
Software Evolution Visualization

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de

Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen op

maandag 1 oktober 2007 om 16.00 uur

door

Stefan-Lucian Voinea

geboren te Constanta, Roemenië

Dit proefschrift is goedgekeurd door de promotor:

prof.dr.ir. J.J. van Wijk

Copromotoren:

dr.ir. A.C. Telea

en

dr. J.J. Lukkien

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Voinea, Stefan-Lucian

Software Evolution Visualization / door Stefan-Lucian Voinea. -

Eindhoven : Technische Universiteit Eindhoven, 2007.

Proefschrift. - ISBN 978-90-386-1099-3

NUR 992

Subject headings: computer visualisation / software maintenance / image communication

CR Subject Classification (1998) : I.3.8, D.2.7, H.3.3

Promotor:

prof. dr. ir. J.J. van Wijk (Technische Universiteit Eindhoven)

Copromotoren:

dr. ir. A.C. Telea (Technische Universiteit Eindhoven)

dr. J.J. Lukkien (Technische Universiteit Eindhoven)

Kerncommissie:

prof. dr. S. Diehl (Universität Trier)

prof. dr. A. van Deursen (Delft University of Technology)

prof. dr. M.G.J. van den Brand (Technische Universiteit Eindhoven)

Advanced School for Computing and Imaging

The work in this thesis has been carried out in the research school ASCI (Advanced

School for Computing and Imaging). ASCI dissertation series number: 149

c©S.L. Voinea 2007. All rights are reserved. Reproduction in whole or in part is allowed

only with the written consent of the copyright owner.

Printing: Eindhoven University Press

Cover design: S.L. Voinea

Front cover image: “Binary code” c©Andrey Prokhorov

Back cover image: “Cyber business” c©Emrah Türüdü

Contents

1 Introduction 1

1.1 The Software Challenge . 1

1.2 Software Visualization . 2

1.3 Software Evolution Visualization . 5

1.4 Outline . 7

2 Background 9

2.1 Introduction . 9

2.2 Data Extraction . 12

2.3 Reverse Engineering . 13

2.4 Evolution Analysis . 15

2.4.1 Requirements . 16

2.4.2 Evolution Data Analysis Tools 16

2.4.3 Evolution Visualization Tools 18

2.5 Conclusions . 23

3 Software Evolution Domain Analysis 27

3.1 Introduction . 27

3.2 System Evolution . 28

3.3 Software Evolution . 33

3.4 Software Repositories . 36

3.4.1 CVS . 36

3.4.2 Subversion . 40

3.5 Conclusions . 40

v

vi

4 A Visualization Model for Software Evolution 43

4.1 Introduction . 43

4.2 Software Visualization Pipeline . 45

4.3 Data Acquisition . 46

4.4 Data Filtering and Enhancement . 47

4.4.1 Selection . 48

4.4.2 Metrics . 49

4.4.3 Clustering . 50

4.5 Data Layout . 51

4.6 Data Mapping . 52

4.7 Rendering . 53

4.8 User Interaction . 54

4.9 Conclusions . 55

5 Visualizing Software Evolution at Line Level 57

5.1 Introduction . 57

5.2 Data Model . 58

5.3 Visualization Model . 62

5.3.1 Layout and Mapping . 62

5.3.2 Multiple Views . 67

5.3.3 Visual Improvements . 69

5.3.4 User Interaction . 70

5.4 Use-Cases and Validation . 73

5.5 Conclusions . 76

6 Visualizing Software Evolution at File Level 79

6.1 Introduction . 79

6.2 Data Model . 80

6.3 Visualization Model . 80

6.3.1 Layout and Mapping . 81

6.3.2 Metric Views . 86

6.3.3 Multivariate Visualization . 87

6.3.4 Multiscale Visualization . 92

vii

6.3.5 User Interaction . 97

6.4 Use-Cases and Validation . 98

6.4.1 Insight with Dynamic Layouts 98

6.4.2 Complex Queries . 100

6.4.3 System Decomposition . 101

6.5 Conclusions . 103

7 Visualizing Software Evolution at System Level 105

7.1 Introduction . 105

7.2 Data Model . 106

7.2.1 Data Sampling . 107

7.3 Visualization Model . 109

7.3.1 Layout and Mapping . 109

7.3.2 Visual Scalability . 111

7.3.3 User Interaction . 115

7.4 Use-Cases and Validation . 117

7.5 Conclusions . 122

8 Visualizing Data Exchange in Peer-to-Peer Networks 125

8.1 Introduction . 125

8.2 Problem Description . 126

8.3 Data Model . 128

8.4 Visualization Model . 130

8.4.1 Server Visualization . 131

8.4.2 Download Visualization . 136

8.4.3 Correlation Visualization . 137

8.5 Use-Cases and Validation . 139

8.6 Conclusions . 141

9 Lessons Learned 143

9.1 Data Acquisition and Preprocessing . 143

9.2 Software Evolution Visualization . 144

9.3 Evaluation . 147

viii

10 Conclusions 149

10.1 On Data Preprocessing . 149

10.2 On Software Evolution Visualization . 150

10.3 On Evaluation . 150

10.4 Future Work . 151

Bibliography 155

List of Publications 165

Summary 169

Acknowledgements 171

Chapter 1

Introduction

In this chapter we identify complexity and change as two major issues of the software

industry and we introduce software evolution visualization as a promising approach for

addressing them. We present the target audience of this type of visualization, the questions

it tries to answer and the challenges it poses. Finding ways to design effective and efficient

visualizations of software evolution is our goal and the focus of this thesis.

1.1 The Software Challenge

Software has today a large penetration in all aspects of society. According to Bjarne

Stroustrup, the creator of the highly popular programming language C++,

“Our civilization runs on software” (Bjarne Stroustrup, 2003).

This penetration took place rapidly in the last two decades and continues to increase at

a steady pace. However, the software industry is confronted with two increasingly serious

problems.

The first problem of the software industry concerns the complexity of software. While

a mid-size software application twenty years ago had a few thousands or tens of thou-

sands of lines of code, mid-size applications nowadays have tens of millions of lines of

code. Even relatively simple applications, such as the familiar Microsoft Windows Paint

program, consist of tens of thousands of lines of code, spread over hundreds of files, de-

veloped by tens of people over many years. These figures are orders of magnitude larger

for banking, telecom, or industrial applications. Software code can be structured in many

ways, e.g., as a file hierarchy; as a network of components, functions, or packages; or as

a set of design patterns [49] or aspects [38, 57]. No single hierarchy suffices for under-

standing software, and the inter-hierarchy relations are complex. If we add dynamic and

profiling data to source code, the challenge of understanding software explodes.

The second problem of the software industry is that software is continuously sub-

ject to evolution or change. The evolution of software is driven by a number of factors,

1

2 CHAPTER 1. Introduction

including the change of requirements, technologies, platforms, and corrective and perfec-

tive maintenance (changes for removing bugs and improving functionality). Evolution of

software increases its complexity. This phenomenon is described by the so-called laws

of software evolution or the increase of software entropy [70, 55]. One solution to this

increasing complexity is to rewrite software systems from scratch, but the high associated

costs usually prevent this. Therefore, most software projects try to keep the existing in-

frastructure and modify it to meet new needs. As a result, a huge amount of code needs

to be maintained and updated every year (i.e., the legacy systems problem).

An industry survey organized by Grady Booch in 2005 estimates the total number of

lines of code in maintenance to be around 800 billion [14]. Out of these, 30 billion lines

of code are new or have to be modified every year by about 15 million software engineers.

This requires a huge amount of resources. Industry studies estimate the maintenance costs

to be around 80 - 90% [40] of the total software costs, and the maintenance personnel 60 -

80% [21] of the total project staff. Studies on the cost of understanding software, such as

the ones organized by Standish [100] and Corbi [24], show that this activity accounts for

over half of the development effort. It is therefore utterly necessary to provide maintainers

with an efficient way to take better informed decisions when planning and performing

maintenance activities.

There are many possible ways to address the above challenges of the software indus-

try, and they follow one of two main approaches (see [10]):

• the preventive approach tries to improve the quality of a system by improving its

design and the quality of the decisions taken during the development process;

• the assertive approach aims to facilitate the corrective, adaptive and perfective

maintenance activities, and is supported by program and process understanding and

fault localization tools.

Both approaches can be facilitated by data visualization.

1.2 Software Visualization

Data visualization is the discipline that studies the principles and methods for visualizing

data collections with the ultimate goal of getting insight in the data. This is reflected by

one of the most accepted definitions of visualization today:

“Visualization is the process of transforming information into a visual form,

enabling users to observe the information. The resulting visual display en-

ables the scientist or engineer to perceive visually features which are hid-

den in the data but nevertheless are needed for data exploration and analy-

sis”[53].

In his book “Information Visualization - Perception for Design” [120], Colin Ware

summarizes the most important advantages of visualization as inferred from up-to-date

research and practice:

1.2. Software Visualization 3

• Visualization provides an ability to comprehend huge amounts of data;

• Visualization allows the perception of emergent properties that were not antici-

pated;

• Visualization facilitates understanding of both large-scale and small-scale features

of the data;

• Visualization facilitates hypothesis formation.

The data visualization discipline has today two main fields of study: scientific and

information visualization. While there is no clear-cut separation between the two fields,

there are a number of aspects which differentiate them in practice, as follows. In scientific

visualization, data is typically a sampling of continuous physical entities (e.g., tempera-

ture readings acquired from a measurement or numerical simulation or tissue densities

acquired from a medical scanning device). Such data has an implicit spatial encoding

related to the sampling process that produced it and also typically is of numerical type.

In contrast, in information visualization data is abstract in nature (e.g., software artifacts,

text documents, graphs, or general database tables). Such data is often not the output of

some sampling process, has no natural spatial encoding, and is not of numerical type.

No implicit visual encoding that maps the data to some two or three-dimensional shape

exists in this case. In order to visualize the data, one must explicitly design such a visual

mapping. The choice of the particular mapping used to make the abstract data visible

depends on the problem and data at hand, and can greatly influence the effectiveness of

visualization.

For more than a decade, scientific visualization is heavily used in many branches of

mechanical engineering, chemistry, physics, mathematics, and medicine, and has become

an indispensable ingredient of the scientific and engineering activity in these fields. In-

formation visualization is a younger discipline which has started to be used in various

fields of activities, including finances, medicine, engineering, and statistics. Surprisingly

enough, software engineers have so far only made limited use of visualization as a tool

for designing, implementing and maintaining software systems. This situation, however,

is about to change.

Software visualization is a very promising solution to the complexity and evolution

challenges of the software industry that supports both preventive and assertive approaches.

It is a specialized branch of information visualization, which visualizes artifacts related

to software and its development process.

A very good overview of software visualization and its applicability in the software

engineering field is given by Stephan Diehl in his recent book ”Software Visualization -

Visualizing the Structure, Behaviour, and Evolution of Software” [31]. In this book, Diehl

points to two surveys that investigate the perceived importance of software visualization

in the software engineering community. In the first survey [68], 111 software engineering

researchers were asked to give their opinion about the necessity of using visualization for

performing maintenance, re-engineering and reverse engineering activities. 40% of the

subjects found visualization absolutely necessary, 42% considered it is important and 7%

found it relevant. Only 1% of the investigated subjects considered visualization is not

important for software engineering.

4 CHAPTER 1. Introduction

In the second survey [7], the reasons for using software visualization have been in-

vestigated among 107 participants, out of which 71 came from industry and 36 from

academia. The results of this survey show that the most important benefits of using visu-

alization in software engineering are:

• Software cost reduction;

• Better comprehension;

• Increase of productivity;

• Management of complexity;

• Assistance in finding errors;

• Improvement of quality.

However, software visualization is not yet a fully accepted part of the software engi-

neering process. According to the same study, one of the main obstructions for acceptance

of software visualization by the software engineering community was the lack of inte-

gration of visualization into established tools, methodologies and processes for software

development and maintenance. Another important problem of many existing software vi-

sualization methods and tools is their limited scalability with respect to the huge sizes of

modern software systems.

In this thesis we address the maintenance challenge of the software industry, and we

try to overcome the current limitations of software visualization. According to indus-

try surveys [100, 24], reducing the software understanding costs is an important part of

this challenge. We see two major approaches to the problem: by improving the software

understanding techniques themselves to support the assertive approach, and/or by improv-

ing the decision making process which in turn will lead to a decrease in the number of

performed software understanding activities, to support the preventive approach.

Both approaches can be addressed by investigating the state of the software system

at a given moment in time. However, this kind of investigations provide isolated snap-

shots on the state of the system. While these could be sufficient to facilitate software

understanding, they do not reveal the development context and trends in the evolution of

the software. The presence of a development context can be useful for understanding a

complex piece of software by revealing how it came into being. Software evolution trends

are system specific and are useful for predictions on the state of the system. They are the

basis for informed decision making during the maintenance phase.

In this thesis we try to use visualization of software evolution to get insight in the

development context and in evolution trends. Our final goal is to improve both soft-

ware understanding and decision making during the maintenance phase of large software

projects.

1.3. Software Evolution Visualization 5

1.3 Software Evolution Visualization

Software evolution visualization is a very young branch of software visualization. Soft-

ware evolution visualization aims at facilitating the maintenance phase of large software

projects, by revealing how a system came into being. The main question that software

evolution visualization tries to answer, which is also the focus of this thesis is:

“How to enable users to get insight in the evolution of a software system?”

The intended audience of software evolution visualization consists of the management

team and software engineers involved in the maintenance phase of large software projects.

These professionals usually face software in the late stages of its development process,

and need to get an understanding of it, often with no other support than the source code

itself. In software engineering, one does not speak of different persons involved in the

software maintenance process, but of different roles. The same role can be played by dif-

ferent persons, and the same person can play several roles at a single moment or different

moments during the lifetime of a software project. The most common roles targeted by

software evolution visualization and the potential benefits are summarized below:

• project managers can get an overview of source code production and use identified

trends as support for decision making;

• release managers can monitor the health of a given product evolution and decide

when it is ready for a new release;

• architects can identify subsystems needing redesign or suffering from architectural

erosion;

• testers can identify the regression tests required at system migration;

• developers can get familiar with the software and set-up their social network based

on relevant technical issues (e.g., by identifying the developers that previously

worked on the same piece of source code).

For all these roles, software evolution visualization tries to answer a number of ques-

tions, following the visual analytics mantra: “detect the expected and discover the un-

expected” [107]. These questions range from concrete, specific queries about a certain

well-defined aspect or component of a software system, to more vague concerns about

the evolution of the system as a whole. Typical questions are:

• What code was added, removed, or altered? When? Why?

• How are the development tasks distributed among the programmers?

• Which parts of the code are unstable?

• How are source code changes correlated?

• What are the project files that belong and/or are modified together?

6 CHAPTER 1. Introduction

• What is the context in which a piece of code appeared?

• How difficult to maintain is the system?

A number of challenges have to be met, in order to turn software evolution visual-

ization into an effective instrument for the software engineer. Some of these challenges

are common to data visualization. Some other challenges are specific to the context of

the software engineering industry in general, and to the context of software evolution in

particular. All in all, these challenges relate to the ultimate goal of any visualization,

that is, to support the user to solve a specific problem in an efficient manner. Among the

challenges of software evolution visualization, the following are worth mentioning:

• scalability: Modern software systems are huge. Visualizing not just a single snap-

shot, but an entire evolution of such a system, is a daunting task. First, this requires

the analysis of a huge amount of information, which has to be done efficiently to fa-

cilitate interactive or near-interactive analysis and discovery. Second, the results of

the analysis must be displayed in an efficient manner. If the datasets at hand are too

large, one might consider presentation on large displays or multi-screen configura-

tions. However, in the typical software engineering context, it is more realistic to

assume the user must work with single-screen commodity graphics displays. This

brings the problem of efficient and effective display of a large information space on

a limited rendering real estate.

• intuitiveness: Software related artifacts and entities, such as files, lines of code,

functions, modules, programmers, bugs, and releases, are abstract entities inter-

connected by a complex network of relations. Designing appropriate visual rep-

resentations that are easy to follow and effectively convey insight into this high-

dimensional data space is one of the largest challenges of software evolution visu-

alization.

• usability: Software understanding is a dynamic and repetitive process which re-

quires many queries of different (interrelated) aspects of the software corpus. Typ-

ically, users formulate a hypothesis and consequently they try to validate it. In this

process they might discover new facts that lead to changes of the hypothesis and

require new validation rounds. Designing software evolution visualization applica-

tions with the requirements and specifics of the user activities in mind is crucial for

success.

• integration: To be successful in the long run, but also simply to be accepted, soft-

ware visualization applications must be seamlessly integrated with the established

tools of the trade of the software engineering process, such as code analyzers, com-

pilers, debuggers, and software configuration management systems. This requires

a careful design and architecture of the visualization tools.

Besides these challenges of software evolution visualization, many other challenges

exist as well. Specific software development contexts, e.g., the use of a particular pro-

gramming language or development methodology, may require the design of customized

interactive visual techniques and tools. If software evolution visualization is to target

1.4. Outline 7

large projects, facilities must be developed to support collaborative work of several users,

possibly at different locations. Finally, software evolution visualizations should target

questions and requirements of a wide range of users, from the technically-minded pro-

grammers to the business and process-oriented managers. All these constraints pose a

formidable challenge, and open novel research grounds to software evolution visualiza-

tion.

1.4 Outline

The remainder of this thesis is organized as follows:

Chapter 2 positions the thesis in the context of related research on analysis and visu-

alization of software evolution.

In Chapter 3, an analysis of the software evolution domain is performed to formalize

the problems specific to this field. To this end, a generic system evolution model and a

structure based meta-model for software descriptions are proposed. Consequently, these

models are used to give a formal definition of software evolution. Challenges of using

this description with empirical data available from current software evolution recorders

are addressed.

In Chapter 4 a visualization model for software evolution is proposed based on the

software evolution model introduced in Chapter 3. The visualization model consists of a

number of steps with specific guidelines for building visual representations of software

evolution.

Chapters 5, 6 and 7 present three applications that make use of the visualization model

proposed in Chapter 4 to support real life software evolution analysis scenarios. These

applications cover some of the most commonly used software description models in in-

dustry: file as a set of code lines, project as a set of files, and project as one software unit.

In agreement with the addressed models, the presented applications visualize software

evolution at line, file and respectively system level. For each application, relevant use

cases are formulated, specific implementation aspects are presented, and results of use

case evaluation studies are discussed.

In Chapter 8, a novel visualization of data exchange processes in Peer-to-Peer net-

works is proposed. The aim of presenting this visualization is twofold. First, we illustrate

how to visualize time dependant software-related data other than software source code

evolution. Secondly, we show that the visual techniques that we have developed for soft-

ware evolution assessment can be put to a good use for other applications as well.

Chapter 9 contains an inventory of reoccurring problems and solutions in the visu-

alizations of software evolution discussed in the previous chapters. Generic issues that

transcend the border of the software evolution domain are also identified and presented

together with a set of recommendation for their broader applicability.

Eventually, Chapter 10 gives an overview on the main contributions and findings of

the work presented in this thesis. It also outlines remaining open issues, and possible

research directions that can be followed to address them.

Chapter 2

Background

In this chapter we first describe the position of software evolution analysis in software

engineering. Next, we give a number of requirements for an ideal tool to support software

evolution analysis. Finally, we give an overview of related work in the area of designing

such tools, with an emphasis on visualization.

2.1 Introduction

Software engineering (SE) is a relatively new discipline (i.e., firstly mentioned by F.L.

Bauer in 1968 [86]) that tries to manage the ever increasing complexity of designing, cre-

ating, and maintaining software systems. To this end it applies technologies and practices

from many fields, from computer science, project management, engineering, interface

design to application specific domains.

The traditional software engineering pipeline consists of an extensive set of activities

which covers the complete lifetime of a software product, from its creation to the moment

the product gets discontinued. These activities are, in chronological product lifetime or-

der [78]:

1. product and user requirement gathering;

2. software requirements gathering;

3. construction of the software architecture and design;

4. implementation of the software product;

5. testing and releasing;

6. deployment;

7. maintenance;

8. discontinuation (end of life).

9

10 CHAPTER 2. Background

The first six phases, from requirement gathering up to and including deployment, are

traditionally called the forward engineering process. The forward engineering process

is sketched in the upper part of Figure 2.1, which gives an overview of the traditional

SE pipeline consisting of forward engineering and maintenance activities. In this figure,

rounded rectangles represent activities, such as requirement gathering, implementation, or

maintenance actions, and sharp corner rectangles represent artifacts which are the typical

input and output for activities, such as software source code, documentation, metrics, but

also maintenance decisions. The figure is structured along two axes: Phases of the SE

process (vertical) and types of activities involved (horizontal).

After the first version of the software product is released and deployed, software en-

ters the maintenance phase (Figure 2.1). This is typically the longest and most resource

consuming phase. Finally, the software product lifecycle ends with the discontinuation

of the product. The software itself can be used afterwards as well, but there are no more

development or maintenance resources invested.

As explained in Chapter 1, the maintenance phase can last for many years, involve a

wide range of individuals, and take a major share of the resources allocated to the overall

software engineering process. To find efficient ways to support this phase is, therefore,

a major concern of the software engineering community. In this thesis we propose a

novel approach addressing this concern. Consequently, we shall next focus only on the

maintenance part of the software engineering process, and not further detail the forward

engineering part.

The maintenance phase (Figure 2.1) can be split in four parallel tracks depending

on the type of activities that take place (see [10]). These tracks and the corresponding

activities are:

1. corrective maintenance: remove bugs from the software;

2. adaptive maintenance: adapting the software to new environments;

3. perfective maintenance: add features and overall improve the software;

4. preventive maintenance: change the software to facilitate further evolution.

In the corrective maintenance track, activity is typically triggered by the occurrence

of development problems such as detection of bugs in the existing code. Adaptive main-

tenance is required to port the system to new software or hardware platforms. Perfective

maintenance takes place when software requirements change and system functionality has

to be altered. Preventive maintenance is typically triggered by the need to reduce the time

between releases and to facilitate further evolution of the software product.

Ideally, maintenance activities and their outcome should be reflected in the project

support documentation. However, a characteristic phenomenon that is typical to software

evolution is that the structured information which is originally available on the software

system, consisting of requirements, functional documentation, architectural and design

documents, and commented source code, quickly gets degraded during the maintenance

process. A typical example is that of paper documents getting out-of-sync with the source

code. In the vast majority of projects, source code plays an essential and particular role

2.1. Introduction 11

Source code

Visual
analysis

time SCM

Qualitative

Quantitative

Questions

Answers Insight

Maintenance actions

Software evolution

multiscale data model

Results

refactoring,
development,
redesign…

Maintenance
phase

Forward
engineering
phase

Project
phases

software data analysis software visualization

 activities artifacts

Software activities and artifacts

Requirements
gathering

Testing

Design and
implementation

Software
data analysis

Software
visualization

Evolution analysis

Reverse engineering

Data extraction

Data extraction

Figure 2.1: Evolution analysis in the maintenance phase of software projects

12 CHAPTER 2. Background

in the maintenance phase, since it is the critical item that has to be maintained, and also

the only up-to-date item at any moment in time. This observation has been succinctly

captured by Stroustrup in his statement that ”source code is the main asset and currency

of the software industry” [103]. Hence, actions in the maintenance phase usually start

with an analysis of the available source code.

In most cases, the source code is available in its latest version, but also in all inter-

mediate versions, via so-called software configuration management (SCM) systems, such

as CVS [28] and Subversion [104]. These systems maintain databases, also called repos-

itories, which store the evolution of a number of software artifacts in digital form (e.g.,

source code, documents, datasets, bug and change reports). The main functionality of

the SCM system is to maintain the most up-to-date version of each stored artifact. Users

can update artifacts by first checking them out from the repository, performing changes,

followed by checking them in. Efficient storage schemes are developed to minimize the

space needed, for instance, by recording only the incremental changes to a given artifact.

In most cases, SCM systems support hierarchical file-based structures (directory trees) as

artifacts. In such cases the smallest unit of configuration management is a file. Typical

SCM systems offer facilities to support a multi-user, multi-site paradigm where several

users can modify the same set of artifacts remotely from different locations.

SCM systems provide the “raw material” that the maintenance activities work on.

However useful in storing the source code and its changes, SCM systems do not give

immediate answers to maintenance related questions like, for example, “why a certain

change took place” or “what are the consequences or implications of a given change”.

Also, SCM systems often store change information on a too low level. Indeed, as the

aim of most SCM systems in use nowadays is to efficiently store and retrieve changes of

textual or binary data contained in various files, their change information representation

is geared towards this end. For example, SCM systems can tell a user quite easily which

lines of text have changed in a certain version of some source code text file, but not

what the changes are at function or software subsystem level. Hence, the first phase of a

typical maintenance activity is to analyze a given SCM repository in order to distill higher-

level, task-specific information from the low-level recorded changes. To do this, we must

first have access to the repository information itself. After this low-level information is

available, higher-level information can be distilled to be used in driving the maintenance

activities.

We detail several directions of previous work related to our goal of getting visual in-

sight into evolving software. In Section 2.2, we discuss the process of extracting data from

SCM systems. The relation between understanding software evolution and the reverse en-

gineering discipline is discussed next in Section 2.3. Section 2.4 zooms in two important

current approaches in the process of software evolution analysis: evolution mining and

evolution visualization. Finally, Section 2.5 concludes this chapter.

2.2 Data Extraction

The first step that is necessary to analyze the evolution of a software system is to have

access to the low-level facts stored in SCM repositories. Although this step is critical in

2.3. Reverse Engineering 13

obtaining the right data for further processing, this operation is not supported at a fully

appropriate level in practice. As a result, data extraction requires considerable effort and

is often system specific. For example, many researches target CVS [28] repositories,

given their large popularity and free availability on the market e.g., [45, 48, 51, 73, 128,

131]. Yet, there exists no standard application programming interface (API) for CVS data

extraction. Many CVS repositories are available over the Internet, so such an API should

support remote repository querying and retrieval.

A second problem is that CVS output is meant for human, not machine reading.

Many actual repositories generate ambiguous or non-standard formatted output. Sev-

eral libraries provide an API to CVS, such as the Java package JavaCVS [63] and the

multi-language module LibCVS [71]. However, JavaCVS is undocumented, hence of

limited use, whereas LibCVS is incomplete as it does not support remote repositories.

The Eclipse environment implements a CVS client [34], but does not expose its API. The

Bonsai project [13] offers a toolset to populate a database with data from CVS reposi-

tories. However, these tools are more a web access package than an API and are little

documented. The only software package we found that offers a mature API to CVS is

NetBeans.javacvs [87]. It allegedly offers a full CVS client functionality and comes with

reasonable documentation. Although we did not run comprehensive evaluation tests on

this package, it appeared to be the best alternative for implementing an API controlled

connection with a CVS repository. In contrast, low-level procedural access to Subver-

sion [104] repositories is better supported by cleaner and better documented APIs, a fact

which can be ascribed to the fact that Subversion is a newer, more sophisticated system

than CVS.

Concluding, although low-level data access can be seen as an implementation detail,

the availability of a robust, efficient, well-documented, usable mechanism to query a SCM

repository is not a granted fact. The availability of such a mechanism can largely influence

the design and success of supporting tools, as well as the fulfillment of the seamless

integration requirement of analysis and software management tools (Chapter 1).

2.3 Reverse Engineering

To support a wide range of maintenance scenarios, the analysis activities must extract a

wide range of types of information from a given repository. This information exists at

higher levels than what is provided via the APIs of current SCM systems. Indeed, typical

SCM systems, such as CVS [28] or Subversion [104] are content neutral. That is, they do

not make any assumptions about what types of artifacts are checked in the system beyond

the level of files made of lines or bytes. This makes these systems, on the one hand,

very generic and applicable to a large class of problems. On the other hand, maintenance

activities take place at many more levels besides the file level. To perform such activities,

additional analysis is necessary to:

1. derive various types of facts from the stored files;

2. determine which of the extracted facts have changed, and how.

14 CHAPTER 2. Background

The first activity mentioned above is the subject of the sub-discipline of software

engineering called reverse engineering [18, 119, 12, 6]. Given a set of weakly structured

software artifacts, such as the files stored in a SCM repository, reverse engineering is

concerned with the task of extracting various facts about the software stored in those

files. These facts exist on a wide range of levels of abstraction, and are useful for several

maintenance activities.

A first example of facts concerns the structure of the software. Here, the relevant

information to be extracted is typically one-to-one with the original program structure,

and consists of, for instance, lines of code, functions or methods, classes, namespaces,

packages or modules, subsystems, and libraries. This type of analysis is also called static

program analysis. Many tools have been developed that can be used in extracting struc-

tural facts from source code [3, 23, 26]. These tools are known under various names, such

as parsers and fact extractors, and can deliver amounts of information ranging from a sim-

ple containment hierarchy of the main constructs of the code (e.g., files and functions) to

a fully annotated syntax tree (AST) of the source code containing the semantics of every

single token in a file. Besides analyzing the source code, fact extractors can also generate

different types of structural information, e.g., UML class diagrams, message sequence

charts, or call graphs from the source code. Structural fact extraction and code parsing is

a wide area of research with decades of experience, which we shall not detail further in

this context. Overviews are given in [90, 122, 109]. Moreover, most research in this area

has targeted the analysis of single versions of a software system.

A second example of facts that can be extracted from the source code concern the

quality of the software. Here, the relevant information to be extracted is not necessarily

one-to-one with the original program structure, but consists of a number of quantitative

or qualitative metrics. These can be computed at various levels of granularity, ranging

from lines of code to entire subsystems, and are useful in signaling the occurrence of

specific situations. For example, high values of a coupling strength metric can indicate

a monolithic, less modular, system which may be inflexible during a longer maintenance

period.

In the above, we have considered both structural and metric facts extracted from sin-

gle versions of a software system. If we combine the structural and metric information

extracted from a given system version, we obtain a so-called multiscale dataset, i.e., a

representation of the software at several levels of detail, and from several perspectives.

Although useful in assessing maintenance issues related to a single system version, such

information cannot answer questions that involve several versions. For example, if we

had the appropriate tools, we could use this information to answer the question ”is a given

software version unstable?”, but not ”is the system evolving towards an increasingly un-

stable state?”. Such questions are important for preventive maintenance, when one must

detect an evolutionary trend and perform maintenance before the actual undesired situa-

tion occurs.

In the following section, we review a set of tools and techniques mentioned in litera-

ture that are currently available for extracting and analyzing information on the evolution

of software systems. These tools and techniques are complementary to, and not replacing,

the static analysis tools for reverse engineering discussed. While static analysis tools give

a wealth of information about a concrete version but do not look at the greater picture

2.4. Evolution Analysis 15

of evolving software, evolution analysis tools focus on uncovering the dynamic, time-

dependent trends in a software project, but provide less detail on the structure and metrics

of each particular version.

The focus of this thesis being visualization, let us mention that both structural and

metric information extracted from a single version can be visualized in various ways and

at various levels of detail. Call graphs can be displayed using ball-and-stick diagrams and

matrix plots to uncover system structure and assess modularity [102, 1]. Source code can

be displayed annotated with metrics to emphasize the exact location of various desired

or undesired events [72]. Metrics can be combined with UML diagrams extracted from

source code to correlate system quality and architecture [106, 105]. All these techniques

are covered by the traditional software visualization discipline, for which good overviews

can be found in [101, 31]. Our specific interest area being software evolution visual-

ization, we shall further detail (in Section 2.4.3) only those visualization techniques that

target change in software systems.

2.4 Evolution Analysis

As explained in the previous section, the analysis step of the maintenance phase involves

both single-version analysis and multi-version, or evolution, analysis tools. In this section,

we review techniques and tools that focus on analyzing software evolution.

There exist two major approaches towards analyzing the evolution of software sys-

tems: data analysis and data visualization (Figure 2.1).

Data analysis uses a number of data processing activities to find answers to specific

questions regarding the evolution of software, but also to mine the data and discover new

aspects that improve the understanding of a system. Examples of data analysis functions

are the computation of search queries, software metrics, pattern detection, and system

decomposition, all familiar to reverse engineers [5, 45, 52, 129].

The goal of the data visualization approach is also twofold. On the one hand it tries to

address specific questions with answers that are not simple to encode in figures or words

(e.g., “how are the maintenance activities distributed over the team”). On the other hand,

visualization tries to give deeper insight into vague problems, which can in turn lead either

to unexpected answers or to formulation of more specific questions.

These two approaches correspond closely to the main activities performed during data

extraction and analysis of software evolution (Figure 2.1) using tool support. Data anal-

ysis tools try to apply specific algorithms on extracted evolution data. Visualization tools

try to use the human vision system both to give insight in data and to answer specific

questions. Unfortunately, most existing tools tend to focus exclusively on one of the

above categories (see Table 2.1). This leads in practice not only to a weak acceptance

of software evolution tools, but also to a slow progress in developing and perfecting of

the category specific activities and techniques. We next present a number of requirements

that tools targeting software evolution should address in order to overcome these limita-

tions, followed by an overview of the state of the art in data analysis and visualization for

software evolution.

16 CHAPTER 2. Background

2.4.1 Requirements

The requirements presented below attempt to integrate in one tool all previously identified

data evolution analysis activities. To this end they detail the high-level usability, scalabil-

ity, intuitiveness and integration requirements that we set for software visualization tools

at the end of Chapter 1, for the specific context of maintenance activities. All in all, an

ideal tool that supports the analysis process in Figure 2.1 should address the following

aspects:

• (R1) multiscale: able to query/visualize software at multiple levels of detail (lines,

functions, packages);

• (R2) scalability: handle repositories of thousands of files, hundreds of versions,

millions of lines of code;

• (R3) data mining and analysis: offer data mining and analysis functions such as

queries and pattern detection;

• (R4) visualization: provide visualizations that effectively answer specific questions

as well as offer deeper insight;

• (R5) integration: the offered services should be tightly integrated in a coherent,

easy-to-use tool.

Table 2.1 summarizes some of the most popular evolution analysis and visualization

tools in the three categories discussed above. In the next section, evolution data mining

(Section 2.4.2) and evolution visualization tools (Section 2.4.3) are discussed in more

detail.

2.4.2 Evolution Data Analysis Tools

Evolution data analysis is a relatively new direction of research. Few methods have been

proposed to offer access to higher level aggregated information about the project evo-

lution. Fischer et al. [45] have proposed a novel method to extend the evolution data

contained in the SCMs with information about file merge points. Additionally, they have

presented the benefits of integrating SCM evolution data with specific information about

bug tracking. Sliwerski et al. [97] have proposed a similar integration to predict the

introduction of defects in code.

One of the subjects more extensively addressed by the research community is the

recovery of SCM transactions. Gall [48], German [52] and Mockus [82] have proposed

transaction recovery methods based on a fixed time windows. Zimmermann and Weißger-

ber [130] built on this work, and have proposed better mechanisms that involve sliding

windows and information acquired from commit e-mails.

Another issue that has been investigated is the use of history recordings to detect

logical couplings. Ball [5] has proposed a new metric for class cohesion based on the

SCM extracted probability of classes being modified together. Relations between classes

2.4. Evolution Analysis 17

Tool
Data

Extraction
Reverse

Engineering
Evolution Analysis Activities

Name
Data

Visualization

Data

Analysis

LibCVS [71] X

WinCVS [123] X

JavaCVS [63] X

Bonsai [13] X

Eclipse CVS plugin [34] X

NetBeans.javacvs [87] X

Release History Database [45] X X X

Diff [32] X X

eRose [131] X X X

QCR [48] X X

Social Network Analysis [73] X X

MOOSE [33] X X

Historian [59] X X

SeeSoft [37] X X

Augur [47] X X

Xia [126] X X

WinDiff [124] X X

Hipikat [27] X X X

Gevol [22] X X

VRCS [67] X X

3DSoftVis [93] X X

Evolution Matrix [69] X

Evolution Spectograph [125] X X

RelVis [91] X

SoftChange [51] X X X

EPOSee [15] X

Table 2.1: Software evolution analysis tools: activities overview

18 CHAPTER 2. Background

based on the change similarities have been proposed also by Bieman et al. [11] and Gall

et al. [48]. Relations between finer grained building blocks, like functions, have been

addressed by Zimmermann et al. [129, 131] and by Ying et al. [128].

The presence of user information in the SCMs has been used to assess developer net-

works. Lopez-Fernandez et al. [73] have applyed general social network analysis methods

on the information stored in SCMs to characterize the development process of industry

size projects and find similarities between them. Ohira et al. [89] have exploited the user

information stored in SCMs to build cross process social networks for easy sharing of

knowledge.

Concluding, compared to other fields of software engineering, such as reverse engi-

neering, software evolution data analysis is a less explored direction of research. How-

ever, evolution data analysis tools are promising instruments for understanding software

and its development process. By integrating in these tools history recordings with other

sources of information such as bug tracking systems and developer e-mails, the analysis

accuracy can be improved and a broader range of usage scenarios can be dealt with.

2.4.3 Evolution Visualization Tools

Evolution visualization takes a different approach to software evolution assessment than

evolution data analysis. The focus is on how to make the large amount of evolution

information available to the user, and let the user discover patterns and trends by himself.

A rather small number of tools have been proposed in this direction.

SeeSoft [37] is one of the first visualization tools we are aware of that addresses soft-

ware evolution analysis. It uses a direct “code line to pixel line” mapping and color to

show code fragments corresponding to a given modification request. Using a similar ap-

proach, Augur [47] is a more recent tool that combines in a single image information

about artifacts and activities of a software project at a given moment (see Figure 2.2).

Both SeeSoft and Xia [126] use treemap layouts to show software structure, colored by

evolution metrics (see Figure 2.3), e.g., change status (SeeSoft), time and author of last

commit and number of changes (Xia).

