisting of
6 �lters of sizes 5×5, max pooling layer of size 2×2, a second convolu-
tional layer consisting of 16 �lters of sizes 5×5, another max pooling
layer of size 2×2, followed by two fully-connected layers of sizes equal
to 60 and 30 units respectively. ReLU activation function was used for
every layer. We use this CNN on two datasets, one consisting of four
di�erent classes and another that consists of ten classes. Hence, the last
(output) layer of the CNN contains 4, respectively 10 units, depending
on the dataset.

8.3.2 Datasets description

We used �ve di�erent datasets in the experiments of manual sample
annotation, as follows.

Two-class synthetic (syn2a): Generated from two Gaussian clusters,
this dataset is composed of 600 samples of dimensionality 10, split into
labeled, unlabeled and validation sets as follows: |L| = 200, |U | = 200,
|V | = 200. A t-SNE projection of this dataset in shown in Figure 8.2(a)
and was used as input to the visual tool.

Two-class synthetic (syn2b): This dataset is very similar to the pre-
vious one. It is generated with the same set of parameters, but consists
of 6000 samples. This dataset was split into |L| = 200, |U | = 1200,
|V | = 3600 by randomly selecting the respective number of points from
the dataset. We use the same procedure to split the other datasets as

129

end to end evaluation

well.

Three-class synthetic (syn3): This dataset was generated from three
Gaussian clusters in 10 dimensions and consists of 6000 samples. We
split this dataset into |L| = 200, |U | = 1000, |V | = 3800. A UMAP
projection of this dataset is shown in Figure 8.2(b).

Four-class image (fm4): This dataset is a subset of FashionMNIST
and contains only the �rst four classes (T-shirt/top, Trouser, Pullover
and Dress). It contains 24000 images, 6000 of each class, of size 28×28
split into |L| = 2000, |U | = 1000, |V | = 21000. A t-SNE projection of
this dataset is shown in Figure 8.2(c).

Ten-class image (fm10): The last dataset used in our experiments
consists of all the ten-classes in FashionMNIST, split similarly to
fm4 but with a much larger validation set (|L| = 2000, |U | = 1000
and |V | = 51000). We removed 6000 of the worse-projected points
according to the Jaccard Distance, following the ideas presented in
Chapter 7. A t-SNE projection of this dataset is shown in Figure 8.2(d).

Figure 8.2: Projections for the datasets used during the experiments. (a) 2-class
synthetic, (b) 3-class synthetic, (c) 4-class FashionMNIST subset, (d)
10-class FashionMNIST. In all cases, we only show the points L for
which we have label information. See Sec. 8.3.2.

130

8.3 manual labeling experiments

8.3.3 Experimental set-up

Combining all the three classi�ers (Sec. 8.3.1) with all �ve datasets
(Sec. 8.3.2) would create �fteen potential experiments to execute. While
this is certainly doable, we argue that it would not be optimal. For in-
stance, it does not make much sense to use LR (a very simple and not
that powerful classi�er) for fm10, which is a very challenging dataset to
classify. Hence, from this total of �fteen possibilities, we selected �ve
classi�er-dataset combinations to experiment with. These are listed un-
der the names (I - V) in the leftmost column of Tab. 6. We chose these
�ve combinations so as to match the perceived classi�cation challenge
(implied by the complexity of a dataset) to the classi�er power and �ex-
ibility, and also to cover a wide range of possibilities.

Table 6: Initial accuracies for each experiment.

Experiment Baseline Accuracy
Train (T) Validation (V)

(I) LR and syn2a 87.5% 84.0%
(II) MLP and syn2b 64.0% 58.9%
(III) MLP and syn3 76.0% 68.8%
(IV) CNN and fm4 86.7% 85.3%
(V) CNN and fm10 74.6% 73.0%

Figure 8.2 shows the initial projection of the labeled samples L for the
datasets syn2, syn3, fm4, and fm10. The projected points are color coded
by their respective trained classi�er. That is, each point is assigned a
categorical color depending on which class the classi�er assigned to it.
Note that, in case of training errors, this color will not be the same as
the sample’s true label from L. This view reveals the classi�er “sees” the
training set.

Table 6 presents the baseline accuracies of each experiment. By base-
line, we mean here the accuracies computed when training each classi-
�er on the set L of available labels for the respective datasets (Sec. 8.3.2).
For Experiments I, IV and V, train and validation accuracies are quite
close, a sign that there was no over�tting. For Experiments II and III,
a big discrepancy between train and validation errors hints that not
enough data was available for training, that is, the classi�er has too
many parameters to adjust, thus causing over�tting. Apart from that,
the overall (training and validation) accuracies are quite low, which
indicates that these classi�ers could be improved. We will aim to do
precisely this using labels created manually using the visual analytics
work�ow outlined in Sec. 8.2.

131

end to end evaluation

8.4 manual labeling results

We next present the use of our visual analytics tool (Sec. 8.2) to create
manual labels for the �ve experiments described in Sec. 8.3. For each
experiment, we used three iterations of the labeling work�ow. An iter-
ation consists of examining the DBM of the currently-trained classi�er,
and labeling a small batch of typically 5 to10 samples, after which classi-
�er retraining and recomputation of the DBMs is done. We believe that
this set-up re�ects quite well what a typical user would do when using
our tool in practice. Indeed, having larger batches would imply that one
needs to put more labeling e�ort before actually seeing what this e�ort
leads to (classi�er accuracy increase, stagnation, or decrease). If the ac-
curacy decreases, the labeling needs to be undone (see Sec. 8.2), which
means more e�ort is lost than if a smaller batch was used. Conversely,
having smaller batches would imply that the classi�er needs to be re-
trained and the DBMs need to be recomputed more frequently, which
is computationally intensive. Moreover, using smaller batches may mis-
lead the user – one should not, after all, take decisions based on how a
single sample a�ects a classi�er or its DBM.

We next present several snapshots of the DBMs computed during
this iterative labeling process and discuss them, as follows.

Initial situation: Figure 8.3 shows the initial DBMs for all �ve exper-
iments. Projected points are shown on top of the decision boundary
maps. Misclassi�ed points are highlighted by a white outline. This
information is important and serves as guidance to manual labeling.
For instance, the user can decide to manually label samples that are
close to (groups of) misclassi�ed samples, so as to “push” the decision
boundaries in the right direction. Apart from this, the images in
Fig. 8.3 show several other insights. For Experiment I, we see that most
misclassi�cations are quite close to the left decision boundary which
separates the orange from the light blue decision zone. Since most of
these misclassi�cations are blue, this likely means that the boundary is
drawn too far to the left – that is, points that should have been orange
are actually classi�ed as blue. Hence, manual labeling should aim at
pushing the decision boundary to the right, deeper into the blue zone.
For Experiment II we see a di�erent situation. Here, misclassi�cations
are spread deeper into the decision zones. Solving these by modifying
the shape or location of the decision boundary is arguably more
complex. Experiment III shows a situation roughly similar to the one
for Experiment I. Here, we see that most misclassi�cations are either
orange points located inside the top dark-blue decision zone (these
points should have been classi�ed as blue), or blue points located in
the large light-blue decision zone to the left (these points should have
been classi�ed as orange). Hence, the orange decision zone should
extend deeper inside the light-blue zone and the dark-blue zone should

132

8.4 manual labeling results

be smaller. The DBMs for Experiments IV and V are more complex and
harder to interpret due to the larger number of misclassi�cations and
also the larger number of classes.

Iterative labeling: Figures 8.4 and 8.5 show how the decision maps
change after three iterations of labeling for each of the �ve experiments.
For each experiments, the �gures show six images (a-e), structured as
follows: The three images on the top row (a,c,e) show the points labeled
by the user, in each of the three consecutive iterations) as full white
disks, rendered atop the DBMs visible at that moment. The correspond-
ing images in the bottom row (b,d,f) show the e�ect of the respective
labeling iteration, i.e., how the DBMs change and which are the misclas-
si�cations that the classi�er, trained with the labeled points shown in
the top row, produces. That i: The user started the process seeing the
DBM in image (a); after adding some labels and retraining, she could
observe the e�ect in (b). From this visual insight, the user decided to
add more labels, as shown in (c), leading to the result in (d), and so on.

These image sequences o�er several insights, as follows. First, in gen-
eral, we see that the changes in the DBMs, due to the manually added
labels, are quite small and local. This is not unexpected, since we add
only a few tens of labels manually to training sets that contain hun-
dreds up to thousands of labels. So, small changes to the training sets
imply small changes to the behavior of the respective classi�ers and
their DBMs.

