
V I S UA L I Z AT I O N O F D Y N A M I C M U L T I D I M E N S I O N A L A N D
H I E R A R C H I C A L D ATA S E T S

eduardo faccin vernier

Cover: Trails generated by the C-UMAP method projecting the carto-
lastd dataset, as seen in Chapter 6.

Visualization of Dynamic Multidimensional and Hierarchical Datasets

Eduardo Faccin Vernier
PhD Thesis

This thesis is the result of a joint PhD between the Federal University
of Rio Grande do Sul and the University of Groningen.

Visualization of Dynamic Multidimensional and
Hierarchical Datasets

PhD thesis

to obtain the degree of PhD at the
University of Groningen
on the authority of the

Rector Magni�cus Prof. C. Wijmenga
and in accordance with

the decision by the College of Deans, and
to obtain the degree of PhD at the
University of Rio Grande do Sul

on the authority of
Rector Magni�cus Prof. C. Bulhões Mendes.

Double PhD Degree

This thesis will be defended in public on

Tuesday 25 January 2022 at 12:45 hours

by

Eduardo Faccin Vernier
born on March 30th, 1995

in Porto Alegre, Brazil

Supervisors
Prof. Alexandru C. Telea
Prof. João Luiz Dihl Comba

Assessment committee
Prof. Jiri Kosinka
Prof. Nina S. T. Hirata
Prof. Michael Biehl
Prof. Carla Maria Dal Sasso Freitas

Just about anything looks better from a distance.
— Haruki Murakami

v

A B S T R A C T

When it comes to tools and techniques designed to help understand-
ing complex abstract data, visualization methods play a prominent role.
They enable human operators to leverage their pattern �nding, out-
lier detection, and questioning abilities to visually reason about a given
dataset. Many methods exist that create suitable and useful visual rep-
resentations of static abstract, non-spatial, data. However, for temporal
abstract, non-spatial, datasets, in which the data changes and evolves
through time, far fewer visualization techniques exist.

This thesis focuses on the particular cases of temporal hierarchi-
cal data representation via dynamic treemaps, and temporal high-
dimensional data visualization via dynamic projections. We tackle the
joint question of how to extend projections and treemaps to stably, accu-
rately, and scalably handle temporal multivariate and hierarchical data.
The literature for static visualization techniques is rich and the state-of-
the-art methods have proven to be valuable tools in data analysis. Their
temporal/dynamic counterparts, however, are not as well studied, and,
until recently, there were few hierarchical and high-dimensional meth-
ods that explicitly took into consideration the temporal aspect of the
data. In addition, there are few or no metrics to assess the quality of
these temporal mappings, and even fewer comprehensive benchmarks
to compare these methods.

This thesis addresses the abovementioned shortcomings. For both
dynamic treemaps and dynamic projections, we propose ways to accu-
rately measure temporal stability; we evaluate existing methods consid-
ering the tradeo� between stability and visual quality; and we propose
new methods that strike a better balance between stability and visual
quality than existing state-of-the-art techniques. We demonstrate our
methods with a wide range of real-world data, including an application
of our new dynamic projection methods to support the analysis and
classi�cation of hyperkinetic movement disorder data.

vii

S A M E N VAT T I N G

Visualisatiemethoden spelen een hoofdrol in de context van ge-
reedschap en technieken voor het begrijpen van complexe en ab-
stracte gegevens. Deze methoden stellen gebruikers in staat om hun
patroonherkenning-, uitschieterdetectie-, en vraagstellingsvermogens
te gebruiken om visueel te kunnen redeneren over een gegeven data-
verzameling. Veel methodes bestaan om toepasselijke en nuttige visu-
ele representaties te creëren vanuit statische, niet-ruimtelijke, gegevens.
Voor tijdsafhankelijke, abstracte, en niet-ruimtelijke gegevens, waarin
de data verandert en evolueert over de tijd, veel minder visualisatie-
technieken zijn beschikbaar.

Dit proefschrift behandelt het speci�eke geval van tijdsafhankelijke
hiërarchische data-afbeelding via dynamische treemaps en van tijdsaf-
hankelijke hoogdimensionale datavisualisatie via projecties. We bena-
deren de gezamenlijke vraag van hoe men projecties en treemaps kan
uitbreiden om tijdsafhankelijke en hoogdimensionale gegevens weer te
geven op een stabiele, accurate en schaalbare manier. De literatuur voor
statische visualisatietechnieken is rijk en state-of-the-art methoden heb-
ben zich bewezen als waardevolle instrumenten voor data-analyse. De
varianten van deze methodes voor tijdsafhankelijke (dynamische) data
zijn echter niet goed bestudeerd; tot kort waren er maar weining hiërar-
chische en hoogdimensionale methodes die het tijdsafhankelijke aspect
van de data expliciet beschouwden. Bovendien zijn er weinig of soms
geen metrieken geschikt om de kwaliteit van deze tijdsafhankelijke me-
thoden waar te nemen, en nog minder uitgebreide benchmarks voor het
vergelijken van dergelijke methodes.

Dit proefschrift benadert en beantwoordt de bovengenoemde beper-
kingen. Voor beide dynamische treemaps en projecties presenteren wij
manieren om hun tijdsafhankelijke stabiliteit nauwkeurig te meten; wij
evalueren bestaande methodes in het licht van het balans tussen stabi-
liteit en visuele kwaliteit; en wij presenteren nieuwe methodes die een
beter balans geven tussen stabiliteit en visuele kwaliteit dan bestaande
top-kwaliteit methodes. We illustreren onze methodes met een brede
collectie van reële gegevens en ook een toepassing van onze nieuwe
dynamische projectiemethodes voor de analyse en classi�catie van hy-
perkinetische bewegingsstoornisdata.

viii

R E S U M O

Quando se trata de ferramentas e técnicas projetadas para ajudar na
compreensão dados abstratos complexos, métodos de visualização de-
sempenham um papel proeminente. Eles permitem que os operadores
humanos alavanquem suas habilidades de descoberta de padrões, detec-
ção de valores discrepantes, e questionamento visual para a raciocinar
sobre um determinado conjunto de dados. Existem muitos métodos que
criam representações visuais adequadas e úteis de para dados estáticos,
abstratos, e não-espaciais. No entanto, para dados temporais, abstratos,
e não-espaciais, isto é, dados que mudam e evoluem no tempo, existem
poucas técnicas apropriadas.

Esta tese concentra-se nos casos especí�cos de representação tempo-
ral de dados hierárquicos por meio de treemaps dinâmicos, e visualiza-
ção temporal de dados de alta dimensionalidade via projeções dinâmicas.
Nós abordar a questão conjunta de como estender projeções e treemaps
de forma estável, precisa e escalável para lidar com conjuntos de dados
hierárquico-temporais e multivariado-temporais. Em ambos os casos, a
literatura para técnicas estáticas é rica e os métodos estado da arte pro-
vam ser ferramentas valiosas em análise de dados. Suas contrapartes
temporais/dinâmicas, no entanto, não são tão bem estudadas e, até re-
centemente, existiam poucos métodos hierárquicos e de alta dimensão
que explicitamente levavam em consideração o aspecto temporal dos da-
dos. Além disso, existiam poucas métricas para avaliar a qualidade des-
ses mapeamentos visuais temporais, e ainda menos benchmarks abran-
gentes para comparação esses métodos.

Esta tese aborda as de�ciências acima mencionadas para treemaps di-
nâmicos e projeções dinâmicas. Propomos maneiras de medir com pre-
cisão a estabilidade temporal; avaliamos os métodos existentes, conside-
rando o compromisso entre estabilidade e qualidade visual; e propomos
novos métodos que atinjem um melhor equilíbrio entre estabilidade e
a qualidade visual do que as técnicas estado da arte atuais. Demons-
tramos nossos métodos com uma ampla gama de dados do mundo real,
incluindo uma aplicação de nossos novos métodos de projeção dinâmica
para apoiar a análise e classi�cação dos dados de transtorno de movi-
mentos.

ix

P U B L I C AT I O N S

This thesis is the result of the following publications:

• Quantitative Comparison of Treemap Techniques for Time-
Dependent Hierarchies (poster) (Vernier et al., 2017) 1

• Quantitative Comparison of Dynamic Treemaps for Software
Evolution Visualization (Vernier et al., 2018b) 2

• A Stable Greedy Insertion Treemap Algorithm for Software Evo-
lution Visualization (Vernier et al., 2018a)

• Selecting and Sharing Multidimensional Projection Algo-
rithms (Espadoto et al., 2020a)

• Quantitative Comparison of Time-Dependent Treemaps (Vernier
et al., 2020b)

• Quantitative Evaluation of Time-Dependent Multidimensional
Projection Techniques (Vernier et al., 2020a)

• Guided Stable Dynamic Projections (Vernier et al., 2021)

1 Best Poster Award at Eurovis 2017
2 Distinguished paper award at VISSOFT 2018

xi

C O N T E N T S

1 introduction 1
1.1 Visualizing temporal hierarchical data 3
1.2 Visualizing temporal multidimensional data 5
1.3 Temporal coherence 6
1.4 Objectives and contributions 7
1.5 Organization of the thesis 10

2 treemap evaluation for software evolution
data 13
2.1 Introduction 13
2.2 Background 15

2.2.1 Treemap algorithms 15
2.2.2 Treemap quality metrics 16
2.2.3 Software visualization challenges 17

2.3 Measuring the quality of dynamic treemaps 18
2.3.1 Algorithms 18
2.3.2 Datasets 18
2.3.3 Metrics 21

2.3.3.1 Spatial quality metric 21
2.3.3.2 Stability metrics 21
2.3.3.3 Metric weighting 23

2.4 Result exploration 24
2.4.1 How does visual change relate to data change

(Q1)? 24
2.4.2 How is quality evolving in time (Q2)? 26
2.4.3 How do methods perform on di�erent datasets

(Q3)? 29
2.4.4 How to summarize the comparison

(Q4)? 32
2.5 Discussion 33
2.6 Conclusions 36

3 generalized treemap evaluation 37
3.1 Introduction 38
3.2 Rectangular treemaps 40
3.3 Metrics 42

3.3.1 Visual quality 43
3.3.2 Stability 43

3.4 Data 48
3.4.1 Data features 48
3.4.2 Data classes 49

xiii

contents

3.4.3 Datasets 50
3.5 Experimental results 52

3.5.1 Data classi�cation analysis 55
3.5.2 Performance analysis across features 57
3.5.3 Comparison of data classes 59

3.6 Discussion and conclusion 60

4 improved treemapping for dynamic data 67
4.1 Introduction 67
4.2 Related work 69

4.2.1 Algorithms 69
4.2.2 Metrics 70

4.3 Greedy Insertion Treemap 71
4.4 Evaluation 74

4.4.1 Metrics 74
4.4.2 Techniques 74
4.4.3 Datasets 75

4.5 Results 75
4.5.1 How does GIT’s initialization a�ect its qual-

ity? 75
4.5.2 How do visual quality and stability vary over

time? 77
4.5.3 How do all quality metrics vary over all

datasets? 79
4.5.4 How to summarize GIT’s quality? 79

4.6 Conclusion 83

5 evaluating dynamic projections 85
5.1 Introduction 86
5.2 Related work 87

5.2.1 Preliminaries 87
5.2.2 Techniques for static dimensionality reduc-

tion 88
5.2.3 Evaluations of static dimensionality reduc-

tion 88
5.2.4 Techniques for dynamic dimensionality reduc-

tion 89
5.2.5 Evaluation of dynamic dimensionality reduc-

tion 90
5.3 Experimental setup 90

5.3.1 Techniques 91
5.3.2 Datasets 93
5.3.3 Metrics 95

5.3.3.1 Spatial metrics 95
5.3.3.2 Temporal stability metrics 97

5.4 Evaluation and results 98

xiv

contents

5.4.1 Aggregated results 98
5.4.2 Dataset-wise results 99
5.4.3 Fine-grained analysis 101

5.5 Understanding dynamic projection behavior 102
5.5.1 Analysis of (un)stable behavior 103
5.5.2 Finding similarly behaving techniques 104

5.6 Conclusion 105

6 guided stable dynamic projections 111
6.1 Introduction 111
6.2 Related work 113

6.2.1 Preliminaries 113
6.2.2 Visualization of high-dimensional data 114
6.2.3 Strategies for dynamic projections 114

6.3 Guided methods for dynamic projection 116
6.3.1 Landmark Dynamic t-SNE (LD-tSNE) 117
6.3.2 Principal Component Dynamic t-SNE (PCD-

tSNE) 120
6.4 Evaluation procedure 121

6.4.1 Methods 121
6.4.2 Quality Metrics 122

6.4.2.1 Spatial metrics 122
6.4.2.2 Temporal stability metrics 123

6.4.3 Datasets 123
6.5 Evaluation results 123

6.5.1 Visual comparison of dynamic projec-
tions 124

6.5.2 Overview of quality metrics 126
6.5.3 Stability and spatial quality trade-o� 127
6.5.4 Global vs local in�uence control 129
6.5.5 Using landmarks to steer dynamic projec-

tions 131
6.6 Conclusion 132

7 hyperkinetic movement disorder analysis 135
7.1 Introduction 135
7.2 Related work 137
7.3 Hyperkinectic movement disorders and experiment de-

sign 138
7.4 Visual analysis of collected data 138

7.4.1 Raw data visual inspection 139
7.4.2 Time-frequency data analysis 140
7.4.3 Data normalization 142
7.4.4 Visualizing the data with dynamic projec-

tions 144
7.5 Data exploration 145

xv

contents

7.6 Discussion 150
7.7 Conclusions 154

8 conclusion 157
8.1 Future work 159

a appendix: guided stable dynamic projec-
tions 161
a.1 PCD-tSNE parameters 161
a.2 LD-tSNE parameters 161
a.3 Metric results 161

bibliography 167

acknowledgments 183

xvi

1I N T R O D U C T I O N

As science and technology evolve, a myriad of data collections is pro-
duced. The common denominator of all these data collections is the
same – they are regarded as containing useful and usable informa-
tion from which actionable evidence can be extracted. These drive im-
provements in many directions: increased sales, better customer sup-
port, more accurate assessments of phenomena, or, at a higher level, the
advance of understanding of these phenomena that have created the
data, and, thereby, an increase of knowledge and advancement to sci-
ence. These datasets challenge their consumers in many ways. Several
relevant aspects that induce such challenges include the size of datasets
(the ‘big data’ revolution has made the e�cient processing of terabyte
dataset collections a mandatory requirement for most application ar-
eas); the quality of data (principled statistical analysis and modeling of
phenomena captured by data require accurately measured and collected
datasets); and the provenance of data (one needs to know how the entire
end-to-end pipeline of obtaining a given dataset looks like before being
able to make strong statements concerning insights derived from the
respective data).

Yet, the challenges of understanding data are not limited to the above
issues. A separate, and equally important, one regards the structure of
data itself. By structure, we mean here the relations that connect the
measured data samples, also called observations or data points, so as to
allow scientists to infer high-level considerations about the underlying
phenomena. Data structure regards many aspects, including, but not
limited to, the nature of the data samples (e.g., these can be quantitative,
categorical, text, relational, or multimedia types); the dimensionality of
the samples (how many independent attributes are measured to yield a
single data sample); the temporality of data (are the samples part of a sin-
gle measurement of a phenomenon done at a single moment in time, or
are they spread over a time range); and the organization of the samples
(do the samples create a �at, unstructured, set, or are they organized in
a more re�ned manner, to denote a part-whole relationship).

Among many methods for data analysis, including statistics and ma-
chine learning, visualization has a special place. Data visualization es-
sentially leverages the skills of the human operator in e.g. pattern �nd-
ing, outlier detection, and at a higher level discovering unknown re-
lationships between the data samples and thereby the ability to pose
valuable questions by depicting the measured data via visual representa-
tions. Further on, data visualization can be enhanced by visual analytics,
which leverages the interactive dimension to allow human operators to

1

introduction

view data from various angles, pose questions, and most importantly,
formulate, check, and (in)validate hypotheses that ultimately lead to
understanding the phenomena that have generated the data in the �rst
place.

Data visualization – and by extension, visual analytics – can be
roughly split into two main sub�elds. Scienti�c visualization is tradi-
tionally concerned with the visual exploration of datasets consisting of
samples having a relatively low number of dimensions (measurements).
More importantly, these data points sample continuous phenomena that
cover the evolution of natural systems in the 2D or 3D space that de-
scribes our physical world, e.g., the �ow of �uids, evolution of weather
systems, the observable Universe, or chemical, anatomical, or medical
phenomena embedded in their respective sciences. While far from hav-
ing solved all problems in these �elds, scienti�c visualization can ex-
ploit the 2D or 3D embedding of the measured samples, and, more im-
portantly, exploit the continuous nature of the sampled phenomena, by
using well-understood sampling, aggregation, statistical, and signal re-
construction methodology.
Information visualization aims at leveraging the visual exploration

power for all datasets which do not fall within the scienti�c visualiza-
tion realm, meaning datasets where samples (a) do not reside in physical
2D or 3D space and/or (b) where the sampled dimensions are not neces-
sarily continuous. An enormous realm of datasets, arguably larger than
the scienti�c visualization ones, falls into this class. Examples include
arbitrary data tables in any database or graphs and networks. Major
challenges of information visualization stem precisely from the abstract
nature of the data it needs to depict: Since this data does not (usually)
have a physical counterpart, it is (a) far less clear than for the scienti�c
visualization case how to map this data to suitable visual representa-
tions. On the other hand, by their very de�nitions, visualizations are per-
ceived as continuous phenomena by users looking at them – whether
this regards the spatial distribution of visual shapes drawn or the tem-
poral dynamics of how visualizations change over time as the depicted
data changes. Since abstract data does not have an inherent continuity,
the fundamental question arises on how to map non-continuous data to
continuous visual representations for a good interpretation. Additional
issues concerning big data, such as aggregation and sampling, only com-
plicate the picture.

In this thesis, we attack a part of the above problem by focusing on
abstract data that has three speci�c aspects:

• Hierarchical: We consider data that can be organized into a hi-
erarchy. Examples include �les and folders stored on a hard disk,
organigrams of people in an organization, or, more generally, any
data that allows successive grouping and binning via multiple cri-
teria;

2

1.1 visualizing temporal hierarchical data

• High-dimensional: We consider data whose samples consist of a
large number (tens or more) of independently measured variables,
such as patient records, images treated by deep learning, or any
data table having a large number of data columns;

• Time-dependent: We consider data that changes over time, also
called temporal or dynamic data. Here, the samples of a dataset
consist of both measurements taken at the same time instant and
measurements taken at di�erent, consecutive, time instants.

In isolation, information visualization provides many methods to de-
pict data which is hierarchical, high-dimensional, or temporal. How-
ever, the combination of at least two of the above three data aspects
immediately makes the visualization problem far harder to address.
In particular, we are interested in exploring how to visualize abstract
datasets which are hierarchical and time-dependent, respectively high-
dimensional and time-dependent. We outline the two separate challenges
– visualizing abstract data which is hierarchical and temporal, respec-
tively high-dimensional and temporal in Secs. 1.1 and 1.2 next.

1.1 visualizing temporal hierarchical data

Hierarchical datasets are trees, or hierarchies, with weighted nodes.
Typically, weights are given for leaf nodes and computed for non-leaf
nodes as the sum of their children’s weights. One example of a hierarchi-
cal dataset is a computer’s �le system – the “shape of the tree” is given
by the organization of the directories, and the weight of the leaf nodes
can be de�ned as a �le attribute such as size. Many other examples exist.
As already hinted at earlier in this chapter, virtually any tabular dataset
can be reduced to such a hierarchy, by grouping rows (samples) succes-
sively on multiple criteria, each of them based on the similarity of the
rows according to a given table column. Hence, any tabular dataset can
lead to multiple hierarchies. Apart from that, inherently hierarchical
datasets do exist, such as the �le system example mentioned earlier.

The temporal aspect is introduced when data changes over time.
Building upon the �le system example, if we collect “snapshots”, as in
a Git repository or periodic backups of a hard drive, our data would be
an evolving tree – its organization (hierarchy) changes as we create and
delete folders and �les, and the weight of the leaf nodes change as �les
are edited.

There is a range of visual encodings suitable/designed for displaying
hierarchical data, including node-link diagrams, icicle plots, sunburst
plots, and, the focus of our research, treemaps. Given an input weighted
tree, treemaps recursively partition a 2D spatial region into cells whose
area (and possibly color, shading, and labels) encode the tree’s data at-
tributes. Treemaps have several major advantages compared to other
visualizations of hierarchical data: They are visually compact – every

3

introduction

single screen pixel is used to convey data, which favors them for visu-
alizing large hierarchies; and they are simple to understand.

Connecting back to our initial example, the �rst treemaping algo-
rithm (Shneiderman, 1992) was, in fact, designed for the purpose of dis-
playing the contents and use of a �le system by Ben Shneiderman:

“During 1990, in response to the common problem of a �lled
hard disk, I became obsessed with the idea of producing a
compact visualization of directory tree structures. Since the
80 Megabyte hard disk in the HCIL was shared by 14 users
it was di�cult to determine how and where space was used.
Finding large �les that could be deleted, or even determining
which users consumed the largest shares of disk space were
di�cult tasks”.

Compared to other hierarchical visualization methods, treemaps
scale well, making use of all available screen pixels to show data and
thus able to handle trees of thousands of nodes. As Shneiderman real-
ized when trying to reason and make decisions about the use of space in
his lab’s hard drives: “Tree structured node-link diagrams grew too large
to be useful, so I explored ways to show a tree in a space-constrained lay-
out.”

Over the years, a range of di�erent treemapping techniques was pro-
posed, each designed to optimize di�erent goals such as cell aspect ratio
of cells (tied to readability), order preservation, similarity-based place-
ment, and portrayal of uncertainty. The most common form of treemaps
are rectangular treemaps, but a range of alternative models exist, such
as Voronoi treemaps (Balzer and Deussen, 2005; Balzer et al., 2005), or-
thoconvex (Berg et al., 2014), Bubble (Görtler et al., 2018), and Jigsaw
treemaps (Wattenberg, 2005).

Yet, not much work has been done regarding dynamic treemaps,
that is, treemap methods designed to portray temporal hierarchical
datasets ensuring that temporal coherence is kept. In other words:
While treemaps work well for depicting any (large) hierarchical dataset,
when one adds the requirement that the data is changing, we do not
know whether, and how, to use or adapt treemaps to display such data.
As hinted at the beginning of this chapter, a major issue here is the con-
tinuity aspect: As data changes, so will treemaps that depict it. However,
how to ensure that what a user sees in terms of visualization changes
(in the treemaps) faithfully conveys the change in the underlying data?
This is a major requirement for using treemaps for dynamic data. In-
deed: If a dataset changed a lot, but the corresponding dynamic treemap
visualization would not, then the user would get the false feeling that
the data is not changing when it actually does. Conversely, if a dataset
changed little over time, but the corresponding dynamic treemap visu-
alization exhibited major changes between its di�erent snapshots (cor-
responding to di�erent measurement moments of the hierarchical data),

4

1.2 visualizing temporal multidimensional data

the user would get the false feeling that data is changing a lot when it
actually does not. In both above examples, we would have clear cases
of false negatives, respectively false positives (related to interpreting
change in the visualization), which are both detrimental for the added
value of a visualization. While the above problems are known and rec-
ognized, there are no clear solutions to designing treemap algorithms to
address them for dynamic data. This is our �rst key research question
(detailed next in this chapter).

1.2 visualizing temporal multidimensional data

Multidimensional (or high-dimensional) datasets have a number of ob-
servations (also called points or samples) where each observation has
many attributes, also called variables, dimensions, or measurements.
For datasets with relatively small numbers of observations and dimen-
sions, techniques such as glyphs, parallel coordinate plots, table lenses,
and scatterplot matrices can produce accurate and useful visual encod-
ings. If a dataset has a large number of dimensions, roughly more than 4
to 5, however, multidimensional projections tend to be the only scalable
approach.

Multidimensional projections take data in a high-dimensional space
and project it into a lower-dimensional space, usually creating a 2D
or 3D scatter plot, which we can directly visualize and reason about.
In this transformation, the projection method attempts to create vi-
sual patterns that re�ect the similarities or structure found in the high-
dimensional space. That is, points which are similar – according to any
suitable similarity metric – in the high-dimensional space are placed
close in the 2D or 3D projection, and conversely.

Re�ecting the similarities or structure found in the high-dimensional
space can be interpreted in many ways, and the search for the “best”
projection method has led to the proposal of a huge number of pro-
jection techniques. There are many desirable traits projection methods
can have, such as creating high distance or neighborhood preservation
maps, scalability, simplicity, interpretability, out-of-sample capability,
stability, and ease of use, among others. Optimizing a single one of these
traits is already a challenging task that requires tradeo�s regarding the
remaining traits. No single current method optimally satis�es all desir-
able requirements.

The trait that concerns us most in this thesis is stability. Stability, or
temporal coherence, needs to be taken into account when we project
temporal multidimensional data, that is, when the multidimensional
data changes over time and, as illustrated in the previous section, we
have multiple snapshots of the data. Most projection techniques are de-
signed for static data. When used for time-dependent data, they usually
fail to create a stable and suitable low-dimensional representation. To
follow the analogy with the dynamic treemaps discussed in Sec. 1.1: If

5

introduction

we have a high-dimensional and temporal dataset, current projection
methods usually create a visualization in which the observed points ei-
ther do not change much while their corresponding high-dimensional
counterparts change a lot; or they do change a lot whereas the high-
dimensional data points only change little. Globally, the problem with
projections is the same as that of treemaps – they can produce false neg-
atives and/or false positives which impair the ability of the user to judge
about the data dynamics from seeing the visualization of the projected
data.

1.3 temporal coherence

Treemaps and projections are incredibly useful techniques that, due to
their compact and easy to interpret design, give unique insights into
large and complicated datasets. As mentioned so far, they were initially
designed for static datasets. However, given the presence of dynamic
datasets, the natural question arises on how to adapt them to handle
such data, while avoiding the already discussed false-negative and false-
positive problems.

To illustrate the dynamic projections’ instability, Fig. 1.1 shows
three di�erent methods (G-PCA, TF-PCA (Jolli�e, 1986), and TF-
tSNE (van der Maaten and Hinton, 2008)) projecting the same dataset,
using a trail-like visual encoding. The gaussians dataset is a 100-
dimensional dataset of 2000 samples covering 10 distinct isotropic Gaus-
sian distributions that collapse into 10 single points over 10 timesteps.
Knowing the dataset, we can tell that G-PCA renders quite faithfully the
data dynamics and structure; TF-PCA creates an arti�cial amount of spi-
raling; and TF-tSNE creates a very large amount of apparently random
and unstable motion that is not present in the data. For the purpose of
the illustration in Fig. 1.1, detailed knowledge of the G-PCA, TF-PCA,
and TF-tSNE projection methods is not needed. The point being made is
that di�erent projection methods show widely di�erent visual insights
in the same dataset. As such, they clearly cannot be all right – raising
the question of which method is the best and, subsequently, how to de-
�ne what a good method is in this context.

The same e�ect occurs when we create treemaps for time-dependent
datasets. The top row of Fig. 1.2 shows three snapshots/timesteps of
the evolution of a simple weighted tree. The next two rows show two
di�erent treemapping algorithms creating rectangular treemap repre-
sentations for the data (NMap and Squari�ed Treemap). Nmap creates
a stable layout; that is, there are no signi�cant changes in the positions
of the cells driven by the small changes in the data, and the adjacencies
in the layout remain the same over the evolution. In contrast, in the
Squari�ed Treemap layout, cell d (red) keeps changing its relative po-
sition. When dealing with more complicated datasets, this movement
can happen for multiple cells simultaneously, making it impossible to

6

1.4 objectives and contributions

G-PCA

0 9

TF-PCA TF-tSNE

time

C
o

lo
r

c
o

d
e

s
 t

im
e

C
o

lo
r

c
o

d
e

s
 c

la
s
s

class

Figure 1.1: A time-dependent collapsing 100-dimensional 10-Gaussian-
distributions dataset (2000 points) from Rauber et al. (2016) is
visualized by three projection methods. Point trails are colored by
time (top) and class (bottom). The images show increasing amounts
of instability artefacts.

accurately reason about the data and the change in the data. As for the
projection example in Fig. 1.1, the issue is not understanding how NMap
or Squari�ed Treemap work. Rather, the higher-level question is that (at
least) one of these methods is suboptimal, and, as a consequence, how
to measure the quality of a dynamic treemapping method.

To create faithful and useful representation of temporal data, we need
to be able to ensure temporal coherence: Small changes in the data should
result in small changes in the visualization; large changes in the data
should result in large changes in the visualization. All other mappings
of changes in the data to changes in the visualization are arguably bad.
Simply put, we want to guarantee that changes perceived by the viewer
are due to changes in the data alone. However, while this desiderate is –
we argue – clear and evident, there are no treemapping or projection al-
gorithms that comply with it. Even more fundamentally, the very issue
of relating data change to visualization change in these two contexts,
and deciding what is a ‘good’ mapping of the former to the latter, is not
de�ned by theory or metrics to gauge it.

1.4 objectives and contributions

We have argued that treemaps and projections are valuable tools for
making sense of hierarchical and multidimensional data, respectively.
However, when it comes to applying these visual encodings to time-
dependent data, these methods tend to show undesirable traits; and only

7

introduction

Figure 1.2: Layouts generated by NMap (Duarte et al., 2014) and Squari�ed
Treemap (Bruls et al., 2000) for a sample hierarchical dataset of 3
time steps. We see how NMap is more stable, and similar in aspect
ratio, than Squari�ed Treemap.

limited research e�ort has been dedicated to understanding, testing, and
developing methods that preserve temporal coherence. This research
gap leads us to this thesis’ high-level research question, stated next as

How to extend projections and treemaps to stably, accurately, and scalably
handle temporal multivariate and hierarchical data?

To address this question, there are three components that must be sat-
is�ed in either track. We must be able to

A. Develop ways of accurately measuring stability

To evaluate the stability of a dynamic treemap or dynamic projection,
we need to have reliable measurement tools that quantify the relation-
ship between data change and visual change.

8

1.4 objectives and contributions

For treemaps, we developed the Unavoidable Change (Vernier et al.,
2018b) metric, based on the mathematically proven minimum change
that cells would need to undergo to accommodate the data change, and
Baseline Treemaps (Vernier et al., 2020b), a similar method to approxi-
mate the minimum amount of change that any time-dependent treemap
must incur when data changes. We also proposed a set of stability met-
rics for dynamic projections based on the mathematics of visual quality
metrics. Before our work, there were no methods designed to measure
instability that took into consideration data change – they only looked
at visual change, which can be deceiving. As such, we argue that our
work provides a contribution to the fundamentals of using treemaps
for reliably depicting dynamic hierarchical data.

B. Evaluate methods in the literature considering the tradeo� between sta-
bility and visual quality

As already hinted, tens of methods for constructing treemaps and pro-
jections exist. However, and as also already hinted, few if none of these
methods were gauged from the perspective of stability – one reason be-
ing the lack of a measure for stability. Having developed such a measure,
as mentioned above at point (A), we next use it to produce comprehen-
sive evaluations for dynamic treemaps and projections from the stabil-
ity perspective. Our contributions in this direction entail work along
the following axes:

• Metrics: We proposed and implemented a novel set of metrics that
reliably measures visual quality and stability.

• Datasets: Since there was no previous extensive evaluation or
benchmark designed for testing dynamic treemaps or projec-
tions, we collected and/or generated a comprehensive collection
of datasets that drove our evaluations.

• Methods: Collection, implementation, and proposal of several dy-
namic treemap and projection algorithms. Most of the work on
the topic up until our work was conjectural and not quantitatively
tested. Simply put, there was no central collection of algorithms
that one could use to compare and gauge the performance of dy-
namic treemaps and dynamic projections. We claim that work
solved a large part of this challenge.

• Analysis: We combined the previous axes into comprehensive in-
sights into dynamic projections and treemaps. Simply put, we
generated quantitative and qualitative evidence showing how ex-
isting dynamic projection and treemap algorithms compare to
each other, allowing both researchers and practitioners to choose
which subset of algorithms are best suited to extend next, respec-
tively directly use in practice.

9

introduction

C. Design state-of-the-art methods that strike a good balance between sta-
bility and visual quality

Once the tools necessary to test and compare dynamic treemaps and
projections were in place, we were able to leverage the gained insights
to produce state-of-the-art algorithms that strike a better balance be-
tween stability and visual quality.

Speci�cally, we have developed Greedy Insertion Treemap (GIT)
(Vernier et al., 2018a), a stable and scalable state-aware method for dis-
playing dynamic treemaps. Compared to all treemapping algorithms
that we were aware of at the time of GIT’s development, we showed
that GIT provides a better tradeo� between spatial quality and stability,
therefore surpassing its competitors. Moreover, GIT is simple to imple-
ment, generic, and computationally scalable.

Regarding projections, we proposed PCD-tSNE and LD-tSNE (Vernier
et al., 2021), two neighborhood-based projection methods that use
global guides to steer the projected points. This avoids unstable move-
ment that does not encode data dynamics while keeping, at the same
time, the highly praised visual quality of the t-Stochastic Neighbor-
hood Embedding (t-SNE) projection method (van der Maaten and Hin-
ton, 2008), arguably the best known high-quality projection method
used nowadays for high-dimensional data. As for GIT, PCD-tSNE and
LD-tSNE are generic methods, with good computational scalability.

Lastly, it is important to mention that all aspects of our research are
open. All the code and data is organized and available online to facilitate
further research on dynamic treemaps and projections. This directly
supports our answering of the earlier mentioned research questions –
which, besides theory, require materials such as data and software for
interested researchers and practitioners to replicate, extend, and ulti-
mately use our contributions.

1.5 organization of the thesis

This thesis is structured in two main tracks. The �rst track covers dy-
namic treemaps, the challenges related to evaluating such techniques,
and the proposal of a new stable algorithm. The second track follows
the same organization, with an evaluation of dynamic projection tech-
niques, the introduction of new stable methods, and, �nally, an applica-
tion chapter.

Chapter 2 is an evaluation of treemap methods in the context of dy-
namic trees extracted from Open Source software repository. In this ini-
tial contribution, we propose new ways of e�ectively quantifying the re-
lationship between data change and visual change. The metrics and con-
cepts presented in this chapter are the base that the whole treemap track
is built upon. For this evaluation, instead of using general tree datasets

10

1.5 organization of the thesis

and having to handle the challenges of data from di�erent sources with
a wide range of attributes and traits, for the sake of simplicity, we chose
the smaller scope of software evolution datasets.

In Chapter 3, we build upon the foundations of Chapter 2, and
present a large scale evaluation of generalized dynamic treemaps. We
expand the study in terms of techniques, metrics, and, most importantly,
datasets. We use more than 2000 datasets from a wide range of domains,
which are next classi�ed according to our novel classi�cation scheme
for time-dependent data. This allows us to have a �ner understanding
of method behavior and how performance relates to the data traits and
dynamics.

In Chapter 4, we conclude the treemap track of this thesis introducing
Greedy Insertion Treemaps, a novel (stateful) method that jointly opti-
mizes spatial quality and stability. Note that GIT was proposed before
the publication of Chapter 3, so, even though in this chapter we only
benchmark GIT on software repository datasets, its results for general-
ized temporal tree data are also available in Chapter 3, which supports
its status as a state-of-the-art dynamic treemapping method.

Chapter 5 starts the projection track of the thesis. Following the
approach of Chapters 2 and 3, we present an extensive evaluation
of dynamic projection algorithms. For such an evaluation, we collect,
implement, and modify a set of projection methods, we gather time-
dependent multidimensional datasets, and we introduce new suitable
ways to de�ne and quantify the stability of dynamic projection meth-
ods.

Given that the results of Chapter 5 reveal no “best” method for both
visual quality and stability, in Chapter 6 we propose two new algorithms
that strive to strike a better balance between the aforementioned met-
rics, making them better suited methods for dynamic projections. We
propose PCD-tSNE and LD-tSNE, which use global guides to steer pro-
jection points in an attempt to avoid unstable movement while keeping
t-SNE’s neighborhood preservation ability.

In Chapter 7, we present a real-world application for the dynamic
projection methods introduced in Chapters 5 and 6 in the context of
hyperkinetic movement disorder analysis. These disorders manifest as
abnormal involuntary movements that highly a�ect the quality of life
of the people who su�er from them, and computer supported diagnosis
is desired given the complexity of their manifestation.

Finally, Chapter 8 summarizes the work conducted in this thesis, dis-
cusses the strengths and weaknesses of our proposed approaches, and
suggests directions for future work.

11

2T R E E M A P E VA L UAT I O N F O R S O F T WA R E
E V O L U T I O N D ATA

As outlined in Chapter 1, one of our two research questions concerns
how to extend treemapping algorithms to handle time-dependent hierar-
chical data. To do this, we need �rst and foremost to understand how exist-
ing treemapping algorithms fare when displaying dynamic data. In more
detail, we also need to know how to quantitatively compare such algo-
rithms. In this chapter, we address the above two questions by a �rst eval-
uation. For this, we consider a smaller scope in terms of datasets, focusing
on dynamic hierarchies coming from evolving software repositories. Using
this limited scope of datasets, and beyond evaluating existing treemapping
algorithms, we introduce a stability metric for gauging the performance of
such algorithms in the presence of time-dependent data, that quanti�es the
relationship between data change and change in the data’s visualization
using treemaps. We next extend this approach in Chapter 3 to reliably and
fairly test treemapping algorithms on generalized data, i.e., a large num-
ber of datasets from di�erent sources, displaying a variety of traits and
dynamics, beyond dynamic hierarchies coming from software evolution.

Abstract: Dynamic treemaps are one of the methods of choice for dis-
playing large hierarchies that change over time, such as those encoding
the structure of evolving software systems. While quality criteria (and
algorithms that optimize for them) are known for static trees, far less
has been studied for treemapping dynamic trees. We address this gap
by proposing a methodology and associated quality metrics to measure
the quality of dynamic treemaps for the speci�c use-case and context
of software evolution visualization. We apply our methodology on a
benchmark containing a wide range of real-world software repositories
and 12 well-known treemap algorithms. Based on our �ndings, we dis-
cuss the observed advantages and limitations of various treemapping al-
gorithms for visualizing software structure evolution, and propose ways
for users to choose the most suitable treemap algorithm based on the
targeted criteria of interest.

2.1 introduction

Hierarchies play a central role in understanding large software systems.
Such systems evolve over hundreds of revisions or more, and can have

This chapter is based on the paper “Quantitative Comparison of Dynamic Treemaps for
Software Evolution Visualization” (Vernier et al., 2018b)

13

treemap evaluation for software evolution data

thousands of elements or more, which are typically organized hierar-
chically (e.g. in folders, �les, classes, and methods). Hence, tools for vi-
sually understanding evolving hierarchies are a key component in the
program comprehension arsenal. Treemaps are a well known method
for visualizing hierarchical data. Given an input tree whose leafs have
several attributes, treemaps recursively partition a 2D spatial region
into cells whose area, color, shading, or labels encode the tree’s data
attributes. Compared to other methods such as node-link (Harel and Ko-
ren, 2002; Frick et al., 1995) or Sunburst (Clark, 2006; Telea et al., 2009)
techniques, treemaps use all available screen pixels to show data and
thus can handle trees of tens of thousands of nodes.
Dynamic treemaps leverage the above advantages to show dynamic,

or evolving, trees. Given a tree sequence, they create an animated se-
quence of treemap layouts that re�ect how the structure and attributes
of the trees in the sequence change in time. Evolving treemaps have
been created both by using classical static treemap algorithms (Schulz,
2011) or by specialized algorithms (Sondag et al., 2017; van Hees and
Hage, 2017; Hahn et al., 2014).

Evolving treemaps have received great interest in software visualiza-
tion (Diehl, 2007; van Hees and Hage, 2017; Hahn et al., 2014; Fisher
and Sud, 2010; Gotz, 2011). As many treemap techniques exist, the ques-
tion emerged of how to measure their quality. For common rectangular
treemaps, which map tree nodes to rectangles, visual quality is typically
measured by the aspect ratio of these rectangles. However, the aspect
ratio may not capture all desirable qualities of such treemaps. For ex-
ample, bad aspect-ratio cells of a tiny area could in�uence the overall
visual quality far less than large bad aspect-ratio cells. Atop visual qual-
ity, evolving treemaps are assessed by measuring their rate of visual
change. However, this metric may not capture all desirable properties:
Large visual changes in a treemap are expected (and actually desirable)
when the underlying tree changes drastically, but undesired when the
tree changes only slightly.

Although treemaps are used for over two decades in software visual-
ization (Shneiderman, 1992; Schulz et al., 2011; Schulz, 2011; von Landes-
berger et al., 2011), there are few comprehensive evaluations of the qual-
ity of dynamic treemap techniques and, to our knowledge, none that
focuses on trees capturing software evolution. The aim of this chapter
is to �ll this gap. For this, we �rst review the related work in (dynamic)
treemaps and their quality measurement, with a focus on software vi-
sualization (Sec. 2.2). We next re�ne desirable treemap properties into
5 quality metrics that capture both spatial quality and dynamic qual-
ity (Sec. 2.3). We measure these metrics on 12 well-known treemap al-
gorithms on 28 tree sequences, ranging from a few hundred to tens of
thousands of elements, all extracted from software repositories. We next
visualize and analyze our results to address questions that practitioners
would like to answer to choose a suitable technique (Sec. 2.4). We dis-

14

2.2 background

cuss our �ndings and proposed methodology in Sec. 2.5. Our results
(datasets, metrics, treemap implementations, evaluation results, and vi-
sualizations thereof) are publicly accessible for researchers in the soft-
ware visualization �eld interested in evaluating treemap methods for
evolving software hierarchies.

2.2 background

Hierarchies are arguably the central element in most software visu-
alizations. They capture the physical (e.g. �les and folders) or logical
software (e.g. syntax tree) system structure, together with static or dy-
namic attributes, e.g., code size, quality metrics (Lanza and Marinescu,
2006), change requests, or testing results (Diehl, 2007). Both static and
dynamic hierarchies in program comprehension are typically extracted
by mining software repositories (Lanza and Ducasse, 2003; Kagdi et al.,
2003). When small (a few hundred nodes), such trees can be visualized
using classical node-link layouts such as in class or architecture dia-
grams (Müller and Klashinsky, 1988; Lanza and Ducasse, 2003; Telea
et al., 2002). This works well for architecture-level views on a software
system. However, code-level views, which contain nodes from subsys-
tems all the way to classes and methods, generate large trees, having
hundreds of thousands of nodes (Telea et al., 2009). These require space-
�lling methods, such as icicle plots (Holten, 2006; Cornelissen et al.,
2007) or, the method of choice, treemaps. The latter are discussed be-
low.

2.2.1 Treemap algorithms

Let) = {=8 } be a tree with nodes =8 , and let 08 ∈ R+ be an attribute
de�ned on the tree leaves. For non-leaf nodes =8 , 08 equals the sum of
the attributes of the children of =8 . A rectangular treemap algorithm
)" creates a set of rectangle cells {28 } =)" ()), 28 ⊂ R2 for the
nodes =8 so that the area of 28 equals 08 and children node cells cre-
ate a partition of their parent cell. Several treemap algorithms exist, as
follows (for detailed surveys, see Schulz et al. (2011); Shneiderman and
Plaisant (2017); Schulz (2011); von Landesberger et al. (2011)). Slice and
dice (SND) treemaps pioneered the concept but were found to create
too long-and-thin cells which are hard to grasp (Shneiderman, 1992).
Subsequent algorithms tried to improve this aspect, quanti�ed by the
aspect ratio (AR) of the treemap cells. Squari�ed treemaps (SQR) pro-
pose a slicing heuristic that achieves, in general, very good (close to
one) AR values (Bruls et al., 2000). Nagamochi and Abe re�ned this
idea in an algorithm (APP) that approximates the optimal AR a given
treemap can reach (Nagamochi and Abe, 2007). However, SQR is not
particularly stable – small changes in the input tree can yield large

15

treemap evaluation for software evolution data

changes in the treemap layout. Several algorithms have aimed to im-
prove stability. Ordered treemaps (OT) (Shneiderman and Wattenberg,
2001) and Strip treemaps (STR) (Bederson et al., 2002) lay out cells 28 to
follow a prede�ned order of the nodes =8 . Di�erent algorithms propose
di�erent orderings: Pivot-by-Middle (PBM), Pivot-by-Size (PBZ), and
Pivot-By-Split-Size (PBS) (Shneiderman and Wattenberg, 2001); Eng-
dahl’s Split algorithm (Engdahl, 2005); and laying out cells along a space-
�lling curve, e.g., Spiral (SPI) (Tu and Shen, 2007), and Hilbert (HIL)
and Moore (MOO) fractal curves (Tak and Cockburn, 2013). Spatially-
Ordered Treemaps (SOT) (Wood and Dykes, 2008) extend SQR by or-
dering sibling nodes so that the most similar ones are processed in turn.
NMap (Duarte et al., 2014) uses a related idea; cells are placed according
to the similarity of their attributes, using a dimensionality-reduction ap-
proach. Two versions exist: NMap Alternate Cuts (NAC) alternate hor-
izontal and vertical cuts to subdivide the space (akin to SND), while
NMap Equal Weights (NEW) splits the space to create similar-size cells.
However, NMap was only applied to single-level trees. Recently, Sondag
et al. proposed stable treemaps (Sondag et al., 2017), which aim to im-
prove both the AR and stability for dynamic treemaps by using non-
sliceable layouts.

Other cell shapes can be used besides rectangles. Voronoi
treemaps (Balzer and Deussen, 2005; Balzer et al., 2005) exploit
the properties of weighted Voronoi diagrams to create organic-looking
visualizations where cells are convex polygons with, in general, good
AR values. Voronoi methods have also been used, with good results,
to construct dynamic treemaps for visualizing software structure
evolution (van Hees and Hage, 2017; Gotz, 2011). Hybrid treemaps
(HTM) (Hahn and Döllner, 2017) combine various basic treemap
techniques to generate the �nal layout. Other variants include jigsaw
treemaps (Wattenberg, 2005), orthoconvex treemaps (Berg et al., 2014),
and bubble treemaps (Görtler et al., 2018).

2.2.2 Treemap quality metrics

In practice, the quality of treemaps is measured using two types of met-
rics, as follows.
Spatial quality metrics capture how easy one can read the information
shown in a static treemap. Such metrics include the aspect ratio (AR)
of the treemap cells, which ideally should equal one. For ordered
treemaps, the readability metric measures how often one switches
visual scanning direction while reading the treemap in order (Bederson
et al., 2002); and the continuity metric measures how often cells for
neighbor nodes (following the given node order) are not neighbors in
the treemap layout (Tu and Shen, 2007).