Such tools, however, focus on revealing the structure of software systems and uncover

change dependencies only at single moments in time. They do not show code attribute and

structural changes made during an entire project. Evolution overviews allow discovering

that problems in a specific part of the code appear after another part was changed. They

also help finding files having tightly coupled implementations. Such files can be easily

spotted in a temporal context as they most likely have a similar evolution. In contrast,

lengthy manual cross-file analysis activities are needed to achieve the same result without

an evolution overview.

As a first step towards global evolution views, UNIX’s gdiff [32] and its Windows

version WinDiff [124] show code differences (insertions, deletions, and modifications)

between two versions of a file (see Figure 2.4). Hipikat [27] is a similar tool that enriches

the information regarding version differences with context specific information recorded

during the project such as bug reports or e-mails. This information appears to be very

useful in understanding changes across versions. However effective for comparing pairs

2.4. Evolution Analysis 19

a) b)

Figure 2.2: Code line to pixel line visualizations: (a) color encodes the ID of a modifica-

tion request (SeeSoft [37]); (b) color encodes the ID of the version when the correspond-

ing code changed for the last time (Augur [47]).

a) b)

Figure 2.3: Software visualization using treemaps to encode structure and color to encode

evolution metrics: (a) color encodes the change status of code: gray = unmodified, green

= added, red = deleted, yellow = changed (SeeSoft [37]); (b) color encodes the commit

date of last revision: green = old, blue = recent(Xia [126]).

20 CHAPTER 2. Background

a)

b)

Figure 2.4: Visualizing changes between two versions of a file: (a) using WinDiff [124];

(b) using Hipikat [27].

of file versions, such tools cannot give an evolution overview of real-life projects that have

thousands of files, each with hundreds of versions. Furthermore, they do not exploit the

entire information potential of SCMs, such as information related to the time and author

of changes between two versions.

More recent tools try to generalize this to evolution overviews of real-life projects

whose evolution spans hundreds of versions. Historian [59], for instance, offers a simple

visualization of CVS repositories at file level using the Gantt chart paradigm [50] (see

Figure 2.5). This visualization, however, works well only an a small number of files and

does not offer overviews of evolution for entire projects.

In a different approach, Collberg et al. visualize with Gevol [22] software structure

and mechanism evolution as a sequence of graphs (see Figure 2.6). However, their ap-

proach does not seem to scale well on real-life data sets containing hundreds of versions

of a system.

VRCS [67] and 3DSoftVis [93] try to improve the scalability issue by using time as

a separate dimension in a 3D setup. While this approach allows the visualization of a

larger number of versions, it suffers from the inherent occlusion problem of 3D visual

environments, thus decreasing the overview capabilities of the visualization.

Lanza [69] uses the Evolution Matrix to visualize object-oriented software evolu-

tion at class level (see Figure 2.8). Closely related, Wu et al. [125] use the Evolution

Spectograph to visualize the evolution of entire projects at file level and visually em-

phasize the moments of evolution (see Figure 2.9). These methods scale very well with

2.4. Evolution Analysis 21

Figure 2.5: Historian [59]: visualization of CVS repositories at file level using Gantt

charts [50]

Figure 2.6: Software structure evolution visualization as a sequence of graphs in

Gevol [22]. Color encodes the moment of the last change: red = recent, blue = old. As

the time passes (diagram 1 to 3) past modifications become older, i.e., their color changes

from red to blue.

a) b)

Figure 2.7: Visualizing software structure evolution in 3D using: (a) 3DSoftVis [93]; (b)

VRCS [67].

22 CHAPTER 2. Background

Figure 2.8: Visualization of software evolution at class level using the Evolution

Matrix [69]. Time is encoded in the horizontal axis. Every rectangle depicts a class

in the system. The width of each rectangle encodes the number of methods, height en-

codes the number of variables, color encodes size modification: black = increase, grey =

decrease, white = constant.

Figure 2.9: Visualization of software evolution at file level using the Evolution

Spectograph [125]. Time is encoded in the horizontal axis. Every horizontal line de-

picts a file. Color encodes the release of a new version of a file: green = new version,

white = old version. As the time passes, versions become older and their color changes

from green to white.

2.5. Conclusions 23

industry-size systems and provide comprehensive evolution overviews. Still, they do not

offer an easy way to determine the classes and files that have a similar evolution. Fur-

thermore, they address a relatively high granularity level and provide less insight into

lower-level system changes, such as the many, minute source code edits done during de-

bugging.

Not only the evolution of structure is important for software evolution analysis but

also the evolution of quality metrics. These are particularly important for supporting the

management decision process by detecting software quality trends. The tools presented

above can visualize at most three quality metrics at once (i.e. the Evolution Matrix pre-

sented above visualizes number of methods, number of variables and size change status).

Pinzger et al. [91] proposed with RelVis a novel method to visualize the evolution of

a larger number of metrics using Kiviat diagrams (see Figure 2.10). They based their

visualization on the release history database engine constructed by Fischer et al. [45],

in an effort to provide an integrated framework for evolution data extraction, analysis,

and visualization. However, their approach can only handle a small number of software

versions.

One of the farthest-reaching attempts to unify all SCM activities in one coherent en-

vironment was proposed by German et al. with SoftChange [51]. Their initial goal was

to create a framework to compare Open Source projects. Not only CVS was considered

as data source, but also project mailing lists and bug report databases. SoftChange con-

centrates mainly on basic management and data analysis and provides simple chart-like

visualizations (see Figure 2.11).

In another recent attempt, Burch et al. [15] proposed EPOSee, a framework for vi-

sualization of association and sequence rules extracted from software repositories using

eROSE [131] as data mining tool (see Figure 2.12).

Concluding, a number of software evolution visualization tools have been proposed

by the research community. The most important compromise they try to make is between

revealing the structure of a software system and its evolution. These tools appear to be

useful instruments for getting insight in the evolution of software. Nevertheless, many

of the requirements presented in Section 2.4.1, for instance R1, R3, and R5 are little

addressed or not at all. The scalability (R2) appears to be another important limitation

of many tools either in terms of code size they can address, or in number of versions.

Finally the proposed visualizations (R4) enable a limited number of evolution investiga-

tion scenarios, and their effectiveness needs to be more thoroughly evaluated. Relating

these issues to the findings of Bassil and Keller [7] may explain the lack of acceptance

and popularity of these software evolution visualization tools in the software engineering

community.

2.5 Conclusions

In this chapter, we have given an overview of the place of software evolution visualization

in the larger context of software engineering activities. We have introduced software evo-

lution visualization as a component of the maintenance activities performed during the

lifetime of a software project. Just as other visualization techniques, software evolution

24 CHAPTER 2. Background

Figure 2.10: RelVis [91]: visualizing the evolution of 20 metrics along 7 releases for

7 software modules using Kiviat diagrams. Kiviat axes indicate metrics; color encodes

releases; edge thickness encodes logical coupling between modules.

Figure 2.11: Visualization of software evolution in SoftChange [51]. The graphic shows

the evolution in time of the number of modification requests.

2.5. Conclusions 25

a) b)

Figure 2.12: Visualization of evolution association rules between files with EPOSee [15]:

(a) using a matrix representation; (b) using parallel coordinates.

visualization could be used not only to check a hypothesis on a given dataset, but also

to discover the unexpected. Software evolution visualization is a natural complement to

two data analysis techniques: the data analysis of the software evolution, which extracts

facts and metrics concerning the evolution in time of a given software corpus, and the

classical reverse engineering, which extracts facts and metrics concerning a single soft-

ware version. Ideally, software evolution visualization should be integrated seamlessly

with software configuration management (SCM) systems and various analysis and fact

extraction tools to provide views on the evolution of a software system for a wide range

of aspects.

In practice, we are still very far from the above ideal situation. Concluding our review,

it appears that data management, evolution data analysis, and evolution visualization ac-

tivities have little or no overlap in the same tool (Table 2.1). Reverse engineering tools

are still an active area of research, and it is not simple to find reliable and scalable static

analyzers and fact extractors for arbitrary code repositories. Evolution data analysis tools,

being a newer research area, have still a long way to go to deliver insightful, unambigu-

ous facts and metrics on the changes in a project. Given the relative novelty of such tools,

coupled with the immaturity of data access APIs to code repositories, there are rather few

visualization tools that target software evolution. These tools can be improved in many

respects:

• the type and number of facts and metrics whose evolution is displayed;

• the scalability of the tools in presence of nowadays’ huge software code bases;

• the intuitiveness of the visual metaphors chosen to display the extracted facts;

• the integration of visualization with software evolution data mining and analysis

techniques;

• the validation of the proposed methods and techniques on real-world cases.

Making steps in the direction of a software evolution visualization toolset that satisfies

these requirements is the focus of the next chapters of this thesis.

Chapter 3

Software Evolution Domain

Analysis

In this chapter we present an analysis of the software evolution domain. We propose

a generic description for system evolution, and we use this description to construct a

formal model of software evolution. We also address here practical data management and

analysis issues related to mapping available evolution information on this general model.

Next, we use the constructed model to present and formalize the problem of software

evolution. We also use this model in the remainder of this thesis as a backbone for several

visualizations of software evolution.

3.1 Introduction

Software evolution analysis is a promising approach to facilitate system and process un-

derstanding in the maintenance stage of large software projects. Nevertheless, at this

moment there are no tools that explicitly provide high-level information on the evolution

of software. Software Configuration Management (SCM) systems introduced in the previ-

ous chapter explicitly record information on changes in software, albeit at an unstructured,

text file level.

In the last decade, SCM systems have become an essential ingredient of efficiently

managing large software projects [16], and therefore, they have been used to support

many “legacy” systems (i.e., large systems that evolve mainly by building on previously

developed software). In practice, SCM systems are primarily meant for manually navigat-

ing the intermediate versions of a software system during its evolution. The information

that such systems maintain is focused strictly on this purpose, i.e., tell the user which

file(s) have changed when, and who changed them, during the evolution of a set of files,

which is called a repository. This functionality can be seen as providing a very limited

view on software evolution at file granularity level. However, as discussed in the previous

chapters, software maintenance requires answering more complex queries, which relate

27

28 CHAPTER 3. Software Evolution Domain Analysis

to examining the evolution of software data at several other levels of detail than code files,

and also examining the evolution of more quantities than just the source code, for instance

software metrics (see [43, 65]).

Figure 3.1 summarizes the tasks of the software evolution analysis domain, including

key activities and entities. A model for software evolution has a central position.

Generic software
evolution model

Data extraction
and enhancement

Modify

Update

Analysis
(e.g. visualization)

Software
evolution

Software
evolution

SCM system

User

Figure 3.1: Software evolution visualization domain tasks. A generic software evolution

model enables a standard visualization methodology for the analysis of evolution infor-

mation from a large range of SCMs.

The goal of this chapter is to present a generic model of software evolution. A partic-

ular (simple) instance of this model is the evolution of software such as recorded by SCM

systems. Other (more complex) instances are the evolution of software artifacts at various

other granularity levels, such as functions or modules, or of non-structural artifacts, such

as software metrics. The use of this model is to establish a common methodology for the

several variants of evolution analysis which are encountered in the practice of software

maintenance. Our model should be, for example, capable to abstract software evolution

across programming language barriers and/or choice of the software metrics. A second

aim of the proposed model is to support the implementation of more complex evolution

analysis scenarios based on the elementary evolution data maintained by typical SCM

systems. In this way, we can use the common subset of low-level information accessible

in most SCM systems to construct generic, extendable analyses of software evolution as

demanded by various application scenarios. Finally, we use the proposed software evolu-

tion model to construct a methodology for visual evolution analysis of software systems.

Concrete applications of the model to several types of problems and software artifacts are

described in the following chapters.

In the next section, we give a generic definition of the evolution of systems in general.

In Section 3.3, we particularize this generic description to the evolution of software sys-

tems. An important step of this process is to detail the concept of similarity for software

systems. We explain how we instantiate our generic evolution model using the concrete

software evolution data available in practice. To this end we use data extracted from CVS

[28] and Subversion [104] repositories, two of the most popular SCMs used in practice

(Section 3.4). The challenges related to visualizing the proposed model for software evo-

lution are presented in the Chapter 4 together with a standard methodology for addressing

them.

3.2 System Evolution

In general terms, evolution refers to a process of change in a certain direction. As a con-

sequence of evolution, systems can either increase or decrease in complexity. In software,

3.2. System Evolution 29

it is widely accepted that the complexity of systems only increases as they evolve in time

(Lehman’s second law of software evolution [70]). In the following, we describe system

evolution with a bias towards software systems. We build the evolution description from

the perspective of an external human observer interested in making judgements about the

corresponding system.

A system at a particular moment can be described as a collection of entities:

S = {ei|i = 1, . . . , nS ∈ N}.

An entity is usually characterized by a set of attributes:

A(ei) = {aj|j = 1, . . . , nA ∈ N}.

Each attribute has values of a certain type, in a certain domain aj ∈ Dj . For example,

a software system can consist of two files S = {F1, F2}. Each file has a number of

attributes:

A(Fi) = {name, size, type, number of lines, author},

where name ∈ Strings, size ∈ N, type ∈ Extensions list, number of lines ∈ N,

author ∈ Team list.

A given system at a certain moment can be described in many different ways. Such

descriptions can be structured as a hierarchy, where each level describes the system at

some level of detail. This usually implies a containment relation between the entities at

various levels. For example, the previous system S of two files can be described at a line

level, if we assume every file Fi can be seen as an (ordered) collection of lines:

Fi = {lj|j = 1, . . . , nFi
∈ N}.

For a finer level of detail, every line can be considered to be a sequence of bytes:

lj = {bk|k = 1, . . . , nlj ∈ N}.

Hierarchical descriptions are useful for two reasons. First, some information is inherently

hierarchic, so it is best described in this way, such as the structure of a file system. Sec-

ondly, hierarchies can be generated when needed in order to simplify a given system and

reduce the complexity of the analysis task.

We are interested in describing the evolution of software systems. Such systems do

not have a continuous evolution. That is, their evolution can be seen as a set of discrete

states in time: S(t1), S(t2), ..., S(tn), where ti ∈ R
+. For simplicity we shall denote

S(ti) (i.e., S at time ti) by Si, and an entity e ∈ Si by ei.

To characterize system evolution, we hence have to look at the evolution in time of

entities and attribute values over the sequence {Si|i = 1, . . . , nV ∈ N}. When analyzing

the evolution of discrete systems, one is often interested in answering questions such as

“What has changed / stayed the same?”, “How much was something changed?” or “What

was created / disappeared?”. To do this we must be able to relate Si with Sj , where i 6= j.

That means we must relate entities ei with ej , and potentially also corresponding entity

attribute values. However, to be able to compare attributes values, we must first be able

to relate and compare corresponding entities. So we focus first on entity comparison.

In order to compare entities, the generic notion entity similarity is introduced. Let Si

30 CHAPTER 3. Software Evolution Domain Analysis

be the set of entities describing the state of a system at time ti, and Sj the set of entities

describing the state of the same system at a later time tj . Entity similarity (Γij) gives

a correspondence between the elements of Si = {ei
k|k = 1, . . . , nSi ∈ N} and those

of Sj = {ej
l |l = 1, . . . , nSj ∈ N}, describing how entities in Si relate to those in Sj .

Formally, this may be defined as a mapping from the set of pairs (ei
k, ej

l) to the interval

[0, 1], describing the similarity ratio between the two entities of a pair.

Definition 3.2.1 Entity similarity

Γij : Si × Sj → [0, 1]

Γij(e
i
k, ej

l) =

1 | ei
k evolved into ej

l with no modifications

const | ei
k evolved into ej

l by modifications

0 | ei
k did not evolve into ej

l

where const ∈ (0, 1) is a measure of the similarity of ei
k and ej

l . In a concrete application,

const may be a function depending on entity specific structure and / or attributes. In other

words, the following possibilities for relating ei
k with ej

l exist:

• they represent the same object (or clones thereof) to the external human observer,

and their attribute values are identical;

• they represent the same object (or clones thereof) to the external observer, but a set

of relevant attributes have different values;

• they represent unrelated objects to the external observer.

Instead of similarity, we can alternatively measure change, which is a complementary

measure. Depending on the concrete application, it might be more convenient and/or

intuitive to talk about change than similarity or vice versa.

Take for example a software system that consists initially of two files: F1 and F2. The

system can be described at the initial moment as S1 = {F 1
1 , F 1

2 }. Suppose that in time a

developer edits file F1 deleting 20% of the lines, leaves F2 alone, and creates a new file

F3. After these events, the system can be described as S2 = {F 2
1 , F 2

2 , F 2
3 }. A possible

entity similarity function Γ12 describing the correspondence between the entities of S1

and those of S2 in terms of Definition 3.2.1 could be:

Γ12(F
1
1 , F 2

1) = 0.8 Γ12(F
1
1 , F 2

2) = 0 Γ12(F
1
1 , F 2

3) = 0
Γ12(F

1
2 , F 2

1) = 0 Γ12(F
1
2 , F 2

2) = 1 Γ12(F
1
2 , F 2

3) = 0

Note that the concrete expression of Γ can involve also attribute values (or functions

thereof) of the considered entities. In the example above:

Γ12(F
1
k , F 2

l) =

{

min(|F 1
k |,|F 2

l |)

max(|F 1
k
|,|F 2

l
|)

| F 1
k and F 2

l address the same file

0 | F 1
k and F 2

l address different files

where |F | denotes the size of a file F .

The entity similarity function Γ is not unique. Being given a system at two moments

Si and Sj there can be many functions of the type presented in Definition 3.2.1 that

3.2. System Evolution 31

describe how the corresponding entities relate. These functions give the perspective of

different observers on system change. Therefore, they support an observer-centered view

on system evolution.

The Γ type functions given by Definition 3.2.1 are useful because they can encode

various changes in a system which are of interest to the external human observer. We

identify five patterns of change among many other possible: split, merge, insertion, dele-

tion, and continuation. These patterns are of particular interest for the assessment of

software evolution. We detail them next.

Definition 3.2.2 Split

An entity a ∈ Si has been split into a set of enti-

ties Ssplit ⊆ Sj during system evolution from Si

to Sj , if and only if:

(∀b ∈ Ssplit : ΓS(a, b) 6= 0) ∧
(∀c ∈ Sj − Ssplit : ΓS(a, c) = 0)

• If a ∈ Si is split into a set of entities Ssplit,

then Ssplit is unique. Let Ssplit(a) denote

the associated split set of a.

 b1

Si Sj

 a b2

 b3

k

l

0

Γij

k,l ∈ (0,1]

Example:

a split into {b1, b2}
Ssplit(a) = {b1, b2}

Definition 3.2.3 Merge

An entity b ∈ Sj has been merged from a set

of entities Smerge ⊆ Si during system evolution

from Si to Sj , if and only if:

(∀a ∈ Smerge : ΓS(a, b) 6= 0) ∧,

(∀c ∈ Si − Smerge : Γs(c, b) = 0)

• If b ∈ Sj is merged from a set of enti-

ties Smerge , then Smerge is unique. Let

Smerge(b) denote the associated merge set

of b.

 Si Sj

 b

k

l

0

 a1

 a2

 a3

Γij

k,l ∈ (0,1]

Example:

b merged from {a1, a2}
Smerge(b) = {a1, a2}

Definition 3.2.4 Insertion

An entity b ∈ Sj has been inserted during

system evolution from Si to Sj , if and only if its

associated merge set is empty, i.e. Smerge(b) = ∅.

• Let Sinserted ⊆ Sj be the set of all entities

inserted during system evolution from Si to

Sj .

 Si Sj

 b

0

0

0

 a1

 a2

 a3

Γij

Example:

b inserted

Sinserted = {b}

32 CHAPTER 3. Software Evolution Domain Analysis

Definition 3.2.5 Deletion

An entity a ∈ Si has been deleted during system

evolution from Si to Sj , if and only if its associ-

ated split set is empty, i.e. Ssplit(a) = ∅.

• Let Sdeleted ⊆ Si be the set of all entities

deleted during system evolution from Si to

Sj .

 b1

Si Sj

 a b2

 b3

0

0

0

Γij

Example:

a deleted

Sdeleted = {a}

Definition 3.2.6 Continuation

An entity a ∈ Si has been continued with b ∈ Sj

during system evolution from Si to Sj , if and only

if Ssplit(a) = {b} and Smerge(b) = {a}.

• Let Scontinued ⊆ Si × Sj be the set of

all entities that are continued during system

evolution from Si to Sj , and their associ-

ated continuation elements.

 Si Sj

0

0

k

l

 b1

 b2

 a1

 a2

Γij

k,l ∈ (0,1]

Example:

Scontinued = {(a1, b1), (a2, b2)}

The set of above change patterns for a given system represents its evolution (∆Γ) as

observed from the perspective of a given Γ (i.e., external observer). Although this defini-

tion is generic, there exist also other alternatives for defining ∆Γ. For instance, definitions

that focus on dynamic aspects can be imagined. However, the definition given above is

particularly useful for characterizing the evolution of systems described by their contents,

such as software systems. In this context, different Γ’s refer to different assessments of

what and how much has changed. Hence, Γ has in practice to be chosen such that it cap-

tures change related information of interest for a given use-case. This is a problem and

context dependent procedure.

In the remaining of this thesis we show concrete examples of insertion, deletion and

continuation patterns during the evolution of software systems. We do not show split and

merge patterns. Such evolution patterns are based on difficult to compute Γ functions in

the context of available sources of data about software evolution. Computing these func-

tions forms the subject of another direction of research, i.e., software repository mining

(see [45, 130]) and, therefore, they are outside the focus of the work presented in this

thesis.

Example: System evolution

Consider the situation depicted in Figure 3.2 which defines an entity similarity function

between two states of a system Si and Sj . Intuitively, Figure 3.2 describes the evolution of

the system between the two states: one entity is deleted (a3), one entity is inserted (b3),
and two other entities (a1, a2) are split and their results are merged to create two new

entities (b1, b2). Using the previously introduced evolution patterns and Definition 3.2.1,

one can summarize the evolution (∆Γ) as a tuple of the following sets:

3.3. Software Evolution 33

Si Sj

 b1

 b2

 a1

 a2

 b3 a3

Γs

Legend

≠ 0

= 0

Γs

Γs

Figure 3.2: Example evolution patterns

• Deleted elements = {a3}

• Inserted elements = {b3}

• Continued elements = ∅

• Split elements and associated split sets = {(a1, {b1, b2}), (a2, {b1, b2})}

• Merged elements and corresponding merge sets = {(b1, {a1, a2}), (b2, {a1, a2})}

In order to answer the evolution questions previously identified, one has to investigate

not only how entities relate in time but also how attributes thereof do. The Γ similarity

functions allow entity correlations. Once a correspondence between system entities at

different moments has been built, this can be used to relate also entity attribute values. In

this thesis (see Chapters 5,6, and 7) we present a number of visualization techniques that

can be used to make cross-correlations between the evolution of entities and that of entity

attribute values.

3.3 Software Evolution

We would like now to particularize the system evolution model presented in Section 3.2

for software systems. This translates into identifying the possible valuations for entities

e, attributes a, and similarity function Γ that make sense and are useful to understanding

the evolution of software.

Software evolution focuses on the states that a software system has during its life time.

It refers to the changes the system entities and their attributes undergo, from the moment

the development starts, then throughout maintenance, until the system is terminated. The

set of entities may include not only source code, but also supporting information, like

design documents or project management plans. Additionally, the set of entities does not

refer only to digital content. It may include, for example, document hardcopies and other

material samples intended to support the development process (e.g., yellow sticker notes

on a board). This thesis addresses only the evolution of the source code. Hence, the term

34 CHAPTER 3. Software Evolution Domain Analysis

Folder

File

 Byte1 Byten

Not ordered

Software
system

= contains Legend

Line1 Linen

Ordered

Figure 3.3: Software system model

software evolution will be further used to refer to the evolution of source code of software

systems.

The stated goal of software evolution analysis is to support the system and develop-

ment process understanding during the maintenance phase of a project. Software structure

understanding is a main component of this, and is often used as foundation for further un-

derstanding the system behavior or the development process. The basic assumption for

structure understanding is that developers are familiar with software representations that

are similar to the ones they use to construct it [37]. Therefore, an efficient analysis should

be based on a software model that emphasizes the building blocks and the main con-

struction mechanisms. To this end we propose a hierarchical model of software generally

accepted by the developers community. This model is shown in Figure 3.3.

Let S be a software system. At a high level of detail, the content of a S may be defined

as a set of files arranged in a hierarchy of folders:

S = {filei|i = 1, . . . , nS ∈ N}.

At a next granularity level, each file can be seen as an ordered collection of lines:

filei = {linej|j = 1, . . . , nfilei
∈ N}.

At the lowest level of detail, a line may be represented as an ordered set of bytes:

linej = {bytek|k = 1, . . . , nlinej
∈ N}.

The above model defines a possible hierarchical structure of a file as a set of lines formed

by bytes. This hierarchy is useful, for example, when comparing or analyzing files on a

line-by-line basis. Clearly, other alternative hierarchies exist. For example, we can define

a file as a set of syntactic constructs, each consisting of an ordered set of tokens. Such a

model would be useful for making higher level comparisons between files, for example,

3.4. Software Repositories 35

in terms of a valid construct written in a given programming language.

To describe the evolution of a software system in terms of this hierarchical model

using the definition of evolution ∆Γ introduced in Section 3.2, entity similarity functions

Γ have to be provided. For a complete characterization of evolution, such functions have

to be defined at each level, that is, on each entity type: files, lines, and bytes. If such

functions are defined at one level, then we can compare software at different moments at

that level. If no similarity functions are defined at a hierarchy level l, one can in practice

construct such functions using a function Γ′ at a level l′ lower than l. Concretely, if we

know an inclusion/containment relation that maps an entity e on level l to a set of entities

{e′i|i = 1, . . . , n ∈ N} on l′, then we can use Γ′ to construct a valid Γ function. However,

the expressivity of this Γ function is limited to the knowledge encapsulated in the function

Γ′, and in the containment and order relations between elements.

For example, let S be a software system made of two files F1 and F2. Suppose file F1

has two lines s, t and file F2 has also two lines u, v. Suppose during development file F1

is modified such that line s is deleted, and file F2 remains unmodified. Let Γl be a known

similarity function at line level between the two moments of development, given by the

formula:

Γl(l
1, l2) =

{

1 | l2 is an unmodified version of l1 in the same file

0 | otherwise

Suppose no similarity function Γf is defined at the file level. Then we can construct

one, by using the containment relation and the values of the Γl function as follows:

Γf (f1, f2) =

∑

l1∈f1,l2∈f2 Γl(l
1, l2)

|{l1|l1 ∈ f1}|

Valuating the above formulae:

Γf (F 1
1 , F 2

1) =
Γl(s

1, t2) + Γl(t
1, t2)

|{s1, t1}|
=

0 + 1

2
= 0.5

Γf (F 1
1 , F 2

2) =
Γl(s

1, u2) + Γl(t
1, v2)

|{s1, t1}|
=

0 + 0

2
= 0

Similarly, Γf (F 1
2 , F 2

1) = 0 and Γf (F 1
2 , F 2

2) = 1. This gives an indication of the amount

of change incurred by a file during evolution, and consequently can be used as a similarity

function to relate files.

For the sake of simplicity we disregarded the order relation between lines in the ex-

ample above. In the software practice, however, it is often the case that order should be

taken into account when a similarity of files based on their lines is constructed [32]. Addi-

tionally, the Γ function presented above measures similarity based on file content and not

on its semantics. It may be the case that the content of a file changes but the file offers the

same set of features to the system it belongs to (e.g., a different component implementing

the same interface). A Γ function that is oblivious to content changes but reveals changes

in the feature set can also be constructed, as long as a way to validate file features based

on its content is provided. This is rather difficult to implement in practice and forms the

field of a different direction of research: Software Test Automation [44, 110].

36 CHAPTER 3. Software Evolution Domain Analysis

3.4 Software Repositories

We have described so far how to model the evolution of a system and how to particularize

this for one common representation software. In practice, the set of entities e, attributes a
and similarity functions Γ characterizing the evolution of a software system are not readily

available. They have to be inferred from the information stored in SCM repositories, the

only instruments available for recording the history of software. These repositories are

described next.

During the last decades, SCM systems have become an essential ingredient of effec-

tively managing large-scale software development projects [16]. Many SCM systems are

available on the market, such as CVS [28], Subversion [104], Visual SourceSafe [114],

RCS [54], CM Synergy [20], and ClearCase [19].

One of the most popular ones is the CVS system, which is available via the Open

Source community. This system concentrates mainly on maintaining a history of the

artifacts developed in a software project. Additionally, CVS has been the preferred choice

for SCM support in many Open Source projects in the last decade, and consequently,

many repositories covering long (i.e. 5-10 years) evolution periods are freely available for

analysis. Therefore, CVS is used in this thesis as starting point to illustrate the concepts

and challenges of software evolution analysis.

Another SCM system that becomes increasingly popular is Subversion, which is also

available via the Open Source community. Subversion offers similar functionality based

on similar concepts, but tries to improve on the shortcomings of CVS. However, Subver-

sion is relatively young and, therefore, there are few repositories available that cover a

long period of time.

However, SCMs do not support a very rich set of entities e, attributes a and similar-

ity functions Γ. SCM repositories are primarily meant for navigating the intermediate

versions that a software system has during evolution. The information they maintain for

this purpose corresponds to a limited software evolution description. For example, CVS

repositories define basic similarity functions only for files and lines. The challenge in this

context is to extend and enhance the evolution representation offered by SCM reposito-

ries such that more complex and relevant results can be obtained by evolution analysis.

Another challenge of using SCM systems in software evolution analysis is the data acqui-

sition step. As SCMs are not built to support data analysis, they do not offer a rich API

with machine-readable output. This issue has been outlined in Section 2.2.

Next, we detail the particularities of the CVS and Subversion repositories, and we

emphasize on the challenges they pose to evolution data analysis.

3.4.1 CVS

CVS assumes the software model shown in Figure 3.4. It maintains a central archive of

all intermediate versions that a file has during development. In CVS terms, these versions

are sometimes also called revisions. Compared to Figure 3.3, the line is the lowest level

of detail offered by CVS.

3.4. Software Repositories 37

 Software
project

Folder

File

 Line1 Line2 Linen

Ordered

Not ordered

Figure 3.4: CVS model of software

Next, the inner mechanisms of CVS are described from the perspective of the entity

similarity functions they provide or enable.

The unit of archiving in CVS is a file revision. File revisions contain and impose a

storage order on lines. Revision names give an implicit file and folder hierarchy of the

system. New revisions are stored in the archive during commit transactions. To record

these transactions CVS uses a simple comparison of the full path of the files. That is, a file

F 1 evolved into a file F 2 if the two files have the same name and path in the associated

folder hierarchy. Additionally, if the operating system modification bit is set, the file is

considered to be updated. Inserted, deleted, and split files are separately reported. This

implicitly defines the following similarity function between the files of two consecutive

versions Sa and Sa+1 of a software project:

Γfile(F
a, F a+1) =

same

∣

∣

∣

∣

Path(F a) = Path(F a+1) ∧
update bit F a+1 = 0

modified

∣

∣

∣

∣

Path(F a) = Path(F a+1) ∧
update bit F a+1 = 1

different
∣

∣ otherwise

where same = 1, modified ∈ (0, 1) is an arbitrary constant, and different = 0.

To enable parallel development on the same file CVS introduces the notion of file

branch. This refers to the CVS supported possibility of splitting a file in two identical

versions (i.e., branches) that can be further independently developed. One of the two

parts continues to be the main direction of development, while the second one is regarded

as experimenting direction. When the modifications performed on the secondary branch

are mature enough they can be integrated into the main branch by merging. However, this

feature is not actively supported by CVS. Once created, a secondary development branch

is not discontinued (removed) by a merging event. What happens after such an event is

38 CHAPTER 3. Software Evolution Domain Analysis

that two branches remain, which refer to the same content in the main branch after the

merging point.

To make better use of storage space, CVS does not store entire revisions of files, but

merely differences in terms of lines between consecutive revisions. That is, CVS stores

only the first revision of a file, and it encodes the following revisions as lines that have

been deleted or inserted with respect to the previous revision. In this way a given revision

can be reconstructed starting from the initial one, by recursively applying the patches that

are stored for each revision up to the given one. If the same number of lines are deleted

and then inserted at a given position in a file, they are considered to be modified. This

approach implicitly defines a similarity function Γl at line level for all the lines in a file

between every two consecutive revisions of a file F a and F a+1:

Γline(l
a, la+1) =

same

∣

∣

∣

∣

∣

∣

la = la+1∧
position la|F a = position la+1|F a+1

(ignoring inserted and deleted lines)

modified

∣

∣

∣

∣

∣

∣

la 6= la+1∧
position la|F a = position la+1|F a+1

(ignoring inserted and deleted lines)

different
∣

∣ otherwise

where same = 1, modified ∈ (0, 1) is an arbitrary constant, and different = 0.

Similarity Function Issues

The similarity functions introduced above (i.e., Γfile and Γline) are the only form of

support CVS offers for recording the evolution of software projects. There are no similar-

ity functions offered for complex syntactic constructs, such as functions or classes. The

reason for this is simple: CVS tries to be as content-neutral as possible. Although im-

plementations for these relations can be deduced, for instance using the hierarchy based

approach described in Section 3.3, deriving a meaningful Γ is a quite complicated task.

We are not aware of any publicly available implementation of a tool based on CVS that

provides such higher-level similarity functions.

Another issue with the similarity functions defined by CVS is the lack of expressive-

ness. For example, CVS does not recognize files that have been moved in the source tree

as identical. Moving a file to another location is recorded by CVS as a deletion of the file

and a creation of a new one in the new location, without an explicit connection between

the two events. Additionally, CVS does not detect line swapping. This translates into

files being always reported as modified when lines are swapped, while in practice their

semantic meaning could be the same.

Furthermore, out of the patterns defined in Section 3.2 only insertion, deletion and

continuation patterns can be observed with Γfile and Γline, and merging and splitting

are not. Γfile can be used to observe file splitting for parallel development. However,

file splitting for refactoring and merging patterns are not covered. Consequently, code

drifting and refactoring, important aspects of software evolution assessment, cannot be

3.4. Software Repositories 39

directly monitored with the mechanisms provided by CVS.

To improve the quality of the software evolution assessment, the research community

has recently tried to enrich the expressiveness of the similarity functions supported by

CVS, such that refactoring, splitting and merging patterns can be observed too. The

most common approaches are probabilistic and based on source code analysis results (see

[61, 55]). Their heuristic nature, however, makes their acceptance difficult in software

engineering practice.

Extending Similarity Functions

The similarity functions implicitly defined by CVS (i.e. Γfile and ΓLine) are available

only between consecutive versions of a software system. However, if they exist between

each two consecutive versions, implicit variants can be constructed between any two ar-

bitrary versions as follows.

Let Sn...Sm be a list of (m−n+1) consecutive versions of a software system, sorted

in increasing order of archiving (commit) times. Assume similarity functions Γ exist

between any two consecutive versions from this list. Then, a similarity function between

entities of Sn and Sm can be defined as:

Γnm(x, y) =

same

∣

∣

∣

∣

∣

∣

∃E = {ek ∈ Uk|k = n, . . . , m},
(∀u ∈ E ∩ Uk, ∀v ∈ E ∩ Uk+1 :
Γ(u, v) = same)

∣

∣

m−1
k=n

modified

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

¬ ∃E = {ek ∈ Uk|k = n, . . . , m},
(∀u ∈ E ∩ Uk, ∀v ∈ E ∩ Uk+1 :
Γ(u, v) = same)

∣

∣

m−1
k=n

∧
∃F = {fk ∈ Uk|k = n, . . . , m},
(∀u ∈ F ∩ Uk, ∀v ∈ F ∩ Uk+1 :
Γ(u, v) 6= different)

∣

∣

m−1
k=n

different
∣

∣ otherwise

where same = 1, modified ∈ (0, 1) is an arbitrary constant, different = 0 and

Uk =

{x} |k = n
Sk |n < k < m
{y} |k = m

In other words, Γnm(x, y) = same when it is possible to build a sequence of elements,

one for each state of the system between n and m, starting with x and ending with y, such

that the existing Γ between every two consecutive elements has value same. Similarly,

Γnm(x, y) = modifiedwhen such a sequence cannot be built, but a less restrictive one,

that only requires that Γ between every two consecutive elements has other value than

different. Finally, Γnm(x, y) = different when none of the above sequences

can be built.

40 CHAPTER 3. Software Evolution Domain Analysis

3.4.2 Subversion

Subversion is a relatively new Open Source SCM that has recently gained a lot of popular-

ity. It appeared in 2000 and its stated goal is to be “a compelling replacement for CVS”.

In this respect Subversion is built on the same concepts as CVS, but it tries to address

some of its shortcomings. The most important differences with respect to CVS are:

• The lowest level of entity detail in Subversion is the byte and not the line as in

CVS. In this respect Subversion assumes the software model shown in Figure 3.3.

Conceptually, this signals a shift in focus from pure text (line-based) files as in

CVS to general binary files. This enables more accurate similarity functions at the

syntactic construct level, in which the amount of change can more easily be taken

into account. For example, a line where only one character changed could have a

different relevance for analysis than a line where all characters changed;

• The similarity function on files recognizes files and folders that are moved in the

source tree during development. This enables high level refactoring assessments of

the system;

• The Subversion communication protocol is entirely human and machine parseable,

which simplifies the task of data extraction from repositories. That is not the case

with CVS which is partly human and partly machine readable, which makes the

automatic interpretation and classification of output intended for human parsing

difficult and error-prone.

While Subversion offers more functionality than CVS, it has the same approach to-

wards software evolution recording. Namely, the Subversion repositories are primarily

meant for navigating the intermediate versions that a software system has during evo-

lution. Consequently, the information they maintain for this purpose corresponds to a

limited software evolution description.