More speci�cally, we see that, for the easier problems, manual
labeling has a visible and positive impact. For instance, in Experiment
I(b) (Fig. 8.4), we notice a small cluster of misclassi�ed points in the
bottom-left area of the image. The user notices this, and adds a few
labels manually in this area (white dots in Experiment I(c) (Fig. 8.4).
The classi�er is retrained using this information, and the number of
misclassi�cations in this area drops (Experiment I(d), Fig. 8.4). In the
same time, we see that this adjustment of the decision boundaries is
quite local: While the classi�er improves in this area, it does not get
worse far away from it – the number and positions of misclassi�ed
points far away from this area stays the same. The user next concen-
trates on the few misclassi�cations located deeper in the upper-left
orange area, visible in Experiment I(d), Fig. 8.4. To correct these, a few
labels are manually added around this zone (Experiment I(e), Fig. 8.4).
As an e�ect, these misclassi�cations are removed: Experiment I(f),
Fig. 8.4 shows that the upper-left orange area is now quite free of
misclassi�cations (except one outlier point in the upper region). Most
misclassi�cations occur now on the boundary of this area, apart from
those occurring deep inside the blue area.

Final situation: The rightmost column in Figures 8.4 and 8.5 show,
for all �ve experiments, the initial DBM and also the �nal DBM, after

133

end to end evaluation

(a) (b) (c)

(d) (e)

Figure 8.3: Initial decision boundary maps for the dataset/classi�er pairs pro-
posed for this experiment (a) Experiment I, (b) Experiment II, (c) Ex-
periment III, (d) Experiment IV, (d) Experiment V.

manual labeling is �nished. In general, the di�erences of the initial
vs �nal maps are quite small, which is expected, as explained above,
given the quite small number of manually added labels. However, the
images for Experiment V (Fig. 8.5, right column) show an exception:
The e�ects of manual label assignment are clearly visible, as the blue
island located inside the green decision zone in the initial DBM shrinks
considerably in the �nal DBM. This e�ect is desirable, as the images
for Experiment V in the same �gure show many misclassi�cations in
this same region.

E�ects ofmanual labeling: Figure 8.6 shows how training and valida-
tion accuracies for each experiment varied as batches of samples were
labeled. For Experiments I, III, and V, the accuracy does, however, in-
crease quite visibly – so, for these cases, we can say that manual label-
ing has a clear added value. For Experiment V, accuracy increases only
slightly. For Experiment II, accuracy is relatively �at or can be seen as
slightly decreasing. Overall, this indicates that having a consistent gain
in accuracy as more samples are manually labeled is not an easy task in
general.

8.4.1 Comparison with automatic labeling

Let us now study the accuracy gain delivered by manual labeling as
compared to the baseline (no additional labels) and also as compared to

134

8.4 manual labeling results

a c e

b d f

a c e

b d f

a c e

b d f

E
x
p

e
ri
m

e
n

t
I

E
x
p

e
ri
m

e
n

t
II

E
x
p

e
ri
m

e
n

t
II
I

In
it
ia

l
D

B
M

F
in

a
l
D

B
M

In
it
ia

l
D

B
M

F
in

a
l
D

B
M

In
it
ia

l
D

B
M

F
in

a
l
D

B
M

Figure 8.4: Sequences of manual label assignment, Experiments I-III. Images (a),
(c) and (e) show the points selected to label as white disks atop of
the DBMs. Images (b), (d) and (f) show the resulting DBMs after re-
training the classi�er with the new points added.

135

end to end evaluation

a c e

b d f

a c e

b d f

E
x
p

e
ri
m

e
n

t
IV

E
x
p

e
ri
m

e
n

t
V

In
it
ia

l
D

B
M

F
in

a
l
D

B
M

In
it
ia

l
D

B
M

F
in

a
l
D

B
M

Figure 8.5: Sequences of manual label assignment, Experiments IV-V. Images
(a), (c) and (e) show the points selected to label as white disks atop
of the DBMs. Images (b), (d) and (f) show the resulting DBMs after
retraining the classi�er with the new points added.

automatic labeling (AL). Table 7 shows these �gures. When compared
to the baseline accuracy (Tab. 6), the resulting classi�er accuracy after
manual sample annotation shows an improvement of 4%, 16.2%, 22.5%,
1.5% and 0.2% for each of the �ve experiments, respectively (see Tab. 7,
columns “Manual”). Experiments II and III, both using synthetic data
and a MLP classi�er, show the highest gains. However, as mentioned
previously, this may be due to classi�er over�tting in these cases. Nev-
ertheless, the displayed gains justify that manual labeling supported by
DBMs brings, in general, signi�cant added value as opposed to using
only the original labels.

Let us now compare manual labeling to fully automatic labeling (AL)
under the two conditions mentioned in Sec. 8.3. In the �rst condition,
we recall that AL is allowed to assign a label to every sample inU . The
results of this process are shown in Tab. 7, columns “Automatic (full)”.

136

8.4 manual labeling results

Figure 8.6: Graphs showing the classi�er’s accuracy change during labeling ex-
periments. For each experiment, both training and validation accu-
racy are tracked. (a) Experiment I, (b) Experiment II, (c) Experiment
III, (d) Experiment IV, (d) Experiment V.

We see that manual labeling performs quite similar to AL for Experi-
ments I and III, but signi�cantly better for Experiments II, IV, and V.

In the second condition, we allow AL to assign a label to every sample
in U , but only k of them are randomly drawn to be used for the train-
ing of the classi�er. We repeat this process of random drawing of la-
beled samples and classi�er training-and-evaluation ten times. Table 7,
columns “Automatic (k)” show the averaged results for each experiment.
The number k of used labels equals the number of labels assigned man-
ually, and is indicated in brackets in the �rst column. For Experiments
I, II, and III, we see that AL slightly decreases in accuracy as compared
to full labeling, while accuracy strongly increases vs full labeling for Ex-
periments IV and V. Still, overall, our manual labeling performs better
than AL under this condition.

For a �nal comparison, Tab. 7, columns “True labels (k)” show the re-
sults of training the classi�er with true labels added to k points fromU .
As for the second condition, we did this experiment ten times and aver-
aged results. This would be the optimal situation, equivalent to an AL
method that perfectly guesses the labels for k such points. The obtained
accuracies are now higher, but still, in general, slightly lower than those
obtained using manual labeling.

Table 8 shows the number of correctly assigned labels for the manual
labeling and AL under the two conditions. For the easiest case (Experi-
ment I), we see that AL beats manual labeling. However, as Tab. 7 shows,
the added value in terms of classi�er accuracy is not too large, since this
experiment uses a quite simple classi�er (LR). In all other cases, we see
that manual labeling guesses labels better than AL, even dramatically
so for Experiments IV and V.

137

end to end evaluation

Table 7: Comparing achieved accuracies for each experiment with automatic
label propagation.

Experiment (k) Manual Automatic (full) Automatic (k) True labels (k)
T V T V T V T V

I (25) 86.0% 88.0% 88.5% 85.5% 87.4% 84.5% 87.3% 84.5%
II (58) 80.0% 75.1% 63.2% 60.7% 76.2% 70.6% 79.0% 72.5%
III (79) 91.3% 91.3% 91.6% 90.8% 71.6% 65.7% 81.7% 76.6%
IV (77) 87.8% 86.6% 23.5% 25.2% 60.1% 60.1% 87.1% 86.2%
V (53) 75.4% 73.2% 09.3% 10.6% 61.7% 62.0% 74.7% 72.9%

Table 8: Comparing the number of correct labels assigned manually and auto-
matically.

Experiment (k) Manual Automatic (full) Automatic (k)
I (25) 88.0% 94.0% 94.8%
II (58) 96.5% 92.5% 93.0%
III (79) 98.7% 94.3% 94.3%
IV (77) 89.6% 30.3% 28.3%
V (53) 84.9% 10.8% 12.0%

8.5 discussion

We discuss below several insights obtained during our experiments for
assessing the working and added value of manual labeling assisted by
DBMs.

Added value: As shown by the comparisons in Sec. 8.4.1, manual
labeling aided by DBMs does bring visible added value in terms of both
guessing the correct labels for data points and, more importantly we
argue, obtaining classi�ers with a higher accuracy. The di�erence (in
terms of accuracy values) however does vary quite signi�cantly as a
function of the used classi�er and classi�cation problem (dataset). That
is, for a simple problem, automatic methods perform quite well, as they
arguably can easily “�nd their way” in the high-dimensional space. For
more complex problems, however, the user’s insights, obtained using
DBMs, appear to beat the performance of automatic methods. We
note that very similar trends have been exposed by the experiments
of Benato et al. [13]. Since their experiments used di�erent datasets,
classi�ers, and AL methods, we argue that our work strengthens
the claim that visual analytic methods are a useful tool for classi�er
engineering in semi-supervised learning.