16

2.2 background

Stability metrics capture how easy one can follow the changes in a
dynamic treemap. Given two treemaps for two (typically consecutive)
time-moments C8 and C 9 , Shneiderman and Wattenberg (2001) de�ne sta-
bility as the distance between the vectors (G: (C8), ~: (C8),F: (C8), ℎ: (C8))
and (G: (C 9), ~: (C 9),F: (C 9), ℎ: (C 9)), where G and ~ are the coordinates of
the top-left corner, and F and ℎ, the width, and the height of a cell 2: ,
averaged over all cells in the treemap. Hahn et al. (2014) use for stability
the change of distance between the centroids of 2: (C8) and 2: (C 9), aver-
aged over all cells. Tak and Cockburn (2013) use the same cell-change
metric (top-left corner, width, height) as Shneiderman and Wattenberg
(2001), but aggregate via variance rather than average. They also pro-
pose a drift metric which measures how much a cell moves away from
its average position over a time period. Two recent metrics measure
stability at the level of pairs of cells rather than individual cells. Hahn
et al. (2017) propose the relative direction change, which measures the
angle change of centroids for every pair of cells in a layout. Sondag et al.
(2017) measure the relative position change of each cell with respect to
eight planar zones de�ned by four lines given by the edges of that cell,
averaged over all treemap cells.

2.2.3 Software visualization challenges

Summarizing, considerable e�ort went into designing static treemap
methods and measuring their quality. Less e�ort went to evaluating
dynamic treemaps. We identify limitations in several directions, with a
focus on our use-case of visualizing large evolving software hierarchies:

Algorithms: Treemap papers typically compare a few (2–5) algorithms
from the much larger set of available ones. In particular, it is not clear
how most existing static treemap algorithms perform on the types of
dynamic trees extracted from software evolution analyses.

Datasets: Existing methods are typically evaluated on one or a few
datasets. While in this chapter, we cannot (and do not aim to) cover
the full space of all possible trees, we can do better than existing work:
For our speci�c context of software visualization, we aim to know how
treemap methods perform on a representative collection of software
hierarchies capturing software evolution.

Metrics: As outlined in Sec. 2.2.2, stability is currently measured by
looking at how much two treemaps (typically for consecutive time
moments) change with respect to each other. However, when the
underlying tree sequence changes a lot, e.g. by insertions or deletions
of many �les or classes at the same moment during a software
repository’s evolution (an event well-known to take place often in
software evolution), the treemap will change a lot, so its evolution

17

treemap evaluation for software evolution data

will be labeled as unstable. However, it is actually desirable to have a
large visual change in this case, as this correctly shows the presence
of a large data change. We argue that ways to measure stability as a
function of the data change are needed.

Result exploration: Most evaluations consider only aggregated
metrics with one value per technique or per technique-and-dataset. An-
alyzing the actual distribution of metric values over both layout-space
and time can give extra insights into the strengths and weaknesses of
speci�c techniques.

Replicability: Treemap evaluations can be hard to replicate as datasets
and algorithm implementations are not always openly available or not
integrated to make a comparison on di�erent datasets, and along di�er-
ent metrics, easy. Replicability is a growing concern in information visu-
alization but with particular weight in software visualization (Sensalire
et al., 2009; Seriai et al., 2014; Merino et al., 2018).

The remainder of this chapter is dedicated to addressing the above
points.

2.3 measuring the qality of dynamic treemaps

To address the current limitations of dynamic treemap evaluations in
software visualization, we performed an in-depth study covering the
�ve directions in Sec. 2.2.3, as follows.

2.3.1 Algorithms

We consider in our evaluation 12 methods: Approximate (APP),
Hilbert (HIL), Moore (MOO), NMap-Alternate-Cuts (NAC), NMap-
Equal-Weights (NEW), Pivot-by-Middle (PBM), Pivot-by-Size (PBZ),
Pivot-by-Split-Size (PBS), Slice-and-Dice (SND), Spiral (SPI), Squari�ed
(SQR), and Strip (STR) treemaps. For NMap, we use as seed layout the
one computed by SQR (for details, see Duarte et al. (2014)). We do not
consider non-rectangular treemap methods, as their quality is less easy
to compare with rectangular ones, and are also less used in practice.
Also, we do not consider the stable treemaps in (Sondag et al., 2017) as
this method is considerably slower (over one order of magnitude) than
the above-mentioned methods.

2.3.2 Datasets

We evaluate all above treemap methods on a collection of 28 datasets
(Tab. 2.1). All of them consist of trees describing the hierarchy of pub-
lic and well-known GitHub software repositories (folders, �les, classes),

18

2.3 measuring the qality of dynamic treemaps

Table 2.1: Software evolution tree datasets used in the evaluation.

Dataset Revisions Nodes (total) Average depth

animate.css 50 3454 2.87
AudioKit 22 11178 6.95
bdb 62 2658 3.83
beets 106 9844 3.75
brackets 88 120292 12.85
ca�e 44 12969 4.93
calcuta 50 2882 10.76
cpython 321 584821 6.50
earthdata-search 46 18539 6.82
emcee 64 1746 3.62
exo 97 36436 11.88
fsharp 69 22906 7.89
gimp 72 170418 5.19
hospitalrun-frontend 38 16759 5.71
Hystrix 61 15530 13.29
iina 74 6849 4
jenkins 137 277185 11.94
Lea�et 84 13381 4.86
OptiKey 36 9782 6.72
osquery 37 14111 5.75
PhysicsJS 20 2022 4.6
pybuilder 53 5457 7
scikitlearn 88 48468 5.75
shellcheck 53 746 2.39
soundnode-app 35 3196 6.88
spacemacs 51 10201 4.96
standard 29 203 2
uws 122 4093 2.76

Totals: 2132 1458036 5.77

19

treemap evaluation for software evolution data

AudioKit

Hystrix Leaflet

OptiKey PhysicsJS

animate.css bdb beets

brackets caffe calcuta

cpython earth-data-search emcee exo

fsharp gimp hospitalrun-frontend

iina jenkins

osquery pybuilder

scikit-learn shellcheck soundnode spacemacs standard uws

Figure 2.1: Union trees of software evolution tree datasets used in the evalua-
tion. Names correspond to public repositories on GitHub.

20

2.3 measuring the qality of dynamic treemaps

one tree per revision, where leaves (classes) are attributed by their
number of lines of code. The trees and their attributes have been ex-
tracted from the actual repositories by a fully automatic pipeline we
built using libgit2 (Steinhardt, 2018) for repository parsing and Under-
stand (SciTools, 2017) for code analysis. For a more detailed description
of the extraction pipeline, we refer to da Silva et al. (2016). The re-
spective software projects have widely di�erent sizes, tree depths and
structures, durations, numbers of contributors, language (C, C++, Java,
Python), and code type (library, framework, application). This is seen in
the �gures in Tab. 2.1 and also in Fig. 2.1 which shows the union trees
∪8) (C8) for the considered datasets. Hence, we argue that this collec-
tion covers reasonably well the space of tree sequences obtained from
software evolution.

2.3.3 Metrics

LetF: and ℎ: be the width and height of cell 2: ; and (,,�) the width
and height of the screen space we draw the treemap in. With these, we
consider the following metrics.

2.3.3.1 Spatial quality metric

We �rst consider the classical aspect-ratio metric

&�'
:

= min(F: , ℎ:)/max(F: , ℎ:). (2.1)

Introduced in Bruls et al. (2000), this metric has been since then used by
all treemap evaluations to capture spatial quality. As such, we keep it
in our evaluation. It is designed to give high scores for rectangles with
sides of similar length, and low scores otherwise.

2.3.3.2 Stability metrics

Let 2: (C8) and 2: (C 9) be two cells in two consecutive versions) (C8) and
) (C 9 = C8+1) for the same node in a dynamic tree. Typical stability met-
rics (Sec. 2.2.2) only measure the visual change X2: between 2: (C8) and
2: (C 9). We use for X2: the average sum of distances between the four cor-
responding corners of 2: (C8) and 2: (C 9) (Shneiderman and Wattenberg,
2001), normalized by the treemap diagonal

√
, 2 + � 2, so X ∈ [0, 1].

We next de�ne the data change between nodes =: (C8) and =: (C 9) as
X0: = |0: (C8) − 0: (C 9) |, where 0: is the relative weight of =: at time
C8 . If either of =: (C8) or =: (C 9) does not exist, i.e., a node was created
or deleted in versions C8 or C 9 , we set the respective 0: to zero, which
is as if the respective node was depicted by a zero-size cell. We nor-
malize 0: (C8) by the weight sum of all nodes =: present at time C8 , so

21

treemap evaluation for software evolution data

X0: ∈ [0, 1]. With this, we de�ne the stability of a cell 2: in a treemap
in several ways. First, we de�ne stability as

&'�)�$
:

= (1 − X2:)/(1 − X0:). (2.2)

When visual changes are proportional to data changes, since both are
normalized, &'�)�$

:
goes to one. Note that an analogy to Eqn. 2.1, i.e.,

&'�)�$
:

= min(X2: , X0:)/max(X2: , X0:) does not work: Eqn. 2.1 is sym-
metric in width and height. For stability (Eqn. 2.2), we want to assess
visual change as a function of data change, and not conversely.
A second way to de�ne stability is by

&"$�
:

= 1 − |X2: − X0: |. (2.3)

For proportional visual vs data changes, &"$�
:

= 1.

new cell ck(t+1)

of area ak(t+1)

old cell ck(t)

of area ak(t)

y = ak(t+1)/4y

minimal D(x)

w

h

x

y

Figure 2.2: Computation of unavoidable change metric &*#�+
:

.

To compare data and visual changes,&'�)�$
:

and&"$�
:

must be nor-
malized to the same range, therefore we clip &'�)�$

:
to the [0, 1] in-

terval. However, this can introduce normalization biases, e.g. when the
data changes and visual changes have very di�erent ranges. To address
this, we next propose to de�ne stability purely in visual space. For this,
we consider the actual change X2: of a cell vs the unavoidable, i.e. min-
imal, change Δ2: that 2: would need to undergo to accommodate the
data change from 0: (C) to 0: (C +1). If X2: > Δ2: , the algorithm is unsta-
ble; if X2: = Δ2: , it is fully stable. We compute Δ2: as follows (Fig. 2.2).
Let 2: (C) be a cell of width F and height ℎ at time step C . Let 2: (C + 1)
be the version of 2: (C), of area 0: (C + 1), at step C + 1. We �rst note
that X2: is minimal when 2: (C) and 2: (C + 1) have the same center, as
visual change is then caused purely by data change and not by avoid-
able ‘drift’ of the cell corners. Taking a G~ coordinate frame centered in
this common cell center, the top-right corner of 2: (C) is constrained to

22

2.3 measuring the qality of dynamic treemaps

a hyperbola ~ = 0: (C + 1)/4G . Hence the minimal change Δ2: is four
times the minimal distance � from this corner to the hyperbola, i.e.

� (G) =
√
(G −F/2)2 + (0: (C + 1)/4G − ℎ/2)2.

To �nd the minimum of� , we solve 3�2

3G
= 0 for G ≥ 0. This quartic equa-

tion in G has analytic solutions. We obtain G , the width of the optimal
cell 2: (C + 1), and thereby the minimal Δ2: . We de�ne the unavoidable-
motion stability as

&*#�+
:

= 1 − (X2: − Δ2:). (2.4)

Finally, we de�ne stability for a whole tree) as the absolute value of
the Pearson correlation coe�cient

&�$'' =

�������
∑
: (X2: − X2:) (X0: − X0:)√∑

: (X2: − X2:)2
√∑

: (X0: − X0:)2

������� (2.5)

of the signals {X2: } and {X0: } for all cells 2: ∈) , where X2: and X0:
are the signals’ averages, so &�$'' ∈ [0, 1]. If visual and data changes
X2: and X0: are linearly correlated, &�$'' reaches one. &�$'' close to
zero indicates uncorrelated changes, i.e., instability.
Compared to existing treemap stability metrics (Shneiderman and Wat-
tenberg, 2001; Hahn et al., 2014; Tak and Cockburn, 2013; Sondag et al.,
2017), all our above metrics consider the relation of visual change X2: to
data change X0: . This is a fundamental di�erence: A treemap method
)" ()) = {28 } is a function from trees) to cell-sets {28 }, so its stability
should be de�ned akin to Cauchy or Lipschitz continuity, which relate
function-value ({28 }) changes to variable ()) changes rather than mea-
suring function changes only. Indeed: If a function’s output strongly
changes, the function itself is not necessarily unstable; this can happen
when the input variable strongly changes.

2.3.3.3 Metric weighting

As mentioned in Sec. 2.1, very small but bad aspect-ratio cells may not
strongly in�uence the overall perceived spatial quality of a treemap,
since they are barely visible. The same argument could be made for very
small unstable cells vs the overall perceived stability. To model these,
when computing the average value of the metrics &�' , &'�)�$, &"$� ,
and&*#�+ , we weigh the respective per-cell values&�'

:
(and the other

three ones) by the sizes 0: of their cells. We used such weighted met-
rics in all experiments described next in Secs. 2.4.2-2.4.4. However, the
obtained results showed that the aggregated weighted metric values dif-
fer only very slightly from their unweighted versions. As such, in the
following we will only consider the unweighted metric versions.

23

treemap evaluation for software evolution data

2.4 result exploration

We measure the �ve metrics (Eqns. 2.2-2.5) on all 28 test datasets
(Sec. 2.3.2) processed by all 12 treemap methods (Sec. 2.3.1). We record
metrics at the cell level (except &�$'' , recorded at tree level). This
yields a high-dimensional-and-hierarchical dataset, conceptually a ta-
ble with seven columns (5 metrics, algorithm ID, dataset ID, time step)
and as many rows as the number of measured cells in all datasets, all
timesteps. Exploring this data space is a challenge in itself. As noted in
Sec. 2.2.3, current treemap evaluations typically present only a few met-
rics, aggregated to a single (typically average) value per algorithm or per
algorithm-and-dataset. To get more insight, we propose several visual-
izations that present various aspects of the evaluation data to answer
speci�c questions concerning the evaluated algorithms. We proceed in
a bottom-up fashion: We �rst explore the data at the �nest (cell) level-of-
detail (Sec. 2.4.1). This shows subtle di�erences between di�erent meth-
ods (we show all table rows), but cannot show all evaluated metrics (ta-
ble columns). Next, we study the quality as a function of time, for one
given evolution sequence (Sec. 2.4.2). Thirdly, we compare the aggre-
gated 5 metrics for all dataset and algorithm combinations (Sec. 2.4.3).
Finally, we aggregate all results to present a compact comparison of all
algorithms (Sec. 2.4.4).

2.4.1 How does visual change relate to data change (Q1)?

Before actually evaluating stability, we want to study the distribution
of visual changes created by the tested algorithms as function of the
respective data changes for all datasets, all timesteps. For this, we show
a scatterplot per algorithm (Fig. 2.3), where, for all datasets, G maps
X08 (C 9), i.e. data change of all cells 28 from time step C 9 to C 9+1, for all time
steps 9 ; and ~ maps X28 (C 9) (see Sec. 2.3.3.2). A point is thus a cell in a
revision of a dataset. To account for overplotting, we compute density
maps from these scatterplots using kernel density estimation (Parzen,
1962) and color-code the density using a heat colormap. Ideally, the vi-
sual change should be proportional to data change (Sec. 2.3.3.2), so our
scatterplots should be close to a diagonal line. We see that this is not
the case. All plots show an upwards-pointing ‘tail’ close to the origin.
This tells that most cells with small data changes have disproportion-
ately large visual changes, so instability a�ects more the small than the
large cells. Shallower tails indicate more stable methods, e.g. SND. To
get a more summarized insight, we also plot a linear-regression line
(red), characterized by the slope (U) and the ~-intercept (V), and com-
pute the linear correlation coe�cient (A) and standard error (B4) of the
points. Larger A coupled with small B4 values indicate methods which
correlate visual change with data change better, e.g. SND and NAC. We

24

2.4 result exploration

low density high density

Figure 2.3: Correlation of data and visual change per algorithm, all datasets.

25

treemap evaluation for software evolution data

also �nd the worst-correlating methods, SQR and PBS, and see that SQR
is about 7 times worse than SND regarding A .

2.4.2 How is quality evolving in time (Q2)?

Q1 does not show how quality �uctuates over time for a given tree se-
quence. Knowing this is important to assess what one can expect when
using a given treemap algorithm for a sequence of hundreds of revisions
extracted from a repository. To assess this, we show a chart per method,
per dataset, and per metric family (that is, spatial quality &�' and per-
timestep averaged values of the four stability metrics &'�)�$, &"$� ,
and &*#�+). In all charts, G maps time and ~ shows a box plot indicat-
ing median (black), 25-75% range (green), and 5-95% range (gray). Since
we cannot show this chart for all our 28 datasets (nor can we aggre-
gate them in a single chart), we select one representative dataset to de-
pict: cpython. The dataset was extracted from the o�cial Github reposi-
tory hosting the source code of the Python programming language (van
Rossum, 2017). This is our largest dataset with 321 revisions and an av-
erage of over two thousands tree nodes per revision. Results for other
datasets can be found online (The Authors, 2017).

Figure 2.4a shows the evolution of the &�' metric (Eqn. 2.1) for all
tested methods for cpython. We see that APP and PBS deliver overall
quite high and constant-over-time aspect ratios (0.7), so they are the
best methods for spatial quality, with APP being better as it has a nar-
rower &�' spread around a slightly higher median value. SQR scores
higher median values, but has a larger spread – for every revision, it
can score as bad as 0.05 aspect-ratio, while APP does not drop below 0.4
(compare the bottoms of the gray bands in Fig. 2.4 for APP and SQR).
SND shows the worst spatial quality, with a tight spread around a me-
dian &�' below 0.1. The chart also tells us that most methods deliver
consistent spatial quality regardless of the data changes in the 321 revi-
sions (which we found to be large by manually examining the sequence).
The quality decrease shown by SND and (less) by HIL and STR is some-
how surprising, as none of the studied methods uses a ‘history’ of the
tree-sequence in its layout heuristics.

Figure 2.5b shows the evolution of four stability metrics &'�)�$,
&"$� , and &*#�+ , averaged per time-step. Compared to spatial qual-
ity, we see now much more variation between methods and also much
more variation (of the stability) over time. We see that SND is by far the
most stable method, whereas SQR, SPI, and PBM score worst. Long ‘ici-
cle’ like boxplots indicate revisions where much more visual change was
present than ‘warranted’ by the data change. Interestingly, these appear
at the same moments for di�erent algorithms (Fig. 2.5b, red markers
shows one example). For such moments we see large variations across
methods: For SPI, this is the most unstable part of the sequence, both

26

2.4 result exploration

Figure 2.4: Evolution in time of spatial quality for the cpython dataset.

27

treemap evaluation for software evolution data

Figure 2.5: Evolution in time of the averaged four stability metrics for the
cpython dataset.

28

2.4 result exploration

in median and 5-95% range sense, whereas APP �nds earlier sequences
(marked in blue in Fig. 2.5) which are harder to lay out stably.

2.4.3 How do methods perform on di�erent datasets (Q3)?

So far, we presented charts that aggregate over all datasets (Sec. 2.4.1) or
focus on a single dataset, but aggregate all stability metrics (Sec. 2.4.2).
We would like to see how the proposed stability metrics compare to
each other, as we are still in the process of understanding their mea-
surement characteristics. Also, we would like to see how these metrics
vary over several datasets. For these goals, we use a set of table views,
one per quality metric. In each table, columns are datasets and rows
are algorithms. Each cell thus encodes the average value of one quality
metric for one dataset tested by one algorithm. Cells are colored with a
luminance-based colormap, with data values separately normalized per
metric table, so that darkest cells indicate worst cases in all tables (but
with potentially di�erent metric absolute values), and brightest cells in-
dicate best cases in all tables.

Figure 2.6 tells several interesting things. Scanning the �rst table row-
wise, we see that there are no large aspect-ratio quality di�erences be-
tween the tested datasets. This says that most methods (with the no-
table exception of SND) achieve quite good aspect ratios for a wide
dataset variation. Over all datasets, APP is the best method, surpassed
by SQR only for a few datasets. Conversely, we see that SND is the
most stable method with respect to all four considered stability metrics.
Stability-wise, we see that some datasets (hospitalrun-frontend, Lea�et,
and PhysicsJS) consistently score worse than all others for basically all
algorithms. These are also the datasets yielding the worst stabilities,
when PBM, SQR, STR, and SPI methods are used. This indicates that
these methods are quite sensitive in stability on the type of input dataset
so, for obtaining higher stabilities, other methods should be used. At a
higher level, we see that the &'�)�$, &"$� , and &*#�+ stability met-
rics yield very similar plots. This is an interesting �nding, since the met-
rics have quite di�erent formulations (Sec. 2.3), and indicates that the
results can be trusted – the chance of three metrics having such di�erent
expressions yielding so similar values being very small. In contrast, the
&�$'' metric has much lower values, which is explained by the fact it
is much more conservative – a good algorithm would need to yield very
well correlated X0: and X2: values, and we have seen in Sec. 2.4.1 that
this is by far not the case. We conclude that visual vs data change corre-
lation is a too strong quality desiderate for dynamic treemaps handing
large real-world datasets, and advise next to use in practice any of the
&'�)�$, &"$� , and &*#�+ metrics to gauge stability, or, as we have
done in Sec. 2.4.3, their average value.

29

treemap evaluation for software evolution data

A
sp

e
ct

 r
a

ti
o

 Q
A
R

S
ta

b
il

it
y

 Q
R
A
T
IO

S
ta

b
il

it
y

 Q
M
O
D

S
ta

b
il

it
y

 Q
U
N
A
V

S
ta

b
il

it
y

 Q
C
O
R
R

bad good

Figure 2.6: The �ve quality metrics for all tested methods, all datasets.

30

2.4 result exploration

Figure 2.7: Ranking of the 12 methods showing the percentage of times they
scored a certain rank with respect to spatial quality (a) and averaged
stability (b).

31

treemap evaluation for software evolution data

2.4.4 How to summarize the comparison (Q4)?

The visualizations so far (Q1–Q3) have given us several insights: We
have seen that APP, PBS, and SQR are the best methods with respect to
spatial quality, while SND performs poorly for that, but it is the best for
stability; di�erent methods have quite di�erent spreads of quality over a
given tree sequence, some delivering more consistent results than oth-
ers, but for most algorithms do not degrade over time; and several of
the proposed stability metrics are strongly correlated. It is now useful to
summarize our �ndings to present a compact ranking of the tested meth-
ods. For this, we use two stacked bar charts. Each bar maps one method
and is divided into segments. A segment’s length tells the percent of the
total number of versions (of all datasets) for which that method had a
speci�c rank regarding spatial quality (Fig. 2.7a) and averaged stability
metrics (Fig. 2.7b). We color segments by an ordinal colormap to show
these ranks (1 being the best and 12 being the worst). Bars (methods) are
sorted in each chart to put the one with highest average rank, weighted
by the percents of the total number of versions for all obtained ranks,
at the top (Fig. 2.7). From Fig. 2.7, we �rst see that spatial quality and
stability are strongly inversely correlated – methods that score well on
one tend to score poorly on the other. We also see that the top methods
in both charts are very good for most of the tested datasets, i.e., it is
easy to �nd a method that optimizes either spatial quality or stability,
but not both. Interestingly, APP (a less known method) is better in spa-
tial quality, and signi�cantly better in stability, than SQR (arguably the
method of choice for creating good aspect-ratio treemaps), so it should
be preferred to SQR. Similarly, for stability, APP and NEW (two less
known methods) are in the top-four most stable methods, and while
worse than SND (very well known method), they have higher spatial
quality, so they should be preferred to SND.

A disadvantage of the rank charts in Fig. 2.7 is that they do not easily
allow linking spatial quality and stability. To alleviate this, we propose
a �nal visualization which uses a start plot metaphor (Fig. 2.8). The scat-
terplot points (circles, categorically colored) are methods attributed by
their average spatial quality and stability over all datasets, all revisions.
Each method is linked with the 28 tested datasets by same-color lines;
a line’s endpoint has the average spatial quality and stability over all
its revisions for the corresponding method. The plot conveys several
insights: First, methods follow roughly a concave curve (Fig. 2.8, thick
dashed curve), telling the trade-o� between spatial quality and stability.
Variation in average spatial quality is much larger (roughly 45%) than
in average stability (roughly 8%). The fan-out of lines from a method
shows how predictable that method is, and here we see large variation
over methods, with e.g. APP being quite consistent in spatial quality,
while MOO, STR, and SND show large dataset-dependent variations in
both spatial quality and stability (see Fig. 2.8, thin dashed curves). The

32

2.5 discussion

sp
at

ia
l q

ua
lit

y

stability

quality spread of SND

quality spread

of APP

overall relation between
stability-spatial quality

Figure 2.8: Summarized comparison of all methods (colored dots) on all datasets
(colored lines) vs spatial quality and stability.

latter is especially interesting: Even though SND has the highest aver-
age stability, it can also score worse than many other methods on certain
datasets.

To conclude, it is hard to designate an ‘optimal’ method, as this
strongly depends on which of stability and spatial quality users see as
most important for their concrete use-cases, and by how much. Still,
based on all our insights, we believe that APP o�ers a very good com-
promise – very high spatial quality and overall stability similar to most
methods, surpassed only (and not in all cases) by SND.

2.5 discussion

Let us discuss our results in the light of the dimensions of evaluating
treemap algorithms for software evolution visualization (Sec. 2.2.3):

Algorithms: We consider 12 well-known treemap methods, in contrast
to typically 2–3 techniques in current treemap evaluations in software
visualization papers. We argue that this gives valuable insights on the
suitability of such well-known methods for handling evolving software
trees, so it makes the choice of a given method easier for the software
visualization practitioner. For instance, our evaluation can tell the
interested user which are the advantages (or limitations) of a given

33

treemap evaluation for software evolution data

algorithm vs another given algorithm, from the perspectives of spatial
quality or stability.

Datasets: Our treemap benchmark cannot cover all variations of trees
extracted from software evolution use-cases. However, it measures
in total roughly 1.9 · 109 treemap cells for 28 tree sequences up to
321 time-steps (revisions). The size and variability of tree sequences
covered by our study is larger than all existing similar evaluations of
dynamic treemaps in software visualization. However, we admit that
we cannot extrapolate from this evaluation to draw statistically strong
conclusions concerning the quality of a given treemap algorithm for
the entire space of evolving software hierarchies. Doing so would
require (a) a characterization of this space in terms of objective metrics
(e.g., tree size, depth, type of structure, type of changes); (b) a targeted
search of software repositories to extract trees which ‘sample’ well all
these dimensions; (c) an evaluation of our metrics on this benchmark;
and (d) most importantly, �nding possible correlations between the
measured performance of algorithms and the characteristics of the
tree sequences they work on. We acknowledge these limitations, and
outline them as important directions for future work.

Metrics: We measure treemap stability by essentially considering
the �rst derivative of the treemap algorithm function mapping from
tree-node weights to rectangular cell-sets. We detail four variants for
measuring stability this way, and observe that three of them, while
quite di�erent in terms of actual de�nitions, yield very similar results.
We believe this is an important �nding, as it motivates the idea of
de�ning stability by relating visual change to data change. The fourth
stability metric (Pearson correlation) showed however to be of limited
practical use, as typical dynamic treemaps exhibit a too low correlation
of the data and visual changes as compared to other phenomena where
this metric is used. This can also indicate that dynamic treemaps may
exhibit a more complex form of data vs visual change correlation than a
linear one. Concluding, we argue that measuring stability by involving
both visual and data change is desirable, but we acknowledge that
more work is needed to further re�ne the de�nition of the proposed
stability metric, so that it avoids potential normalization biases, and it
also captures in a more demonstrable way what actual users perceive
as ‘unstable’.

Result exploration: We present �ve visualizations of treemap quality
metrics, covering all involved dimensions: cells, revisions, datasets,
metrics, and algorithms. As the dimensionality of this data space is
large, we obviously cannot cover all possible viewpoints. Yet, our
visualizations help �nding novel insights on the behavior of dynamic
treemaps for evolving software hierarchies, and also con�rm earlier

34

2.5 discussion

observations, e.g. the known stability of SND. Our visualizations
can be used to both analyze �ne-grained details (at cell level) and
present aggregated conclusions (at algorithm level). They can help the
practitioner in understanding what is gained, and/or lost, by choosing
a certain treemap algorithm instead of another one.

Replicability: All our results (datasets, treemap and visualization
code, measurements) are available online at (The Authors, 2017). To
our knowledge, this is the �rst benchmark for (dynamic) treemaps for
applications in software evolution understanding. It can serve both
for practitioners interested in choosing an algorithm based on speci�c
quality criteria, but also for researchers aiming to benchmark their
new algorithms, with limited e�ort, against existing ones.

Limitations: There are several points which can be covered better.
First and foremost, as mentioned, we need a more principled sampling
of the space of trees extracted from software evolution to gain more
con�dence in the obtained quality results (or how these would di�er
as a function of the tree sequences’ characteristics). We argue that our
current work, i.e. the automated set-up of the extraction pipeline of
dynamic trees from software repositories, computation of the proposed
quality metrics, and visualizations that aggregate these, forms the
necessary basis for such extensions, which we consider as future work.
Separately, more treemap algorithms could be considered, e.g., Voronoi,
hybrid, or bubble ones. This will require an adaptation of the spatial
quality and stability metrics so they can be used for non-rectangular
cells.

Threats to validity: Similar to software quality, we measure treemap
quality by a number of ‘proxy’ metrics. While we argue for these met-
rics at technical level (see the stability metric vs function continuity dis-
cussion) or, separately, reuse well-known metrics (see the aspect-ratio
metric), we do not have hard evidence that such metrics truly capture
quality as seen by the eyes of the beholder (end user). The advantage of
using such ‘intrinsic’ quality metrics is that they can be computed au-
tomatically, on a large benchmark, and are independent on actual tasks,
users, or use-cases. This allows for direct and objective comparisons,
parallel to what is done on the context of e.g. Graph Drawing (Hachul
and Jünger, 2006; Battista et al., 1997), where metrics such as number
of crossings, angle of crossings, and distribution of edge lengths are
used to rank the quality of graph drawing algorithms. The disadvan-
tage is that we cannot directly infer, from such metrics, how �t to pur-
pose a given treemap technique will be given a speci�c user, use-case,
type of dataset, and task. We argue for our approach as follows: if for
a given user, use-case, and task, one agrees that a good treemap algo-
rithm should have the properties captured by our quality metrics, then

35

treemap evaluation for software evolution data

one can use our evaluation and related artifacts (benchmark, metrics,
visualizations) to �nd the best suitable algorithms.

2.6 conclusions

We have presented an evaluation of treemap algorithms for the visu-
alizaton of dynamic tree sequences extracted from the evolution of
software repositories. For this, we proposed a benchmark formed by
28 datasets extracted from well-known software repositories, �ve met-
rics that aim to capture spatial quality and stability, and 12 known
treemap methods. We also propose six visualizations aimed at interpret-
ing the measurement results from several angles, covered by four types
of questions. All results (datasets, treemap implementations, measure-
ment code, and visualizations) are publicly available and can constitute
the basis of a benchmark for treemap evaluation for visualizing evolv-
ing software hierarchies.

Several directions exist for extending this work. First and foremost,
a �ner-grained analysis of the space of evolving software trees can be
made to elicit correlations between characteristics of the datasets and
measured quality of the tested treemap methods. Secondly, and at a
higher level, it would be useful to extend this type of benchmarking to
other application domains that generate dynamic trees and use treemap
methods to visualize their evolution in time. This second direction of
work will be further explored in the next chapter.

36

3G E N E R A L I Z E D T R E E M A P E VA L UAT I O N

In the previous chapter, we have presented an evaluation of 12 al-
gorithms designed for construction of static treemaps for the visualiza-
tion of dynamic hierarchies. The evaluation has outlined that there is no
ideal treemapping algorithm that optimally balances stability against vi-
sual quality. While these results indicate that better treemapping algo-
rithms could be designed for the visualization of dynamic hierarchies ob-
tained from evolving software systems, an important question is whether
we can extrapolate these �ndings to dynamic hierarchies that emerge
from datasets coming from di�erent domains. Additionally, there are more
treemapping algorithms, and more ways to gauge their quality, than those
which have been considered in the previous chapter. In this chapter, we ex-
tend the evaluation from the previous chapter to cover the above directions.
First and foremost, we consider dynamic hierarchies produced by a wide
range of application domains, and, to address this aspect, we propose a
strategy to comprehensively sample the space of time-dependent hierarchi-
cal datasets. Secondly, we consider additional quality metrics and ways to
compare the performance of the studied algorithms. Finally, we consider a
few recent treemapping algorithms that were not used in the evaluation in
the previous chapter. Taking all these aspects together, the work presented
in this chapter represents the most comprehensive quantitative evaluation
of dynamic treemaps presented in the literature.

Abstract: Rectangular treemaps are often the method of choice to vi-
sualize large hierarchical datasets. Nowadays such datasets are avail-
able over time, hence there is a need for (a) treemaps that can handle
time-dependent data, and (b) corresponding quality criteria that cover
both a treemap’s visual quality and its stability over time. In recent
years a wide variety of (stable) treemapping algorithms has been pro-
posed, with various advantages and limitations. We aim to provide in-
sights to researchers and practitioners to allow them to make an in-
formed choice when selecting a treemapping algorithm for speci�c ap-
plications and data. To this end, we perform an extensive quantitative
evaluation of rectangular treemaps for time-dependent data. As part
of this evaluation we propose a novel classi�cation scheme for time-
dependent datasets. Speci�cally, we observe that the performance of
treemapping algorithms depends on the characteristics of the datasets
used. We identify four potential representative features that character-

This chapter is based on the paper “Quantitative Comparison of Time-Dependent
Treemaps” (Vernier et al., 2020b)

37

generalized treemap evaluation

ize time-dependent hierarchical datasets and classify all datasets used
in our experiments accordingly. We experimentally test the validity of
this classi�cation on more than 2000 datasets, and analyze the relative
performance of 14 state-of-the-art rectangular treemapping algorithms
across varying features. Finally, we visually summarize our results with
respect to both visual quality and stability to aid users in making an
informed choice among treemapping algorithms. All datasets, metrics,
and algorithms are openly available to facilitate reuse and further com-
parative studies.

3.1 introduction

Treemaps are one of the best-known methods for visualizing large hi-
erarchical datasets. Given an input tree whose leaves have several at-
tributes, treemaps recursively partition a 2D spatial region into cells
whose visual attributes (area, color, shading, or annotation) encode the
tree’s data attributes. Compared to other methods such as node-link
techniques, treemaps e�ectively use all available screen pixels to show
data, and thus can display trees of tens of thousands of nodes on a sin-
gle screen. Most treemaps use rectangles, although there are alternative
models such as Voronoi treemaps (Balzer et al., 2005), orthoconvex and
L-shaped treemaps (Berg et al., 2014), and Jigsaw treemaps (Wattenberg,
2005). In this chapter, we focus exclusively on rectangular treemaps.

The input for a rectangular treemap is a rectangle ' and a set of non-
negative values 01, . . . , 0= together with a hierarchy on these values
(represented by a tree). The output is a treemap) , which is a recur-
sive partition of ' into a set R = {'1, . . . , '=} of interior-disjoint rect-
angles, where (0) each rectangle '8 has area 08 , and (1) the regions of
the children of an interior node of the hierarchy form a rectangle (as-
sociated with their parent). Such a partition of a rectangle into a set of
disjoint rectangles is also called a rectangular layout, or layout for short.
Typically the input values are normalized, that is, the sum � =

∑
8 08

corresponds to the area of '.
Nowadays, large hierarchical datasets are also available over time.

Hence, there is a need for time-dependent treemaps which display
changing trees and data values. Ideally, such time-dependent treemaps
enable the user to easily follow structural changes in the tree and in the
data. In a time-dependent setting, the input values become functions
08 : [0, -] → R≥0 for each 8 , where the discrete domain [0, -] repre-
sents the di�erent time steps in the data. We assume that the hierarchy
on the values and ' are not time-dependent, and that the values 08 are
properly normalized for each time step separately. We use the special
value 08 (C) = 0 to represent that data element 8 is not present at time
C ; and we speak of insertions or deletions if 08 (C) starts or stops to be
nonzero, respectively.

38

3.1 introduction

The visual quality of rectangular treemaps is usually measured via
the aspect ratio of its rectangles. This indicator can become arbitrar-
ily bad: Consider a treemap that consists of only two rectangles. If the
area of one of these rectangles tends towards zero, then its aspect ra-
tio tends towards in�nity. Nagamochi and Abe (2007) describe an al-
gorithm (APP) which computes, for a given set of values and a hierar-
chy, a treemap which provably approximates the optimal aspect ratio.
Berg et al. (2014) prove that minimizing the aspect ratio for rectangu-
lar treemaps is strongly NP-complete. Kong et al. (2010) propose per-
ceptional guidelines to improve treemap design and Zhou et al. (2017)
perform user studies to test the e�ectiveness of di�erent rectangular
treemapping algorithms. Recently Lu et al. (2017) argue that the opti-
mal aspect ratio for treemaps should, in fact, be the golden ratio. In
Section 3.2, we describe the state-of-the-art of rectangular treemaps in
detail along with the various characteristics of rectangular treemaps.

For time-dependent treemaps, a second quality criterion is stability.
Ideally, small changes in the data should result only in small changes
in the treemap. Such stable behavior ensures that the only changes the
user sees are due to the data, and not due to the decisions the algorithm
makes. In recent years a few non-rectangular treemaps were speci�cally
developed for time-dependent data. Hahn et al. (2014) and van Hees and
Hage (2017) describe stable versions of Voronoi treemaps. Chen et al.
(2017) propose a small-multiple metaphor to visualize time-dependent
hierarchies. Their algorithm computes a global layout for all time steps
simultaneously, but does not handle insertions or deletions. Scheibel
et al. (2018) give an algorithm that maps changes in the data onto an
initial layout. However, “treemaps” of subsequent time steps are not
proper rectangular layouts as white space is introduced when resolving
overlaps between rectangles.

A di�erent approach to visualizing time-varying hierarchical data is
taken by Lukasczyk et al. (2017), Köpp and Weinkauf (2019), and Li et al.
(2019), who show how to compute static overviews of the entire evolu-
tion of the tree. Alternatively, Guerra-Gómez et al. (2013) and Card et al.
(2006) use interactivity to explore time-varying data. For a broader per-
spective on tree visualizations, Graham and Kennedy (2010) present a
survey of visualizations that compare multiple trees, while Schulz et al.
(2011) and Scheibel et al. (2020) present, respectively, a survey and a
taxonomy for the visualization of a single tree.
Contribution. Despite their enduring popularity, a comprehensive
evaluation of treemaps is currently lacking, even more so for the time-
dependent case. Individual papers tend to report on only a few algo-
rithms and evaluate only a few datasets, often without a principled dis-
cussion of quality metrics. To provide insights to both researchers and
practitioners and to allow them to make an informed choice when se-
lecting a treemap for their speci�c application and data, we perform

39

generalized treemap evaluation

an extensive quantitative evaluation of rectangular treemaps for time-
dependent data. Our three main contributions are:
(1) We introduce a new method to measure the stability of time-
dependent treemaps which explicitly considers the input data (Sec-
tion 3.3.2). An algorithm is stable if small changes in the input data
result in small changes in the layout, that is, data change and layout
change correlate positively. Previously proposed stability metrics mea-
sure only the layout change and conclude that small layout changes are
a sign of a stable algorithm. However, to properly measure stability, we
also need to capture the data change and then correlate data and lay-
out change. Here, we have to overcome the di�culty that the data and
the layout space are a priori incomparable. We solve this problem by
introducing the concept of a baseline treemap) ∗ which represents the
minimum amount of change that any time-dependent treemap must in-
cur (given the input data) when moving from treemap) to the next
treemap) ′.
(2) We propose a novel classi�cation scheme for time-dependent
datasets. Speci�cally, based on our discussion of the state-of-the-art of
treemaps in Section 3.2, we observe that the performance of treemaps
depends on the characteristics of the datasets used. We identify four
potential representative features that characterize time-dependent hier-
archical datasets and classify all datasets used in our experiments ac-
cordingly. We experimentally test the validity of this classi�cation on
2405 datasets, and analyze the relative performance of 14 state-of-the-
art rectangular treemapping algorithms across varying features. Gener-
ally we conclude that our proposed features do indeed have predictive
value, both with respect to visual quality and stability. We also observe
that algorithms that are designed to be stable tend to in fact be more
stable across features.
(3) We perform a quantitative evaluation of 14 rectangular treemapping
algorithms on more than 2000 datasets. We visually summarize our re-
sults with respect to both visual quality and stability to aid users in
making an informed choice among treemaps. All datasets, metrics, and
algorithms are openly available (The Authors, 2020a). Section 3.5 re-
ports on our experimental results, we conclude in Section 3.6.

3.2 rectangular treemaps

We next discuss the most well-known rectangular treemapping algo-
rithms. For a fair comparison during our experiments, we require that
treemap rectangles have exactly the correct areas and partition the in-
put rectangle. Algorithms that do not satisfy these requirements are
not included in our evaluation. Recall that the input for a rectangular
treemap is a rectangle ' and a set of non-negative values 01, . . . , 0= to-
gether with a hierarchy on these values (represented by a tree). The
children of a node in this hierarchy are given in a particular order

40

3.2 rectangular treemaps

in the input. We distinguish two classes of treemaps, which either
do or do not use this order. For time-dependent data we also distin-
guish between state-aware and stateless treemaps. Contrary to state-
less treemaps, state-aware treemaps do not compute the treemap sepa-
rately at a time step, but (can) use the layout of the previous time step
to compute a new layout. Most treemaps are stateless; we discuss the
state-aware algorithms separately.
Unordered treemaps do not (need to) adhere to the input nodes’ order
when computing the layout. Typically, input weights are sorted to help
the algorithm achieve good visual quality. Unordered treemaps in our
evaluation include Squari�ed treemaps (SQR) (Bruls et al., 2000) and Ap-
proximation treemaps (APP) (Nagamochi and Abe, 2007). APP comes
with a guaranteed upper bound on the worst-case aspect ratio, while
SQR often achieves near-optimal aspect ratios in practice. The visual
quality of unordered treemaps is relatively una�ected by high weight
variance, as reordering weights allows the layout to group similar-size
rectangles in the treemap, typically leading to better aspect ratios. Yet,
the sorted order of the weights may change rapidly over time, espe-
cially if the weights change much over time or if the weight variance is
low. This can negatively a�ect the stability of the treemaps.
Ordered treemaps are required to adhere to the order of nodes as
given in the input, which roughly ensures that rectangles close to each
other in the input are close to each other in the resulting treemap.
This typically improves the stability of treemaps, but may worsen vi-
sual quality. We include nine ordered treemaps in our evaluation. The
�rst ordered treemaps (Shneiderman and Wattenberg, 2001) include the
Pivot-by-Middle (PBM), Pivot-by-Size (PBZ), and Pivot-By-Split (PBS)
algorithms. Similar algorithms are the Strip algorithm (STR) (Beder-
son et al., 2002) and the Split algorithm (SPL) (Engdahl, 2005). Other
algorithms, like the Spiral algorithm (SPI) (Tu and Shen, 2007), and the
Hilbert (HIL) and Moore (MOO) algorithms (Tak and Cockburn, 2013),
lay out rectangles following a space-�lling curve. Finally, the very �rst
treemap algorithm (Slice-and-Dice (SND)) by Shneiderman (1992) can
also be considered an ordered treemap. While not ordered by design,
the resulting (combinatorial) layout depends only on the hierarchy and
not on weights. In fact, SND uses the depth in the hierarchy to com-
pute the layout (slicing vertically on even depth and horizontally on
odd depth), rather than simply applying the same algorithm recursively.
Hence, SND’s visual quality strongly depends on the number of levels
in the input hierarchy. Typically, laying out large rectangles near small
rectangles leads to poor aspect ratios. Hence, the visual quality of or-
dered treemaps is negatively a�ected by high weight variance. However,
ordered treemaps are relatively stable over time compared to unordered
treemaps, as order is maintained. Finally, insertions and deletions may
a�ect the visual quality and stability of ordered treemaps to varying
degrees, depending on how they are handled exactly.

41

generalized treemap evaluation

State-aware treemaps can use the layout of the previous time step
to compute a new layout and so can largely control their stability.
The treemap for the �rst time step is typically an existing unordered
treemap. The �rst state-aware treemap was introduced by Sondag et al.
(2017). Their Local Moves algorithm (LM) is initialized with APP, and
allows only a small number of local modi�cations to the (combinatorial)
layout between time steps. They also show how to update areas between
time steps without signi�cantly changing the layout (layouts remain
“order-equivalent”). In our evaluation we include the Local Moves algo-
rithm with 4 local moves between time steps (LM4), and without local
moves (LM0). A similar algorithm is the Git algorithm (GIT) Vernier
et al. (2018a), which is initialized with SQR, and does not allow any
changes to the (combinatorial) layout between time steps. Git is de-
scribed in full detail in Chapter 4, as it is a particular contribution to
this thesis. Both state-aware treemaps also support insertions and dele-
tions, updating the layouts locally where necessary (for insertions, the
position in the layout can be chosen to maximize visual quality). By
design, the stability of state-aware treemaps is relatively una�ected by
frequent weight changes over time. Also, the visual quality of the ini-
tial treemaps should be relatively high. However, since the layouts can-
not change much over time, the visual quality of state-aware treemaps
will decrease over time if weights change signi�cantly. Frequent inser-
tions and deletions may also cause treemaps with poor visual quality,
as treemaps are not recomputed as a whole. However, many insertions
can help to correct rectangles with bad aspect ratio caused by weight
changes over time. This is especially helpful for state-aware algorithms
that do not allow any changes to the layout, like LM0 and GIT. Note
that SND has a �xed layout if the input hierarchy does not change and
is hence very stable, but it does not explicitly use the previous state.

Finally, note that the number of levels in the input hierarchy can have
a strong e�ect on all classes of algorithms. In general, more levels imply
less freedom in the layout strategy. As a result, unordered treemaps
become more similar to ordered treemaps. Overall, the visual quality
tends to decrease and the stability tends to increase.

3.3 metrics

Wattenberg (2005) identi�es several desirable properties of treemaps: (1)
nicely shaped regions (visual quality), (2) stability with regard to chang-
ing leaf values, (3) stability with regard to changing tree structure, and
(4) preservation of order information. Regarding Property (3), the tree
structure can change in various ways; for example, nodes can merge
or split, nodes can change parents, or there are general insertions and
deletions. In our experiments we do not make any assumptions on the
type of changes to the tree structure, and hence treat them as general
insertions and deletions. Furthermore, we do not assume that the order

42

3.3 metrics

of the values in the data is meaningful in general. Thus, we consider
the following two important criteria to evaluate treemaps: visual qual-
ity and stability. We discuss well-established metrics for both below. We
also introduce a new method to measure the stability of time-dependent
treemaps which captures inherent data changes. We compute metrics
for each leaf rectangle separately and then aggregate these values for
each algorithm and dataset (see Section 3.5 and (The Authors, 2020a)
for details). Note that we do not compute metrics for non-leaf nodes.