3.5 Conclusions

In this chapter we have presented a generic evolution model for systems. This model

views evolution as a discrete set {Si|i = 1, . . . , nS ∈ N} of system states. Each state

Si is described by a set of entities {ei
k|k = 1, . . . , nSi ∈ N} with associated attributes

{ai
l|l = 1, . . . , nA ∈ N}, at different levels of detail. Evolution (∆Γ) is observed via

an application-specific similarity function Γ, and consists of five sets of change patterns:

split, merge, insertion, deletion and continuation.

Next, we have particularized this model for software systems using one of the com-

monly accepted representations of software: a hierarchy of files containing lines of source

code that consist of byte sequences.

Software is in practice stored in Software Configuration Management (SCM) systems,

which provide approximations of the above evolution model (i.e., e, a, Γ) and software

representation (i.e. software = file/line/byte). CVS is a widely used system that

3.5. Conclusions 41

records change at line level and offers a limited information access API. Subversion is a

newer system that records change at byte level and offers a better basic information access

API.

However useful, the strength of both CVS and Subversion, and for that matter all

other SCM systems we are aware of, is in the same time a weakness from our software

evolution analysis perspective. Since these systems are content-neutral, similarity func-

tions that detect software-specific or programming language-specific changes must be

provided explicitly atop of the basic functionality. Consequently, an important challenge

of software evolution analysis based on e, a and Γ data from SCM repositories is to derive

a set of entities e′, associated attributes a′, and similarity functions Γ′ that characterize

the software evolution with respect to some use-cases of interest. This challenge can be

addressed via a combination of reverse engineering and SCM repository data analysis,

which is, however, not the focus of this thesis.

Once e′, a′, and Γ′ are constructed, the challenge is to map these elements on visual

representations in order to better and easier get insight into the system evolution ∆Γ′ . Our

approach towards addressing this issue is the subject of the next four chapters. To this end

we use only e′, a′ and Γ′ elements that are readily available in, or can be easily inferred

from CVS and Subversion repositories.

Chapter 4

A Visualization Model for

Software Evolution

In this chapter we present a model for building visual representations of software evo-

lution. The model is described in terms of the classical visualization pipeline, with five

main elements: data acquisition, data filtering and enhancement, layout, mapping, and

rendering. The model follows a generic approach, in which the flexibility of the pipeline

elements is traded off against ease of use and efficiency in implementation. User interac-

tion is an important part of the proposed model, as interactive exploration is at the core

of the visual analysis process for understanding software evolution.

4.1 Introduction

In this chapter we describe the visualization model we use to represent the evolution data

model introduced in Chapter 3 in a visual form. By a visualization model, we mean the

set of design elements concerning the various aspects involved in a visualization, such as

data selection and preprocessing, visual representation, and user interaction, which are

combined to construct an application. The effectiveness of a visualization application

is strongly influenced by decisions taken in the design of these various aspects of the

visualization process, ranging from the choices of the graphics elements used to represent

abstract data and the user interaction metaphors proposed to navigate the data space to the

choices concerning application interoperability in a given methodology or process [17,

98].

Figure 4.1 shows the pipeline we propose to describe a large class of software evo-

lution visualization applications. These applications, which target the various questions

related to software evolution outlined in Chapters 1 and 2, are constructed to support

the software evolution domain model presented in Chapter 3. Concrete applications are

described in Chapter 5, 6, and 7, which present software evolution visualization at line,

file and respectively system level. In the remainder of this chapter, we detail the com-

43

44 CHAPTER 4. A Visualization Model for Software Evolution

final image

Select
application
 scenario

interact

observe,
get insight

eij

eij+1

ei+1j

ei+1j+1

time/versions

entities Vi

eij

eij+1

ei+1j

ei+1j+1

entities Vi

Software
Configuration

Management (SCM)
 repository

Raw software
evolution data (e, a, Г)

Data acquisition

Data filtering and
enhancement

Subset of enhanced
software evolution data

(e’, a’, Г’)

Layout

M
a
p
p
in
g

R
e
n
d
e
ri
n
g

END USER

Visualization pipeline

time/versions

Figure 4.1: Visualization model for software evolution

4.2. Software Visualization Pipeline 45

mon design elements that are at the basis of these applications. We believe that these

generic elements are useful in the design of a large class of visualization applications for

time-dependent data, potentially going beyond software itself.

In Section 4.2, we detail the structure of the software visualization pipeline and com-

ment on its similarities and differences with the classical visualization pipeline. Next,

we present the several steps of the visualization pipeline. Section 4.3 describes the data

acquisition from software repositories. Section 4.4 describes the data enhancement and

filtering operations that enrich the basic repository information and help creating selec-

tions thereof. Section 4.5 describes the data layout, i.e., the mapping of abstract data

items to geometric shapes. Section 4.6 describes the construction of visible objects from

the laid out shapes. Section 4.7 describes the final step in the visualization pipeline, i.e.,

the rendering of the visible objects that produces the picture. We dedicated a separate

section (4.8) to user interaction, as a careful design thereof has proved to be essential in

the acceptance and success of software visualization applications. Finally, in Section 4.9

conclusions are drawn.

4.2 Software Visualization Pipeline

Our visualization model is similar to the classical visualization pipeline [17] (see Fig-

ure 4.2). It consists of a sequence of operations, which manipulate the data at hand, and

datasets, which are concrete containers storing the software data. However, the evolu-

tion software visualization pipeline exhibits some particularities, which deserve special

attention. These aspects are discussed next.

Figure 4.2: Classical visualization pipeline

The software evolution visualization pipeline starts with a data acquisition step (see

Figure 4.1). At this step, the evolution information stored on Software Configuration

Management (SCM) repositories such as CVS and Subversion is retrieved. The output

of the data acquisition step is a basic software data model (Chapter 3) containing the

raw information stored in SCM systems. Data acquisition is followed by data filtering

and enhancement. At this stage the raw evolution data extracted from repositories is pre-

processed and analyzed using, for example, data mining or software reverse engineering

techniques. Additionally, subsets of interest of data and analysis results are selected for

visual representation based, for example, on data properties. The next step in the visual-

ization pipeline is layout, which assigns geometric position, dimension and shape to the

entities selected for visualization. This step is not typically present in a scientific visual-

ization pipeline, as scientific data often has an intrinsic layout, or spatial placement. Yet,

the choices made in the data layout step are crucial in determining a good quality, easy

to understand, scalable, and thus ultimately effective visualization. The layout operation

46 CHAPTER 4. A Visualization Model for Software Evolution

is followed by a closely related step, mapping, which specifies how data attributes map

to visual attributes, such as color, shading, texture, transparency, and behavior of visual

objects. Rendering is the last step of the visualization pipeline. In this step all entities

selected for visualization are drawn using the position and appearance properties deter-

mined by the previous steps. After an image is rendered, users can analyze it, interact with

it, and modify it by adjusting the parameters of the elements in the visualization pipeline.

Consequently, user interaction closes a control feedback loop in the visualization model

we propose.

Clearly, there are numerous choices involved in the design of each of the above steps.

We can give a few examples. The time-dependent aspect of software can be mapped to a

spatial axis, as in the case of a function plot, or can be shown via animation. For a given

data layout, a data attribute can be mapped to a spatial dimension not used by that layout,

e.g., the third dimension for a 2D layout, or to color. Given the extent of this work, it

was not possible nor practical to explore all combinations of choices. However, with our

approach we tried to offer a generic visualization model which suitably covers a large

class of visualization applications in our software evolution understanding domain. To

this end we had to make several assumptions about the data and tasks at hand, and also to

restrict the design choices in several directions. The resulting model is the focus of this

chapter.

The model itself has been the incremental outcome of the construction and testing of

several visualization applications that target specific data and tasks, which are presented

in the following chapters. The specific choices of our visualization model are reflected

into the structure of the visualization pipeline for software evolution which we discuss in

the next sections.

The visualization model for software evolution understanding serves several purposes.

First, it makes explicit which are the design invariants in our concrete visualization ap-

plications, and why we have chosen these. Choosing a limited set of design elements for

a visualization application certainly limits the expression freedom in some respects, but

also has the advantage of making the look-and-feel of several of such applications easier

to follow and learn. Secondly, it makes the limitations of several design choices explicit.

Thirdly, it serves as a guideline for the design of new visualization applications that target

related tasks in the field of software evolution understanding, but also beyond.

We detail next the design decisions, invariants, and implementation of our visual-

ization pipeline elements and explain them in the light of the requirements for software

evolution analysis tools presented in Section 2.4.1.

4.3 Data Acquisition

The data acquisition step that commences the visualization pipeline extracts the evolution

information from SCM repositories and makes it available for analysis. Given the nature,

purpose and implementation of current SCM systems, this can be an error prone and re-

source consuming process (see Section 3.4). Additionally, the software evolution models

differ slightly across repositories (see Sections 3.4.1, 3.4.2).

4.4. Data Filtering and Enhancement 47

To cope with these issues we use specialized data extractors for each repository type,

and a flexible database implementation to store data. As explained in Section 3.2, a soft-

ware system at a particular moment in time can be seen as a set of entities

{ei|i = 1, . . . , nS ∈ N} each entity being characterized by a set of attributes values

{aj|j = 1, . . . , ne ∈ N}. In the data acquisition step, we use a number of SCM specific

data extractors that connect to different types of repositories over the network, retrieve

the evolution data (i.e., e, a and Γ), and store it in a generic database format. Essen-

tially, this format can be seen as a set of database tables which store tuples of the type

(ei, a1, · · · , aj, · · ·), where the entity identity can serve as primary key. Such entity

tables (Tentity) hold a single version of a given system, i.e., there are as many entity

tables as versions in the repository. Evolution similarity functions between two consec-

utive versions V k and V k+1 of a system are also stored in tables as tuples of the type

(ei, ej , Γ(ei, ej)) where entity ei ∈ V k and entity ej ∈ V k+1. These tables are called

similarity tables (Tsimilarity). An efficient design of the database schema and the ac-

tual database implementation is important in practice, as a single software repository can

easily hold tens of gigabytes of data (see requirement R2 in Section 2.4.1).

We advocate to use an incremental, demand-driven database. Data table instances

are created on-the-fly, as the user retrieves the corresponding software entity versions.

Moreover, in the filtering stage discussed next in Section 4.4, the raw data is enriched with

additional information obtained from specific data mining and analysis operations. This

extra information can be well accommodated by supplementary data tables created on

demand, which refer to the raw data tables. Most existing database engines on the market

nowadays are able to implement the above model, so the actual choice can be made given

other types of constraints, such as availability and overall system and platform integration.

In our applications presented in Chapters 5, 6, and 7, we have used a SQLite [99] database

for the Microsoft Windows operating system.

A second choice we made is to store data on the same workstation as where the filter-

ing, layout, mapping and rendering steps are performed. In practice, this is almost always

a different workstation than the one on which the actual software repository is located.

This approach minimizes latency times between data selection and actual image render-

ing, as the large amount of data involved does not have to be sent always over the network,

but only once during data acquisition. Additionally, we chose to populate the database on

demand: data is brought from the remote repository, or locally created via filtering and

enhancement, only when needed by a corresponding visualization task. This process is

basically identical to the so-called on-demand pipeline update which traverses the visual-

ization pipeline from the end (rendering) to the beginning (data acquisition) whenever the

rendering requests a certain bit of information [118]. This is the pipeline execution model

of choice in most modern visualization systems, as it creates (or updates) data only when

needed, so it minimizes data storage and computation overheads. This yields very good

results even for industry-size projects with hundreds of versions of thousands of files.

4.4 Data Filtering and Enhancement

Once the evolution information has been extracted from SCM repositories, it is prepro-

cessed during the data filtering and enhancement step of the visualization pipeline. It is

48 CHAPTER 4. A Visualization Model for Software Evolution

at this stage that the limited, raw evolution information stored on repositories is enhanced

and extended, by various analysis procedures such as data mining.

Several types of data enrichment operations can take place at the filtering stage. In

the following, we give some examples of the types of operations that we have considered

in the actual visualization applications described in the following chapters. The filtering

and enhancement operations are presented in the following, starting with simple ones and

ending with those that require a more complex implementation.

4.4.1 Selection

Data selection, also called querying, is the filtering process in which a subset of inter-

est is constructed from a larger dataset. Different types of selection are common in the

software evolution visualization process. The simplest selection picks a number of enti-

ties ei ∈ D of interest from a given input dataset D, based on entity identity or on the

attributes aj of these entities. Such selection operations are typical at the beginning of

the insight-forming process, when the users limit their attention to some subset of inter-

est. For example, in a source code repository, typical selection operations are to separate

source code files from the other files, when one is interested in examining the code itself.

Another typical selection is to separate the header files from the source code files, when

one is interested in examining the evolution of the interfaces of a software system. These

selections operate essentially as a filter on the type attribute of the file entities. Another

common selection operation is to select the entities corresponding to a given attribute

value range. For example, in large repositories containing the evolution of industry-size

projects, it is common to select only a folder containing a subsystem, or alternatively the

entity versions corresponding to a given time interval for further inspection. These selec-

tions operate as range value filters on the path, respectively commit time attributes of the

file entities. A final example in the same category is to select the contributions of a given

developer to a software system evolution, which amounts to a filter on the author attribute

of the file entities. Examples of these selection operations are given in Chapter 5 and 6.

As explained, the result of a selection operation is a subset of entities. This subset

can be stored as a data entity in the data model, separate from the actual software data

entities, called a selection. This model has been used by several information visualization

and software visualization frameworks, such as SoftVision [105], Tulip [4], Rigi [108],

and GVF [76]. An alternative model is to create a new data attribute for every existing

selection, and set the corresponding value to true for every entity belonging to that

selection. This model is more similar to the so-called field dataset approach taken by

scientific visualization frameworks such as ITK [62] and VTK [118]. The first approach is

more memory efficient and also allows quick iteration over a selection’s content, whereas

the second allows a fast entity-in-selection query, and also provides a more uniform data

model which simplifies the design of complex data filtering pipelines. As there is no clear

winner, we have chosen to support both approaches in practice.

During the testing and use of our visualization applications, we found that a very

wide range of queries on software evolution can be answered using a cascade of simple

value-based selection queries.

4.4. Data Filtering and Enhancement 49

4.4.2 Metrics

A second class of operations consists of the computation of metrics. Metrics are attributes

that capture some quality aspects of the entities of the system at consideration. Metric

computations are data enhancement operations that do not modify the value of existing

entity attributes but create new ones. A typical use of such operations is to support several

of the software metrics used in the reverse engineering practice [65, 43] (see requirement

R3 in Section 2.4.1). In our context of software evolution understanding, metrics can be

classified in three basic categories:

• entity metrics: These are metrics that are computed typically independently for ev-

ery version of some given entity. All classical software engineering metrics fall

in this category, as there is essentially no time, or evolutionary, aspect involved.

Examples of such metrics are the number of lines of code or comments of a given

entity, the number of functions or classes in a file, the cohesion or coupling between

given software components such as classes, functions or packages, or the fan-in

or fan-out of functional components. By computing version metrics and visualiz-

ing their evolution in time, for instance, using time series visualization techniques,

trends in a software system evolution can be monitored (Chapter 6 and 7).

• evolution metrics: These are metrics that deliver a single value for all versions of

a given entity. The purpose of such metrics is to characterize the entire evolution

of a given entity (or set of entities) in a global manner. In contrast to the first class,

these metrics are strongly related to the context of software evolution. Examples

of such metrics are the average, maximum, and minimum number of lines of code

a certain software entity (e.g., file) has during its evolution, or the maximum num-

ber of authors who have modified such an entity during its entire lifetime. These

metrics can be used for example to compare the evolution of several distinct en-

tities from a global perspective. A more interesting example of an evolution met-

ric is the evolution similarity metric, which compares how similar two files have

evolved during their entire lifetime. This metric is presented in Chapter 6 where its

use for obtaining and visualizing a system decomposition from the perspective of

evolutionary-related components is discussed.

• version metrics: These are metrics that deliver a single value for all entities of some

given type that belong to the same version of the system evolution. The purpose

of version metrics is to globally characterize an entire system version. Examples

of such metrics are the total number of files, functions, or lines of code in a given

system version, or the number of bug reports or bug fixes in a given release. Such

metrics are useful, for instance, for system architects to assess what the global

quality is of a given software system release, and consequently decide if that release

is ready for external dissemination or not.

All above mentioned metrics can be applied also on selections. Evolution metrics can be

computed on a selected number of versions. Similarly, version metrics can be computed

on a selected number on entities.

An illustrative way to visualize the three basic types of metrics mentioned above is

to think of a software evolution dataset as a two-dimensional matrix where the lines cor-

50 CHAPTER 4. A Visualization Model for Software Evolution

respond to the different entities (e.g., files) in a project and the columns to the different

versions of each entity (see Figure 4.3). In this model, entity metrics correspond to,

and must be visualized upon, the individual matrix cells; evolution metrics correspond

to single values for each row; version metrics yield single values for each column. This

metaphor is illustrative for the types of metrics and the involved visualization problems

that emerge, as the actual layout which we use for depicting the software evolution is

strongly related to the matrix image shown here (see Section 4.5).

Time (Versions)

Entities

ei

Vj

Version
metric

Evolution
metric

Entity
metric

Figure 4.3: Basic metric categories in software evolution visualization

Composite metrics are hybrids between the basic entity, evolution, and version met-

rics. They deliver a single value for a specific selection which contains an application-

dependent or analysis scenario-dependent set of elements. In most cases, composite met-

rics are just sums of basic metrics calculated on all entities in a given selection. However,

depending on the actual selection semantics, more complex composite metrics can be de-

signed. For example, if a selection contains all files involved in some software component,

a specific composite metric can consist of a function of different types of evaluations done

on the different types of files in the selection. For instance, a sanity metric can involve

checking the presence and size of the documentation files, the number of comments in

header files per function and class declaration, and the number of bug reports per line of

code for the implementation files.

4.4.3 Clustering

As explained in Chapter 3, a software system admits many alternative structurings which

reflect many different complementary aspects. For example, a software project can be

hierarchically structured as a file system, component network, class or activity diagram,

dependency graph, or developer responsibility graph. As software systems evolve, their

structure also changes, so it is interesting to visualize these changes.

To this end clustering operations can be used. These data enhancement operations

have several uses. First, they can emphasize the existence of similarities in a dataset

given a certain perspective, encoded in the clustering criterion that drives the clustering

process (see requirement R3 in Section 2.4.1). Second, clustering is useful as a generic

4.5. Data Layout 51

dataset size reduction operation. When there is too much data to examine (visually or

otherwise), clustering can be used to reduce the subset of interest to a manageable size

by grouping strongly related entities and treating them as atomic entities. Many of the

classical visualization techniques of level-of-detail and context-and-focus are based on

an underlying clustering operation that delivers a hierarchical system representation (see

requirement R1 in Section 2.4.1).

Whereas selections group entities, metrics create data attributes for entities, cluster-

ing can be seen as creating new entities. These entities, or clusters, contain other entities,

usually in a recursive, tree-like fashion. A clustering tree describes thus a system decom-

position from a given perspective.

Providing clustering is important because it gives insight to the user, and SCMs offer

little hierarchical structuring information. Concretely, the only hierarchical structuring

information that such systems are guaranteed to offer is that of files-in-directories. This

information is supported by SCM systems, as it is needed by the basic repository man-

agement tasks (check-in, check-out) that these systems have to provide.

Clustering operations can be grouped into two types:

• version-based methods: These methods cluster, or structure, a single version at a

time. In this class fall the methods mentioned in Section 2.3 that recover system

structure and architecture from its source code, for example, via parsing and code

pattern matching. These methods are further studied in the field of static program

analysis in reverse engineering, and are outside the scope of this thesis.

• evolution-based methods: These methods cluster, or structure, the evolution of en-

tities. For example, entities whose evolutions are characterized to be similar can be

grouped together in order to obtain a hierarchical system decomposition from an

evolutionary perspective. We shall demonstrate this type of clustering operation in

the context of file-level software visualization in Chapter 6.

4.5 Data Layout

Layout assigns a geometric position, dimension and shape to every entity to be visual-

ized. We choose upfront for a 2D layout. Our need to display many attributes together

may advocate a 3D layout. Yet, previous attempts to have 3D visualizations accepted by

software engineers proved to be problematic [105, 75]. A 2D layout delivers a simple and

fast user interface, no occlusion and viewpoint choice problems, and a result perceived as

simple by software engineers. This design alternative has been previously advocated by

the research community [121].

In particular, we opted for a simple 2D orthogonal layout that maps time or version

number to the horizontal axis and entities e (e.g., lines, files, systems) to the vertical

axis (Figure 4.1). Finally, entries are shaped as rectangles colored by the mapping oper-

ation (see Section 4.6). Other alternatives can be be imagined, for instance, using both

dimensions to describe entities and then arranging entity descriptions along a time axis.

However, the layout we chose is simple to understand and therefore easier to accept by

52 CHAPTER 4. A Visualization Model for Software Evolution

the software engineering community. Additionally it is relatively easy to implement and

scales very well with large amounts of data (see requirement R2 in Section 2.4.1). Within

this model, several choices exist:

• scale: which level of detail for the entities from the repository should we visualize?

• x-sampling: how to sample the horizontal (time) axis?

• y-layout: how to order entities e on the vertical axis?

• size: how to size the rows and columns of the layout?

These choices are explained next.

Scale allows us to control at which level of detail we see the software repository. We

have designed several so-called views, matching closely the most important entities of the

generic software model presented in Section 3.3 (see requirement R1 in Section 2.4.1):

• the code view + the file view for visualizing repositories at source code line level,

i.e., e = line (see Chapter 5);

• the project view for visualizing repositories at the file level, i.e., e = file (see Chap-

ter 6);

• the system view for visualizing repositories at system level, i.e., e = system (see

Chapter 7).

The horizontal axis can be time or version sampled. Time sampling yields vertical ver-

sion stripes (Vi in Figure 4.1) with different widths depending on the length of the periods

between commit times. This layout is good for project-wide overviews as it separates

frequent-change periods (high activity) from stable ones (low activity). However, quick

changes may result in overcrowded areas in visualization. The project view (Chapter 6)

can be set to use this layout. Version sampling uses equal widths for all version stripes.

This is more effective for entities that have many common change moments, for example,

lines belonging to the same file. The file view (Chapter 5) uses this strategy by default.

The vertical axis shows entities e in the same version Vi. Two degrees of freedom

exist here. First, we can choose in which order to lay out the entities e for a version.

Secondly, we can stack the entities one above each other or use vertical empty space

between entities. Both choices are detailed in Chapter 5.

4.6 Data Mapping

Mapping specifies how entity attributes, such as author, date, or type map to an entity’s

color, shading, and texture. As for layouts, concrete mappings are highly task-dependent

and are discussed in the next chapters. Yet, we have identified several design decisions

that reoccurred in all our visualizations:

4.7. Rendering 53

• Categorical attributes, such as authors, file types, or search keywords are best

shown using a fixed set of around 10 - 15 perceptually different colors. If more

values need to be shown, for instance, in a project with 40 authors, colors are cy-

cled. Categorical sets with less than 4..6 values can also be effectively mapped

to carefully chosen simple texture patterns if the dimensions of the rectangles are

above 20 pixels. Texture and color can be used to encode up to three independent

attributes simultaneously.

• Numeric attributes, such as file size or age, bug criticality, or change amount, are

most accurately shown using charts. However, when a color encoding is to be used,

visually monotonous colormaps work best. We tried several colormaps: rainbow,

saturation (gray-to-some-color), and three-color (e.g., blue-white-red). Interest-

ingly, in most cases the rainbow colormap was the quickest to learn and accept by

most software engineers and also by non-expert (e.g., student) users.

• Structure can be shown using shading. We use shaded parabolic and plateau cush-

ions to show entities on different scales: file versions in file view (Chapter 5), files

in project view (Chapter 6), and even whole systems in the system view (Chapter 7).

• Sampling is essential for overview visualizations. These can easily contain thou-

sands of entities (e.g., files in a project or lines in a file), so more than one entity

per pixel must be shown on the vertical axis for a complete overview. This can be

addressed via antialiasing. We used this approach to render several entries per pixel

line with an opacity controlled by the amount of fractional pixel coverage of every

entry. This ensures a smooth visualization that is free of distractive artifacts, yet en-

ables detection of outliers during a detailed inspection of the image. For a detailed

description of this approach see Section 5.3.3. When outlier detection is the main

analysis objective, a different approach can be followed. No color or transparency

blending is performed. Yet, a non-restrictive dimension of the entity representation

can be used to encode the presence and characteristics of the outliers. For a more

detailed description of this approach see Section 7.3.2.

4.7 Rendering

After all position and appearance attributes have been set, in the rendering phase the

final image is produced by drawing the constructed geometries with the chosen materials,

lighting and view parameters.

The choice of a 2D orthogonal layout simplifies also the rendering step of the visual-

ization pipeline. In this respect only zoom and pan operations are required to support user

interaction. The 2D orthogonal layout requires also no real implementations of shading

operations. All shading-like effects can be easily implemented as pre-computed textures,

which speeds up the drawing process.

For rendering the graphic primitives we chose the OpenGL standard graphics inter-

face. This facilitates the use of textures and blending operations, which we extensively

use to render the encoding of entity attributes. Additionally, most OpenGL implementa-

54 CHAPTER 4. A Visualization Model for Software Evolution

tions make use of the hardware acceleration features available on workstations, speeding

up considerably the rendering process.

4.8 User Interaction

User interaction is essential to our visualization model. It forms the feedback control loop

of the visualization pipeline, as it enables users to adjust the parameters of all pipeline

steps based on the analysis of the previously generated images. Consequently, it helps

users to steer the process of building a mental model of data (see requirements R4 and R5

in Section 2.4.1). We provide a set of interaction techniques from the perspective of the

information seeking mantra proposed by Shneiderman [96]: “overview first, zoom and

filter, then details-on-demand”.

All layouts we propose (i.e., the file, project and system views) offer comprehensive

overviews of software evolution at different scales. To get detailed insight, zoom and

pan facilities are provided. Zooming has a context dependent behavior – text annotations

are shown only below a specific zoom level, whereas above another level antialiasing is

enabled. We also offer two preset zoom levels to speed-up choosing commonly used view

configurations: global overview (fit all software representation to window size) and one

entity-per-pixel-line level.

Filtering is an important step of the visualization pipeline. In practice, this step is

often performed manually according to criteria generated on-the-fly by visual inspection

of data. Additionally, data filtering is a recurring activity throughout the entire visual

assessment of software evolution. Consequently, a tight integration of this with the user

interaction functionality is a must. We provide in all visualization mouse-based mecha-

nisms for performing filtering. These mechanisms allow either individual or set picking

of selections (e.g., select individual files or select all files in a list between two given ones)

and they are either entity or attribute based (e.g., select files indicated by mouse clicks or

select files created by author “x”). Most selections work on a range basis, i.e., via user

interface widgets that allow selecting a set of attribute value ranges from the domain of a

given attribute.

To offer users direct access to detailed information about the entities depicted in an

image we implement details-on-demand mechanisms in all visualizations. These mecha-

nisms are based on a multiple views approach, in which details are displayed separately

from the overview. The user indicates what entity to inspect in detail (i.e., in the detail

window) by pointing with the mouse to that entity in the overview window.

Using classical user interface techniques such as widgets and mouse-based brushing

covers a wide range of the needed functionality, but does not cover the entire spectrum of

possibilities. We have used also a number of less standard interaction widgets, such as the

preset controller (Figure 6.9) and the cluster map (Figure 6.12). The use of these widgets

is detailed further in Section 6.3.3 and 6.3.4.

4.9. Conclusions 55

4.9 Conclusions

In this chapter we have described the visualization model that we use to build graphical

representations of software evolution, according to the evolution data model described in

Section 3.4. Our goal is to build visualizations that are simple to follow, have an uniform

look and feel, and allow an efficient and scalable implementation.

To this end, we offer a visualization model that follows closely the standard visual-

ization pipeline discussed in the visualization literature (see [17]), consisting of the main

steps of data acquisition, data filtering and enhancement, data layout and mapping, and

data rendering. Yet, we made a number of decisions on various aspects of the pipeline

used for our software evolution visualizations:

• We chose to store data locally in an incremental, demand-driven database to mini-

mize access times, storage and computation overheads;

• We designed three types of filtering and enhancement operations: selection, metric

computation and clustering. Selection operations are used for data filtering based

on data identity, attribute type or values. Metric computations are data enhance-

ment operations used to enrich entity attribute sets with software quality indicators.

Clustering operations enhance entity sets with higher level descriptions of a soft-

ware system.

• We opted for a 2D orthogonal layout that is simple to understand by the target users,

and enables computationally efficient and scalable implementations;

• We use color to encode both categorical and numeric attributes, shaded cushions to

encode structure, and antialiasing to obtain smooth visualizations free of distractive

artifacts;

• We use the OpenGL standard graphics interface to take advantage of the hardware

acceleration features available on most workstations.

We favor the use of a uniform design for the visualizations of different types of data.

For example, we reuse the simple 2D orthogonal axis-aligned layout to show the evolution

of several entities, such as lines of code versus file versions (Chapter 5) or source code files

versus project releases (Chapter 6), but also non-evolution information such as project

clusters versus level of detail (Chapter 6). This minimizes the effort required to switch

the context when passing from one visualization to another.

User interaction is an important part of our model and implements a feedback control

loop on the visualization pipeline. When implementing it in concrete applications we use

many preset configurations and only a few user configurable parameters.

In the next chapters we instantiate the visualization model that we propose for a num-

ber of software entities commonly used by the software engineering community and with

readily available evolution information from CVS and Subversion repositories. In Chap-

ter 5 we visualize the evolution of lines of code, in Chapter 6 the evolution of files, and in

Chapter 7 the evolution of software systems.

Chapter 5

Visualizing Software Evolution at

Line Level

In this chapter we investigate how developers can be enabled to get detailed insight in

the history of individual files. The aim is to enable them to understand the file status

and structure better, as well as the roles played by various contributors. To this end,

we propose an integrated multiview environment. Central to this visualization is a line-

oriented display of the changing code, where each file revision is represented by a column,

and where the horizontal direction is used for time. Separate linked displays show various

metrics, as well as the source code itself. A large variety of options is provided to visualize

a number of different aspects. Informal user studies that we have performed demonstrate

the effectiveness and efficiency of this approach for real world use cases.

5.1 Introduction

The ever-increasing complexity of software systems together with the advent of new de-

velopment methodologies, e.g., extreme programming [8], tend to shift development costs

from early stages, such as architecture and design, towards later stages, such as mainte-

nance. In order to understand the software at these late stages, developers can benefit from

additional information regarding its evolution, such as time and authors of code changes.

This type of information facilitates team communication in collaborative projects, and

also places investigations in the context of the entire project evolution. It allows, for ex-

ample, to discover that problems in a specific part of the code appear after another part

was changed. Such insight is easier to get when visualizing the context of the entire

project evolution. In contrast, intensive debugging and runtime analysis is needed to get

it from a single code snapshot.

In this chapter we present a novel approach to the visualization of evolution of source-

code structure and attributes across the entire life span of a file. Typical questions that we

try to provide answers to are:

57

58 CHAPTER 5. Visualizing Software Evolution at Line Level

• What code lines were added, removed, or altered and when?

• Who performed these modifications of the code?

• Which parts of the code are unstable?

• How are changes correlated?

• How are the development tasks distributed?

• What is the context in which a piece of code appeared?

The organization of this chapter is as follows. Section 5.2 details the structure of the

visualized data. Section 5.3 presents the visual model we used to encode data. Addi-

tionally, visual image improvements and human interaction aspects are considered. To

validate the proposed visualization methods and techniques we implemented them in a

tool: CVSscan. This tool is aimed to support the program and process understanding

during the maintenance phase of large software projects. A copy of the tool can be down-

loaded from [30]. Section 5.4 presents results of two case studies of using CVSscan to

assess the evolution of files from real-life projects. Section 5.5 summarizes this chapter

and outlines open issues and future directions of research.

5.2 Data Model

The history recordings of source code files can be retrieved from Software Configura-

tion Management (SCM) systems. As presented in Section 3.4, the central element of

a SCM system is a repository that stores all versions (i.e., revisions) of a given file (see

Section 3.4.1). Therefore, a repository R can be defined as a set of NF files:

R = {Fi|i = 1, . . . , NF ∈ N}

and each file as a set of versions:

Fi = {Vj,i|j = 1, . . . , NVi ∈ N}

Each version of a file can be defined as a tuple containing its source code as an ordered

set of lines, and a number of version specific attributes, for example the unique ID of the

version, the author that contributed (committed) it to the repository, and the time when it

was committed:

Vj,i = 〈{code lines}, ID, author, date〉

The visualization we propose considers files separately, so the file index is dropped in the

following.

The SCM systems we used in our experiments (i.e., CVS and Subversion) use a sim-

ple entity similarity function (ΓLine) to record software evolution within one file (see

5.2. Data Model 59

Section 3.4.1). This function is based on a tool similar to UNIX’s diff, which reports

the inserted and deleted lines of two consecutive file versions Vx and Vx+1. All lines

not deleted or inserted in Vx+1 are defined as constant (not modified), i.e., ΓLine = 1.

Finally, lines reported to be both deleted and inserted in version Vx+1 are defined as mod-

ified (edited), i.e., ΓLine = k, where k ∈ (0, 1) is an arbitrary constant. Between any

two arbitrary versions Va and Vb, the similarity function is defined as a scalar composi-

tion of the similarity functions of all consecutive versions pairs between Va and Vb (see

Section 3.4.1).

Let li denote the ith line of a version in some given context. An important concept for

building our visualization of software evolution at line level is the Global line set:

Definition 5.2.1 Global line set

The global line set L associated with a specific line li in a file F is the complete set of

lines lj in all versions of F for which the entity similarity function between li and lj is not

null:

L(li) = {lj |∃V ∈ F such that lj ∈ V ∧ ΓLine(li, lj) 6= 0}

Next, we introduce three attributes that we use together with the SCM provided Γ
function (ΓLine), and attributes (version ID, author, date) for assessing the source code

evolution at line level. The most important is the Global line position:

Global line position

G(L) : {L|∃li, V ∈ F such that li ∈ V ∧ L = L(li)} → N

with G(L(li)) < G(L(lj)) if li comes before lj in version Vx.

G(L) induces a total order relation on the set of all global line sets associated with a

file F , conform with the local order relations given by the line positions in each version

of F .

G(L) can be practically computed using a graph-based approach. For every global

line set L, a graph node N(L) is built. Nodes are created by scanning versions Vx in

increasing order of x, and lines li in each version in increasing order of i. If lines li and

li+1 are consecutive in a given version, a directed arc is set from N(L(li)) to N(L(li+1)).
Finally, when a node N is inserted between two other nodes NA and NB , an arc is set

from any already existing node between NA and NB to N , to enforce a total order and

not just a partial one. Figure 5.1 shows three versions of a file and their corresponding

graph.

This graph is directed and acyclic, and gives a total order relation between all code

lines of a file. The node corresponding to the global line set L before whose elements

no other line existed during the whole project is the only one having only outgoing arcs.

This root node (e.g., node i in Figure 5.1) is labeled with zero and all other nodes are

labeled with the maximal path length (defined as number of arcs) to the root node, by

doing a topological sort of the graph [25]. Then, for every line li in every version holds

that G(L(li)) = label(N(L(li))). This gives a unique label to all code lines that belong

to a file during development, keeps the partial line orders implied by the different versions

in the project, and ensures that lines in different versions identified by diff as instances

60 CHAPTER 5. Visualizing Software Evolution at Line Level

int i = 1;

int h = 3;

int j = 2;

int h = 3;

int j = 2;

int i = 1;

int j = 2;

int i = 1;

int h = 3;

int j = 2;

int h = 3;

int j = 2;

int i = 1;

int j = 2;

0
1
2

0
1

0
1
2

0
1

version V1 version V2 version V3

i

j j

h

i

j

h

i

Global line
position
(fixed)

Line position
in file
(variable)

0

1

0

1

2

0

1

2

Global line
position

Global line position computation

Figure 5.1: A graph-based approach for computing global line position

of the same global line have the same label. To keep the description simple, the syntagma

global position of a line will next be used to refer to the global line position of the global

line set associated with the given line. Next, the Line status attribute is introduced.

Line status

S(i, x) : N×N → States

with S(i, x) = the state of the line at global position i in version Vx.

S(i, x) is computed by comparing the line lC at global position i in version Vx with

lines in previous and following versions having the same global position i. Some values

take into account also lines with global position i + 1 in previous, current and following

versions. The status can be one of the following:

• constant:

– if lC exists, and

– both lines at global position i in version Vx−1 and Vx+1 are identical with lC
when they exist

• deleted:

– if lC does not exist, and

– there is a line lP with global position i in a previous version Vy (y < x)

• inserted:

– if lC does not exist, and

– there is a line lN with global position i in a following version Vz (z > x)

• modified by deletion:

– if a line at global position i in version Vx−1 exists but differs from lC , and

– for the smallest j for which the line at global position i + j in Vx−1 exists it

holds that the line at global position i + j in Vx does not exist

5.2. Data Model 61

• modified by insertion:

– if a line at global position i in version Vx−1 exists but differs from lC , and

– for the smallest j for which the line at global position i + j in Vx exists it

holds that the line at global position i + j in Vx−1 does not exist

• modified:

– if the status cannot be classified as modified by insertion or modified by dele-

tion, and

– lC exists, and

– one of the lines at global position i in version Vx−1 or Vx+1 exits and differs

from lC

Figure 5.2 depicts the possible transitions of the values of the line status attribute for

a given global line position.