Local information: One important question is which are the visual
hints that determine a user to assign a certain label to a certain point
– or, alternatively, skip the point from labeling. As already explained,
one such hint is the existence of clusters of misclassi�cations which

138

8.5 discussion

are far away from decision boundaries, thus, which appear to be
easily correctable by adding a few extra labeled points close to them.
However, even when global data properties are preserved by projection
methods, i.e. data points of the di�erent classes are nicely split into
di�erent visual clusters, local properties can be more relevant to label
assignment, such as local neighborhood information. For this reason,
during our manual labeling experiments, the drawing of lines to
indicate the true neighbors of an unlabeled point was very important
when deciding how to label it.

User e�ort: Manual labeling is a time consuming task as users need
to take a lot of information into consideration in order to decide which
class to assign to a sample. For this reason, we limited our experiments
to labeling only a few tens of points (see Tab. 7), and used the working
set concept to o�er only a few points at a time to the user to label, to
limit visual clutter. While some of samples presented to the user were
confusing to label, as explained earlier, most of the others did not seem
to add much information to the classi�er as they appeared to be deep
into decision zones, as indicated by the distance-to-the-closest-decision
boundary, visible as low luminance in the DBMs. One potential idea to
reduce the labeling e�ort would be to o�er selection mechanisms for
users to remove from the labeling process samples which are deep into
these zones, thereby concentrating the e�ort on arguably more impor-
tant samples close to the decision boundaries. On the other hand, while
we acknowledge that manual labeling is a di�cult task, the proposed
procedure allowed for a correct class attribution to samples, as Tab. 8
shows.

Another possible way to reduce user e�ort is to select the working
set of samples o�ered to labeling in a more informed way than the order
they come in the dataset (Sec. 8.2), using an active learning approach.
This may focus the user’s labeling e�ort in areas where it has the most
impact. However, in this case, one may wonder what is the added value
of seeing the DBM. Since we wanted (as also explained next under
“Ground truth hints”) to test the added-value of DBMs independently
on other mechanisms, we did not investigate this path. Nevertheless,
seeing whether a combination of active learning mechanisms and the
DBM can provide added value is an interesting future work direction.

Ground truth hints: During our experiments, the user was not
allowed to look at the actual features (although we did implement the
facility to display this information in our tool). We did this so as to
better assess how the DBMs by themselves can assist manual labeling
and classi�er engineering. Note that this is in contrast to Benato et
al., where users actively used tooltips to inspect the unlabeled images
during manual label propagation. Still, even under this restrictive
condition, our results are arguably quite good, thereby justifying the

139

end to end evaluation

added value of DBMs in isolation. For image data, it is reasonable to
expect that adding the option to see the images during label propaga-
tion would only increase the performance of the human-in-the-loop
method. Doing this experiment is left to future work.

Extensions: Additional experiments with a human-in-the-loop may
bene�t from VA tools, for example in the case of imbalanced datasets. In
such a scenario, we conjecture that human intuition could help correctly
labeling data better than automatic methods, which would be biased by
the class having most samples. As for the previous point, we leave this
investigation to future research.

140

9C O N C L U S I O N

Throughout this manuscript, we investigated and developed methods
for the visual exploration of the decision zones and decision boundaries
of Machine Learning classi�ers, with the aim of helping the classi�er
engineer to better understand how such classi�ers partition their input
data space into decision zones and, when possible, in�uence this parti-
tion to improve the performance of the respective classi�er.

The main contribution of this thesis is the proposal of a visualiza-
tion method that constructs explicit and dense visual representations
of decision zones and their respective boundaries. We augmented this
visualization by several mechanisms in order to provide additional infor-
mation on the explored data space, and we used the resulting techniques
to construct a visual analytics (VA) tool and work�ow that supports the
process of label creation in semi-supervised machine learning scenar-
ios. The proposed techniques, together with their deployment in the
VA tool, are our answer to the research questions raised in Section 1.4.

We next brie�y discuss each chapter of this thesis next, summarizing
their relevance to our research objectives. We end this chapter with
some pointers to future work and possible improvements to our work.

9.1 deep feature extraction evaluation

In Chapter 3, transfer learning was used to solve a practical problem of
planktonic image classi�cation. Besides achieving a high accuracy on
the task at hand, we wanted to investigate the impact of dataset simi-
larity, i.e. di�erent sources Si , and of classi�er architecture, i.e. di�erent
Ci , on classifying our local data. This analysis was conducted by com-
puting accuracy metrics for di�erent pairs of classi�er-dataset combi-
nations and by using standard, but very simple, visualization tools such
as tables, confusion matrices, and aggregated bar charts.

This chapter showed that, using the currently available simple visu-
alization tools, one can still construct and validate a classi�er than pro-
duces good results for a given practical problem. In the same time, this
work highlighted several challenges and limitations that such visualiza-
tion tools have in terms of limited insights that they produce and ques-
tions that they cannot answer. As such, the material here provides us
with a practical justi�cation for the need for developing more powerful
visualization tools for classi�er engineering.

141

conclusion

9.2 decision boundary maps

While confusion matrices, used in Chapter 3, can relate di�erent classes
in a single image, indicating which ones are harder for a classi�er to dis-
criminate, the information provided is far too simple and cannot relate
individual samples, which have to be manually explored.

In Chapter 4 we proposed an image-based method to depict how the
decision boundaries induced by a classi�er are related. In contrast to the
aggregated visualization methods discussed in Chapter 3, our proposal
is an observation-centric method which dedicates space in the visual-
ization to every sample. This way, observation-related patterns, such
as clusters of similar samples and/or outliers, can be readily explored.
Our proposed visualization literally “�lls” the empty gaps that exist in
scatterplots created by dimensionality reduction methods by telling the
user how a classi�er would behave for data that would map to such
gaps. To our knowledge, our decision boundary maps, or DBMs (as we
call our method) is the �rst method to explicitly compute and visualize
the shape and location of decision zones and their boundaries for any
classi�er applied on any high-dimensional dataset.

As shown in subsequent chapters through a number of examples,
our method is indeed capable of providing relevant insights into the
classi�er-dataset relationship, allowing for both a global view of the de-
cision zones and providing local details.

9.3 impact of direct projections on dbms

The construction of decision boundary maps depends on two key tech-
niques: a direct projection and an inverse projection. In Chapter 5, we
evaluate how DBMs depend on the choice of the direct projection tech-
nique being used. In total, we studied 28 projection techniques for this
task, allowing for a broad comparison. Di�erent classi�er conditions
were also explored, starting from a linear classi�er that is capable of
classifying a simple dataset with 100% accuracy up to a Convolutional
Neural Network applied to a more complex task of classifying natural
image data.

The results of this study pointed out to a small set of methods, namely
t-SNE and UMAP, which appear to be the best for the construction of
DBMs for all studied classi�ers and datasets. In the same time, we high-
lighted several problems that appear during DBM construction – such
as jagged boundaries and spurious islands – and which cannot be fully
removed by the change of the projection technique used. We address
these problems further in Chapter 7.

142

9.4 impact of inverse projection on dbm formation

9.4 impact of inverse projection on dbm formation

In Chapter 6, we study the second key ingredient of computing DBMs,
namely the inverse projection technique being used. For this, we con-
sidered �rst two inverse projections available in the literature, namely
iLAMP and RBF. The results obtained with these methods indicate that
DBMs still su�er from problems such as the aforementioned spurious is-
lands. Equally importantly, the execution time of both these inverse pro-
jections is very large, which prohibits the use of the so-created DBMs
in interactive visual analytics contexts.

We address the above limitations by proposing a novel method to
compute inverse projections based on deep learning the inverse trans-
formation implied by a direct projection method. We compare the
three alternatives (iLAMP, RBF, and our deep learned inverse projec-
tion called NNinv), and show that our proposed method produces bet-
ter DBMs, and with a signi�cantly lower computational cost, than iL-
AMP and RBF. Besides DBM computation, our inverse projection can
be generically used in any other application which requires inverse pro-
jection capabilities.