3.3.1 Visual quality

The weight information in a treemap is conveyed by the areas of its
rectangles. Since areas of rectangles closer to squares are visually easier
to estimate than areas of elongated rectangles, visual treemap quality
is commonly measured by the aspect ratio of its rectangles. Although
it has been proposed that the ratio should be close to the golden ra-
tio (Lu et al., 2017) instead of the minimum aspect ratio of 1, it is com-
monly accepted that strongly elongated rectangles hinder readability
of treemaps. We thus aim for the overall goal of making rectangles as
square as possible, or similarly, minimizing the number of elongated
rectangles. For a rectangle '8 of width F ('8) and height ℎ('8), we de-
�ne the aspect ratio d ('8) as

d ('8) = min(F ('8), ℎ('8))/max(F ('8), ℎ('8)). (3.1)

Observe that this de�nition is the inverse of the usual de�nition for as-
pect ratio. Its values range from 0 to 1, where values of d close to 0
are considered “bad” and values close to 1 are considered “good”. The
bounded range allows for easy aggregation. Note that, compared to
the usual de�nition of 1/d , rectangles with larger aspect ratios have
a smaller in�uence on the aggregated score.

3.3.2 Stability

Evaluating the stability of a treemap is more involved than evaluating
visual quality. Consider treemaps at two consecutive time steps) (C)
and) (C + 1). Since stability does not explicitly depend on the value of
C , we denote the former and the new treemap by) and) ′ respectively,
to simplify notation. We also denote the rectangle areas in) and) ′ by
[01, . . . , 0=] and [0′1, . . . , 0′=], respectively. For a stable treemapping al-
gorithm, the (visual) di�erence between) and) ′ should roughly corre-
spond to the di�erence between [01, . . . , 0=] and [0′1, . . . , 0′=]. Note that
the combination of large changes in data values and small changes in
the layouts is unlikely since rectangle areas in treemaps must exactly
match the data values. Hence, we actually want to measure instability,
that is, large layout changes that are not caused by large data changes.

43

generalized treemap evaluation

Most existing treemap stability metrics consider only the visual
change in the treemap’s layout 3 (),) ′), usually computed by evaluat-
ing the change X ('8 , '′8) for each rectangle separately and aggregating it
over all rectangles. Shneiderman and Wattenberg (2001) de�ne X as the
Euclidean distance between the vectors (G ('8), ~ ('8),F ('8), ℎ('8)) and
(G ('′8), ~ ('′8),F ('′8), ℎ('′8)), where G , ~,F , and ℎ are the coordinates of
the top-left corner, width, and height of a rectangle, respectively. They
then de�ne 3 as the average over all rectangles. Hahn et al. (Hahn et al.,
2014; Hahn, 2015) simplify this metric by de�ning X as the distance
moved by the centroid of a rectangle, again de�ning 3 as the average.
Tak and Cockburn (2013) use the same X as (Shneiderman and Watten-
berg, 2001), but de�ne 3 as the variance over all values computed by X .
They also propose a drift metric, which measures how much a rectan-
gle moves away from its average position over a long period. Recently,
Scheibel et al. (2018) introduced two new layout change metrics: The
average aspect ratio change de�nes X as the relative change between the
aspect ratios of '8 and '′8 , and de�nes 3 as the average. The relative par-
ent change de�nes X as the relative change of the distance between the
center of a rectangle and the center of its parent, again de�ning 3 as
the average. Chen et al. (2017) propose a metric to quantify the ability
of users to track time-dependent data in treemaps, which is closely re-
lated to the drift metric (Tak and Cockburn, 2013). A di�erent approach
measures layout change using pairs of rectangles. Hahn et al. (2017) in-
troduce the relative direction change, which, for every pair of rectangles
'8 and ' 9 , measures how much the angle from the center of '8 to the
center of ' 9 changes. Finally, Sondag et al. (2017) proposed the relative
position change, which, for every rectangle pair ('8 , ' 9), measures how
much the relative position of'8 with respect to' 9 changes. The distance
3 is then de�ned as the average over all rectangle pairs.

Summarizing the above, we distinguish two types of layout change
metrics: (1) absolute metrics measure how much individual rectangles
move/change, and (2) relative metrics measure how much positions of
pairs of rectangles change relative to each other. For our experiments,
we use both an absolute and a relative metric. In particular, as an ab-
solute metric, we use the corner-travel distance, which is a well-known
metric used in computer vision to quantify change between two shapes
using feature points (Tuytelaars and Mikolajczyk, 2007; Szeliski, 2010).
In the vision community, it was established already many years ago (Shi
and Tomasi, 1994; Biederman, 1987) that corners are a perceptually use-
ful feature to identify and track. Besides this perceptual validation, the
corner-travel metric lies also within a small bounded factor of the orig-
inal metric introduced by Shneiderman and Wattenberg (2001). Speci�-
cally, letF (') and ℎ(') be the width and height of an input rectangle ',
respectively. Let ?8 , @8 , A8 , and B8 (? ′8 , @

′
8 , A
′
8 , and B ′8) be the positions of the

44

3.3 metrics

corners of a rectangle '8 ('′8). We de�ne the normalized corner-travel
(CT) distance for a rectangle as

XCT ('8 , '′8) =
‖?8 − ? ′8 ‖1 + ‖@8 − @′8 ‖1 + ‖A8 − A ′8 ‖1 + ‖B8 − B ′8 ‖1

4
√
F (')2 + ℎ(')2

. (3.2)

where ‖G ‖1 denotes the ℓ1 norm. Simply put, XCT is the corner-to-corner
correspondence distance between'8 and'′8 . Note that 0 ≤ XCT ('8 , '′8) ≤
1, since a rectangle corner can travel by at most the length of the diag-
onal of '.

As a relative metric, we use the relative position change (Sondag et al.,
2017). We established experimentally that the corner-travel and the rela-
tive position change metric correlate clearly on more than 2000 data sets.
Hence in Section 3.5 we report only on experiments using the corner-
travel distance. All other data can be found here (The Authors, 2020a).

Figure 3.1: Left: Partial orders of the maximal segments. Middle: a layout order-
equivalent to the left �gure, changed maximal segments highlighted
in green. Right: a layout not order equivalent to the other two �gures.
Red/blue arrows: relations between maximal segments.

Data change. The stability metrics discussed above do not take data
change into account. If data changes by a large amount, then the lay-
outs should be allowed to change signi�cantly without considering this
to be instability. To add data change to a stability metric, one can con-
sider the di�erence or ratio between the layout change and the data
change (Vernier et al., 2018b,a). However, there are two problems: (1)
we need a way to measure data change, and (2) the metric spaces for
data and layouts need to be comparable. For example, data change can
be measured in terms of changes of rectangle areas (since these corre-
spond to the data). However, layout changes such as the corner-travel
distance measure lengths, not areas. Areas and lengths are not directly
comparable, and thus their ratios or di�erences may not be meaningful.
Although such metrics could be made comparable by suitable normal-
ization, such adaptations are necessarily metric-speci�c and ultimately
result in numbers whose meaning is not clear.
Baseline treemap. We overcome the above issues with a new method
that captures data change in the layout space. For this, we de�ne a base-
line treemap) ∗ with respect to) and) ′. The layout of) ∗ (that is,
the combinatorial structure of the rectangular subdivision which consti-
tutes) ∗) is based on the layout of) . However, the areas of the rectangles

45

generalized treemap evaluation

in) ∗ are the areas {0′1, . . . , 0′=} of) ′. The idea is that) ∗ aims to mini-
mize the layout distance to) among all treemaps with the areas of) ′.
Put di�erently:) ∗ approximates the minimum amount of change that
any time-dependent treemap must incur when moving from) and its
associated area values {08 } to the next treemap) ′ and its area values
{0′8 }. As a result, 3 (),) ∗) is a good metric for data change in the layout
space.

We construct) ∗ for each tested algorithm and each time step using a
hill-climbing algorithm, which was proven to converge in Eppstein et al.
(2012). For a rectangular layout (treemap)) , a maximal segment is a
maximal contiguous horizontal or vertical line segment contained in the
union of the borders of all rectangles in) (for example, the green seg-
ments in Figure 3.1). Put simply, a horizontal maximal segment (which
is not part of the input rectangle ') always has endpoints on the inte-
rior of two vertical segments and vice versa. For two horizontal maxi-
mal segments B1 and B2, we say that B1 < B2 if there is a rectangle in)
whose bottom side coincides with B1 and whose top side coincides with
B2. This de�nes a partial order on horizontal maximal segments. We
de�ne a partial order on vertical maximal segments analogously (Fig-
ure 3.1). We say that) is order-equivalent to) ∗ if the corresponding
partial orders on maximal segments are isomorphic. For every possible
set of areas, there exists an order-equivalent treemap to) that correctly
represents those areas (Eppstein et al., 2012). In particular, we can ini-
tially de�ne) ∗ as the treemap order-equivalent to) (computed with
any of the tested algorithms) with the areas {0′1, . . . , 0′=} of) ′.

If rectangles are inserted or deleted, the baseline treemap cannot be
order-equivalent to) , so we handle insertions and deletions separately.
Dealing with deletions is easy: we simply let the areas go to zero. For
insertions, we must be more careful. Indeed, while we consider only
rectangles present in both) and) ′ when measuring stability ('8 and '′8
in Equation 3.2), inserted rectangles can strongly impact the positions of
rectangles in) ∗. We observe that the baseline treemap does not need to
be a proper treemap: it only needs to capture how much rectangles must
minimally move to update to the new data. To minimize the movement
of the rectangles due to insertions (and hence to be as stable as possible),
we distribute the cumulative area of the inserted rectangles over the
“walls” (borders) of treemap) as evenly as possible. To do so, we replace
every maximal segment 4 in) by a rectangle, and assign each such
rectangle a portion of the inserted area corresponding to the length of
4 (Figure 3.2). Hence all walls become equally thick and the original
rectangles of) need to move as little as possible to yield) ∗.

The baseline treemap) ∗ as proposed here is not a perfect baseline, as
it does not always minimize the movement of every rectangle. However,
the layout change between) and) ∗ is still a very good estimate for the
minimum necessary layout change between) and) ′, and thus a good

46

3.3 metrics

measure for data change (see Figure 3.3: nearly all points lie on or below
the diagonal).

TT ′ T ∗

Figure 3.2: Treemaps) ′ (with gray rectangle inserted),) , and) ∗ (with gray
area spread over maximal segments).

0.02 0.04 0.06 0.08 0.10
0

0.02

0.04

0.06

0.08

0.1

Average δ(Ri, R
′
i)

Av
er

ag
e
δ
(R

i
,
R

∗ i
)

Figure 3.3: Scatter plot of the average layout change between) and) ′ or) ∗ for
a random 25% sample of all algorithms and datasets.

Stability metric. We can now de�ne a stability metric that takes data
change into account. Consider a rectangle '8 and the corresponding
rectangles '′8 and '∗8 in) ′ and) ∗, respectively, and let X be the lay-
out change function for single rectangles. Two natural choices for spa-
tial stability are the di�erence or ratio between X ('8 , '′8) and X ('8 , '∗8).
Our experiments showed that the di�erence is typically more informa-
tive, that is, it exhibits clearer, more pronounced patterns, than the ratio.
Hence, we de�ne the stability of a single rectangle as

f ('8) = max(0, X ('8 , '′8) − X ('8 , '∗8)) (3.3)

Note that f ('8) = 0 if X ('8 , '′8) ≤ X ('8 , '∗8), which is possible. Indeed, a
value of 0 for f ('8) represents “very stable”, and '∗8 is considered to be
(roughly) as stable as possible.
Limitations. The stability metrics we use focus only on consecutive
time steps. The stability of time-varying treemaps could conceivably be
in�uenced by e�ects that span multiple time steps, which our metrics do
not capture directly. However, we believe that the most salient events

47

generalized treemap evaluation

in�uencing stability occur between consecutive time steps and hence
we focus on this scenario.

3.4 data

The visual quality and/or stability of treemaps clearly depends on the
datasets used. Simply measuring the average performance over a (large)
collection of datasets does not reveal such information. We aim to pro-
vide su�cient insight so that both practitioners and researchers can
make informed choices about which algorithm to use for their data. For
this, we study the performance of treemaps as a function of the charac-
teristics of the input data. We classify the datasets into data classes along
with explicit features and evaluate the metrics of di�erent treemapping
algorithms for each class.

3.4.1 Data features

Our methodology is inspired by the framework proposed by Smith-
Miles et al. (2014) to objectively measure the performance of algorithms
across datasets. For each dataset, we compute a number of features that
(hopefully) capture the characteristics in�uencing the relative perfor-
mance of treemapping algorithms. As a result, every dataset is repre-
sented by a point in a low-dimensional feature space F . Similar feature-
based approaches are also used to measure the relative performance of
dimensionality-reduction methods (Espadoto et al., 2019) or in machine
learning (Bishop, 2006). Based on the discussion of treemapping algo-
rithms in Section 3.2, we identify the following four features: 1. Levels
of hierarchy, 2. Variance of node weights, 3. Weight change, and 4. In-
sertions and deletions.

Obviously, other features could be used to characterize (time-
dependent) trees, such as the minimum, maximum, and average node
degrees, the (im)balance of the tree structure (Boorman and Oliviera,
1973; Kuhner and Yamato, 2015), and the number of nodes. Two seem-
ingly obvious candidates for features that we do not currently consider
are the number of nodes and the branching factor (i.e., the average inter-
nal node degree). Arguably the number of levels in the hierarchy, the
branching factor, and the number of nodes correlate to some degree. For
example, if the hierarchy has only one level, then the branching factor
and the number of leaves are the same. Hence, we should include at
most two of these features in our analysis. Among these three features,
the number of levels is with certainty a discriminating factor between al-
gorithms, see our discussion in Section 3.2. Furthermore, all algorithms
we consider, with the exception of SND, are recursive and treat each
level independent from the preceding ones. Hence one can argue that
the branching factor, which determines the number of nodes that have

48

3.4 data

to be handled during a single step of this recursion, is a more relevant
data feature than the total number of nodes. Nevertheless, we decided
not to include the branching factor in our experiments, for the following
two reasons. First of all, from the description of the algorithms, it seems
that the branching factor is likely less relevant for their relative perfor-
mance than the other four chosen features. That is, the descriptions of
the algorithms do not give an indication that the branching factor is able
to predict if an algorithm� will perform better than an algorithms � on
a given dataset. Second, it is very di�cult to de�ne meaningful value-
ranges for the branching factor and then to �nd datasets that cover these
ranges in combination with all other data features. Given that the num-
ber of data classes and, correspondingly, the number of datasets needed
for a meaningful evaluation, grows exponentially with the number of
features chosen (see Section 3.4.2), we decided to restrict ourselves to
four features. While we cannot exclude that the branching factor may
in�uence relative performance, we do believe that the four features cho-
sen have higher predictive value.

3.4.2 Data classes

Using the feature spaceF , we partition all datasets into classes. For each
feature we de�ne a small number of subclasses based on only that fea-
ture. The data class of a dataset is then de�ned as the combination of
the subclasses for each feature. We determined the value-ranges de�n-
ing the subclasses by analyzing the distribution of feature values over
our 2405 real-world tree datasets.
Levels of hierarchy (3 subclasses). We use three ranges for classi�-
cation: 1 level (1L), 2 or 3 levels (2/3L), and more than 3 levels (4+L).
Most hierarchical datasets we have analyzed have 2 or 3 levels. This
number of levels is quite common for datasets that are visualized via
treemaps, since they frequently concern geo-spatial subdivisions such
as countries, continents, and their subregions, grouped by a classi�ca-
tion scheme, such as the World Bank regional classi�cation. Further-
more, visually understanding the node nesting in deeper treemaps be-
comes di�cult (Vliegen et al., 2006; Bruls et al., 2000). A special case are
datasets with only 1 level, that is, sets of weight values. Such datasets are
also often visualized by treemaps, as these are more space-�lling than
alternatives such as bar charts (Vliegen et al., 2006). These datasets are
challenging for treemaps that implicitly use the depth of the hierarchy.
Finally, we consider datasets with more than 3 levels, which correspond
to deep hierarchies such as, for example, �le systems or software archi-
tectures (Hahn et al., 2014, 2017; Vernier et al., 2018b).
Variance of node weights (2 subclasses). We distinguish between
low variance (LWV) and high variance (HWV). To ensure that the to-
tal number of tree nodes does not strongly in�uence our classi�cation,

49

generalized treemap evaluation

we use the coe�cient of variation f/` to determine the subclass. The
standard deviation f and the mean ` are computed over all leaf weights
over all time steps. We say that there is low variance if f/` ≤ 1 and
high variance if f/` > 1.
Weight change (3 subclasses). We distinguish between low weight
change (LWC), regular weight change (RWC), and spiky weight change
(SWC). The weight change of a single rectangle is measured by the abso-
lute di�erence in the relative area (with respect to the input rectangle R)
between time steps. The weight change of a treemap between two time
steps is de�ned as the sum of weight changes of all rectangles. To deter-
mine the subclass of a dataset, we use the distribution of weight changes
between time steps over all time steps in the dataset, speci�cally the
mean ` and the standard deviation f . Datasets with low weight change
have ` < 5% and f < 5%. Datasets with a larger mean (5% ≤ ` < 20%)
and a relatively small coe�cient of variation (f/` ≤ 1) are classi�ed
as having regular weight change. The weights of these datasets steadily
change over time, without any extreme changes. Remaining datasets
are classi�ed as having spiky weight change. In those datasets weights
change drastically (` > 20%), or there is large variation (f/` > 1) along
with substantial changes (` > 5% or f > 5%).
Insertions and deletions (3 subclasses). We distinguish between low
insertions and deletions (LID), regular insertions and deletions (RID),
and spiky insertions and deletions (SID). We measure the impact of in-
sertions and deletions between two time steps C and C +1 as the cardinal-
ity of the symmetric di�erence between the two sets of rectangles with
non-zero weights at C and C + 1, divided by the number of rectangles
with non-zero weights at C . We again classify the datasets based on the
distribution (` and f) of impact values over all time steps. Same as for
the weight change, LID is de�ned by ` < 5% and f < 5%, RID is de�ned
by ` < 20% and f/` ≤ 1, and the remaining datasets are in SID.

The full classi�cation results in 3 × 2 × 3 × 3 = 54 data classes. In Sec-
tion 3.5, we evaluate how the performance of treemapping algorithms
depends on the classes, that is, if the classi�cation is sensible.

3.4.3 Datasets

We collected a total of 2405 time-dependent hierarchical datasets from
a variety of sources, detailed below. We found at least one dataset for
46 (out of 54) instances of our proposed data classes. See Figure 3.4 for
the distribution of datasets over classes: clearly not all classes arise with
equal frequency in our data sources.

world bank (URL, accessed 04-07-2018): (2142 datasets)
World development indicators such as agriculture, rural and
urban development, education, trade and health. Hierarchy

50

3.4 data

LWV HWV
LWC RWC SWC LWC RWC SWC

SI
D

RI
D

LI
D

SI
D

RI
D

LI
D

SI
D

RI
D

LI
D

1L
2/

3L
4+

L
68 118 81
3 20 55
97 180 185

152 58 4
1 16 10
58 65 9

4
1

56 19 76

1
2

1 6 3

66 114 69
2 15 53
84 158 132

153 58 4
1 14 9
58 56 10

Figure 3.4: Distribution of datasets over classes.

either according to the World Bank regional classi�cation, group-
ing countries into subregions and continents, or no hierarchy
present.

github (URL, accessed 16-07-2018): (150 datasets) Hierarchies
of folders, �les, and classes, weighted by the number of code lines,
extracted from all revisions of several GitHub repositories using
Scitools (URL, accessed 15-02-2017b).

movies: (107 datasets) Movies from MovieLens (Harper and Konstan,
2016) and TMDB (URL, accessed 10-02-2018). We constructed
a time-dependent hierarchy using the group-rows-by-attribute-
value partitioning method (Telea, 2006; Vliegen et al., 2006). The
hierarchy groups movies based on their genres, actors, release
date, and keywords. Each leaf is a movie, whose weight corre-
sponds to its rating over a given period of time.

custom: (6 datasets) Several individual datasets were added: Dutch
Names (URL, accessed 30-05-2016) contains the frequency of pop-
ular baby names in the Netherlands per year; UN Comtrade Cof-
fee (URL, accessed 15-02-2017a) contains the amount of co�ee
each country imported per year; ATP contains personal informa-
tion, historical rankings, and match results from 1968 to 2018
for ATP tennis players (URL, accessed 03-07-2018a); and Earth-
quakes contains the time, location, depth and intensity of seis-
mic phenomena provided by the USGS Earthquake Hazards Pro-
gram (URL, accessed 03-07-2018b).

Importantly, note that the above selection of dataset sources is orthogo-
nal to the description of the feature space F . The former covers the ori-
gin of data (which may cover application-speci�c aspects not captured
by our feature space); the latter covers application-independent data
aspects as captured by the data classes of F . The distributions of data

51

generalized treemap evaluation

classes covered by our di�erent data sources can be found in the supple-
mentary material (The Authors, 2020a). The large and varied collection
of World Bank datasets is able to cover all data classes with at most 3
levels of hierarchy (to which it is inherently limited). The GitHub and
Movies datasets further cover a number of data classes with 4+ levels
of hierarchy.

3.5 experimental results

We ran all 14 algorithms on all time steps of all 2405 datasets, generated
the baselines for all these instances (Section 3.3), and recorded all lay-
outs, that is, the positions of all rectangles '8 (C) at all time steps C . Per
dataset we aggregate our results for all metrics and algorithms �rst by
taking the mean over all rectangles in a single time step, and then by
taking the mean again over all time steps. This is necessary since the
number of rectangles may di�er per time step.

We focus on two speci�c questions: We �rst explore the validity of
our data classi�cation (Section 3.5.1) and then we study the performance
of all algorithms with respect to visual quality and stability across vary-
ing data features (Section 3.5.2). In the supplementary material (The
Authors, 2020a) we additionally compare the performance of all algo-
rithms on each data class separately. We believe that the resulting vi-
sual summary will help researchers and practitioners choose a suitable
treemapping algorithm for their data.

LWV HWV
LWC RWC SWC LWC RWC SWC

SI
D

RI
D

LI
D

SI
D

RI
D

LI
D

SI
D

RI
D

LI
D

1L
2/

3L
4+

L

c/c∗

1 1.5 21/1.51/20 ∞

Figure 3.5: For each data class with at least 50 datasets, the ratio of the consis-
tency score (visual quality on the left, stability on the right) between
the data class and the baseline.

52

3.5 experimental results

1L 2/3L 4+L

SIDRIDLIDSIDRIDLIDSIDRIDLID

LW
V

H
W

V

LW
C

R
W
C

S
W
C

LW
C

R
W
C

S
W
C

>
1 Relativeperformance 01

Fi
gu

re
3.

6:
Vi

su
al

qu
al

ity
:m

at
rix

pl
ot

s
fo

r
ea

ch
da

ta
cl

as
s

w
ith

at
le

as
t

50
da

ta
se

ts
pl

us
ba

se
lin

e
(le

ft
to

p)
.I

n
ea

ch
m

at
rix

pl
ot

,r
ow

s
co

rr
es

po
nd

to
al

go
rit

hm
s,

co
lu

m
ns

to
da

ta
se

ts
.T

he
lig

ht
er

th
e

co
lo

r,
th

e
be

tte
rt

he
re

la
tiv

e
pe

rf
or

m
an

ce
,c

ap
pe

d
at

1
(p

ur
pl

e)
.

53

generalized treemap evaluation

1L2/3L4+L

SID RID LID SID RID LID SID RID LID

LW
V

H
W

V

LW
C

R
W
C

S
W
C

LW
C

R
W
C

S
W
C

>
1Relative performance0 1

Figure
3.7:Stability:m

atrix
plots

each
data

class
w

ith
atleast50

datasets
plus

baseline
(lefttop).In

each
m

atrix
plot,row

s
correspond

to
algorithm

s,
colum

nsto
datasets.The

lighterthe
color,the

betterthe
relative

perform
ance,capped

at1
(purple).

54

3.5 experimental results

3.5.1 Data classi�cation analysis

We evaluate if the relative performance of treemapping algorithms is
more consistent within a data class than for an arbitrary collection of
datasets. To perform this analysis we need to establish how we can cap-
ture the consistency of relative performance for a collection of datasets,
and how we can compare this consistency between multiple collections.
We restrict our analysis to data classes that contain at least 50 datasets,
for otherwise the observed consistency is not su�ciently reliable. For
each such data class, we randomly sample 50 datasets to use in this anal-
ysis. We also randomly sample 50 datasets among all 2405 datasets (all
classes) as a baseline for comparison. Note that all collections must have
the same number of datasets in the analysis to ensure that the compar-
isons are fair.

Now consider a single collection of datasets. To measure the consis-
tency of relative performance among di�erent datasets in this collec-
tion, we cannot directly use the computed metrics for visual quality
and stability, as these values may di�er greatly between datasets. Alter-
natively, we could rank the algorithms per dataset, but then algorithms
with very similar performance may imply a greater variance in relative
performance than is the case. Instead, we de�ne the relative performance
(separately for visual quality and stability) per dataset as follows. We
compute both the best value (maximum for visual quality, minimum
for stability) and the median value over all algorithms over this dataset.
The relative performance score for each algorithm on this dataset is then
computed by linearly interpolating between these two values, where
the best algorithm receives score 0, and the median algorithm receives
score 0.5. The relative performance score is capped at 1, to avoid outliers.
The resulting scores are comparable between di�erent datasets.

We next analyze the consistency of relative performance within col-
lections of datasets in two di�erent ways. First, we use a quantitative ap-
proach: for each algorithm we compute the variance of the relative per-
formance scores over all datasets in a collection, and we sum up these
variances over all algorithms. This results in a consistency score 2 for
a collection of datasets. Figure 3.5 displays the consistency scores (for
visual quality and stability) of all data classes (with at least 50 datasets)
compared to the consistency scores 2∗ of the baseline collection (cre-
ated by random sampling). A cell is colored blue (more consistent) if 2
is smaller than 2∗; a cell is colored red (less consistent) if 2 is larger than
2∗.

Nearly all data classes for visual quality and most data classes for
stability are more consistent than the baseline. This indicates that our
features are splitting the datasets into valid data classes where the rela-
tive performance of an algorithm is easier to predict than in the baseline.
However, the stability column for high weight variance and low weight
change is less consistent than the baseline. As discussed in Section 3.2,

55

generalized treemap evaluation

the stability of unordered treemaps becomes worse compared to or-
dered treemaps when the weight variance is low or the weight change is
high, due to reordering of the input weights. As a result, the di�erence
with respect to stability between ordered and unordered treemaps is less
pronounced for these data classes; the relative performance is hence in-
�uenced more by accidental details of individual datasets and less by
structural di�erences between the algorithms. Additionally there are
two data classes where the visual quality is less consistent than the
baseline. It is not clear to us at this point what the cause of these incon-
sistencies is; one possibility are hidden correlations in the data classes.

Second, we use a more qualitative approach to assess the consistency
of relative performance. For each data class we create a matrix plot that
shows the relative performance scores of all algorithms for all datasets
in the collection (see Figures 3.6 and 3.7). Each column in the matrix
plot represents a dataset, and each row represents an algorithm. The
color of every “cell” in the matrix plot indicates the relative performance
score of an algorithm on a dataset, where lighter colors indicate better
(lower) relative performance scores. Relative performance scores that
were capped at 1 are indicated with purple. To better enable the visual
assessment of consistency among the di�erent datasets in a collection,
we order the datasets (columns) so that those with similar scores are
next to each other as much as possible. Also, we order the algorithms
(rows) so that the algorithms with better average score are lower in the
matrix plot. In particular, the order of algorithms in the matrix plots for
di�erent data classes can be di�erent. Figure 3.6 shows the matrix plots
for visual quality, with the corresponding matrix plot for the baseline
collection at the left-top. Figure 3.7 shows the matrix plots for stability.

First consider the matrix plot for visual quality (Figure 3.6). For the
low weight variance subclass we indeed see that the matrix plots are
much smoother than the baseline, which con�rms the results in Fig-
ure 3.5. We also observe an increasing number of irregularities when
going from 1 level treemaps to 2/3 levels or 4+ levels, since more levels
impose more restrictions on the layout and hence all algorithms per-
form more similarly.

Consider now Figure 3.7. First of all, we notice that there is a set
of four algorithms at the bottom of every matrix plot. These are the
state-aware algorithms and SND. For nearly all datasets, regardless of
the speci�c data class, these four algorithms are much more stable than
any of the others. There is a large di�erence between the low weight
variance and high weight variance subclasses. For low weight variance
there is a set of algorithms that perform consistently much worse than
the median (purple cells). These include the unordered treemaps which
are particularly sensitive to changes in such data.

56

3.5 experimental results

3.5.2 Performance analysis across features

The analysis in Section 3.5.1 shows that our data classi�cation is valid.
We now study how visual quality and stability depend on the features of
the datasets. We aim to understand how sensitive a given algorithm is to
variations in one or several features of its input data. For each data class
we calculate the average visual quality and stability. For each subclass
of a feature we then take the average over all data classes that belong to
it. This ensures that even though we have di�erent numbers of datasets
in each data class, they are all weighted equally. We show this data in
Figs. 3.8 to 3.11. Each point in each �gure represents the score for one
algorithm on one subclass of the feature, for example, low weight vari-
ance. We draw a polyline that connects the points of one algorithm and
use glyphs to indicate the di�erent subclasses. The di�erent algorithms
are indicated with categorical colors (see �gure legends).

Recall that a low value for the stability metric indicates a stable al-
gorithm and that the visual quality metric (aspect ratio) is bounded be-
tween 0 and 1. In particular, note that visual quality (d) of 0.5 for a single
rectangle indicates a 2-by-1 rectangle. A d of 0.25 however is perceptu-
ally much worse than a d of 0.5 in terms of area perception as can be
inferred from Kong et al. (2010), coming close to their “extreme aspect
ratios” of 4.5.
Levels of hierarchy. Figure 3.8 considers the levels of hierarchy fea-
ture, which has three values: 1L, 2/3L, and 4+L. From Figure 3.8, we see
that all algorithms, in particular the stateless ones, are more stable as
the number of levels increase. In contrast to most other algorithms, the
visual quality of state-aware algorithms (LM0, LM4, GIT) as well as SND
increases with the number of levels. We also see that SQR and PBS have
the longest polylines, that is, they are the most sensitive to the number
of levels.
Variance of node weights. Figure 3.9 considers the weight variance
feature, which has two values: LWV and HWV. Increasing the weight
variance decreases the visual quality for all algorithms, except for APP
(and SND). Additionally we see that the unordered treemaps are indeed
more sensitive to this feature in terms of stability compared to the other
algorithms. These algorithms reorder the data based on the weight to
determine their layout, and if the weight are close to each other this
happen more often.
Weight change. Figure 3.10 considers the weight change feature,
which has 3 values: LWC, RWC, and SWC. The near-vertical polylines
for the stateless algorithms show that visual quality seems to be largely
una�ected by this feature. The stability however decreases quickly. Con-
versely, for the state-aware algorithms the polylines are mostly near-
horizontal: the stability is largely una�ected, but the visual quality de-
creases. As the only state-aware algorithm that allows changes to the

57

generalized treemap evaluation

layout, LM4 makes an explicit tradeo� between stability and visual qual-
ity (see the slightly sloping line).
Insertions and deletions. Finally, Fig. 3.11 considers the insertions
and deletions feature, which has three values: LID, RID, and SID. The
plot shows a similar variation of visual quality and stability as seen for
the weight change feature (Fig. 3.10). Yet, the polylines for the stateless
algorithms now show a ‘kink’ at the midpoint (RID, regular insertion-
s/deletions). Hence these algorithms are most unstable for regular in-
sertions/deletions, and stabler for linear and spiky insertions/deletions.
Interestingly, the state-aware methods (LM0, LM4, GIT) show a similar
kink but oriented di�erently. These methods thus achieve poorest vi-
sual quality for regular insertions/deletions and highest quality on the
other two values of this feature.

APP

GIT

HIL

LM0
LM4

MOO

PBM

PBS

PBZ
SND

SPI

SPL

SQR

STR

0

0.04

0.08

0.12

0.16

0.20

0 0.2 0.4 0.6 0.8 1
Visual Quality

S
ta

bi
lit

y

1 level (1L)
2 or 3 levels (2/3L)
4 or more levels (4+L)

SND

SPL

PBS

MOO
SPI

STR

SQR
APP

LM4
LM0
GIT

PBM
PBZ

HIL

Figure 3.8: Visual quality vs stability as function of the levels of hierarchy fea-
ture.

APP

HIL

MOO

SPI

Git LM4
LM0

PBM

PBS

PBZ

SPL

SQR

STR

SND
0

0.04

0.08

0.12

0.16

0.20

0 0.2 0.4 0.6 0.8 1

SND

SPL

PBS

MOO
SPI

STR

SQR
APP

LM4
LM0
GIT

PBM
PBZ

HIL

low weight variance (LWV)
high weight variance (HWV)

Visual Quality

S
ta

bi
lit

y

Figure 3.9: Visual quality vs stability as function of the variance of node weights
feature.

58

3.5 experimental results

APP

HIL

MOO

SPI

Git LM4
LM0

PBM

PBS

PBZ

SPL

SQR

STR

SND
0

0.04

0.08

0.12

0.16

0.20

0 0.2 0.4 0.6 0.8 1

SND

SPL

PBS

MOO
SPI

STR

SQR
APP

LM4
LM0
GIT

PBM
PBZ

HIL

Visual Quality

S
ta

bi
lit

y

spiky weight change (SWC)
regular weight change (RWC)
low weight change (LWC)

Figure 3.10: Visual quality vs stability as function of the weight change feature.

APP

HIL
MOO

SPI

Git LM4
LM0

PBM

PBS

PBZ

SPL

SQR

STR

SND
0

0.04

0.08

0.12

0.16

0.20

0 0.2 0.4 0.6 0.8 1

SND

SPL

PBS

MOO
SPI

STR

SQR
APP

LM4
LM0
GIT

PBM
PBZ

HIL

low insertions/deletions (LID)
regular insertions/deletions (RID)
spiky insertions/deletions (SID)

Visual Quality

S
ta

bi
lit

y

Figure 3.11: Visual quality vs stability as function of the insertions and deletions
feature.

3.5.3 Comparison of data classes

We next compare the relative performance of all algorithms separately
on all data classes. Figs. 3.12 to 3.14 support this comparison as follows:
it is structured as a matrix of tables, one per data class. Each table shows
the average visual quality (left column) and average stability (right col-
umn) of all algorithms for all datasets in the respective data class. The
two columns are sorted separately to show the best-ranking algorithms
at the top. Cells show the algorithm names and scores, and are cate-
gorically color-coded on the algorithm name, following the same color
scheme as in Section 3.5.2. Empty cells indicate data classes for which
we did not �nd datasets. Figs. 3.12 to 3.14 can answer the following
practical questions:

59

generalized treemap evaluation

which method is best for my data? Given a family of datasets
with known characteristics (feature values), we search for the cor-
responding cell and pick the top algorithm(s) in visual quality,
stability, or a combination of both, depending on the application
requirements. When doing this, we should examine the actual val-
ues, since several algorithms score quite close to each other.

how is a given algorithm performing in general? We
scan the table following the color of the respective algorithm,
and detect its rank (with respect to visual quality and/or stability)
over all data classes. In this way we can �nd patterns and outliers
in the data for this algorithm: for example, LM0 and LM4 are
always near the top in stability, and GIT’s performance on visual
quality �uctuates widely depending on the data class.

which algorithms perform similarly? We locate groups of
neighboring rows with the same color pattern in all tables. These
indicate algorithms which score similarly regardless of data class.

There are a number of additional insights we can obtain from
Figs. 3.12 to 3.14. When we consider only the visual quality, we see that
SQR is usually the best for low-weight variance data, but for high weight
variance APP is just as often the best algorithm. If the dataset contains
only 1 level, SQR performs better, but for the other depth subclasses it
depends on the exact data class. If only the stability is important, SND
almost always scores best regardless of the data class, but likewise it
consistently scores the poorest on visual quality. The state-aware algo-
rithms all perform very well on stability. While LM0 is better in terms
of stability than LM4, their exact order as well as their relative order
to GIT varies depending on the data class. When considering which al-
gorithm is best for both stability and visual quality, there are no easy
answers. There is no algorithm that performs best on both in any of the
data classes and hence the answer depends on the desired trade-o� and
the data class in question.

3.6 discussion and conclusion

We performed an extensive quantitative evaluation of rectangular
treemaps for time-dependent data. To do so, we introduced a new
methodology based on baseline treemaps to measure the stability of
time-dependent treemaps. Baseline treemaps enable us to measure the
change in the input data in a manner that is mathematically com-
parable to the measures for the layout change of the corresponding
treemaps. Furthermore, we proposed a novel classi�cation scheme for
time-dependent data sets via a four-dimensional feature space (weight
variance, weight change, tree depth, and the pattern of insertions and
deletions). These four features naturally arose from a discussion on var-

60

3.6 discussion and conclusion

Fi
gu

re
3.

12
:R

el
at

iv
e

ra
nk

in
g

of
tr

ee
m

ap
pi

ng
al

go
rit

hm
s

fo
ra

ll
da

ta
cl

as
se

s.
Ea

ch
ta

bl
e

ce
ll

sh
ow

s
al

go
rit

hm
s

in
to

p-
do

w
n

de
cr

ea
si

ng
or

de
ro

fa
ve

ra
ge

vi
su

al
qu

al
ity

(le
ft

co
lu

m
n)

an
d

av
er

ag
e

st
ab

ili
ty

(r
ig

ht
co

lu
m

n)
.

61

generalized treemap evaluation

Figure
3.13:Relative

ranking
oftreem

apping
algorithm

s
foralldata

classes.Each
table

cellshow
s

algorithm
s

in
top-dow

n
decreasing

orderofaverage
visualquality

(leftcolum
n)and

average
stability

(rightcolum
n).

62

3.6 discussion and conclusion

Fi
gu

re
3.

14
:R

el
at

iv
e

ra
nk

in
g

of
tr

ee
m

ap
pi

ng
al

go
rit

hm
s

fo
ra

ll
da

ta
cl

as
se

s.
Ea

ch
ta

bl
e

ce
ll

sh
ow

s
al

go
rit

hm
s

in
to

p-
do

w
n

de
cr

ea
si

ng
or

de
ro

fa
ve

ra
ge

vi
su

al
qu

al
ity

(le
ft

co
lu

m
n)

an
d

av
er

ag
e

st
ab

ili
ty

(r
ig

ht
co

lu
m

n)
.

63

generalized treemap evaluation

ious types of state-of-the-art treemapping algorithms. Our experimen-
tal analysis shows that our proposed classi�cation is valid in general
and that most data classes are well suited to predict the performance
of treemapping algorithms. For most data classes, our visual summary
comparing all algorithms across all data classes and both metrics can
hence serve as a reliable resource for researchers and practitioners. Last
but not least, all datasets, metrics, and algorithms used in our evaluation
are openly available (The Authors, 2020a).
Limitations and future work. Our experiments show that our identi-
�ed features and the resulting feature space generally work well and re-
sult in a meaningful classi�cation of datasets. However, there are whole
sets of data classes for which we could not �nd su�ciently many (or
even any) datasets. This is partially inherent in the classi�cation and
somewhat natural: data sets with low weight variance hardly ever ex-
hibit spiky weight change behavior, so that particular column in our
table is essentially empty. But among the 18 classes of treemaps with
4 or more levels we found a signi�cant number of datasets only for
two classes, which both are essentially populated by datasets stemming
from software repositories. The question remains if there are other sig-
ni�cant types of time-dependent hierarchical datasets which have four
or more levels and which escaped our searches. As it is, the results for
these two particular classes are representative for only a restricted type
of data.

Our classi�cation works well for visual quality, with the exception
of two cases (2/3 level, spiky insertions and deletions, high weight vari-
ance, and low or spiky weight change). We have a large number and
variety of datasets at our disposal for these two classes, but neverthe-
less, it is unclear to us what causes these inconsistencies in the perfor-
mance of the tested algorithms. There might be a hidden correlation in
these datasets and one or more additional features might be needed to
separate these classes further.

While we do have a signi�cant number of datasets at our disposal
and hence can validate our claims with some certainty, we still might
be observing some bias in our collection. As stated above, essentially all
datasets with 4 or more levels stem from software repositories. Further-
more, all World Bank datasets have at most 3 levels. It would be inter-
esting to analyze if and how this bias in the data in�uences our results.
To overcome possible data bias, we would also like to construct, and
evaluate on, synthetic datasets. Doing so is not trivial; creating datasets
that avoid sampling biases and are representative of real-world datasets
(for a suitable de�nition of “real-world”) is a challenging (but important)
question in its own right in information visualization in particular and
in data science in general.

To complement our quantitative evaluation it would naturally be of
interest to evaluate the performance of treemapping algorithms in var-
ious usage scenarios through user studies. The two metrics we use for

64

3.6 discussion and conclusion

visual quality and stability are both perceptually salient according to
studies performed in previous work. However, a study that evaluates
the combination of and the trade-o�s between visual quality and stabil-
ity could deliver important insights as to where on the Pareto-front an
optimal treemapping algorithm should lie.

Finally, our evaluation currently does not measure the run-time and
correspondingly the computational scalability of the algorithms used in
our experiments. Our implementations are not (equally) optimized and
hence a fair comparison is currently risky if not impossible. Scalability is
clearly an important factor in online usage scenarios, and we hope to be
able to complement our current set of implementations with optimized
versions in the near future.

65

4I M P R O V E D T R E E M A P P I N G F O R D Y N A M I C D ATA

The previous two chapters have shown two evaluations of treemapping
algorithms used for visualizing time-dependent hierarchies. The �rst fo-
cusing only on datasets obtained from evolving software systems (Chapter
2) and the second being done for a much wider spectrum, and number, of
datasets obtained from many application domains (Chapter 3). We �nal-
ize the treemap track of this thesis by proposing a new algorithm called
Greedy Insertion Treemap. GIT is a simple and scalable technique that
achieves a good balance between temporal stability and visual quality,
scoring better results than existing methods, as witnessed by the compre-
hensive benchmark introduced in Chapter 3.

Abstract: Computing treemap layouts for time-dependent (dynamic)
trees is an open problem in information visualization. In particular,
the constraints of spatial quality (cell aspect ratio) and stability (small
treemap changes mandated by given tree-data changes) are hard to sat-
isfy simultaneously. Most existing treemap methods focus on spatial
quality, but are not inherently designed to address stability. We propose
here a new treemapping method that aims to jointly optimize both these
constraints. Our method is simple to implement, generic, and fast. We
compare our method with 14 state of the art treemaping algorithms us-
ing four quality metrics, over 28 dynamic hierarchies extracted from
evolving software codebases. The comparison shows that our proposal
jointly optimizes spatial quality and stability better than existing meth-
ods.

4.1 introduction

Understanding the evolution of large and long-lasting software projects
is a major aspect of program comprehension. Typically, evolution data
for such projects is mined by fact extraction tools from existing soft-
ware control management systems handing software repositories, such
as Git (GIT, 2018), Subversion (Subversion, 2018), and CVS (CSV, 2018).
Several types of data attributes are collected (and explored) in this
way, including the identity of software items of interest (e.g., packages,
folders, �les, classes, methods), various quality attributes measured on
them (e.g., testability, maintainability, modularity, and readability met-
rics (Lanza and Marinescu, 2006)), and relations that interrelate these

This chapter is based on the paper “A Stable Greedy Insertion Treemap Algorithm for
Software Evolution Visualization” (Vernier et al., 2018a)

67

improved treemapping for dynamic data

items. Hierarchy relations, which describe the containment or aggrega-
tion of software items, play a central role in virtually all such evolution
analyses, since they o�er a powerful and natural way to examine the
(typically large) evolution data at multiple levels of detail. As such, meth-
ods that can depict time-dependent hierarchies are a central element of
the program evolution toolset.

Dynamic, or time-dependent, treemaps are one of the most e�ec-
tive techniques for displaying time-dependent hierarchies. Compared
to other techniques, such as node-link tree layouts, they use basically
every pixel of the available screen space to display information, and
as such scale to tens of thousands of items (tree nodes) per time step.
Many treemap methods exist for handling static (time-independent) hi-
erarchies (Shneiderman, 1992; Bruls et al., 2000), which also have been
shown to optimize various quality measures that help readability, such
as aspect ratio (Bruls et al., 2000; Nagamochi and Abe, 2007) and relative
positions of nodes (Wood and Dykes, 2008; Shneiderman and Watten-
berg, 2001; Ghoniem et al., 2015; Buchin et al., 2011; Duarte et al., 2014).
However, far fewer methods are available for dynamic trees (Hahn et al.,
2014; Sondag et al., 2017; Hahn and Döllner, 2017). One key problem
for dynamic treemapping is instability, i.e., the fact that relatively small
changes in a tree can induce disproportionately large changes in the re-
sulting treemaps. Finding a good way to quantify and reduce instability
is an open problem for dynamic treemap algorithms.

In this chapter, we address the above limitations with two main con-
tributions. Firstly, we propose a new dynamic treemap algorithm, called
Greedy Insertion Treemap (GIT). GIT aims to preserve treemap-cell
neighborhoods over time by constructing an initial so-called Layout
Tree (LT), which is next incrementally updated as the tree data changes,
so as to minimize undesired treemap-layout changes. Secondly, we eval-
uate the quality of GIT both in the spatial domain and the temporal do-
main against a large set of well-known treemap algorithms using sev-
eral established quality metrics, and on a large set of dynamic hierar-
chies extracted from real-world software repositories. Our evaluation
results show that GIT strikes a better balance between spatial and tem-
poral quality than the existing competing methods we evaluated against.
As GIT has a simple and computationally scalable implementation, we
argue that it represents a valuable contribution to the toolset of tech-
niques needed by program evolution comprehension.

The structure of this chapter is as follows. Section 4.2 outlines exist-
ing work on (dynamic) treemapping and related quality metrics, and
their use in program evolution comprehension, and also introduces the
treemap methods we compare against. Section 4.3 details our new GIT
algorithm. Section 4.4 presents our evaluation methodology for GIT and
the obtained results are revealed in Section 4.5 . Section 4.6 discusses our
proposal and outlines directions for future improvement.

68

4.2 related work

4.2 related work

In this section, we discuss the Algorithms (Section 4.2.1) and Quality
Metrics (Section 4.2.2) present in the dynamic treemap literature. Let
) = {=8 } be a hierarchy (tree) with nodes =8 , each having a weight
value 08 ≥ 0. Weights are given for leaf nodes and computed for non-
leaf nodes as the sum of their children weights. Let T ()) be the treemap
layout of) , with a rectangle cell A8 assigned to each =8 , so that the area
of A8 equals 08 .

4.2.1 Algorithms

Time-dependent hierarchies) (C) are a central artifact to explore in pro-
gram evolution comprehension. Since such analyses usually involve
tens or even hundreds of time steps C , small-multiple visualizations (one
image per time step) do not scale well, hence showing an animated lay-
out of the changing hierarchy is preferred (Diehl, 2007). For this, several
techniques construct a so-called union tree ∪C) (C), build a single layout
of this union tree, display it using Icicle plots (Kruskal and Landwehr,
1983) or Sunburst diagrams (Clark, 2006), and then highlight changes of
) (C) over time in it (Hurter et al., 2013). While this approach minimizes
instability (layout changes) over time, and is simple to implement, it
cannot handle long time sequences and/or large trees.