`

deleted

modified

constant

inserted

modified
by deletion

modified
by insertion

Entry state

Version/state transition

Figure 5.2: Line status transition diagram

Additional information can be extracted from the source code itself. When imple-

menting our visualization we used a fuzzy parser with a customizable grammar to extract

information such as blocks, comments and preprocessor macros. This type of information

can be used to build a Construct line attribute:

Construct

C(i, x) : N×N → Grammar

with C(i, x) = the syntactic construct to which that line at global position i in version Vx

belongs to (e.g., comment, loop block, conditional execution branch), if such line exists.

Next we present the techniques we use to map the Global line position, Line status,

Construct, and SCM provided attributes (i.e., version ID, author, date) to visual elements,

in order to assess their evolution.

62 CHAPTER 5. Visualizing Software Evolution at Line Level

5.3 Visualization Model

The main focus of the software evolution visualization at line level is to enable the user

to recover undocumented development knowledge about a file, including file structure,

status and the associated developers network. Additionally, the user should be enabled

to easily perform his assessments with a minimum cognitive overhead when investigating

multiple representations of the data. To this end, we use a single-screen display for the

visualization of the entire evolution of a file.

5.3.1 Layout and Mapping

Since software maintenance is mainly done at code level, we propose a line-based ap-

proach to visualize the software. Similarly to other line-based software visualization tools

[37, 56, 47], we assume that developers are comfortable with visualizations that present

the software in a spatial layout similar to the one they use to construct it. Consequently,

we represent every line of code as a pixel line on the screen. We use a 2D representation,

as advocated in Section 4.5. The main questions to answer in this case are how to layout

the line representations in a plane, and how to use color for encoding attributes.

The layout we propose is different in two aspects from previous line-based layouts,

such as the one proposed by Eick et al. [37]. Firstly, we use neither indentation nor line

length to suggest code structure, but color in combination with a fixed-length pixel line

for all code lines (Figure 5.3). This enables us to represent one version of a file on a

very thin vertical stripe. Secondly, we visualize on the same screen all versions that a

file has during its evolution, instead of all files in a project at a given time (Figure 5.4).

The horizontal axis represents thus evolution in time and the vertical one the line position

li. Each version is shown as a vertical stripe composed of horizontal pixel bars depicting

lines of code (Figure 5.3b and c). Overall, this new approach trades revealing the length of

code lines and their indentation off for offering a space-efficient filling to show files and

code nesting level. This allows one to visualize more source code on the same screen. Our

focus lays on one file at a time, in order to deliver a comprehensive view of its evolution,

enabling users to make correlations between modifications in time.

 a) b)

Figure 5.3: Line layout (a) SeeSoft; (b) our visualization.

Two main sampling strategies are possible on the time axis: version-uniform sam-

pling and time-uniform sampling. In version-uniform sampling, each version is shown

as a vertical stripe composed of horizontal pixel bars depicting lines (Figure 5.4b). This

generates uniform incremental views on the evolution that are more compact and offer

the same resolution both for punctuated evolution moments, i.e., sharp variations of file

5.3. Visualization Model 63

size denoting important changes [125], and for equilibrium periods. For time-uniform

sampling, each line appears as a horizontal stripe, segmented according to its change

moments (Figure 5.4c). This generates views that are more suitable for placing the file

evolution in the development context of the project, with punctuated and equilibrium pe-

riods, but makes correlation more difficult in the punctuated evolution area, due to lack of

resolution.

V2 V1 V3 V1 V2 V3 V4 V5

File A

 Time

 a)

File A File B

 Line position in file

Project files

File A

 Line position in file

 Time

V4

V5

 Line position in file

 b) c)

Figure 5.4: Use of horizontal axis in line-based visualizations: (a) files (SeeSoft); (b) time

with version-uniform sampling (our visualization); (c) time with time-uniform sampling

(our visualization).

For the vertical layout of lines within one version strip, we provide three alterna-

tives. The first one, called file-based layout, uses as y coordinate the local line position li
(Figure 5.5a). This layout offers an intuitive classical view on file organization and size

evolution, similar to [37].

The second alternative, called line-based layout, uses as y coordinate the global line

position G(L(li)) (Figure 5.5b). While this preserves the order of lines of the same ver-

sion, it introduces empty spaces where lines have been previously deleted or will be in-

serted in a future version. In this layout, each global line has a fixed y position throughout

the whole visualization. This allows easy identification of code blocks that stay constant

in time, or get inserted or deleted. Consequently, it enables the identification of the con-

tinuation, insertion and deletion evolution patterns defined in Section 3.2.

64 CHAPTER 5. Visualizing Software Evolution at Line Level

However insightful, these two layouts do not offer both an intuitive view of a chosen

version (i.e., focus version) and a global overview of code deletion and insertion. Some

investigation scenarios may require a view on the focus version with no empty spaces

between lines, similar to the file-based layout, and at the same time a view that facilitates

the identification of inserted or deleted code, similar to the line-based layout. To address

these types of investigation scenarios we propose a third alternative: the interpolated lay-

out, which interpolates between the previously presented two. We start from the bounding

versions of the empty space interval with a line-based layout. Then we gradually decrease

the y size of the empty spaces down to zero for the focus version (Figure 5.5c). In this

way the focus version appears as a contiguous stripe containing no empty spaces, just as

in the file-based layout, yet the information about inserted and deleted lines is still present

in the image.

Lines to be inserted

Discrete time (versions)

Global Line Position

Local Line Position

Interpolated
 position

Focus
version

Left bound
empty space

 Right bound
 empty space

Empty space size decrease

 Constant line

 New line

 Legend :

a)

b)

c)

empty space

Lines to be inserted

Figure 5.5: Vertical line layout: (a) file-based; (b) line-based; (c) interpolated.

In real-life software, a lot of code gets inserted and deleted during the project life-

time. The total y size of the focus version in the interpolated layout is considerably

smaller than the sizes of the interval-bounding versions. The visual transition between

their representations may thus become quite abrupt and difficult to follow. To make this

transition smooth, we propose a number of solutions. First, we balance the representa-

tion by aligning the y midpoint of all versions with the image’s y midpoint. The visual

transition disruption caused by the vanishing empty spaces is now halved. Secondly, we

use a configurable profile function for the size decrease of empty spaces, in order to dis-

tribute the visual transition disruption across the image’s x axis. We use a weighted sum

of exponential and hyperbolic tangent functions to compute the size of the empty spaces

5.3. Visualization Model 65

(Figure 5.6a). Weight adjustment yields different visual disruption distributions. The pro-

file function is applied on the x distance between the version containing the empty space

and the focus version. Its result is normalized such that it equals zero when the empty

spaces are in the focus version and the height of a pixel line when the empty spaces are in

an interval-bounding version (Figure 5.6b).

Discrete time (versions)

Selected
version

Left bound
empty space

Right bound
 empty space

Empty space size decrease

Interpolated line position

f3 = (1-tanh(x))/2

0

1

1

f1 = (1–x)
3

0

1

1

f2 = 1–x
3

0

1

1

f(x) = Af1 +Bf2 + Cf3

a)

b)

Figure 5.6: Profile function for empty space: (a) model; (b) example of balanced inter-

polated layout with asymptotical decrease of empty space size.

Next, we encode the Author, Construct, and Line status attributes defined in Sec-

tion 5.2 by color (Figure 5.7). We use a customizable color map to indicate the status of

lines in a given version (Figure 5.7a). We use a similar approach to encode constructs

(i.e., blocks, comments and references), and we modulate luminance to encode the block

nesting level (Figure 5.7b). Finally, we use a fixed set of perceptually different colors to

encode authors (Figure 5.7c). At each moment, one color scheme is active, such that the

user can study the time evolution of its corresponding data attribute. When interesting

patterns are spotted, one can switch to another scheme to get more detailed insight in the

matter.

Figure 5.8 uses the approach that we propose to visualize the evolution of a file along

65 versions. Version-uniform sampling is used for the time axis. The three layout alterna-

tives introduced above are illustrated. Color encodes line status: green denotes constant,

yellow modified, red modified by deletion, and light blue modified by insertion respec-

tively. Additionally, in the line-based and interpolated layouts (b and c), light grey shows

inserted and deleted lines. The file-based layout (a) clearly shows the file size evolution

and allows spotting the stabilization phase occurring in the last third of the project. Here,

the file size has a small decrease corresponding to code cleanup, followed by a relatively

stable evolution corresponding to testing and debugging. Yellow fragments correspond

66 CHAPTER 5. Visualizing Software Evolution at Line Level

a)

Comment

File
 Reference

Block
(nesting level 1)

Block
(nesting level 2)

Modified

Constant

To be inserted

Deleted

 b)

Author A

Author B

Author C

 c)

Figure 5.7: Attribute color encoding: (a) Line status; (b) Construct; (c) Author.

to areas that need reworking during the debugging phase. The interpolated layout (c) fo-

cuses on a particular version and indicates the points where code will be inserted in the

following period.

stabilization phase a)

b)

c) focus version

major

insertions

Time

Time

Time

Figure 5.8: Line status visualization using a version-uniform sampling of the time axis

and a: (a) file-based layout; (b) line-based layout; (c) interpolated layout.

5.3. Visualization Model 67

Figure 5.9 illustrates different color encodings on a zoomed-in region of the line-

based layout in Figure 5.8 (bottom). In Figure 5.9a, yellow is used to encode lines that

are modified when passing from one version to another, as shown in the highlight. Yellow

lines appear in pairs to make the identification of the change moment easier to detect,

and to support mouse browsing during user interaction (see Section 5.3.4). Switching

to the color scheme that encodes the Construct attribute (Figure 5.9b) enables the user

to discover that the modified piece of code is in a comment, encoded by the dark green

color. This means the modification does not actually alter the code functionality. Finally,

the Author attribute (Figure 5.9c) shows the developer that performed the modification,

here shown in purple.

a) b) c)

Figure 5.9: Attribute encoding: (a) line status; (b) construct; (c) author.

5.3.2 Multiple Views

A key factor in understanding the patterns revealed by evolution visualization is to corre-

late them with other information about the program. To this end, we offer two summariz-

ing views (i.e., metric views) in addition to the line-based visualization of code evolution

presented so far, and also a novel text view on selected code fragments (Figure 5.10).

The metric views summarize data per version or per global-line and show the results

with horizontal, respectively vertical color bars to complement the evolution visualiza-

tion. Different data summarizing methods (i.e., metrics) are available. For example, two

horizontal metrics that we propose show, for each version, its number of lines and its au-

thor (Figure 5.11). A useful vertical metric shows the insertion moment of a code line for

a given global line position, and gives a compact overview of the code development order

in a file.

The code view offers a text look at the code. Users can select the code to be displayed

by sweeping the mouse in the evolution view. Vertical brushing in the code evolution area

scrolls through a version’s code, whereas horizontal brushing over the line-based layout

goes through a given line’s evolution.

An important issue we addressed in the design of our visualization is how to correlate

the code and evolution views, when the latter uses the line-based layout. The challenge

was what to display when the user brushes over an empty space in the evolution view.

68 CHAPTER 5. Visualizing Software Evolution at Line Level

Code view

Horizontal

metric view

Vertical

metric view

Evolution view

Figure 5.10: Multiple code views

 a)

 b)
 Time
(versions)

 Time
(versions)

Figure 5.11: Metric views: (a) version size; (b) version author.

This space corresponds to deleted or inserted line status values (e.g., the light gray areas

in Figure 5.8). Freezing the code display would create a sensation of scrolling disruption,

as the mouse moves but the text doesn’t change. Displaying code from a different version

as the one specified by the mouse position, would have a negative impact on the context.

We addressed this challenge by a new type of code display. We used two text layers

to display the code around the brushed global line position both from the version under

the mouse and from versions in which this position does not refer to an empty space

(Figure 5.12).

While the first layer (A) freezes when the user brushes over an empty region in the

evolution view, the second layer (B) pops up, and scrolls through the code that has been

deleted, or will be later inserted at the mouse location. This creates a smooth feeling of

scrolling continuity during brushing. In the same time, it preserves the context of the

selected version (layer A) and gives also a detailed, text level peek, at the code evolution

(layer B). The three motions (mouse, layer A scroll, layer B scroll) are shown also by the

highlights 1, 2, and 3 in Figure 5.16.

Another interesting challenge that we addressed was how to assess the code evolution

shown by layer B. The problem is that lines of code located at consecutive global positions

might not coexist in the same version. In other words, layer B consecutively displays code

5.3. Visualization Model 69

 evolution view

mouse

position

Layer
A

Layer
B

Figure 5.12: Two-layered code view

lines that may not belong to one single version. A way is needed to correlate this code

with the evolution view. We achieved this by showing the lifetime of a line as a dark

background area in layer B (Figure 5.13). Finally, we encoded the author of each line by

colored bars near the vertical borders of the code view (Figure 5.12).

To summarize the technique presented above, the code view offers a detailed look on a

specific global position in a selected file version, including information about its evolution

and the developers that make it happen.

line x

first version last version lifetime

of line x

lifetime

of line y

line y

Figure 5.13: Code view, layer B. Line x is deleted before line y appears (i.e., they do not

coexist)

5.3.3 Visual Improvements

Real life software projects contain large files of thousands of lines. The resolution of

commodity graphic displays is not sufficient to fit the entire file evolution on one screen,

unless more lines share the same physical screen pixels. This raises the question how to

represent code lines that share pixels such that the user gets a consistent, comprehensible

and complete image of the file evolution.

70 CHAPTER 5. Visualizing Software Evolution at Line Level

We address this issue by a screen space antialiasing algorithm. We use antialiasing

when the total number of lines to be displayed is larger than the available resolution. The

algorithm computes the screen color of a number of overlapping lines by averaging their

colors and weighting them according to their degree of overlap. That is, lines that fit

inside one pixel location have a full weight, and lines that spread on more locations have

a weight that equals the line percentage covered by the pixel location (Figure 5.14).

Line 1 (weight 1.0)

Line 2 (weight 1.0)

Line 3 (weight 0.5)

Pixel

Pixel

Figure 5.14: CVSscan antialiasing algorithm

Other alternatives to address this issue exist (see [64, 85]). One possibility would be

to compute the line weight based on attribute values, such that the visibility of certain

relevant lines can be guaranteed [85]. While this would help emphasizing lines based on

their attributes, it would make structure based correlations more difficult across different

display magnification levels, so more research is needed to find out whether and how well

this alternative would work.

Figure 5.15 shows the benefits of this antialiasing scheme with a real-life example.

We used an interpolated layout to depict the evolution of a 1350 line C code file along

100 versions. Color shows the line status attribute: dark blue = constant; light blue =

inserted; and pink = deleted lines. Light blue and pink show thus empty spaces in the

layout. The rightmost version is in focus in both cases. The lines in the beginning of the

evolution appear to be interrupted when no antialiasing is used (Figure 5.15a). However,

when the screen space antialiasing is enabled, lines become continuous and are easier to

follow (Figure 5.15b).

5.3.4 User Interaction

In order to validate the visualization techniques proposed in this chapter we implemented

them in a tool, CVSscan, which can be used to assess the evolution of source code files.

In addition to the visualization techniques previously described in this section, CVSscan

offers a wide range of interaction means to facilitate the navigation of data. The reper-

toire of interactive exploration instruments provided by CVSscan is described below, us-

ing Shneiderman’s perspective [96]. All instruments are designed to use a point-and-click

approach, making the entire exploration possible only by the use of a mouse. A tool

snapshot illustrating these mechanisms is shown in Figure 5.16.

As presented so far, the visualization we propose offers an intuitive overview on the

evolution of a program file in a single 2D image, even for files whose number of lines

exceeds the available screen resolution (Section 5.3.3). To get more detailed insight in a

specific region of the evolution, CVSscan offers zoom and pan facilities. This enables

the user to drill down to more detailed representations, in which the evolution of each line

5.3. Visualization Model 71

 a) b)

Focus version Focus version

Time (versions) Time (versions)

Line position Line position

Figure 5.15: File evolution visualization using an interpolated layout: (a) without an-

tialiasing; (b) with screen space antialiasing.

of code may be assessed. Two preset zoom levels are offered. These act as shortcuts to

the global overview (fit all code to window size) and to the one-pixel-per-code-line level.

To support file evolution analysis from the perspective of one given version, CVSscan

offers a filtering mechanism by means of which all lines that are not relevant are re-

moved from the visualization (i.e., lines that will be inserted after the selected version,

or lines that have been deleted before the selected version). Filtering enables the user to

assess a version, by clearly identifying the lines that are not useful and will be eventually

deleted, and the lines that have been inserted into it since the beginning of the project.

In other words, filtering provides a version-centric visualization of code evolution. Ad-

ditionally, CVSscan gives the possibility to extract and select only a desired interval on

which to study the file evolution. This mechanism is controlled by two sliders (shown in

Figure 5.16, top) similar to the page margin selectors in word processors. By selecting

an initial and a final version, one can hide the code that is not relevant (i.e., code deleted

before the initial version, or code inserted after the final one). This mechanism proved

to be useful in projects with a long lifetime (e.g., over 50 versions) in which one usually

identifies distinct evolution phases that should be analyzed separately.

CVSscan enables the user to correlate information about the software evolution with

specific details of the source code and overall statistic information. By means of metric

views, users can visually get complementary information about lines (e.g., the lifetime of

a line at a given global position), or versions (e.g., a version’s author or size). The bi-

72 CHAPTER 5. Visualizing Software Evolution at Line Level

level code view (Section 5.3.2) offers details-on-demand about a code fragment: the text

body, the line authors and the text evolution. The user can select the fragment of interest

by simply brushing the file evolution area.

Version
centric
filter

Presets

Zoom controls

Code view, main layer

Right interval selector

Code view, second layer

Left interval selector Evolution overview

1

2 3

Figure 5.16: CVSscan tool overview. The file version and line number under the mouse

(1) is shown in detail in the text views (2,3).

Although CVSscan is an exploration tool that does not alter the data it visualizes, it

maintains a collection of state variables that could be externalized. This enables users to

keep a history of their actions and lets them recover and reuse a specific visualization

setting at a later time. In this direction, a simple extension that users suggested so far

was to add an annotation facility by which developers can add their own comments, and

visualize added comments, to a given version or line position.

The following section presents the results of a number of informal studies that show

5.4. Use-Cases and Validation 73

how the visualization techniques and the interaction mechanisms presented in this sec-

tion can be successfully used to investigate the evolution of files from real life software

systems.

5.4 Use-Cases and Validation

The main target audience of the CVSscan tool is the maintenance community. They

perform their tasks outside the primary development context of a project, and most of

the times long after the initial development has ended. Therefore, the main activities a

maintainer performs are related to context recovery, such as program understanding and

team network building. CVSscan facilitates this process by visualizing file evolution from

the perspective of different attributes and features, such as file structure, modifications,

and authors.

In order to validate the visualization techniques and methods we implemented in

CVSscan, we have organized a number of informal user studies based on the method-

ology proposed in [88]. The aim was to assess the visualization insight by analyzing the

experiences of software maintainers when they investigate programs in whose develop-

ment they did not participate, with no other support than CVSscan itself.

Below, we present the outcome of two such studies. In both cases, the users partic-

ipated first in a 15 minutes training session. During the session, the tool’s functionality

was demonstrated on a particular example file. After that, each user was given a file for

analysis, but no information about its contents whatsoever. A domain expert acted as a

silent observer and assessed the correctness of the findings.

User study 1: analysis of a Perl script file

In the first case, we gave the user a script file from the FreeBSD distribution of Linux,

containing 457 global line positions and spanning 65 versions. The user was familiar with

scripting languages, but had no advanced knowledge about any of them. The user started

CVSscan using the default file-based layout to visualize the evolution of file structure.

The user brushed first over the green areas in the evolution view: These are comments,

right? Let’s see first what they say.

He started to brush from the beginning of the file, choosing first the comments that

spanned over the entire evolution. In the same time he read the code fragments displayed

in the code view. This is Perl. All Perl scripts have this path on the first line. This one

looks like a file description. It reads that this script handles pre commits of files.

Then, while brushing over the comment fragments (Figure 5.17a top/bottom): These

are annotated textual dividers: Configurable options, Constants, Error messages, Sub-

routines, Main body. I use these too in my programs... Here are also some annotations.

Further on, the user investigated also the large comment fragments that did not span

over the whole evolution: It looks like the implementation was either not completed or

the developers left a lot of garbage. There are some code fragments over here that are

74 CHAPTER 5. Visualizing Software Evolution at Line Level

 a) b) c)

Figure 5.17: Case study 1 – Analysis of a Perl script

commented out.

The user next selected the last version and brushed over the Subroutines area: It looks

like these lines do not belong to any block. Here is a blank line before the write_line

procedure. Here a blank line before exclude_file. So there are white lines before

every procedure? Yes, indeed: check_revision, fix_up_file. So there are four

procedures. It seems exclude_file is the most complex one as it has the highest

nesting level.

At this point, the user had a high-level understanding of the file structure. He started

to make inquiries about the developers that had worked on the file. For that, he switched

back and forth between the construct and author attributes using shortcut buttons: The

yellow developer, Dawes, did most of the work. However, the orange one, Robin, wrote

that complex exclude_file procedure. He did that towards the end of the project, so

probably that adds some extra functionality to the core. I see also that the cyan developer,

Eich, did some significant work towards the end in the check_revision procedure

(Figure 5.17b top bottom). It seems that his concern was to rule out files containing DOS

line breaks... So this script doesn’t handle DOS files?”

The user then dismissed the authors that had only small contributions and switched to

the line status visualization: Apparently a major change took place in the middle of the

project. It mainly affected the check_revision procedure.

Then, selecting the version that followed the modified by insertion lines of the major

change, the user started to concentrate on the areas where modifications took place: I see

a number of modifications between these two versions (Figure 5.17c top bottom). The

first one replaces a file reference with a fully qualified name; the second does the same,

the third too, the fourth, the fifth. Oh, they should have kept that file name in a separate

5.4. Use-Cases and Validation 75

variable! Here they tuned the regular expressions. Here they replaced a constant string

with a variable.

The user continued to brush all areas where modifications appeared and tried to cor-

relate them with the code and the authors that committed them. We interrupted the ex-

periment after 15 minutes. At the end of the exercise, the domain expert considered

the user was familiar with the overall organization of the file, the focus of each individ-

ual contributor, the places that had gone through important modifications and what these

modifications referred to.

User study 2: analysis of a C code file

In the second case, we asked an experienced C developer to analyze a file containing the

socket implementation of the X Transport service layer in the FreeBSD distribution of

Linux. The file had 2900 global line positions and spanned across 60 versions. We pro-

vided this user with CVSscan. We enabled highlighting of C grammar and preprocessor

constructs, such as #define and #ifndef (see Section 5.2).

The second user started the tool in the default mode too, and tried first to look for

commented fragments: This is the copyright header, pretty standard. It says this is the

implementation of the X Transport protocol, pretty heavy stuff... It seems they explain in

this comments the implementation procedure.

The user next switched his attention to the compiler directives: A lot of compiler

directives. Quite complex code, this is supposed to be portable on a lot of platforms. Oh,

even Windows.

Next, the user started to evaluate the inserted and deleted blocks: This file was clearly

not written from scratch, most of its contents has been in there since the first version.

Must be some legacy code... I see major additions done in the beginning of the project

that have been removed soon after that... They tried to alter some function calls for Posix

thread safe functions (Figure 5.18a top bottom)... I see major additions also towards the

end of the project... A high nesting level, could be something complex... It looks like code

required to support IPv6. I wonder who did that?

The user switched then to the author visualization: It seems the purple user, Tsi, did

that (Figure 5.18b top bottom). But a large part of his code was replaced in the final

version by... Daniel. This guy committed a lot in the final version... And everything seems

to be required to support Ipv6. The green user, Eich, had some contribution too... well,

he mainly prints error messages.

Eventually, the user switched to the evolution of line status and used the predefined Fit

to line setting to zoom in. Indeed, most work was done at the end... Still, I see some major

changes in the beginning throughout the file... Ah, they changed the memory manager.

They stepped to one specific to the X environment I assume. All memory management

calls are now preceded by “x” (Figure 5.18c top bottom)... And here they seem to have

given up the TRANS macro.

The user spent the rest of the exercise assessing the modifications and the authors

that committed them. We interrupted the experiment after 15 minutes. At the end, the

76 CHAPTER 5. Visualizing Software Evolution at Line Level

 a) b) c)

Figure 5.18: Case study 2 – Analysis of a C code file

domain expert considered the user did not have a very clear image of the file’s evolution.

However, the user managed to discover that the file represented a piece of legacy code

adapted by mainly two users to support the IPv6 network protocol. He also pointed out a

major modification: the change of the memory manager.

5.5 Conclusions

In this chapter we have presented a new approach for visualizing software evolution at

line level, using line-oriented displays. This novel approach offers multiple correlated

views on the evolution of a source code file. Dense pixel displays are used to show the

overall evolution of code structure, semantics and attributes, and they are integrated in an

orchestrated environment to offer details-on-demand. Additionally, we have introduced

a novel type of code text display that gives a detailed and intuitive view on both the

composition of a fragment of code and its evolution in time.

To validate the presented visualization methods and techniques, we implemented them

in a tool for source code evolution assessment: CVSscan. We used this tool to perform a

number of user studies on data extracted from real-life SCM repositories. In this chapter

we have presented the outcome of two of these experiments. Although informal, the stud-

ies show that the line-based evolution visualization of code supports a quick assessment

of the important activities and artifacts produced during development, even for users that

had not taken part in any way in developing the examined code. To reduce the subjective-

ness of these findings, more experiments have to be organized using a larger number of

subjects and assessors on the same software input.

5.5. Conclusions 77

In both studies the domain experts liked the tool and considered it could be used to

gain even more insight in the system under investigation. They expressed their interest

in assessing the tool usability for discovering more detailed information. In this respect,

they considered that the relatively short examination time (i.e., only 15 minutes) did not

allow users to consolidate their knowledge about the system and make more advanced

correlations. Consequently, future experiments that would assess these issues should in-

crease the examination time and should use subjects that are familiar with the investigated

software.

The user study subjects valued mostly the compact overview coupled with easy ac-

cess to source code. These enabled them to easily spot issues at a high level and then get

detailed source code information. To the best of our knowledge, this is the first approach

that allows users to navigate code evolution at line level using an overview of it. Addi-

tionally, the approach we propose is relatively generic as it may be applied to study the

evolution of any line-based structure.

A weak point of our visualization so far is the accuracy of the diff operator used to

discover differences between versions of the same file. We used the diff operator pro-

vided by CVS and Subversion repositories. Therefore, the accuracy of our visualization

depends on the relatively simple heuristics behind this operator, which can lead to data

misinterpretations. A significant improvement would be to use a diff tool with support

for semantic comparisons.

Another open issue of our visualization is the evaluation of the interpolated layout.

During the studies that we organized, the subjects did not use this type of layout in their

assessments. A possible explanation for this would be the short duration of the experi-

ments and the absence of task specifications that would limit the search horizon of the

user. This distracted the subjects from performing a version-centric analysis of evolution,

which would benefit from the support of a visualization using the interpolated layout.

Chapter 6

Visualizing Software Evolution at

File Level

In this chapter we investigate how software developers can get insight in software evo-

lution of entire projects. To this end, we propose a number of new techniques for visual

mining of project evolution. Central to our approach is a file-based evolution visualiza-

tion, where each project is shown as a set of horizontal stripes depicting files along the

time axis. We propose two mechanisms for interactively reordering and organizing the

stripes in this display. We also propose a new multivariate visualization technique that

enables complex correlations. To this end, we use a combination of color and textures to

depict up to three artifact attributes at the same time in one view using the same spatial

layout. We use interaction to extend the correlation capabilities to four or more attributes.

To reduce the complexity of evolution visualizations we use clustering, and we compare

two methods to generate relevant abstraction levels in a hierarchical clustering data set.

Additionally, we introduce a novel widget, i.e., the cluster map, which visualizes all par-

titions in a hierarchical clustering set and supports users when choosing a partition to be

visualized. We demonstrate the efficiency of the proposed methods and techniques with a

number of analysis experiments that we performed on existing real-life systems.

6.1 Introduction

Software evolution assessments provide useful information about the development con-

text of a project. Effective use of this information can greatly help maintainers understand

and manage evolving projects. Additionally, project specific evolution patterns may be

identified during assessment. These could support planning of project activities and could

help improving the software quality.

The evolution visualization technique at line level proposed in Chapter 5 offers insight

in the evolution of one file at a time. However, for evolution assessment, insight from

correlations across the boundary of one file is required. In this chapter we present a set of

79

80 CHAPTER 6. Visualizing Software Evolution at File Level

new techniques for visually assessing the entire evolution of software projects using the

evolution information contained in SCM systems. Typical questions we target with these

techniques are:

• What is the project-wide activity, i.e., when have files been created, modified, and

by who, and how did this activity evolve during the project?

• Which are the project areas of high(est) activity?

• How are development tasks distributed among the programmers?

• Which are the project files that belong and/or are modified together?

• How well do the conceptual and functional organization of a project match the

actual folder structure?

The structure of this chapter is as follows. In Section 6.2 we present a model of the

evolution data that we visualize. Section 6.3 details the visual layout mechanisms we used

for evolution visualizations and for correlations with other results of project evolution

analysis. Additionally, several interaction techniques are proposed to support the visual

mining of the evolution data. To validate the techniques that we propose, we implemented

them in a tool for software evolution assessment of entire projects: CVSgrab. This tool

seamlessly combines SCM data extraction with analysis and visualization. A copy of the

tool can be downloaded from [29]. Section 6.4 presents several use-cases that illustrate

the use of CVSgrab for investigating the evolution of industry-size projects. Section 6.5

summarizes this chapter and outlines open issues for future research.

6.2 Data Model

The software evolution visualization at file level that we propose builds on the data model

outlined in Section 3.4. A hierarchical organization of software in folders and files is

assumed, together with a similarity function Γfile at the level of files. Consequently, the

visualized entities are file revisions. Additionally, we use the same Γfile function as the

one presented in equation 3.4.1.

In the proposed visualization, the evolution of files is correlated with the evolution

of a number of file attributes. These are either directly available from SCM repositories

(e.g., file creation time, author ID, file type, file size), or are computed based on the stored

evolution recordings (e.g., presence of a specific word in the associated revision log).

Next, we propose a visualization model that enables evolution correlations across all files

of a project, and with multiple file attributes at the same time.

6.3 Visualization Model

The purpose of software evolution visualization at file level is to enable users to obtain

insight in the project-wide structure and to see correlations between attributes across the

6.3. Visualization Model 81

evolution of all files implementing a system. To this end, the visualization that we provide

offers a single-screen display of the entire evolution of a given project. Similarly to the

work presented by Eick et al. in [37] and in Chapter 5, we use a 2D code-centric approach

to visualize the software evolution. As a new element, we interactively present the entire

evolution of complete projects. This enables users to actively use visualization for mining

the history of software systems.

6.3.1 Layout and Mapping

One of the biggest challenges of visualizing the evolution of complete software projects

is scale. The approaches introduced by Lanza in [69] and by Wu et al. in [125] are the

only ones we are aware of that scale well for visualizing the evolution of industry-size

projects. Both techniques use a fixed vertical ordering of the entities (classes and files

respectively). This fixed ordering, however, does not specifically help to find evolution

based correlations.

We propose a novel approach for visualizing complete projects with a flexible entity

layout that can be interactively modified by users to suit specific analysis scenarios. Sim-

ilarly to the approach of Wu et al. [125] we visualize projects at file granularity level. Ev-

ery file is drawn as a fixed height horizontal stripe made of several segments (Figure 6.1).

Each segment corresponds to one version of that file. Segments are ordered according to

creation time and their length is scaled with the lifetime of the respective version. Com-

pared with the approach we propose in Chapter 5, this corresponds to a time-uniform

sampling of the horizontal axis. In this case, however, we do not offer a version-uniform

sampling alterative. The main obstacle in this direction is the technical complexity of

building a scalable implementation of such sampling for entire projects. Nevertheless, a

version-uniform sampling could offer better resolutions when assessing the moments of

punctuated evolution (see [125]) so more research is needed in this direction.

Version segments can be colored to show various file version attributes. First, we

can show the author that committed the respective version by mapping the author ID to a

unique hue (Figure 6.1 top). This helps evolution correlations based on both activity and

the authors’ network. Alternatively, color can show the state of the version in the context

of a complete project, i.e., file not created yet, before last version, last version (Figure 6.1

bottom). This provides a simpler image that focuses specifically on activity events. Other

alternatives for color encoding are file attributes directly available from SCM reposito-

ries (e.g. file type, file size) or computed based on the SCM recorded information (e.g.,

presence of a specific word in the associated revision log). For all alternatives, we use

geometric shaded cushions [111] to emphasize the version segments and to separate ver-

tically stacked file stripes. Also, we draw the commit moments themselves as thin vertical

lines between the version cushions.

We build complete project visualizations of software evolution by stacking individual

file stripes on the vertical axis so they share the same time scale and use the same color

encoding. In contrast with the approaches of Lanza [69] and Wu et al. [125], we do not

fix the vertical axis ordering, but allow (and encourage) users to interactively change the

layout to target specific analysis needs. We describe next two mechanisms to achieve this

goal: sorting and clustering.

82 CHAPTER 6. Visualizing Software Evolution at File Level

V1 V3 V2 V4 V5 V6 V7 V8

Time

Time

file not created yet before last
version

last version before last
version

Figure 6.1: File evolution representation. Color encodes user identity (top) and activ-

ity (bottom).

Sorting

Sorting allows identifying how a relevant project metric is distributed across a set of files.

Files are ordered along the vertical axis according to that metric’s values. Similarly to the

TableLens system [92], we propose several metrics that generate alternative layouts of the

project evolution: creation time (similar to [125]), alphabetic order (similar to [69]), ac-

tivity measure (i.e., number of versions), and evolutionary coupling measure (see [129]).

Other metrics can also be of interest, depending on the specific evolution assessment sce-

nario.

The term evolutionary coupling in the context of software evolution was first intro-

duced by Zimmermann et al. [129] and it is used to describe the simultaneous change of

software entities during development. The evolutionary coupling metric that we propose

is a function S : {Fi} × {Fi} → (0, 1], where {Fi} is the set of all files in the system.

Given some file of interest F1, we measure the similarity S(F1, F2) between its evolution

and that of another file F2 as a number in the interval (0, 1]. The higher the number, the

higher the evolution similarity, and consequently, their evolutionary coupling. To define

S(F1, F2), we introduce first the notions of commit neighborhood NK and evolution cor-

respondent τ . Let Vi be the set of commit moments for all versions of a file Fi. Then

NK : V1 → V ∗
2 is a mapping that assigns to each element t of V1 a set of elements

V ∗
2 ⊆ V2 that are in a time vicinity of K time-units from t:

NK(t) = {u|u ∈ V2, |u − t| < K}

Next, τ : V1 → V2 ∪ {∞} is a mapping that assigns to each element t of V1 the closest

element u from NK(t), if such an element exists, or ∞ (infinity) otherwise:

τ(t) =

{

umin |NK(t) 6= ∅ ∧ |t − umin| = min |t − u|u∈NK(t)

∞ |NK(t) = ∅

We define now the evolutionary coupling S(F1, F2) of files F1 and F2 as the symmetrized

sum of inverses of the time difference between all commit moments in a file and their

evolution correspondents in the other file:

S(F1, F2) =
1

2|V1|

∑

t∈V1

1
√

|t − τ1(t)| + 1
+

1

2|V2|

∑

u∈V2

1
√

|u − τ2(u)| + 1

6.3. Visualization Model 83

where τ1 is the evolution correspondent from V1 to V2, and τ2 is the evolution correspon-

dent from V2 to V1.

This measure says that files that are changed at similar moments, are more similar

than others from an evolution perspective. The underlying idea, which can be checked

as correct in many large software projects, is that files which depend on each other, ei-

ther via explicit data, call structures or otherwise, must (and will) be changed together to

maintain the desired system invariants. Thus, evolutionary coupling is related to interface

or implementation interdependencies. Compared to the approach proposed by Zimmer-

mann in [129] we look for similar commit moments, but we do not try to group these in

transactions. This enables us to correlate files that are developed by different authors and

have different comments attached, but are nevertheless highly coupled.

Using S(Fref , Fi) permits us to sort all files Fi of a project according to the tempo-

ral similarity in change behavior they have with respect to a given reference file Fref .

Figure 6.2 shows an example of the proposed evolutionary coupling measure used to sort

files on the vertical axis. The evolution of 23 files is colored by activity, as described for

Figure 6.1. Yellow lines show commit moments. The topmost file is the reference file

Fref chosen by the user, the other files are vertically sorted on decreasing evolutionary

coupling with respect to Fref . This image allows us to easily find files that have a similar

evolution as the reference file.

Clustering

The second mechanism we propose to layout files is clustering. Industry-size projects can

contain thousands of files. Following the evolution of each individual file and correlating

it with the evolution of the others is simply too complex. Clustering lets users group files

that are similar from a certain perspective. Clustering has two roles. First, it lets users

look at less data to investigate evolution correlations, reducing the complexity problem.

Second, it offers system decomposition, facilitating the software understanding process

when no such decomposition is available.

 reference file

decreasing similarity

Figure 6.2: Sorted files layout based on an evolutionary coupling measure

84 CHAPTER 6. Visualizing Software Evolution at File Level

Two issues must be addressed when implementing a clustering mechanism. First, we

must provide a meaningful similarity measure. Second, we must provide a method for

grouping similar files. We use as similarity measure the evolutionary coupling metric

previously introduced for the sort mechanism, and a bottom-up agglomerative clustering

based on average-link to group similar files as explained in [41]. We start with the in-

dividual files and recursively group the two most similar ones in a cluster, until a single

cluster is obtained, creating thus a cluster tree.