9.5 visual refinements of dbms

Following the work of the previous two chapters, we converge with the
design of DBMs based on t-SNE or UMAP as direct projections, and
NNinv as inverse projection respectively. However, even when using
these elements, DBMs still su�er from imprecisions caused by the in-
herent limitations of both direct and inverse projections.

In Chapter 7, we re�ne both the construction and visualization of
DBMs as follows. First, we propose a �ltering strategy that removes
points from the projection which cause the spurious island problems.
While slightly reducing the amount of data shown to the user, the re-
maining data is shown much more accurately, therefore obtaining an
overall better, less confusing, visualization. Secondly, we enhance DBMs
to show, for each pixel, the distance to the closest decision boundary.
This way, users can readily separate the areas which are deep inside
decision zones (therefore, less interesting for classi�er engineering as
these are arguably easy to decide upon) from the areas closer to deci-
sion boundaries (where arguably a classi�er has more problems, thus,
where the user’s e�ort for improving the classi�er should concentrate).
We provide three di�erent heuristics for computing the distance-to-
boundary, which o�er di�erent trade-o�s between computational speed
and accuracy.

With the techniques presented in this chapter, we conclude our
answers to the �rst research question posed in Section 1.4, that we
repeat below:

143

conclusion

How to use visual analytics to get more insights into a classi�er’s
performance?

9.6 end to end application

In Chapter 8, we focus on our second research question presented in
Section 1.4, which we repeat below:

How to use visual analytics to improve a classifer?

We address this question by presenting a visual analytics tool, and
corresponding work�ow, that combines classi�er training, testing, and
validation, with a semi-supervised learning process based on manual
sample annotation (labeling). Central to this process is the usage of
DBMs and various other visualization mechanisms (tooltips, nearest
neighbors) to help the user in the selection and labeling of samples.

We demonstrate our approach by using our proposed visual analytics
tool and work�ow in the process of semi-supervised learning for �ve
scenarios that combine �ve di�erent datasets with three classi�er tech-
niques. In each experiment, we allow the user to label only a few tens
of samples, and next test the increase of accuracy due to these samples
as compared to the original training set (baseline), but also compared
to using a fully automatic label propagation (AL) procedure.

The results of these experiments show several insights. On the posi-
tive side, our manual labeling assisted by DBMs produces signi�cantly
more correctly labeled samples than AL, which, in turn, lead to classi-
�ers having a better performance than the AL-trained ones. On the less
positive side, the overall increases in performance as compared to the
baseline training are limited. Our results strengthen independently exe-
cuted complementary recent research in using visual analytics to assist
semi-supervised learning, and, as such, motivate the pursuing of future
work in this area.

9.7 future work

Several directions for future work are possible, as follows.
On the practical side, one interesting direction consists in applying

our techniques for visualizing decision boundaries in di�erent machine
learning settings, such as on regression problems. This would extend
the application area, and therefore the practical added value, of DBMs
to di�erent problems.

On the technical side, it is de�nitely of interest to revisit the basic
DBM computation algorithm proposed in Chapter 4. A major point of
interest would be to re-think the algorithm so as to minimize errors in

144

9.7 future work

the entire DBM. Right now, our algorithm still su�ers from errors of
both the direct and the inverse projection, and these projections (and
their errors) are computed based on a typically small number of sample
points. Since DBMs aim to visualize the entire high-dimensional space
(in the limit), they use a very large number of points in their construc-
tion. Hence, it should be possible to cast the DBM construction problem
as an explicit model that joins the costs of direct and inverse projection
for all the points which ultimately create the DBM. We believe that this
would lead to DBMs of signi�cantly higher quality.

Finally, half-way between the technical and practical sides, it is in-
teresting to further re�ne the VA work�ow and associated tools based
on DBMs aimed at supporting classi�er engineering. Our current ap-
proach was minimal, in the sense of using only a single-resolution view
of DBMs, with only a few additional interactive investigation mecha-
nisms such as tooltips and nearest neighbor markers. It is well known
that VA tools excel in their task when o�ering a wide range of �nely-
tuned exploration options to the user. This would translate in our con-
text to providing ways to compute DBMs in a multiresolution fashion,
e.g. to allow users to seamlessly zoom-in-and-out in speci�c areas of the
data space, or compute additional metrics that rank samples for manual
labeling and inform the user on this ranking. In the long run, providing
real-time computation and visualization of DBMs would allow a truly
immersive experience, where one could literally label and/or move sam-
ple points in the projection and see how the decision zones and their
boundaries change, thereby getting an intimate feeling of how a classi-
�er works to construct these important, but still elusive, boundaries.

145

B I B L I O G R A P H Y

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Good-
fellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Mur-
ray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous sys-
tems, 2015. url https://www.tensorflow.org/. Software
available from tensor�ow.org.

[2] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H. T. Lin. Learning
from data, volume 4. AMLBook New York, NY, USA:, 2012.

[3] A. Adadi and M. Berrada. Peeking inside the black-box: A survey
on explainable arti�cial intelligence (XAI). IEEE Access, 6, 2018.
DOI:10.1109/ACCESS.2018.2870052.

[4] H. A. Al-Barazanchi, A. Verma, and S. Wang. Performance eval-
uation of hybrid cnn for sipper plankton image calssi�cation. In
2015 Third International Conference on Image Information Process-
ing (ICIIP), pages 551–556. IEEE, 2015.

[5] E. Amorim, E. V. Brazil, J. Mena-Chalco, L. Velho, L. G. Nonato,
F. Samavati, and M. C. Sousa. Facing the high-dimensions: In-
verse projection with radial basis functions. Computers & Graph-
ics, 48:35–47, 2015.

[6] W. P. Amorim, A. X. Falcão, J. a. P. Papa, and M. H. Carvalho. Im-
proving semi-supervised learning through optimum connectivity.
Pattern Recogn., 60(C):72–85, December 2016. issn 0031-3203.

[7] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu. An
optimal algorithm for approximate nearest neighbor searching. J.
of the ACM, 45(6):891–923, 1998.

[8] M. Aupetit. Visualizing distortions and recovering topology
in continuous projection techniques. Neurocomputing, 10(7-9):
1304–1330, 2007.

[9] F. Aurenhammer. Voronoi diagrams: A survey of a fundamental
geometric data structure. ACM Computing Surveys, 23:345–405,
1991.

147

https://www.tensorflow.org/

bibliography

[10] C. Azodi, J. Tang, and S. Shiu. Opening the black box: Inter-
pretable machine learning for geneticists. Trends in Genetics, 6
(26):442–455, 2020.

[11] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral tech-
niques for embedding and clustering. In Advances in Neural In-
formation Processing Systems (NIPS), pages 585–591, 2002.

[12] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization:
A geometric framework for learning from labeled and unlabeled
examples. J. Mach. Learn. Res., 7:2399–2434, December 2006. issn
1532-4435.

[13] B. C. Benato, A. C. Telea, and A. X. Falcão. Semi-supervised learn-
ing with interactive label propagation guided by feature space
projections. In 2018 31st SIBGRAPI Conference on Graphics, Pat-
terns and Images (SIBGRAPI), pages 392–399. IEEE, 2018.

[14] Y. Bengio. Deep learning of representations for unsupervised and
transfer learning. In Proceedings of ICML workshop on unsuper-
vised and transfer learning, pages 17–36, 2012.

[15] M. de Berg, M. van Kreveld, M. Overmars, and O. Cheong-
Schwarzkopf. Computational Geometry – Algorithms and Appli-
cations. Springer, 2000.

[16] C. M. Bishop. Pattern recognition and machine learning. Springer,
2006.

[17] M. B. Blaschko, G. Holness, M. A. Mattar, D. Lisin, P. E. Utgo�,
A. R. Hanson, H. Schultz, E. M. Riseman, M. E. Sieracki, W. M.
Balch, et al. Automatic in situ identi�cation of plankton. In
2005 Seventh IEEE Workshops on Applications of Computer Vi-
sion (WACV/MOTION’05)-Volume 1, volume 1, pages 79–86. IEEE,
2005.

[18] L. Bottou. Stochastic gradient tricks. In G. Montavon, G. B. Orr,
and K. R. Müller, editors, Neural Networks, Tricks of the Trade,
Reloaded, Lecture Notes in Computer Science (LNCS 7700), pages
430–445. Springer, 2012.

[19] B. Broeksema, A. Telea, and T. Baudel. Visual analysis of
multi?dimensional categorical data sets. Computer Graphics Fo-
rum, 32(8):158–169, 2013.