Treemaps cope well with the need for handling large trees (Schulz
et al., 2011; Shneiderman and Plaisant, 2017; Schulz, 2011; von Lan-
desberger et al., 2011). Slice and dice (SND) treemaps introduced the
idea but were found to create poor aspect-ratio (AR) cells which are
hard to see (Shneiderman, 1992). Squari�ed treemaps (SQR) propose a
heuristic that yields good (close to one) AR values (Bruls et al., 2000).
A subsequent algorithm (APP) was designed to approximate the opti-
mal AR (Nagamochi and Abe, 2007). While treemaps were originally
designed to handle time-independent trees, the need for stability was
soon revealed – that is, small changes in the input tree) should yield
only small changes in the treemap T ()). Several algorithms were de-
signed to improve stability. Ordered treemaps (OT) (Shneiderman and
Wattenberg, 2001) and Strip treemaps (STR) (Bederson et al., 2002) lay
out cells A8 using a given order of the nodes of) , using di�erent heuris-
tics – Pivot-by-Middle (PBM), Pivot-by-Size (PBZ), and Pivot-By-Split-
Size (PBS) (Shneiderman and Wattenberg, 2001). Other algorithms lay
out cells along a space-�lling fractal-like curve, e.g., Spiral (SPI) (Tu and
Shen, 2007), and Hilbert (HIL) and Moore (MOO) methods (Tak and
Cockburn, 2013). Yet another ordering technique considers node simi-
larities: Spatially-Ordered Treemaps (SOT) (Wood and Dykes, 2008) pro-
cesses sibling nodes ordered by decreasing similarity; NMap (Duarte
et al., 2014) places cells according to the similarity of their nodes us-
ing dimensionality reduction. Variants thereof include NMap Alternate

69

improved treemapping for dynamic data

Cuts (NAC), which splits the screen space alternating horizontal and
vertical slices; and NMap Equal Weights (NEW) which aims to create
similar-size cells.

Stability becomes a major concern when treemapping time-
independent trees with potentially long evolution and large variations.
However, only a few methods explicitly aim to treat dynamic data. Sta-
ble treemaps (Sondag et al., 2017) aim to improve both AR and stability
by using non-sliceable layouts. However, this method is computation-
ally expensive and not trivial to implement. Voronoi treemaps (Balzer
and Deussen, 2005; Balzer et al., 2005) achieve, in general, good AR val-
ues, and have been adapted to also handle dynamic trees to visualize
software structure evolution (van Hees and Hage, 2017; Gotz, 2011).
There exist also methods that propose other cell shapes, or combina-
tions of multiple shapes, such as bubble treemaps (Görtler et al., 2018),
jigsaw treemaps (Wattenberg, 2005), and orthoconvex treemaps (Berg
et al., 2014). However, such methods have not been speci�cally designed
with the aim of maximizing stability.

4.2.2 Metrics

As outlined in Sec. 4.2.1, treemap quality consists of two main compo-
nents:
Spatial quality captures how readable the treemap geometry is. The

best known, and most used, metric for this is the aspect ratio (AR) of the
cells A8 which should ideally reach one. The so-called readability metric
measures how often a user’s gaze changes direction while reading an
ordered treemap along the prede�ned node ordering (Bederson et al.,
2002). The continuity metric measures how often cells of nodes which
are close in the given node ordering are far apart in the treemap (Tu
and Shen, 2007).
Stability metrics capture how easily a user can understand the chang-
ing geometry of a dynamic treemap. This is measured essentially by
quantifying the visual change X (A8 (C), A8 (C + 1)) of the cells A8 , and then
aggregating such visual changes into a single value using some function
(. Early on, Shneiderman and Wattenberg (2001) de�ned the Layout Dis-
tance Change metric, where they used for X the distance between the
vectors (G8 (C), ~8 (C),F8 (C), ℎ8 (C)) and (G8 (C +1), ~8 (C +1),F8 (C +1), ℎ8 (C +
1)), G and ~ being the coordinates of the top-left corner, and F and ℎ,
the width, and the height of a rectangle A8 . They de�ned (as the aver-
age of X for all cells and revisions. Later, Hahn et al. (2014) use for X the
distance between the centers of A8 (C) and A8 (C +1) and also average for (.
Tak and Cockburn (2013) use for (the variance and de�ne X as (Shnei-
derman and Wattenberg, 2001). They also propose a drift metric, which
measures how much a cell’s center moves away from its average posi-
tion over long time intervals. Recently, we have seen new metrics that
measure stability not by looking only at a single cell’s position relative

70

4.3 greedy insertion treemap

Figure 4.1: Space partitioning from !) .

to its past states, but take into consideration the relationships between
all cells in the layout. Hahn et al. (2017) propose the relative direction
change, which measures angle di�erences between all centroids in the
layout between consecutive time-steps, and Sondag et al. (2017) propose
similar metric, where X measures how a cell moves with respect to all
its neighbors, where (is again the average. We discuss these metrics
further, and also propose a new one in Section 4.4.1.

4.3 greedy insertion treemap

As outlined in Sec. 4.2, many treemapping methods exist in the liter-
ature, and these have been evaluated by several metrics for both spa-
tial quality and stability. However, examining the above in more detail,
we �nd two limitations: (a) most existing treemap methods have been
designed without the explicit aim of maximizing stability; (b) among
the few methods where stability was an aim, there is no clear optimal
method which yields both good spatial quality and stability for long
time sequences of trees exhibiting a high dynamics in terms of node
additions, deletions, and weight changes. We next propose a method,
Greedy Insertion Treemap (GIT), that aims to outperform the current
state-of-the-art in these two respects.

GIT is designed from the start with the aim of increased stability. For
this, GIT aims to preserve cell neighborhoods in the treemap over time.
To this end, we use a so-called Layout Tree (!)) help data structure (not
to be confused with the tree) we want to visualize). Each node ; ∈ !)
represents a treemap cell, and may have two subtrees: (a) '(;) is rooted
at the top-right corner of ; ; and (b) �(;) is rooted at the bottom-left
corner of ; . Together with the cell weights,!) fully encodes a treemap T .
Indeed, we can construct T by traversing !) breadth-�rst. During this,
for each ; ∈ !) , we compute the total weight of its subtrees '(;) and
�(;), and cut the remaining drawing space vertically and horizontally
according to these summed weights, as illustrated in Fig. 4.1.

GIT proceeds in two phases: initialization and update, as follows.

Initialization: To start with, we need to construct !) from the �rst tree
) (C = 0) in our sequence. For this, we can use basically any method T8=8C
that constructs a (static) treemap for) (0) from which we can next gen-

71

improved treemapping for dynamic data

erate !) with the properties (a) and (b) mentioned above. We have ex-
perimented with two such initialization methods. First, we constructed
!) from a squari�ed treemap (i.e. T8=8C is created by SQR algorithm),
since SQR is well known to yield very good AR values. Alternatively, we
propose a simple heuristic T 38A42C8=8C that directly builds !) from the initial
tree) (0). Both initialization methods are compared next in Sec. 4.5.

To explain our heuristic T 38A42C8=8C , consider a single-level tree
) = [(=8 , 08)] = [(�, 10), (�, 2), (�, 8), (�, 4), (�, 1), (�, 3)], to be laid
out, for simplicity, in a square drawing area (of size 1; handling general
trees is trivial by top-down recursion. We build !) by sequentially
adding each =8 that is present in) to it (Fig. 4.2). After each addition,
we rebuild T from the current !) as explained above, so it covers the
entire (. Thus, existing nodes are ‘squeezed’ to make space for the new
nodes. In our example, we �rst add node �, which will cover the entire
(. To add �, we �nd the node = ∈ !) having the worst aspect-ratio cell
2 ∈ T . If F2 ≥ ℎ2 , we add � directly right of = (as in our example), else
we add � directly below =, and update T from the new !) again. For
the third node � , as the worst-aspect-ratio cell is �, and since ℎ� > F� ,
we add � below � and update T from !) again. Fig. 4.2(d-f) shows the
addition of the remaining nodes of) .

T=[(A,10), (B,2),

 (C,8), (D,4),

 (E,1), (F,3))]

T=[(A,10), (B,2),

 (C,8), (D,4),

 (E,1), (F,3))]

T=[(A,10), (B,2),

 (C,8), (D,4),

 (E,1), (F,3))]

T=[(A,10), (B,2),

 (C,8), (D,4),

 (E,1), (F,3))]

T=[(A,10), (B,2),

 (C,8), (D,4),

 (E,1), (F,3))]

T=[(A,10), (B,2),

 (C,8), (D,4),

 (E,1), (F,3)]

(a) (b)

(c) (d)

(e) (f)

LT=LT=

LT= LT=

LT= LT=

D

B

Figure 4.2: Building the initial layout tree !) (green: inserted cells).

For didactic purposes, nodes were added in alphabetical order, but
in reality, we want nodes to be added in random order, hence when

72

4.3 greedy insertion treemap

dealing with truly hierarchical data, one sub-tree is not completely laid
out before its siblings, which could cause it to be ‘squeezed’.

Update: We now have an initial treemap T and its !) . We next edit
!) to handle weight changes, node additions, and node deletions as
) changes. Weight changes do not change !) . Additions are handled
just as adding regular nodes when building the initial !) using T 38A42C8=8C .
Additions tend to increase the cells’ aspect ratios, so we do them after
node removals and weight changes. Removals are done by editing !) as
follows (see also Fig. 4.3):

1. If a node = ∈ !) has a �(=) subtree, we replace = by �(=);

2. else if = has a '(=) subtree, we replace = by '(=);

3. else = has no subtrees, so we just remove it from !) .

After handling all changes in a new revision of) , we rebuild T from
!) , as already explained. As we show next in Sec. 4.5, GIT scores a very
good balance of spatial quality vs stability.

Figure 4.3: Removal of nodes (red) from layout tree and its treemap.

73

improved treemapping for dynamic data

4.4 evaluation

To evaluate GIT, we considered the following aspects:

4.4.1 Metrics

To evaluate the quality of GIT, we proceed as follows. For spatial quality,
we use the well-known Aspect Ratio metric (�') (Bruls et al., 2000). For
each cell 2 in a treemap T ,�'2 =<8=(F2 , ℎ2)/<0G (F2 , ℎ2). This metric
is considered by virtually all rectangular treemap evaluations we are
aware of.

For stability, we compute three metrics. The �rst two are the
Shneiderman-Wattenberg’s Layout Distance Change (!��) (Shnei-
derman and Wattenberg, 2001) and Tak-Cockburn’s Location Drift
(!�) (Tak and Cockburn, 2013), already introduced in Sec. 4.2. The !��
metric captures the instability of a cell between consecutive revisions.
In contrast, the !� metric captures the deviation of a cell’s position over
all timesteps.

We also propose a (new) third metric, which extends !�� to also
consider the change of the data. We de�ne the visual change XE8 of a cell
28 as the Euclidean distance traveled by the four corners of the rectangle
A8 between C and C+1, normalized by the treemap diagonal

√
, 2 + � 2, so

XE8 ∈ [0, 1]. Next, we de�ne the data change of 28 as X08 = |08 (C) −08 (C +
1) |, where 08 is the relative weight of node 28 . With these, we de�ne the
stability &8 of a cell 28 in a treemap as

&8 = (1 − XE8)/(1 − X08) . (4.1)

We de�ne the stability & of an entire treemap as the average of its
cells’ stabilities &8 . In contrast to !�� , & measures how much a rect-
angle changes in relation to its data change. Measuring only absolute
changes of rectangles (!��) does not, we believe, fully characterize sta-
bility. Indeed, a rectangle could (and should) change a lot if its underly-
ing cell’s weight changes a lot. However, this does not mean necessarily
that the treemap algorithm is unstable.

4.4.2 Techniques

We tested GIT against 14 other treemapping algorithms: Approximate
(APP), Hilbert (HIL), Stable treemaps (LM0, LM4), Moore (MOO), NMap-
Alternate-Cuts (NAC), NMap-Equal-Weights (NEW), Pivot-by-Middle
(PBM), Pivot-by-Size (PBZ), Pivot-by-Split-Size (PBS), Slice- and-Dice
(SND), Spiral (SPI), Squari�ed (SQR), and Strip (STR). For NMap, we use
as seed layout the one computed by SQR (Duarte et al., 2014). We did
not consider non-rectangular treemap methods in the evaluation, since

74

4.5 results

not all the metrics in Sec. 4.2.2 directly generalize to non-rectangular
cells.

4.4.3 Datasets

We extracted 28 dynamic hierarchies by mining the structure of soft-
ware projects (folders, �les, classes) from 28 corresponding public
GitHub repositories, using a custom automated pipeline that scans all
available revisions and extracts the code structure using Understand (Sc-
iTools, 2017). As weights 08 , we use the number of lines of code of the re-
spective items. Other software quality metrics delivered by Understand
can be used instead, if desired. For more details on this process, we refer
to (da Silva et al., 2016). The considered repositories have quite di�er-
ent sizes, number of revisions, hierarchy depths and shapes, number
of developers, and code type (programming languages and application
types). Statistics about the datasets are available in Table 4.1.

4.5 results

We evaluate GIT on the aforementioned datasets, algorithms, and met-
rics collection from several perspectives, by answering a series of ques-
tions. Below, average stability (refers to the average of the !�� and
& metrics introduced in Sec. 4.2.2. All results that we were not able to
�t in this chapter can be found at our online repository (The Authors,
2018).

4.5.1 How does GIT’s initialization a�ect its quality?

As outlined in Sec. 4.3, we can initialize GIT with various treemap lay-
outs, such as squari�ed (SQR) or using the direct initialization illus-
trated in Fig. 4.2. Intuitively, one would think that SQR initialization is to
be preferred, since SQR is well known for its high�' values. To test this,
we ran GIT using both initializations for all datasets. After initialization,
the same regular GIT update mechanism is used in both cases. Figure 4.4
shows the per-dataset average stability and�' values. Interestingly, we
see that the higher-�' SQR initialization actually yields slightly worse
�' values for the entire sequence. For stability, the two initializations
behave basically identically. We can explain this result by the fact that
the GIT direct initialization follows the same heuristics as the update
steps, while SQR forces GIT to start with a layout which needs more
substantial updates next as the tree data changes. At a higher level, this
experiment suggests that GIT performs very well using direct initializa-
tion. As such, we use this initialization in all subsequent experiments.

75

improved treemapping for dynamic data

Table 4.1: Software evolution tree datasets used in the evaluation.

Dataset Revisions Nodes (total) Average depth

animate.css 50 3454 2.87
AudioKit 22 11178 6.95
bdb 62 2658 3.83
beets 106 9844 3.75
brackets 88 120292 12.85
ca�e 44 12969 4.93
calcuta 50 2882 10.76
cpython 321 584821 6.50
earthdata-search 46 18539 6.82
emcee 64 1746 3.62
exo 97 36436 11.88
fsharp 69 22906 7.89
gimp 72 170418 5.19
hospitalrun-frontend 38 16759 5.71
Hystrix 61 15530 13.29
iina 74 6849 4
jenkins 137 277185 11.94
Lea�et 84 13381 4.86
OptiKey 36 9782 6.72
osquery 37 14111 5.75
PhysicsJS 20 2022 4.6
pybuilder 53 5457 7
scikitlearn 88 48468 5.75
shellcheck 53 746 2.39
soundnode-app 35 3196 6.88
spacemacs 51 10201 4.96
standard 29 203 2
uws 122 4093 2.76

Totals: 2132 1458036 5.77

76

4.5 results

Figure 4.4: GIT performance using T 38A42C
8=8C

(GIT) vs squari�ed initialization
(SGI).

4.5.2 How do visual quality and stability vary over time?

As we have already noted, spatial quality and stability are roughly in-
versely correlated desiderates – a treemap that scores well for one of
these metrics tends to score less well for the other one. Hence, compar-
ing how these metrics change in time is interesting. To answer this, we
display, for one dataset and all tested algorithms, two charts showing
the median (black), 25-75% range (green), and 5-95% range (gray) of the
�' and (metrics (Fig. 4.5). We see that APP and SQR have the best �'
values, and SND the worst �' values. The other algorithms, including
GIT, score in-between. In contrast, GIT, LM0, and SND score the best
for stability, while all other algorithms exhibit a non-negligible num-
ber of unstable time moments. This suggests that GIT strikes a good
compromise between stability and aspect ratio.

While Fig. 4.5 (right) shows how the per-timestep stability changes
over time, it does not show us which actual instability patterns each
method is prone to. Knowing this is useful, as we can better under-
stand what to expect in terms of (undesired) cell moves from a certain
algorithm, including GIT. To show this, we plot the trails connecting
all centers :8 (C) of all rectangles A8 (C) for consecutive C values over a
given tree sequence (Fig. 4.6). We set the opacity of each line segment
(A8 (C), A8 (C + 1)) to the Euclidean distance ‖:8 (C) − :8 (C + 1)‖ normal-
ized by the square root of the number of time steps. Hence, dark long
lines show big moves (instability) while small moves (close to stability)
are hardly visible. The image con�rms the high stability of GIT – in
contrast to most other methods, except SND, GIT creates smaller cell
moves (shorter dark lines), and most of these are close to horizontal or

77

improved treemapping for dynamic data

Figure
4.5:D

istribution
ofaspectratio

(�
',left)and

average
stability

((,right)valuesovertim
e

forthe
G

IM
P

dataset.

78

4.5 results

vertical. Interestingly, we see that other methods create quite di�erent
move patterns: SQR, PBS, PBZ, and PBM have mostly (large) diagonal
moves. SPI shows a coil-like movement and in STR we see no vertical
travel. Overall, we see that GIT is more stable not only because it yields
smaller moves, but also because it constrains these to fewer motion di-
rections, thus causes less complex dynamics (that the user must follow)
in the resulting visualization. This can be also checked by watching the
actual videos showing the algorithms in action (The Authors, 2018).

4.5.3 How do all quality metrics vary over all datasets?

The experiments so far do not show the individual stability metrics (in-
cluding !� , which can be only computed for an entire sequence), nor
the metrics over all 28 tested tree sequences. To get more insight in
how GIT performs in these respects, we show the per-dataset average
values (for�' and the three stability metrics) for all tested methods, all
datasets (Fig. 4.8). Cells are colored using a purple (low values) to yellow
(high values) colormap. We observe the following: For �', APP scores
consistently better for most datasets than all other tested methods. SQR
reaches the highest�' values, but only for a very few datasets. SND, as
expected, scores overall the poorest. The remaining methods can be di-
vided roughly into two groups, with NEW, PBM, PBS, STR, and PBZ
scoring overall higher than GIT, HIL, LM0, LM4, MOO, and NAC. Con-
cerning stability, SND scores consistently the best for all three consid-
ered metrics, and GIT, LM0, and LM4 come in the second place. This
strengthens our earlier observation that GIT strikes a good balance be-
tween stability and spatial quality.

4.5.4 How to summarize GIT’s quality?

As noted, GIT seems to strike a good balance between spatial quality
and stability. We summarize both these metrics for GIT and all other
algorithms using a star plot (Fig. 4.9). The �gure shows a scatterplot
with G mapping average stability (and ~ aspect ratio�'. Categorically
colored points, one color per method, indicate the tested methods, at-
tributed by their (and �' values over all datasets, all time steps. From
each point (method), we draw lines connecting it with the (and�' val-
ues obtained for all the 28 tested datasets. A good algorithm has thus
its ‘star’ center placed top-right and relatively short star arms, indicat-
ing consistent quality over the entire dataset collection. We see several
patterns, as follows.

At a high level, stability is roughly inversely correlated with spatial
quality – methods that score very well on one tend to score worse on
the other. We see three groups of methods: APP, PBS, SQR, PBM, STR,
PBZ and NEW score well on spatial quality, but poorly (except NEW) on

79

improved treemapping for dynamic data

Figure 4.6: Instability (cell center motion) patterns, all methods, AudioKit, exo
datasets.

80

4.5 results

Figure 4.7: Instability (cell center motion) patterns, all methods, brackets, and
fsharp datasets.

81

improved treemapping for dynamic data

Figure 4.8: Average metric values for all techniques and all datasets.

82

4.6 conclusion

stability. SND is the opposite outlier, scoring best on stability but clearly
poorest on spatial quality. A middle group of methods (GIT, LM0, LM4,
MOO, NAC, SPI, and HIL) trades well stability vs spatial quality. Within
these, GIT scores the best stability, and LM0 the best spatial quality. As
such, GIT and LM0 can be considered complementary methods with re-
spect to the stability vs spatial quality trade-o�. However, LM0 has a
considerably more complex and slower implementation than GIT – for
details, we refer to (Sondag et al., 2017). Separately, we see that GIT’s
star size (convex hull containing the lines emerging from the GIT point)
is one of the smallest of all methods present in the �gure. Hence, GIT
o�ers one of the most consistent behaviors over the entire dataset col-
lection from all tested algorithms.

Figure 4.9: Star plot summarizing both visual quality and stability, all evaluated
algorithms, all datasets.

4.6 conclusion

We have presented Greedy Insertion Treemaps (GIT), a new method
for computing treemap layouts for time-dependent hierarchies. As dis-
cussed earlier, there are only a few methods in the literature that con-
sider quality aspects pertaining to both spatial quality and stability of
such treemaps. Our contribution, in brief, is proposing a new method
that takes both these quality aspects into account; and evaluating our
method comprehensively on a broad dataset of 28 time-dependent hi-

83

improved treemapping for dynamic data

erarchies extracted from real-world dynamic datasets (software reposi-
tories), against 14 well-known treemapping methods, and using 4 qual-
ity metrics. Our results show that our new GIT method strikes a good
balance between spatial quality and stability as compared to state-of-
the-art methods. Additionally, our method is simple to implement, fast,
generic (with respect to the considered dynamic hierarchies), and has
no hidden free parameters. More importantly, our method is an addition
of a very small set of so-called stateful methods that consider the evo-
lution of a dynamic tree sequence when computing suitable treemaps
thereof. Most existing treemapping methods are not designed to con-
sider tree state, which arguably makes them suboptimal for handling
inherently stateful datasets like dynamic trees.

Chapter 3 has included GIT in the comparison with other treemap-
ping algorithms and, more importantly, on a far more diverse collection
of dynamic hierarchical datasets extracted from more application do-
mains than evolving software systems. The respective evaluation shows
that GIT performs well also for such more diverse datasets. In contrast
to that broader (but shallower) evaluation, we focus in this chapter on
a narrower evaluation that considers only datasets from software sys-
tems, but analyze GIT’s performance in more depth. This provides, we
believe, additional insights that show that, for the domain of evolving
software hierarchies, GIT is the best solution in terms of trade-o� of sta-
bility and spatial quality. Drawing this conclusion for the wider collec-
tion of datasets evaluated in Chapter 3 is, however, not yet possible. To
do this, we would need to explore GIT (and the other tested algorithms
there) in more detail, e.g., by visually examining the dynamic patterns
they produce, as shown here in Fig. 4.6. This also underlines the fact
that using only a few quantitative metrics such as stability and visual
(spatial) quality is necessary, but not su�cient, to fully capture the be-
havior of dynamic treemapping algorithms. Future work is needed to
capture more complex motion patterns, such as those shown in Fig. 4.6,
by suitable metrics, and next to gauge how desirable (or, on the other
hand, confusing for the end user) such patterns are when present in
a dynamic hierarchy visualization. Finally, understanding the trade-o�
between the (algorithmic) reasons behind spatial quality and stability,
i.e. what to do to optimally satisfy both these requirements, is an open
problem, to which we believe to have contributed to with our current
work.

84

5E VA L UAT I N G D Y N A M I C P R O J E C T I O N S

The �rst part of this thesis has explored how to use treemapping al-
gorithms to visualize hierarchical and time-dependent data. We have pre-
sented evaluations of existing treemapmethods, and also introduced a new
concept of stability which is key to characterizing dynamic treemaps. We
have also presented a new dynamic treemapping algorithm that scores bet-
ter than existing ones on the joint requirements of stability, spatial quality,
simplicity, and computational scalability. However, treemaps only address
the visual exploration for weighted time-dependent hierarchical data.
The second part of this thesis focus on time-dependent multidimensional
data, i.e., data with a large number or attributes or dimensions whose val-
ues change over time. To make sense of such multidimensional datasets,
dimensionality reduction methods (or projections) represent one of the
most popular and e�ective approaches. Similarly to the situation regard-
ing the literature of dynamic treemaps, there are few works that consider
dynamic projections, that aim to visualize time-dependent multidimen-
sional data. Following the approach presented in Chapters 2 and 3, we at-
tack this problem by presenting here an extensive evaluation of dynamic
projection algorithms, also introducing new suitable ways to de�ne and
measure the stability of such algorithms in the presence of data changes.

Abstract: Dimensionality reduction methods are an essential tool for
multidimensional data analysis, and many interesting processes can be
studied as time-dependent multivariate datasets. There are, however,
few studies and proposals that leverage the concise power of expression
of projections in the context of dynamic/temporal data. In this chapter,
we aim at providing an approach to assess projection techniques for dy-
namic data and understand the relationship between visual quality and
stability. Our approach relies on an experimental setup that consists of
existing techniques designed for time-dependent data and new varia-
tions of static methods. To support the evaluation of these techniques,
we provide a collection of datasets that has a wide variety of traits that
encode dynamic patterns, as well as a set of spatial and temporal sta-
bility metrics that assess the quality of the layouts. We present an eval-
uation of 9 methods, 10 datasets, and 12 quality metrics, and elect the
best-suited methods for projecting time-dependent multivariate data,
exploring the design choices and characteristics of each method. We
designed our evaluation pipeline and benchmark speci�cally to be a

This chapter is based on the paper “Quantitative Evaluation of Time-Dependent Multidi-
mensional Projection Techniques” (Vernier et al., 2020a)

85

evaluating dynamic projections

live resource, open to all researchers who can further add their favorite
datasets and techniques at any point in the future.

5.1 introduction

Dimensionality reduction (DR) methods, also called projections, are
used in many applications in information visualization, machine learn-
ing, and statistics. Compared to other high-dimensional data visualiza-
tion techniques, projections are especially e�ective for datasets with
many observations (also called samples or points) and attributes (also
called measurements, dimensions, or variables) (Liu et al., 2017). Many
projection techniques exist, with wide varieties of computational e�-
ciency, ease of use, ability to preserve and/or enhance di�erent data
patterns. Surveys have also focused on assessing quantitative and qual-
itative aspects of projection techniques (Nonato and Aupetit, 2019; Van
Der Maaten et al., 2009; Espadoto et al., 2019), thereby helping practi-
tioners in choosing a suitable one for a given context.

Most projection techniques have been designed and evaluated only
for static data. Projecting dynamic (time-dependent) data is, however,
equally important. Such data is found in most science and engineer-
ing areas, such as biology (Teo et al., 2017), medicine (Grillenzoni and
Fornaciari, 2019), and �nance (Krapl, 2019). The body of research in
time series visualization is rich (Aigner et al., 2008), thereby underlining
the importance of visualizing such data. Yet, there are only few exam-
ples of projecting time-dependent data (Hu et al., 2010; Mao et al., 2007;
Ward and Guo, 2011; Bernard et al., 2012; Nguyen et al., 2017; Jäckle
et al., 2016). Even fewer works focus on designing projection techniques
speci�cally for dynamic data (Rauber et al., 2016; Fujiwara et al., 2019).
In particular, it is not clear how to measure and balance the two key
aspects of such projections: visual quality and stability. While visual
quality was studied well for static projections, stability, seen as the abil-
ity to create a set of projections that allows users to maintain a cohesive
mental map through time, is recognized as essential for dynamic data
visualization (Archambault et al., 2011; Brehmer et al., 2019), but has not
been formally de�ned nor quanti�ed for dynamic projections.

We work towards �lling this gap in assessing projection techniques
for dynamic data with the following main contributions:

• We propose novel variations of existing static projection tech-
niques for the context of visualizing time-dependent data;

• We propose a set of metrics to quantify the stability of dynamic
projections;

• We benchmark the visual quality and stability of dynamic projec-
tions on a dataset collection to get insights on which methods
favor which of the measured quality aspects.

86

5.2 related work

Our work can help researchers in targeting the identi�ed challenges
of current dynamic projection techniques, therefore potentially lead-
ing to improved ones. Separately, practitioners can use our �ndings in
the process of determining which dynamic projection technique is best
suited to their given user context. Finally, our creation of an open bench-
mark for assessing dynamic projections (containing datasets, tech-
niques, metrics, visualizations, and associated work�ows) should bene-
�t both user types by providing a basis via which such techniques can
be transparently compared.

The structure of this chapter is as follows. Section 5.2 outlines re-
lated work and evaluation techniques for projections for static and dy-
namic data. Section 5.3 details the proposed experiment we conducted
to quantitatively assess the behavior of projection techniques for dy-
namic data, including techniques, datasets, and evaluated metrics. Sec-
tion 5.4 presents the obtained results. Section 5.5 discusses the causes
of the observed dynamic projection behavior. Finally, Section 5.6 con-
cludes the chapter. For replication purposes, all our datasets, code, work-
�ow, and results are openly available (The Authors, 2019).

5.2 related work

5.2.1 Preliminaries

We �rst introduce some notation. Let x ∈ R= be an =-dimensional sam-
ple. A revision RC = [xC8], or timestep, of our data consists of a list of #
samples xC8 , 1 ≤ 8 ≤ # measured at the same time moment C . A dynamic
dataset D is a list of) revisions D =

[
RC

]
, 1 ≤ C ≤) . For simplicity of

exposition and implementation, but without loss of generality, we con-
sider next that the sample count # is constant over time. In this case, D
can be represented as a set of) # -by-= matrices, one for each timestep.

A projection technique is a function % : R= → R@ , where @ � =. For
visualization purposes, @ ∈ {2, 3}. Since 2D projections are by far the
most commonly used, we next only consider the case @ = 2. We denote
the projection of observation x by % (x). For each timestep C , let % (RC)
be the 2D scatterplot of all points in RC . Finally, let % (D) be the set of
) scatterplots for all timesteps of dataset D. These can be rendered as
animations, small multiples, trail sets, or other visualization encodings.

Visualization of high dimensional data (Liu et al., 2017) is a well stud-
ied topic populated with many techniques such as parallel coordinate
plots (Inselberg and Dimsdale, 1990), table lenses (Rao and Card, 1994),
scatterplot matrices (Becker et al., 1996), and dimensionality reduction
(DR) methods (Nonato and Aupetit, 2019; Van Der Maaten et al., 2009;
Espadoto et al., 2019). From all these we next focus only on DR tech-
niques, both for static and dynamic data, and evaluation methods for
both of these technique classes.

87

evaluating dynamic projections

5.2.2 Techniques for static dimensionality reduction

The body of research that encompasses static DR is large and spans
the �elds of Information Visualization and Machine Learning. There
are dozens of static techniques designed to optimize di�erent objectives
and to work well under di�erent constraints. These can be classi�ed and
categorized using several taxonomies (Van Der Maaten et al., 2009) that
guide users in choosing methods that meet their requirements. We do
not further elaborate on such techniques, as several surveys extensively
discuss static projections. Fodor (2002) present, to our knowledge, the
�rst survey of DR techniques covering non-linear and vector quantiza-
tion methods. Yin (2007) surveys non-linear DR methods. Bunte et al.
(2012) proposes a framework to quantitatively compare nine DR meth-
ods. Cunningham and Ghahramani (2015) presents a theoretical com-
parison of 15 linear DR techniques. A similar survey, extended to 30
DR techniques, both linear and non-linear, is provided by Sorzano et al.
(2014). Additional surveys look at DR methods in the larger context of
high-dimensional data visualization, thus comparing and contrasting
them with other visualization techniques (Buja et al., 1996; Ho�man and
Grinstein, 2002; Engel et al., 2012; Kehrer and Hauser, 2013). The most
recent survey in this area (Nonato and Aupetit, 2019) discusses techni-
cal aspects of DR methods, and also how such methods satisfy various
user-level tasks.

5.2.3 Evaluations of static dimensionality reduction

Taxonomies as the ones listed above, compare DR methods mainly from
technical (algorithmic) and task-suitability aspects. An increasingly vis-
ible alternative approach is to compare techniques by measuring var-
ious quality metrics on several techniques and datasets. A wealth of
such quality metrics exist – for recent overviews, see (Pölzlbauer, 2004;
Lee and Verleysen, 2009; Lueks et al., 2013; Nonato and Aupetit, 2019;
Espadoto et al., 2019). Di�erent metrics gauge di�erent desirable as-
pects of a projection, and usually, several metrics are jointly used to
assess DR quality (Gisbrecht and Hammer, 2015). Just as for DR tech-
niques, metrics can be organized using di�erent taxonomies. Following
(Espadoto et al., 2019), these are as follows. Aggregate metrics, such as
trustworthiness, continuity, neighborhood hit, distance and class con-
sistency (Sips et al., 2009; Tatu et al., 2010), cluster visual separation
metrics (Albuquerque et al., 2011; Sedlmair et al., 2013; Sedlmair and
Aupetit, 2015), and metrics that capture human perception based on
machine learning (Aupetit and Sedlmair, 2016) characterize an entire
2D scatterplot by a single scalar value. This is convenient when com-
paring (many) di�erent scatterplots to choose a suitable one, such as
in scagnostics applications. However, a scatterplot may exhibit di�er-
ent quality values in di�erent areas, so a single aggregated value may

88

5.2 related work

not be suitable (Joia et al., 2011; Nonato and Aupetit, 2019). Point pair
metrics address this by measuring how point pairs (% (x), % (y)) in a pro-
jection relate to their corresponding sample pairs (x, y). These include
Shepard diagrams (Joia et al., 2011) and co-ranking matrices (Lee and
Verleysen, 2009). Finally, local metrics gauge separately every (small)
neighborhood in a projection, thus providing the highest level of detail,
and are typically visualized atop of the projection itself. These include
the projection precision score (Schreck et al., 2010), stretching and com-
pression (Aupetit, 2007; Lespinats and Aupetit, 2011), and false neigh-
bors, missing neighbors, and average local errors (Martins et al., 2014,
2015).

Since all the above metrics aim to capture spatial aspects of the pro-
jection, we refer to them next as spatial quality metrics. Recent surveys
have proposed extensive evaluations of spatial quality metrics on bench-
marks containing a variety of datasets and DR methods (Espadoto et al.,
2019; Van Der Maaten et al., 2009). However, time-dependent datasets
were not considered.

5.2.4 Techniques for dynamic dimensionality reduction

The literature is much less rich regarding DR methods that explicitly
consider dynamic data. The dynamic t-SNE (dt-SNE) method of Rauber
et al. (2016) extends the well-known t-SNE method (van der Maaten
and Hinton, 2008) by adding a stability factor _ to the objective func-
tion. Such a factor jointly minimizes the Kullback-Leibler divergence
proposed by t-SNE to preserve high-dimensional point neighborhoods
and also restricts the amount of motion ‖% (xC+1) − % (xC)‖ that points
can have between consecutive timesteps. More recently, Fujiwara et al.
(2019) proposed a PCA-based method to deal with streaming data. Note
that this is a harder (and di�erent) problem from the one we aim to
study since one cannot anticipate changes occurring upstream in the
data when optimizing for placement of points in 2D. As such, analyzing
this (and similar) methods is out of our scope. Separately, several au-
thors use DR methods to create static maps that describe multivariate
time series. Hu et al. (2010) use Self-Organizing Maps (Kohonen et al.,
2001) to create 2D trails that capture the dynamics of human motion
data. Rauber et al. (2017b) use similar trails, created by dt-SNE, to visu-
alize the learning process of a neural network. Mao et al. (2007) use PCA
to project text feature evolution in text sequences. Ward and Guo (2011),
Bernard et al. (2012) and, more recently, Ali et al. (2019) use similar ap-
proaches to �nd cyclic behavior, outliers, and trends in temporal data
from medical, �nancial, and earth sciences domains. In contrast to the
previous methods, m-TSNE (Nguyen et al., 2017) describes multivariate
time series at a higher level of aggregation as single points instead of
trails or polylines. Temporal MDS (Jäckle et al., 2016) projects D as a

89

evaluating dynamic projections

series of 1D projections, creating a map where the x-axis is time, and
the y-axis shows the similarity of observations.

5.2.5 Evaluation of dynamic dimensionality reduction

Evaluating dynamic DR methods can be split into two aspects. First, just
like for static DR methods, one is interested to see how well techniques
capture the spatial aspects of the underlying data. For this, one typically
uses the same types of spatial quality metrics as for static projections
(Sec. 5.2.3). A separate important aspect for dynamic DR methods is
stability. Loosely put, stability describes how a dynamic DR technique
encodes changes in the data into changes in the 2D metaphor used to
visualize the data – note that this de�nition of stability is the same as
the one we used in the �rst part of this thesis for dynamic treemapping
techniques. Such 2D metaphors can be grouped into spatial ones, where
di�erent timesteps map to di�erent plots, such as in small multiples;
and animation-based ones, where di�erent timesteps are encoded into
frames of a 2D animation.

Stability metrics were proposed and evaluated to assess the qual-
ity of other visualizations of dynamic data such as time-dependent
treemaps (Sondag et al., 2017; Vernier et al., 2018a,b) (see also Chap-
ters 2-3). Stability is related to the capacity of a DR technique to deal
with so-called out-of-core data. Simply put, this means the ability for
a projection, created from a given dataset D, to add extra points X ∉

D to the resulting 2D depiction % (D), without distorting this depic-
tion too much so that its understanding becomes hard. While recent
works consider out-of-core and stability as key properties for DR pro-
jections (Nonato and Aupetit, 2019; Boytsov et al., 2017; Espadoto et al.,
2020b; García-fernández et al., 2013; Buja et al., 2008), we are not aware
of speci�c quality metrics that quantify these.

5.3 experimental setup

To evaluate how dynamic DR techniques perform, we follow a method-
ology similar to the one proposed in Espadoto et al. (2019) for evaluat-
ing static DR techniques, as follows. We �rst select a set of dynamic DR
techniques to evaluate. Next, we select a collection of datasets that cover
various aspects, or traits, that characterize high-dimensional dynamic
data. Thirdly, we evaluate both spatial quality and stability metrics on
all combinations of techniques and datasets; in this step, we also pro-
pose novel metrics to gauge stability. We describe all these steps next.
The analysis of the discovered correlations between techniques, dataset
traits, and quality metrics obtained from our experiments is discussed
afterwards in Sec. 5.4.

90

5.3 experimental setup

5.3.1 Techniques

We selected the dynamic DR techniques to evaluate based on the
following considerations. First, we only consider techniques % , which,
given a dataset consisting of several timeframes RC , produce corre-
sponding 2D scatterplots % (RC). We argue that this is the most generic
de�nition of a dynamic projection – from such scatterplots, other
types of visualizations can be constructed next as desired (animation,
small multiples, trails). This is analogous to expecting a generic static
projection technique to deliver a 2D scatterplot. Hence, techniques that
deliver di�erent output types, such as m-TSNE (Nguyen et al., 2017) and
temporal MDS (Jäckle et al., 2016), are excluded from our evaluation.
Secondly, we only consider techniques that (1) are generic with respect
to the input data (size, dimensionality, provenance) they can handle;
(2) well-known and often used in practice, so their evaluation arguably
serves a sizeable user group; and (3) easy to set up, control, and
have publicly available implementations, for reproducibility. We next
describe the selected techniques.

t-SNE and variants: Probably the simplest way to project dynamic
data is to compute a single, global, projection % (D) for the entire dataset
D and next visualize the timeframes by using the desired method, be
it animation, trails, or small multiples. We next call this the global (G)
approach. While this arguably favors stability (since % sees all data D at
once), it likely yields limited spatial quality, since % has the challenging
task of placing well all points from all revisions in D. An equally
simple approach is to compute independent projections % (RC) for each
revision RC . We call this next the per-timeframe (TF) approach. This
arguably favors spatial quality, since % must only optimize positions
for each revision RC separately, rather than the entire D. However,
this approach can yield poor stability, since timeframes are projected
without knowledge of each other. Both the global and timeframe
approaches were suggested, but not quantitatively evaluated, in the
dt-SNE paper (Rauber et al., 2016). Given this, and also the fact that
t-SNE is a very well-known static technique, we next consider G-t-SNE,
TF-t-SNE, and dt-SNE in our evaluation.

UMAP: This recent DR technique (McInnes et al., 2018) has a mathe-
matical foundation on Riemannian geometry and algebraic topology.
According to recent studies (Espadoto et al., 2019; Becht et al., 2019),
UMAP o�ers high-quality projections with lower computational cost
and better global structure preservation than t-SNE, being thus an
interesting competitor in the DR arena. We consider in our evaluation
both the global (G-UMAP) and per-timeframe (TF-UMAP) variants of
this technique.

91

evaluating dynamic projections

PCA: Following (Fujiwara et al., 2019; Mao et al., 2007; Ward and
Guo, 2011), we also consider Principal Component Analysis (Jolli�e,
1986), implementing the global and timeframe strategies. In detail,
PCA performs a linear mapping of the data D to, in our case, 2D by
maximizing the data variance in the 2D representation. The global
strategy implies computing PCA once for the entire D. In contrast,
timeframe PCA means computing PCA separately for each revision
RC . Given the widespread use of PCA in many �elds of science, and
also its out-of-core ability (which, as outlined in Sec. 5.2.5, is related to
stability), we consider both G-PCA and TF-PCA next in our evaluation.

Autoencoders: Often used in dimensionality reduction and represen-
tation learning, autoencoders (Hinton and Salakhutdinov, 2006; Ballard,
1987) are hourglass-shaped neural networks. They are composed of an
encoder that takes the original data D and compresses it into a compact
(latent) representation % (D) of lower dimensionality (two in our case),
and a decoder, which takes % (D) and aims to reconstruct a good approx-
imation of the original data D. While autoencoders have been often
used to create static projections of high-dimensional data, they have
not, to our knowledge, been quantitatively evaluated for their ability
to handle dynamic data. We evaluated four types of autoencoders, as
follows. Dense autoencoders (AE) are comprised of only fully-connected
(dense) layers and are the standard variant. Convolutional autoencoders
(CAE) (Masci et al., 2011) have both fully-connected and convolutional
layers. The convolutional layers apply a non-linear transformation
to the data that takes into account the spatial correlation between
attributes, for instance, the proximity of pixels in an image. Variational
autoencoders may have both fully-connected layers (VAE) (Kingma
and Welling, 2014) and convolutional layers (CVAE). The main di�er-
ence between dense and variational autoencoders is the addition of
stochastic behavior in the intermediate layer of the latter. The encoder
produces two vectors – an intermediate representation (IR) and an
uncertainty degree f for each IR value. The decoder tries to reconstruct
the input through a sample from the latent space distribution with
mean IR and variance f , thus forcing the network to learn similar
representation for similar inputs. Convolutional based architectures
are not generic regarding input and a meaningful spatial relationship
between attributes is expected (such as found on image data). We,
therefore, restrain the analysis on this document to AE and VAE. The
results of CAE and CVAE runs for the image based datasets (fashion
and quickdraw) can be found in the online material (The Authors, 2019).

Implementation: We implemented the chosen dynamic DR tech-
niques (G-t-SNE, TF-t-SNE, dt-SNE, G-UMAP, TF-UMAP, G-PCA, TF-
PCA, AE, CAE, VAE, CVAE) as follows. For t-SNE and PCA, we used
scikit-learn (Pedregosa et al., 2011) with default parameters. For dt-SNE

92

5.3 experimental setup

Table 5.1: Hyperparameters of the autoencoder-based DR methods

dataset technique # hidden layers # nodes/layer # epochs

cartolastd AE 2 10, 10 50
cartolastd VAE 2 10, 10 100
cifar10cnn AE 2 10, 10 20
cifar10cnn VAE 2 100, 10 20
esc50 AE 2 10, 10 40
esc50 VAE 2 100, 10 20
fashion AE 3 500, 500, 2000 40
fashion VAE 3 2048, 1024, 512 20
gaussians AE 2 10, 10 20
gaussians VAE 2 100, 10 20
nnset AE 2 10, 10 20
nnset VAE 2 100, 10 20
qtables AE 2 10, 10 20
qtables VAE 2 100, 10 20
quickdraw AE 3 500, 500, 2000 40
quickdraw VAE 3 2048, 1024, 512 20
sorts AE 2 10, 10 20
sorts VAE 2 100, 10 20
walk AE 2 10, 10 20
walk VAE 2 100, 10 20

and UMAP, we used the implementation provided online by the au-
thors (Rauber et al., 2016; McInnes et al., 2018). Finally, we implemented
the four autoencoder models using Keras (Chollet et al., 2015), with dif-
ferent numbers of layers, nodes per layer, optimizers, and training rou-
tines. Tab. 5.1 shows the values, for each autoencoder and dataset, that
delivered the best results, and which we used next. The code, notebooks,
and instructions to recreate our results are available online (The Au-
thors, 2019).

5.3.2 Datasets

There is, to our knowledge, no standardized benchmark for evaluating
DR techniques. Espadoto et al. (2019) took a �rst step towards provid-
ing such a benchmark containing 19 datasets. However, all these are
time-independent, thus not suitable for us. We followed here a simi-
lar approach, i.e. collecting a set of 10 high-dimensional and dynamic
datasets that exhibit signi�cant variations in terms of provenance, num-
ber of samples # , number of timesteps) , dimensionality =, intrinsic
dimensionality d= (percentage of = dimensions that explain 95% of the
data variance), and sparsity ratio f= (percentage of zeros in the data).
All datasets are labeled into 3 to 10 classes. We only use labels for visu-
alization and quality assessment and not the projection itself. Table 5.2

93

evaluating dynamic projections

shows the characteristics, or traits, for these datasets. Further details on
them are listed below.

• cartolastd: Player statistics for the second turn of the 2017 Brazil-
ian football championship. Data was extracted from an open-
source project (Gomide and Gualberto, 2019) that scrapes the Car-
tola FC football platform. Each timestep corresponds to a tourna-
ment round. Variables relate to per-match performance of a given
player (number of goals, assistances, fouls, defenses, etc.). Play-
ers are labeled by their playing position (goalkeeper, right or left-
back, defender, mid�elder, forward).

• cifar10cnn: Last hidden layer activations after each training
epoch for a convolutional network trained to classify the CI-
FAR10 (Krizhevsky, 2009) dataset.

• esc50: Sound samples of 8 classes (brushing teeth, chainsaw, cry-
ing baby, engine, laughing, rain, siren, wind) compressed to 128
frequencies and smoothed over time. Extracted from Piczak’s
ESC50 dataset (Piczak, 2015).

• fashion: 100 images from each of the 10 classes (T-shirt/top,
trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, ankle
boot) of the FashionMNIST (Xiao et al., 2017) dataset with decreas-
ing amounts of noise over time.

• gaussians: Synthetic dataset used to evaluate dt-SNE (Rauber
et al., 2016). Isotropic gaussian blobs in =� with diminishing
spread over time.

• nnset: Internal states (weights and biases) of several neural net-
works during training with the MNIST dataset (LeCun and Cortes,
2010). The networks have the same architecture but use di�erent
optimizers, batch sizes, and training-set sizes.

• qtables: Internal state of agents learning to move a car up a
hill using the reinforcement learning algorithm Q-learning. The
classes represent variations of learning rates and discounts.

• quickdraw: Drawing sequences for 600 objects of 6 di�erent
classes drawn by random people. Extracted from the “Quick,
Draw!” Google AI experiment (Jongejan et al., 2016).