When a new cluster is constructed, a set of imaginary commit events is derived for it

based on the commit events of its two children. This set is further used in the clustering

process, when computing higher level clusters. Let V1 and V2 be the sets of all commit

events of the two children of a cluster. Then we compute the set Vcluster of all commit

events associated with the cluster using the formula:

Vcluster =
⋃

t∈V1

(

t + τ1(t)

2

)

∪
⋃

u∈V2

(

u + τ2(u)

2

)

\ {∞}

where τ1 is the evolution correspondent from V1 to V2, and τ2 is the evolution correspon-

dent from V2 to V1. Otherwise stated, we populate the cluster with the averages between

all commit events that have a commit neighborhood and their evolution correspondents.

This enables the propagation of similar commit events to higher level clusters.

After the cluster tree is constructed, the user can choose to view the project at a de-

sired level of detail by using a visualization that visits the tree and draws the clusters

that match a certain criteria. For instance, one could visualize all roots of the interme-

diate cluster trees that were present during the kth step of clustering algorithm, giving a

decomposition of the system in N − k clusters, where N is the total number of files in

the system. Although our clustering may be computationally more intensive than other

techniques, e.g., k-means [41], it provides a simple, automatic and deterministic way to

identify similar entities. We visualize the clustering results using colored and shaded

cushions. Clusters are rendered as semitransparent rectangles atop of the file stripes, tex-

tured with plateau cushions [72], i.e., luminance signals that increase parabolically close

to the margins and have a constant (plateau) value in the middle. We use alternating hues,

for instance, blue and red, for neighbor cushions. Due to the semi transparency of the

cushions, these hues blend with the file stripes. The alternating hues effectively help vi-

sual segregation of clusters depicted by cushions. For example, Figure 6.3 shows cluster

cushions with and without alternating hues.

However, alternating hues alone may not be sufficient for visual segregation. When a

rich color encoding is used for the file stripes, for instance, the author-id color encoding,

we must minimize its interference with the cushion hues. A too soft cushion hue blending

over richly colored file stripes yields a poor visual separation of clusters in the border

regions.

Figure 6.4 presents an example. It depicts the evolution of 10 files with color-encoded

author-id. Three clusters are also shown, the first one containing the first four files, the sec-

ond containing the following two, and the last containing the remaining four. Figure 6.4

top uses a color-only blending scheme to segregate between clusters. However, the visual

transitions between clusters are not obvious. One could easily interpret the color change

6.3. Visualization Model 85

a) b)

Figure 6.3: Cluster segregation using plateau cushions: (a) without alternating hues; (b)

with alternating hues.

Figure 6.4: Cluster segregation: (top) color blending only; (bottom) with plateau cush-

ions.

as author-id change and not as another cluster. In contrast, Figure 6.4 bottom uses plateau

cushions and one can now easily identify the three clusters. We experimented with differ-

ent cushion profiles, such as purely parabolic [111]. However, the design presented above

was the most visually pleasing and effective of the studied ones.

By combining sort and cluster operations, we can interactively build visualizations of

project evolution that suit specific analysis needs. Figure 6.5 shows the evolution of 28

files from a real project, FreeDesktop [46], using an interactively built layout. The alter-

nating blue-red hue blending and plateau cushions introduced above are used to segregate

clusters. Files are colored on activity: white (pink or light blue after hue blending) means

file not created yet, dark blue (dark blue or magenta after hue blending) means before last

version, light blue (light blue or magenta after hue blending) means last version. Yellow

lines show commit moments. Six clusters emerge, each containing files with a similar

evolution. Within each cluster, files are sorted according to their creation time. This im-

age immediately shows files with similar behavior. The strongly related files in cluster 1

are: Glyph.c, Picture.c, Xrender.c, Xrender.h. At detailed inspection, we

discovered that these files contain code of the project’s image generation engine. This

confirms the correlation between evolutionary coupling and conceptual similarity. A sec-

ond finding is that files with a strongly coupled evolution, i.e., clusters 1 and 2, have also a

similar creation time and this time is close to the project beginning. Files that are created

later seem to be less connected (cluster 3). This may be an indication that the system’s

core functionality, developed in the beginning of the project, is found in clusters 1 and

86 CHAPTER 6. Visualizing Software Evolution at File Level

2. Concluding, the interactively built layout in Figure 6.5 enables user-driven cross-file

correlations based on similar evolution and the creation time metric. Such correlations do

not address only the development process assessment. As illustrated by this example, they

may also bring insight in the structure and organization of the project, a key requirement

in the maintenance phase of many projects. The interactive layout technique we propose

enables the user to combine clustering with a refined sort operation, i.e., equal values in

one sort criterion may be further ordered using another metric, to adapt the visual mining

process to specific needs. Useful correlations can be obtained by comparing the results of

different sort operations.

1

2

3

C
lu
s
te
rs

S
o
rt ra

n
g
e
s

Figure 6.5: Interactively built layout using sort and clustering operations

6.3.2 Metric Views

To further extend the correlation capabilities of our interactive layout in this direction,

we use metric views, i.e., narrow information bars along the main evolution visualization

area that summarize file and evolution information. These views use simple encoding

techniques, e.g., 1D graphs and color maps, to show one-dimensional metric data in a very

small space. To enable finding correlations, metric views share their main axis with one

of the axes of the main visualization. Vertical views visualize per-file computed quantities

(i.e., evolution metrics), and horizontal views visualize time-varying project metrics (i.e.,

version metrics). In the vertical metric view we show the various metrics used for sorting,

e.g., the file creation time, alphabetical order, activity measure, and evolutionary coupling

with respect to a reference file. In the horizontal metric view, we visualize the project-

wide activity measure, i.e., total number of files updated in a given period. Other metrics

can be presented in these views, depending on the specific analysis scenario.

Figure 6.6 shows the evolution of 68 files from a large project (the VTK library [118])

using the same color encoding as in Figure 6.2, i.e., activity based, and sorted on creation

time. The vertical metric view shows the file activity as a 1D bar graph. The horizontal

metric view shows the project wide activity. By correlating the main layout with the ver-

tical metric view, we see that file creation time does not fully determine the file activity.

Two activity hotspots are identified. They correspond to groups of files that appeared later

6.3. Visualization Model 87

V
e
rt
ic
a
l
m
e
tr
ic

Horizontal metric

view

Activity Activity hotspots

Figure 6.6: Metric views: vertical encodes file activity; horizontal encodes project-wide

activity.

in the project but had high activity, so they might contain important and/or problematic

functionality. We validated this hypothesis against the knowledge of an expert VTK user,

and it proved to be consistent with reality. Concluding, the correlation of the interactively

built layout with the metric views enables the user to easily construct hypotheses about

qualitative aspects of a project based on its evolution. While this does not immediately

guarantee a valid system assessment, it represents a solid starting point for further investi-

gation and facilitates the understanding process during the maintenance phase of software

projects.

6.3.3 Multivariate Visualization

Software evolution data is multivariate. Every version of a file has a number of assigned

attributes that characterize it, such as version ID, commit time, author ID, and author com-

mit log message, which are explicitly stored by SCM systems (see Section 3.4). Atop of

these explicit attributes and of the source code itself, many new attributes can be defined,

for instance the code source size, the presence of a given word in the author comment,

the membership to a given software release, and so on. To assess the evolution of a soft-

ware project, the distribution of such attribute values can be visualized, for instance using

the basic visualization model described in Section 6.3.1. Each such visual distribution

gives a viewpoint on the project evolution. More insightful information in the evolution

can be obtained through correlations across multiple view points. However, this typically

requires visualizing the distribution of more attributes simultaneously. Moreover, the cor-

relation making process is a dynamic activity, so a way to define, customize, and select

usage scenarios is needed. To achieve these goals, we had to address several challenges.

First, the visualization model we propose maps real-life projects of thousands of files

with hundreds of versions to small-sized pixel strips. We had to find effective ways to

88 CHAPTER 6. Visualizing Software Evolution at File Level

map several attributes on this small space. Secondly, we had to find ways to enable users

to construct the attribute mapping functions intuitively and quickly.

Texture Synthesis for Attribute Visualization

To address the first challenge, we chose to depict multiple attributes on the same (small)

space using a combination of color and hand-designed textures. Our approach resembles

the one proposed in [60]. However, there are important differences. Holten et al. use

a parameterized synthetic texture to encode one attribute besides the one encoded by

color. Their texture model allows easy building of tiling textures that do not perceptually

interfere with other shapes depicted in the visualization, hence do not artificially grab

attention. However, this approach seems to be less suitable to encode more attributes at

the same time and over the same quite small screen space. The inherent irregular texture

aspect, due to the noise-based synthesis method, makes it difficult to distinguish between

two (or more) superimposed patterns, used to map two (or more) attributes. We propose

a different approach that allows encoding two or three attributes via superimposed, yet

visually distinct, textures. For this, we give up the generality of the irregular texture

synthesis proposed by Holten et al.. We choose several hand-designed texture patterns,

and encode attribute values in the pattern magnification factor. A careful design and

selection of patterns by hand ensures that these interfere as little as possible with each

other.

Figure 6.7 shows an example of two such textures using mirrored hatch patterns (A,

B) to encode two attributes. Pattern A encodes the presence of a given word in the com-

ment message associated with a version, and pattern B encodes the author of that version.

Figure 6.7 shows the evolution of four files across two versions. Color encodes file type.

One can easily see that file F3 has only attribute values encoded by pattern A, and file F4

only attribute values encoded by pattern B. File F1 has values encoded by both patterns,

since drawn with the crosshatch combination of patterns A and B. File F2 has none of the

two attributes, i.e., is not committed by the sought author, nor does it contain the sought

word, as it shows no texture.

Further analysis of Figure 6.7 shows more correlations. Pattern B appears in both

version V1 and V2 of F4, so F4 was committed by the same author twice. Pattern A has

different values for versions V1 and V2 of F3, so different words of the searched set appear

in them. File F1 is committed by the selected author (has pattern B), and contains different

searched words in its two versions. Comparing F1 with F3, we see that the search hits

are the same in the respective versions of the two files. Version V1 of F1 is more similar

to the a1 value of pattern A than to the a2 value. Hence, one could conclude that version

V1 of F1 contains the word a1 and is committed by author b1, and version V2 contains the

word a2 and is committed by the same author b1.

Figure 6.8 shows a second example of visualizing several attributes. Here, we use

bubble patterns to indicate revisions belonging to a given system release, and a diagonal

hatch pattern for files containing the word tag in their commit logs. Color shows author

ID. We can easily spot files belonging to the selected release and containing the word tag.

Preliminary user studies show that superimposing textures obtained by scaling per-

ceptually largely different patterns can encode two, sometimes three, attributes simulta-

6.3. Visualization Model 89

combined
patterns
 (A+B)

pattern B
“authors” b1

a1

b1

a2

a1+b1 a2+b1

Time

Files

V1 V2

F1

F2

F3

F4

pattern A
“searched
 words”

Figure 6.7: Combining texture patterns to show several attribute values

Figure 6.8: Texture composition: spheres = selected revisions, hatches = word ’tag’ in

comment

neously. The most effective use hereof is for showing nominal attributes with a small

value range, such as file types, search hits from a small word set, or author IDs. Indeed,

superimposing textures, even when carefully chosen, decreases the individual pattern res-

olution, which makes it quite hard to map continuous values with high precision. After

experimenting with several patterns, we designed a small set containing vertical, horizon-

tal, and the two diagonal hatches, and also a “bubble” pattern. This set is quite effective

since the interference between any two patterns in this set is quite small, and the pat-

terns are easily distinguishable, even when drawn on small areas and/or scaled to small

resolutions.

Yet, there is a limit to how small an area we can texture and still see the patterns. This

minimal size seems to be around 25×25 pixels on a normal 19 inch screen.

90 CHAPTER 6. Visualizing Software Evolution at File Level

Navigation in Viewpoint Space

The second challenge we faced when building our multivariate visualization was to find

an intuitive and easy way to define, customize, and navigate between different evolution

views. We describe next our approach to this challenge.

First, we defined a view as a function

fi : Files× V ersions → Color

fi(Vkl) = rgba

that associates a color rgba ∈ Color to every file version Vkl based on its attributes.

Then we used the preset controller mechanism proposed by Van Wijk and Van Overveld

in [112] to switch between and correlate the views. This mechanism works as follows.

Given some 2D points pi that correspond to the views fi, and an “observer point” p, the

user can define custom views fc

fc(p, {pi}, Vkl) =

∑

i (d(p, pi) · fi(Vkl))
∑

i d(p, pi)

where d() is some inverse distance function between points, e.g., d(x) = 1
(1+x2) . The

observer p and the view points pi are identified by glyphs centered on their position in the

2D space. The custom views are generated by moving either p or pi associated glyphs

with the mouse in the preset controller widget.

Next, we refined this mechanism to make it more effective for software evolution

visualization, as follows. To give users better feedback about the way each view influences

the final image, isolines are drawn around the observer glyph. This helps measuring the

observer-view distance and hence estimate the “strength” of a given view. We saw that

this matches closely the way users build visualizations: it is not important to specify the

exact contribution of one view in the final visualization, but rather to indicate the relative

contribution of all involved views.

A second addition we made was to use glyphs parameterized by view attributes. The

purpose of these glyphs is to form some intuitive metaphor that suggests what kind of

visual mapping the preset associated with that glyph does. Consequently, this should

give the user a hint about what to expect when moving the controller towards that glyph.

To this end, we applied design principles validated in the gaming industry by products

such as Microsoft’s Age of Empires [2], where various attributes (e.g., offence, defence,

quality, and stamina values of soldier figures) are drawn on a small screen area with a few

colors.

Figure 6.9 illustrates our solution on a preset controller scenario having seven possible

views. Only two views contribute to the visualization, i.e., authors and search text, as the

other views are beyond the furthest observer isoline. The authors view encodes every

version segment in the evolution visualization with a color depending on the ID of the

author that committed the version. The associated authors glyph contains a number of

colored squares, one per user, showing the users’ colors. The search text view encodes

the file versions that contain a given string in their associated commit comment with a

string dependant color. Several strings can be searched for at the same time. Each string

6.3. Visualization Model 91

View mode
specific glyph

Contribution
isolines Observer

glyph

Evolution visualization

drag glyph

Figure 6.9: Preset controller based navigation among possible evolution views

has an associated color. Versions that contain several strings are colored with a special

color (red). Versions that do not contain any of the searched strings are grayed out. The

associated glyph of the search text mode shows a vertical strip for every string in the

search list, colored with the string’s color. As the observer is closer to the search text

glyph, the final visualization will be mainly influenced by this view. The glyph associated

with search text has only one color, i.e., green, so we search for only one string. Hence,

the search hits will appear as saturated green in the resulting evolution visualization. The

second active visualization mode, i.e., authors, has a smaller effect as its glyph is further

away from the observer. Hence, the authors’ colors will be less saturated, yet visible

enough to distinguish between different authors or identify specific ones. The authors

glyph contains a large number of colored squares indicating the user should expect a

large number of authors to show up.

In general, we designed the glyphs as small treemap-like areas with cells that show

the colors the mapping fi of that respective glyph can generate (Figure 6.10). Clearly,

this approach works well only if the cardinality of Colors is small (i.e., under 15).

Informal user studies that we have organized indicate that our modified preset con-

troller is a very intuitive and fast way to understand and create the attribute mapping used

in our visualization. Although only one attribute can be mapped by color at a given time,

cross-view correlations are still possible. They are enabled by the seamless and fast tran-

sition between different views. By repeatedly shifting the observer’s position between

several views, one can correlate the color determined by the current predominant view

with the previous color, stored in the short term memory. Seamless transition between

colors by means of blending helps focusing user’s attention on an area of interest, as one

is less distracted by sudden changes in other parts. Conversely, the repeated shifting of

the observer glyph helps refreshing the short term memory.

A similar approach can be investigated for views that use texture to encode attributes.

92 CHAPTER 6. Visualizing Software Evolution at File Level

Authors

Search text

Selected

release

V
ie
w
 m
o
d
e
s

Number of color encoded values

1 3 5

Figure 6.10: Parameterized glyphs for view mode identification

Next, the challenge would be to build a controller that enables both switching between

views and combining them, such that color and texture can be used independently at

the same time. A solution could be to use more preset controllers: one for each visual

dimension that could be separately identified in the image. For instance, in a visualization

where two attributes are displayed at the same time, one with color and the other with

texture, two preset controllers can be used. Another alternative could be to use multiple

observers points in the same preset controller, addressing different sets of views.

6.3.4 Multiscale Visualization

The clustering-based layout mechanism proposed in Section 6.3.1 uses an agglomerative

bottom-up algorithm to produce a binary decomposition tree of a system. The tree leafs

are all files {Fi|i = 1, . . . , NF ∈ N} in the project and its nodes are the computed clusters.

We denote the file-set of a node by T (n), i.e., the set of leafs which are descendants of

T (n). A decomposition of the system is a set of nodes Nsys that has the properties:

•
⋂

n∈Nsys

T (n) = ∅;

•
⋃

n∈Nsys

T (n) = {Fi|i = 1, . . . , NF ∈ N}.

In other words, Nsys is a partition of {Fi|i = 1, . . . , NF ∈ N}. Once the decomposi-

tion tree is computed, the next question is: “How do we let users construct and select

meaningful decompositions?”

Decomposition Selection Methods

A straightforward mechanism for selecting a decomposition Nsys is to include all roots of

the intermediate cluster trees that are present in the kth step of the clustering algorithm.

6.3. Visualization Model 93

In the case of the bottom-up agglomerative clustering, this leads to a decomposition with

NF−k clusters, where NF is the total number of files (see Figure 6.11a). This mechanism

is useful for implementing scenarios of the type “display the project as a set of n similar

components”. We call this the step-based method. However, specifying a decomposition

via the step-based method can lead to the coexistence of clusters containing children that

are highly related with clusters containing less related children, according to the clus-

tering criteria (see e.g., Figure 6.18a). This makes the clusters difficult to compare, and

consequently, the decomposition is difficult to understand by the user.

To deal with this issue of the step-based method, we provide an approach for selecting

a cluster decomposition Nsys based on node properties and not creation order. In this

approach every cluster node n gets a relevance factor R(n). The tree is traversed in

pre-order, and at each step the relevance of the current node R(n) is compared to a user-

selected value R. If R(n) > R, n is added to the selection and its children are skipped,

else traversal continues with the children of n. In the resulting decomposition Nsys, most

clusters have a similar, though not guaranteed equal relevance with the reference value.

One value we tried for estimating the cluster relevance was the cardinality of the file-

set associated with a node. This alternative produces decompositions with clusters of

similar size, containing files that are related to some extent. However, the purpose of this

decomposition is purely to reduce the visual complexity of the data representation, and

no decomposition meaning can be associated with the clusters. Due to the lack of useful

usage scenarios we dismissed this alternative.

A second alternative we used for calculating the node relevance was the cluster cohe-

sion (Figure 6.11b). We found this approach useful as it can be used to divide the system

in components of the same type, depending on the clustering criterium and cohesion func-

C1

C2 C3 C4

b)

1

2

2
3

3

3 4 4 5

5 3

1

1

1 2

C1 C2

a)

n5 n6 n7 n8

n4

n3

n1

n9 n2

n10 n13

n11 n12 n14 n15

C3 C4 n5 n6 n7 n8

n4

n3

n1

n9 n2

n10 n13

n11 n12 n14 n15
1

2 3 4

5 6

7

k = 4

step-based cohesion-based

Figure 6.11: Decomposition selection methods – gray regions show selected nodes: (a)

step-based – numbers next to nodes indicate the clustering step that produced the corre-

sponding cluster; the highlighted decomposition is for the 4th step; (b) cohesion-based –

numbers next to nodes give node cohesion (larger means higher); the highlighted decom-

position is for cohesion 2.

94 CHAPTER 6. Visualizing Software Evolution at File Level

tion. We call this the cohesion-based cluster decomposition selection.

Cluster cohesion can be computed based on the cluster diameter, i.e., the distance

between its two children. This leads to a decomposition selection mechanism similar to

the one proposed by Seo and Shneiderman in [95]. A drawback of this approach is that

the cohesion of the children does not always propagate to their parents. Consequently,

one can make no distinction between nodes that have the same cohesion but are based

on children of contrasting relevances. A carefully designed distance metric and cluster

merging criterion can take care of this problem. Another approach to ensure cohesion

inheritance is to compute node cohesion as the size-weighted average of the children

cohesions, biased with the distance between the children. In this way children relevance

propagates to their parents, yet nodes are less relevant when the distance between children

is large, compared to cases when the distance is small. The node cohesion C(n) can be

computed recursively using:

C(n) = B(dn) ·
C(nc1) · |T (nc1)| + C(nc2) · |T (nc2)|

|T (nc1)| + |T (nc2)|

where dn is the diameter of the current cluster n, nc1 and nc2 are its two children, |T (nx)|
is the size of a node file-set, and B(dn) = 1

(1+dn)
1
k

, with k constant ∈ N, is a bias factor

that depends on the diameter. The leaf nodes cohesion is considered to be 1.

We applied both the step-based and the cohesion-based decomposition selection meth-

ods presented above only on the decomposition tree given by the bottom-up agglomerative

clustering algorithm discussed in Section 6.3.1. However, it is clear these methods can be

applied on a tree resulting from any clustering algorithm.

Navigation in Decomposition Space

Another issue of selecting a decomposition is the missing link between the decomposition

selection mechanism and the desired level of detail (LOD). The step-based decomposi-

tion selection requires the user to select a desired number of clusters. However, it does

not indicate how relevant the selected clusters are. The cohesion-based method allows the

user to specify a desired cohesion level and provides a decomposition that tries to closely

match that level. However, the user still has to guess a “good” value for the cohesion,

such that the decompositions is comprehensible. In practice, we saw that users needed to

continuously adjust the input parameter until a compromise is reached between cohesion

and cluster size and number. To assist the user in making a good choice, we propose a

new visualization: the cluster map. This combines a classical value-selecting slider with

a 2D map in dendrogram style of all the available decompositions (Figure 6.12). The hor-

izontal axis maps the LOD (number of clusters for the step-based method, or the cohesion

value for the cohesion-based method). The vertical axis depicts the cluster decomposition

for every value on the horizontal axis. Every cluster decomposition is drawn as a verti-

cal stack of cushioned rectangles, all stacks having the same width. The height of each

rectangle is proportional with the number of files contained in the associated cluster. Intu-

itively, each stack in this visualization is actually a mini-map of the plateau cushions used

in the main visualization (e.g., Figure 6.18) to show the complete system decomposition.

6.3. Visualization Model 95

 Level of detail (LOD)

(number of clusters / cluster cohesion)

Cluster decomposition
(number of files)

Slider

Figure 6.12: The cluster map widget. Clusters are drawn as cushioned rectangles. Color

encodes cohesion.

A blue-white-red colormap encodes the cohesion (low to high) of each cluster drawn as a

rectangle.

The widget (shown in Figure 6.12) enables users to quickly identify and make a com-

promise between the desired cluster size and cluster cohesion. Also, it enables the user to

select the desired decomposition via the slider at the bottom. Furthermore, users can cor-

relate the clusters depicted in the main evolution visualization with the ones in the widget

and therefore identify their cohesion.

However, drawing all clusters of typical software decompositions in the cluster map

leads to aliasing problems, as the cluster cushions easily become less than one pixel high.

This creates the false impression that there are no clusters on the finer levels of the cluster

map, e.g., at the left of Figure 6.13a. We solve this by drawing, on every level of the

cluster map, only those clusters whose screen height exceeds 3 pixels, since this is the

minimal height at which cushion textures are distinguishable. As shown in Figure 6.13b,

small clusters are now clearly visible. An added bonus of this is that rendering the cluster

map takes now constant time for arbitrarily large hierarchies.

a) b)

Figure 6.13: Cluster map: (a) without antialiasing; (b) with antialiasing.

Figure 6.14 shows an example of 2D cluster decomposition maps corresponding to

two presented selection methods, for a project with 28 files spanning across up to 21

versions. All horizontal axes are normalized and sampled with a rate of 1:25, i.e., the hor-

izontal axis displays and allows the selection of 25 values uniformly distributed between

96 CHAPTER 6. Visualizing Software Evolution at File Level

a)

b)

LOD = number of clusters

LOD = cluster cohesion

C
lu
s
te
r
s
iz
e
 (
n
u
m
b
e
r
o
f
fi
le
s
)

0

0

1

1

Cluster
decomposition set

0.8

0.8

Figure 6.14: 2D cluster map using: (a) step-based selection; (b) cohesion-based selection.

Clusters are drawn as cushioned rectangles. Color shows cohesion. Dashed rectangles

show intervals with the same cluster decomposition.

0 and 1.

Figure 6.14a depicts the cluster map for the step-based method. The horizontal axis

gives the normalized level of detail: 0 is for 100% detail, i.e., every file is a cluster,

1 is for 0% detail, i.e., the whole project is seen as one cluster. We can now easily

see that at some levels clusters have very different cohesions. Consequently, we cannot

easily compare them, and associate a meaning to the decomposition. Therefore, for this

particular project and cohesion measure, the step-based decomposition selection can be

misleading or difficult to understand.

In Figure 6.14b, the cohesion-based selection method is illustrated. The horizontal

axis gives the normalized cohesion: 0 is for maximum cohesion, 1 for minimum. We can

see that at most levels of detail clusters have similar cohesion. In practice, these may cor-

respond to structural or logical building blocks for the system. For instance, depending

on the cohesion level, the clusters of one level can give a system decomposition in mean-

ingful structural components, such as classes or packages. Additionally, large clusters at

a given level of detail may signal the presence of complex software components. This

information may be very useful when trying to understand the software system.

In the case of the cohesion-based method presented in Figure 6.14b, the cluster de-

composition set does not vary for every LOD value on the x axis. There are large LOD

intervals that have the same set (see dashed rectangles). In general, such long “constant”

intervals border an important system decomposition step in terms of cluster cohesion.

Consequently, a carefully designed cohesion factor can show passing from highly cou-

pled system components, e.g., classes, to more loosely coupled ones, e.g., packages, and

6.3. Visualization Model 97

Figure 6.15: Zoom adjusted cushion hight for visual segregation

therefore can give an insightful, intuitive, and simple structural view on the system.

It is true that our cluster map alone cannot show which are the meaningful partitions

to visualize for a given system and problem. However, it shows which are those values

of the level of detail parameter where relatively important clustering events, i.e., system

simplifications, take place. The user can decide to select these levels and visualize the

corresponding decompositions, without having to browse all the (usually quite many)

level of detail values. The cluster size distribution in the cluster map shows what kind of

visualization to expect if selecting that level of detail.

6.3.5 User Interaction

To validate the techniques that we propose in this section, we implemented them in

CVSgrab, a tool for visual mining of CVS repositories. CVSgrab gives an intuitive

2D overview on the evolution of complete projects at file level. The tool facilitates ex-

ploratory layout building and correlation making by providing a rich interaction palette,

following Shneiderman’s guidelines [96]: overview first, zoom and filter, then details-on-

demand.

Industry-size projects may contain thousands of files whose history spreads across

more than one decade. To facilitate access to details, CVSgrab provides zoom and pan

facilities. Zoom presets enable easy access to standard view modes, e.g., fit image to

screen, fit file to line size. Some visual elements have a zoom-adaptive behavior to pre-

serve their visual efficiency across different levels of detail. The plateau cushions, for

example, have a zoom-dependant height such that their appearance remains the same in

the border regions. In this way, the visual segregation of clusters becomes independent

on the zoom level at which it is performed. Figure 6.15 illustrates this. The right image

shows a 20-fold magnified inset of the data shown in the left image. Still, the cushions

shown in the right image look similar to the ones in the left one.

CVSgrab implements also a details-on-demand mechanism that enables users to get

detailed information about a selected or mouse-brushed version. Information such as

precise size, file name, and author comments logged at commit time, is displayed in

textual format in a separate view.

98 CHAPTER 6. Visualizing Software Evolution at File Level

The following section presents the results of a number of evolution assessments we

performed on industry-size projects. These illustrate how the interaction mechanisms pre-

sented above and the visualization techniques described in Section 6.3 can be successfully

used to investigate the evolution of real life software systems.

6.4 Use-Cases and Validation

We analyzed the use of CVSgrab for mining the history of several industry-size projects.

Here we present the results of such investigations for two projects: VTK [118] and Mag-

naView [74]. VTK is an open source project of over 2700 files written by 40 developers

in over 11 years. MagnaView is a commercial visualization software package containing

312 files, written by 11 developers in over 16 development months.

6.4.1 Insight with Dynamic Layouts

To validate the efficiency of the layout and mapping mechanisms of CVSgrab, we per-

formed an informal user study. In this study, the VTK project was mined by three ex-

perienced C++ developers having, however, no VTK knowledge. They participated first

in a 15-minute training in which the functionality of CVSgrab was explained on a small

example project, with several generic use cases that could be easily reproduced on other

input data. Next, they mined the history of VTK for 2 hours. Finally, their findings were

assessed by a developer with over eight years of VTK experience.

Figure 6.16 depicts various annotated visualizations of the complete project evolution

obtained during the study using sort operations. In Figure 6.16a, 6.16c, and 6.16d files

are colored on activity, as detailed in Section 6.3.1. Yellow lines show commit moments.

In Figure 6.16b files are colored on author ID, every hue encoding an author. While this

might create confusion when establishing the identity of users encoded by similar hue, it

gives a good overview of major overall patterns.

In Figure 6.16a files are sorted alphabetically. Although cluster cushions are not ren-

dered, a vertical metric view (C) shows the clusters to which files belong, using color

mapping. The alphabetical sorting of files uses the full pathname and thus nicely groups

together files in the same folders. By mouse brushing the evolution area, the users easily

identified the major folders of the project, highlighted in (A): Imaging, Graphics,

Contrib, and Common. The names were made available as details-on-demand in the

visualization window’s status bar. Two compact, low-activity evolution regions were also

spotted (B). By brushing the corresponding evolution area, the users discovered, via the

status bar information, that they refer to VTK code examples in Python. The vertical

metric view (C) is fragmented in the color space. This helped the users conclude that the

project’s organization based on evolution coupling (i.e., cluster decomposition) does not

correspond entirely to its organization as a set of folders.

Sorting on creation time allowed the users to find several possible moments of so-

called punctuated evolution (E), i.e., moments when large code changes took place in a

short time. The details-on-demand feature helped refining their hypotheses about these

6.4. Use-Cases and Validation 99

a) b)

c) d)

B

C

H

E

G

I

F

A

D

J

K

M

L

Figure 6.16: Interactively built layouts of the VTK project using sort operations: (a)

files sorted alphabetically, vertical metric shows cluster IDs; (b) files sorted by creation

time, vertical metric shows activity; (c) files sorted by activity, vertical metric shows

activity; (d) files sorted by evolutionary coupling measure with respect to a reference file-

vtkIntArray.cxx , vertical metric shows evolutionary coupling.

events. Of the four moments highlighted in the image (E), three refer to the addition of

VTK examples, and just one involves heavy changes of the library functionality.

Further, as visible in the image, the vertical metric (F) has no smooth transitions. This

made the users assume there is no direct correlation between creation time and file activ-

ity. Indeed, the project contains both files that were introduced early but recorded little

activity, e.g., stable interfaces and/or implementations, and files that where introduced

later but were frequently updated, e.g., problematic and/or unstable implementations.

In Figure 6.16c files are ordered according to their recorded activity. The vertical

metric view (G) depicts also the activity measure using a rainbow color map (red = high

activity, blue = low activity). From this image, the users concluded that most development

is concentrated in less than 10% of all files (G), with a few files, e.g. vtkRender.cxx,

vtkPolyData.cxx, vtkImageData.cxx being frequently updated. Indeed, these

files contain fundamental, core-related structures of the library. Figure 6.16c was also use-

ful to find the activity outliers. The highlighted inset (H) depicts an example of an early

outlier, i.e., a stable file during evolution: vtkRender.h. The highlighted inset (I) de-

picts a late outlier, i.e., a file introduced later, but often updated: vtkDataObject.cxx.

Finally, in Figure 6.16d, files are arranged according to their evolution similarity (i.e.,

measured by the evolutionary coupling metric) with respect to a selected reference file:

vtkIntArray.cxx. The vertical metric view (L) uses a rainbow colormap to depict

the evolutionary coupling measure (red = very similar; blue = very different). The users

100 CHAPTER 6. Visualizing Software Evolution at File Level

concluded that the chosen reference file had little in common with most of the other files

in the project, as the metric view is almost entirely blue. In the magnification caption (K)

a zoomed-in region of the evolution area (J) is displayed. This revealed a small number of

files that had a higher evolutionary coupling value. Via the details-on-demand mechanism

the users discovered their identity: vtkLongArray.cxx, vtkFloatArray.cxx,

vtkBitArray.cxx, etc. Indeed, detailed inspection confirmed these files have a tightly

coupled implementation. The files depicted in region (M) are arranged in decreasing or-

der of their creation time. They represent actually files that have no evolution similarity

with the reference one and are sorted according to a secondary criterion.

At the end of this study, we summarized the three users’ observations and checked

them again with the knowledge of the expert developer. The expert validated the largest

part of the observations as fully correct. One aspect he found himself novel was the lower-

than-expected number of files from the project core, i.e., files where most of the activity

is concentrated (see G in Figure 6.16c).

6.4.2 Complex Queries

The texture-based attribute encoding of CVSgrab lets users visualize up to four attribute

values at the same time (three textures and one color). This supports complex evolution

queries. The preset controller takes the correlation possibilities one step further. Fig-

ure 6.17 addresses an example of complex query applied on the evolution of MagnaView:

“What versions of GUI specification files, belonging to release 549, and containing the

word bug in the associated log message, have been committed by developer tomasz?”

We answered this query with the following techniques:

• a diagonal hatch pattern texture in the direction NE-SW to show versions containing

the word bug their commit message

• a diagonal hatch pattern texture in the direction NW-SE to show versions that be-

long to release 549

• an author ID-to-color view mode, with red encoding tomasz

• a filetype-to-color view mode, with gray for GUI specification files

• a preset controller to switch between the two color view modes

Figure 6.17a depicts a zoomed-in area of the evolution visualization using the author

ID view mode. The highlighted versions are possible candidates for the query above. The

cross-hatch texture pattern shows they both contain the text “bug” and belong to release

549. Moreover, red indicates the versions have been committed by tomasz. Using the

preset controller to rapidly change between the two view modes, one can see that only

one of the candidate versions is a GUI specification file: UEditViewForm (highlighted

in Figure 6.17b).

6.4. Use-Cases and Validation 101

Preset controller

a) b)

View mode: user identity View mode: file type

F
ile
s
 F

ile
s

Time Time

drag observer glyph

Figure 6.17: Complex queries usage scenario. Blended textures and colors show a set of

possible solutions based on three attributes. Using the preset controller, a fourth attribute

can be checked and the set of possible solutions (a) is reduced to one version (b).

Many other similar scenarios and use cases exist. Using the proposed multivariate

visualization features, one can easily give answers to complex queries by narrowing down

a set of candidate solutions using a visual approach.

An alternative to this is to use a data analysis approach for identifying the result of the

query first. Subsequently only the result is to be visualized, for instance using a two color

encoding: red for versions that are in the result, grey for the rest. This makes the versions

that satisfy the query imposed criterium very easy to identify. Nevertheless, the disadvan-

tage of this approach is that no information is given about the composition of the result,

i.e., the versions matching the criteria imposed by the composing queries. Questions such

as ”are all versions satisfying the first condition of the query also complying with the sec-

ond one?” cannot be addressed. The first alternative supports finding correlations in this

direction, and therefore it offers more insight.

6.4.3 System Decomposition

The cluster map widget allows users to interactively select a partition of the system evolu-

tion at file level. Figure 6.18 shows the use of the cluster map widget in combination with

the two presented partition selection mechanisms, i.e., step-based and cohesion-based,

and presents decomposition results for the VTK graphics library. The left part of the

figure shows the cluster maps for the project evolution for the step-based (a) and the

cohesion-based selection method (b). Both widgets use a red-to-blue gradient color map

to show (low to high) cluster cohesion. In each widget, the chosen selection is indicated

by a red rectangle. The right part of the image depicts the results of the chosen cluster

selection in the main evolution visualization, i.e., clusters are drawn as plateau cushions

over their respective files.

For the chosen LOD, the step-based selection method produces a decomposition con-

102 CHAPTER 6. Visualizing Software Evolution at File Level

(LOD = number of clusters)

C1
C1

b) cohesion-based selection

a) step-based selection

(LOD = cluster cohesion)

C2

C2

Figure 6.18: Cluster decomposition selection scenario

taining clusters of very different cohesions (see Figure 6.18a). Clusters C1 and C2, for

instance, are at the opposite ends of the cohesion range. Consequently, it is difficult to

compare them and to assign a meaning to the evolution decomposition depicted in the

right part of the image.

Figure 6.18b shows a system decomposition using the cohesion-based method. The

right part of the image, depicting the evolution decomposition for the selected LOD, is

somewhat more cluttered than in the previous case (i.e. it contains more clusters even

for high level decompositions). However, as shown by the associated cluster map widget,

all selected clusters have a similar cohesion. Consequently, they are easier to compare.

Additionally, the cohesion-based selection contains also large intervals of constant de-

composition. They are caused by a project specific number of cohesion thresholds. On

the several projects we checked this method in practice, these intervals corresponded to

meaningful structural decomposition views on the system.

In conclusion, the cohesion-based selection method can be a better alternative to the

step-based one. It generates similar-cohesion cluster decompositions. This is visible in

6.5. Conclusions 103

the cluster map widget. The role of this widget is threefold. First, it shows to the user

a global picture of the system decomposition, thereby letting one assess the quality and

meaningfulness of a decomposition method. Secondly, it shows constant intervals of the

decomposition, which very often correspond one-to-one to different system structurings.

Thirdly, it is an useful instrument to compare the quality of various decomposition meth-

ods and see the effect of tuning the clustering metrics.