[20] T. T. Cao, K. Tang, A. Mohamed, and T. S. Tan. Parallel banding
algorithm to compute exact distance transform with the GPU. In
Proc. ACM I3D, pages 83–90, 2010.

148

bibliography

[21] D. B. Carr, R. J. Little�eld, W. L. Nicholson, and J. S. Little�eld.
Scatterplot matrix techniques for large n. Journal of the Amer-
ican Statistical Association, 82(398):424–436, 1987.

[22] Y. Chen, M. Crawford, and J. Ghosh. Improved nonlinear mani-
fold learning for land cover classi�cation via intelligent landmark
selection. In Proc. IEEE IGARSS, pages 545–548, 2006.

[23] F. Chollet. Keras machine learning framework, 2018. https://
github.com/fchollet/keras.

[24] A. Choromanska, M. Hena�, M. Mathieu, G. B. Arous, and Y. Le-
Cun. The Loss Surfaces of Multilayer Networks. In Proceedings
of the Eighteenth International Conference on Arti�cial Intelligence
and Statistics, volume 38 of Proceedings of Machine Learning Re-
search, pages 192–204. PMLR, 2015.

[25] L. Costa and R. Cesar. Shape analysis and classi�cation. CRC
Press, 2000.

[26] Cowen, R. K., S. Sponaugle, K. Robinson, and J. Luo. PlanktonSet
1.0: Plankton imagery data collected from F.G. Walton Smith in
Straits of Florida from 2014-06-03 to 2014-06-06 and used in the
2015 National Data Science Bowl. 2015. doi 10.7289/V5D21VJD.

[27] J. Cunningham and Z. Ghahramani. Linear dimensionality reduc-
tion: Survey, insights, and generalizations. JMLR, 16:2859–2900,
2015.

[28] J. Dai, R. Wang, H. Zheng, G. Ji, and X. Qiao. Zooplanktonet:
deep convolutional network for zooplankton classi�cation. In
OCEANS 2016-Shanghai, pages 1–6. IEEE, 2016.

[29] T. N. Dang and L. Wilkinson. Scagexplorer: Exploring scatter-
plots by their scagnostics. In Visualization Symposium (Paci-
�cVis), 2014 IEEE Paci�c, pages 73–80. IEEE, 2014.

[30] S. Dasgupta. Experiments with random projection. In Proc. of the
Sixteenth conference on Uncertainty in arti�cial intelligence, pages
143–151. Morgan Kaufmann, 2000.

[31] O. Delalleau, Y. Bengio, and N. Le Roux. E�cient non-parametric
function induction in semi-supervised learning. In AISTATS, vol-
ume 27 number 28, page 100. Citeseer, 2005.

[32] D. Dheeru and E. Karra Taniskidou. UCI machine learning repos-
itory, 2017. url http://archive.ics.uci.edu/ml.

[33] S. Dieleman, J. De Fauw, and K. Kavukcuoglu. Exploiting cyclic
symmetry in convolutional neural networks. arXiv preprint
arXiv:1602.02660, 2016.

149

https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://dx.doi.org/10.7289/V5D21VJD
http://archive.ics.uci.edu/ml

bibliography

[34] D. L. Donoho and C. Grimes. Hessian eigenmaps: Locally linear
embedding techniques for high-dimensional data. Proceedings of
the National Academy of Sciences, 100(10):5591–5596, 2003.

[35] F. K. Dosilovi’c, M. Brci’c, and N. Hlupi’c. Explainable arti�cial
intelligence: A survey. In Proc. 41st International Convention on
Information and Communication Technology, Electronics and Mi-
croelectronics (MIPRO), pages 210–215, 2018.

[36] D. Engel, L. Hüttenberger, and B. Hamann. A survey of dimen-
sion reduction methods for high-dimensional data analysis and
visualization. In Proc. IRTG Workshop, volume 27, pages 135–149.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2012.

[37] M. Espadoto, R. Martins, A. Kerren, N. Hirata, and A. Telea. To-
wards a quantitative survey of dimension reduction techniques.
IEEE TVCG, 2019. doi:10.1109/TVCG.2019.2944182.

[38] M. Espadoto, F. C. M. Rodrigues, and A. Telea. Visual analytics of
multidimensional projections for constructing classi�er decision
boundary maps. In Proc. IVAPP. SciTePress, 2019.

[39] M. Espadoto, A. Falcao, N. Hirata, and A. Telea. Improving neu-
ral network-based multidimensional projections. In Proc. IVAPP.
SciTePress, 2020.

[40] M. Espadoto, N. Hirata, and A. Telea. Deep learning multidimen-
sional projections. J. Information Visualization, 2020. https:
//doi.org/10.1177/1473871620909485.

[41] M. Espadoto, N. Hirata, and A. Telea. Deep learning mul-
tidimensional projections. Information Visualization, 2020.
DOI:10.1177/1473871620909485.

[42] M. Espadoto, F. C. M. Rodrigues, N. S. T. Hirata, R. Hirata Jr., and
A. C. Telea. Deep Learning Inverse Multidimensional Projections.
In Proc. EuroVis Workshop on Visual Analytics (EuroVA). The Eu-
rographics Association, 2019.

[43] R. Fabbri, L. Costa, J. Torellu, and O. Bruno. 2D Euclidean distance
transform algorithms: A comparative survey. ACM Computing
Survey, 40(1):1–44, 2008.

[44] C. Faloutsos and K. Lin. FastMap: A fast algorithm for index-
ing, data-mining and visualization of traditional and multimedia
datasets. ACM SIGMOD Newsletter, 24(2):163–174, 1995.

[45] T. Fawcett. An introduction to ROC analysis. Pattern Recognition
Letters, 27(8):861–874, 2006.

150

https://doi.org/10.1177/1473871620909485
https://doi.org/10.1177/1473871620909485

bibliography

[46] A. Fawzi, S. M. Moosavi-Dezfooli, P. Frossard, and S. Soatto. Em-
pirical study of the topology and geometry of deep networks. In
Proc. IEEE CVPR, pages 3762–3770, 2018.

[47] J. M. Flores, M. Fischer, A. Telea, and L. Linsen. Scatterplot sum-
marization by constructing fast and robust principal graphs from
skeletons. In Proc. IEEE Paci�cVis, 2019.

[48] I. K. Fodor. A survey of dimension reduction techniques. Tech-
nical report, US Dept. of Energy, Lawrence Livermore National
Labs, 2002. Tech. report UCRL-ID-148494.

[49] R. Garcia, A. Telea, I. da Silva, J. Torresen, and J. Comba. A task-
and-technique centered survey on visual analytics for deep learn-
ing model engineering. Computers and Graphics, 77:30–49, 2018.

[50] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hier-
archies for accurate object detection and semantic segmentation.
In Proc. IEEE CVPR, pages 580–587, 2014.

[51] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harness-
ing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[52] M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid. Tagprop:
Discriminative metric learning in nearest neighbor models for im-
age auto-annotation. In 2009 IEEE 12th International Conference
on Computer Vision, pages 309–316, Sept 2009.

[53] L. Hamel. Visualization of support vector machines with unsu-
pervised learning. In Proc. Computational Intelligence and Bioin-
formatics and Computational Biology (CIBCB). IEEE, 2006.

[54] C. Hansen and C. Johnson. The visualization handbook. Elsevier,
2005.

[55] R. M. Haralick, K. Shanmugam, et al. Textural features for image
classi�cation. IEEE Transactions on systems, man, and cybernetics,
(6):610–621, 1973.

[56] T. Hastie and W. Stuetzle. Principal curves. J. American Statistical
Association, 84(406):502–516, 1989.

[57] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into recti�ers:
Surpassing human-level performance on ImageNet classi�cation.
In Proc. IEEE ICCV, pages 1026–1034, 2015.

[58] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

151

bibliography

[59] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimension-
ality of data with neural networks. Science, 313(5786):504–507,
2006.

[60] K. Ho�, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast compu-
tation of generalized Voronoi diagrams using graphics hardware.
In Proc. ACM SIGGRAPH, pages 277–286, 1999.

[61] P. Ho�man and G. Grinstein. A survey of visualizations for high-
dimensional data mining. Information Visualization in Data Min-
ing and Knowledge Discovery, 104:47–82, 2002.

[62] X. Hu, H. Cammann, H. A. Meyer, K. Miller, K. Jung, and
C. Stephan. Arti�cial neural networks and prostate cancer—tools
for diagnosis and management. Nature Reviews Urology, 10(3):
174–182, 2013.