• sorts: This dataset was designed to compare the behavior of eight
sorting algorithms. The algorithms sort di�erent arrays of 100
random values in [0, 1]. As they do so, we take snapshots of the
intermediate states, until sorting is over. Each observed point is
an (algorithm, array) run, and its feature vector is the partially
sorted array at a given time.

94

5.3 experimental setup

Table 5.2: Datasets and their traits used in the evaluation.

dataset samples N timesteps T dimensions n classes intrinsic dim. ρ
n

sparsity ratio σ
n

cartolastd 696 19 17 5 0.6470 0.0000

cifar10cnn 1000 30 10 10 0.6599 0.0000

esc50 320 108 128 8 0.0345 0.0000

fashion 1000 10 784 10 0.4762 0.2971

gaussians 2000 10 100 10 0.3680 0.0000

nnset 80 30 8070 8 0.0057 0.0001

qtables 180 40 1200 9 0.0077 0.0007

quickdraw 600 89 784 6 0.4309 0.9013

sorts 80 100 100 8 0.3505 0.0100

walk 300 50 100 3 0.4783 0.0001

• walk: Synthetic dataset with similar structure to gaussians. It con-
tains 3 high-dimensional clusters oscillate (approach, intermingle
and cross, and then drift apart) inR100 over time. We designed this
dataset to see how well the studied DR techniques can capture the
approaching, mingling, and drifting-away dynamics mentioned
above.

Covering all variations of high-dimensional datasets with a bench-
mark is already daunting for static data (Espadoto et al., 2019), thus even
more for dynamic data, as there are many types of dynamic patterns
possible. Hence, we cannot claim that our benchmark is exhaustive in
terms of the space it samples. However, we believe that the included
datasets exhibit a rich variety of di�erent traits (Tab. 5.2). Also, no two
datasets are redundant, i.e., have all traits similar. Given that, to date,
no other benchmark exists for this task, we believe ours is a good start
in supporting the intended evaluation.

5.3.3 Metrics

We measure the quality of all projection techniques (Sec. 5.3.1) on all
datasets (Sec. 5.3.2) using both spatial quality and stability metrics, sim-
ilarly to other evaluations of multivariate dynamic data visualizations
such as treemaps (Sondag et al., 2017; Vernier et al., 2018a,b). In our eval-
uation, we use the same metrics as the survey (Espadoto et al., 2019) (and
a few extra ones) over all revisions RC , as follows.

5.3.3.1 Spatial metrics

Neighborhood preservation ((#%): With values in [0, 1], with 1
being the best, this is the percentage of the k-nearest neighbors of
x ∈ D that project in the k-nearest neighborhood of % (x).

95

evaluating dynamic projections

Neighborhood hit ((#�): With values in [0, 1], with 1 being the best,
this is the fraction of the k-nearest neighbors of a projected point % (x)
that have the same class label as % (x). Since we know that our datasets
exhibit reasonably well-separated classes in R= , a proper DR technique
(from the perspective of class separation tasks) should yield a high
neighborhood hit.

Trustworthiness (()ADBC): With values in [0, 1], with 1 being the
best, this measures how well the : nearest neighbors ##: (% (x))
of a projected point % (x) match the : nearest neighbors ##: (x)
of a data point x. Simply put, trustworthiness measures how few
missing neighbors (Martins et al., 2014) a projected point has. For-
mally, if * : (x) is the set of points that project in ##: (% (x)) but
are not in ##: (x), and A (x, y) is the rank of y in the ordered set
of nearest neighbors ##: (% (x)), trustworthiness is then de�ned as
1 − 2

#: (2#−3:−1)
∑#
G=1

∑
~∈* : (x) (A (G,~) − :).

Continuity ((�>=C): With values in [0, 1], with 1 being the
best, this measures how many missing neighbors (Martins et al.,
2014) a projected point has. Following the above notations, let
+ : (x) be the points that are in ##: (x) but do not project
in ##: (% (x)). Let also Â (x, y) be the rank of y in the or-
dered set of neighbors ##: (x). Continuity is then de�ned as
1 − 2

#: (2#−3:−1)
∑#
G=1

∑
~∈+ : (x) (Â (G,~) − :).

In contrast to Espadoto et al. (2019), we compute neighborhood
preservation, trustworthiness, and continuity for multiple (20) neigh-
borhood sizes equally spread between : = 1% and : = 20% of
the point count # . Similarly, for the neighborhood hit, we use 20
values for : , ranging from 0.25% to 5%. This allows us next to study
the spatial quality of projections at di�erent scales (Martins et al., 2015).

Normalized stress (((CA4BB): With values in R+, lower meaning
better distance preservation, stress measures the pairwise di�er-
ence of distances of points in =� and @� . We de�ne ((CA4BB as∑
8 9

(
3C8 9 − 3C8 9

)2
/∑8 9 (3C8 9)2, where 3C8 9 and 3C

8 9
are the Euclidean dis-

tances between data points xC8 and xC9 , and between their projections
% (xC8) and % (xC9), respectively, for 1 ≤ C ≤) , for every point pair (8, 9).
To ease analysis, we scale distances using standardization.

Shepard diagram metrics: The Shepard diagram is a scatterplot of
38 9 by 38 9 , for every pair (8, 9) in D (see Fig. 5.4b). It visually tells how
di�erent ranges of distances between points are a�ected by a projec-
tion. Plots close to a diagonal indicates good distance preservation.
Deviations from this highlight patterns such as poor preservation of
long/short distances, creation of false neighborhoods, or stretching and

96

5.3 experimental setup

compression of the manifold on which the data is de�ned (Joia et al.,
2011). We summarize and quantify Shepard diagrams by measuring
the relationship between the two distances. Following Espadoto et al.
(2019), we use Pearson correlation to measure the linearity of the re-
lationship, and we add Spearman and Kendall correlation to measure
the monotonicity of the relationship. The three resulting correlation
metrics (%40AB>=, ((?40A<0=, (4=30;; range from -1 to 1, where 1 means
perfect positive correlation.

5.3.3.2 Temporal stability metrics

As previously stated, there are no metrics in the literature specially de-
signed to measure the temporal stability of DR methods. We next pro-
pose two such metrics, as follows. The two variables whose relationship
we want to measure are the change of the attributes of a sample x from
time C to C + 1, measured as the =D Euclidean distance XC = ‖xC − xC+1‖,
and movement of the projection point % (x) from time C to C +1, measured
as the 2D Euclidean distance XC = ‖% (xC)−% (xC+1)‖. Ideally, for a tempo-
rally stable % , we want XC to be proportional to XC . However, this may be
a too hard constraint for % to satisfy, just as perfect =D to 2D distance
preservation is hard to achieve for static projections. A more relaxed
requirement for a temporally stable % is to have XC a monotonically in-
creasing function of XC . Indeed, if this constraint were not obeyed by % ,
then if an observation xC changes only slightly over time, its projection
% (xC) could move a lot. That is, if XC � XC , the projection % is unsta-
ble, and would convey to the user the wrong impression that data is
changing a lot. Conversely, if xC strongly changes over time, but % (xC)
remains roughly static, i.e. if XC8 � XC

8
, then the user gets the wrong im-

pression that the data is not changing. Hence, for a temporally stable % ,
the two changes XC and XC should be positively correlated.

To measure the relationship of XC and XC , we adapt the static spatial
quality metrics introduced in Sec. 5.3.3.1 as follows:

Normalized temporal stress ()(CA4BB): We de�ne temporal stress
as

∑
8 C (XC8 − X

C

8)2/(XC8)2, where the subscript 8 indicates sample point
x8 . As for the spatial normalized stress, we normalize distances using
standardization. Low stress values indicate that the 2D changes XC
re�ect closely their =D counterparts XC , which is desirable.

Temporal Shepard diagram metrics: Akin to the spatial metrics de-
�ned on Shepard diagrams, we measure the Pearson, Spearman, and
Kendall correlations)%40AB>=,)(?40A<0=,) 4=30;; between X and X for ev-
ery observation and consecutive timesteps. High correlation values in-
dicate that the 2D changes XC are strongly correlated with their=D coun-
terparts XC , which is desirable.

97

evaluating dynamic projections

At this point, it is further interesting to follow the parallel of the con-
cept of stability as de�ned for dynamic treemaps (Chapter 3) and as de-
�ned here above for dynamic projections. As indicated in Sec. 5.2.5, at a
conceptual level, the two forms of stability are identical – they both mea-
sure how much change in the visualization (treemap or 2D projection,
respectively) follows the change in the data (hierarchy or =D dataset,
respectively). However, there are some important technical di�erences.
For dynamic hierarchies, data change in a hierarchy is hard to measure
(see the discussion in Sec. 3.3.2), and it resides in a di�erent space than
the visual (treemap cell) change, making it hard to relate the two in a
single formula. As such, for de�ning treemap stability, we use a proxy
method based on the so-called baseline treemap. For projections, the
situation is di�erent: Both =D (data) and 2D (projection) spaces are of
the same nature, meaning, we can quantify change in both by using
Euclidean distances. Hence, we can relate both changes in a single for-
mula (or formulas) as done above with the normalized temporal stress
and temporal Shepard diagram metrics.

5.4 evaluation and results

We evaluate the 12 quality metrics introduced in Sec. 5.3.3 on all (dataset,
method) pairs formed by the selected 9 DR methods and 10 datasets, and
analyze next the results. We do this by proposing several metric visual-
izations, from highly aggregated (to help forming �rst insights) to de-
tailed (to examine more subtle points). For a direct impression, see also
the videos showing the actual dynamic projections in action, available
online at (The Authors, 2019).

5.4.1 Aggregated results

Figure 5.1 shows average metric values computed over all datasets and
techniques. Light colors represent high metric values (preferred). The
colormap in Fig. 5.1 was normalized independently by the min and max
of each column (metric), and it was inverted for the stress-based metrics,
as low values mean preferred results for these. At the bottom of each
cell, a 1D scatterplot with density mapped to luminance shows the distri-
bution of the values of the (metric, method) pair corresponding to that
cell over all datasets. The red line shows the distribution mean. The table
in Fig. 5.1 is divided into three blocks: The two left blocks show spatial
metrics for distance and neighborhood preservation, respectively. The
right block shows stability metrics.

Figure 5.1 helps us to �nd methods that strike a balance between spa-
tial quality and stability. In this sense, (variational) autoencoders and
G-PCA score, overall, the best. The other methods are good in one as-
pect but not the other: Timeframe t-SNE has high neighborhood metric

98

5.4 evaluation and results

AE

VAE

TF-t-SNE

G-t-SNE

dt-SNE

TF-UMAP

G-UMAP

TF-PCA

G-PCA

S
P
ea
rs
o
n

S
S
p
ea
rm
a
n

S
K
en
d
a
ll

S
N
H

S
N
P

S
T
ru
st

S
C
o
n
t

S
S
tr
es
s

T
P
ea
rs
o
n

T
S
p
ea
rm
a
n

T
K
en
d
a
ll

T
S
tr
es
s

Distance
preservation

Neighborhood
preservation

Temporal
stability

Au
to

en
co

de
rs

G
ra

ph
/n

ei
gh

bo
rh

oo
d

m
et

ho
ds

PC
A

va
ria

nt
s

low quality high quality

Methods
M

et
ri

cs

Figure 5.1: Aggregated metric results over all datasets.

values but poor distance preservation and the poorest stability from all
assessed methods. Timeframe PCA has high distance preservation but
relatively low stability. dt-SNE appears to be as good spatially as G-t-
SNE, but slightly less stable. This is an interesting �nding since dt-SNE
was explicitly designed (but not quantitatively assessed) to aid stability.

5.4.2 Dataset-wise results

Figure 5.1 is simple to read but heavily aggregated, so it does not
show how the quality of speci�c methods depends on speci�c datasets.
To see this, Fig. 5.2 shows all metric results for all datasets without
aggregation. As in Fig. 5.1, light colors mean good results. Columns
are now not normalized. We use di�erent quantitative colormaps to
indicate di�erent types of measured data. By examining Fig. 5.2, we
obtain the following insights:

Unstable methods: TF-t-SNE is always unstable regardless of the
dataset. This re�nes the instability �nding over TF-t-SNE (Sec. 5.4.1) by
showing that this occurs irrespective of the dataset. Also, it con�rms
the same observation in Rauber et al. (2016), which, however, was not
quantitatively con�rmed there. The reason for this instability is the
stochastic nature of t-SNE, which strongly manifests itself if we run
the method from scratch on every new revision (timeframe). We could
attribute the instability of TF-UMAP to the same reason.

99

evaluating dynamic projections

Poor spatial quality: G-t-SNE and G-UMAP score poorly on distance
and neighborhood preservation on most datasets. This is the afore-
mentioned di�culty (Sec. 5.3.1) of constructing a single projection
covering many samples in many timeframes. This is much harder than
constructing a projection that preserves only neighborhoods formed by
points in a single timeframe. We see here again the trade-o� between
spatial quality and stability.

Neighborhood preservation: Here we see dataset-speci�c behavior:
For gaussians, (#% , ()ADBC , and (�>=C peak at a neighborhood size of
roughly 10% of the dataset size. This makes sense since this is the
size of the clusters present in this dataset – when : exceeds this
value, the metrics will start considering points in other clusters, thus
decrease. More interestingly, we see some outliers (dark bands in the
heat-colormapped plots). These are techniques that score poorly for
any : value. Among these, we �nd G-t-SNE, dt-SNE, and G-UMAP. At
the other extreme, TF-t-SNE and TF-UMAP score the best results at
neighborhood preservation, followed by AE, VAE, G-PCA, and TF-PCA.

Dynamic t-SNE: In contrast to the good results qualitatively observed
on the single gaussians dataset showed in Rauber et al. (2016), dt-SNE
performs less well in both spatial quality and stability for several other
of the considered datasets, being quality-wise somewhere between
TF-t-SNE and G-t-SNE for all considered metrics.

Dataset di�culty: Some datasets are considerably harder to project
with good quality than others, no matter which technique we use. For
example, walk has poor stability for all techniques. In contrast, gaus-
sians has good stability for all techniques (except the t-SNE and UMAP
variants) and good neighborhood preservation for all techniques. To
study how dataset characteristics in�uence quality, we compute the cor-
relation of the distance-preservation, neighborhood, and temporal sta-
bility metrics (measured over all techniques) with the six traits that we
used to characterize our datasets (Tab. 5.2). Table 5.3 shows the results.
A few things stand out: As the number of samples # increases, the dif-
�culty to preserve distances also increases, but neighborhoods are pre-
served better. Conversely, as sparsity f= increases, it becomes harder
to preserve neighborhoods. Separately, we do not �nd any strong (posi-
tive or negative) correlation of temporal stability with any of the traits.
Overall, this suggests that the traits are useful in predicting spatial qual-
ity of projections. However, we need additional traits that capture the
data dynamics to reason about the projections’ temporal stability.

100

5.4 evaluation and results

Table 5.3: Correlation between metric types and dataset traits.

-0.429566 0.145921 -0.076177 -0.285476 -0.007806 -0.211705

0.385248 -0.380503 -0.298868 0.243835 0.172121 -0.404517

0.150231 0.012017 -0.009754 0.275271 -0.085292 0.160295

samples N timesteps T dimensions n classes intrinsic dim. ρ
n

sparsity ratio σ
n

distance preservation

neighborhood preservation

temporal stability

5.4.3 Fine-grained analysis

While Fig. 5.2 and 5.3 show all computed metrics for each (dataset,
method) combination, metric values are still aggregated to a single
scalar per combination. This does not show how metrics vary over
the extent of a projection and/or over time. There are more patterns
in dynamic projections than we can capture by a set of metrics, no
matter how good these are. To get such insights, we next present
a �ne-grained analysis that aggregates the metrics even less (see
Figure 5.4) for a single dataset (cartolastd, chosen as it is alphabetically
the �rst in our benchmark). Similar visualizations for all other datasets
in the benchmark are available online (The Authors, 2019). We next ana-
lyze these methods for this dataset from several perspectives, as follows.

Stability visual assessment: Figure 5.4a shows the actual dynamic
projections with point trails (% (x18), . . . , % (x)8)), one per player 8 . Colors
map the players’ labels. This visualization already says a lot about
the behavior and similarities of the studied DR methods (see also the
submitted videos). The instability of TF-t-SNE and TF-UMAP becomes
apparent, as their trails cover a very large area in the projection
space. However, these methods achieve a quite good separation of
same-label clusters. In contrast, dt-SNE shows trails that depict much
local movement. Both PCA variants show relatively little movement,
with points oscillating along two main axes, which are the main
eigenvectors computed by the methods. At the other extreme, AE,
VAE, and G-t-SNE show the least motion. However, this does not
imply by itself a high quality: G-t-SNE, for instance, achieves indeed
a better visual spreading of samples in the available projection space,
but it has very poor neighborhood preservation (see G-t-SNE results
in Fig. 5.2) and, as already discussed above, it also has very poor stability.

Distance preservation: Figure 5.4b shows the Shepard diagram of
distances, which is a scatterplot of 38 9 by 38 9 , for every pair (8, 9)
in D, that helps us understand the distance preservation aspect of
each technique. We see that the AE and PCA variants have overall
better distance preservation (plots closer to the diagonal) than the
t-SNE/UMAP variants. Also, we see that AE and PCA typically compress
=D distances to 2D (points mainly under the main diagonal), whereas
the t-SNE/UMAP variants both compress and stretch these (points are

101

evaluating dynamic projections

located both under and above this diagonal).

Inspired by the Spearman and Kendall correlations, we consider next
the agreement of ranks instead of aggregating them to a single value.
Figure 5.4c shows this, for distance preservation, by a histogram of the
absolute rank di�erences of =D and 2D distances between point pairs.
In a projection with ((?40A<0= = (4=30;; = 1, such di�erences would
be minimized, i.e., the :Cℎ largest 2D distance 38 9 should correspond
to the :Cℎ largest =D distance 38 9 for every point pair (8, 9). In this
case, all rank di�erences are zero, which would yield a histogram
showing a single high bar at zero (left of the histogram). Signi�cant
rank di�erences spread the histogram to the right, showing poor
monotonicity between the two variable ranks. From these plots, we see,
again, that AE and VAE score the best, followed by G-PCA, TF-PCA,
and then the t-SNE and UMAP variants.

Stability metrics: Figure 5.4d shows Shepard diagrams for the point
movements, i.e., scatterplots of X by X for every sample compared to
itself in the next timestep, for all timesteps. Note that, in these scat-
terplots, every point is a sample, whereas in the classical Shepard di-
agrams (Fig. 5.4b), every point is a pair of samples. Ideally, we want
X to be positively correlated to X , which means a plot close to the
main diagonal. The AE and PCA variants show the closest plots to
the main diagonal, thus, best stability. At the other extreme, TF-t-
SNE shows widely varying 2D change for similar =D change, thus,
high instability. Finally, Figure 5.4e shows the absolute rank di�erence
histograms for change. Their interpretation follows the one for the
distance-preservation histograms (Fig. 5.4c): Left peaked histograms in-
dicate high stability, whereas �atter ones indicate a discrepancy in 2D vs
=D changes. These histograms strengthen the insights obtained so far,
making it even clearer that the AE and G-PCA methods are far stabler
than the t-SNE, UMAP and TF-PCA.

5.5 understanding dynamic projection behavior

The coarse-grained and �ne-grained analyses presented so far high-
lighted that there are signi�cant di�erences in the behavior of dynamic
DR methods that depend on both the method and the dataset. In this pro-
cess, we also saw that visual quality and stability seem to be, in general,
mutually competing concerns – methods that are good in one are not
the best in the other. We further explore these observations as follows.
First, we analyze the causes of the observed (lack of) stability and link
these to the way the studied DR techniques operate (Sec. 5.5.1). Next, we
summarize all our �ndings and propose a work�ow to assist the practi-
tioner in selecting a suitable DR technique for projecting dynamic data
(Sec. 5.5.2).

102

5.5 understanding dynamic projection behavior

5.5.1 Analysis of (un)stable behavior

Beside empirically measuring and observing that di�erent DR tech-
niques have widely di�erent stabilities, it is useful to analyze the causes
of these di�erences, which we do next.

t-SNE and UMAP: Our results tell that TF-t-SNE and TF-UMAP,
that is, projections computed independently for each timestep, are
the most unstable of the assessed techniques. This is so since these
are stochastic methods that optimize non-convex objective functions
using randomly seeded gradient descent. Hence, di�erent runs with
the same data can create projections where di�erent clusters might be
formed and/or placed at di�erent 2D positions. Figure 5.5a,b shows the
last scenario. From timesteps 1 to 2 of the TF-t-SNE run of the fashion
dataset, even though the local structure remains the same, the absolute
position of the points and clusters changes drastically. In conclusion,
using t-SNE/UMAP independently per timeframe is de�nitely not a
good option for dynamic data.

dt-SNE: We encountered several cases where dt-SNE seems to have
trouble optimizing its objective function – for details, see the videos
for qtables and sorts. In both these cases, dt-SNE did not capture any
of the spatial structures present in the data, nor produced any sensible
movement. These visual �ndings can be con�rmed by the dark lines
(low-quality values) in Fig. 5.2. We also noticed that dt-SNE is very
sensitive to the choice of hyperparameters. Concluding, whereas the
initial �ndings in Rauber et al. (2016), obtained on a single dataset
(gaussians) position this technique as a good option for projecting dy-
namic data, our additional �ndings raise questions about the practical
value of this technique.

PCA: We also see instability in TF-PCA, but for di�erent reasons than
the ones discussed above. Speci�cally, if there is a change in rank of
the top two eigenvectors from timestep C to the next one, i.e., one of the
associated eigenvalues becomes larger than the other, the projection
exhibits an artifact that resembles a re�ection – see the quickdraw
dataset in the two timesteps in Fig. 5.5b,c. Alternatively, if the data
changes su�ciently for the eigenvectors to change considerably, the
projection shows a rotation-like artifact – see the two timesteps in
Fig. 5.5d,e. In contrast to t-SNE and UMAP, these artifacts are not
due to stochastic seeding, but due to the way PCA works. Given the
above, it is now clear why G-PCA is very stable – it chooses the two
largest-variation axes for the entire dataset (all timesteps). The price
to pay for this stability is that G-PCA may not yield the axes that best
describe the data variation at each timestep, thus not the best spatial

103

evaluating dynamic projections

quality.

Autoencoders: Similarly to G-PCA, these techniques are stable since
they train with the entire dataset (all timesteps) to learn a latent rep-
resentation that encodes the global data distribution. Once trained, the
encoder is a deterministic function that maps =� data to 2D. The main
disadvantage of autoencoders over G-PCA is usability: PCA is simple
to implement and use. Autoencoders, in contrast, have the ‘usual’ deep
learning challenges, most notably �nding the optimal network architec-
ture and hyperparameter values.

5.5.2 Finding similarly behaving techniques

Figure 5.1 showed a high-level aggregated view of the quality metrics
of the studied DR techniques, outlining that the autoencoders and PCA
variants score better, in general, on both spatial quality and stability,
than graph neighborhood techniques (t-SNE, dt-SNE, and UMAP). How-
ever, that image (and related analysis) was too aggregated. At the other
extreme, Fig. 5.2 and related discussion showed a �ne-grained analysis
of all metrics measured for all techniques run on all datasets. From both
these analyses, it is quite hard to understand how (and when) di�erent
techniques behave similarly. This is arguably important for practition-
ers interested in choosing a technique in a given context (dataset type
and metrics to maximize).

Figure 5.6 supports this similarity analysis, as follows. Each point is
here a technique run on a dataset, attributed by the computed 12 qual-
ity metrics. We project these points to 2D using UMAP, thus, creating
a ‘projection of projections’ map. The four images in Fig. 5.6 use di�er-
ent visual codings to reveal several insights, as follows. Image (a) shows
the techniques and datasets, coded by glyphs, respectively categorical
colors. Points in this plot are clustered more due to datasets than tech-
niques – that is, quality is more driven by the dataset nature than by
which projection technique is used. For instance, we see the sorts dataset
well-separated as the purple cluster bottom-left in Fig. 5.6a. Images (b-
d) show the same projection, colored by stability, distance preservation,
and neighborhood preservation, respectively. The left part of the pro-
jection (orange dashed line, Fig. 5.6b) shows cases where stability and
distance (and/or neighborhood) preservation are mutually complemen-
tary, i.e., when we obtain high stability, we get low distance/neighbor-
hood preservation and conversely. The top-right part of the projection
(red dashed line, Fig. 5.6b) shows cases where both stability and spatial
quality are quite high. All these cases use the AE, VAE, and G-PCA tech-
niques. The central area of the projection is covered mainly by t-SNE,
dt-SNE and UMAP, telling that these projections have average behavior
(as compared to autoencoders and PCA variants). Looking at the color-

104

5.6 conclusion

coded plots (images b-d), we see that these projections do not score
highest on any of the considered metrics.

The plots in Fig. 5.6 can guide choosing a DR technique to project
dynamic data: Given a dataset D to project, (1) �nd the most similar
dataset D′ in the benchmark, i.e., that contains data of similar nature
(e.g., natural images, sounds) and is obtained via a similar acquisition
process; (2) decide what is important for the dynamic projection of D –
stability, distance preservation, neighborhood preservation, or a mix of
them; (3) �nd the projection techniques % in the respective quality plots
that have the desired qualities on D′, and possibly also consider other
projection techniques that behave similarly (close points in the plots).
These techniques % are then good candidates to project D with.

5.6 conclusion

This chapter is an initial step towards understanding the behavior of
dimensionality reduction techniques in the context of dynamic/tempo-
ral data. We hope that the information and results presented here help
practitioners who want to understand their complex data and that this
work can be used by authors interested in developing DR techniques
as a tool for evaluation and comparison. We proposed a publicly avail-
able benchmark with 9 methods, 10 datasets, and 12 quality metrics. To
evaluate the viability of di�erent techniques for the task, we computed
spatial and temporal stability metrics for all possible combinations, thus
providing an extensive collection of results. Based on the results, we pre-
sented a discussion that elaborates on the causes for understanding the
dynamic behavior. All our experiments are documented and detailed on-
line (The Authors, 2019) to allow further analysis and reproducibility.

There are many ways this work can be extended in the future. The
benchmark can be extended with new methods, a better way to choose
hyperparameters, new datasets, and new metrics. With a larger num-
ber of datasets, we can perform a robust test of the impact of dataset
traits on the metrics. We can also integrate streaming data techniques,
datasets, and tests. In this sense, it is de�nitely interesting to con-
sider a more principled sampling of the ‘universe’ of all dynamic high-
dimensional datasets, in the same way we considered the sampling of
the universe of dynamic weighted hierarchies for the treemap evalua-
tion in Chapter 3. This is a challenging endeavor, since we need to de�ne
relevant traits that describe di�erent classes (types) of such datasets, as
well as their dynamics. An equally challenging issue is �nding represen-
tatives (samples) for these dataset classes. For treemaps, while di�cult,
we managed to �nd the relevant dynamic hierarchies, as there is a wide
o�er of such hierarchies from various data sources. For dynamic mul-
tidimensional datasets, we found it comparatively far harder to locate
such datasets in the public domain. As such, forming a good impression
of what are relevant traits for these datasets, and next collecting rele-

105

evaluating dynamic projections

vant samples to evaluate dynamic projections, is an endeavor that we
leave for future work.

106

5.6 conclusion

Figure 5.2: Twelve spatial quality and temporal stability metrics evaluated for 9
DR methods run on �ve datasets.

107

evaluating dynamic projections

Figure 5.3: Twelve spatial quality and temporal stability metrics evaluated for 9
DR methods run on the next �ve datasets.

108

5.6 conclusion

Fi
gu

re
5.

4:
D

et
ai

le
d

an
al

ys
is

of
di

st
an

ce
sa

nd
m

ov
em

en
ts

pr
od

uc
ed

by
al

lD
R

te
ch

ni
qu

es
on

th
e
ca
rt
ol
as
td

da
ta

se
t.

109

evaluating dynamic projections

Figure 5.5: Examples of instability in TF-t-SNE (a,b) and TF-PCA (c,d,e).

G-PCA

VAE
AE

G-t-SNE

G-UMAP
G-UMAP

TF-PCA
G-UMAP

G-t-SNE

G-t-SNE

dt-SNE

dt-SNE

dt-SNE TF-UMAP

G-UMAP
dt-SNE G-t-SNE

VAE

AE

TF-PCA
G-PCA

dt-SNE

VAE VAE

G-PCA

AE
AE

TF-t-SNE

TF-UMAP G-UMAP

G-t-SNETF-t-SNE

TF-t-SNE
TF-UMAP

G-t-SNE
G-UMAP

G-UMAP

TF-t-SNE

TF-PCA

G-UMAP

G-t-SNE
TF-UMAP

dt-SNE TF-t-SNE

TF-PCA

VAE
G-PCA

AE

TF-UMAP

TF-t-SNE
TF-UMAP G-UMAP dt-SNE

dt-SNE

TF-t-SNE

TF-t-SNETF-UMAP

TF-PCA

dt-SNE

dt-SNE

TF-t-SNE

TF-UMAP

TF-t-SNE

TF-UMAP

TF-UMAP

VAE G-PCA

AE

TF-PCA G-t-SNE

TF-PCAG-t-SNE
G-PCA

TF-PCA

G-PCA

AE
TF-PCA

G-t-SNE

TF-PCA
G-UMAP

VAE
AE

AE

VAE AE

G-PCA
VAE

VAEG-PCA

G-PCA

a) Datasets and techniques

AE

TF-t-SNE
G-t-SNE
dt-SNE
TF-UMAP
G-UMAP
TF-PCA
G-PCA

VAE
cifar10cnn
gaussians
walk
nnset
esc50
quickdraw
sorts
cartolastd
qtables
fashion

b) Stability

c) Distance preservation d) Neighborhood preservation

low

high

low

high

G-PCA

VAE
AE

G-t-SNE

G-UMAP
G-UMAP

TF-PCA
G-UMAP

G-t-SNE

G-t-SNE

dt-SNE

dt-SNE

dt-SNE TF-UMAP

G-UMAP
dt-SNE G-t-SNE

VAE

AE

TF-PCA
G-PCA

dt-SNE

VAE VAE

G-PCA

AE
AE

TF-t-SNE

TF-UMAP G-UMAP

G-t-SNETF-t-SNE

TF-t-SNE
TF-UMAP

G-t-SNE
G-UMAP

G-UMAP

TF-t-SNE

TF-PCA

G-UMAP

G-t-SNE
TF-UMAP

dt-SNE TF-t-SNE

TF-PCA

VAE
G-PCA

AE

TF-UMAP

TF-t-SNE
TF-UMAP G-UMAP dt-SNE

dt-SNE

TF-t-SNE

TF-t-SNETF-UMAP

TF-PCA

dt-SNE

dt-SNE

TF-t-SNE

TF-UMAP

TF-t-SNE

TF-UMAP

TF-UMAP

VAE G-PCA

AE

TF-PCA G-t-SNE

TF-PCAG-t-SNE
G-PCA

TF-PCA

G-PCA

AE
TF-PCA

G-t-SNE

TF-PCA
G-UMAP

VAE
AE

AE

VAE AE

G-PCA
VAE

VAEG-PCA

G-PCA

G-PCA

VAE
AE

G-t-SNE

G-UMAP
G-UMAP

TF-PCA
G-UMAP

G-t-SNE

G-t-SNE

dt-SNE

dt-SNE

dt-SNE TF-UMAP

G-UMAP
dt-SNE G-t-SNE

VAE

AE

TF-PCA
G-PCA

dt-SNE

VAE VAE

G-PCA

AE
AE

TF-t-SNE

TF-UMAP G-UMAP

G-t-SNETF-t-SNE

TF-t-SNE
TF-UMAP

G-t-SNE
G-UMAP

G-UMAP

TF-t-SNE

TF-PCA

G-UMAP

G-t-SNE
TF-UMAP

dt-SNE TF-t-SNE

TF-PCA

VAE
G-PCA

AE

TF-UMAP

TF-t-SNE
TF-UMAP G-UMAP dt-SNE

dt-SNE

TF-t-SNE

TF-t-SNETF-UMAP

TF-PCA

dt-SNE

dt-SNE

TF-t-SNE

TF-UMAP

TF-t-SNE

TF-UMAP

TF-UMAP

VAE G-PCA

AE

TF-PCA G-t-SNE

TF-PCAG-t-SNE
G-PCA

TF-PCA

G-PCA

AE
TF-PCA

G-t-SNE

TF-PCA
G-UMAP

VAE
AE

AE

VAE AE

G-PCA
VAE

VAEG-PCA

G-PCA

G-PCA

VAE
AE

G-t-SNE

G-UMAP
G-UMAP

TF-PCA
G-UMAP

G-t-SNE

G-t-SNE

dt-SNE

dt-SNE

dt-SNE TF-UMAP

G-UMAP
dt-SNE G-t-SNE

VAE

AE

TF-PCA
G-PCA

dt-SNE

VAE VAE

G-PCA

AE
AE

TF-t-SNE

TF-UMAP G-UMAP

G-t-SNETF-t-SNE

TF-t-SNE
TF-UMAP

G-t-SNE
G-UMAP

G-UMAP

TF-t-SNE

TF-PCA

G-UMAP

G-t-SNE
TF-UMAP

dt-SNE TF-t-SNE

TF-PCA

VAE
G-PCA

AE

TF-UMAP

TF-t-SNE
TF-UMAP G-UMAP dt-SNE

dt-SNE

TF-t-SNE

TF-t-SNETF-UMAP

TF-PCA

dt-SNE

dt-SNE

TF-t-SNE

TF-UMAP

TF-t-SNE

TF-UMAP

TF-UMAP

VAE G-PCA

AE

TF-PCA G-t-SNE

TF-PCAG-t-SNE
G-PCA

TF-PCA

G-PCA

AE
TF-PCA

G-t-SNE

TF-PCA
G-UMAP

VAE
AE

AE

VAE AE

G-PCA
VAE

VAEG-PCA

G-PCA

G-PCA

TF-t-SNE

TF-UMAP

overall
good
quality

stability-vs
spatial quality
trade-off

low

high

low

high

Figure 5.6: Projection of projections map showing the similarity of all evaluated
techniques on all datasets (Sec. 5.5.2).

110

6G U I D E D S TA B L E D Y N A M I C P R O J E C T I O N S

In Chapter 5, we evaluated dynamic projections from the dual perspec-
tive of visual quality and stability, just as we did for dynamic treemap al-
gorithms in Chapters 2-3. And, just as for dynamic treemap algorithms, we
found that there is no winning dynamic projection method that scores best
for both visual quality and stability. In this chapter, similar to our earlier
work in Chapter 4 to improve dynamic treemaps, we aim to improve dy-
namic projections from the perspective of the two aforementioned metrics.
For this, we propose two new dynamic projection algorithms: PCD-tSNE
and LD-tSNE. The former uses information given by the Principal Compo-
nents of the data over all timesteps to stabilize tSNE. The latter makes use
of landmarks that guide points through stable trajectories. We compare
these two new algorithms with existing methods for dynamic projection,
and show their advantages, following the benchmark proposed in Chap-
ter 5.

Abstract: Projections aim to convey the relationships and similarity of
high-dimensional data in a low-dimensional representation. Most such
techniques are designed for static data. When used for time-dependent
data, they usually fail to create a stable and suitable low dimensional rep-
resentation. We propose two dynamic projection methods (PCD-tSNE
and LD-tSNE) that use global guides to steer projection points. This
avoids unstable movement that does not encode data dynamics while
keeping t-SNE’s neighborhood preservation ability. PCD-tSNE scores
a good balance between stability, neighborhood preservation, and dis-
tance preservation, while LD-tSNE allows creating stable and customiz-
able projections. We compare our methods to 11 other techniques using
the quality metrics and datasets presented in Chapter 5.

6.1 introduction

Many domains produce datasets with large numbers of observations
(also called samples or points) and attributes (also called measurements,
dimensions, or variables). Dimensionality reduction techniques, also
called projections, are an established tool for visualizing such datasets
in a simpli�ed, compact, and scalable way.

The literature on static projections – that address the visualization
of time-independent datasets – is quite rich, with many techniques,

This chapter is based on the paper “Guided Stable Dynamic Projections” (Vernier et al.,
2021)

111

guided stable dynamic projections

surveys, and benchmarks on the subject (Nonato and Aupetit, 2019; Es-
padoto et al., 2019; Sorzano et al., 2014; Cunningham and Ghahramani,
2015). In contrast, far fewer techniques and comparisons thereof ex-
ist for projecting time-dependent datasets, in which the sample values
change over time – which is a much harder problem.

Besides faithfully capturing the data structure – a desiderate shared
with static projections – dynamic projections also face the challenge of
maintaining temporal coherence. Failing this will create false motion ar-
tifacts in the projection, which can mislead the user into thinking there
are data changes where none exist, or conversely. Figure 6.1 illustrates
this: We have a 100-dimensional dataset of 2000 samples covering 10
distinct isotropic Gaussian distributions that collapse in linear trajec-
tories into 10 single points over 10 timesteps (Rauber et al., 2016). The
images depict the results of three dynamic projection techniques (G-
PCA, TF-PCA (Jolli�e, 1986), and TF-tSNE (van der Maaten and Hinton,
2008)) for this dataset, showing the trajectories of all data points over
the ten timesteps. Knowing the dataset, we can tell that G-PCA renders
quite faithfully the data dynamics and structure; TF-PCA creates an ar-
ti�cial amount of spiraling; and TF-tSNE creates a very large amount
of apparently random and unstable motion that is not present in the
data. If such variability in the projection results is seen for this simple,
synthetic dataset, the choice of a good dynamic projection method for
real-world datasets is clearly very hard.

G-PCA

0 9

TF-PCA TF-tSNE

time

C
o

lo
r

c
o

d
e

s
 t

im
e

C
o

lo
r

c
o

d
e

s
 c

la
s
s

class

Figure 6.1: A time-dependent collapsing 100-dimensional 10-Gaussian-
distributions dataset (2000 points) is visualized by three projection
methods. Point trails are colored by time (top) and class (bottom).
The images show increasing amounts of instability artefacts.

Motivated by these challenges of understanding and quantifying the
quality of dynamic projections, in the previous chapter we evaluated

112

6.2 related work

nine such techniques, and came to the conclusion that there is no per-
fect method, and that an inherent trade-o� between stability and spa-
tial quality (i.e., neighborhood and distance preservation) exists. The
methods that scored the best on both criteria were autoencoder-based
methods and Global PCA. Neighborhood-based methods, such as t-SNE
and UMAP, strongly showed a lack of stability. At the same time, these
are among the favorite methods for static projection, given their high
capability in preserving data structure.

We aim to cover the above-identi�ed gap by proposing ways to add
stability to the neighborhood preservation ability of static projections,
in particular t-SNE. We propose two approaches that use global in�u-
ences to steer projected points: Our �rst method, LD-tSNE, o�ers simi-
lar �exibility in steering dynamic projections via landmarks as known
for static projections, and also reaches good quality values. Our second
method, PCD-tSNE, increases neighborhood in�uences atop an already
stable Global PCA dynamic projection, scoring better than all compared
counterparts in terms of spatial quality combined with stability. The
global in�uence of both methods can be controlled via simple user pa-
rameters to �nd the best balance between stability and spatial quality.
We compare our methods with 11 existing dynamic projections on a
benchmark of 10 high-dimensional datasets using 12 metrics for both
spatial quality and stability.

Section 6.2 overviews related work on dynamic projections of high-
dimensional data. Section 6.3 introduces our two new methods. Sec-
tion 6.4 presents the experimental setup we used in comparing our new
methods with existing ones. Section 6.5 presents and discusses the eval-
uation results. Finally, Section 6.6 concludes the chapter.

6.2 related work

6.2.1 Preliminaries

Following the same notation of Chapter 5, let x ∈ R= be an =-
dimensional sample (also called data point or observation). A timestep
DC = {xC8 } of our data consists of a set of # samples xC8 , 1 ≤ 8 ≤ # ,
measured at the same time moment C . A dynamic dataset D is a list of
) timesteps D = (DC), 1 ≤ C ≤) . For simplicity of exposition and im-
plementation, but without loss of generality, we consider next that the
sample count # is constant over time. In this case, D can be represented
as a set of) # -by-= matrices, one per timestep C .

A projection technique is a function % : R= → R@ , where @ � =.
For visualization purposes, @ ∈ {2, 3}. Since 2D projections are by
far the most commonly used, we next only consider the case @ = 2.
We denote the projection of sample x by % (x). For a timestep C , let
% (DC) = {% (xC) |xC ∈ DC } be the 2D scatterplot of the projections of
all points in DC . Finally, let % (D) be the set of) scatterplots for all

113

guided stable dynamic projections

timesteps of dataset D. These can be rendered as animations (see ad-
ditional material (The Authors, 2020b)), trail sets (as in Fig. 6.1), small
multiples (Rauber et al., 2016), or other visual encodings.

6.2.2 Visualization of high-dimensional data

Visualization of static high dimensional data (Liu et al., 2017) is a well
studied topic populated with many techniques such as parallel coordi-
nate plots (Inselberg and Dimsdale, 1990), table lenses (Rao and Card,
1994), scatterplot matrices (Becker et al., 1996), and dimensionality re-
duction (DR) methods or projections (Van Der Maaten et al., 2009).
Compared to other methods, projections scale visually very well, be-
ing able to accommodate datasets of millions of samples and hundreds
up to thousands of dimensions in limited screen space. Several qual-
ity metrics have been proposed to gauge how faithfully projections
capture the structure of high-dimensional data, e.g., trustworthiness
and continuity (Venna and Kaski, 2006), normalized stress and Shep-
ard diagrams (Joia et al., 2011), neighborhood hit (Paulovich et al., 2008),
class consistency (Tatu et al., 2010), and distance consistency (Sips et al.,
2009). Tens of di�erent projection algorithms exist for static data; de-
tailed taxonomies of such methods, benchmarks, and qualitative and
quantitative evaluations are available in a range of surveys (Nonato
and Aupetit, 2019; Espadoto et al., 2019; Fodor, 2002; Cunningham and
Ghahramani, 2015; Sorzano et al., 2014; Van Der Maaten et al., 2009).

6.2.3 Strategies for dynamic projections

All current dynamic projection techniques that we are aware of are
based on methods that were initially designed for static data. These
base methods are adapted to achieve two goals: (a) obtaining good
spatial quality, measured by the various static projection metrics
outlined earlier in Sec. 6.2.2; and (b) obtaining good stability, de�ned
as the ratio between changes, over time, of the projection % (D) vs
changes of the data D (Vernier et al., 2020a). Besides projections,
similar de�nitions of stability have been used to quantify dynamic
treemapping algorithms (Vernier et al., 2020b, 2018b). We next propose
to classify these techniques as a function of how they ‘adapt’ the
underlying base (static) projection algorithm, denoted further %� , to
handle spatial quality and stability for dynamic data.

Per-timeframe (TF): In this simplest strategy, %� is applied to each
timestep DC to create an independent projection %� (DC). Hence,
% (D) = (%� (DC))1≤C ≤) . In other words, the base method %� is not
allowed to “look at the past or future” when projecting a given timestep
C – it only sees the data in DC . Given the popularity of PCA (Jolli�e,

114

6.2 related work

1986), t-SNE (van der Maaten and Hinton, 2008), and UMAP (McInnes
et al., 2018), the per-timeframe strategy is often used for these base
projections, leading to variants we call next TF-PCA, TF-tSNE, and
TF-UMAP, respectively. Several further variations of this strategy exist.
Bach et al. (2016) propose time curves which connect consecutive
positions %� (xC8) of the same point 8 for all moments C , using MDS
for %� . Similar curves have been used by Bernard et al. (2012) (using
PCA for %�). Brich et al. (2020) use time curves and argue for the pro’s
and con’s of PCA vs MDS for %� . However, none of the studied base
projections was found ideal concerning stability and spatial quality. At
a more general level, the same strategy was used to connect di�erent
2D scatterplots created by other means than projections (Haroz et al.,
2015). Jäckle et al. (2016) use MDS for %� to project all = spatial
dimensions of D to a single dimension and use the second dimension
of the screen space to map time. Overall, the per-timeframe strategy
favors spatial quality, which can be as high as delivered by %� . However,
stability can be (very) low since %� is applied independently to the
timeframes.

Global (G): At the other end of the spectrum, global methods apply %�
to the entire dataset, and then separate the projected points based on
their timesteps, i.e., % (D) = ({yC ∈ %� (D)})1≤C ≤) , where yC = %� (xC)
and xC ∈ DC . Like per-timeframe, this strategy is also simple to imple-
ment. It maximizes stability by construction. As such, many applica-
tions use this strategy, e.g. Hu et al. (2010) that project 72-dimensional
human body keypoints using LLE, or Fujiwara et al. (2018) who project
entire dimensions (time series) using MDS and t-SNE for computer per-
formance analysis. The latter method was also extended to use PCA and
UMAP as %� (Fujiwara et al., 2020).

When D is large, either in terms of number of samples or number
of timesteps, computing a single projection %� (D) can be expensive.
Also, the spatial quality of global techniques is typically lower than for
the per-timeframe strategy since %� now has to optimize the relative
placement of points in all timeframes, even if such points never
co-exist at the same time. Out-of-sample projection (OOS) methods can
help with these issues. Simply put, an OOS technique % is constructed
to optimize the projection of a subset DB ⊂ D according to one’s
desired quality metrics. Next, % is used to extrapolate the projection to
the entire D. Out-of-sample strategies have been proposed for many
static projection methods (Bengio et al., 2003). Recently, Espadoto
et al. (2020b) have shown how to use deep learning to construct out-
of-sample approximations of any static projection technique. Hence,
OOS techniques can be used to accelerate and potentially increase
the quality of global projection methods. However, the challenge is in
how to select the small subset DB so as to represent well the entire
time-dependent dataset D. To our knowledge, no studies of this aspect

115

guided stable dynamic projections

exist for dynamic projections.

Continuous (C): This strategy applies to base methods that iteratively
optimize neighborhood con�gurations, such as t-SNE and UMAP. In
the following, we call these variants C-tSNE and C-UMAP, respectively.
The projection % (DC) continues the gradient descent from the positions
of the previous timestep % (DC−1), with the updated cost function for
C . This reduces signi�cantly the non-deterministic behavior created by
removing consecutive initialization steps. Still, this can fail to produce
stable projections as points are still allowed to move signi�cantly dur-
ing optimization. Dynamic t-SNE (D-tSNE) (Rauber et al., 2016) aims to
alleviate this by adding a penalty term to the continuous strategy using
t-SNE for %� . This limits, up to a certain extent, too large point move-
ments between consecutive timesteps. Incremental PCA (Ross et al.,
2008) projects points in a streaming fashion and is therefore amenable
to project time-dependent data. Fujiwara et al. (2020) further increase
incremental PCA’s stability by using Procrustes analysis to align consec-
utive projections, a method also proposed independently by Joia et al.
(2011). Neves et al. (2020) propose Xtreaming, an incremental technique
that handles streaming high-dimensional data by continuously adapt-
ing UPDis (Neves et al., 2018), a projection with out-of-sample capabil-
ity, thus, good stability. Overall, continuous strategies achieve a good
balance between spatial quality and stability. However, this balance can
be hard to tune in practice.