6.5 Conclusions

In this chapter we have presented a set of visualization and interaction techniques that

support history mining of large-scale software projects at file level.

We first proposed a novel technique for layout of file evolution representations, by

interactively mixing and adjusting sort and cluster operations to direct the visual mining

towards specific goals. We used horizontal and vertical metric views to enable evolution

correlations based on more sort criteria at the same time.

To enhance the correlation capabilities, we adapted and extended two existing tech-

niques that enable the visualization of more attributes at the same time at the same screen

location. With the new additions, up to four attributes can be encoded at the same time

using color and hand-designed texture patterns, minimizing the visual interference. Color-

based correlations across several color-encoded attributes are enabled using an extended

preset controller technique.

Subsequently, to reduce the visualization complexity, we introduced a simple-to-use,

yet powerful clustering technique. This technique reduces the project visualization to a

smaller number of clusters with files having similar evolutions. The typical tasks tar-

geted with this approach are of the kind: “show the whole project split into n similar

components”. We reduced the interference between the cluster rendering and file colors

using a mixed cluster luminance and hue encoding. This combines the visual comfort of

hue-based cluster segregation with the precision of the plateau cushions in the boundary

regions.

We have also presented and compared two methods for selecting cluster decomposi-

tions from a hierarchical decomposition tree (i.e., step-based and cohesion-based). The

step-based method allows the user to specify exactly the number of components in which

the system is to be decomposed. The cohesion-based method generates decompositions

in which clusters have similar cohesion. We enabled users to see an entire decomposi-

tion tree and select a meaningful level from it using a new widget: the cluster map. This

widget enables users to quickly assess the results of a selection method in the context

of a specific project, and choose the cluster decomposition that matches some desired

compromise between level of detail and cohesion.

We validated the proposed techniques by implementing them in CVSgrab, a visual

tool for exploring the evolution of industry-size projects. The dense pixel visualization

combined with multivariate attribute encoding and interactively built layouts makes it

possible to navigate and assess code projects beyond the size of what is possible by sim-

ilar tools [69] or with better insight [125]. For example, one can get a comprehensive

104 CHAPTER 6. Visualizing Software Evolution at File Level

overview of the complete evolution of the VTK project (2700 files, 40 developers, over

11 years, about 100 versions for active files) with quite little interaction.

CVSgrab does not allow visualizing code at line level. For this, other tools, such as

CVSscan described in Chapter 5 are best used. CVSgrab’s main strength comes when

one does not know where (and why) to zoom in, given a large software project of many

versions. Additionally, the evolutionary coupling based sorting and clustering can be ef-

fectively used to discover relations between files in a project that are not apparent, without

needing to use more the complex, slower, language-specific parsing of the files’ contents.

Chapter 7

Visualizing Software Evolution at

System Level

Many software evolution assessments are initiated and performed at system level. The

goal of this type of assessments is to understand major evolution trends in the quality of

the software system and possibly trigger more detailed investigations. To this end, em-

phasis is put on analyzing and discovering correlations between evolution trends, and the

system is observed at a high level of abstraction. In this chapter we propose a customiz-

able visualization that enables users to analyze the evolution of a wide range of software

related metrics at system level. Central to this visualization is a chart based image and

an easy way of customizing it for a specific analysis. Data and visual sampling issues are

addressed such that information is presented in an unambiguous and meaningful man-

ner. The suitability of the proposed approach is demonstrated with a number of analysis

experiments that we performed on existing real-life systems.

7.1 Introduction

Comprehensive software quality assessments are performed by skilled professionals and

they may require substantial resources. However, assessments of this type are often trig-

gered by quick analyses of the system at a high level of abstraction. Additionally, high

level analyses are also useful during detailed assessment, to direct investigations and to

obtain an overview of the problem at hand.

In this chapter we propose a visualization that enables users to investigate the evolu-

tion of a system at a high level of abstraction, by revealing overall system quality indica-

tors and evolution trends. Typical questions we try to answer with this are:

• How does the system complexity evolve?

• How difficult is it to maintain the system?

105

106 CHAPTER 7. Visualizing Software Evolution at System Level

• How much effort is required to maintain the system using the current human re-

sources?

• How is system knowledge distributed over the team?

The structure of this chapter is as follows. Section 7.2 presents the type of attributes

and evolution related assessments that our visualization addresses. Data sampling issues

are also considered, such that only meaningful information is presented to users. Sec-

tion 7.3 details a number of alternative visual encodings that can be used to present the

information and gives usage guidelines. It also addresses the multivariability and the vi-

sual scalability issues, such that information interpretation can be done in a meaningful

way. Section 7.4 illustrates the applicability of the visualization that we propose with

a number of experiments performed on industry-size real-life projects. Section 7.5 con-

cludes the chapter.

7.2 Data Model

One of the most commonly used ways to assess the quality of a system is by measuring

a number of content based quality indicators called software metrics, which are con-

crete implementations of the version metrics introduced in Section 4.4.2. Comprehensive

overviews of the most commonly used software metrics are given in [43] and [65]. The

examples presented in this chapter illustrate only some of them:

• the software system size in lines of code;

• the cyclomatic complexity of a software system [79] (i.e., the number of branching

statements, such as if-then-else or case statements);

• the number of files containing contributions from a given author.

Software metrics are of two major types: categorical and numerical [80]. Numerical met-

rics express the quality of a software entity as a number, which can be easily aggregated

in overall summaries (e.g., size of a system = sum of the sizes of its files). Categorical

metrics indicate whether the targeted software entity belongs to a given category (e.g.,

file A belongs to the files developed by user X). Given a set of software entities and a

metric that produces categorical values for those entities, overall summaries can be con-

structed by counting the number of entities that belong to a specific category according

to the metric (e.g., number of files developed by a given user). Numerical metrics can be

transformed into categorical metrics by dividing the value domain in intervals (e.g., size

of a file belongs to the interval 1-10 lines of code). In this way, categorical summaries can

be obtained also for numerical metrics. This can be useful when presenting results to a

nontechnical / managerial audience. On the one hand this type of users are more familiar

with quantity, percentage and category based assessments. On the other hand, the trans-

lation process from a value domain to a set of intervals often requires a labeling of the

intervals and, implicitly, a semantic interpretation of the results (e.g., file size in interval

1-100 lines of code = “file is easy to understand”). In this way, the technical findings that

the assessment produces are brought closer to the nontechnical audience.

7.2. Data Model 107

Both numerical and categorical metric summaries are useful for getting insight in the

state of a system at a single given moment. While the figures can be interpreted from a

generic perspective or set of best practices, this approach does not take into account the

specific development context of a project. Better assessments can be made by getting

insight in this context via system level evolution assessments, and interpreting current

findings from the perspective of previous situations.

System level software evolution assessments are performed on a particular implemen-

tation of the software evolution model presented in Section 3.3, The system is regarded

as a single entity, and its evolution is followed in time. Consequently, the entity similarity

functions Γ (see Definition 3.2.1) are defined on sets with one element that represents the

system entity itself at a specific moment:

ΓS : {S}i × {S}j → [0, 1]

It is, therefore, less interesting to identify the evolution patterns described in Section 3.2

(i.e., only one pattern exists: continuation). The emphasis is in this case entirely on

investigating trends of the system attributes and discovering correlations between them.

System metric summaries are practical implementations of such attributes, commonly

used by the software engineering community.

Consequently, the data involved in the visualization of software evolution at system

level can be modeled as a set ∆S of sequences M i of numerical and categorical metric

values

∆S = {M i|i = 1, . . . , N ∈ N}

where N is the number of sequences. These sequences have the same cardinality K , equal

to the number of revisions the system had on the investigated period.

M i = {(M i
j , tj)|j = 1, . . . , K ∈ N}

where K is the common sequence length and tu < tv if u < v. The position of each

element M i
j in a sequence is associated with a time stamp tj . Sequences are sorted in the

increasing order of the time stamps. Elements at the same position in different sequences

have the same associated stamps. Consequently, the element position can be used to

perform time based correlations across sequences.

7.2.1 Data Sampling

The evolution of a software project can cover many years. The history data extracted from

SCM systems is reported with an accuracy of one second, expressed as an integer number

starting from 1st of January, 1970. Given the purpose of software evolution visualization

at system level, presenting the entire data with accuracy in terms of seconds might not

be important to the user, and values on a coarser time scale are preferred [113]. Conse-

quently, the first issue of software evolution visualization at system level is how to sample

data on the time axis such that meaningful metric summaries can be presented to the user.

The straightforward solution is to divide the time axis in intervals and derive an av-

108 CHAPTER 7. Visualizing Software Evolution at System Level

erage of the metric values corresponding to data recorded in each interval. User-defined

intervals of equal length (in seconds) are not appropriate, given the uneven division of

years and months in days. Additionally they enable the user to explore data at unfamil-

iar levels of detail, which could lead to wrong assessments. Consequently, we provide

a sampling of the time axis at multiple levels of detail using uneven predefined intervals

that match standard divisions of time: day, workday/weekend, week, month, quarter, half

year, and year.

Once the time intervals are set, metric summaries at system level can be computed by

aggregating system metric values on each sampling interval. This leads to another issue of

software evolution visualization at system level: “How to aggregate system metric values

in an meaningful way?”. For numerical metrics a number of alternatives are available:

• compute the average of all metric values. This approach provides an approximation

of the overall evolution trend;

• select minimum/maximum metric value. This approach is useful for assessing evo-

lution variability and identifying trend outliers;

• select first/last/nth metric value. This approach can be used to investigate evolution

trends based on a given reference time stamp for each sampling interval.

For categorical metrics the aggregation can be performed by category based summa-

rization. That is, each possible category gets assigned a value that represents the number

of occurrences of category specific events or entities in the sampling interval. Many alter-

natives are possible for counting entities or events. We detail here only two of them, which

facilitate the interface of system level evolution assessment with the file level approach

described in Chapter 6. For each category entry one can count:

• the number of file revisions matching the entry. This approach is useful for corre-

lating the category entry with the activity in the system;

• the number of files having revisions that match the entry. This approach is useful

for correlating the category entry with the system size.

The total number of entities or events obtained by counting can then be divided with

the total number of matches for any category entry to obtain normalized figures, for easy

comparison.

For example, an author metric can indicate for each revision of a file who was the

author that committed it to the repository. Assume one needs to sample the data obtained

from an SCM repository to assess the system level evolution of the author metric. To

this end one has to choose first a data sampling interval that matches the desired level of

detail. Then, for each possible author, sampling is performed by counting the number of

files containing revisions committed by the author in each interval. Eventually, for each

sampling interval the obtained values can be divided by the total number of files, to ob-

tained normalized figures. These can be used then to assess how the knowledge about

the system is distributed on the team and how this distribution evolves. Such an assess-

ment is useful for identifying critical developers in a project and for managing knowledge

distribution risks. This analysis is demonstrated in Section 7.4.

7.3. Visualization Model 109

7.3 Visualization Model

The main purpose of software evolution visualization at system level is to provide high

level overviews of the system quality trends. Consequently, simplicity and clarity are key

ingredients for building the visualization. The main target users for this type of visualiza-

tion are:

• managers: users that are instrumental in organizing the software development and

maintenance activities, yet lack the technical capabilities to base their decisions

on low level information about the system contents. To this end, the correlation

between trends of different quality indicators is essential for detecting anomalies

and predicting future evolution;

• evolution analysts: users that investigate the evolution of a system in detail, for

instance, using the techniques presented in Chapter 5 and 6. To this end, a high

level overview on system evolution is useful to support the analysis process.

7.3.1 Layout and Mapping

We provide a visualization that follows closely the model proposed in Chapter 4. On the

horizontal axis we encode time, and on the vertical axis we depict one entity, i.e., the

system (see Section 4.5).

Given the fact that the visualization depicts in this case only one entity, as opposed to

hundreds of entities (see Chapter 5 and 6), there is enough space available on the vertical

axis to encode more than one entity attribute. Consequently, two or more system quality

indicators (i.e., M i metric sequences) can be visualized at each moment.

To this end, the straightforward solution is to use overlapping charts, such as line or

bar charts (Figure 7.1a). This approach gives a compact overview of evolution, offers

maximum resolution on the vertical axis for each attribute encoding, and enables trend

based correlations between the visualized quality indicators. The main disadvantage of

this solution is the difficulty of making absolute scale correlations between different qual-

ity indicators. On the one hand, using the same scale for all indicators might not be

acceptable for visual investigation when value range differences are large across indica-

tors. On the other hand, using different scales for each indicator on the vertical axis makes

visual decoding difficult (e.g, two points on the same vertical position but belonging to

different charts have different values). To address these issues, a normalized scale can be

used across indicators, but this does not support correlations based on absolute values.

To avoid the absolute value correlations problems of overlapping charts and to facili-

tate experimentation with different alternatives of encoding the evolution of one attribute,

we chose to visualize quality indicators separately. Consequently, we integrated the result-

ing visualizations by stacking them on the vertical axis to enable time based correlations

(Figure 7.1b).

Once a quality indicator is selected for evolution assessment, there are a number of

alternatives available for visualizing it. Each of these alternatives can be used to perform

110 CHAPTER 7. Visualizing Software Evolution at System Level

Time

Quality indicators M
1
, M

2

Time

Quality indicator M
1

M
1

M
2

a) b)

Quality indicator M
2

Figure 7.1: Visualization of software evolution at system level. Quality indicators are

encoded in: (a) one image using overlapping charts; (b) separate images, stacked on the

vertical axis

a specific analysis scenario. Below, we present some of them and we highlight possible

usage scenarios.

• bar chart: the metric values are encoded on the vertical axis y using a constant in-

terpolation between the sampled intervals (see Figure 7.2a). This type of encoding

is suitable for giving a precise indication of what the value of a metric is at a certain

moment.

• graph: the metric values are encoded on the vertical axis y using a linear inter-

polation between the sampled intervals (see Figure 7.2b). This type of encoding

makes results more continuous and might allow seeing trends more easily when the

sampling intervals on the horizontal axis are large.

• intensity map: the metric values are color encoded using a luminance map (see

Figure 7.2c). This type of encoding could be used for detecting trends in a very

noisy signal.

• rainbow map: the metric values are color encoded using a rainbow color map (see

Figure 7.2d). This encoding could be used for detecting outliers when the space on

the vertical direction is limited, and the resolution in the color map space becomes

larger than the one in the screen space.

• flow graph: this is a special type of encoding intended mainly for summaries

built on top of categorical metrics. It uses the same principles as the ThemeRiver

metaphor proposed in [58] to show the relative occurrences of a number of cate-

gories in a set of files or versions committed in a specific time interval. To this end,

color encoding (for categories) and space encoding (for numeric values) are com-

bined in one visualization. In addition to the techniques described in [58] we use

cushions to make the segregation between the flows more visible (see Figure 7.2e),

even when the colors are very similar. User feedback from informal experiments

indicates that this makes also the comparison between large and small quantities

more comfortable.

7.3. Visualization Model 111

a)

b)

c)

d)

e)

Figure 7.2: Alternative ways for encoding system metrics evolution: (a) bar chart; (b)

graph; (c) intensity map; (d) rainbow map; (e) flow graph.

7.3.2 Visual Scalability

An important issue of the visualization proposed above is scalability. As presented in

Section 7.2 the amount of data recorded by SCM repositories can be very large, and can

cover many samples. By means of data sampling, users can reduce the level of detail at

which they want to investigate the system evolution. However, it may happen that even

after this step there is not enough space to depict the evolution on one screen. Additional

measures are then necessary to obtain comprehensive overviews.

Outlier Enhancement along the Horizontal Axis

When a large evolution interval is covered, the number of sampling intervals may be

higher than the number of available pixels on the horizontal axis. In such cases, the chal-

lenge is how to obtain a comprehensive overview of data of the horizontal axis. One

possible way is to make use of antialiasing as presented in Section 5.3.3. Other alterna-

tives have also been proposed (see [64, 85]). We wanted to explore new possibilities in

this direction. Given the purpose of evolution visualization at system level, a method that

quickly emphasizes outliers yet presents the evolution trend, is desirable. To this end, we

use an additional dimension for encoding the presence and the characteristics of outliers

on the horizontal axis.

112 CHAPTER 7. Visualizing Software Evolution at System Level

In Section 7.3.1 we have presented a number of alternatives for encoding one attribute

using either space or color encoding. Nevertheless, when depicting the evolution of an

attribute using one dimension, we could use the other to emphasize the presence of outliers

in the regions where more values need to be represented on the same pixel column. We

use two alternatives:

• use vertical axis to encode attribute values and color to emphasize outliers;

• use color to encode attribute values and vertical axis to emphasize outliers.

In the first alternative, we use different colors to emphasize the presence of values

above and below the average of a set of attribute values that share the same position on

the horizontal axis (see Figure 7.3a). This straightforward alternative enables the user to

observe the trend in the sampled set of values (via the average value), yet it highlights the

presence of outliers, and the magnitude of the extreme cases. When the space available

for showing differences between the average value and the extreme cases is too small to

be observed, the outlier magnitude is considered to be irrelevant.

In the second alternative, we use three sections on the vertical axis to indicate with

colors the maximum, average and minimum values of a set of attribute values that share

the same position on the horizontal axis (see Figure 7.3b). This enable the user to follow

the evolution trend in the middle section of the visualization on the vertical axis (via the

average value), yet it highlights at the top and bottom the presence of outliers, and the

magnitude of the extreme cases. When the difference in color between the three sections

on the vertical axis becomes difficult to observe, the outlier magnitude is considered to be

irrelevant.

Average

Maximum
outlier

Minimum
outlier

Attribute
value

Time
Time

Attribute
value

Average value

Maximum outlier

Minimum outlier

a) b)

Light grey emphasizes presence of a maximum outlier

Dark grey emphasizes presence of a minimum outlier

Figure 7.3: Outlier enhancement along the horizontal axis (principle): (a) attribute values

are encoded using vertical axis, outliers are highlighted with colors; (b) attribute values

are encoded using colors, outliers have specific positions on the vertical axis.

Both alternatives can be used to follow evolution trends, yet identify the presence and

characteristics of outliers. The best alternative has to be chosen based on the concrete

investigation scenario, using the guidelines presented in Section 7.3.1. However, the sec-

ond alternative offers in general less resolution than the first one, and only relatively high

magnitude outliers are easy to observe.

Figure 7.4 illustrates the use of the color encoded outlier enhancement technique with

snapshots from a real-life project. The image depicts the evolution of the number of

7.3. Visualization Model 113

files containing contributions from a specific user. This kind of representation can be

useful when assessing how the knowledge about the system is distributed over the team

members. The horizontal axis encodes time, the vertical axis encodes the number of

files. Data is sampled at the day level. In Figure 7.4 top, the number of displayed days

on the horizontal axis is much higher than the available screen resolution. Outliers are

encoded using color. Light grey emphasizes the presence of maximum values, normal

grey emphasizes minimum values. The area below the chart is filled with color (i.e., dark

grey) to make assessment of the overall trend easier. Three significant outliers in the

thin vertical bars A, B and C are identified. The bars correspond to moments of high

interference between the owners of the source code. The maximum outlier in bar A has

the largest deviation from the average. In the corresponding period, the number of files

has actually recorded also a decrease with respect to the previous period as the minimum

outlier is less than the previous average value. Figure 7.4 bottom, shows a zoomed-in

version of the image, focusing on the interval that contains the three bars. This shows the

actual distribution of the values sampled by the highlighted bars A, B and C in the top

image.

A

B

C

Number

of files

A

B

C

Time

Time Number

of files

Figure 7.4: Evolution of the number of files modified by developer X : color outlier en-

hancement in bars A, B and C (top); zoomed-in version shows the actual value distribution

in A, B and C (bottom).

114 CHAPTER 7. Visualizing Software Evolution at System Level

Range Scaling on the Vertical Axis

Metric value ranges may be very large. If precise value estimations are important for

assessing the evolution of a metric, space should be chosen to encode metric values on

the vertical axis (i.e., using bar charts or graphs). Nevertheless, the available space on this

axis is also limited. One problems arises: “How to increase the vertical resolution when

detailed analysis is required on a small interval of the total value range?”. When the total

available space is limited, there are several alternatives available for addressing this issue.

One alternative is to increase the space available for encoding the interval of interest

at the expense of decreasing the space available for the remaining part of the total range.

In the extreme case, the space available for the remaining part can be discarded entirely.

This approach, however, has the disadvantage of hiding context information, which might

be important during analysis. Another approach is using deformations of the vertical axis,

e.g., a 1D fisheye lens (see Figure 7.5b). This approach provides both a higher resolution

for the interval of interest, and an indication of the value position in the remaining range.

The drawback in this case is that different scales are present in the same image, which

makes it difficult to compare values variations in the detailed region with those from the

context area.

Another alternative to increase the vertical resolution is to share space between inter-

vals. In this approach the total range is divided in a number of intervals that share the

vertical axis, and values are displayed using interval dependent colors (see Figure 7.5c).

For every value, the intervals that correspond to smaller ranges are drawn first as vertical

stripes with interval specific color, covering the entire available space in the vertical di-

rection. This creates the impression of the chart representation being “wrapped” around

the available vertical space, with every layer having a different color. A similar visual ap-

pearance can be achieved following the two-tone color map technique described by Saito

et al. [94]. The space sharing approach cannot be combined with the outlier enhancement

technique previously described, as both make use of color. Additionally, the visualiza-

tion of highly discontinuous metrics is difficult when the number of co-located intervals

is larger than two. However, when the data is relatively continuous, this approach offers

both an overview of the overall value trend, and detailed information on the entire value

range.

Figure 7.6 illustrates the use of range scaling on the vertical axis with snapshots from

a real-life project. Similar to the example presented in Figure 7.4, the image depicts

the evolution of the number of files modified by some developer. In the top image, the

limited resolution makes it difficult to assess the evolution in the highlighted area. The

bottom image uses range scaling with shared intervals to depict the same information.

The original range of 120 files is split in two intervals, 1-30 and respectively 31-120, such

that maximum resolution on the vertical axis is achieved for the highlighted area. Light

grey is used to encode the first interval and dark grey to encode the second. The second

interval is drawn on top of the first one. The evolution of the values in the range of the

highlighted area can be assessed by looking at the first interval. This is easier than in

the first case as more screen space is available for the visual representation. Additionally,

the second interval helps in constructing the overall context, showing the evolution of the

values that are higher than those in the highlighted area.

7.3. Visualization Model 115

 Attribute
 value

Attribute
 value

Attribute
 value

Time Time Time

Max Max Max

a) b) c)

First
interval

Second
interval

Figure 7.5: Range scaling on the vertical axis (principle): (a) no scaling – difficult to

assess the differences between records 2,3 and 5 ; (b) scaling using a deformation (1D

fisheye lens) of the vertical axis; (c) scaling with vertical axis sharing – color encodes the

interval.

 Number of files

Number of files

Time

Time

0

Interval 2

Interval 1

30

31

120

0

120

Figure 7.6: Evolution of the number of files modified by developer X : no range scaling

on the vertical axis makes it difficult to asses evolution in the highlighted area (top);

range scaling with two shared intervals increases resolution for detailed investigations in

the highlighted area, yet conserves the context information (bottom).

7.3.3 User Interaction

Interaction is an important component of software evolution visualization at system level.

Two main aspects have to be considered in this respect: how to indicate what is to be

shown and in which way, and how to make correlations with other visualizations.

In the previous sections we have detailed a number of alternatives that can be used to

filter the data and to build graphical representations of it. All presented alternatives have

both advantages and drawbacks. The suitability of a specific approach for addressing a

116 CHAPTER 7. Visualizing Software Evolution at System Level

given issue depends very much on both the problem at hand and the user. Therefore,

it is important to enable users to easily switch between alternatives and find the most

appropriate one. To this end, we propose an interaction mechanism that keeps users’

focus on the visualization. We use the mouse wheel and control buttons on the keyboard

to enable the user to rapidly switch between the preset sampling intervals, without moving

the mouse cursor. Additionally, we use a pop-up menu to provide the user with the list of

possible visual encodings. Consequently, the user does not have to move his focus from

the visualization in order to choose the one that suits best his needs. The only operation

that requires moving the user focus point is range scaling on the vertical axis. A slider

is provided for this, attached to the visualization. While this approach forces the user to

move his attention point, the focus still remains within the boundaries of the visualization

(see Figure 7.7).

Data sampling

Visualization border Vertical sampling slider

Focus point
(mouse pointer)

 +

Horizontal
zoom & pan

Visualization at
project level

Figure 7.7: Interaction mechanisms for software evolution visualization at system level.

The focus point is maintained within the boundaries of the visualization. Zoom and pan

operations are correlated with other visualizations.

Another important interaction issue is the synchronization of the visualization at sys-

tem level with other visualizations of software evolution. The visualization we propose in

this chapter can be used as starting point for detailed analysis on the evolution of software.

To this end, one can use the visualizations depicting software evolution at line and file

level presented in Chapter 5 and 6. A correlated views environment depicting evolution

at multiple levels of detail is, therefore, preferable. In such a case however, maintaining

consistency across visualizations has to be enforced. To address this issue, we propose

using a synchronized zoom and pan mechanism on the time axis for all visualizations de-

picting the same software entity, independent of the level of detail. Consequently, both the

software visualization at file level and that at system level will have the same zoom and

pan coordinates when they address the same set of files. While this maintains consistency

between views, it also facilitates the process of focusing on a specific evolution interval,

which has to be done only once (i.e., for one view).

In the next section we illustrate the applicability of the techniques described above on

real-life data with a number of practical experiments. These experiments try to answer the

7.4. Use-Cases and Validation 117

questions formulated in Section 7.1 using different visualizations of software evolution at

system level.

7.4 Use-Cases and Validation

To evaluate the use of the visualization approach proposed in the previous sections, we

implemented it as an add-on application to the CVSgrab tool presented in Chapter 6. Then

we used the resulting application in a number of experiments to assess the evolution of

real-life projects at system level. Next we detail the visualizations we constructed and the

insight we gained from three of these experiments.

MagnaView

A B

D E

C

F

Time

Thickness = Number of files

Position = Developer ID

Figure 7.8: Assessment of distribution of the software knowledge over the development

team in MagnaView.

The first project we investigated is MagnaView [74], a commercial visualization software

package containing 312 files, written by 11 developers in over 16 development months.

We visualized the evolution of this package at system level to assess the distribution of

knowledge in the development team. First we sampled data at week level. Then we used a

flow graph to compare the number of files each developer owned (i.e, files last committed

by the developer). This can give an indication about what users are familiar with the up-to-

date contents of the source code in a project. Figure 7.8 presents an annotated version of

the image we obtained. One can see that in the first three months the code was owned by

only one developer (A) and was relatively very small. At the end of February, 2005, three

more developers joined the team: B, D, and E. Developers A, B and D seem to own equal

amounts of code in the following months, while developer E has little influence. At the

beginning of June 2005, the code size increases notably, and developer E becomes owner

of a small part of the code. The amount of code owned by E does not change significantly

until the end of the observed period. At the end of August 2005, a new developer joins

the team: C. Until the end of the evolution period, the amount of code owned by this

developer increases steadily. In the same time the amount owned by developer A, the

starter of the project, diminishes significantly. At the end, the code is mostly owned by

three developers: B, C and D. One could assume these three developers have a good

118 CHAPTER 7. Visualizing Software Evolution at System Level

understanding about the system and are important members of the team. The amount

of code they own is also equilibrated, so the risk of losing one of the key developers is

reduced to a minimum. The amount of code owned by A and E is very small. However,

each of these two developers owns as much code as the remaining 6 developers together

(F).

mCRL2

The second project we investigated is mCRL2 [81], a tool set used to specify and analyze

the behavior of distributed systems and protocols. This software package contains 2635

files, implemented by 15 developers during more than 28 months. Out of these, 371 files

are C and C++ code files. We visualized the evolution of these source code files at system

level to assess how easy to maintain the project is. First we sampled the data at week

level. Then we used a number of visual mappings to investigate the evolution of code

size (i.e., number of lines of code) and the evolution of cyclomatic complexity (see [79]).

Figure 7.9 presents an annotated version of the images we obtained.

Time

Knowledge
distribution

Position =
Number of lines of code

Position =
 Cyclomatic complexity

Position =
Complexity / number of

methods

Position =
Complexity / number of

methods
(vertical sampling)

Size

Complexity

Position =
Developer ID

Thickness =
 Developer contribution

A

B

C

D1

E

F

D2

Color (1) / Position (2) =
Complexity / number of

comment lines

Figure 7.9: Assessment of project maintainability in mCRL2: A - knowledge distribution;

B - code size; C - total code complexity; D1/D2 - total complexity divided by the number

of comments available in the source code; E - total complexity divided by the number of

methods in the source code; F - same as E but uses range scaling with shared intervals.

7.4. Use-Cases and Validation 119

Image A depicts the distribution of knowledge in the project, similarly to the previous

example. One can see that after the second half of the first development year, an important

developer joins the team. Until the end of the investigated period, this developer becomes

the owner of most implemented code. Consequently, he is the only one up-to-date with

additions and changes in most part of the project. From this point of view he represents

an important asset for the project, but also a high risk. If this developer leaves the team, a

very high amount of knowledge has to be transferred to other team members.

Images B and C show graphs that depict the evolution of the code size, and respec-

tively the evolution of the total cyclomatic complexity of the system. One can notice that

the two software metrics are highly synchronized. Therefore, one can be used to assess

the overall trend in the other. Additionally, one can see that the code size and its complex-

ity appear to have stabilized in the last five months of the observed period. This may be

an indication that efforts are focused now on corrective maintenance, and a new release

of the tool set might be soon available.

Images D1 and D2 depict the evolution of the ratio between the total complexity and

the number of comment lines available in the source code. Image D1 uses a rainbow

color mapping. Blue encodes a low ratio, red encodes a high ratio. Image D2 uses a bar

chart. One can notice that the ratio becomes higher as the time passes, as more effort in

spent on implementing new functionality and less on documenting existing code. From

this point of view, the system becomes harder to maintain. The surprising fact is that

the ratio continues to grow even at the end of the observed period, when the size and

the complexity appear to have stabilized. This suggests that existing comments have

been removed in this period. Consequently, these comments might have represented dead

functionality that was cleaned up during the stabilization phase. Another surprising aspect

is the outlier highlighted in the image. By correlating it with the graphs depicted in images

B and C, one could infer that new functionality of high complexity was first added to the

system, and then documented. Indeed, by inspecting in detail the commit logs stored

on the mCRL2 repository, one can discover that the outlier corresponds to a tentative

addition of the LTS library to the system, which was consequently fully integrated and

documented.

Both image D1 and D2 use a very narrow vertical space. We showed both images to

a number of persons in an application demo setting. The informal feedback we received

from several attendants was that the rainbow color map was quicker in conveying the

overall evolution trend and the presence of the outlier. However, when more space is

available on the vertical direction, the bar chart encoding appears to become more efficient

and conveys more accurately the same information.

Eventually, images E and F show graphs that depict the evolution of the ratio between

the total complexity and the number of methods in the system. Image E gives a classical

overview. One can observe that in the middle of the development period and towards the

end, the ratio increased significantly in a very short interval. This signals either the addi-

tion of new functionality to the existing interfaces, or the addition of new high complexity

code. Indeed, a detailed analysis of the commit log reveals that the jump of the ratio in the

middle of the development period was caused by the addition to the repository of a high

complexity library for C++: boost. Additionally, the jump at the end was caused by a

high volume of changes and the addition of the ticpp library. However, by inspecting

120 CHAPTER 7. Visualizing Software Evolution at System Level

image E one cannot easily asses the evolution of the ratio in the highlighted area. It seems

as if the ratio would not change even if the complexity and the code size change (see

images B and C). This and the very low values of the ratio suggest that the entire activity

was dedicated to interface declaration in the highlighted period. Image F gives better in-

sight in this matter. By using a range scaling on the vertical axis with shared intervals, the

space available for inspecting the evolution of the ratio in the lower range is significantly

increased. Consequently, one can notice the change in code size in the beginning of year

2005 (see image B) causes a three times increase in the investigated ratio. This suggests,

that not only interface declarations took place in this period but also actual functionality

was implemented.

KDE KOffice

The third project we investigated is the KOffice application suite of the Open Source

project KDE [66]. We next present the outcome of our assessment using the same type

of visualizations as for the previous project. Our aim is to use the software evolution

visualization at system level as a way to compare quality aspects of the two projects.

KOffice is a collection of office productivity tools including among others a text pro-

cessor, a spreadsheet and a presentation making utility. The entire software package con-

tains 10616 files, implemented by 270 developers, during more than 9 years. We focused

our analysis on an important part of this system: the libs folder. This contains a set of

common libraries used across multiple applications of the KOffice suite, such as the user

interface library kofficeui. The libraries are implemented in 843 C and C++ code

files. We visualized the evolution of these source code files at system level to assess how

easy to maintain the libs folder is. First we sampled the data at month level. Then we

used a number of visual mappings to investigate the evolution of code size (i.e., number of

lines of code) and the evolution of cyclomatic complexity (see [79]). Figure 7.10 presents

an annotated version of the images we obtained.

Similarly to the previous two experiments, image A depicts the distribution of knowl-

edge in the project. Assessing this image one can observe that significant project owners

appear from the second year of development. In the third year, four developers have the

role of major code owner, and the amount of code they share is equally distributed. In the

next four years however, one of these developers becomes more active, and takes over the

code owned by others. From this point of view, he becomes a critical asset for the project.

Two major discontinuities can be identified in the image at the end of the observed period.

They signal project-wide code reorganizations that are not related to code owning, but are

meant to ensure consistency in style. These type or reorganizations are typically per-

formed by one developer, whose influence decreases rapidly after committing the code.

After the second discontinuity however, one can observe that the influence of the previ-

ous major code owner is significantly reduced, while the code is distributed among five

other developers. This may be an indication that the previous owner left the project and

his knowledge was distributed to a number of remaining developers. Additionally, the

amount of code owned by key developers increases with respect to the previous years.

This is an indication of a more active code management policy in the project, centralizing

knowledge from a larger number of developers. Consequently, the project should become

easier to maintain.

Images B and C show graphs that depict the evolution of code size and cyclomatic

7.4. Use-Cases and Validation 121

Time

Knowledge
distribution

Position =
Number of lines of code

Position =
 Cyclomatic complexity

Color =
Complexity / number of

comment lines

Position =
Complexity / number of

methods

Position =
Complexity / number of

methods
(vertical sampling)

Size

Complexity

Position =
Developer ID

Thickness =
 Developer contribution

A

B

C

D

E

F

Figure 7.10: Assessment of project maintainability in KDE Koffice: A - knowledge dis-

tribution; B - code size; C - total code complexity; D - total complexity divided by the

number of comments available in the source code; E - total complexity divided by the

number of methods in the source code; F - same as E but uses range scaling with shared

intervals.

complexity. Similarly to the previous example, these two metrics are highly correlated.

Consequently, one can be used to assess the overall trend in the other. However, compared

to the previous example, both the code size and complexity appear to increase significantly

at the end of the investigated period. This may be an indication that the development

efforts are focused on implementing new functionality and not on corrective maintenance.

Consequently, a new release of the software package might not be available soon, and a

lot of effort will be required next to take the project through a stabilization phase.

Image D uses a rainbow color mapping to depict the evolution of the ratio between

the total complexity and the number of comment lines available in the source code. The

color encoding scheme is the same as the one used in the previous case. Similarly to the

second project, the ratio becomes higher as the development progresses. Consequently,

more effort is spent on implementing new functionality and less on documenting existing

code. This makes the system harder to understand, and therefore, harder to maintain.

122 CHAPTER 7. Visualizing Software Evolution at System Level

The ratio grows significantly at the end of the investigated period, in the same time with

the previously observed increase in code size and complexity (see images B and C). This

suggests that the next stabilization phase of the project will require a lot of development

resources. Two outliers are also indicated in the image. The first outlier corresponds

to a high amount of additions to the source code. The second outlier corresponds to

importing reusable functionality in the libraries from other parts of the system. Both

outliers correspond to complex code additions that are subsequently documented.

Images E and F show graphs that depict the evolution of the ratio between the total

complexity and the number of methods in the system. Image E gives a classical overview.

One can observe that in the middle of the fourth development year the ratio increased

significantly after a short stagnation period. This suggests that the development focused

on adding new functionality to the existing interfaces. The increase is correlated with the

more active code management policy observed in image A. Consequently, one may in-

fer that the project strategy recorded a significant change in the fourth development year.

However, by inspecting image E one cannot easily gain insight in the period preceding

this change (i.e., the region highlighted in the image). It seems that the ratio had a steady

increase, which is characteristic to mature projects with a regulated development process.

Image F gives better insight in this matter. By using a range scaling on the vertical axis

with shared intervals, the space available for inspecting the evolution of the ratio in the

highlighted area is significantly increased. Consequently, one can notice that the ratio

recorded two significant jumps, when a lot of functionality has been implemented. Addi-

tionally, the ratio had also a number of decreasing periods, when implemented function-

ality was removed from the system. These patterns can be identified also in the previous

project. They are characteristic to loosely planned and managed projects, like many of

the Open Source projects are, especially in the beginning of the development period.

7.5 Conclusions

In this chapter we have presented a set of methods and techniques that can be used to

build visualizations of software evolution at system level. Visualizations of this type are

intended for quick assessments of evolution to identify overall trends or to trigger more

detailed investigations.

Software metrics are the main source of data to be visualized. These metrics are com-

monly accepted as quality indicators for software systems. We addressed the challenges

of building a visualization for the evolution of these indicators at different stages of the vi-

sualization pipeline. First we analyzed the type of software metrics that can be visualized,

and we provided a preset based mechanism for sampling data. Next, we presented a set of

layout and mapping alternatives that can be used to visually encode data, and we gave a

set of guidelines for using them. We proposed encoding only one metric per visualization,

and using the time axis to correlate evolution trends across multiple visualizations. Sub-

sequently, we addressed visual sampling related issues both on the horizontal and vertical

axes, such that data is presented to users in a meaningful way. Eventually, we proposed

an interaction mechanism that tries to keep the focus point of users within the boundaries

of the visualization, for making more efficient use of the short term memory.