[63] A. Hyvarinen. Fast ICA for noisy data using gaussian moments.
In Proc. IEEE ISCAS, volume 5, pages 57–61, 1999.

[64] A. Inselberg and B. Dimsdale. Parallel coordinates: A tool for
visualizing multi-dimensional geometry. In Proc. IEEE VIS, pages
361–378, 1990.

[65] J. C. S. Jacques, C. R. Jung, and S. R. Musse. A background subtrac-
tion model adapted to illumination changes. In 2006 International
Conference on Image Processing, pages 1817–1820. IEEE, 2006.

[66] P. Joia, D. Coimbra, J. A. Cuminato, F. V. Paulovich, and L. G.
Nonato. Local a�ne multidimensional projection. IEEE Transac-
tions on Visualization and Computer Graphics, 17(12):2563–2571,
2011.

[67] I. T. Jolli�e. Principal Component Analysis and Factor Analysis.
In Principal component analysis, pages 115–128. Springer, 1986.

[68] J. Kehrer and H. Hauser. Visualization and visual analysis of
multifaceted scienti�c data: A survey. IEEE TVCG, 19(3):495–513,
2013.

[69] D. Keim, G. Andrienko, J. D. Fekete, C. Görg, J. Kohlhammer, and
G. Melan con. Visual analytics: De�nition, process, and chal-
lenges. In Information Visualization, pages 154–175. Springer,
2008.

[70] D. P. Kingma and J. Ba. Adam: A method for stochastic optimiza-
tion. arXiv:1412.6980v9 [cs.LG], 2014.

[71] D. P. Kingma and M. Welling. Auto-encoding variational Bayes,
2013. arXiv:1312.6114 [cs.ML].

152

bibliography

[72] I. Kononenko. Machine learning for medical diagnosis: history,
state of the art and perspective. Arti�cial Intelligence in Medicine,
23(1):89–109, 2001.

[73] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classi�-
cation with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105, 2012.

[74] J. B. Kruskal. Multidimensional scaling by optimizing goodness
of �t to a nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

[75] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit
database, 2010. AT&T Labs [Online]. Available: http://yann.
lecun.com/exdb/mnist.

[76] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521
(7553):436–444, 2015.

[77] D. J. Lehmann, G. Albuquerque, M. Eisemann, M. Magnor, and
H. Theisel. Selecting coherent and relevant plots in large scatter-
plot matrices. Computer Graphics Forum, 31(6):1895–1908, 2012.

[78] R. van Liere and W. De Leeuw. GraphSplatting: Visualizing
graphs as continuous �elds. Visualization and Computer Graphics,
IEEE Transactions on, 9:206– 212, 05 2003.

[79] J. Liu, M. Li, Q. Liu, H. Lu, and S. Ma. Image annotation via graph
learning. Pattern Recognition, 42(2):218 – 228, 2009. issn 0031-
3203. Learning Semantics from Multimedia Content.

[80] S. Liu, D. Maljovec, B. Wang, P. T. Bremer, and V. Pascucci. Visu-
alizing high-dimensional data: Advances in the past decade. IEEE
TVCG, 23(3):1249–1268, 2015.

[81] L. van der Maaten. Learning a parametric embedding by preserv-
ing local structure. In Proc. 12th Intl. Conf. on Arti�cial Intelligence
and Statistics, 2009.

[82] L. van der Maaten and G. Hinton. Visualizing data using t-SNE.
JMLR, 9(Nov):2579–2605, 2008.

[83] L. van der Maaten and E. Postma. Dimensionality reduction:
A comparative review, 2009. Tech. report TiCC TR 2009-005,
Tilburg University, Netherlands.

[84] C. D. Manning, H. Schütze, and P. Raghavan. Introduction to Infor-
mation Retrieval, volume 39. Cambridge University Press, 2008.

[85] R. Martins, D. Coimbra, R. Minghim, and A. C. Telea. Visual anal-
ysis of dimensionality reduction quality for parameterized pro-
jections. Computers & Graphics, 41:26–42, 2014.

153

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist

bibliography

[86] R. Martins, R. Minghim, and A. C. Telea. Explaining neighbor-
hood preservation for multidimensional projections. In Proc.
CGVC, pages 121–128. Eurographics, 2015.

[87] L. McInnes and J. Healy. UMAP: Uniform Manifold Approxima-
tion and Projection for Dimension Reduction. arXiv:1802.03426v1
[stat.ML], 2018.

[88] M. A. Migut, M. Worring, and C. J. Veenman. Visualizing multi-
dimensional decision boundaries in 2D. Data Mining and Knowl-
edge Discovery, 29(1):273–295, 2015.

[89] R. Minghim, F. V. Paulovich, and A. A. Lopes. Content-based text
mapping using multi-dimensional projections for exploration of
document collections. In Proc. SPIE, volume 6060. Intl. Society for
Optics and Photonics, 2006.

[90] T. Munzner. Visualization analysis and design. CRC Press, 2015.

[91] L. Nonato and M. Aupetit. Multidimensional projection for visual
analytics: Linking techniques with distortions, tasks, and layout
enrichment. IEEE TVCG, 2018. DOI:10.1109/TVCG.2018.2846735.

[92] T. Ojala, M. Pietikäinen, and T. Mäenpää. Gray scale and rotation
invariant texture classi�cation with local binary patterns. In Eu-
ropean Conference on Computer Vision, pages 404–420. Springer,
2000.

[93] E. C. Orenstein and O. Beijbom. Transfer learning and deep fea-
ture extraction for planktonic image data sets. In 2017 IEEE Win-
ter Conference on Applications of Computer Vision (WACV), pages
1082–1088. IEEE, 2017.

[94] E. Osuna, R. Freund, and F. Girosit. Training support vector ma-
chines: an application to face detection. In Computer vision and
pattern recognition, 1997. Proceedings., 1997 IEEE computer society
conference on, pages 130–136. IEEE, 1997.

[95] N. Otsu. A threshold selection method from gray-level his-
tograms. IEEE transactions on systems, man, and cybernetics, 9
(1):62–66, 1979.

[96] C. W. A. M. van Overveld and J. J. van Wijk. Preset based interac-
tion with high dimensional parameter spaces. In Data Visualiza-
tion, pages 391–406. Springer, 2003.

[97] U. Ozertem and D. Erdogmus. Locally de�ned principal curves
and surfaces. JMLR, 12:1249–1286, 2011.

[98] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transac-
tions on knowledge and data engineering, 22(10):1345–1359, 2009.

154

bibliography

[99] A. V. Pandey, J. Krause, C. Felix, J. Boy, and E. Bertini. Towards un-
derstanding human similarity perception in the analysis of large
sets of scatter plots. In Proc. ACM CHI, pages 3659–3669, 2016.

[100] F. V. Paulovich and R. Minghim. Text map explorer: a tool to cre-
ate and explore document maps. In Proc. Intl. Conference on In-
formation Visualisation (IV), pages 245–251. IEEE, 2006.

[101] F. V. Paulovich, C. T. Silva, and L. G. Nonato. Two-phase mapping
for projecting massive data sets. IEEE TVCG, 16(6):1281–1290,
2010.

[102] F. V. Paulovich, D. M. Eler, J. Poco, , C. P. Botha, R. Minghim, and
L. G. Nonato. Piecewise laplacian-based projection for interactive
data exploration and organization. Computer Graphics Forum, 30
(3):1091–1100, 2011.

[103] M. J. Pazzani and D. Billsus. Content-based recommendation sys-
tems. In The adaptive web, pages 325–341. Springer, 2007.

[104] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.
Scikit-learn: Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830, 2011.

[105] E. Pekalska, D. de Ridder, R. P. W. Duin, and M. A. Kraaijveld. A
new method of generalizing Sammon mapping with application
to algorithm speed-up. In Proc. ASCI, volume 99, pages 221–228,
1999.

[106] N. Pezzotti, T. Höllt, B. Lelieveldt, E. Eisemann, and A. Vilanova.
Hierarchical stochastic neighbor embedding. Computer Graphics
Forum, 35(3):570–580, 2016.

[107] N. Pezzotti, B. P. Lelieveldt, L. van der Maaten, T. Höllt, E. Eise-
mann, and A. Vilanova. Approximated and user steerable t-SNE
for progressive visual analytics. IEEE TVCG, 23(7):1739–1752,
2017.

[108] N. Pise and P. Kulkarni. A survey of semi-supervised learning
methods. In Proc. Intl. Conf. on Comp. Intell. and Security, 2008.