Vernier et al.’s evaluation (Vernier et al., 2020a) found that PCA and
(Variational) Autoencoders with the global strategy – called next G-
PCA, G-VAE, and G-AE respectively – were the best-suited methods for
projecting temporal data. The global strategy, however, does not seem
to work well with graph or neighborhood-based methods, such as t-SNE
and UMAP – we denote these methods next as G-tSNE and G-UMAP,
respectively.

6.3 guided methods for dynamic projection

Many guided methods exist in the static projection literature (Nonato
and Aupetit, 2019; Sorzano et al., 2014). Simply put, all these methods
select a subset of samples L ⊂ D to create % , by extrapolating % (L)
to % (D). Conceptually speaking, the continuous strategy (Sec. 6.2.3)
can be seen as a type of guidance, where % (DC+1) is steered by the
earlier projection % (DC). Similarly, the out-of-sample global strategy
(Sec. 6.2.3) can be seen as a type of guidance where % (DB) steers % (D).
However, even though this works for simple datasets, when the data
present complex dynamics and large changes over time, existing con-
tinuous strategies become too restrictive. We propose two new guided
methods for dynamic projection that use global in�uences (landmarks
or suggested placements) to steer and stabilize the projection while still

116

6.3 guided methods for dynamic projection

accounting for neighborhood preservation. The two methods use t-SNE
as base projection given (a) t-SNE’s high popularity for the static pro-
jection case; and (b) the di�culty of using t-SNE in a dynamic context
(see Sec. 6.2.3), which we want to overcome. Importantly, while guided
strategies mainly aim to address scalability for static projections, our
di�erent aim of using guidance is to address spatial quality and stabil-
ity.

6.3.1 Landmark Dynamic t-SNE (LD-tSNE)

One idea that has been successfully used in the static case, and can
be utilized to our advantage for dynamic data, is the use of landmarks.
Landmarks or similar control point-based mechanisms are well known
and have been used to aid di�erent tasks on static data. Examples in-
clude performance improvement (Pekalska et al., 1999; Silva and Tenen-
baum, 2003; De Silva and Tenenbaum, 2004; Vladymyrov and Carreira-
Perpiñán, 2013; Paulovich et al., 2008; Kruiger et al., 2017a), support of
out-of-sample capability (Boytsov et al., 2017; Poličar et al., 2019), and
projection customization (Joia et al., 2011; Neves et al., 2018). Yet, we
are not aware of any work that combines landmarks or control points
to stabilize dynamic projections. We use landmarks to give the base pro-
jection %� method a sense of global structure, in an attempt to reduce
the instability inherent to neighborhood-based projection techniques
such as t-SNE.

Two main aspects must be considered when using landmarks as
guides: how to generate the landmarks and how to use the landmarks
to steer points, as follows.

Landmark generation: Each landmark l = (l=, l@) consists of a
high-dimensional component l= ∈ R= and a component l@ ∈ R@ in
the projection space. It is important that the set L = {;=} captures
well the structure of the high-dimensional dataset D, otherwise the
“steering” may become uneven. There are di�erent ways of achieving
this goal (De Silva and Tenenbaum, 2005). For simplicity and speed,
we opted to create L by randomly sampling : points from D, where
: is a fraction of the size of D. For most of our tests, we set : = # ,
i.e., the number of points in a timeframe (see Appendix A for the
precise numbers). To generate the low-dimensional points l@ , we
simply project L using a user-chosen method. We experimented here
with both PCA and t-SNE, and selected the landmark projection which
yielded the best results (more information available in Appendix A).

Landmark steering: The �rst step towards steering is to select a
neighborhood-based projection technique to use. We chose here t-SNE
due to its popularity and previous good results in extending it for dy-
namic data (Rauber et al., 2016). To describe how steering takes place,

117

guided stable dynamic projections

let us consider the original t-SNE cost function, given by the Kullback-
Leibler (KL) divergence between the joint-probability distributions P
and Q that describe point-neighborhoods in R= , respectively R@

�CB=4 = � ! (P | |Q) =
#∑
8=1

∑
9≠8

?8 9 log
?8 9

@8 9
, (6.1)

where ?8 9 =
?8 | 9+? 9 |8

2# models the distance of two points x8 and x9 in R=

and

? 9 |8 =
exp

(
−

x8 − x92 /(2f28))∑#
:≠8

exp
(
− ‖x8 − x: ‖2 /

(
2f2
8

)) .
Here, ? 9 |8 can be seen as a relative measure of similarity based on the
local neighborhood of a point x8 . The e�ective number of neighbors
considered for each point is given indirectly by a user-chosen perplexity
value `: The value of f8 is computed so that, for the user-given ` and
each 8 , ` = 2−

∑#
9 ? 9 |8 log2 ? 9 |8 .

A Student’s t-distribution with one degree of freedom is used to com-
pute the joint-probability distribution in R@ as

@8 9 =

(
1 +

y8 − y92)−1∑
:,8≠:

(
1 + ‖y8 − y: ‖2

)−1 .
The gradient of the cost function, given by

m�CB=4

my8
= 4

∑
9

(
?8 9 − @8 9

) (
y8 − y9

) (
1 +

y8 − y92)−1 (6.2)

is used to incrementally move the points y8 to reduce the cost �CB=4 .
To add landmark in�uence to t-SNE we will, similarly to Rauber et al.

(2016), add a second term to the cost function. In their work, the extra
term was used to penalize any kind of 2D movement. In our case, we
want to guide the placement of points y8 based on the similarity of x8
with the landmarks l= . Figure 6.2 illustrates these global and local in�u-
ences. In Fig. 6.2a, the landmarks in L (light blue) produce attraction and
repulsion forces to guide the placement of the red point y8 . In Fig. 6.2b,
the remaining points y9 , 9 ≠ 8 (gray in the �gure), exert similar forces,
in�uencing and being in�uenced by y8 , just like in a regular t-SNE pro-
jection.

We weigh the global and local in�uences by a factor _ ∈ [0, 1] giving
the total cost function

� = (1 − _)�CB=4 + _�;0=3<0A:B . (6.3)

118

6.3 guided methods for dynamic projection

In the above, �;0=3<0A:B is similar to the original t-SNE cost function
�CB=4 . However, instead of considering ?8 9 for all pairs of points in D or
DC , we let only the landmarks l ∈ ! act upon each y8 , i.e.

�;0=3<0A:B =
∑
8

∑
; ∈!

?8 |; log
?8 |;
@8;

. (6.4)

For these in�uences to work consistently through all time steps C , sev-
eral aspects di�er from the original t-SNE. In Eqn. 6.4, we use the asym-
metric ?8 |; instead of the symmetric ?8; used in Eqn. 6.1. Indeed, we
want the landmarks to in�uence the points, not the other way round.
Secondly, for the computation of f; for each landmark, we only take
into consideration the landmark points L. These two modi�cations en-
sure that the forces are consistent and do not �uctuate depending on
the local density of points in D or DC .

From Eqns. 6.2, 6.3, and 6.4, we �nd the gradient of � as

m�

my8
= (1 − _)

(
4
∑
9

(
?8 9 − @8 9

) (
y8 − y9

) (
1 +

y8 − y92)−1)
+_

(
4
∑
; ∈!

(
?8 |; − @8;

)
(y8 − y;)

(
1 + ‖y8 − y; ‖2

)−1)
.

To accelerate convergence, improve initialization, and create tighter
clusters, exaggeration terms are used (van der Maaten and Hinton, 2008;
van der Maaten, 2015; Linderman et al., 2019; Linderman and Steiner-
berger, 2017). These are scalars that multiply ?8 9 , suggesting greater
similarity between points than P captures. We do the same by adding
two factors U and V to grant additional in�uence on how much points in
DC a�ect each other (U = local), respectively how much the landmarks
“pull” the projected points (V = global), leading to the �nal cost gradient

m�

my8
= (1 − _)

(
4
∑
9

(
U?8 9 − @8 9

) (
y8 − y9

) (
1 +

y8 − y92)−1)
+_

(
4
∑
; ∈!

(
V?8 |; − @8;

)
(y8 − y;)

(
1 + ‖y8 − y; ‖2

)−1)
.

Regarding algorithmic complexity, the original unoptimized imple-
mentation of the t-SNE method isO(=2) for both computation and mem-
ory (van der Maaten and Hinton, 2008). Our LD-tSNE algorithm has an
additional cost O(;=) given by the interaction of the landmarks with
the points in the projection, where ; is the number of landmarks and
= the number of points in the projection. Therefore, the �nal time and
memory complexity are given as O(=2 + ;=), or, since =2 dominates the
cost, LD-tSNE can be considered O(=2).

119

guided stable dynamic projections

pi

lq

(a) Landmarks

i

(b) t-SNE

i

... ...D0

∂Clandmarks

∂yi

∂Ctsne

∂yi

j

D1 D2 Dt DT

j

Figure 6.2: E�ect of landmarks (a) and regular projection points (b) upon a point
y8 in LD-tSNE. See Sec. 6.3.1.

6.3.2 Principal Component Dynamic t-SNE (PCD-tSNE)

Our second dynamic projection, PCD-tSNE, is a guided method that
combines the stability of G-PCA with the neighborhood preservation
capabilities of t-SNE. Just like D-tSNE and LD-tSNE, it includes an ad-
ditional term to the t-SNE cost function that adds stabilization to the
otherwise unstable C-tSNE.

The �rst step in PCD-tSNE is to compute a projection matrix, con-
structed from the top-@ eigenvectors of the covariance matrix of D. Sim-
ply put, , describes the (two, in our case) orthogonal axes of largest
data variation over the whole dataset. For each point x8 ∈ D, we ap-
ply a transformation x8, to map x8 to R@ . More speci�cally, this places
x8 exactly as G-PCA would, which was proven earlier in Chapter 5 to
create stable projections.

The placement of each projection point y8 is next given by two factors
(see Fig. 6.3): an attraction to the position x8, , marked in light blue in
Fig. 6.3a; and the in�uence of all other points in DC upon y8 , as given by
tSNE, these points being shown in gray in Fig. 6.3b. With these elements,
the gradient of our cost function is given by:

m�

my8
= (1 − _) m�CB=4

my8
+ _‖y8 − x8, ‖. (6.5)

Here, _ ∈ [0, 1], similarly to LD-tSNE, weighs the balance of local
and global in�uences. More speci�cally, by adjusting _, we can achieve
an exact C-tSNE projection (_ = 0), an exact G-PCA projection (_ = 1),
or a projection in between these variants.

120

6.4 evaluation procedure

yi

EIG2

EIG1

xiW

... ...

∂Ctsne

∂yi

|| yi - xiW ||

(a) Global influence (b) t-SNE

D0 D1 D2 Dt DT

yi

yj

Figure 6.3: E�ect of global in�uence (a) and regular projection points (b) upon
a point y8 in PCD-tSNE. See Sec. 6.3.2.

Regarding complexity, for PCD-tSNE, the �rst step is to compute the
top-2 eigenvectors of the original data. There are many numerical meth-
ods designed to e�ciently perform this computation with cost as low
as O(:=) for : singular values (Kressner, 2005; Cline and Dhillon, 2006).
Once the PCD-tSNE optimization starts, the additional term introduced
in Equation 6.5 represents a simple convex function, which means that
convergence is reached e�ciently and PCD-tSNE performs similarly to
C-tSNE, that is, in O(=2) time.

6.4 evaluation procedure

We next present our evaluation of the two proposed dynamic projec-
tion methods, LD-tSNE and PCD-tSNE. We build upon the work done
in Chapter 5, using the same set of metrics and datasets, while adding 4
new methods (LD-tSNE, PCD-tSNE, C-tSNE, and C-UMAP) to the eval-
uation. All source code, datasets, and obtained results can be found in
our online repository (The Authors, 2020b).

6.4.1 Methods

The Vernier et al. (2020a) benchmark (described in the previous chap-
ter) contains 9 methods – �ve global ones (G-AE, G-VAE, G-tSNE, G-
UMAP, G-PCA), three per-timeframe ones (TF-tSNE, TF-UMAP, TF-
PCA), and one continuous (D-tSNE). Atop of those, we added C-tSNE
and C-UMAP, and the two newly proposed methods, LD-tSNE and

121

guided stable dynamic projections

PCD-tSNE. The parameters used in the benchmark are available in Ap-
pendix A.

6.4.2 Quality Metrics

Following the methodology of the previous chapter, we used 8 spatial
and 4 temporal quality metrics, as follows. Temporal metrics measure
the correspondence of movement of projection points in R@ with regard
to their change in the data space R= space, i.e., stability.

6.4.2.1 Spatial metrics

Spatial metrics measure how well a projection maps the underlying
high-dimensional data, and can be divided into neighborhood preserva-
tion metrics ((#% , (#� , ()ADBC , (�>=C) and distance preservation metrics
(((CA4BB , (%40AB>=, ((?40A<0=, (4=30;;). Note that these do not necessarily
relate to how humans perceive the projection (Wang et al., 2018). Next,
follows a short summary of each metric, for the full de�nition, see
Section 5.3.3.1

Neighborhood preservation ((#%) is the fraction of the :-nearest
neighbors of x ∈ D whose projections are in the :-nearest neighbors
of % (x).

Trustworthiness (()ADBC) measures how well the : nearest neighbors
a: (% (x)) of a projected point % (x) match the : nearest neighbors a: (x)
of a data point x, speci�cally, how few missing neighbors (Martins
et al., 2014) a projected point has.

Continuity ((�>=C) measures how many missing neighbors a projected
point has.

Neighborhood hit ((#�) is the fraction of the :-nearest neighbors of
a projected point % (x) that have the same class label as % (x).

All the above metrics range in [0, 1], with 1 indicating optimal value.
We compute (#% , ()ADBC , and (�>=C for multiple (20) neighborhood
sizes equally spread between : = 1% and : = 20% of the point count
. For (#� , we use 20 values for : , ranging from 0.25% to 5% of
. We next average the results for di�erent neighborhood sizes : ,
following (Vernier et al., 2020a; Martins et al., 2015).

Normalized stress (((CA4BB) measures the pairwise di�erence of
distances of points in D and % (D).

122

6.4 evaluation procedure

Shepard diagram metrics ((%40AB>=, ((?40A<0=, (4=30;;). Based on a
scatterplot of D and % (D), we use Pearson correlation, Spearman rank,
and Kendall tau to measure the linearity and monotonicity of their
relationship.

6.4.2.2 Temporal stability metrics

We estimate how stable a projection is by studying the relationship of
the data change of a point from xC8 to xC+18 , measured by 2C8 = ‖xC8 −xC+18 ‖,
and the movement of the corresponding projections from % (xC8) to
% (xC+18), measured by ^C = ‖% (xC8) − % (xC+18)‖. For stable % , we ideally
would want ^C8 to be proportional, or at least correlated with, 2C8 . We
use the following metrics (Vernier et al., 2020a) to capture this notion
of stability.

Normalized temporal stress ()(CA4BB) is de�ned as∑
8 C (2C8 − ^C8)2/(2C8)2. As for ((CA4BB , we normalize distances using

standardization. Low)(CA4BB values tell that the R@ changes ^C8 re�ect
closely their R= counterparts 2C8 , which is what we want.

Temporal Shepard diagram metrics: We measure the Pearson and
Spearman correlation and Kendall’s tau ()%40AB>=,)(?40A<0=,) 4=30;;) be-
tween 2C8 and ^C8 for every sample 8 and timestep C . High values indicate
that the R@ changes ^C8 are strongly correlated with their R= counter-
parts 2C8 , which is desirable.

6.4.3 Datasets

We used the same 10 public datasets as in the previous chapter (de-
scribed in Section 5.3.2). These were all extracted from di�erent sources
and portray a wide range of temporal phenomena, such as videos, sound
recordings, sports statistics, algorithm behavior, and a few synthetic
datasets with easily recognizable dynamics (The Authors, 2020b). The
collection also exhibits signi�cant variations in measurable traits such
as the number of samples # , the number of timesteps) , dimension-
ality =, intrinsic dimensionality d= (percentage of dimensions that de-
scribe 95% of the data variance), and sparsity ratio f= (percentage of
zeros in the data), as shown by Table 6.1. These traits have been used
earlier (Espadoto et al., 2019) to indicate that a benchmark captures an
as wide as possible (within the benchmark’s size bounds) spread of
phenomena of di�erent natures. For more information on the nature,
source, and meaning of each dataset, see Section 5.3.2.

123

guided stable dynamic projections

Table 6.1: Datasets used and their traits (from Vernier et al. (2020a)).

dataset samples N timesteps T dimensions n classes intrinsic dim. ρ
n

sparsity ratio σ
n

cartolastd 696 19 17 5 0.6470 0.0000

cifar10cnn 1000 30 10 10 0.6599 0.0000

esc50 320 108 128 8 0.0345 0.0000

fashion 1000 10 784 10 0.4762 0.2971

gaussians 2000 10 100 10 0.3680 0.0000

nnset 80 30 8070 8 0.0057 0.0001

qtables 180 40 1200 9 0.0077 0.0007

quickdraw 600 89 784 6 0.4309 0.9013

sorts 80 100 100 8 0.3505 0.0100

walk 300 50 100 3 0.4783 0.0001

6.5 evaluation results

We used each of the selected 13 projection techniques (Sec. 6.4.1) to
project the 10 datasets in the benchmark (Sec. 6.4.3). For every (dataset,
method) pair, we compute 12 quality metrics (4 related to distance pre-
sentation, 4 related to neighborhood preservation, and 4 stability met-
rics, see Sec. 6.4.2), and analyze the results at di�erent levels of aggrega-
tion. For a direct impression, the animations of each (dataset, method)
pair can be found in our online repository (The Authors, 2020b).

6.5.1 Visual comparison of dynamic projections

We start with a simple, visual comparison of dynamic projection results.
Figure 6.4 shows the trail-sets – curves linking % (xC8) for all C – for the
cifar10cnn dataset, created by the 13 tested dynamic projection methods,
organized following the taxonomy in Sec. 6.2.3. Points represent the last
layer of neural network activations trained to classify the dataset, over
30 training epochs. Given the problem, we expect that activations ‘seg-
regate’ into 10 distinct sets, corresponding to the 10 classes of images in
the dataset. The trails should start from a roughly common area (middle
of the projection), indicating lack of di�erentiation at training start, and
evolve smoothy, that is, without major twists and bends, over epochs, to
increasingly di�erentiated clusters, a phenomenon shown earlier in for
the (far) easier-to-classify MNIST dataset (Rauber et al., 2017b) by C-
tSNE. We see that only a few dynamic projections exhibit this pattern:
G-VAE, G-UMAP, and our proposals, PCD-tSNE and LD-tSNE. All other
dynamic projections do not show the convergence of trails to (ten) dis-
tinct clusters (red circles in the �gure). Saliently, all TF variants show
far too high dynamics - long trails turning and twisting, suggesting
chaotic dynamics, which we know it is not the case from Rauber et al.
(2017b). Other projections (G-AE, G-PCA, G-tSNE, C-UMAP, D-tSNE)

124

6.5 evaluation results

Figure 6.4: Trails showing the “hidden activity” (Rauber et al., 2017b) of a con-
volutional neural network trained on theCIFAR10 (Krizhevsky, 2009)
dataset, computed by all 13 tested dynamic projections. Red circles
show clusters of trail endpoints which indicate training convergence.
Images without red circles show (suboptimal) projection methods
where it is not possible to see this training convergence.

125

guided stable dynamic projections

Figure 6.5: Identical trails to Fig. 6.4 but colored by data class.

do not show a clear convergence of trails into 10 clusters, which again,
we know should be expected. Overall, we argue that PCD-tSNE and LD-
tSNE capture the (known) ground-truth of the training dynamics better
than most tested counterparts.

126

6.5 evaluation results

6.5.2 Overview of quality metrics

Figure 6.6 shows the results for each method separated by metric class.
The three swarm plots (Eklund, 2012) in the �gure address each of the
three metric categories outlined above (distance preservation, neighbor-
hood preservation, temporal stability). Columns in a plot indicate meth-
ods. Each point in a column corresponds to the averaged result over the
four normalized metrics in the respective class for a (method, dataset)
pair. Methods in each plot are ordered by how high they score for a
given metric class, with methods to the left scoring higher. Methods are
categorically color-coded to ease comparison between the plots.

A method to be considered suitable for dynamic projections must
be stable and achieve good distance and neighborhood preservation.
Vernier et al.’s benchmark (Vernier et al., 2020a) concluded that, from
all their 9 tested methods, G-PCA and Autoencoder-based techniques
(G-AE, G-VAE) struck the best balance between these desiderates. We
argue that, in this light, our new PCD-tSNE method is even more e�ec-
tive at projecting dynamic data. Indeed, as Fig. 6.6 (bottom plot) shows,
PCD-tSNE’s stability is comparable to G-PCA, G-AE, and G-VAE, being
the third-most stable of all tested methods. At the same time, PCD-tSNE
achieves better results in distance preservation, being the best of all
tested methods. Regarding neighborhood preservation (Fig. 6.6, middle
plot), PCD-tSNE is only surpassed by the TF (timeframe) and C (contin-
uous) methods. This is not surprising since these methods do not have
temporal constraints. This implies, as Fig. 6.6 (bottom plot) con�rms,
that the TF and C methods score very poorly for stability.

Additionally, PCD-tSNE overcomes two limitations of AE-based
methods and G-PCA: Autoencoders are based on neural networks,
which can be challenging to set up, optimize for the architecture, and
train; PCA based methods are sensitive to outliers and do not explicitly
try to preserve local features.

Concerning LD-tSNE, we see that this method did not achieve metric
results as good as other state-of-the-art methods. Yet, it scores in the
top half of all methods for all three considered metric classes. Also, its
strength lies in its customizability (see next Sec. 6.5.5): If we want the
projection to adhere to a certain shape, or we have some prior knowl-
edge over the high-dimensional space and we want areas of the projec-
tions to carry a certain data-related semantic, we can easily place land-
marks to drive the projection to that behavior. This extends the same
�exibility, known earlier for static projections (see e.g. (Joia et al., 2011;
Pekalska et al., 1999)), to dynamic projections.

6.5.3 Stability and spatial quality trade-o�

While the swarm plots in Fig. 6.6 help us see which methods score best
for a given metric class, they do not let us easily compare methods from

127

guided stable dynamic projections

D
is

ta
n

ce
p

re
se

rv
at

io
n

N
ei

g
h

b
o

rh
o

o
d

p
re

se
rv

at
io

n
Te

m
p

o
ra

l
st

ab
ili

ty

Figure 6.6: Swarm plot ordering methods from best to worse for each metric
class. Each point corresponds to the average metric result over the
4 metrics in a given class normalized to [0, 1] for each (method,
dataset) pair. Horizontal lines show average metric values over all
datasets for each (method, metric class) pair.

the perspective of multiple metrics. To achieve this, we use two star
plots (Fig. 6.7), as follows. Each image is a scatterplot having temporal
stability as the G axis and distance and neighborhood preservation, re-
spectively, as the ~ axis. Each colored point shows the average metric
values for a given technique over all datasets. Spokes emerging from a
point show the average metric values for each of the 10 datasets run
by the respective technique. For more insight into the behavior of the
methods, we highlighted the spokes for the two best methods in each
plot, i.e. the points placed closest to the top-right corner of the plot.

Figure 6.7a shows that PCD-tSNE and G-VAE are the best methods
for distance preservation and stability, closely followed by G-PCA. Yet,
the spokes of PCD-tSNE (pink) are shorter than those of G-VAE (blue).
That is, PCD-tSNE achieves a consistently higher distance preservation
and stability over all 10 tested datasets than G-VAE, which has a higher
variability. Similarly, Figure 6.7b shows that PCD-tSNE scores highest
in terms of neighborhood preservation and stability, closely followed

128

6.5 evaluation results

by G-VAE and G-AE. Again, the spokes of PCD-tSNE are shorter than
those of G-VAE, telling that PCD-tSNE achieves its high scores more
consistently than G-VAE. We see that G-VAE performs worst for the
walk, nnset, and fashion datasets, from both the perspective of distance
preservation and neighborhood preservation (longest blue spokes in
Figs. 6.7a,b for G-VAE, indicated by a cross, triangle, and check icons);
for these datasets, PCD-tSNE performs quite well (short pink spokes).
Also, there seems to be an inverse correlation between neighborhood
and distance preservation for TF-tSNE, TF-UMAP, and G-UMAP, indi-
cating that these methods are very good at neighborhood, but not dis-
tance, preservation. Separately, we see that our two methods, PCD-tSNE
and LD-tSNE, are the best methods, stability-wise, from the t-SNE class,
and perform far better, on all three metrics, than D-tSNE. In other words,
if one wants to leverage t-SNE’s ability for dynamic datasets, our meth-
ods are the best from the considered variants. Finally, we see that tempo-
ral stability and distance preservation appear to be well correlated over
all tested methods (points in Fig. 6.7a close to the diagonal), which is to
our knowledge a new �nding in the projection literature. In contrast, no
similar correlation appears between stability and neighborhood preser-
vation (Fig. 6.7b).

6.5.4 Global vs local in�uence control

As outlined in Sec. 6.3.2, the PCD-tSNE method has a parameter _ that
modulates the amount of global in�uence applied to the points being
projected. When projecting a sample x8 ∈ D, this global in�uence refers
to minimizing the distance of % (x8) to the position given by the trans-
formation matrix, composed of the top-@ eigenvectors of D. Another
way to interpret this global in�uence is to think of x8, as the position
that G-PCA would generate; and to think about _ as how much we want
PCD-tSNE to approximate G-PCA.

If we use high _ values (close to 1), PCD-tSNE gets very close to G-
PCA, a method that has shown to be very stable, produce good distance
preservation, but has low neighborhood preservation (Fig. 6.8). Con-
versely, with low _ values (close to 0), no global in�uences act upon
PCD-tSNE, which turns into C-tSNE, a method that has high neighbor-
hood preservation, but low stability and distance preservation (Fig. 6.8).
For each dataset (rows), we compute the mean distance preservation
(MDP), mean neighborhood preservation (MNP), and mean temporal
stability (MTS) over the respective metrics in each class (see Sec. 6.4.2).
For each table row, we normalize values between 0 and 1, to better see
the spread of values of the respective metric for each dataset. The left-
most column shows the metric results of G-PCA; the rightmost one
shows the results of C-tSNE. The six middle columns show the results
of PCD-tSNE with _ in {10−2, 10−3, 10−4, 10−5, 10−6, 10−7}. Cells are col-
ored using an ordinal colormap (dark green=low, bright yellow=high

129

guided stable dynamic projections

PCD-tSNE

G-AE

G-VAE

G-VAE

TF-tSNE

G-tSNE

C-tSNE

C-tSNE

D-tSNE G-tSNE

TF-UMAP

G-UMAP

TF-PCA G-PCA

C-UMAP

G-AE

TF-PCA

PCD-tSNE

G-PCA

LD-tSNE

LD-tSNE

TF-tSNE

D-tSNE

TF-UMAP

G-UMAP

C-UMAP

Stability

(b
) N

ei
gh

bo
rh

oo
d

pr
es

er
va

tio
n

(a
) D

is
ta

nc
e

pr
es

er
va

tio
n

walk
nnset
fashion

✚
▲
✖

walk
nnset
fashion

✚
▲
✖

Figure 6.7: Star plots compare dynamic projection methods from the perspec-
tive of stability vs distance (a) and stability vs neighborhood (b)
preservation. A point shows the average values of these metrics for
a given technique over all datasets. Spokes show the average metric
values for each dataset for a given technique. Spokes of PCD-tSNE
and VAE, the two techniques that score best, are in bold. Methods
with big spoke fans show high variation on quality metrics. Short
spokes show consistent results of a method over all 10 datasets.

metric values) on the normalized values. The color gradients show that
PCD-tSNE indeed yields metric values that are very similar, for high, re-

130

6.5 evaluation results

spectively low, _ to those of G-PCA, respectively C-tSNE. Also, we see
that PCD-tSNE can integrate characteristics of both C-tSNE and G-PCA
and achieves the best balance between all quality metrics, as shown by
the overall brightest columns in the middle of the table. Interestingly,
PCD-tSNE is also often able to achieve the best result for certain qual-
ity metrics (maximum averages, marked bold in Fig. 6.8). This shows
that PCD-tSNE does mpt simply interpolate projections (like, for exam-
ple, in Kruiger et al. (2017b)), but uses the characteristics of both C-tSNE
and G-PCA to create a better projection. In Fig. 6.8, note that di�erent
rows show di�erent trends, which is expected since we consider di�er-
ent datasets and metrics.

Finally, Figure 6.8 shows that G-PCA and C-tSNE are not always opti-
mal – the best projection lies sometimes in between, which is what PCD-
tSNE obtains. Separately, it shows that optimal parameters depend on
the dataset. The considered MDP, MNP, and MTS quality metrics could
be used for automatic �nding of such optimal parameters – or good
preset values for all datasets – by grid search, following the approach
in Espadoto et al. (2019) for static projections.

6.5.5 Using landmarks to steer dynamic projections

The key trait of LD-tSNE is that it allows steering a dynamic projec-
tion by changing the landmark point positions l@ . If we monitor a high-
dimensional process and we know what �nal and failed states look like,
we can place landmarks indicating these states. As the process evolves,
we will have a clear picture of which samples failed or succeeded; which
samples are on the “right track”; and how similar samples are in in-
between states among themselves and to these known states. Guiding
landmarks are also valuable if we want a system that is consistent over
slightly di�erent datasets.

Landmark-based methods present many challenges in practice: How
to choose a small set of points in R= that is representative of D? How
many points do we need, and how do we select these representatives?
De Silva and Tenenbaum (2005) propose regression models for picking
the best landmarks, while Pezzotti et al. (2016) use a hierarchical ap-
proach. Another option is to synthesize landmarks using models that
approximate the manifold (e.g. Autoencoders). For simplicity, we select
our landmarks by random sampling D, as in earlier work considering
static projections, e.g. (Joia et al., 2011; Pekalska et al., 1999).

Figure 6.9 shows how landmark placement can steer a dynamic pro-
jection. We use the gaussians dataset, as we know its dynamics, so we
can assess how well landmark steering works on the resulting projec-
tions. Points are colored per cluster; landmarks are drawn white. Fig-
ure 6.9a shows several timesteps of LD-tSNE with landmarks placed by
G-PCA. We see how clusters ‘implode’ over time. While clusters stay
roughly in the same place over time in the projection (a good indica-

131

guided stable dynamic projections

tion of stability), their spatial organization is not ideal for monitoring
the phenomenon. Figure 6.9b shows LD-tSNE for the same dataset, with
the same landmarks l= selected from D, but with the 2D landmarks l@
placed manually into 10 horizontally-aligned, similar-size, clusters. The
images show the same ‘implosion’ e�ect over time as in Fig. 6.9a. We
argue that the dynamics of the data is now much easier to see due to
the separation of clusters given by our 2D landmarks’ placement. The
point made is that the freedom of landmark placement of LD-tSNE al-
lows one to separate the issues of spatial disentanglement of samples in
the projection (done by the landmark placement) from monitoring the
dynamics of the data (taken care of by LD-tSNE). Appendix A shows
additional information on this and related experiments.

6.6 conclusion

We have presented two projection methods that leverage the
good neighborhood-preservation ability of t-SNE for dynamic (time-
dependent) data. For this, we use guidance in the form of landmarks
(for our �rst method, LD-tSNE), respectively attractors to principal vec-
tors (for our second method, PCD-tSNE). We compared our methods
against 11 dynamic projection techniques on 10 datasets using 8 spa-
tial quality and 4 stability metrics. The comparison showed that PCD-
tSNE scores better than all compared methods on the combined spatial
quality and stability criteria. LD-tSNE obtained second-best scores on
neighborhood preservation, allowing �exible placement of landmarks
to drive the shape of the resulting dynamic projection. While our work
– for sure – does not solve the problem of dynamic projection of high-
dimensional data, we argue that our methods bring added value to users
interested in this goal.

We next aim to extend our methods to handle streaming data. Adapt-
ing our work to use deep learning, similar to Espadoto et al. (2020b),
would lead to high-quality and computationally scalable dynamic pro-
jections. Additional validation of our methods on more datasets, and
with concrete use-cases and user tasks, is also important. Finally, de-
veloping new metrics to measure the quality of dynamic projections
for speci�c tasks, thereby extending the insights in Nonato and Aupetit
(2019) for the dynamic case, is a long-term goal we aim to pursue.

132

6.6 conclusion

G-PCA C-tSNEPCD-tSNEhigh λ low λ

low quality high quality

Figure 6.8: Mean distance preservation (MDP), mean neighborhood preserva-
tion (MNP), and mean temporal stability (MTS) per dataset, as in
Figs. 6.6 and 6.7, but normalized over the 8 runs in each subplot. The
leftmost column is for G-PCA. The next 6 columns are for PCD-tSNE
with _ ∈ {10−2, 10−3, 10−4, 10−5, 10−6, 10−7}. The rightmost column
is for C-tSNE. By changing _, PCD-tSNE generates a smooth gradi-
ent, simulating G-PCA and C-tSNE at the extremes and producing
hybrids in-between (Sec. 6.3.2). The best balance between all metric
classes is often found in this compromise.

133

guided stable dynamic projections

(a) (b)

t = 0

t = 2

t = 4

t = 6

Figure 6.9: Projection of the gaussians dataset with landmarks (gray points)
placed (a) by G-PCA and (b) manually according to cluster label.
Points are colored by cluster label. The implosion dynamics known
to be present in the data is visible in both cases. Yet, the manual
landmark placement creates a less cluttered view.

134

7H Y P E R K I N E T I C M O V E M E N T D I S O R D E R A N A LY S I S

In this chapter, we present a real-world application for the dynamic projec-
tionmethods introduced in Chapters 5 and 6. The context of our application
is the analysis of hyperkinetic movement disorders. These disorders mani-
fest themselves as abnormal involuntary movements that highly a�ect the
quality of life of the people who su�er from them. These involuntary move-
ments may present a wide range of tendencies: they may be regular and
rhythmic (tremors); swift “lightning-like” jerks or twitches (myoclonus); or
sustained and repetitive movements resulting in abnormal postures (dys-
tonia); they may present a random, brief, and non-rhythmic character
(chorea); or can be temporarily suppressible jerks (tics). The diagnosis of
these disorders is carried out via careful professional observation. It can be
extra challenging due to the circumstantial emergence of certain behav-
iors (triggered by speci�c postures or tasks) and their manifestation via
compound movements, including a combination of the various hyperkine-
sias. All these factors lead to professionals often disagreeing with diagno-
sis. This chapter focuses on electromyography (EMG) and motion sensors
(accelerometry) data collected from patients with hyperkinetic movement
disorders while performing motor tasks. We show how we transform these
data and study them with a visual analytics tool based on dynamic pro-
jections. We discuss an example of data exploration that leads to valuable
clinical insights.

7.1 introduction

Hyperkinetic movement disorders are a class of disorders that are char-
acterized by excessive and involuntary motor movements. These disor-
ders include a range of di�erent phenotypes1 such as myoclonus, dysto-
nia, tremor, chorea and tics. Since the clinical presentation and etiology
di�ers among these disorders, each of these disorders requires a di�er-
ent clinical strategy. These strategies di�er in e.g., the choice of addi-
tional diagnostic tests, medication prescriptions, and deep brain stim-
ulation targets. For the correct strategy, it is of utmost importance to
ensure accurate phenotypic classi�cation. As most hyperkinetic move-
ment disorders have no clear anatomical brain abnormalities, classi�ca-
tion is based on clinical de�nitions and thus on expert opinion. What
makes this increasingly di�cult is that complex and mixed forms of

1 A phenotype is any observable characteristic or trait of a disease, such as morphology, de-
velopment, biochemical or physiological properties, or behavior, without any implication
of mechanism.

135

hyperkinetic movement disorder analysis

phenotypes occur in many patients, and many clinical features of these
hyperkinetic movement disorders also correspond to clinical features of
other disorders classes such as ataxia, spasticity, and functional move-
ment disorders. Moreover, there is large inter- and intra-observer clas-
si�cation variability in expert clinicians (van der Veen et al., 2021; De-
fazio et al., 2004; Eggink et al., 2017; Beghi et al., 2014; van der Salm
et al., 2013).

To improve hyperkinetic movement disorder phenotyping, the Next
Move in Movement Disorders (NEMO) (van der Stouwe et al., 2021)
study was set up at the University Medical Center Groningen, The
Netherlands. The aim of this study is to build computer-aided hyper-
kinetic movement disorder classi�cation tools to assist healthcare pro-
fessionals in phenotyping (see further Sec. 7.3).

The current chapter focuses on the EMG and accelerometry data of
the NEMO study. EMG is a technique that measures electrical activity
in skeletal muscles. This can either be done by placing an electrode in-
side the muscle of interest, or on the skin above the muscle. The latter
technique is referred to as surface EMG and is employed in the current
study. The simplest application of EMG is to determine whether a mus-
cle is active. Accelerometry data collects information on the 3D motion
of several sensors placed on the body of a subject that performs a task.

The above EMG and accelerometry data contains a wealth of infor-
mation describing the dynamics of a subject that performs a task involv-
ing motion. The underlying assumption we have, on which the NEMO
study is also based, is that analyzing such data will allow us to �nd pat-
terns speci�c to particular types of hyperkinetic movement disorders.
In turn, this will help the design of computer-aided systems for disor-
der characterization and classi�cation.

However, the joint EMG and acceletrometry data is large (in terms
of the number of sample points), high-dimensional (has many indepen-
dent variables), and temporal – and, as such, it is challenging to analyze
and interpret. On the other hand, this is precisely the type of data for
which our dynamic projection methods presented in the previous chap-
ters were designed.

We explore the idea of using dimensionality reduction (DR) meth-
ods on the EMG and accelerometry data in order to support the explo-
ration of the data collected in the NEMO experiments. We are not di-
rectly trying to solve the clinical problem of phenotypical classi�cation
of movement disorders. This is a much harder problem, the pursuit of
which would encompass one thesis of its own. Our goal is to understand
the technical challenges associated with applying DR methods to such
complex time-dependent EMG and accelerometry data sets to support
e�ective data exploration. We show evidence that the dynamic projec-
tion methods we proposed in earlier chapters are suitable to handle such
complex data and generate interesting insights in this particular clinical

136

7.2 related work

setting, opening new possible paths of analysis, which were previously
unavailable due to technical limitations.

7.2 related work

In clinical practice, EMG is often combined with accelerometry, a
method that measures the acceleration of limb displacement rather than
muscle activity. Measurements are typically performed during rest or
during diagnostic movement tasks and clinically assessed using several
characteristics of the patient’s movement pattern, such as muscle acti-
vation patterns, movement burst duration, and frequency analysis (van
der Veen et al., 2021).

More advanced analyses to help support the classi�cation of tremor,
myoclonus, or dystonia focus on the electrophysiological autospectrum
to investigate the frequency distribution using Fourier transforms, stan-
dard coherence analysis to investigate the dependence of multiple sig-
nals in the frequency domain, wavelet coherence analysis to investigate
the variation of coherence in the time domain, cumulant density to in-
vestigate the relationship between signals in the time domain, and Jerk-
locked back-averaging to investigate signal relationships during events
of interest (i.e., jerks) across measurement modalities, respectively (Ni-
jmeijer et al., 2014; Tijssen et al., 2000; Grosse et al., 2004; Kramer et al.,
2018; van der Stouwe et al., 2015; Grosse et al., 2003).

Unfortunately, there are several known limitations to the diagnostic
value of EMG and accelerometry features in hyperkinetic movement
disorder phenotyping, three of which we will discuss brie�y. First, high-
level evidence for the di�erentiating value of each feature is sparse.
Only a limited number of diagnostic test accuracy studies exist, most
of which report on tremor patients. Many of the features that are cur-
rently a part of the diagnostic criteria for movement disorders have only
been reported in descriptive studies, and have not been compared be-
tween patient groups, e.g., in myoclonus versus tremor patients. Hence,
incorporating these features in clinical practice is largely based on clin-
ical observations and expert opinion. Secondly, proper application of
EMG and accelerometry techniques and interpretation of the results re-
quires training and experience. Both practice and quality range widely
between medical centers, and diagnostic accuracy are highest in spe-
cialized centers. Thirdly, the application of EMG and accelerometry
features is complicated by the inherent nature of movement disorders
themselves: As all of these disorders are de�ned by excessive involun-
tary movement, it is only to be expected that many movement disorder
phenotypes share overlapping features. Combined, these three factors
currently limit the diagnostic value of EMG and accelerometry features
for movement disorders.

137

hyperkinetic movement disorder analysis

7.3 hyperkinectic movement disorders and experiment
design

The experimental design of the NEMO study is described in detail in
(van der Stouwe et al., 2021). In short, a large data set is being col-
lected from hyperkinetic movement disorder patients (20 dystonia, 20
myoclonus, and 20 tremor patients) and 40 healthy controls. In the fu-
ture, the study aims to include additional patient groups. Importantly,
disorder phenotype classi�cation in this data set is based on indepen-
dent expert panel agreement.

In the study, participants perform 36 motor tasks during a movement
registration setting, and 1 motor and 3 non-motor tasks in neuroimag-
ing settings. During movement registration, data is collected using elec-
tromyography (EMG), motion sensors (accelerometry), and 2D and 3D
video. In the neuroimaging settings, data is measured using positron
emission tomography (PET) and functional magnetic resonance imag-
ing (fMRI).

Participants are only eligible for inclusion if they are at least 16 years
old and healthy participants cannot be �rst-degree relatives of patients
with hyperkinetic movement disorders.

The current chapter focuses on the data from the movement regis-
tration. In this setting, participants performed 36 tasks that are used
in the clinical setting. Tasks were selected based on panel discussions
with several movement disorders, neuropediatric, and neurorehabilita-
tion specialists with extensive experience in the �elds of dystonia, my-
oclonus, tremor, chorea, tics, ataxia or spasticity to ensure coverage of
all disorders.

7.4 visual analysis of collected data

Our goal was to design a visual analytics tool that supports exploring
the motion data generated in the NEMO project. This is important given
that the data is vast and has many axes that can be explored. Exploring
this large data corpus is challenging. Thus, we aim to provide medical
professionals with a tool to navigate through and generate valuable in-
sights from patient motion patterns e�ectively and e�ciently. Our tool
aims to support a wide range of capabilities, such as identifying clus-
ters, outliers, erratic observations, or failures in the data collection. It
also aims to support medical analysis tasks, such as comparing various
hyperkinesias to healthy behavior or identifying under which circum-
stances certain abnormal tendencies become incident. In both cases, we
must be able to compare the severity and variability of their manifesta-
tion.

Another essential aspect our tool aims to provide is meta-analysis,
where we want to know which combinations of sensors, tasks, pa-
tient groups, and preprocessing transformations generate representa-

138

7.4 visual analysis of collected data

tive data that may be useful in further investigation steps. Such meta-
analysis is helpful if we want to build a classi�er and keep only “good
data” (i.e., which discriminates between the classes we aim to infer) or
if we want to understand the minimal resources (sensors and/or tasks)
needed when performing data collection in a third-party, more resource-
constrained, clinic.

We envisioned a visual analytics design that supports Shneiderman’s
mantra: Overview �rst, zoom and �lter, then details-on-demand. Never-
theless, to generate interactive visualizations that implement these, we
need to perform a series of transformations on the raw data. These are
explained in detail next (see also Fig. 7.1 for an overview of the tool’s
pipeline).

RAW ACC/GYR/EMG DATA

TIME-FREQUENCY DATA

2D DYNAMIC PROJECTION

Synchrosqueezing transform

Sliding windows + Dynamic projections

DATA PIPELINE

Figure 7.1: Data transformation pipeline.

7.4.1 Raw data visual inspection

To illustrate all the data transformations, we begin by inspecting the
raw data given by an accelerometer sensor placed on the subject’s
right hand. The task we will investigate is described as “Arms stretched
forward, wrists straight, palms down, and suppress involuntary move-
ments” (Fig. 7.2).

Figure 7.2: Static position with arms and hands stretched out in front of body for
20-30 seconds. The subject tries to suppress any involuntary move-
ments.

139

hyperkinetic movement disorder analysis

Fig. 7.3 shows the accelerometer data collected during the experi-
ments for three subjects. For each subject, we see three colored curves
corresponding to the X (red), Y (green), and Z (blue) axes measurements
of a sensor placed on the right opisthenar (back of the right hand). The
recording rate is 148 samples per second. The curves are o�set from
each other because the sensor reads the subject’s movement acceler-
ation as well as the Earth’s gravity. An accelerometer at rest on the
surface of the Earth will measure an upwards acceleration due to the
gravity of 6 ≈ 9.81</B2.

The same sensor unit also records gyroscopic and EMG data. We de-
cided to ignore EMG data due to the additional complexity introduced
in the non-standard preprocessing steps that (usually) involve noise
rejection/�ltering, whitening, gain scaling, demodulation, smoothing,
and relinearization. For the discussion next, we will only focus on ac-
celerometer data.

The three subplots in Fig. 7.3 show data acceleration corresponding
to three subjects:

• Patient a (top panel) is the healthy control: The curves are very
close to straight lines. The small oscillations indicate very low-
magnitude movement since it is impossible, even for a healthy
person, to hold this position perfectly still.

• Patient b (middle panel) measurements show a very rhythmic and
regular tremor of average magnitude. This patient was diagnosed
with essential tremor, the most common trembling disorder, often
confused with Parkinson’s disease.

• Patient c (bottom panel) shows curves with high amplitude ran-
dom non-rhythmic movements. This patient was diagnosed with
chorea.

7.4.2 Time-frequency data analysis

The simple graphs in Fig. 7.3 are handy for reasoning about the disor-
ders and understanding their behavior over time. However, they do not
tell the whole story. We can get a di�erent perspective on the data that
reveals relevant information hidden in the raw signal by decomposing it
into the frequencies that form it. This can be done in two ways, i.e., using
a frequency-domain representation or alternatively a time-frequency
representation. The former assumes that the signal is stationary. Given
the nature of our experiments, we know that our data does not fall in
this category. Hence, we do not consider frequency-domain representa-
tions such as the Fourier Transform. In contrast, a time-frequency rep-
resentation allows us to reason about how the frequency-domain (the
spectrum) of a signal changes over time. We explore this representation
next.

140

7.4 visual analysis of collected data

Figure 7.3: Accelerometer data for three subjects classi�ed by experts as (a)
healthy, (b) diagnosed with essential tremor, and (c) diagnosed with
chorea. The data corresponds to a task where the subject must hold
their hands as still as possible in the position suggested in Fig. 7.2.
Each subplot corresponds to the accelerometer data collected during
the experiment and is broken down into three orthogonal compo-
nents (X, Y, and Z-axis).

The technique we use for time-frequency analysis is called Syn-
chrosqueezing Wavelet Transform (SWT) (Mihalec et al., 2016). It is an
improvement over the original Wavelet transform (Daubechies, 1990)
which provides a sparser, sharper, noise-robust, and partly denoised rep-
resentation of the time-frequency information. Figure 7.4, also called a
spectrogram, shows a visual representation of the SWT for the data
shown in Fig. 7.3. The horizontal axis indicates, again, time. For every
time moment, the vertical axis plots a frequency spectrum for that mo-
ment, where the magnitude (presence) of a certain frequency is color-
coded (black is low, white is high, magnitude).