7.5. Conclusions 123

To validate the utility of the proposed visualization, we used it in an number of ex-

periments to assess the evolution of real-life software projects. During the investigations

we focused on maintainability related issues. The visualization we constructed revealed a

number of interesting aspects:

• Many projects have a number of code owners, i.e., developers that are responsible

for the code in a large number of files. For mature projects, the amount of knowl-

edge should be equally distributed over a number of code owners to minimize the

risk of loosing it when these assets leave the team;

• Code size and code complexity are highly correlated in most projects. Therefore

each of these metrics can be used to estimate the evolution trend of the other;

• In all investigated projects the ratio between code complexity and number of com-

ments in the source code increases. This suggests increasingly more effort is spent

on implementing and less on documenting code. As a consequence, projects be-

come more difficult to understand and they require more effort for maintenance.

For the visualization proposed in this chapter we have made a number of assumptions

about the nature of the data. Sequences of software metrics are assumed to be rather

continuous in time. This enables the identification of trends and outliers, using the tech-

niques described in Sections 7.2 and 7.3. In principle the same techniques can be applied

to other sequences that are non time-related, for instance, the sequence of results of a

software metric applied on all source code files in a project. Depending on the specific

metric, the sequence might not be continuous on the file axis. Further investigation are

required to assess the suitability of the presented techniques for this type of sequences.

As another direction for future research, formal user studies need to be organized to

get a deeper understanding about the performance and suitability of the presented data

encoding, outlier enhancement and range scaling alternatives for specific investigation

scenarios.

The visualization of software evolution at system level is intended for high level inves-

tigations in the trends of software metrics. They cannot reveal detailed aspects about the

evolution of the source code. For this, the visualizations at line and file level presented in

Chapters 5 and 6 can be used. However, a correlated view environment that links all visu-

alizations in one application would make the evolution assessment more efficient. System

level visualizations could be used to trigger detailed investigations within the same en-

vironment following the visual information seeking mantra: “overview first, zoom and

filter, then details on demand” [96]. In this respect, the visualization of software evolu-

tion at system level can be used as a generalized version of the horizontal metric views

presented in Chapters 5 and 6.

Chapter 8

Visualizing Data Exchange in

Peer-to-Peer Networks

In this chapter, we verify the applicability of the visualization techniques and methods

proposed in Chapters 5, 6, and 7, across the border of the software evolution domain.

To this end, we present a novel visualization for the performance assessment of peer-to-

peer file-sharing networks. First we identify the relevant data transferred in this kind of

networks and the main performance assessment questions. Next, we describe the visual-

ization of data from two different points of view: the server view and the file view. Based

on shaded cushions, we introduce a novel technique: faded cushioning. This technique

allows visualizing the same data from different perspectives. To correlate the server and

the file views, we provide a special scatter plot. Finally, we discuss the effectiveness of

the presented visualization and the applicability to this case of the techniques presented

in the previous chapters.

8.1 Introduction

In the previous chapters we have presented the evolution of software structure at three

levels of detail, commonly used by the Software Engineering community and readily

available from SCM systems. In this chapter we use a similar approach to address dy-

namic aspects related to software execution. Our goal is to investigate the suitability of

the techniques proposed in the previous chapters, across the borders of the software evolu-

tion domain. To this end we focus on software for a particular type of distributed systems:

Peer-to-Peer (P2P) file-sharing networks.

Distributed systems consist of a number of network connected nodes that cooperate

for solving a given task. Their distributed nature, however, makes them difficult to under-

stand. In this respect, visualization can facilitate getting insight. Most work in this area

is related to the visualization of structure of distributed systems [9, 36]. Systems’ perfor-

mance is, however, one of the less explored issues. In this chapter, we present a novel

125

126 CHAPTER 8. Visualizing Data Exchange in Peer-to-Peer Networks

approach to the visualization of performance of P2P file-sharing networks. This type of

networks is a branch of distributed systems that has recently gained enormous popularity.

The presented visualization techniques are illustrated by EZEL, a prototype tool that we

developed for the assessment of performance in the ED2K P2P file-sharing network [35].

A copy of the tool can be downloaded from [42].

In Section 8.2 we present the issues that are relevant for the assessment of performance

in P2P file-sharing networks, with a focus on the ED2K. In Section 8.3, we describe the

data that is transferred in this kind of systems, and we identify the transactions that are

important for performance evaluation. Next, we detail the challenges that arise when

supporting the assessment with visual tools, and we present a novel approach to address

them. In Section 8.4.1, we propose a visualization of data taking servers as focal points.

In this section we show how, via the use of shading and color, multiple aspects can be

presented simultaneously in a compact way. Elaborating on the space partitioning power

of cushions, we introduce a novel technique: fading cushions. We demonstrate how this

technique allows visualizing the same data from different perspectives. In Section 8.4.2,

we add the viewpoint of the file, and in Section 8.4.3 we show the correlation between file

and servers via a special scatter plot. Finally, in Section 8.5 and Section 8.6 we discuss the

suitability of the presented approach for the assessment of P2P file-sharing networks, and

we reflect over the similarities with the approaches we presented in Chapter 5, 6, and 7.

8.2 Problem Description

A P2P file-sharing network is a collection of computers organized in an ad-hoc network

with the purpose of sharing digital content. To this end, connected computers rely primar-

ily on the storage capacity, computing power and bandwidth of the other participants in

the network rather than on a relatively low number of central servers. Next, we outline the

most important concepts in such a system with an eye on their implementation in ED2K.

Figure 8.1 shows a conceptual model.

Clients generate requests, e.g., file read requests, and assign them to proxy entities. A

proxy divides requests in smaller parts, i.e., segments, that are uniquely identifiable and

can be independently fulfilled by server entities. Every proxy has an internal dispatcher

algorithm that decides to what servers the requested segments will be sent for processing.

Every server has limited processing resources to handle request segments from proxies,

and uses a priority based scheduling to manage them. The priorities are internally main-

tained by the server for each client request.

Visualization of a distributed system’s performance aims at helping the user to under-

stand such a system, based on information obtained from transactions between its con-

stituent parts. Both snapshots and history recordings are therefore important [77]. The

user can employ this understanding to navigate the transaction data and answer a number

of performance related questions. In the case of a distributed file-sharing systems, one is

mainly interested in two issues: dispatcher algorithm and server performance.

Dispatcher algorithm assessment

When the network of processing servers is large and dynamic, e.g., P2P networks, the

segment dispatching algorithm has a strong influence on the request servicing time. The

8.2. Problem Description 127

Client

Proxy

Server 1

Request segments

A B C

Processing Request

A B CAssign

A B C

A B C

Divide

Dispatch A B C

A

Schedule

A
serve segment

B

Schedule

B
serve segment

C

Distributed System

Server 2

Figure 8.1: Distributed processing system (conceptual model)

performance visualization should help users to easily assess the dispatcher algorithm, and

reveal the factors and the circumstances that might influence it. For example, users should

be able to identify the reasons for which a slower server is selected at a certain moment

instead of a faster one.

Server assessment

When the dispatcher algorithm on the proxy allows direct selection of the servers, perfor-

mance visualization should help to determine which server delivers the best value. The

interesting case appears when the selection is based on a number of independent perfor-

mance figures. The most important questions and quantities relevant to P2P networks

are:

• download speed: how long does it take till one gets a requested file?

• server popularity: how long do clients wait in the server-side queue, and how fre-

quently do other clients with higher priority enter that queue?

• server specialization: what kind of requests can a server satisfy?

When assessing the performance of a P2P file-sharing network, one has to investigate

the evolution of a number of independent parameters. An effective assessment should

consider the loosely coupled parameters together, and should be based on tradeoffs that

depend on the purpose of the assessment. The very nature of tradeoff making requires the

user to divide his/her focus over more assessment criteria at once. This turns out to be

rather difficult when the number of criteria becomes higher than two. A typical download

128 CHAPTER 8. Visualizing Data Exchange in Peer-to-Peer Networks

session for a 700 MB movie file contains around 200,000 transactions. If one uses just

standard time graphs to visualize the above three quantities, the overall image is quickly

lost, and the dispatcher algorithm and server assessment questions remain unanswered.

The challenge is to build a unified visualization, in which the user can focus on a particular

quantity of interest without losing overview.

For P2P file sharing networks, four main criteria to assess a server can be used:

• download speed (higher is better)

• size of segments (larger is better)

• queue evolution (fast advance and less re-queuing after admittance is better)

• segment position (depending on the download purpose, some segments may be

more important than others)

The ideal server should be fast, able to provide large contiguous segments, and should

have a small waiting time. Additionally, it should not be very popular, to reduce the

chance that other clients with a higher priority interrupt the download by acquiring the

server. However, such servers usually do not exist. Moreover, the assessment depends on

several characteristics of the downloaded file, as explained next. For a fast download of a

small file, such as a 3 MB MP3 music file, selecting the fastest server may not be the most

appropriate decision. When the waiting time in the queue of the fast server exceeds the

time that another slower server requires to perform the task (i.e., including the time for

waiting in the queue), the slower server is preferred. Another example is the download of

an archive, for instance, a ZIP file. Such a download should not be attempted from a server

providing fragmented segments, even if it is fast. A slower server that provides contiguous

segments is preferred, as it makes archive recovery simpler when the download cannot be

completed.

In the following sections, we present the challenges of building a visualization tool

for P2P file-sharing networks. The proposed solutions to these challenges are illustrated

with snapshots from EZEL, a validation visualization tool that we developed for the per-

formance assessment of the popular ED2K P2P network.

8.3 Data Model

The first issue one has to consider when building a visualization tool is which data to

visualize (see Chapter 4). P2P file-sharing networks are characterized by a large number

of terminals connected via the Internet. Each terminal connected to such a network can

act both as a server and as a client at the same time. Clients generate file read requests

that proxies break down into segment requests. A segment request is fulfilled by a single

server, which provides the client with the related file segment. A file segment consists of

file blocks and has a variable size (expressed in blocks).

All terminals in the network exchange transactions based on a specific protocol. These

transactions may contain either file blocks, or control information (e.g., download re-

quests, file availability info, queue evolution info). In the case of the ED2K network,

8.3. Data Model 129

the exact protocol in use is not disclosed, which makes the assessment task considerably

more difficult.

As mentioned in the previous section, server and dispatcher algorithm assessment

are central issues for performance evaluation of P2P file-sharing networks. We address

these issues by analyzing the transaction data that a client exchanges with the rest of the

network.

To study the dynamic behavior of servers, we record two types of transactions: file

block arrivals and queue position reports. With this information, we build three functional

descriptions for a server, from the point of view of a given client. In the following, it

is assumed that a client is serviced by NS servers S1,...,SNS , every server Si being

identified by an integer server id. The download time t runs from 0 to the download

completion moment TC . The three server descriptions are:

Queue position: Q(Si, t) : N×R → N

Gives the position of the client segment request in the queue of server Si at time t. If

Q(Si, t) is zero, the client can start downloading from Si.

Download speed: V (Si, t) : N×R → R

Gives the speed with which the client receives data from the server Si at time t.

Contribution: C(Si, t) : N×R → N

Gives the data downloaded from a server Si from the beginning till a given time t. In

other words:

C(Si, t) =

t
∫

0

V (Si, τ)dτ

The total amount of downloaded data is thus:

D =

NS
∑

i=1

C(Si, TC)

To assess the performance of the dispatcher algorithm, one has to consider both the

server assessment and the evolution of the downloaded file itself. For that, we record

the block arrival events and we correlate them with the file segment requests. With this

information, we construct three functional descriptions of a download:

Provider: P (p) : N → N

Gives the server that provided the block at a position p, for all positions p in a downloaded

file.

Time of arrival: T (p) : N → R

Gives the moment when the client received the block at position p, for all positions p in a

downloaded file.

Segment: S(p) : N → N

130 CHAPTER 8. Visualizing Data Exchange in Peer-to-Peer Networks

Gives the file segment to which the block at position p belongs to, for all positions p in a

downloaded file.

The quantities mentioned above are discrete. For example, a typical movie download

consists of around 200,000 time moments t, NS=150 servers, and a total downloaded

value of D=700 MB.

All above functional descriptions are equally important for the performance evaluation

of a P2P file-sharing network. Consequently, the challenge is to build a visualization that

facilitates access to all of them and shows how they relate to each other. In the next section

we propose such a visualization.

8.4 Visualization Model

The goal of P2P data exchange visualizations is to assess the dynamic behavior of individ-

ual servers, view how a file is downloaded, and see the relation between these processes.

Since the functional descriptions to be visualized have several implicit non-trivial depen-

dencies, a straightforward visualization (for instance using separate graphs) is not a good

solution.

Given that the set of functional descriptions has three main axes (Servers Si, Time t,
block Position p), a visual representation using a 3D scatter plot may appear to be a direct

solution. Figure 8.2 depicts such an approach. Every dot represents the transmission of a

block from a server at a certain moment. However, this visualization would be very hard

to interpret, given the large amount of time samples (hundreds of thousands), the inherent

3D occlusion problems, and the data scattering.

Position

Time

Servers

1

2
3

4

5

Figure 8.2: 3D visualization for P2P performance assessment

Therefore, we split the visualization in two parts correlated via a scatter plot: one

focusing on servers, the other on the downloaded file. The server visualization is de-

8.4. Visualization Model 131

scribed next. The downloaded file visualization is described in Section 8.4.2. Finally,

Section 8.4.3 presents the custom made scatter plot.

8.4.1 Server Visualization

To support the assessment of servers with a visual representation, we use a horizontal

sequence of small diagrams, one per server. This allows the user to easily compare the

functional descriptions of different servers (i.e., Q, V and C). Additionally, the repre-

sentation of each server should offer enough provisions to relate it to the visualization of

the downloaded file (Section 8.4.2). There are several alternatives for an individual server

representation. The obvious choice is to use the horizontal axis for Time, the vertical axis

for Queue (Q) and Contribution (C) and to display their variation as graphs (Figure 8.3a).

The Download speed (V) can be estimated in this setup from the slope of C.

Contribution

Time

Contribution
Queue position

Time
a)

b)

Queue
position Contribution

Speed

Speed

Queue
position

Contribution

Figure 8.3: Server diagram: (a) with graphs only; (b) with graph and luminance strips.

However this first alternative is quite noisy for real world cases. Due to the mutual

exclusion in time of downloading and queuing, the evolution of Queue position and Con-

tribution are not continuous, but interleaved. To remove the noise from the visualization,

we replace the spatial encoding of Queue position with a luminance encoding. Rectan-

gular strips whose gray shade indicates queue position are used (darker shades indicate

lower positions). Although graphs are more precise, grayscale encoding of the queue po-

sition is sufficient for the stated purposes. After all, the user needs only to identify the

overall position and to spot general queue trends such as advance or high / low position

alternations.

Additionally, we use solid color filling for the area under the C graph to enhance the

feeling of quantity that Contribution has. Figure 8.3b depicts the result of the second

approach. Both C and Q variations appear now continuous, which makes interpretation

easier. Moreover, while their representations do no interfere, they still allow users to

easily make correlations. The horizontal parts in the variation of C, for example, indicate

132 CHAPTER 8. Visualizing Data Exchange in Peer-to-Peer Networks

periods in which the Contribution stagnated. The user can easily verify if queuing was the

cause of idleness, and can also check the queue evolution of the segment request in that

period. Similarly to the first approach, the Download speed evolution can be estimated

from the slope of C.

The next visualization design step is to arrange the server images such that they allow

easy comparative assessment. For this, a way to easily distinguish and identify the dia-

grams is necessary. To this end, we use color encoding, and in each image, we fill the area

below the Contribution graph with a server dependent color. Color allows one to easily

distinguish the different diagrams and also preserves server identity over changes in the

diagram arrangement.

To allow easy comparison of the server diagrams, they have to be arranged (sorted)

along one of the spatially encoded axes, i.e., the Time axis or the Contribution axis. Us-

ing the Time axis for arranging the server images (Figure 8.4) proves to have two major

drawbacks. First, it is hard to compare server quantities (queue position, contribution) at

the same given time instant. For example, one could hardly decide if the contribution of a

source exceeds that of another, at a given time t0 (Figure 8.4).

T im e

C on tr ib u tio n t0

A B C

S erve rs

Figure 8.4: Server diagram arrangement along the Time axis

Secondly, the time interval (width of server diagrams in Figure 8.4) is identical for all

servers, so no meaningful comparison could be made along the Time axis itself.

The second alternative (i.e., arrange on Contribution axis) is better, as it allows easy

comparison of servers based on their total contribution (Figure 8.5).

Additionally, for a given time t, this allows comparing the queue position and the

cumulated contribution to that moment t.

Figure 8.5 presents a typical visualization obtained with the method presented so far:

a file download served using five servers. It is easy to see that the first server (purple) is the

most productive one: it gives about 50% of the total amount (half of the horizontal axis),

has a stable throughput (constant slope), client requests are promptly getting on the first

queue position, and maintain this position for the total download duration (purple image

slope has no step-like jumps, and its queue area has a constant light shade after we get on

the first position). It is also easy to identify in this image the less productive servers, i.e.,

the slow one (orange) and those exhibiting frequent falls in the queue position (yellow

and cyan).

8.4. Visualization Model 133

Time

Contribution

A B C D E

Servers

t0

Figure 8.5: Arranging server diagrams along the Contribution axis

Figure 8.6: Basic server visualization

However, this visualization is still limited. First, using only color to encode server

identity is not a good solution when the server arrangement (horizontal axis sorting) can

change. It may happen that two servers with the same, or perceptually similar, colors

are arranged one next to the other (Figure 8.7 top). Indeed, it would be preferable to use

only a few (10..16) perceptually different colors, whereas typical network configurations

have over 150 servers. Using only luminance (gray value) to encode the queue position

causes similar problems. On the other hand, color encoding of server identity keeps visual

coherence when rearrangement occurs.

Spatial Partition with Bi-level Cushions

We solve the above mentioned problem using the space partitioning properties of cush-

ions. For a detailed description of cushions, see [111]. As depicted in Figure 8.7, cush-

ioning makes separation clear between different severs encoded with the same or similar

colors, without using extra screen space. It also delineates the borders where the differ-

ence in luminance makes distinction hard.

In the above server diagrams, the total contribution of a server consists of a set of

segments. As the size of the segments varies, it would be preferable to visualize it. That

would be also useful later on for making correlations with the download visualization.

With the server visualization presented so far, it is hard to figure out the individual

segments, as they are encoded using the same color (i.e., the color of the server). To

emphasize the segment partitioning inside the diagram of a server, while maintaining

134 CHAPTER 8. Visualizing Data Exchange in Peer-to-Peer Networks

Figure 8.7: Server arrangement : without cushioning (top); with one level cushioning

(down).

clear separation between servers, we use the bi-level cushioning technique described by

Van Wijk and Van de Wetering in [111]. Figure 8.8a depicts the main idea behind this

approach. By each server diagram the illumination of a height-modulated surface is vi-

sualized. The height assigned to a point in a server diagram is the sum of two parabolas

(i.e., cushions), one that describes the server, and one that describes the segment to which

the point belongs. The surface is illuminated using a spot light that forms an incidence

angle with the normal on the base plane. Each server diagram depicts the image projected

by light reflection on a plane parallel with the base.

Figure 8.8b depicts the result of this technique. By using OpenGL texturing, a much

higher performance is obtained than the similar software-only implementation of Van

Wijk and Van de Wetering [111]. In detail, the server rectangle image and each of its

segment rectangle images, as in Figure 8.7 top, are blended with a 1D texture containing

the respective server or segment luminance profile in the alpha channel.

Focus Migration with Faded Cushions

Using the bi-level cushioning is very effective for delimiting servers and segments within

servers. However, the above method draws cushioned segment information also over the

area that displays queue information (gray area in Figure 8.9) . Segment partitioning is

not relevant for that area, and this makes server comparison based on queue evolution,

i.e., following horizontal correlations, difficult.

In order to maintain the desired segment and source partitioning effect, and, at the

same time, remove the undesired influence on the queue evolution visualization, we ex-

tend the bi-level cushioning. We change the perceived shape of the segment cushions in

the vertical direction from constant curvature to a gradually flattening profile. To achieve

this, we introduce a height variation in the vertical direction using a decreasing profile as

sketched in Figure 8.10a. For this profile, we use an asymptotic function (e.g., y
1
n). The

8.4. Visualization Model 135

Contribution

Surface Height
(Geometry)

First layer of cushioning

Second layer of cushioning

Segments

Servers

αααα

Light

90
0

Projection plane

Base

a)

b)

Figure 8.8: Bi-level cushioning for segment and source partitioning: (a) principle; (b)

result.

Figure 8.9: Basic bi-level cushion visualization

segment cushions are efficiently implemented as 2D alpha textures and blended atop of

the original 1D server cushions.

Eventually, we obtain a visualization that emphasizes both segment and server seg-

regation at the top of the image, and then progressively focuses only on the partition

in servers, as the user’s focus moves to the bottom of the image. The gradual transi-

tion makes focus migration smooth while preserving the server context (Figure 8.10b). In

other words, the visualization exhibits vertical coherence at the top (segment-server area),

which smoothly changes into horizontal coherence at the bottom (queue area). The over-

all visual effect resembles the draping of a curtain, and nicely scales up for visualizations

containing up to 200 segments on a common computer screen (i.e., with a resolution of

1024×768 pixel).

136 CHAPTER 8. Visualizing Data Exchange in Peer-to-Peer Networks

Y position

X position

Height of the second
cushioning level

Firs t level
cushioning

Second level
cushioning

a)

b)

Figure 8.10: Enhanced bi-level cushioning for smooth focus migration: (a) principle; (b)

results.

8.4.2 Download Visualization

In this section we address the visualization of the download itself and the creation of

correlations with the server visualization described in Section 8.4.1.

The only alternative in this part is to use the block Position as one of the main axes

in the representation, and report the functional descriptions to it. The challenges are,

however, in choosing the right visual encoding for the Provider (P), Time of arrival (T)
and Segment (S) descriptions. To make correlation with the server visualization easy,

we use color to encode P , and we choose the same color assignment as for the server

visualization.

For Segment encoding (i.e., S), we use a similar approach with the one from the server

visualization: one-level cushions are built on top of fixed-width rectangles arranged along

the Position axis (Figure 8.11). Bi-level cushions are not necessary, as the emphasis is

only on segment segregation, and has to be visible along the entire width of the rectangles.

For Time encoding, a graph-like representation may be considered. Neighboring seg-

ments on the Position axis, however, may arrive at non-adjacent time intervals which

immediately leads to a very noisy visualization. Therefore, we use a rainbow colormap

(t = 0 is blue, t = T is red) to encode the time on a per segment basis (Figure 8.11).

While this alternative is visually less accurate for identifying the arrival time of a block,

it consumes little space and attenuates the visual noise caused by neighboring segments

that arrive at different moments in time. Moreover, the above color scheme highlights

discontinuities, i.e., segments that arrive at moments distant in time with respect to their

neighbors. To improve the image generation speed, the time is not shown for every single

8.4. Visualization Model 137

Position

Segments

Color encodes

Provider

Time (first block of segment)

Fixed

width

Figure 8.11: Visual encoding of functional description for a file download

block in a segment, as the T description specifies. Instead, for all blocks in a segment we

use the same time description as for the first block, and a more accurate representation is

implemented through server correlations, which are describe next.

8.4.3 Correlation Visualization

In this section we present how to visualize correlations between the server and download

visualizations. In the design of the visualization so far, a color-based correlation exists

already between the Provider description (i.e., P) and the server diagrams. This allows to

identify and compare servers that provide some particular blocks in a downloaded file.

Next to this, a correlation that would make the T description more accurate is also

necessary. Since the server visualization has a good mapping from Time to Contribution

(i.e., C), we extend this mapping to the download visualization through a correlation

along the block axes (i.e., the Contribution and the Position axes). However, given that

the two axes are spatially encoded, a relation at block level would be too fine-grained and

hard to visualize. For that reason, we visualize the connections at the (higher abstraction)

segment level.

The discrete nature of the block axes favors using a scatter plot representation to visu-

alize the correlation. A simple scatter plot, however, makes visual associations difficult,

once the number of segments is greater than 10 (Figure 8.12a). A possible workaround is

to add lines that make connections explicit. However, this alternative proves to be inef-

fective too, as it clutters the image, and suffers from aliasing once the distance between

lines becomes too small (e.g., the black line in Figure 8.12b). These problems are only

aggravated by the large number of correlations (hundreds) that must be displayed for a

standard download dataset.

In order to make the connections more explicit while keeping the image uncluttered,

we replace the solid lines with shades that start from the points of the scatter plot and fade

away as they approach the axes (Figure 8.12c). This alternative reduces the confusion

created by crossing lines, and offers still enough visual clues for recognizing connections.

138 CHAPTER 8. Visualizing Data Exchange in Peer-to-Peer Networks

Additionally, it introduces no artifacts and scales very well with the image size. When the

distance between the points of the scatter plot becomes too small to observe differences,

the shades merge naturally, as if they were addressing the same element. To accomplish

this, the shades are drawn using GL_MIN blending function of OpenGL, which always

keeps the darkest shade element at intersections, regardless of the drawing order.

To maximize the efficiency of screen real estate usage, we choose a metric view for-

mat for the download visualization. This trades the size requirements of the download

visualization on the horizontal axis for a higher segment resolution in the server visual-

ization.

The complete visualization, obtained after linking the server and download visualiza-

tions using the correlation methods described in this section, is depicted in Figure 8.13.

For easy navigation, interactive selection facilities are added to allow restricting the down-

load visualization part and the corresponding correlations to:

• specific parts of a file (by individual segment selection on Position axis)

• specific time intervals (using a time cursor on the Time axis)

• specific servers (by individual server selection on Contribution axis)

These selection mechanisms easily allow one to answer questions such as:

• Which are the servers active at a given time moment?

• Which are the file blocks provided by a given server?

• Which are the servers a given file part came from?

Server visualization

D
o
w
n
lo
a
d
 v
is
u
a
li
z
a
ti
o
n

a) b) c)

Figure 8.12: Correlation visualization alternatives (a) basic scatter plot; (b) adding con-

necting lines; (c) adding shading.

8.5. Use-Cases and Validation 139

A D E F G H I B C

Contribution

D
o
w
n
lo
a
d

v
is
u
a
li
z
a
ti
o
n

S
e
rv
e
r

v
is
u
a
liz
a
tio
n

Position

Time cursor

Time

Correlation Area

Figure 8.13: EZEL: A visual tool for the assessment of performance in P2P file-sharing

networks

8.5 Use-Cases and Validation

In order to validate the visualization techniques we propose, we used EZEL to assess the

performance of the ED2K network with a number of concrete cases. We present here two

of these investigations.

In order to experiment with the tool, we needed real-life information about transac-

tions in ED2K. We obtained such datasets by instrumenting eMule [39], an open source

download client for the ED2K network. The instrumented client provides a log file from

which the functions Q, P , C, V , T , and S discussed in Section 8.3 may be computed.

Figure 8.13 shows a visualization of the download of a large movie file (702.4MB).

The complete download took several hours and contained 201,261 transactions. In this

image, the servers are sorted in the decreasing order of their total contribution. The upper

half of the image shows the segment fragmentation on a per server basis. According to

this visualization, the most suitable download sources for archive files are A, B, E and H,

as they provide large sets of contiguous segments, which makes archive recovery simpler

in case of incomplete download. The least preferred in this sense are sources D, F and G,

which provide tiny segments scattered along the entire length of the file. Analyzing the

slopes in the image (i.e., the server speed) one can see that I is one of the fastest sources.

Unfortunately, it is also a very popular one, as most of the time the client request waited

in the server queue. A better alternative, especially for the download of a small file, is

using servers B, C, F or G. Although F and G are slow and provide fragmented segments,

they are unpopular, and thus start satisfying the client requests very fast. Finally, if one

were asked to single out an overall good download source, A would qualify, as it provides

many data, with constant throughput, and little waiting time.

Figure 8.14 depicts a situation where a weakness of the dispatcher algorithm was spot-

ted. For a downloaded file (350MB) the servers were arranged in decreasing speed order.

140 CHAPTER 8. Visualizing Data Exchange in Peer-to-Peer Networks

In Figure 8.14 bottom, the display of segment evolution in time was switched off. Using a

time cursor, segments that were downloaded at a certain moment t0 close to the end of the

download were selected. Figure 8.14 top shows that at t0 the downloaded segment came

Contribution / servers Position

Time

A B

t0

t0

A B

Time

cursor

Time

cursor

Figure 8.14: Dispatcher algorithm assessment. At time t0 source A provides data (top)

although the faster source B is also available (bottom).

from server A (i.e., the contribution slope of A indicates data transfer), while Figure 8.14

bottom shows that at the same time, the faster source B was also available as the client

request was not in queue but ready to be served (i.e., the corresponding position in the

queue of B is white). That means the dispatching algorithm in the eMule client is not

optimized for the minimization of waiting time.

The examples we presented in this chapter address the visualization of data obtained

at the end of a download. However, it is possible to use the same approach for building a

dynamic, real-time visualization of the acquired data. The only issue in this case would

be the frame rate at which images are produced. In the worst case, more than 200,000

transactions have to be considered for the generation of each frame. This would require

an impressive processing power in order to update the image at the arrival of each new

transaction (on average every 100 ms). The current implementation of EZEL generates

images at 0.5 - 1.0 fps on a Pentium 4 processor running at 2.6 GHz. A scenario in-

between would be to generate images on demand with the partial information available

during the download. While differences between consecutively generated images could

be too large to make meaningful correlations, the individual images may be used to gain

insight in the download process and interact with it based on intermediate assessments.

8.6. Conclusions 141

8.6 Conclusions

In this chapter we have presented a novel approach for the visual assessment of perfor-

mance of P2P file-sharing networks, with a focus on the ED2K network. First we have

identified the data transferred in such a network, and then we have constructed relevant

performance descriptions based on it. Subsequently, we have built a custom visualiza-

tion made of two correlated parts: a server and a download visualization. For each part,

we offer a number of visually encodings based and enhancements and combinations of

existing visualization techniques. Notably, we use shaded cushions for virtually all data

elements (servers, segments, queue positions, and correlation plot elements). Overall, this

novel visualization gives a compact and scalable way to present a download consisting of

thousands of transactions, from over 100 sources, on a single screen. We validated this

approach using EZEL, a prototype assessment tool.

To the best of our knowledge, this is the first attempt to visually explore the data

transfer dynamics in the rapidly growing world of P2P file-sharing networks. The other

work in this field addresses a different task, namely visualizing the topology of a P2P

network of a different type [127]. In the future, this visualization could be generalized

and extended to the larger domain of distributed processing in general. The challenges

we foresee there are related to the process visualization of the dispatching and scheduling

entities.

The visualization we have proposed in this chapter does not address the evolution of

software, but a different domain, i.e., data exchange in P2P networks. However, while

building this visualization we used some of the (or similar) visual techniques with the

ones proposed in the previous chapters.

The shaded cushions technique we used in Chapter 5 through Chapter 7 to segregate

file versions, files or subsystems, proved to be very efficient in segregating file segments

and sources in the visualization proposed in this chapter. This confirms the segregating

power of cushions and its generality across application domains. However, the faded

cushions technique that we introduce in this chapter is, in introspect, not applicable in

the visualization models proposed for software evolution. There, the second layer of

cushioning, which segregates files inside clusters, has to be visible along the entire file

length. While this makes cluster segregation a little bit more difficult to visualize, it

enables file segregation at all times, which is not necessary when dealing with P2P data

exchange.

Another reoccurring aspect when building visualizations of software evolution and of

data exchange in P2P networks is the use of color. In all visualizations we built, color

is used to encode identity. While in software evolution visualizations, color can be used

to encode the identity of the artifact creators, in P2P networks color encodes the iden-

tity of the segment providers. In both cases color offers an intuitive way of correlating

identity with structure and time. Both cases suffer also from the inherent limitations of

this approach. While users can efficiently perceive up to 12-16 individual colors, there

are potentially much more identities to be visualized at a specific moment. To cope with

this drawback, a given color map is used only as a first level of visual pattern detection.

When interesting patterns are detected, the color map can be modified to ensure an unique

encoding of the entities that generate the pattern. Consequently, interesting patterns can

142 CHAPTER 8. Visualizing Data Exchange in Peer-to-Peer Networks

be first identified and then validated with this two step approach.

Metric views are also one common aspect across software evolution and P2P data

exchange visualizations. The limited space graphics summarizing information along a

structure or time axis enable powerful correlations along that axis, without making do-

main specific assumptions.

The layout of time evolving entities is also similar for software evolution and P2P

data exchange visualizations. Both the contribution of sources and the evolution of lines,

files, and systems are arranged along a time axis, in an orthogonal layout for easy com-

parison. In both cases the horizontal axis is used to encode the dimension that requires

better resolution according to the application usage scenarios. While in software evolution

the time axis is horizontal, in P2P data exchange visualizations the time axis is vertical.

However, in both cases the order of entities along the second (perpendicular) axis can be

interactively adjusted using sort operations. This enables easier comparison of entities,

assessment of aggregate metric distributions, and outlier detection for specific metrics.

One aspect where the software evolution and P2P data exchange visualizations dif-

fer is the visual encoding of multiple attributes. While in the case of software evolution,

multiple attributes of an entity are encoded using alternating color maps and composable

textures, the P2P data exchange visualization uses fixed color maps. This is an applica-

tion specific aspect, due to the nature of the encoded attributes and the use-cases they are

involved in. The server diagrams for example depict the evolution of both server contri-

bution and client request position in the queue. They might be encoded using different

color mappings. However, in this case, the two entities are highly dependent: contribu-

tion changes only when the client request is on the first position in the queue. Therefore,

one can assume there is no change in the queue position while contribution changes, so

the two quantities can receive an alternating spatial layout. Other correlations are imple-

mented using metric views and the novel scatter plot. These support the identity based

investigations, which form the main use case-base for the proposed P2P data exchange

visualization.

In the next chapter, we address the reoccurring aspects of building software evolution

visualizations in more detail. We also look at these aspects from the point of view of

their applicability in other domains, and we try to give a set of recommendation for their

broader applicability.

Chapter 9

Lessons Learned

In this chapter we give an overview of the recurrent issues that we identified when building

visualizations of software evolution, and we present a set of guidelines and solutions for

addressing them. We start with the data acquisition and preprocessing problems. Next

we present a number of design aspects that we identified as useful when designing visual

representation of software evolution. These aspects may have a broader applicability in

designing visualizations of other abstract, complex evolving data types besides software.

Finally, we discuss the problems we encountered when trying to evaluate our visualization

approach.

9.1 Data Acquisition and Preprocessing

We implemented the visualization model we propose in this thesis in a number of tools

for assessment of software evolution. As data source for these applications, we used his-

tory recordings we retrieved from SCM repositories. Such repositories are actually the

only available instruments at the moment that record the intermediate states a software

system has during its life cycle. Additionally, SCMs are widely accepted by the software

engineering community, and are considered to be key ingredients for successfully manag-

ing large projects [16]. This makes them very suitable for empirical research on software

evolution.

However, using data from SCM repositories for analysis is not straightforward. The

main goal of SCM repositories is to enable collaborative work in a distributed project and

to keep back-up copies of software. To this end, changes are recorded almost always at a

very low level, e.g. text line for CVS, byte for Subversion, and not all evolution patterns

are explicitly stored. Therefore, in order to assess the evolution of software based on

information stored in SCMs, one has to recover the evolution patterns of interest at the

desired level of detail from the available information (see the integration challenge in

Section 1.3).

Some patterns are explicitly stored on the repository, for instance the file insertion,

143

144 CHAPTER 9. Lessons Learned

continuation and deletion in Subversion. Some other patterns can be built on top of the

stored information. For example, line insertion, continuation and deletion can be con-

structed based on the textual difference operator built in CVS and Subversion. There are,

however, evolution patterns that are not recorded by or easy to extract from the two SCM

systems that we investigated. Merge patterns, for example, are completely overlooked, in

spite of the fact that many SCM systems have specific tool support for conducting merging

activities. These patterns have to be detected by mining the existing information. This is

a difficult task acknowledged by the research community that needs further investigation

before it can be used in practice (see [45, 48, 52, 82]).

Another problem of assessing software evolution based on the information stored on

SCM repositories is the fact that SCMs support a single representation of software. How-

ever, software can have many orthogonal representations, for instance as a hierarchy of

files, a set of interrelated classes or an abstract syntax tree. For assessing the evolution

from the perspective of another representation, one has to recover first the evolution pat-

terns for the representation provided by an SCM (e.g., software as a set of files) and then

to translate them to the desired one (e.g., software as a set of interrelated classes). This

translation cannot always be done in a manner that achieves the same results as if the

evolution patterns were recorded specifically for the desired representation. The main

reason for this is the semantic loss that takes place when converting between different

representations of software, in combination with a semantic interpretation of evolution.

For instance, questions such as “will a class continue to deliver the same functionality

after some of the lines of code implementing it changed?” are very difficult to answer.

Translation heuristics can be applied to improve the results, yet their efficiency depends

on the specific application scenario.

A possible solution to all problems mentioned above could be the creation of a new

type of SCM repository that specifically records a wider range of evolution patterns for

a wider range of software representations. The recording should be done at the moment

when evolution takes place and should accommodate semantic interpretations of evolu-

tion.

9.2 Software Evolution Visualization

The visualization model we propose in this thesis has to address an instance of one of the

most difficult problems acknowledged by the information visualization community: the

visualization of large multivariate data sets.