[109] K. Polat and S. Güneş. Breast cancer diagnosis using least square
support vector machine. Digital Signal Processing, 17(4):694–701,
2007.

[110] G. Pölzlbauer. Survey and comparison of quality measures for
self-organizing maps. In Proc. Workshop on Data Analysis (WDA),
pages 67–82, 2004.

155

bibliography

[111] V. Prakash and L. Nithya. A survey on semi-supervised learning
techniques. International Journal of Computer Trends and Tech-
nology, 8(1):25–29, 2014.

[112] O. Py, H. Hong, and S. Zhongzhi. Plankton classi�cation with
deep convolutional neural networks. In 2016 IEEE Information
Technology, Networking, Electronic and Automation Control Con-
ference, pages 132–136. IEEE, 2016.

[113] R. Rao and S. K. Card. The table lens: Merging graphical and
symbolic representations in an interactive focus+context visual-
ization for tabular information. In Proc. ACM SIGCHI, pages 318–
322, 1994.

[114] P. Rauber, R. da Silva, S. Feringa, M. Celebi, A. Falcao, and A. Telea.
Interactive image feature selection aided by dimensionality re-
duction. In Proc. EuroVA. Eurographics, 2015.

[115] P. E. Rauber, A. X. Falcão, and A. C. Telea. Projections as visual
aids for classi�cation system design. Information Visualization,
17(4):282–305, 2017.

[116] P. E. Rauber, S. G. Fadel, A. X. Falcao, and A. C. Telea. Visualizing
the hidden activity of arti�cial neural networks. IEEE TVCG, 23
(1):101–110, 2017.

[117] R. A. Rensink and G. Baldridge. The perception of correlation in
scatterplots. Computer Graphics Forum, 29(3):1203–1210, 2010.

[118] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust you?
explaining the predictions of any classi�er. In Proc. ACM KDD,
2016.

[119] F. C. M. Rodrigues, M. Espadoto, R. H. Jr, and A. Telea. Con-
structing and visualizing high-quality classi�er decision bound-
ary maps. Information, 10(9):280–297, 2019.

[120] F. C. M. Rodrigues, R. Hirata, and A. C. Telea. Image-based visu-
alization of classi�er decision boundaries. In 2018 31st SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI), pages
353–360. IEEE, 2018.

[121] F. C. M. Rodrigues., N. S. T. Hirata., A. A. Abello., L. T. de la Cruz.,
R. M. Lopes., and R. H. Jr.. Evaluation of transfer learning scenar-
ios in plankton image classi�cation. In Proceedings of the 13th
International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications - Volume 5: VISAPP,,
pages 359–366. SciTePress, 2018.

[122] S. T. Roweis and L. L. K. Saul. Nonlinear dimensionality reduction
by locally linear embedding. Science, 290(5500):2323–2326, 2000.

156

bibliography

[123] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), 115(3):211–252,
2015. doi 10.1007/s11263-015-0816-y.

[124] E. P. dos Santos Amorim, E. V. Brazil, J. Daniels, P. Joia, L. G.
Nonato, and M. C. Sousa. ilamp: Exploring high-dimensional
spacing through backward multidimensional projection. In
2012 IEEE Conference on Visual Analytics Science and Technology
(VAST), pages 53–62. IEEE, 2012.

[125] B. Schölkopf, A. Smola, and K. Müller. Kernel principal compo-
nent analysis. In Proc. International Conference on Arti�cial Neu-
ral Networks, pages 583–588. Springer, 1997.

[126] T. Schreck, T. von Landesberger, and S. Bremm. Techniques for
precision-based visual analysis of projected data. Information Vi-
sualization, 9(3):181–193, 2010.

[127] A. Schulz, A. Gisbrecht, and B. Hammer. Using discriminative di-
mensionality reduction to visualize classi�ers. Neural Processing
Letters, 42(1):27–54, 2015.

[128] F. Sebastiani. Machine learning in automated text categorization.
ACM computing surveys (CSUR), 34(1):1–47, 2002.

[129] S. Shalev-Shwartz and S. Ben-David. Understanding machine
learning: From theory to algorithms. Cambridge university press,
2014.

[130] R. Shwartz-Ziv and N. Tishby. Opening the black box of deep neu-
ral networks via information. arXiv:1703.00810v3 [cs.LG], 2017.

[131] R. da Silva, P. Rauber, R. Martins, R. Minghim, and A. Telea.
Attribute-based visual explanation of multidimensional projec-
tions. In Proc. EuroVA, pages 95–102. Eurographics, 2015.

[132] V. de Silva and J. B. Tenenbaum. Global versus local methods
in nonlinear dimensionality reduction. In Proc. NIPS, volume 15,
pages 721–728, 2003.

[133] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershel-
vam, M. Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. Nature, 529(7587):484–489, 2016.

[134] B. W. Silverman. Density Estimation for statistics and data analysis.
Monographs on Statistics and Applied Probability. Champan and
Hall, 1986.

157

http://dx.doi.org/10.1007/s11263-015-0816-y

bibliography

[135] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[136] V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point cloud:
From transductive to semi-supervised learning. In Proceedings
of the 22Nd International Conference on Machine Learning, ICML
’05, pages 824–831, New York, NY, USA, 2005. ACM. isbn 1-59593-
180-5.

[137] M. Sips, B. Neubert, J. P. Lewis, and P. Hanrahan. Selecting good
views of high-dimensional data using class consistency. Com-
puter Graphics Forum, 28(3):831–838, 2009.

[138] D. Smilkov and S. Carter. TensorFlow playground, 2018. https:
//playground.tensorflow.org.

[139] M. Sokolova and G. Lapalme. A systematic analysis of perfor-
mance measures for classi�cation tasks. Information Processing
and Management, 45:427–437, 2009.

[140] C. Sorzano, J. Vargas, and A. Pascual-Montano. A survey
of dimensionality reduction techniques, 2014. arXiv:1403.2877
[stat.ML].

[141] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural net-
works from over�tting. Journal of Machine Learning Research, 15
(56):1929–1958, 2014.

[142] R. Strzodka and A. Telea. Generalized distance transforms and
skeletons in graphics hardware. In Proc. VisSym. IEEE, 2004.

[143] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199, 2013.

[144] C. Szegedy, V. Vanhoucke, S. Io�e, J. Shlens, and Z. Wojna. Re-
thinking the inception architecture for computer vision. In Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, pages 2818–2826, 2016.

[145] A. Telea. Image-based visualization of Voronoi diagrams, 2014.
https://www.cs.rug.nl/svcg/DataVisualizationBook/
Sp3.

[146] A. Telea and O. Ersoy. Image-based edge bundles: Simpli�ed vi-
sualization of large graphs. CGF, 29(3):543–551, 2010.

158

https://playground.tensorflow.org
https://playground.tensorflow.org
https://www.cs.rug.nl/svcg/DataVisualizationBook/Sp3
https://www.cs.rug.nl/svcg/DataVisualizationBook/Sp3

bibliography

[147] A. Telea and L. Voinea. An open framework for CVS repository
querying, analysis and visualization. In Proc. Mining Software
Repositories. ACM, 2006.

[148] A. Telea and J. van Wijk. Visualization of generalized Voronoi
diagrams. In Proc. VisSym. Springer, 2001.

[149] A. C. Telea. Combining extended table lens and treemap tech-
niques for visualizing tabular data. In Proc. EuroVis, pages 120–
127, 2006.

[150] A. C. Telea. Data visualization – Principles and Practice. CRC
Press, 2 edition, 2015.

[151] J. B. Tenenbaum, V. D. Silva, and J. C. Langford. A global geomet-
ric framework for nonlinear dimensionality reduction. Science,
290(5500):2319–2323, 2000.

[152] J. Thomas and K. A. Cook. Illuminating the Path: The Research and
Development Agenda for Visual Analytics. National Visualization
and Analytics Ctr, 2005.

[153] K. M. Ting. Encyclopedia of machine learning. Springer, 2011.

[154] J. W. Tukey and P. A. Tukey. Computer graphics and exploratory
data analysis: An introduction. The Collected Works of John W.
Tukey: Graphics: 1965-1985, 5:419, 1988.

[155] J. J. van Wijk and H. van de Wetering. Cushion treemaps: Visu-
alization of hierarchical information. In Proc. IEEE InfoVis, pages
73–78, Los Alamitos, CA, 1999. IEEE Press.

[156] J. L. Vermeulen, A. Hillebrand, and R. Geraerts. A comparative
study of k?nearest neighbour techniques in crowd simulation.
Computer Animation & Virtual Worlds, 28(3-4), 2017.