This time-frequency representation can be of great relevance for the
diagnosis of motion disorders. For example, studies suggest (?) that es-
sential tremor often manifest in the 4–8Hz frequency range. If we exam-
ine Fig. 7.4(b), we can see that, through the whole experiment, there is
a de�ned presence of frequencies in this precise range, showing a com-
mon and insuppressible tendency to the involuntary movement. We do
not see the same “horizontal line” in that frequency range for patients
a and c. Patient a can hold his/her hand in a much more stable position,
which translates into a darker spectrogram (less energy). In contrast,

141

hyperkinetic movement disorder analysis

patient c performs high amplitude random non-rhythmic movements
characteristic of chorea. The light colors in the spectrogram represent
the high amplitude, and the “random non-rhythmic” aspect can be read
as having no constant lines in the time-frequency representation, as
seen on patient b. Having both representations (Figs. 7.3 and 7.4) side-
by-side helps us understand the phenomena as a whole.

For our purposes, the time-frequency representation is essential as it
facilitates comparison between signals. Methods for computing similar-
ity of signals in the time-domain (raw signals) exist, e.g., RMSE, cross-
correlation, and Dynamic Time Warping (Gupta et al., 1996)). However,
these can be signi�cantly a�ected by the phase shift and minor di�er-
ences in frequency. By making comparisons in the time-frequency do-
main, we get a better, more reliable representation that is better suited
for the next steps of our pipeline.

Figure 7.4: Time-frequency representation of the acceleration of the Z axis
(blue) placed in the right hand of the subject in Fig. 7.3. This is the
vertical axis which points up/down for the hands shown in Fig. 7.2.
Light colors represent high energy in the spectral distribution, i.e.,
there is a large amplitude component in the subject’s movement as-
sociated to a particular frequency or frequency distribution.

7.4.3 Data normalization

The acceleration time plots and spectrograms discussed so far are quite
e�ective in studying the data of a single subject. However, as outlined
earlier in the chapter, our goal is to compare multiple subjects in or-

142

7.4 visual analysis of collected data

der to �nd out which data aspects make them similar or di�erent. For
this, we need a way to ‘normalize’ the data collected from each mea-
surement (experiment) so that it becomes comparable across multiple
measurements.

As seen in Fig. 7.4, time-frequency information can vary slightly from
recording to recording. These recordings can have di�erent lengths and
di�erent frequency ranges. Both of these are due to the di�erence in
experiment duration. Experiments that last longer have longer spectro-
grams and a higher frequency range since we can detect more frequen-
cies in the lower range. The sampling rate of the sensor sets the upper
range of the frequency spectrum. The accelerometers we used can col-
lect 148 readings per second, so the maximum frequency we can detect
is 74 Hz. We also limit our frequency range to 100 logarithmic bins in
the range of 0 − 74 Hz.

To get our data in a uniform and easily comparable format, we use the
Sliding Window method as illustrated in Fig. 7.5. In this example, we set
a stride CB of 1 second and a time-window width CF of 5 seconds. Each
such time window will thus aggregate the data falling within it into a
single (high-dimensional) measurement. Increasing CF introduces more
�ltering, which can be desirable when the data is highly noisy (or we
are interested mainly in lower frequencies). Increasing CB decreases the
total number of sample points (along the time axis) that we reduce our
data to. We can change the parameters CB and CF on the �y to generate
visualizations of di�erent “resolutions”, as discussed next.

Figure 7.5: Before we project our data, we subdivide each spectrogram using the
Sliding Window method. In this example, we use a window width of
CF = 5 seconds and a stride of CB = 1 second to partition the data
from Fig. 7.4c.

143

hyperkinetic movement disorder analysis

7.4.4 Visualizing the data with dynamic projections

Since our data is multidimensional and temporal, we use dynamic pro-
jections to obtain further insights into our dataset. For this tool, we
implemented three of the dynamic projection methods introduced in
the previous two chapters. These are G-PCA, G-tSNE (Chapter 5), and
PCD-tSNE (Chapter 6). As discussed earlier in the thesis, G-PCA and
PCD-tSNE are methods that balance visual quality and temporal stabil-
ity, but they each have pros and cons. PCD-tSNE has better neighbor-
hood and distance preservation than G-PCA and comparable stability.
Its main drawback for this particular application is that a few parame-
ters need to be adjusted, which adds an undesired level of uncertainty
when interactively exploring the data. This same trait outside of an in-
teractive setting can be advantageous, as it allows us to create projec-
tions that borrow characteristics from both PCA and tSNE-based meth-
ods, as previously discussed in Section 6.5. G-tSNE is a relatively unsta-
ble technique, as benchmarked in Chapter 5. However, it still provides
interesting (non-temporal) insights into the high-dimensional structure
of the data.

Fig. 7.6 shows the data from patients a, b, and c projected using the
three DR methods mentioned above. In each projection, we see three
curves (trails). Each curve describes the behavior over time of one pa-
tient – simply put, the patient can be seen as ‘moving along the curve’
in projection space. As the spectral signatures of the di�erent patients
are di�erent from each other, we see that the trails do not overlap. We
also observe how PCD-tSNE creates a projection that borrows traits
from both G-PCA and G-tSNE. The general position of all clusters and
shape of the (c) trail resemble that of G-PCA, while the focus on inter-
cluster neighborhood preservation for trails (a) and (b) (materialized as
expanded clusters) are traits derived from the t-SNE in�uence.

(a)

(a)

(b)

(b)

(c)
(c)

G-PCA PCD-tSNE

(a)

(b)

(c)

G-tSNE

Figure 7.6: The last step of the pipeline is to project (using dynamic methods)
the data that has been subdivided by the Sliding Window method.
Our tool supports 3 dynamic projection methods: G-PCA, PCD-tSNE,
and G-tSNE. We visualize the dynamic projections as trails, where
we connect the consecutive spectrum “windows” via Akima spline
(Akima, 1970). The data corresponds to the patients presented in
Figs. 7.3 and 7.4.

144

7.5 data exploration

7.5 data exploration

This section presents an example of the type of data exploration that
our visual analytics tool supports.

There are many ways to conduct data exploration, depending on the
goal of the analysis. Some relevant examples from a clinical standpoint
are

• understand the behavior of di�erent patients or patient groups
for a given task;

• given new patient measurements, �nd patients with similar move-
ment characteristics to assist diagnosis;

• explore the movements that led to a speci�c diagnosis;

• study the erratic/circumstantial nature of the appearance of cer-
tain symptoms;

• understand how di�erent tasks induce di�erent behaviors on spe-
ci�c patients or patient groups.

In the following, we describe an example analysis that focuses on the
�rst goal. We want to understand the behavior of essential tremor pa-
tients vs healthy controls in the context of the task described as “arms
stretched forward, wrists straight, palms down, and suppress involun-
tary movements” (Fig. 7.2). In total, we have 24 healthy subjects and
11 tremor patients. For the next �gures, we use the readings from the
Z-axis of the accelerometer sensor placed on the subject’s right hand.

Once we select the data subset of interest, we need to choose how to
project the data. Fig. 7.7 displays two G-PCA projections. The only dif-
ference is the size of the sliding window CF (Fig. 7.5), which translates
into the resolution and smoothness of the projection. The left projec-
tion has a sliding window size of CF = 1 second and a stride of CB = 1
second, meaning that there is no overlap between the consecutive win-
dows, leading to more jagged trails. The right projection has a window
size of CF = 5 seconds instead, so consecutive windows share part of the
same data, leading to a longer representation of temporal phenomena
and smoother trails. The choice of window size and window stride also
depends on the amount of data we are projecting, i.e., number of pa-
tients and length of experiments. We use an empirically found window
size of CF = 5 seconds and a stride of CB = 1 second for the following
�gures.

With the projected data in front of us, we can start making some
observations. We see that most healthy patients (black trails) cluster
together in a tight formation in the “center” of the projection, while the
tremor patients’ trails tend to be located to the right of this cluster and
have a broader spread. The angle and distance from the central cluster

145

hyperkinetic movement disorder analysis

Figure 7.7: G-PCA projection of 24 healthy (black) and 11 tremor (red) patients
with window width and stride of [1s, 1s] on the left and [5s, 1s] on
the right.

must portray some traits in the data, but we cannot con�rm anything
just yet.

To better understand the overall structure of the projection, we start
by looking at a couple of trails drawn in its periphery. We start selecting
patient 91 (Fig. 7.8-left). Our tool also displays the video recording of the
experiment (not shown here due to privacy concerns).

Patient 91 presents a unique behavior. Looking at the raw signal and
spectrogram, we can tell that in the initial 2-3 seconds, there is a pres-
ence of medium amplitude tremors, followed by high amplitude tremors
until second 13, and then a signi�cant reduction in the intensity until
the end of the experiment. We also see that the movement is decom-
posed into a “sharp” spectrum, mainly focused on around 5 Hz. One
hypothesis is that the patient can suppress involuntary movements af-
ter considerable e�ort, which is only possible after a few seconds into
the experiment. This dynamic translates in a particular projection trail
(top-left): The trail starts a certain distance away from the center of
the projection, characteristic of “unhealthy” behavior, and then “shoots”
away to the top left as tremor intensity increases, only to �nally move
closer to the center of the projection, close to the healthy cluster as the
amplitude is reduced. This hints that the distance from the “center” of
the projection is related to the energy in the signal, that is, how large
the movements are.

The three plots on the right portray the data collected from patient 96
(Fig. 7.8-right). This patient was also diagnosed with important tremors,
but its manifestation shows essential di�erences compared to patient
91. Patient 96 shows a more constant tremor. The amplitude is con-
stantly high, showing that the patient cannot suppress the movement.
Another dissimilarity comes in the signature of the tremor: Patient 91
has a “sharp” histogram, meaning that his/her tremor has very sinu-
soidal tendencies, while the same is not valid for patient 96, given the
presence of high energy high frequencies on the spectrum. Upon de-
tailed inspection of the video recording, this can be related to the fact

146

7.5 data exploration

that patient 96’s tremor has a more lateral tendency (side-to-side instead
of up-and-down). We also notice extra movement at the beginning of
the recording as the patient gets into position, which can be identi�ed
in the projection as abnormal movements that make the trails start at
the right-bottom at a considerable distance from where the rest of the
trail is located.

Figure 7.8: Our tool allows selection and inspection of patients. Other than the
plots shown in the �gure, the tool also displays a video recording of
the experiment.

The projection also allows us to investigate the border between the
two classes, potentially revealing subjects of interest which may be
di�cult to diagnose. Fig. 7.9 shows two subjects whose trails are in
the border and overlap each other. However, patient 39 (left) is clas-
si�ed as healthy, while patient 42 (right) was diagnosed with essen-
tial tremor. Comparing their signals, we see that subject 39’s signal
has a larger amplitude and a sharper spectrum, which to the untrained
eye, it could mean that he/she su�ers from tremors. However, the sub-
ject’s tremors have a very high-frequency main component (over 10
Hz), which puts him/her outside the normal range for essential tremors
(5–8 Hz) – maybe the subject just drank too much co�ee in the morn-
ing. His/her tremor also does not seem to be a very signi�cant impact
on other tasks. Patient 42, however, does not display obvious tremor
symptoms in this particular static task, but given its classi�cation, we
must explore the reasons for the diagnosis. Further exploration tells us

147

hyperkinetic movement disorder analysis

that this particular patient has one side of the body more a�ected than
the other. The condition appears to be more noticeable when perform-
ing active tasks (instead of holding static positions), as witnessed by the
so-called Archimedes Spiral tests2 (Fig. 7.10). Patient 42 shows tremor
signals for both hands, but the tremor is much more apparent on the
left.

Figure 7.9: The trail representing the patient on the right is very close to the
healthy group. If we look at only his right hand during the record-
ing of this speci�c task, it is hard to tell that he/she su�ers from
tremors, and it raises the question as to why was he/she diagnosed
with tremors. Does it have a postural/unilateral aspect that is not
captured in this task?

Finally, we can notice some healthy trails reaching out into “tremor
territory”, revealing interesting subjects for investigation. One trail that
attracts attention in the projection is the one of patient 3 (Fig. 7.11-left).
While most of the trail is located near other healthy patients, a part of
the trail extends to the right. Looking at the spectrogram and raw sig-
nal, we can see that the patient trembles for a short period. However, the
video (again, not shown here for privacy concerns) shows that this hap-
pens as the patient talks to the researchers and slightly moves his/her
legs, which does not indicate an incorrect diagnosis. Such a trail could
also mean that a true essential tremor patient lost control of the suppres-

2 In this drawing task, the subject is shown an Archimedean spiral, and asked to reproduce
it as faithfully as possible (Bain et al., 1993).

148

7.5 data exploration

39 (right)

39 (left)

42 (right)

42 (left)

Figure 7.10: Archimedes spirals for both hands of patients 39 and 42.

sion of the involuntary movement. The moment this happens is clearly
pointed out in the projection and could have been easily overlooked in
a clinical setting. We see a similar trend for patient 37 (Fig. 7.11-right),
but in this case, the movement is due to a late stop of the recording –
the sensors and camera keep going as the subject is told to return to
a rest position. These recordings also help us con�rm an earlier suspi-
cion about the meaning of the northeast and southeast portions of the
projection space. These are related to the “sharpness” of the spectrum:
signals where the frequency band of 5–8 Hz tends to form the majority
of the spectrum energy tend to go north-east, these “well-behaved/well-
de�ned” tremors. At the same time, the direction towards the southeast
of the projection is representative of more uniform spectral distribu-
tions, related to more chaotic movements.

All the previous analysis was done atop of a single G-PCA projec-
tion. However, the other projection techniques implemented into the
tool can o�er di�erent perspectives on the data, which could be useful
in other tasks. Fig. 7.12 shows the results of six projection techniques
for the same data. These projections show a PCD-tSNE characteristic
previously discussed (Section 6.5.4), namely its ability to mix character-
istics of PCA (focus on distance preservation) and of tSNE (focus on
neighborhood preservation) based on the setting of its _ parameter.

Our analysis so far focused on comparing control subjects to tremor
patients. Another important clinical question concerns comparing dif-
ferent disorders and patient groups to comprehend better disorder man-
ifestation and support challenging phenotypic classi�cation. As previ-
ously pointed out, cross-analysis is an understudied topic supported

149

hyperkinetic movement disorder analysis

Figure 7.11: Temporary tremors on the left, and premature end of experiment
on the right.

by our tool. Fig. 7.13 shows patients classi�ed with Myoclonus and Es-
sential Tremors on the same projection, referring to a relevant clinical
question, given that Myoclonus can manifest itself in the form of pe-
riodic jerks that closely resemble tremors. Being able to perform the
phenotypic classi�cation correctly is critical for e�ective treatment of
the disorders. In the projections of this data, we can see some separa-
tion in the two classes. This is compelling evidence for the value of our
projection-based approach, supporting our claim that it can lead to fur-
ther developments in the classi�cation of movement disorders.

7.6 discussion

Given the novelty of our approach and the initial positive results ob-
tained, several points can be discussed to improve our visual analytics
tool to make it more e�ective for tackling phenotypic classi�cation and
exploration of EMG and accelerometer data. Below we discuss several
such points and indicate directions for future work and further explo-
ration.

• What sort of insights can we get about undiagnosed patients?

One possible use of our tool, which has not been properly investigated
yet, is its capability as a visual classi�cation tool. In practice, this could

150

7.6 discussion

(a) G-PCA (b) PCD-tSNE _ = .1

(c) PCD-tSNE _ = .001 (d) PCD-tSNE _ = .0001

(e) PCD-tSNE _ = .000001 (f) G-tSNE

Figure 7.12: Di�erent projections of the same data showing how PCD-tSNE is
able to create a hybrid focus on distance preservation or neighbor-
hood preservation depending on the _ parameter setting.

151

hyperkinetic movement disorder analysis

(a) G-PCA

(b) G-tSNE

Figure 7.13: G-PCA and G-tSNE projections of 16 Myoclonus patients (blue) and
11 essential tremor (red) patients for the same task and sensor place-
ment with window size of 1s and stride of 0.5s. Some separation can
be seen, which is a good indicative that the methods we developed
can be used to support the classi�cation of patients groups, which
is one of the ultimate goals of the NEMO project, but falls outside
the scope of this thesis.

152

7.6 discussion

be done by adding a new undiagnosed study subject to a projection
such as the one in Fig. 7.13. Given the data transformations performed
to construct the lower dimensional (embedding) space and/or the simi-
larity of the subject’s data compared to the other diagnosed recordings,
by comparing the shape and position of the new trail to the ones al-
ready present in the projection, we can �nd evidence that may lead to a
diagnosis (classi�cation). Given the large number of experiments each
patient performs, by using multiple projections and comparison groups,
we could also draw conclusions about the circumstantial and individual
aspects of the excessive and involuntary movements.

• Can we identify data features that explain why patients or patient
groups di�er from each other in the projections?

We addressed this goal by designing a tool that explores the data “both
ways”. In the “forward direction”, we can take the raw data and, via
many transformations and augmentation steps, create a high-level com-
plex representation using projection trails that allow us to reason about
the underlying temporal and high-dimensional structure of the dataset.
The “reverse direction” implies taking this complex visual representa-
tion, and via interaction and group inspection, explore the features on
the original data that cause the high-level representation to present spe-
ci�c visual features. The analysis performed on Figs. 7.7 and 7.8 is a
prime example of such feature identi�cation, as the exploration we per-
formed quickly gave us insight into the intensity (given the distance of
trails to the control group) and regularity (based on the orientation of
trails) of tremors.

• Can we use the tool to identify which task and sensor combinations
are relevant to a given diagnosis?

Due to the size and goals of the NEMO project, we were able to collect
large amounts of data from patients, asking them to perform many mo-
tion tasks, while connected to a range of state-of-the-art sensors. This
is, of course, taxing on the subjects. With that in mind, and knowing
that most clinical settings are not as well equipped or prepared to run
such tests, one of the clinical goals of this project is to de�ne what are
(if any) the minimal resources and methods needed to perform a con�-
dent data-driven diagnosis. This means �nding combinations of sensors,
tasks, comparison groups, and (pre)processing steps, that are the most
suitable in support of clinical tasks.

By creating an interactive tool in which the user can adjust all these
settings and parameters on the �y, while receiving visual feedback in
the form of projection trails and secondary views of the data, we give
the user new ways of reasoning and interacting with the data. We also
believe that the separation and visual features seen in the projections
are meaningful and relate to clinical features. For example, if a combi-
nation of sensors, tasks, and user groups seem to produce good class

153

hyperkinetic movement disorder analysis

separation in the projection, we can expect a black-box classi�er to per-
form well in this data (Rauber et al., 2017a) and we expect experts to
also agree with the overall structure of the data.

• Can we use the tool to make data quality judgements?

Indeed, as shown in Fig. 7.11, we performed an analysis on subjects that
were visually found out to deviate from the healthy group, in which we
found that the duration of the experiment for subject 37 deviated from
the duration of the recording. In the same �gure, we see a small black
dot to the left of the control group that indicates the recording of a
patient for which this particular sensor was not correctly attached.

• How should we continue development of this tool?

There are many promising directions for future development that ad-
dress current limitations in our tool: For example, all our current anal-
yses are now done based on one selected task and one sensor at a time.
We believe that it would be advantageous to perform a uni�ed analysis
on multiple sensors and tasks. This could lead to a better understand-
ing of postural/circumstantial (depending on the task or patient focus)
and individual (unilateral or only certain limbs a�ected) appearance of
certain involuntary movements.

Additionally, in its current state, our tool performs well only for static
tasks, i.e., tasks in which patients are expected to hold a position for a
speci�c amount of time. However, many dynamic tasks are of great rele-
vance for speci�c diagnoses, but due to the complexity of the signal, we
are unable to extract relevant information for motion disorder analysis.
Correctly handling this data would imply the development of a series
of additional preprocessing steps that fall outside this thesis’s scope.

Given the goals of the NEMO project, it is important to face the
problems of visual analytics and classi�cation as one. This chapter fo-
cuses on the former, but there are works in the literature that present
combined approaches (Graving and Couzin, 2020; Rauber et al., 2017a)
which could be of bene�t to the clinical tasks we want to improve.

Lastly, we focus only on accelerometer and 2D video data. It could
be bene�cial to add support to exploring the extra data modalities ex-
tracted during the experiments.

7.7 conclusions

We presented a real-world application of our new dynamic projection
methods in the context of hyperkinetic movement disorder analysis. We
show evidence of the usefulness of these methods in support of motion
data analysis.

We introduced the problem, described how we transform the data col-
lected during clinical experiments, proposed a visual analytics tool de-
signed to support the exploration of this complex dataset, and showed

154

7.7 conclusions

examples of data explorations that, in the hands of a medical profes-
sional, could potentially lead to valuable clinical insights.

This is a preliminary investigation, and many points are still open,
e.g., the actual construction of an automatic classi�er based on such
data, questions regarding the clinical usage of dynamic projections, the
design of sophisticated UIs for medical professionals, among other di-
rections of future work. Nevertheless, our work showed that projections
have the potential to be useful in exploring temporal multidimensional
data coming from a complex real-world problem.

Acknowledgments: I would like to acknowledge the University Med-
ical Center Groningen (UMCG) for providing access to the NEMO data
and the researchers M.A.J. de Koning-Tijssen, J.R. Dalenberg, A.M.M.
van der Stouwe, I. Tuitert, A.C. Telea, and J.L.D. Comba for contribut-
ing to the writing of this chapter, which will be shortly submitted as a
separate publication.

155

8C O N C L U S I O N

In this thesis, we considered the visualization of two types of dynamic
(time-dependent) data present in information visualization – weighted
hierarchies and high-dimensional datasets. Both data types are ubiq-
uitous in many applications in machine learning, statistics, and data
science; and, as identi�ed at the beginning of the thesis, while many
techniques have been proposed for the visualization of static (time-
independent) forms of both data types, the investigation of techniques
that handle the dynamic variants has only been touched in information
visualization.

Throughout our work, we found interesting and insightful parallels
between the two types of datasets, the challenges they pose to visu-
alization and visualization evaluation, and also the solutions that we
designed to handle both.

Chapter 2 kickstarted our work by considering treemap algorithms
for the visualization of a particular type of data, namely hierarchies
mined from evolving software projects. Already in this limited context,
we found that quality of a treemapping algorithm contains two com-
ponents, namely visual quality, that captures how well the cells of the
treemap are spread over the drawing space to re�ect the data values
and also generate easily readable patterns; and stability, that measures
how well the changes in the depicted treemaps follow the changes in
the underlying hierarchies. We also found that the two quality aspects
are, roughly speaking, in competition with each other: Algorithms that
obtain a high visual quality do this by neglecting stability; and very
stable algorithms yield a poor visual quality.

For both hierarchies and high-dimensional projections, we found
well-established metrics for gauging visual quality in the literature, i.e.,
when time is not taken into consideration and only the quality of in-
dividual layouts is measured. For treemaps, the quality of the layout
is well quanti�ed by the aspect ratio of the contained cells, consider-
ing that cells closer to squares form a more readable visualization; for
projections, visual quality is measured by how well the distances and
neighborhoods from the high-dimensional space are preserved by the
low-dimensional embedding.

Regarding stability, however, there were no e�ective methods of
quantifying the relationship between data change and visual change. As
such, and recognizing that stability is an as important desirable property
for dynamic visualization as their (static) visual quality, we proposed
our own stability metrics. Concerning dynamic treemaps, an algorithm
is stable if small changes in the input data result in small changes in

157

conclusion

the layout, that is, data change and layout change correlate positively.
Previously proposed stability metrics measured only the layout change
and concluded that small layout changes are a sign of a stable algo-
rithm. However, to properly measure stability, we also need to capture
the data change and then correlate data and layout change, an endeavor
which we approached in Chapters 2 and 3. This exact same principle ap-
plies to dynamic projections. However, in this case, we correlate high-
dimensional data change to low-dimensional scatterplot layout change
(Chapter 5).

As already mentioned, we found out that visual quality and stabil-
ity are con�icting criteria, both for treemaps and projections. In order
to improve stability, both treemapping and dimensionality reduction
methods have to sacri�ce visual quality, and conversely. Recognizing
this challenge, we next aimed to create methods that improve this bal-
ance – that is, yield overall higher stability and visual quality than exist-
ing methods in each class. For dynamic hierarchies, we proposed to this
end Greedy Insertion Treemaps (Chapter 4). For multidimensional pro-
jections, we proposed the LD-tSNE and PCD-tSNE methods (Chapter 6).
Greedy Insertion Treemap (or GIT) aims to preserve treemap-cell neigh-
borhoods over time by constructing an initial so-called Layout Tree
(LT), a data structure which is incrementally updated as the input tree
data changes, so as to minimize undesired treemap-layout changes. Our
state-aware GIT method is simple to implement, generic (handles any
types of dynamic hierarchies), and fast (compared to the other state-of-
the-art methods). For the dynamic projection challenge, both our newly
proposed methods leverage the neighborhood-preservation ability of t-
SNE for dynamic time-dependent data. LD-tSNE uses guidance in the
form of landmarks, and PCD-tSNE uses information given by the Princi-
pal Components of the full temporal dataset. Our results show that PCD-
tSNE scores a good balance between stability, neighborhood preserva-
tion, and distance preservation, making it one of the best suited general
methods for dynamic projections, while LD-tSNE allows creating stable
and customizable projections via landmarks selection and steering.

Another common aspect concerning both dynamic hierarchies and
dynamic high-dimensional datasets is the di�culty of evaluation. This
comprises multiple aspects. Besides the availability of suitable quality
metrics – which we solved as described above – there is also the di�-
culty of �nding good collections of datasets on which to evaluate exist-
ing visualization methods. Such so-called benchmarks were introduced
– only very recently – for static projections. However, no comprehen-
sive benchmarks existed, at the time of writing this thesis, for static
treemapping, let alone for dynamic treemapping and dynamic projec-
tions. We created and evaluated several such benchmarks, starting with
one for dynamic hierarchies obtained from software evolution (Chap-
ter 2), which we extended next to a far more general benchmark for
dynamic hierarchies mined from a wide spectrum of application do-

158

8.1 future work

mains (Chapter 3), and ending with a benchmark for dynamic projec-
tions (Chapter 5). Creating these benchmarks posed both conceptual
problems, in terms of how to describe the huge variability of dynamic
datasets along a set of independent traits, and next how to sample these
traits; but also practical problems, in terms of how to �nd real-world
datasets that sample the universe of these dynamic datasets, and pro-
viding actual reference implementations for the tens of algorithms for
treemapping and projection that we need to evaluate. While our pro-
posed benchmarks are, de�nitely, not fully covering the space of pos-
sibilities, they are the �rst in the dynamic treemapping and projection
arenas. We made them fully open source (datasets, algorithms, visual-
ization techniques, quality metrics, and obtained results). We argue that
these are important resources for the visualization community which
can, now, easily compare new and existing algorithms with new and
existing datasets for both practical and research-oriented goals.

Lastly, we presented a real-world application of our new dynamic
projection methods in the context of hyperkinetic movement disorder
analysis. These disorders manifest themselves as abnormal involuntary
movements that highly a�ect the quality of life of the people who suf-
fer from them, and computer supported diagnosis is desired given the
complexity of their manifestation. In Chapter 7, we described how we
transform the data collected during clinical experiments, we proposed a
visual analytics tool designed to support the exploration of the this com-
plex dataset, and we showed examples of data exploration that could
potentially lead to valuable clinical insights. This is preliminary investi-
gation, and many points are still open e.g., the actual construction of an
automatic classi�er based on such data, questions regarding the clinical
usage of dynamic projections, the design of a sophisticated UIs for med-
ical professionals, among other directions of future work. Nevertheless,
our work showed that projections do have the potential to be useful
in the exploration of temporal multidimensional data coming from a
real-world problem.

8.1 future work

There are several possible directions for future work:
Streaming data: For our algorithm designs, we assumed a �nite tem-
poral aspect to the time series we are handling, and we allow our algo-
rithms to “look into the future” and adapt accordingly to the changes
in the data that are yet to come. When dealing with streaming data,
we do not have this ability, we cannot “look into the future”, and the
algorithm must try to adapt to any unpredictable changes in the data,
making the design of this class of methods even more challenging. In
addition, studying this class of (underserved) algorithms implies the de-
sign of new quality metrics and the collection of new suitable datasets.
This applies both to streaming treemaps and streaming projections.

159

conclusion

Deep learning dynamic projections: Recently, we have seen the use
of deep neural networks to produce static projections with a signi�-
cant computational speed-up while maintaining high-quality metrics
and out-of-sample capability (Espadoto et al., 2020b). We believe a sim-
ilar approach could be investigated for dynamic projections, granting
similar bene�ts to the temporal counterpart.
Extending benchmarks: We can extend our benchmarks with new
methods, better ways to choose hyperparameters, new datasets, and
new metrics. With a larger number of datasets, we can perform robust
tests on the impact of dataset traits on the quality of our projections and
treemaps. We can also integrate streaming data techniques, streaming
datasets, and dedicated task-based tests.
Improvements to the NEMO data exploration tool: As stated in
Chapter 7, there are many promising direction for future development
that address current limitations in our tool: the current analyses only
support one selected task and one sensor at a time. It would certainly be
advantageous to extend our methods to multiple sensors and tasks. This
would lead to better understanding of the postural, circumstantial, and
individual aspects of certain involuntary movement occurrences. Addi-
tionally, we focus only on accelerometer and 2D video data. Providing
support to the extra data modalities extracted during the experiments
would certainly be bene�cial to phenotypical classi�cation tasks.

160

AA P P E N D I X : G U I D E D S TA B L E D Y N A M I C
P R O J E C T I O N S

a.1 pcd-tsne parameters

Table A.1 presents the PCD-tSNE parameters used for each dataset. This
table complements Section 6.3.2.

Table A.1: The _ parameter modulates the amount of global in�uence applied
to points in % (DC); the PC scaling term scales, to increase/decrease
the area of global in�uence, i.e., it scales the principal components of
D.

dataset _ PC scaling

cartolastd 10−2 100

cifar10cnn 10−5 100

esc50 10−2 10−1

fashion 10−4 10−1

gaussians 10−3 101

nnset 10−3 100

qtables 10−3 10−1

quickdraw 10−3 100

sorts 10−1 100

walk 10−4 100

a.2 ld-tsne parameters

Table A.2 presents the LD-tSNE parameters used for each dataset. This
table complements Sections 6.3.1 and 6.5.5.

a.3 metric results

Table A.3 shows unaggregated metric results. Each of the 10 subtables
corresponds to a dataset, columns correspond to the di�erent quality
metrics, and the rows represent the di�erent methods. Methods are or-
dered according to their strategy: Per-timeframe, Global, Continuous,
and Guided. The columns correspond, respectively, to distance preserva-
tion metrics ((%40AB>=, ((?40A<0=, (4=30;; , ((CA4BB), neighborhood preser-
vation metrics ((#� , (#% , ()ADBC , (�>=C), and temporal stability metrics
()%40AB>=,)(?40A<0=,) 4=30;; ,)(CA4BB). The colormap is normalized inde-
pendently for each metric and each dataset.

These tables compliment Sections 6.5.2 and 6.5.3.

161

appendix: guided stable dynamic projections

Table A.2: The _, U , and V parameters control the amount of in�uence land-
marks have on the the points being projected. In simple terms, U
controls the tightness of clusters in % (DC), V scales the strength of
the “pull” of landmarks L on points in % (DC), and _ balances the two
factors. Values marked “-” were obtained using the interactive mode
that was implemented and gave the user real-time control over pa-
rameters during the optimization. # is the number of points in DC

and) is the total number of timesteps in D.

dataset _ V U l@ projection (# landmarks)

cartolastd .2 2 4 PCA(#)
cifar10cnn .5 4 1 tSNE(#)
esc50 .3 5 1 PCA(#)
fashion .1 4 2 tSNE(#)
gaussians - - - PCA(#)
nnset .02 8 1 PCA(#)
qtables - - - PCA(#)
quickdraw .1 2 1 tSNE(#)
sorts .25 10 2 PCA(#))
walk - - - PCA(#)

162

A.3 metric results

Table A.3: Unaggregated metric results for all datasets, metrics, and methods.
The colormap is normalized independently for each metric and each
dataset.

TF-PCA 0.931 0.928 0.790 0.137 0.505 0.480 0.937 0.876 0.761 0.570 0.450 0.477
TF-tSNE 0.756 0.800 0.615 0.487 0.597 0.592 0.947 0.913 0.061 0.075 0.055 1.876
TF-UMAP 0.634 0.693 0.520 0.731 0.576 0.556 0.908 0.893 -0.00 -0.04 -0.03 2.003

G-AE 0.898 0.936 0.799 0.203 0.495 0.505 0.932 0.884 0.758 0.985 0.908 0.482
G-VAE 0.910 0.949 0.822 0.178 0.568 0.618 0.950 0.934 0.864 0.987 0.917 0.270
G-PCA 0.929 0.926 0.787 0.140 0.519 0.474 0.935 0.874 0.778 0.987 0.916 0.442
G-tSNE 0.685 0.733 0.547 0.628 0.550 0.455 0.847 0.806 0.514 0.788 0.655 0.970
G-UMAP 0.599 0.635 0.459 0.801 0.290 0.156 0.561 0.576 0.366 0.368 0.282 1.267
C-tSNE 0.602 0.678 0.495 0.794 0.527 0.503 0.849 0.846 0.307 0.175 0.132 1.384
C-UMAP 0.665 0.711 0.533 0.668 0.576 0.555 0.923 0.895 0.044 -0.11 -0.08 1.911
D-tSNE 0.768 0.822 0.638 0.462 0.538 0.558 0.932 0.905 0.141 -0.03 -0.02 1.716

PCD-tSNE 0.929 0.924 0.785 0.141 0.521 0.478 0.936 0.875 0.772 0.704 0.565 0.454
LD-tSNE 0.771 0.823 0.642 0.457 0.560 0.573 0.957 0.907 0.574 0.392 0.301 0.851

cartolastd

TF-PCA 0.786 0.790 0.600 0.427 0.414 0.560 0.942 0.894 -0.11 -0.13 -0.08 2.229
TF-tSNE 0.786 0.783 0.597 0.427 0.479 0.776 0.963 0.972 -0.13 -0.15 -0.10 2.272

TF-UMAP 0.845 0.855 0.672 0.308 0.475 0.752 0.960 0.967 -0.04 -0.06 -0.04 2.096
G-AE 0.772 0.792 0.604 0.454 0.455 0.621 0.931 0.922 0.597 0.750 0.559 0.804

G-VAE 0.905 0.917 0.762 0.188 0.469 0.732 0.969 0.944 0.816 0.889 0.720 0.367
G-PCA 0.777 0.790 0.602 0.445 0.405 0.532 0.935 0.881 0.695 0.654 0.480 0.608

G-tSNE 0.886 0.884 0.713 0.226 0.455 0.603 0.903 0.851 0.521 0.641 0.460 0.957
G-UMAP 0.906 0.922 0.766 0.186 0.468 0.694 0.953 0.942 0.682 0.710 0.517 0.634
C-tSNE 0.888 0.916 0.752 0.223 0.455 0.623 0.897 0.887 0.378 0.367 0.251 1.243

C-UMAP 0.831 0.853 0.669 0.336 0.474 0.747 0.956 0.967 0.346 0.189 0.127 1.307
D-tSNE 0.842 0.845 0.662 0.315 0.476 0.721 0.952 0.950 0.317 0.283 0.191 1.365

PCD-tSNE 0.908 0.913 0.753 0.182 0.459 0.647 0.914 0.889 0.483 0.497 0.348 1.032
LD-tSNE 0.865 0.870 0.691 0.268 0.465 0.704 0.942 0.952 0.570 0.691 0.502 0.858

cifar10cnn

TF-PCA 0.993 0.990 0.927 0.012 0.323 0.712 0.989 0.974 0.095 0.801 0.641 1.808
TF-tSNE 0.920 0.935 0.784 0.159 0.372 0.694 0.964 0.969 -0.04 -0.03 -0.02 2.096
TF-UMAP 0.926 0.935 0.786 0.146 0.360 0.676 0.967 0.968 -0.10 -0.05 -0.03 2.214

G-AE 0.937 0.965 0.842 0.124 0.323 0.604 0.961 0.959 0.981 0.898 0.738 0.037
G-VAE 0.977 0.968 0.859 0.045 0.210 0.458 0.939 0.896 0.985 0.866 0.697 0.029
G-PCA 0.993 0.990 0.926 0.012 0.323 0.711 0.989 0.974 0.992 0.917 0.778 0.014
G-tSNE 0.776 0.827 0.639 0.446 0.393 0.356 0.748 0.769 0.608 0.545 0.386 0.783
G-UMAP 0.778 0.812 0.616 0.443 0.300 0.320 0.754 0.769 0.568 0.550 0.392 0.862
C-tSNE 0.887 0.909 0.742 0.225 0.367 0.685 0.960 0.964 0.384 0.557 0.394 1.231
C-UMAP 0.928 0.936 0.787 0.142 0.359 0.668 0.967 0.967 0.034 0.029 0.019 1.930
D-tSNE 0.912 0.925 0.771 0.174 0.305 0.510 0.938 0.929 0.026 0.020 0.013 1.947

PCD-tSNE 0.993 0.990 0.926 0.012 0.323 0.712 0.989 0.974 0.748 0.875 0.705 0.503
LD-tSNE 0.886 0.952 0.841 0.227 0.341 0.636 0.949 0.939 0.619 0.570 0.404 0.761

esc50

TF-PCA 0.650 0.627 0.450 0.699 0.434 0.542 0.954 0.927 0.502 0.508 0.354 0.995
TF-tSNE 0.664 0.660 0.475 0.670 0.651 0.632 0.951 0.948 -0.07 -0.07 -0.05 2.153
TF-UMAP 0.659 0.658 0.470 0.680 0.624 0.613 0.944 0.943 0.343 0.372 0.225 1.312

G-AE 0.712 0.725 0.531 0.574 0.614 0.573 0.933 0.936 0.328 0.469 0.324 1.342
G-VAE 0.638 0.636 0.452 0.723 0.589 0.588 0.938 0.939 0.357 0.391 0.266 1.284
G-PCA 0.648 0.626 0.448 0.702 0.434 0.542 0.954 0.927 0.447 0.429 0.295 1.105
G-tSNE 0.740 0.750 0.554 0.518 0.660 0.610 0.940 0.938 0.208 0.886 0.697 1.582
G-UMAP 0.710 0.713 0.518 0.579 0.669 0.585 0.913 0.931 0.078 0.248 0.168 1.843
C-tSNE 0.457 0.417 0.286 1.085 0.589 0.561 0.873 0.889 0.368 0.425 0.297 1.263
C-UMAP 0.641 0.637 0.452 0.716 0.623 0.610 0.943 0.943 0.528 0.556 0.392 0.943
D-tSNE 0.721 0.734 0.535 0.557 0.636 0.642 0.938 0.944 0.286 0.346 0.236 1.427

PCD-tSNE 0.702 0.700 0.508 0.595 0.594 0.621 0.961 0.945 0.513 0.631 0.446 0.972
LD-tSNE 0.722 0.726 0.530 0.555 0.638 0.630 0.951 0.948 0.397 0.661 0.477 1.204

fashion

163

appendix: guided stable dynamic projections

TF-PCA 0.431 0.500 0.364 1.136 0.837 0.536 0.880 0.852 0.808 0.915 0.739 0.383
TF-tSNE -0.06 0.172 0.132 2.126 0.948 0.611 0.880 0.881 -0.08 -0.04 -0.03 2.163
TF-UMAP -0.24 0.117 0.103 2.494 0.957 0.589 0.878 0.883 0.553 0.406 0.268 0.892

G-AE 0.226 0.361 0.264 1.546 0.964 0.581 0.882 0.889 0.679 0.880 0.699 0.640
G-VAE 0.264 0.384 0.282 1.470 0.978 0.585 0.882 0.887 0.668 0.917 0.741 0.662
G-PCA 0.443 0.491 0.362 1.112 0.847 0.539 0.880 0.852 0.841 0.945 0.790 0.317
G-tSNE 0.218 0.396 0.293 1.563 0.995 0.567 0.880 0.874 -0.07 -0.17 -0.15 2.153
G-UMAP 0.220 0.368 0.268 1.559 0.997 0.593 0.877 0.885 0.063 -0.35 -0.24 1.873
C-tSNE -0.14 -0.09 -0.06 2.285 0.672 0.422 0.760 0.750 -0.04 0.191 0.170 2.080
C-UMAP -0.30 -0.06 -0.05 2.604 0.953 0.583 0.879 0.881 0.737 0.420 0.293 0.524
D-tSNE 0.152 0.279 0.199 1.695 0.998 0.625 0.878 0.892 0.811 0.868 0.694 0.376

PCD-tSNE 0.442 0.490 0.361 1.114 0.856 0.549 0.882 0.856 0.844 0.948 0.797 0.311
LD-tSNE -0.09 0.082 0.063 2.199 0.969 0.611 0.880 0.884 0.652 0.535 0.366 0.694

gaussians

TF-PCA 0.697 0.842 0.674 0.605 0.230 0.453 0.935 0.860 0.151 0.312 0.223 1.696
TF-tSNE 0.468 0.582 0.413 1.063 0.214 0.449 0.923 0.861 0.231 0.255 0.175 1.537
TF-UMAP 0.494 0.666 0.499 1.010 0.185 0.434 0.908 0.818 0.009 0.007 0.005 1.981

G-AE 0.630 0.795 0.630 0.738 0.239 0.454 0.929 0.854 0.579 0.524 0.362 0.841
G-VAE 0.558 0.745 0.564 0.882 0.245 0.317 0.799 0.792 0.619 0.582 0.408 0.760
G-PCA 0.629 0.794 0.628 0.741 0.233 0.452 0.929 0.853 0.565 0.501 0.344 0.869
G-tSNE 0.719 0.724 0.549 0.561 0.216 0.436 0.898 0.837 0.474 0.565 0.403 1.050
G-UMAP 0.509 0.634 0.465 0.981 0.218 0.385 0.869 0.812 0.279 0.392 0.266 1.440
C-tSNE 0.524 0.738 0.586 0.951 0.235 0.489 0.941 0.880 0.535 0.390 0.269 0.928
C-UMAP 0.475 0.648 0.482 1.048 0.186 0.421 0.902 0.810 -0.07 -0.03 -0.02 2.153
D-tSNE 0.448 0.619 0.448 1.103 0.099 0.101 0.509 0.531 -0.05 -0.03 -0.02 2.109

PCD-tSNE 0.627 0.802 0.640 0.744 0.229 0.480 0.939 0.867 0.532 0.462 0.316 0.935
LD-tSNE 0.688 0.840 0.676 0.622 0.235 0.462 0.936 0.877 0.628 0.543 0.382 0.742

nnset

TF-PCA 0.998 0.980 0.917 0.002 0.729 0.568 0.952 0.957 0.370 0.526 0.369 1.259
TF-tSNE 0.286 0.688 0.508 1.426 0.703 0.658 0.977 0.971 0.220 -0.04 -0.03 1.559

TF-UMAP 0.668 0.764 0.560 0.663 0.685 0.563 0.949 0.941 0.174 0.058 0.037 1.650
G-AE 0.987 0.977 0.893 0.024 0.709 0.567 0.955 0.954 0.832 0.971 0.870 0.335

G-VAE 0.968 0.967 0.864 0.063 0.716 0.557 0.957 0.953 0.861 0.975 0.878 0.277
G-PCA 0.998 0.977 0.909 0.002 0.720 0.563 0.951 0.954 0.855 0.965 0.864 0.288

G-tSNE 0.556 0.594 0.431 0.887 0.496 0.406 0.782 0.822 0.547 0.528 0.435 0.905
G-UMAP 0.472 0.484 0.349 1.054 0.436 0.344 0.648 0.779 0.262 0.645 0.467 1.475
C-tSNE 0.723 0.796 0.606 0.553 0.713 0.651 0.977 0.970 0.276 0.289 0.198 1.447

C-UMAP 0.740 0.802 0.604 0.519 0.686 0.555 0.951 0.947 0.223 0.227 0.155 1.552
D-tSNE 0.588 0.684 0.494 0.822 0.187 0.180 0.670 0.657 -0.03 -0.05 -0.03 2.064

PCD-tSNE 0.997 0.964 0.884 0.004 0.717 0.624 0.976 0.966 0.687 0.505 0.360 0.624
LD-tSNE 0.825 0.842 0.655 0.349 0.706 0.607 0.969 0.962 0.242 0.699 0.492 1.515

qtables

TF-PCA 0.608 0.685 0.500 0.783 0.479 0.250 0.774 0.704 0.376 0.739 0.589 1.247
TF-tSNE 0.092 0.243 0.178 1.815 0.575 0.318 0.787 0.737 0.117 0.071 0.054 1.764

TF-UMAP 0.116 0.344 0.246 1.767 0.539 0.295 0.743 0.708 0.334 0.331 0.253 1.330
G-AE 0.560 0.769 0.595 0.879 0.613 0.259 0.754 0.715 0.277 0.938 0.827 1.445

G-VAE 0.675 0.769 0.586 0.649 0.595 0.270 0.728 0.726 0.438 0.953 0.857 1.122
G-PCA 0.655 0.738 0.544 0.689 0.482 0.213 0.671 0.672 0.856 0.970 0.919 0.287

G-tSNE 0.602 0.622 0.443 0.795 0.276 0.128 0.533 0.550 0.304 0.906 0.829 1.390
G-UMAP 0.696 0.759 0.566 0.606 0.203 0.119 0.539 0.538 0.277 0.647 0.511 1.444
C-tSNE 0.592 0.713 0.521 0.815 0.537 0.287 0.753 0.705 0.434 0.547 0.422 1.131

C-UMAP 0.089 0.341 0.245 1.821 0.541 0.291 0.744 0.705 0.404 0.459 0.349 1.190
D-tSNE 0.363 0.499 0.375 1.272 0.575 0.319 0.840 0.773 0.436 0.625 0.490 1.127

PCD-tSNE 0.642 0.740 0.541 0.714 0.507 0.242 0.742 0.688 0.763 0.762 0.625 0.472
LD-tSNE 0.400 0.528 0.376 1.198 0.515 0.275 0.766 0.700 0.435 0.648 0.500 1.129

quickdraw

low quality high quality

164

A.3 metric results

TF-PCA 0.762 0.798 0.616 0.475 0.596 0.404 0.879 0.820 0.208 0.399 0.271 1.582
TF-tSNE 0.022 0.005 0.010 1.954 0.505 0.512 0.890 0.873 0.034 0.085 0.057 1.930
TF-UMAP 0.086 0.281 0.208 1.826 0.509 0.505 0.902 0.853 -0.06 -0.06 -0.04 2.135

G-AE 0.692 0.764 0.585 0.614 0.577 0.384 0.870 0.804 0.485 0.667 0.496 1.028
G-VAE 0.724 0.747 0.568 0.551 0.578 0.398 0.870 0.816 0.529 0.688 0.514 0.941
G-PCA 0.729 0.764 0.595 0.540 0.603 0.398 0.868 0.809 0.494 0.704 0.524 1.011
G-tSNE 0.654 0.654 0.473 0.690 0.538 0.421 0.818 0.799 0.167 0.372 0.267 1.664
G-UMAP 0.638 0.656 0.471 0.722 0.590 0.380 0.808 0.777 0.087 0.240 0.163 1.825
C-tSNE 0.556 0.576 0.412 0.887 0.571 0.553 0.916 0.892 0.393 0.452 0.307 1.213
C-UMAP -0.06 0.271 0.200 2.123 0.498 0.484 0.897 0.844 -0.12 -0.10 -0.07 2.243
D-tSNE 0.432 0.468 0.323 1.134 0.106 0.099 0.532 0.528 0.026 0.047 0.032 1.946

PCD-tSNE 0.714 0.736 0.563 0.571 0.623 0.421 0.888 0.823 0.462 0.570 0.393 1.075
LD-tSNE 0.576 0.609 0.439 0.847 0.602 0.411 0.850 0.822 0.274 0.425 0.289 1.451

sorts

TF-PCA 0.980 0.961 0.849 0.038 0.896 0.427 0.925 0.879 -0.03 -0.10 -0.00 2.063
TF-tSNE 0.837 0.897 0.711 0.325 0.875 0.492 0.932 0.893 -0.12 -0.10 -0.07 2.245
TF-UMAP 0.786 0.857 0.658 0.427 0.812 0.437 0.916 0.868 0.008 -0.03 -0.02 1.983

G-AE 0.979 0.959 0.844 0.040 0.886 0.419 0.920 0.874 -0.65 -0.36 -0.14 3.305
G-VAE 0.977 0.952 0.831 0.045 0.879 0.411 0.917 0.867 -0.64 -0.40 -0.19 3.288
G-PCA 0.980 0.961 0.849 0.039 0.891 0.425 0.924 0.878 -0.66 -0.33 -0.11 3.329
G-tSNE 0.761 0.850 0.667 0.476 0.913 0.336 0.811 0.833 0.024 -0.18 -0.11 1.950
G-UMAP 0.569 0.733 0.546 0.860 0.913 0.296 0.788 0.777 -0.02 -0.28 -0.18 2.042
C-tSNE 0.547 0.707 0.504 0.905 0.933 0.466 0.890 0.873 0.020 0.023 0.015 1.959
C-UMAP 0.688 0.846 0.640 0.622 0.817 0.428 0.914 0.866 0.026 0.047 0.032 1.946
D-tSNE 0.860 0.878 0.695 0.278 0.873 0.329 0.890 0.860 -0.11 -0.14 -0.09 2.234

PCD-tSNE 0.920 0.896 0.720 0.158 0.905 0.479 0.939 0.894 -0.06 -0.04 -0.02 2.136
LD-tSNE 0.956 0.933 0.787 0.087 0.827 0.414 0.917 0.869 -0.23 -0.30 -0.18 2.469

walk

low quality high quality

165

B I B L I O G R A P H Y

W. Aigner, S. Miksch, W. Müller, H. Schumann, and C. Tominski. Visual
methods for analyzing time-oriented data. IEEE TVCG, 14(1):47–60,
2008.