[157] E. Vernier, R. Garcia, I. da Silva, J. Comba, and A. Telea. Quanti-
tative evaluation of time-dependent multidimensional projection
techniques. Computer Graphics Forum, 39(20), 2020.

[158] F. Wang and C. Zhang. Label propagation through linear neigh-
borhoods. IEEE Transactions on Knowledge and Data Engineering,
20(1):55–67, Jan 2008. doi 10.1109/TKDE.2007.190672.

[159] J. J. van Wijk and A. Telea. Enridged contour maps. In Proceedings
Visualization, 2001. VIS’01., pages 69–543. IEEE, 2001.

[160] L. Wilkinson, A. Anand, and R. Grossman. High-dimensional vi-
sual analytics: Interactive exploration guided by pairwise views
of point distributions. IEEE TVCG, 12(6):1363–1372, 2006.

159

http://dx.doi.org/10.1109/TKDE.2007.190672

bibliography

[161] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: A Novel Image
Dataset for Benchmarking Machine Learning Algorithms, 2017.
arXiv:1708.07747v2 [cs.LG].

[162] H. Xie, J. Li, and H. Xue. A survey of dimensionality reduction
techniques based on random projection, 2017. arXiv:1706.04371
[cs.LG].

[163] A. Yates, A. Webb, M. Sharpnack, H. Chamberlin, K. Huang, and
R. Machiraju. Visualizing multidimensional data with glyph
SPLOMs. Computer Graphics Forum, 33(3):301–310, 2014.

[164] H. Yin. Nonlinear dimensionality reduction and data visualiza-
tion: A review. Intl. Journal of Automation and Computing, 4(3):
294–303, 2007.

[165] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable
are features in deep neural networks? In Advances in neural in-
formation processing systems, pages 3320–3328, 2014.

[166] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Un-
derstanding neural networks through deep visualization. arXiv
preprint arXiv:1506.06579, 2015.

[167] Z. Zhang and J. Wang. MLLE: Modi�ed locally linear embedding
using multiple weights. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 1593–1600, 2007.

[168] Z. Zhang and H. Zha. Principal manifolds and nonlinear dimen-
sionality reduction via tangent space alignment. SIAM Journal
on Scienti�c Computing, 26(1):313–338, 2004.

[169] X. Zhu and A. Goldberg. Introduction to Semi-Supervised Learn-
ing. Synthesis Lectures on Arti�cial Intelligence and Machine
Learning. Morgan Claypool, 2009.

[170] E. Zihni, V. I. Madai, M. Livne, I. Galinovic, A. A. Khalil, J. B.
Fiebach, and D. Frey. Opening the black box of arti�cial intel-
ligence for clinical decision support: A study predicting stroke
outcome. PloS ONE, 15(4), 2020.

[171] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component
analysis. Journal of Computational and Graphical Statistics, 15(2):
265–286, 2006.

[172] M. van der Zwan, V. Codreanu, and A. Telea. CUBu: Universal
real-time bundling for large graphs. IEEE TVCG, 22(12):2550–
2563, 2016.

160

C U R R I C U L U M V I TA E

Francisco Caio Maia Rodrigues was born on the 4th of May of 1989 in
Fortaleza, Brazil. In 2011 he received his bachelor degree in Computer
Science from Federal University of Ceará. He received his master degree
in Computer Science from the same university, under the supervision of
Professor J. B. Cavalcante Neto. From 2016 to 2020 he was PhD student
in a double degree programme between University of São Paulo and
University of Groningen, under the supervision of Professor R. Hirata
Jr. and Professor A. C. Telea, which resulted in this thesis.

161

A C K N O W L E D G M E N T S

I would �rst like to thank my supervisors, Professor Alexandru Telea
and Professor Roberto Hirata Jr., for providing guidance and feedback
during the whole PhD proccess.

I would like to acknowledge the members of the assessement com-
mitte for reviewing this manuscript, and I sincerely hope that they could
found it useful for their own research interests, or at least enjoyed read-
ing about a di�erent subject.

I would also like to thank my friends and colleagues, both in Brazil
and in the Netherlands, for the stimulating conversations, amazing ex-
periences we shared and for enduring my companionship.

In addition, I would like to thank my family for all the support.

I would like to thank CAPES (Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior – Brasil – Finance Code 001) for the �nancial
support.

163

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired by
Robert Bringhurst’s seminal book on typography “The Elements of Ty-
pographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Final Version as of August 24, 2020 (classicthesis).

http://code.google.com/p/classicthesis/

	Abstract
	Samenvatting
	Resumo
	Publications
	Contents
	1 Introduction
	1.1 Classifier design in machine learning
	1.2 Decision Zones and Decision Boundaries
	1.3 Visualizing Decision Boundaries
	1.4 Research Questions
	1.5 Thesis Structure

	2 Related Work
	2.1 Machine Learning
	2.1.1 Logistic Regression
	2.1.2 Support Vector Machines
	2.1.3 k-Nearest Neighbors
	2.1.4 Random Forests
	2.1.5 Neural Networks

	2.2 Visual Analytics for Machine Learning
	2.2.1 High-Dimensional Data Visualization
	2.2.2 Dimensionality Reduction
	2.2.2.1 LAMP: Local Affine Multidimensional Projection
	2.2.2.2 t-SNE: t-Distributed Stochastic Neighbor Embedding
	2.2.2.3 UMAP: Uniform Manifold Approximation and Projection

	2.2.3 Inverse Projection Techniques
	2.2.3.1 Inverse LAMP
	2.2.3.2 RBF based Inverse

	2.2.4 Visual analytics techniques for classifier engineering
	2.2.4.1 Class-centric techniques
	2.2.4.2 Observation-centric techniques
	2.2.4.3 Architecture-centric techniques

	2.2.5 Conclusions

	3 Deep feature extraction evaluation
	3.1 Introduction
	3.2 Problem Context
	3.3 Deep Feature Extraction
	3.4 Experiment Setup
	3.5 Datasets and Networks
	3.5.0.1 Kaggle's National Data Science Bowl
	3.5.0.2 ImageNet

	3.5.1 CNN models
	3.5.1.1 AlexNet
	3.5.1.2 Deep Sea's Model

	3.5.2 Feature extraction
	3.5.2.1 Deep features
	3.5.2.2 Shape Features

	3.6 Classifier Evaluation
	3.7 Discussion and conclusion

	4 Constructing Decision Boundary Maps
	4.1 Dense maps
	4.2 Decision Boundary Map Construction
	4.2.1 Parameter setting
	4.2.2 Implementation details

	4.3 Experimental results
	4.3.1 Segmentation dataset
	4.3.2 MNIST dataset

	4.4 Discussion
	4.5 Conclusion

	5 Evaluating Decision Boundary Maps
	5.1 Preliminaries
	5.2 Experiment Setup
	5.3 Analysis of Evaluation Results
	5.3.1 Phase 1: Picking the Best Projections
	5.3.2 Phase 2: Refined Insights on Complex Data

	5.4 Discussion

	6 Inverse Projections for Decision Boundary Maps
	6.1 Inverse Projection by Neural Networks
	6.2 Experiments and Results
	6.2.1 Scalability in training and inference
	6.2.2 Quantitative Assessment of Quality
	6.2.3 Qualitative Assessment of Quality

	6.3 Discussion and Conclusion

	7 Visual Refinements of Decision Boundary Maps
	7.1 Projection Filtering
	7.2 Distance-enriched Dense Maps
	7.2.1 Image-based Distance Estimation
	7.2.2 Nearest-neighbor Based Distance Estimation
	7.2.3 Adversarial Based Distance Estimation
	7.2.4 Visualizing Boundary Proximities
	7.2.4.1 Enridged Distance Maps

	7.3 Discussion

	8 End to End Evaluation
	8.1 Semi Supervised Learning
	8.2 Visual analytics for semi supervised learning
	8.3 Manual labeling experiments
	8.3.1 Classifiers description
	8.3.2 Datasets description
	8.3.3 Experimental set-up

	8.4 Manual labeling results
	8.4.1 Comparison with automatic labeling

	8.5 Discussion

	9 Conclusion
	9.1 Deep Feature Extraction Evaluation
	9.2 Decision boundary maps
	9.3 Impact of direct projections on DBMs
	9.4 Impact of inverse projection on DBM formation
	9.5 Visual refinements of DBMs
	9.6 End to end application
	9.7 Future work

	Bibliography
	Curriculum Vitae
	Acknowledgments
	Colophon