H. Akima. A new method of interpolation and smooth curve �tting
based on local procedures. J. ACM, 17(4):589–602, 1970. issn 0004-
5411.

G. Albuquerque, M. Eisemann, and M. Magnor. Perception-based visual
quality measures. In Proc. IEEE VAST, pages 11–18, 2011.

M. Ali, M. W. Jones, X. Xie, and M. Williams. TimeCluster: Dimension
reduction applied to temporal data for visual analytics. Visual Com-
puter, 35(6-8):1013–1026, 2019.

D. Archambault, H. Purchase, and B. Pinaud. Animation, small multi-
ples, and the e�ect of mental map preservation in dynamic graphs.
IEEE TVCG, 17(4):539–552, 2011.

M. Aupetit. Visualizing distortions and recovering topology in continu-
ous projection techniques. Neurocomputing, 10(7–9):1304–1330, 2007.

M. Aupetit and M. Sedlmair. SepMe: 2002 New visual separation mea-
sures. In 2016 IEEE Paci�c Visualization Symposium (Paci�cVis), pages
1–8, 2016.

B. Bach, C. Shi, and N. Heulot. Time curves: Folding time to visualize
patterns of temporal evolution in data. IEEE TVCG, 22(1):559–568,
2016.

P. Bain, L. Findley, P. Atchison, M. Behari, M. Vidailhet, M. Gresty,
J. Rothwell, P. Thompson, and C. Marsden. Assessing tremor severity.
J Neurol Neurosurg Psychiatry, 56(8):868–873, 1993.

D. H. Ballard. Modular learning in neural networks. AAAI, pages 279–
284, 1987.

M. Balzer and O. Deussen. Voronoi treemaps. In Proc. IEEE InfoVis,
pages 49–56, 2005.

M. Balzer, O. Deussen, and C. Lewerentz. Voronoi treemaps for the
visualization of software metrics. In Proc. ACM SOFTVIS, pages 165–
172, 2005.

167

bibliography

G. D. Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu.
An experimental comparison of four graph drawing algorithms. Com-
putational Geometry, 7(5):303–325, 1997.

E. Becht, L. McInnes, J. Healy, C. A. Dutertre, I. W. H. Kwok, L. G. Ng,
F. Ginhoux, and E. W. Newell. Dimensionality reduction for visualiz-
ing single-cell data using UMAP. Nature Biotechnology, 37(1):38–44,
2019.

R. A. Becker, W. S. Cleveland, and M. J. Shyu. The visual design and
control of trellis display. JCGS, 5(2):123–155, 1996.

B. Bederson, B. Shneiderman, and M. Wattenberg. Ordered and quan-
tum treemaps: Making e�ective use of 2D space to display hierarchies.
ACM TOG, 21(4):833–854, 2002.

E. Beghi, V. Regio, A. Papantonio, A. Bentivoglio, A. Fasano, D. Fogli,
L. Giordano, R. Piolti, G. Rinaldi, P. Simone, L. Specchio, P. Tonali,
P. Torelli, M. Zarrelli, and P. Messina. Reliability of clinical diagnosis
of dystonia. Neuroepidemiology, 43:213–219, 11 2014.

Y. Bengio, J. F. Paiement, P. Vincent, O. Delalleau, N. L. Roux, and
M. Ouimet. Out-of-sample extensions for LLE, Isomap, MDS, Eigen-
maps, and spectral clustering. In Proc. NIPS, pages 177–184, 2003.

M. D. Berg, B. Speckmann, and V. van der Weele. Treemaps with
bounded aspect ratio. Computational Geometry, 47(6):683–693, 2014.

J. Bernard, N. Wilhelm, and M. Scherer. TimeSeriesPaths: Projection-
based explorative analysis of multivariate time series data. Journal of
WSCG, pages 97–106, 2012.

I. Biederman. Recognition-by-components: A theory of human image
understanding. Psychological Review, 94(2):115–147, 1987.

C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

S. A. Boorman and D. C. Oliviera. Metrics on spaces of �nite trees. In
Journal of Mathematical Psychology, volume 10, pages 26–59, 1973.

A. Boytsov, F. Fouquet, T. Hartmann, and Y. L. Traon. Visualizing and ex-
ploring dynamic high-dimensional datasets with LION-tSNE. ArXiv,
abs/1708.04983, 2017.

M. Brehmer, B. Lee, P. Isenberg, and E. K. Choe. A comparative eval-
uation of animation and small multiples for trend visualization on
mobile phones. IEEE TVCG, PP, 2019.

N. Brich, C. Schulz, J. Peter, W. Klingert, M. Schenk, D. Weiskopf, and
M. Krone. Visual analysis of multivariate intensive care surveillance
data. In Proc. Eurographics Workshop on Visual Computing for Biology
and Medicine, 2020.

168

bibliography

M. Bruls, C. Huizing, and J. J. van Wijk. Squari�ed treemaps. In VisSym,
2000.

K. Buchin, D. Eppstein, M. Lö�er, M. Nöllenburg, and R. I. Silveira.
Adjacency-preserving spatial treemaps. InAlgorithms andData Struc-
tures, pages 159–170, Berlin, Heidelberg, 2011. Springer Berlin Heidel-
berg.

A. Buja, D. Cook, and D. F. Swayne. Interactive high-dimensional data
visualization. JCGS, 5(1):78–99, 1996.

A. Buja, D. F. Swayne, M. L. Littman, N. Dean, H. Hofmann, and L. Chen.
Data visualization with multidimensional scaling. JCGS, 17(2):444–
472, 2008.

K. Bunte, M. Biehl, and B. Hammer. A general framework for dimen-
sionality reducing data visualization mapping. Neural Computation,
24(3):771–804, 2012.

S. Card, B. Suh, B. A. Pendleton, B. Heer, and J. W. Bodnar. Time tree:
Exploring time changing hierarchies. In Proc. Symposium on Visual
Analytics Science and Technology, pages 3–10, 2006.

Y. Chen, X. Du, and X. Yuan. Ordered small multiple treemaps for visu-
alizing time-varying hierarchical pesticide residue data. Visual Com-
puter, 33(6):1073–1084, 2017.

F. Chollet et al. Keras. https://keras.io, 2015.

J. Clark. Multi-level pie charts, 2006. https://neoformix.com/2006/
MultiLevelPieChart.html.

A. K. Cline and I. S. Dhillon. Computation of the Singular Value Decom-
position. CRC Press, 2006.

B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. J. van Wijk, and
A. van Deursen. Understanding execution traces using massive se-
quence and circular bundle views. In Proc. IEEE ICPC, pages 271–280,
2007.

J. Cunningham and Z. Ghahramani. Linear dimensionality reduction:
Survey, insights, and generalizations. JMLR, 16:2859–2900, 2015.

CVS. CVS - Concurrent Versions System, 2018. https://www.nongnu.
org/cvs/.

I. Daubechies. The wavelet transform, time-frequency localization and
signal analysis. IEEE Transactions on Information Theory, 36(5):961–
1005, 1990.

V. De Silva and J. B. Tenenbaum. Sparse multidimensional scaling using
landmark points. Technical Report 6, Stanford University, 2004.

169

https://keras.io
https://neoformix.com/2006/MultiLevelPieChart.html
https://neoformix.com/2006/MultiLevelPieChart.html
https://www.nongnu.org/cvs/
https://www.nongnu.org/cvs/

bibliography

V. De Silva and J. B. Tenenbaum. Selecting landmark points for sparse
manifold learning. Advances in Neural Information Processing Systems,
pages 1241–1248, 2005.

G. Defazio, G. Abbruzzese, P. Livrea, and A. Berardelli. Epidemiology
of primary dystonia. Lancet Neurol, 11(3):673–678, 2004.

S. Diehl. Software Visualization – Visualizing the Structure, Behaviour,
and Evolution of Software. Springer, 2007.

S. Duarte, F. Sikanski, F. Fatore, S. Fadel, and F. Paulovich. Nmap: A
novel neighborhood preservation space-�lling algorithm. IEEE TVCG,
20(12):2063–2071, 2014.

H. Eggink, D. Kremer, O. Brouwer, M. Contarino, M. van Egmond, A. El-
ema, K. Folmer, J. van Hoorn, L. van de Pol, V. Roelfsema, and M. Ti-
jssen. Spasticity, dyskinesia and ataxia in cerebral palsy: Are we sure
we can di�erentiate them? European Journal of Paediatric Neurology,
21(5):703–706, September 2017. issn 1090-3798.

A. Eklund. Beeswarm: The bee swarm plot, an alternative to stripchart,
2012. R package version 0.1 5.

B. Engdahl. Ordered and unordered treemap algorithms and their appli-
cations on handheld devices, 2005. MSc thesis, Dept. of CS, Stockholm
Royal Institute of Technology.

D. Engel, L. Hüttenberger, and B. Hamann. A survey of dimension reduc-
tion methods for high-dimensional data analysis and visualization. In
Proc. IRTG Workshop, volume 27, pages 135–149, 2012.

D. Eppstein, E. Mumford, B. Speckmann, and K. Verbeek. Area-universal
and constrained rectangular layouts. SIAM Journal on Computing, 41
(3):537–564, 2012.

M. Espadoto, E. Vernier, and A. Telea. Selecting and Sharing Multidi-
mensional Projection Algorithms: A Practical View. In VisGap - The
Gap between Visualization Research and Visualization Software. The
Eurographics Association, 2020a. isbn 978-3-03868-125-0.

M. Espadoto, R. Martins, A. Kerren, N. Hirata, and A. Telea. Towards a
quantitative survey of dimension reduction techniques. IEEE TVCG,
pages 1–1, 2019.

M. Espadoto, N. S. T. Hirata, and A. C. Telea. Deep learning multidimen-
sional projections. Information Visualization, 19(3):247–269, 2020b.

D. Fisher and A. Sud. Animated, dynamic Voronoi treemaps. In Proc.
EuroVis – posters. Eurographics, 2010.

170

bibliography

I. K. Fodor. A survey of dimension reduction techniques. US Dept. of
Energy, Lawrence Livermore National Labs, 2002. Tech. report UCRL-
ID-148494.

A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive layout algorithm
for undirected graphs. In Proceedings of the DIMACS International
Workshop on Graph Drawing, GD ’94, pages 388–403. Springer-Verlag,
1995.

T. Fujiwara, J. Chou, S. Shilpika, P. Xu, L. Ren, and K. Ma. An incre-
mental dimensionality reduction method for visualizing streaming
multidimensional data. IEEE TVCG, pages 1–1, 2019.

T. Fujiwara, Shilpika, N. Sakamoto, J. Nonaka, K. Yamamoto, and K. L.
Ma. A visual analytics framework for reviewing multivariate time-
series data with dimensionality reduction. IEEE TVCG, 2020.

T. Fujiwara, J. K. Li, M. Mubarak, C. Ross, C. D. Carothers, R. B. Ross, and
K. L. Ma. A visual analytics system for optimizing the performance of
large-scale networks in supercomputing systems. Visual Informatics,
2(1):98–110, 2018.

F. J. García-fernández, M. Verleysen, J. a. Lee, and I. Díaz. Stability com-
parison of dimensionality reduction techniques attending to data and
parameter variations. EuroVis Workshop on Visual Analytics using
Multidimensional Projections, pages 2–6, 2013.

M. Ghoniem, M. Cornil, B. Broeksema, M. Stefas, and B. Otjacques.
Weighted maps: Treemap visualization of geolocated quantitative
data. In Proc. Int’l Soc. for Optics and Photonics, volume 9397, pages
1–15, 2015.

A. Gisbrecht and B. Hammer. Data visualization by nonlinear dimen-
sionality reduction. WIREs Data Mining Knowledge Discovery, 5:51–
73, 2015.

GIT. GIT source code management, 2018. https://git-scm.com/.

H. Gomide and A. Gualberto. caRtola, 2019. https://github.com/
henriquepgomide/caRtola.

J. Görtler, C. Schulz, D. Weiskopf, and O. Deussen. Bubble treemaps for
uncertainty visualization. IEEE TVCG, 24:719–728, 2018.

D. Gotz. Dynamic Voronoi treemaps: A visualization technique for time-
varying hierarchical data. Computer Science – Research and Develop-
ment, 18:132–141, 2011. IBM Research Report RC25132 (W1103-173).

M. Graham and J. Kennedy. A survey of multiple tree visualisation.
Information Visualization, 9(4):235–252, 2010.

171

https://git-scm.com/
https://github.com/henriquepgomide/caRtola
https://github.com/henriquepgomide/caRtola

bibliography

J. M. Graving and I. D. Couzin. Vae-sne: a deep generative model for
simultaneous dimensionality reduction and clustering. bioRxiv, 2020.

C. Grillenzoni and M. Fornaciari. On-line peak detection in medical time
series with adaptive regression methods. Econometrics and Statistics,
10:134 – 150, 2019.

P. Grosse, R. Guerrini, L. Parmeggiani, P. Bonanni, A. Pogosyan, and
P. Brown. Abnormal corticomuscular and intermuscular coupling in
high-frequency rhythmic myoclonus. Brain, 126(2):326–342, 2003.

P. Grosse, M. Edwards, M. Tijssen, A. Schrag, A. J. Lees, K. Bhatia, and
P. Brown. Patterns of emg–emg coherence in limb dystonia. Move-
ment disorders, 19(7):758–769, 2004.

J. Guerra-Gómez, M. Pack, C. Plaisant, and B. Shneiderman. Visualizing
change over time using dynamic hierarchies: TreeVersity2 and the
StemView. IEEE TVCG, 19(12):2566–2575, 2013.

L. Gupta, D. Molfese, R. Tammana, and P. Simos. Nonlinear alignment
and averaging for estimating the evoked potential. IEEE Transactions
on Biomedical Engineering, 43(4):348–356, 1996.

S. Hachul and M. Jünger. An experimental comparison of fast algo-
rithms for drawing general large graphs. In Proceedings of the 13th
International Conference on Graph Drawing, GD’05, pages 235–250.
Springer-Verlag, 2006.

S. Hahn and J. Döllner. Hybrid-treemap layouting. In Proc. EuroVis
(short papers), 2017.

S. Hahn, J. Trümper, D. Moritz, and J. Döllner. Visualization of varying
hierarchies by stable layout of Voronoi treemaps. In Proc. IEEE IVAPP,
pages 50–58, 2014.

S. Hahn. Comparing the layout stability of treemap algorithms. Proc.
HPI research school on service-oriented systems engineering, 95:71–79,
2015.

S. Hahn, J. Bethge, and J. Döllner. Relative direction change: A topology-
based metric for layout stability in treemaps. In International Con-
ference on Information Visualization Theory and Applications, pages
88–95, 2017.

D. Harel and Y. Koren. Graph drawing by high-dimensional embedding.
In 10th International Symposium on Graph Drawing, GD ’02, pages
207–219. Springer-Verlag, 2002.

S. Haroz, R. Kosara, and S. Franconeri. The connected scatterplot for
presenting paired time series. IEEE TVCG, 22:1–1, 2015.

172

bibliography

F. M. Harper and J. A. Konstan. The movielens datasets: History and
context. ACM Transactions on Interactive Intelligent Systems, 5(4):19,
2016.

R. van Hees and J. Hage. Stable and predictable Voronoi treemaps for
software quality monitoring. Inf Soft Technol, 87(C):242–258, 2017.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 313(5786):504–507, 2006.

P. Ho�man and G. Grinstein. A survey of visualizations for high-
dimensional data mining. Information Visualization in Data Mining
and Knowledge Discovery, 104:47–82, 2002.

D. Holten. Hierarchical edge bundles: Visualization of adjacency rela-
tions in hierarchical data. IEEE TVCG, 12(5):741–748, 2006.

Y. Hu, S. Wu, S. Xia, J. Fu, and W. Chen. Motion track: Visualizing
variations of human motion data. Proc. IEEE Paci�cVis, pages 153–
160, 2010.

C. Hurter, O. Ersoy, and A. Telea. Smooth bundling of large streaming
and sequence graphs. In 2013 IEEE Paci�c Visualization Symposium
(Paci�cVis), pages 41–48, 2013.

A. Inselberg and B. Dimsdale. Parallel coordinates: A tool for visualizing
multi-dimensional geometry. In Proc. IEEE VIS, pages 361–378, 1990.

D. Jäckle, F. Fischer, T. Schreck, and D. A. Keim. Temporal MDS plots
for analysis of multivariate data. IEEE TVCG, 22(1):141–150, 2016.

P. Joia, D. Coimbra, J. A. Cuminato, F. V. Paulovich, and L. G. Nonato.
Local a�ne multidimensional projection. IEEE TVCG, 17(12):2563–
2571, 2011.

I. Jolli�e. Principal Component Analysis. Springer Verlag, 1986.

J. Jongejan, H. Rowley, T. Kawashima, J. Kim, and N. Fox-Gieg. The
Quick, Draw! - A.I. Experiment. https://quickdraw.withgoogle.
com/, 2016.

H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and taxonomy of ap-
proaches for mining software repositories in the context of software
evolution. Software: Evolution and Process, 19(2):77–131, 2003.

J. Kehrer and H. Hauser. Visualization and visual analysis of multi-
faceted scienti�c data: A survey. IEEE TVCG, 19(3):495–513, 2013.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. CoRR,
abs/1312.6114, 2014.

173

https://quickdraw.withgoogle.com/
https://quickdraw.withgoogle.com/

bibliography

T. Kohonen, M. R. Schroeder, and T. S. Huang. Self-Organizing Maps.
Springer-Verlag, 3rd edition, 2001.

N. Kong, J. Heer, and M. Agrawala. Perceptual guidelines for creating
rectangular treemaps. IEEE TVCG, 16(6):990–998, 2010.

W. Köpp and T. Weinkauf. Temporal treemaps: Static visualization of
evolving trees. IEEE TVCG, 25(1):534–543, 2019.

G. Kramer, A. Van der Stouwe, N. Maurits, M. Tijssen, and J. Elting.
Wavelet coherence analysis: a new approach to distinguish organic
and functional tremor types. Clinical Neurophysiology, 129(1):13–20,
2018.

A. A. Krapl. The time-varying diversi�ability of corporate foreign ex-
change exposure. Journal of Corporate Finance, page 101506, 2019.

D. Kressner. Numerical methods for general and structured eigenvalue
problems. Lecture Notes in Computational Science and Engineering, 46,
2005.

A. Krizhevsky. Learning multiple layers of features from tiny images.
Technical Report TR-2009, University of Toronto, 2009.

J. F. Kruiger, A. C. Telea, and C. Hurter. Projection navigation in ex-
tremely large datasets (PNIELD). In Proc. EuroVis: Posters, pages 109–
111. Eurographics Association, 2017a.

J. Kruiger, A. Hassoumi, H. J. Schulz, A. Telea, and C. Hurter. Multidi-
mensional data exploration by explicitly controlled animation. Infor-
matics, 4(26), 2017b.

J. B. Kruskal and J. M. Landwehr. Icicle Plots: Better Displays for Hier-
archical Clustering. The American Statistician, 37(2):162–168, 1983.

M. K. Kuhner and J. Yamato. Practical performance of tree comparison
metrics. Systematic Biology, 64(2):205–214, 2015.

T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van
Wijk, J. D. Fekete, and D. W. Fellner. Visual analysis of large graphs:
State-of-the-art and future research challenges. CGF, 30(6):1719–
1749, 2011.

M. Lanza and S. Ducasse. Polymetric views: A lightweight visual ap-
proach to reverse engineering. IEEE Trans Soft Eng, 29(9):782–795,
2003.

M. Lanza and R. Marinescu. Object-OrientedMetrics in Practice. Springer,
2006.

Y. LeCun and C. Cortes. MNIST handwritten digit database. http:
//yann.lecun.com/exdb/mnist/, 2010.

174

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

bibliography

J. A. Lee and M. Verleysen. Quality assessment of dimensionality reduc-
tion: Rank-based criteria. Neurocomputing, 72(7-9):1431–1443, 2009.

S. Lespinats and M. Aupetit. CheckViz: Sanity check and topological
clues for linear and nonlinear mappings. CGF, 30(1):113–125, 2011.

G. Li, Y. Zhang, Y. Dong, J. Liang, J. Zhang, J. Wang, M. J. McGu�n, and
X. Yuan. BarcodeTree: Scalable comparison of multiple hierarchies.
IEEE TVCG, 26(1):1022–1032, 2019.

G. C. Linderman and S. Steinerberger. Clustering with T-SNE, provably.
arXiv, 1:1–15, 2017.

G. C. Linderman, M. Rachh, J. G. Hoskins, S. Steinerberger, and Y. Kluger.
Fast interpolation-based t-SNE for improved visualization of single-
cell RNA-seq data. Nature Methods, 16(3):243–245, 2019.

S. Liu, D. Maljovec, B. Wang, P. T. Bremer, and V. Pascucci. Visualizing
high-dimensional data: Advances in the past decade. IEEE TVCG, 23
(3):1249–1268, 2017.

L. Lu, S. Fan, M. Huang, W. Huang, and R. Yang. Golden rectangle
treemap. Journal of Physics: Conference Series, 787(1), 2017.

W. Lueks, A. Gisbrecht, and B. Hammer. Visualizing the quality of di-
mensionality reduction. Neurocomputing, 112:109–123, 2013.

J. Lukasczyk, G. Weber, R. Maciejewski, C. Garth, and H. Leitte. Nested
tracking graphs. Computer Graphics Forum, 36(3):12–22, 2017.

L. van der Maaten and G. Hinton. Visualizing data using t-SNE. JMLR,
9:2579–2605, 2008.

Y. Mao, J. V. Dillon, and G. Lebanon. Sequential document visualization.
IEEE TVGC, 13(6):1208–1215, 2007.

R. M. Martins, D. B. Coimbra, R. Minghim, and A. C. Telea. Visual analy-
sis of dimensionality reduction quality for parameterized projections.
CG, 41(1):26–42, 2014.

R. M. Martins, R. Minghim, and A. C. Telea. Explaining neighborhood
preservation for multidimensional projections. CGVC, 2015.

J. Masci, U. Meier, D. Ciresan, and J. Schmidhuber. Stacked convo-
lutional auto-encoders for hierarchical feature extraction. ICANN,
pages 52–59, 2011.

L. McInnes, J. Healy, N. Saul, and L. Großberger. UMAP: Uniform man-
ifold approximation and projection. JOSS, 3(29):861, 2018.

175

bibliography

L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz. A systematic liter-
ature review of software visualization evaluation. J Syst Softw, 144:
165–180, 2018.

M. Mihalec, J. Slavič, and M. Boltežar. Synchrosqueezed wavelet trans-
form for damping identi�cation. Mechanical Systems and Signal Pro-
cessing, 80:324–334, 2016. issn 0888-3270.

H. A. Müller and K. Klashinsky. Rigi: A system for programming-in-the-
large. In Proc. IEEE ICSE, pages 80–86, 1988.

H. Nagamochi and Y. Abe. An approximation algorithm for dissecting a
rectangle into rectangles with speci�ed areas. Discrete Applied Math-
ematics, 155(4):523–537, 2007.

T. T. Neves, S. G. Fadel, G. M. Hilasaca, F. M. Fatore, and F. V. Paulovich.
UPDis: A user-assisted projection technique for distance information.
Information Visualization, 17(4):269–281, 2018.

T. T. Neves, R. M. Martins, D. B. Coimbra, K. Kucher, A. Kerren, and
F. Paulovich. Xtreaming: An incremental multidimensional projec-
tion technique and its application to streaming data. CoRR, 2020.

M. Nguyen, S. Purushotham, H. To, and C. Shahabi. m-TSNE: A
framework for visualizing high-dimensional multivariate time series.
ArXiv, abs/1708.07942, 2017.

S. Nijmeijer, E. De Bruijn, P. Forbes, D. Kamphuis, R. Happee, J. Koelman,
and M. Tijssen. Emg coherence and spectral analysis in cervical dys-
tonia: Discriminative tools to identify dystonic muscles? Journal of
the neurological sciences, 347(1-2):167–173, 2014.

L. G. Nonato and M. Aupetit. Multidimensional projection for visual
analytics: Linking techniques with distortions, tasks, and layout en-
richment. IEEE TVCG, 25(8):2650–2673, 2019.

E. Parzen. On estimation of a probability density function and mode.
Annals of Mathematical Statistics, 33(3):1065–1087, 1962.

F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz. Least
square projection: A fast high-precision multidimensional projection
technique and its application to document mapping. IEEE TVCG, 14
(3):564–575, 2008.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. JMLR, 12:2825–2830, 2011.

176

bibliography

E. Pekalska, D. de Ridder, R. P. Duin, and M. A. Kraaijveld. A new
method of generalizing Sammon mapping with application to algo-
rithm speed-up. In Proc. ASCI, pages 221–228, 1999.

N. Pezzotti, T. Höllt, B. Lelieveldt, E. Eisemann, and A. Vilanova. Hier-
archical stochastic neighbor embedding. Computer Graphics Forum,
35(3):21–30, 2016.

K. J. Piczak. ESC: Dataset for Environmental Sound Classi�cation. In
Proc. ACM MM, pages 1015–1018, 2015.

P. G. Poličar, M. Stražar, and B. Zupan. Embedding to reference t-sne
space addresses batch e�ects in single-cell classi�cation. In Discovery
Science, pages 246–260. Springer, 2019.

G. Pölzlbauer. Survey and comparison of quality measures for self-
organizing maps. In Proc. Workshop on Data Analysis (WDA), pages
67–82, 2004.

R. Rao and S. K. Card. The table lens. Proc. CHI, page 222, 1994.

P. Rauber, A. Falcão, and A. Telea. Projections as visual aids for classi�-
cation system design. Information Visualization, 17:282–305, 2017a.

P. E. Rauber, A. X. Falcão, and A. C. Telea. Visualizing time-dependent
data using dynamic t-SNE. EuroVis, 2016.

P. E. Rauber, S. G. Fadel, A. X. Falcão, and A. C. Telea. Visualizing the
hidden activity of arti�cial neural networks. IEEE TVCG, 23(1):101–
110, 2017b.

D. A. Ross, J. Lim, R. S. Lin, , and M. H. Yang. Incremental learning for
robust visual tracking. International Journal of Computer Vision, 77
(1-3):125–141, 2008.

G. van Rossum. The Python programming language, 2017. https://
github.com/python/cpython.

W. Scheibel, M. Trapp, D. Limberger, and J. Döllner. A taxonomy of
treemap visualization techniques. In Proc. International Conference
on Information Visualization Theory and Applications, 2020.

W. Scheibel, C. Weyand, and J. Döllner. EvoCells: A treemap layout
algorithm for evolving tree data. In Proc. International Conference
on Information Visualization Theory and Applications, pages 273–280,
2018.

T. Schreck, T. von Landesberger, and S. Bremm. Techniques for
precision-based visual analysis of projected data. Information Visual-
ization, 9(3):181–193, 2010.

177

https://github.com/python/cpython
https://github.com/python/cpython

bibliography

H. J. Schulz. Treevis.net: A tree visualization reference. IEEE CG&A, 31
(6):11–15, 2011.

H. J. Schulz, S. Hadlak, and H. Schumann. The design space of implicit
hierarchy visualization: A survey. IEEE TVCG, 17(4):393–411, 2011.

SciTools. Understand static code analysis tool, 2017. https://
scitools.com.

M. Sedlmair and M. Aupetit. Data-driven evaluation of visual quality
measures. CGF, 34(3):545–559, 2015.

M. Sedlmair, T. Munzner, and M. Tory. Empirical guidance on scatterplot
and dimension reduction technique choices. IEEE TVCG, pages 2634–
2643, 2013.

M. Sensalire, P. Ogao, and A. Telea. Evaluation of software visualization
tools: Lessons learned. In Proc. IEEE VISSOFT, 2009.

A. Seriai, O. Benomar, B. Cerat, and H. Sahraoui. Validation of software
visualization tools: A systematic mapping study. In Proc. IEEE VIS-
SOFT, 2014.

J. Shi and C. Tomasi. Good features to track. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition, pages 593–600, 1994.

B. Shneiderman and C. Plaisant. Treemaps for space-constrained visu-
alization of hierarchies, 2017.

B. Shneiderman and M. Wattenberg. Ordered treemap layouts. In Proc.
IEEE InfoVis, pages 73–80, 2001.

B. Shneiderman. Tree visualization with tree-maps: 2-D space-�lling
approach. ACM TOG, 11(92), 1992.

R. da Silva, E. Vernier, P. Rauber, J. Comba, R. Minghim, and A. Telea.
Metric evolution maps: Multidimensional attribute-driven explo-
ration of software repositories. In Proc. Vision, Modeling, and Visu-
alization (VMV), pages 54–62. Eurographics, 2016.

V. Silva and J. Tenenbaum. Global versus local methods in nonlinear
dimensionality reduction. Adv Neural Inf Process Syst, 15, 2003.

M. Sips, B. Neubert, J. Lewis, and P. Hanrahan. Selecting good views of
high-dimensional data using class consistency. CGF, 28(3):831–838,
2009.

K. Smith-Miles, D. Baatar, B. Wreford, and R. Lewis. Towards objective
measures of algorithm performance across instance space. Computers
& Operations Research, 45:12–24, 2014.

178

https://scitools.com
https://scitools.com

bibliography

M. Sondag, B. Speckmann, and K. Verbeek. Stable treemaps via local
moves. IEEE TVCG, 24(1):729–738, 2017.

C. Sorzano, J. Vargas, and A. Pascual-Montano. A survey of dimension-
ality reduction techniques. ArXiv, abs/1403.2877, 2014.

P. Steinhardt. libgit2 API for Git repository management, 2018. https:
//libgit2.github.com.

A. van der Stouwe, B. A. Conway, J. Elting, M. Tijssen, and N. M. Maurits.
Usefulness of intermuscular coherence and cumulant analysis in the
diagnosis of postural tremor. Clinical Neurophysiology, 126(8):1564–
1569, 2015.

Subversion. Apache Subversion: Enterprise-class centralized version
control for the masses, 2018. https://subversion.apache.org/.

R. Szeliski. Computer Vision: Algorithms and Applications. Springer,
2010.

S. Tak and A. Cockburn. Enhanced spatial stability with Hilbert and
Moore treemaps. IEEE TVCG, 19(1):141–148, 2013.

A. Tatu, P. Bak, E. Bertini, D. Keim, and J. Schneidewind. Visual quality
metrics and human perception: An initial study on 2D projections of
large multidimensional data. In Proc. AVI, pages 49–56, 2010.

A. Telea. Combining extended table lens and treemap techniques for
visualizing tabular data. In Proc. VGTC Conference on Visualization,
pages 120–127, 2006.

A. Telea, A. Maccari, and C. Riva. An open toolkit for prototyping re-
verse engineering visualizations. In Proc. Data Visualisation (VisSym),
pages 241–249, 2002.

A. Telea, H. Hoogendorp, O. Ersoy, and D. Reniers. Extraction and visu-
alization of call dependencies for large C/C++ code bases: A compar-
ative study. In 2009 5th IEEE International Workshop on Visualizing
Software for Understanding and Analysis, pages 81–88, 2009.

G. Teo, Y. Bin Zhang, C. Vogel, and H. Choi. PECAplus: statistical anal-
ysis of time-dependent regulatory changes in dynamic single-omics
and dual-omics experiments. npj Systems Biology and Applications, 4
(1):3, 2017.

M. Tijssen, J. Marsden, and P. Brown. Frequency analysis of emg activity
in patients with idiopathic torticollis. Brain, 123(4):677–686, 2000.

Y. Tu and H. W. Shen. Visualizing changes of hierarchical data using
treemaps. IEEE TVCG, 13(6):1286–1293, 2007.

179

https://libgit2.github.com
https://libgit2.github.com
https://subversion.apache.org/

bibliography

T. Tuytelaars and K. Mikolajczyk. Local invariant feature detectors: A
survey. Foundations and Trends in Computer Graphics and Vision, 3
(3):177–280, 2007.

URL. ATP Tennis Rankings. https://github.com/JeffSackmann/
tennis_atp, accessed 03-07-2018a.

URL. USGS Earthquakes. https://earthquake.usgs.gov/
earthquakes/browse/stats.php, accessed 03-07-2018b.

URL. Worldbank indicators. https://data.worldbank.org/
indicator/, accessed 04-07-2018.

URL. The Movie Database. www.themoviedb.org, accessed 10-02-2018.

URL. UN Comtrade Database. https://comtrade.un.org, accessed
15-02-2017a.

URL. Scitools. https://scitools.com, accessed 15-02-2017b.

URL. Github. https://github.com, accessed 16-07-2018.

URL. Meertens Instituut, KNAW nederlandse voornamenbank. https:
//www.meertens.knaw.nl/nvb, accessed 30-05-2016.

L. van der Maaten. Accelerating t-SNE using tree-based algorithms.
Journal of Machine Learning Research, 15:3221–3245, 2015.

L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal
of Machine Learning Research, 9:2579–2605, 2008.

L. Van Der Maaten, E. Postma, and J. Van den Herik. Dimensionality
reduction: A comparative review. JMLR, 10:66–71, 2009.

S. van der Salm, R. de Haan, D. Cath, A. F. van Rootselaar, and M. Ti-
jssen. The eye of the beholder: Inter-rater agreement among experts
on psychogenic jerky movement disorders. Journal of Neurology, Neu-
rosurgery and Psychiatry, 84(7):742–747, 2013.

A. van der Stouwe, I. Tuitert, I. Giotis, J. Calon, R. Gannamani, J. Dalen-
berg, S. van der Veen, M. Klamer, A. Telea, and M. Tijssen. The next
move in movement disorders (nemo): developing a computer aided
classi�cation tool for hyperkinetic movement disorders. BMJ Open
[Accepted], 2021.

S. van der Veen, M. Klamer, J. Elting, J. Koelman, A. van der Stouwe, and
M. Tijssen. The diagnostic value of clinical neurophysiology in hy-
perkinetic movement disorders: A systematic review. Parkinsonism
and Related Disorders, 89:176–185, 2021. issn 1353-8020.

J. Venna and S. Kaski. Visualizing gene interaction graphs with local
multidimensional scaling. In Proc. ESANN, pages 557–562, 2006.

180

https://github.com/JeffSackmann/tennis_atp
https://github.com/JeffSackmann/tennis_atp
https://earthquake.usgs.gov/earthquakes/browse/stats.php
https://earthquake.usgs.gov/earthquakes/browse/stats.php
https://data.worldbank.org/indicator/
https://data.worldbank.org/indicator/
www.themoviedb.org
https://comtrade.un.org
https://scitools.com
https://github.com
https://www.meertens.knaw.nl/nvb
https://www.meertens.knaw.nl/nvb

bibliography

E. Vernier, J. Comba, and A. Telea. Dynamic treemap for software
evolution visualization benchmark, 2017a. https://github.com/
vissoft18/treemaps.

E. Vernier, J. Comba, and A. Telea. Quantitative comparison of treemap
techniques for time-dependent hierarchies. In Proc. EuroVis (posters),
2017b.

E. Vernier, J. Comba, and A. Telea. GIT - Dynamic Treemap Benchmark,
2018a. https://github.com/sibgrapi18/treemaps.

E. Vernier, J. Comba, and A. Telea. A stable greedy insertion treemap
algorithm for software evolution visualization. In IEEE Conference on
Graphics, Patterns and Images, pages 158–165, 2018b.

E. Vernier, J. Comba, and A. Telea. Quantitative comparison of dynamic
treemaps for software evolution visualization. In IEEE Conference on
Software Visualization, pages 96–106, 2018c.

E. Vernier, J. Comba, and A. Telea. Additional resources
repository, 2020a. https://eduardovernier.github.io/
guided-dynamic-projections-resources/.

E. Vernier, R. Garcia, I. da Silva, J. Comba, and A. Telea. Quantita-
tive evaluation of time-dependent multidimensional projection tech-
niques. Computer Graphics Forum, 39(3):241–252, 2020b.

E. Vernier, M. Sondag, J. Comba, B. Speckmann, A. Telea, and K. Ver-
beek. Treemap resources. https://eduardovernier.github.io/
dynamic-treemap-resources-eurovis, 2020c.

E. Vernier, M. Sondag, J. Comba, B. Speckmann, A. Telea, and K. Ver-
beek. Quantitative comparison of time-dependent treemaps. Com-
puter Graphics Forum, 39(3):393–404, 2020d.

E. Vernier, J. Comba, and A. Telea. Guided stable dynamic projections.
Computer Graphics Forum, 2021. issn 1467-8659.

E. Vernier, R. Garcia, I. Da Silva, J. Comba, and A. Telea. Additional
resources repository, 2019. https://eduardovernier.github.io/
dynamic-projections/.

M. Vladymyrov and M. Á. Carreira-Perpiñán. Locally linear landmarks
for large-scale manifold learning. InMachine Learning andKnowledge
Discovery in Databases, pages 256–271, 2013.

R. Vliegen, J. J. van Wijk, and E. J. van der Linden. Visualizing business
data with generalized treemaps. IEEE TVCG, 12(5):789–796, 2006.

Y. Wang, K. Feng, X. Chu, J. Zhang, C. W. Fu, M. Sedlmair, X. Yu, and
B. Chen. A Perception-Driven Approach to Supervised Dimensional-
ity Reduction for Visualization. IEEE TVCG, 24(5):1828–1840, 2018.

181

https://github.com/vissoft18/treemaps
https://github.com/vissoft18/treemaps
https://github.com/sibgrapi18/treemaps
https://eduardovernier.github.io/guided-dynamic-projections-resources/
https://eduardovernier.github.io/guided-dynamic-projections-resources/
https://eduardovernier.github.io/dynamic-treemap-resources-eurovis
https://eduardovernier.github.io/dynamic-treemap-resources-eurovis
https://eduardovernier.github.io/dynamic-projections/
https://eduardovernier.github.io/dynamic-projections/

bibliography

M. O. Ward and Z. Guo. Visual exploration of time-series data with
shape space projections. CGF, 30(3):701–710, 2011.

M. Wattenberg. A note on space-�lling visualizations and space-�lling
curves. In Proc. IEEE InfoVis, pages 181–186, 2005.

J. Wood and J. Dykes. Spatially ordered treemaps. IEEE TVCG, 14(6):
1348–1355, 2008.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: A novel im-
age dataset for benchmarking machine learning algorithms. CoRR,
abs/1708.07747, 2017. url http://arxiv.org/abs/1708.07747.

H. Yin. Nonlinear dimensionality reduction and data visualization: A
review. IJAC, 4(3):294–303, 2007.

X. Zheng, A. Vieira Campos, J. Ordieres-Meré, J. Balseiro,
S. Labrador Marcos, and Y. Aladro. Continuous monitoring of
essential tremor using a portable system based on smartwatch.
Frontiers in Neurology, 8:96, 2017. issn 1664-2295.

M. Zhou, Y. Cheng, N. Ye, and J. Tian. E�ectiveness and e�ciency of
using di�erent types of rectangular treemap as diagrams in cartogra-
phy. In International Cartographic Conference, pages 187–206, 2017.

182

http://arxiv.org/abs/1708.07747

A C K N O W L E D G M E N T S

I would like to thank my advisors Prof. Alexandru Telea and Prof. João
Comba for all the support and guidance they so skillfully and kindly
provided to me during my PhD. I couldn’t possibly imagine better com-
panions for this journey.

I would like to thank my family for their love, their patience, their
inspiration, and for always providing me all I’ve ever needed to succeed.

I would also like to thank all my friends both in Brazil and in the
Netherlands. Krislen, Lianne, Alister, Samuel, Stefan, and Agathe, thank
you for lifting me up whenever I was down.

This thesis was �nanced in part by CAPES (Finance Code 001, Schol-
arship Code 88882.345509/2019-01), CNPq (Process 304336/2019-0), and
by the University of Groningen. My sincere thanks to these organiza-
tions for their support.

183

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired by
Robert Bringhurst’s seminal book on typography “The Elements of Ty-
pographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Final Version as of November 16, 2021 (classicthesis).

http://code.google.com/p/classicthesis/

	Abstract
	Samenvatting
	Resumo
	Publications
	Contents
	1 Introduction
	1.1 Visualizing temporal hierarchical data
	1.2 Visualizing temporal multidimensional data
	1.3 Temporal coherence
	1.4 Objectives and contributions
	1.5 Organization of the thesis

	2 Treemap Evaluation for Software Evolution Data
	2.1 Introduction
	2.2 Background
	2.2.1 Treemap algorithms
	2.2.2 Treemap quality metrics
	2.2.3 Software visualization challenges

	2.3 Measuring the quality of dynamic treemaps
	2.3.1 Algorithms
	2.3.2 Datasets
	2.3.3 Metrics
	2.3.3.1 Spatial quality metric
	2.3.3.2 Stability metrics
	2.3.3.3 Metric weighting

	2.4 Result exploration
	2.4.1 How does visual change relate to data change (Q1)?
	2.4.2 How is quality evolving in time (Q2)?
	2.4.3 How do methods perform on different datasets (Q3)?
	2.4.4 How to summarize the comparison (Q4)?

	2.5 Discussion
	2.6 Conclusions

	3 Generalized Treemap Evaluation
	3.1 Introduction
	3.2 Rectangular treemaps
	3.3 Metrics
	3.3.1 Visual quality
	3.3.2 Stability

	3.4 Data
	3.4.1 Data features
	3.4.2 Data classes
	3.4.3 Datasets

	3.5 Experimental results
	3.5.1 Data classification analysis
	3.5.2 Performance analysis across features
	3.5.3 Comparison of data classes

	3.6 Discussion and conclusion

	4 Improved Treemapping for Dynamic Data
	4.1 Introduction
	4.2 Related work
	4.2.1 Algorithms
	4.2.2 Metrics

	4.3 Greedy Insertion Treemap
	4.4 Evaluation
	4.4.1 Metrics
	4.4.2 Techniques
	4.4.3 Datasets

	4.5 Results
	4.5.1 How does GIT's initialization affect its quality?
	4.5.2 How do visual quality and stability vary over time?
	4.5.3 How do all quality metrics vary over all datasets?
	4.5.4 How to summarize GIT's quality?

	4.6 Conclusion

	5 Evaluating Dynamic Projections
	5.1 Introduction
	5.2 Related work
	5.2.1 Preliminaries
	5.2.2 Techniques for static dimensionality reduction
	5.2.3 Evaluations of static dimensionality reduction
	5.2.4 Techniques for dynamic dimensionality reduction
	5.2.5 Evaluation of dynamic dimensionality reduction

	5.3 Experimental setup
	5.3.1 Techniques
	5.3.2 Datasets
	5.3.3 Metrics
	5.3.3.1 Spatial metrics
	5.3.3.2 Temporal stability metrics

	5.4 Evaluation and results
	5.4.1 Aggregated results
	5.4.2 Dataset-wise results
	5.4.3 Fine-grained analysis

	5.5 Understanding dynamic projection behavior
	5.5.1 Analysis of (un)stable behavior
	5.5.2 Finding similarly behaving techniques

	5.6 Conclusion

	6 Guided Stable Dynamic Projections
	6.1 Introduction
	6.2 Related work
	6.2.1 Preliminaries
	6.2.2 Visualization of high-dimensional data
	6.2.3 Strategies for dynamic projections

	6.3 Guided methods for dynamic projection
	6.3.1 Landmark Dynamic t-SNE (LD-tSNE)
	6.3.2 Principal Component Dynamic t-SNE (PCD-tSNE)

	6.4 Evaluation procedure
	6.4.1 Methods
	6.4.2 Quality Metrics
	6.4.2.1 Spatial metrics
	6.4.2.2 Temporal stability metrics

	6.4.3 Datasets

	6.5 Evaluation results
	6.5.1 Visual comparison of dynamic projections
	6.5.2 Overview of quality metrics
	6.5.3 Stability and spatial quality trade-off
	6.5.4 Global vs local influence control
	6.5.5 Using landmarks to steer dynamic projections

	6.6 Conclusion

	7 Hyperkinetic movement disorder analysis
	7.1 Introduction
	7.2 Related work
	7.3 Hyperkinectic movement disorders and experiment design
	7.4 Visual analysis of collected data
	7.4.1 Raw data visual inspection
	7.4.2 Time-frequency data analysis
	7.4.3 Data normalization
	7.4.4 Visualizing the data with dynamic projections

	7.5 Data exploration
	7.6 Discussion
	7.7 Conclusions

	8 Conclusion
	8.1 Future work

	A Appendix: Guided Stable Dynamic Projections
	A.1 PCD-tSNE parameters
	A.2 LD-tSNE parameters
	A.3 Metric results

	Bibliography
	Acknowledgments
	Colophon