Useful visual assessment scenarios of software evolution require at least the detection

of structure evolution patterns. These can then be correlated with a plethora of software

attributes to gain insight in the evolution of the system. In this respect, a simple mental

model of the data and an efficient usage of the short term memory are a must. Last but not

least, the entire visualization application must be user friendly and intuitive for its typical

users (see the usability and intuitiveness challenges in Section 1.3). To address these

challenges, we identified a number of design aspects in our visualizations of software

evolution that appeared to have a positive contribution during the informal user studies

and experiments we organized. We present these next.

9.2. Software Evolution Visualization 145

A 2D representation of data has several advantages with respect to a possible 3D

alternative. First, it is occlusion free. Secondly, 2D representations combined with zoom

and pan operations are easily understood by software engineers accustomed to work with

2D software design spaces (e.g., UML diagram editors).

A simple 2D layout, using time on the horizontal axis and software entities such as

lines or files on the vertical one is easy to learn and scales well with large amounts of data.

Interactively constructed layouts via selection, sort and cluster operations on the available

data attributes enable the user to guide the creation of a mental map of software evolution.

Additionally, they might reduce the clutter in the image and facilitate the detection of

outliers when they match a natural ordering of the visualized data (e.g. ordering files in

the evolution view based on the file creation time in Chapter 6).

Multiple views using the same type of 2D orthogonal layouts, arranged to share one

axis, are effective in finding correlations via the shared axis. To this end, metric views

can be used. These views summarize the information presented in a main view using a

limited screen space, and enable users to discover high level correlations.

Carefully crafted textures can be used together with color to encode several attributes

at the same time at the same screen location. To be able to identify textures, however, a

minimal display area is required for the encoded surface. From our experience we found

an area of 20×20 pixels to be the minimum value in this respect. Several textures (i.e., up

to three) can be overlaid to show even more attributes. For obtaining the best results, the

texture patterns should be designed such that they are orthogonal to each other, and also

they should not be aligned with the axes of the entity layout.

Colors are very efficient for encoding categorical attributes, either ordinal or nomi-

nal. They are particularly helpful when building and adjusting interactive layouts, as they

facilitate the update of the mental model by preserving category identity. From our expe-

rience, good results can be obtained for nominal attributes when using color to encode up

to 15 different categories. The category uniqueness, however, cannot be perceived when

more than 15 categories have to be color encoded. With ordinal attributes, good results

are achieved when using a rainbow map to encode up to 10 different value ranges.

Geometric shaded cushions have very good visual partitioning properties. They can

strongly emphasize the segregation of visualized entities while their interference with the

color encoding is less distractive than by using border lines. We have noticed that the

exact shape choice of the cushion profile to use is largely a matter of concrete application

and, not in the last instance, of personal user taste.

A preset controller based on the mechanism proposed by Van Wijk and Van

Overveld[112] can enable correlations between color encoded attributes. One can use the

controller to switch between alternative color encodings, using a distance based weighted

blending. By controlling the distance between the elements of the controller, the user

has full control over the blending process. The user can continuously paddle between the

elements, which leads to the formation of a mental map of the possible color encodings,

and enables finding correlations.

A user interaction design that preserves the position of the attention point avoids the

pollution of the short term memory and helps maintaining the mental map of software

evolution. Pop-up menus and combined mouse and keyboard actions are key ingredients

146 CHAPTER 9. Lessons Learned

for such designs. Several informal user experiments showed that the use of the mouse

wheel in combination with control buttons from the keyboard is perceived by the user

as a natural way for implementing zoom operations. Preset zoom levels are also highly

appreciated, and they are best placed in the area immediately boarding the visualization.

The inner mouse button (i.e., left for right handed people) appears to be best used for

performing selection operations (in combination with the keyboard). Pop-up menus are

good for giving layout adjustment commands.

Color legends and labels of layout axes are instrumental for maintaining a mental

model in a multiview environment, and for using visualization as a communication means.

Legends for explaining the color encoding appeared to be the most important ones in our

informal user experiments. They were followed by labels for indicating scale and for

sampling axes. Our users perceived these as ’must have’ annotations in all visualizations

we designed.

All above guidelines should be considered together when building visualization of

software evolution. However they do not make specific assumptions on the data domain.

Consequently, they might be helpful when building visualizations of other types of mul-

tivariate abstract data as well. In this respect we used the same design elements, i.e., 2D

representation of data with orthogonal interactive layouts, metric views, cushions, iden-

tity encoding color schemes and a focus preserving interaction mechanism to assess the

data exchange mechanisms in a Peer-to-Peer network (see chapter 8). The same designed

elements were used by different researchers in building a visualization application for

dynamic memory management analysis (see [83, 84]).

Another important challenge of software evolution visualization is the huge amount

of data to be visualized. Presenting the entire information on one screen is impossible.

Methods and techniques are required that support data and visual sampling, yet allow

detailed investigations of the evolution data (see the scalability challenge in Section 1.3).

In all visualization we propose in this thesis we identified three design aspects that can

help creating comprehensive overviews. We discuss these next.

First, a correlated multi-view environment presenting evolution information at multi-

ple levels of detail allows focus + context investigations without the need for continuously

adjusting visualization parameters. The correlation between views is best implemented

by using the mouse to indicate in the context view the area that needs to be investigated

in more detail, and consequently by visualizing that area in the focus view.

Secondly, deformations of the horizontal and vertical axes allow a redistribution of

the available screen space, and increase the resolution when assessing a specific part of

the visualization, while maintaining the context information. Non-constant deformations

(e.g., fish eye lens) can be misleading sometimes. While they increase the resolution in

particular areas, they make it very difficult to decode spatially encoded properties due

to the non-uniform scaling (i.e., distance proportions change during deformation). This

method is good, nevertheless, for detecting outliers. Constant deformations, for instance

a simple lens, and shared axis interval representations are more suitable for investigations

requiring distance estimations. Some specific deformations of axes can be, nevertheless,

acceptable even for space distribution assessments. In these cases, however, a different

data model is assumed via deformation. For example, in Chapter 5 we used a custom

deformation to switch between a time and a version uniform sampling of the time axis.

9.3. Evaluation 147

While the time uniform sampling addresses evolution from the perspective of a number

of calendar related events, the version uniform sampling assumes data is a sequence of

evolution steps.

Thirdly, screen space antialiasing preserves visualization structure across multiple lev-

els of visual detail and is very useful to eliminate sampling artifacts when visualizing a

large amount of data on a limited screen space. This lets us draw colors which express

several data attribute values per single pixel. However, this type of antialiasing does not

work for visualizations using a rich set of different hues. The blending of different col-

ors may lead to the creation of already assigned tones with non-related meaning and that

might lead to wrong insights. The same observation was made for a similar application in

a related domain by Moreta and Telea [84]. A possible solution to this problem is using a

carefully designed color map which allows meaningful color interpolation and averaging.

Another alternative is to perform importance based antialiasing, i.e., select a single data

sample from all that are to be drawn on the extent of one pixel, and draw only that sample

using the associated color encoding. Clearly, the very definition of this method suggests

it is highly application and scenario dependant, as there are many ways of defining what

“importance” is. However, this does not preserve the structure of the visualization.

9.3 Evaluation

To validate the visualization model that we propose in this thesis, we implemented it in

three applications for assessment of software evolution, described in Chapter 5, 6 and 7.

We used these applications to perform a number of informal user experiments on real life

evolution data and several types of users.

The first experiment we organized was a user study in which software developers

used the visualization proposed in Chapter 5 to get insight in the structure and evolution

of unknown source code files. A small number of developers took part in the study. Each

developer was assessed by a domain expert, during a 15 minute test, after receiving a

15 minute training session on using the tool. At the end of the test, the domain experts

were asked to validate the user findings and to reason about the quality of the acquired

insight. The outcome of this study signaled the potential of the proposed visualization for

supporting software developers in during the maintenance phase of software projects. Yet

this study has a couple of issues that must be considered when assessing the validity of

the results:

• It is not known whether the training period and the test duration are adequately cho-

sen for the complexity of the tool. A more thorough user study would be necessary

first to identify this aspect.

• The participation of the study subjects took place on a voluntary, non-compensatory

basis. The lack of a drive for performing investigations might bias the study results,

as it doesn’t address precisely the target audience of the tools. It is not known,

however, what the biasing level might be in this case.

• The study cannot be considered statistically relevant. It contained only a relatively

small number of sessions in which the findings of one user, assessing the evolution

148 CHAPTER 9. Lessons Learned

of one file from one project, were observed by one domain expert. To obtain statis-

tical relevance this has to be ensured for every above mentioned parameter, that is

for: users, files, projects, and domain experts. Yet, the organization of such a study

in a supervised way requires a large amount of resources.

Given the above issues of organizing relevant user studies we tried to adopt other

means for validating our visualizations. One useful alternative we found was to take

part in open contests for investigating software evolution (e.g., the MSR Challenge of

MSR’06 [116], the Tool Challenge of SoftVis’06 [115] and VisSoft’07 [117]). This en-

abled us to demonstrate the use of our visualizations to a jury of domain experts, achiev-

ing statistical relevance in this particular respect. We used this approach for validating the

visualization proposed in Chapter 6.

Another alternative we used in our experiments in Chapters 6 and 7 was to ask do-

main and tool experts to identify useful usage scenarios for the tools we implemented.

These included senior software developers, architects and project managers from a large

software intensive products company and senior contributors from the KDE [66] Open

Source project. While this approach does not offer a proper validation of the usefulness

of the proposed model for assessing software evolution, it gives examples on the type of

insight that can be obtained, and validates the model for specific investigations.

One possible solution for addressing all above mentioned challenges of organizing

relevant user studies is the involvement of the Open Source Software community. We did

not investigate this alternative yet, but it seems promising as it addresses all presented

issues. One possible drawback we foresee with such an approach, however, is the diffi-

culty of interpreting negative results. While the acceptance of a tool by the community

would be a statistical relevant validation of the visualization model that the tool proposes,

the lack of reaction would not reveal anything in this respect. Additionally, this approach

requires considerable resources to be invested in tool maintenance, documentation and

dissemination, in order to make acceptance possible at all.

Chapter 10

Conclusions

In this thesis, we tried to find a visual approach to answer the question “How to enable

users to get insight in the evolution of a software system?”. Answers to this question

can bring insight in the software development context and its evolution trends, and can

improve both software understanding and decision making during the maintenance phase

of large projects.

To this end, we proposed a model for software evolution visualization. This model

is based on the assumption that developers are familiar with code representations similar

to the ones they use for building the code. This model can show insertion, deletion and

continuation evolution patterns for common representations of software, such as file as

a set of lines, project as a set of files, project as software unit. The model builds on the

standard visualization pipeline and gives a number of steps and guidelines to be followed

when designing visualizations of software evolution.

We have presented three implementations of this model for visualizing evolution

of software based on information extracted from Software Configuration Management

(SCM) repositories, at three different levels of detail, and covering different types of

tasks. In this chapter, we present the concluding remarks of our work. These are meant

both for engineers interested in implementing the model in real life applications and for

researchers that would like to investigate the limitations of the proposed approach and

look for possible solutions.

10.1 On Data Preprocessing

SCM repositories are the only available instruments at the moment that store the inter-

mediate states a software system has during its life cycle. However, SCM systems have

not been specifically designed to record the evolution of software. First of all, not all

evolution patterns can be directly retrieved from such repositories. Instead, they have to

be detected via supplementary analyses. Secondly, only few representations of software

are supported by the existing SCMs. To assess software evolution from the perspective

149

150 CHAPTER 10. Conclusions

of other representations, one has to recover these representations and the associated evo-

lution patterns based on the information stored on SCMs. Both tasks are acknowledged

as difficult by the research community, and they need further investigation before one can

implement them in practice. Ultimately, this may lead to the advent of a new generation

of SCM tools.

10.2 On Software Evolution Visualization

From a visualization point of view, software evolution assessment is a difficult problem

because the evolution data is abstract, highly variate and the amount of data is very large.

When addressing the challenge of building a visualization of software evolution one could

benefit from the experience findings we detail in Chapter 9.

The visualization model that we offer can be used to implement practical assessment

tools for software evolution, the indented audience ranging from software developers to

architects and project managers. The use cases we presented in this thesis cover differ-

ent usage scenarios from familiarizing with the structures and issues in a new project,

to detecting the knowledge distribution of the team and identifying complexity trends.

Software evolution assessment tools are highly exploratory in nature. Consequently, two

aspects have to be considered when trying to build an efficient implementation. First of

all, interaction is critical for enabling the user to steer the investigation process. Secondly,

multiple levels of software representation detail should be addressed from within the same

application. These would enable users to initiate investigations at a higher abstraction

level and then conduct analysis drills when interesting events are detected. Conversely,

investigations performed at a high level of detail can be reported to the context offered by

higher abstraction levels. Both ways of navigating the abstraction scale are important for

usable implementations of our model in practice.

When building our visualizations of software evolution we started from the assump-

tion that users are familiar with software representations that are close to the ones they

use to construct it. Consequently, our visualizations present software at the level of lines

of source code, files and system. One common representation of software that we did

not address in our investigation is software as a collection of interrelated classes. This

case could be treated similarly to the file level representation of software. Nevertheless,

our visualization model does not support the visualization of class relations. If these

are important to the investigation, our model must be augmented accordingly, or another

visualization model has to be found.

10.3 On Evaluation

To evaluate the visualization model we propose in this thesis, we organized a number of

experiments using particular implementations of our model.

One experiment took the form of an informal user study, performed in the presence of

a domain expert (Chapter 5). Three experiments consisted of participation in tool demos

and challenges organized in conjunction with specialized workshops and symposia in the

10.4. Future Work 151

field of software visualization and software repositories mining (see [115, 116, 117]).

Two other experiments had the form of illustrative usage scenarios performed by domain

experts on real life software projects (Chapters 6 and 7). All experiments confirmed the

potential of the visualization model we propose for the assessment of software evolution.

However, the results of these evaluation experiments are far from statistically rele-

vant. Organizing such a broad experiment is difficult for several reasons. First of all, the

intended audience for our visual tools is formed of relatively highly qualified users, with a

good knowledge and experience in software development. It is difficult to involve a large

number of such users in an evaluation study. Additionally, users want to try our tools each

for their own projects, which they know well, and are less interested in exploring a test

project.

Secondly, the tasks that users could perform using the proposed visualization model

cover a wide range of activities and are based on a wide number of parameters. Key in

this process is obtaining insight, and, as noted by North [88], this is notoriously hard

to measure and evaluate. There is no formal model yet to assess the relevance and the

completeness of this set of tasks. Evaluation has to be done, therefore, by a domain expert

who can only deliver an informal assessment of the user performance. Consequently, a

large number of domain experts is required to achieve statistical relevance. Once more,

this is very difficult to achieve in a controlled way and in a limited time period.

One way that we can imagine for achieving statistical relevance is to make use of the

Open Source community as an unsupervised engine for evaluating software engineering

tools. In this case, the emphasis of a possibly relevant user study would be on advertising

a tool implementation of the model inside the community. If the tool becomes popular

and gets accepted, the visualization model gets validated. Time could be an issue in this

respect. However, if the tool does not become popular, which can be due to secondary

reasons such as lack of support, documentation or publicity, the study becomes irrelevant,

and the evaluation of the model remains undecided.

10.4 Future Work

The visualization model we propose in this thesis can be used to investigate software

evolution related aspects for some commonly used software representations. The model is

nevertheless not complete in this respect, and can be extended in a number of of directions.

First of all, our model addresses only insertion, continuation and deletion evolution

patterns. There are interesting scenarios for assessing the evolution of software systems

targeting split and merge patterns. Future work could try to extend our model in this

direction. This could enable users to identify moments of refactoring / rearchitecting in

the evolution of a software system.

Furthermore, software has many possible representations. The use of a given rep-

resentation in practice depends on many factors, which are project and context specific.

Implementations of the proposed model to visualize evolution for other software represen-

tations than the one presented in Section 3.3, and using data from other SCM repositories

than CVS and Subversion would be necessary. These can bring new insight about the

152 CHAPTER 10. Conclusions

usability of the model, and the challenges of implementing it in practice.

One specific difficult problem we foresee in this direction is the implementation of our

model for software representations that rely heavily on relations between entities (e.g.,

class diagrams). To perform meaningful investigations in such cases, additional methods

and techniques are required to visually encode relations. This might require augmenting

the model we propose, or replacing it entirely with a new one.

Another important issue that is yet to be solved when assessing the evolution of soft-

ware is the availability of data. SCM repositories are the only tools available at this mo-

ment for recording software evolution. Yet they are designed for another purpose, namely

to support distributed development. Consequently, SCMs neglect important information

(e.g., entity merge events), which makes recovery of evolution data difficult. Therefore, a

new approach for recording and storing the evolution of software is required. This should

be specifically designed to:

• make a wider range of evolution patterns available for investigation by recording

split and merge patterns for all covered software entities in all representations;

• cover a wider range of software representations, such as UML designs and abstract

syntax trees;

• integrate with other project support systems (e.g., documentation, bug tracking,

quality monitoring) to enable correlation discovery across a larger set of software

related entities.

Last but not least, the model we propose cannot be easily evaluated in a supervised

way, given the specialized audience it targets: the software engineering community. How-

ever, some representative members of this audience are part of an organization that might

facilitate evaluation studies in an unsupervised way: the Open Source Software com-

munity. A method for increasing the chances of performing relevant studies using this

community is necessary. Such a method would be useful for evaluating not only our vi-

sualization model but any software engineering related tool. After all, the Open Source

Software forums are a platform for introducing and validating software applications in

any domain.

We have made our software available to the Open Source Software community

(see [29]). With this we hope to obtain feedback on all aspects of our methods and tech-

niques. Additionally, we hope to have contributed to the software engineering field in

general, by enabling developers and maintainers to obtain insight in the history of large

software projects in an effective and efficient way.

10.4. Future Work 153

Bibliography

[1] ABELLO, J., AND VAN HAM, F. Matrix zoom: A visual interface to semi-external

graphs. In InfoVis’04: Proceedings of the 10th IEEE Symposium on Information

Visualization (2004), IEEE Computer Society, pp. 183–190.

[2] AGE OF EMPIRES, online. www.ageofempires.com.

[3] ANTLR, online. www.antlr.org.

[4] AUBER, D. Tulip. Lecture Notes in Computer Science 2265 (2001), 335–337.

[5] BALL, T., KIM, J., PORTER, A., AND SIY, H. If your version control system could

talk... In ICSE’97: Proceedings of Workshop on Process Modeling and Empirical

Studies of Software Engineerintg (1997).

[6] BASILI, V., AND MILLS, H. Understanding and documenting programs. IEEE

Transactions on Software Engineering SE-8 (May 1982), 270–283.

[7] BASSIL, B., AND KELLER, R. Software visualization tools: Survey and analysis.

In IWPC’01: Proceedings of the 9th International Workshop on Program Compre-

hension (Washington, DC, USA, 2001), IEEE Computer Society, pp. 7–17.

[8] BECK, K., AND ANDRES, C. Extreme Programming Explained: Embrace

Change, second ed. Addison-Wesley, 2004.

[9] BECKER, R., EICK, S., AND WILKS, A. Visualizing network data. IEEE TVCG

1, 1 (March 1995), 16–28.

[10] BENNET, P. Software Maintenance Management: A Study of the Maintenance of

Computer Application Software in 487 Data Processing Organizations. Addison-

Wesley, 1980.

[11] BIEMAN, J., ANDREWS, A., AND YANG, H. Understanding change-proneness in

oo software through visualization. In IWPC’03: Proceedings 11th International

Workshop on Program Comprehension (2003), IEEE CS Press, pp. 44–53.

[12] BIGGERSTAFF, T., MITBANDER, B., AND WEBSTER, D. Program understanding

and the concept assignment problem. Commun. ACM 37, 5 (1994), 72–82.

[13] BONSAI, online. www.mozilla.org/projects/bonsai/.

155

[14] BOOCH, G., online. www.booch.com/architecture/blog/artifacts/Software Archi-

tecture.ppt.

[15] BURCH, M., DIEHL, S., AND WEISSGERBER, P. Visual data mining in software

archives. In SoftVis’05: Proceedings of the 2005 ACM Symposium on Software

Visualization (New York, NY, USA, 2005), ACM Press, pp. 37–46.

[16] BURROWS, C., AND WESLEY, I. Ovum evaluates: configuration management.

Ovum Inc., 1999.

[17] CARD, S., MACKINLAY, J., AND SCHNEIDERMAN, B. Readings in Information

Visualization: Using Vision to Think. Morgan Kaufmann, 1999.

[18] CHIKOFSKY, E., AND CROSS, J. I. Reverse engineering and design recovery: a

taxonomy. IEEE Software 7, 1 (January 1990), 13–17.

[19] CLEARCASE, online. www-306.ibm.com/software/awdtools/clearcase/.

[20] CM SYNERGY, online. www.telelogic.com.

[21] COLEMAN, D.M. ASH, D., LOWTHER, B., AND OMAN, P. Using metrics to

evaluate software system maintainability. IEEE Computer 27, 8 (1994), 44–49.

[22] COLLBERG, C., KOBOUROV, S., NAGRA, J., PITTS, J., AND WAMPLER, K. A

system for graph-based visualization of the evolution of software. In SoftVis’03:

Proceedings of the 2003 ACM Symposium on Software Visualization (2003), ACM

Press, pp. 77–86.

[23] COLUMBUS, online. www.frontendart.com.

[24] CORBI, T. Program understanding: challenge for the 1990’s. IBM Syst. J. 28, 2

(1989), 294–306.

[25] CORMEN, T., LEISERSON, C., AND RIVEST, R. Introduction to Algorithms,

16th ed. MIT Press, 1996.

[26] COVERITY, online. www.coverity.com.

[27] CUBRANIC, D., MURPHY, G., SINGER, J., AND BOOTH, K. Hipikat: A project

memory for software development. IEEE Transactions on Software Engineering

31, 6 (2005), 446–465.

[28] CVS, online. www.nongnu.org/cvs/.

[29] CVSGRAB, online. www.win.tue.nl/vis/.

[30] CVSSCAN, online. www.win.tue.nl/vis/.

[31] DIEHL, S. Software Visualization - Visualizing the Structure, Behaviour, and Evo-

lution of Software. Springer, 2007.

[32] DIFF, online. www.gnu.org/software/diffutils/diffutils.html.

156

[33] DUCASSE, S., GARBA, T., AND NIERSTRASZ, O. Moose: an agile reengineer-

ing environment. In ESEC/FSE-13: Proceedings of the 10th European Software

Engineering Conference (New York, NY, USA, 2005), ACM Press, pp. 99–102.

[34] ECLIPSE CVS, online. drupal.org.

[35] ED2K, online. www.edonkey2000.com.

[36] EICK, S. Aspects of network visualization. IEEE Computer Graphics & Applica-

tions 16, 2 (March 1996), 69–72.

[37] EICK, S. G., STEFFEN, J., AND SUMNER, E. Seesoft – a tool for visualizing line

oriented software statistics. IEEE Transactions on Software Engineering 18, 11

(1992), 957–968.

[38] ELRAD, T., FILMAN, R., AND BADER, A. Aspect-oriented programming.

CACM: Communications of the ACM 44 (2001).

[39] EMULE, online. www.emule-project.net.

[40] ERLIKH, L. Leveraging legacy system dollars for e-business. (IEEE) IT Pro (May-

June 2000), 17–23.

[41] EVERITT, E., LANDAU, S., AND LEESE, M. Cluster Analysis. Arnold Publishers,

2001.

[42] EZEL, online. www.win.tue.nl/vis/.

[43] FENTON, N., AND PFLEEGER, S. Software metrics (2nd ed.): a rigorous and

practical approach. PWS Publishing Co., Boston, MA, USA, 1997.

[44] FEWSTER, M., AND GRAHAM, D. Software Test Automation: Effective Use of

Test Execution Tools, 1st ed. Addison-Wesley Professional, 1999.

[45] FISCHER, M., PINZGER, M., AND GALL, H. Populating a release history

database from version control and bug tracking systems. In ICSM’03: Proceed-

ings of the 19th International Conference on Software Maintenance (2003), IEEE

CS Press, pp. 23–32.

[46] FREEDESKTOP, online. www.freedesktop.org.

[47] FROEHLICH, J., AND DOURISH, P. Unifying artifacts and activities in a visual

tool for distributed software development teams. In ICSE’04: Proceedings of the

26th International Conference on Software Engineering (2004), IEEE CS Press,

pp. 387–396.

[48] GALL, H., JAZAYERI, M., AND KRAJEWSKI, J. Cvs release history data for

detecting logical couplings. In IWPSE’03: Proceeding of the 6th International

Workshop on Principles of Software Evolution (2003), IEEE CS Press, pp. 13–23.

[49] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design Patterns -

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

157

[50] GANTT, H. Work, wages and profits. The Engineering Magazine (1910), 312.

[51] GERMAN, D., HINDLE, A., AND JORDAN, N. Visualizing the evolution of soft-

ware using softchange. In SEKE’04: Proceedings of the 16th Internation Confer-

ence on Software Engineering and Knowledge Engineering (2004), pp. 336–341.

[52] GERMAN, D., AND MOCKUS, A. Automating the measurement of open source

projects. In OOSE’03: Proceeding of Workshop on Open Source Software Engi-

neering (2003).

[53] GERSHON, N. Information visualization: The next frontier. In SIGGRAPH’94:

Proceedings of International Conference and Exibition on Computer Graphics and

Interactive Techniques (1994), pp. 485–486.

[54] GNU RCS, online. www.gnu.org/software/rcs/rcs.html.

[55] GODFREY, M., AND ZOU, L. Using origin analysis to detect merging and split-

ting of source code entities. IEEE Transactions on Software Engineering 31, 2

(February 2005), 166–181.

[56] GRISWOLD, W., YUAN, J., AND KATO, Y. Exploiting the map metaphor in a

tool for software evolution. In ICSE’01: Proceedings of the 23rd International

Conference on Software Engineering (2001), IEEE CS Press, pp. 265–274.

[57] HANNEMANN, J., AND KICZALES, G. Design pattern implementation in java and

aspectj. In OOPSLA’02: Proceedings of the Annual ACM SIGPLAN Conferences

on Object-Oriented Programming (2002), ACM Press, pp. 161–173.

[58] HAVRE, S., HETZLER, B., AND NOWELL, L. Themeriver: Visualizing theme

changes over time. In InfoVis’00: Proceedings of the 6th IEEE Symposium on

Information Vizualization (2000), IEEE Computer Society, pp. 115–123.

[59] HISTORIAN, online. historian.tigris.org.

[60] HOLTEN, D., VLIEGEN, R., AND VAN WIJK, J. Visual realism for the visualiza-

tion of software metrics. In VISSOFT’05: Proceedings of 3rd IEEE International

Workshop on Visualizing Software for Understanding and Analysis (2005), IEEE

CS Press, pp. 27–32.

[61] HUNT, J., AND TICHY, W. Extensible language-aware merging. In ICSM’03:

Proceedings of the 19th IEEE International Conference on Software Maintenance

(2002), IEEE CS Press, pp. 511–520.

[62] ITK, online. www.itk.org.

[63] JAVACVS, online. javacvs.sourceforge.net.

[64] JERDING, D., AND STASKO, J. The information mural: A technique for displaying

and navigating large information spaces. IEEE Transactions on Visualization and

Computer Graphics 4, 3 (1998), 257–271.

[65] KAN, S. Metrics and Models in Software Quality Engineering (2nd Edition).

Addison-Wesley Professional, 2002.

158

[66] KDE KOFFICE, online. www.koffice.org.

[67] KOIKE, H., AND CHU, H.-C. Vrcs: integrating version control and module man-

agement usinginteractive three-dimensional graphics. In VL’97: Proceedings of

thge 1997 IEEE Symposium on Visual Languages (1997), IEEE CS Press, pp. 168–

173.

[68] KOSCHKE, R. Software visualization for reverse engineering. In Revised Lec-

tures on Software Visualization, International Seminar (2002), Springer-Verlag,

pp. 138–150.

[69] LANZA, M. The evolution matrix: recovering software evolution using software

visualization techniques. In IWPSE’01: Proceedings of the 4th International Work-

shop on Principles of Software Evolution (2001), ACM Press, pp. 37–42.

[70] LEHMAN, M. Laws of software evolution revisited. In EWSPT’96: Proceedings of

the 5th European Workshop on Software Process Technology (London, UK, 1996),

Springer-Verlag, pp. 108–124.

[71] LIBCVS, online. www.gnu.org/software/libcvs-spec/.

[72] LOMMERSE, G., NOSSIN, F., VOINEA, L., AND TELEA, A. The visual code

navigator: An interactive toolset for source code investigation. In InfoVis’05: Pro-

ceedings of the 11th IEEE Symposium on Information Visualization (2005), IEEE

Computer Society, pp. 24–31.

[73] LOPEZ-FERNANDEZ, L., ROBLES, G., AND GONZALEZ-BARAHONA, J. Ap-

plying social network analysis to the information in cvs repositories. In MSR’04:

Proceedings of the 2004 International Workshop on Mining Software Repositories

(2004).

[74] MAGNAVIEW, online. www.magnaview.nl.

[75] MALETIC, J., MARCUS, A., AND FENG, L. Source viewer 3d (sv3d) - a frame-

work for software visualization. In ICSE’03: Proceedings of the 25th International

Conference on Software Engineering (2003), IEEE CS Press, pp. 812–813.

[76] MARSHALL, M., HERMAN, I., AND MELANÇON, G. An object-oriented design

for graph visualization. Software: Practice and Experience 31, 8 (2001).

[77] MATKOVIC, K., HAUSER, H., SAINITZER, R., AND GRÖLLER, M. Process

visualization with levels of detail. In InfoVis’02: Proceedings of the 8th IEEE

Symposium on Information Visualization (2002), pp. 67–70.

[78] MAZZA, C. ESA software engineering standards. Tech. rep.

[79] MCCABE, T., AND WATSON, A. Software complexity. Crosstalk, Journal of

Defense Software Engineering 7, 12 (December 1994), 5–9.

[80] MCCLAVE, J., AND SINCICH, T. Statistics, 10th ed. Prentice Hall, 2006.

[81] MCRL2, online. www.mcrl2.org.

159

[82] MOCKUS, A., FIELDING, R., AND HERBSLEB, J. Two case studies of open

source software development: Apache and mozilla. ACM Transactions on Software

Engineering and Methodology 3, 11 (2002).

[83] MORETA, S., AND TELEA, A. Multiscale visualization of dynamic software logs.

In EUROVIS’05: Proceedings of the 2005 IEEE Eurographics Symposium on Vi-

sualization (2007), IEEE CS Press.

[84] MORETA, S., AND TELEA, A. Visualizing dynamic memory allocations. In VIS-

SOFT’07: Proceedings of 4th IEEE International Workshop on Visualizing Soft-

ware for Understanding and Analysis (to appear) (2007), IEEE CS Press.

[85] MUNZNER, T., GUIMBRETIERE, F., TASIRAN, S., ZHANG, L., AND ZHOU, Y.

Treejuxtaposer: scalable tree comparison using focus+context with guaranteed vis-

ibility. ACM Trans. Graph. 22, 3 (2003), 453–462.

[86] NAUR, P., AND RANDELL, B. Software Engineering. Report of a conference

sponsored by the NATO Science Committee. NATO Scientific Affairs Division,

1969.

[87] NETBEANS.JAVACVS, online. javacvs.netbeans.org.

[88] NORTH, C. Toward measuring visualization insight. IEEE Computer Graphics &

Applications 26, 3 (2006), 6–9.

[89] OHIRA, M., OHSUGI, N., OHOKA, T., AND MATSUMOTO, K. Accelerating

cross project knowledge collaboration using collaborative filtering and social net-

works. In MSR’05: Proceedings of 2005 International Workshop on Mining Soft-

ware Repositories (2005), pp. 111–115.

[90] PAUL, S., PRAKASH, A., BUSS, E., AND HENSHAW, J. Theories and techniques

of program understanding. In CASCON’91: Proceedings of the 1991 Conference

of the Centre for Advanced Studies on Collaborative Research (1991), IBM Press,

pp. 37–53.

[91] PINZGER, M., GALL, H., FISCHER, M., AND LANZA, M. Visualizing multiple

evolution metrics. In SoftVis’05: Proceedings of the 2005 ACM Symposium on

Software Visualization (New York, NY, USA, 2005), ACM Press, pp. 67–75.

[92] RAO, R., AND CARD, S. The table lens: merging graphical and symbolic repre-

sentations in an interactive focus + context visualization for tabular information.

In CHI’94: Proceedings of the 1994 SIGCHI Conference on Human Factors in

Computing Systems (1994), ACM Press, pp. 318–322.

[93] RIVA, C. Visualizing software release histories with 3dsoftvis. In ICSE’00:

Proceedings of the 22nd International Conference on Software Engineering (New

York, NY, USA, 2000), ACM Press, p. 789.

[94] SAITO, T., MIYAMURA, H., YAMAMOTO, M., SAITO, H., HOSHIYA, Y.,

AND KASEDA, T. Two-tone pseudo coloring: Compact visualization for one-

dimensional data. In InfoVis’05: Proceedings of the Proceedings of the 11th IEEE

Symposium on Information Visualization (Washington, DC, USA, 2005), IEEE

Computer Society, pp. 173–180.

160

[95] SEO, J., AND SHNEIDERMAN, B. Interactively exploring hierarchical clustering

results. Computer 35, 7 (2002), 80–86.

[96] SHNEIDERMAN, B. The eyes have it: A task by data type taxonomy for informa-

tion visualization. In VL’96: Proceedings of the 1996 IEEE Symposium on Visual

Languages (1996), IEEE CS Press, pp. 336–343.

[97] SLIWERSKI, J., ZIMMERMANN, T., AND ZELLER, A. When do changes induce

fixes? on fridays. In MSR’05: Proceedings of the 2005 International Workshop on

Mining Software Repositories (2005), pp. 24–28.

[98] SPENCE, R. Information Visualization. ACM Press, 2001.

[99] SQLITE, online. www.sqlite.org.

[100] STANDISH, T. An essay on software reuse. IEEE Transactions on Software Engi-

neering 10, 5 (September 1984), 494–497.

[101] STASKO, J., DOMINGUE, J., BROWN, M., AND PRICE, B. Software Visualiza-

tion. MIT Press, 1998.

[102] STOREY, M., WONG, K., AND MULLER, H.

[103] STROUSTRUP, B. The C++ Programming Language (3rd edition). Addison Wes-

ley Longman, 1997.

[104] SVN, online. subversion.tigris.org.

[105] TELEA, A., MACCARI, A., AND RIVA, C. An open toolkit for prototyping re-

verse engineering visualization. In VisSym’02: Proceedings of the 2002 Joint Eu-

rographics - IEEE TCVG Symposium on Visualization (2002), The Eurographics

Association, pp. 241–251.

[106] TERMEER, M., LANGE, C., TELEA, A., AND CHAUDRON, M. Visual exploration

of combined architectural and metric information. In VISSOFT’05: Proceedings of

3rd IEEE International Workshop on Visualizing Software for Understanding and

Analysis (2005), IEEE CS Press, pp. 21–26.

[107] THOMAS, J., AND COOK, K. A visual analytics agenda. Computer Graphics and

Applications 26, 1 (Jan. - Feb. 2006).

[108] TILLEY, S., WONG, K., STOREY, M., AND MULLER, H. Rigi: A visual tool for

understanding legacy systems. International Journal of Software Engineering and

Knowledge Engineering (December 1994).

[109] TONELLA, P., AND POTRICH, A. Reverse Engineering of Object Oriented Code.

Springer, 2004.

[110] TRETMANS, G., AND BELINFANTE, A. Automatic Testing with Formal Methods.

University of Twente, The Netherlands, 2000.

[111] VAN WIJK, J., AND VAN DE WETERING, H. Cushion treemaps: Visualization of

hierarchical information. In InfoVis’99: Proceedings of the 5th IEEE Symposium

on Information Visualization (1999), IEEE Computer Society, pp. 73–78.

161

[112] VAN WIJK, J., AND VAN OVERVELD, C. Preset based interaction with high di-

mensional parameter spaces. In Proceedings of the 1999 Dagstuhl Seminar on

Visualization (1999).

[113] VAN WIJK, J., AND VAN SELOW, E. Cluster and calendar based visualization

of time series data. In InfoVis’99: Proceedings of the 5th IEEE Symposium on

Information Visualization (1999), IEEE Computer Society, pp. 4–9.

[114] VISUAL SOURCESAFE, online. msdn.microsoft.com/ssafe/.

[115] VOINEA, S., AND TELEA, A. How do changes in buggy mozilla files propagate?

In SoftVis’06: Proceedings of the 2006 ACM Symposium on Software Visaulization

(2006), ACM Press, pp. 147–148.

[116] VOINEA, S., AND TELEA, A. Mining software repositories with cvsgrab. In

MSR’06: Proceedings of the 2006 International Workshop on Mining Software

Repositories (2006), pp. 167–168.

[117] VOINEA, S., AND TELEA, A. Visualizing debugging activity in source code repos-

itories. In VISSOFT’07: Proceedings of the 4th IEEE International Workshop on

Visualizing Software for Understanding and Analysis (to appear) (2007), IEEE CS

Press.

[118] VTK, online. www.vtk.org.

[119] WARDEN, R. Software Reuse and Reverse Engineering in Practice. Chapman &

Hall, 1992.

[120] WARE, C. Information Visualization. Perception for Design. Morgan Kaufmann,

2000.

[121] WARE, C. Designing with a 2 1/2d attitude. Information Design Journal 3, 10

(2001).

[122] WILLS, L., AND NEWCOMB, P. Reverse Engineering. Springer, 2001.

[123] WINCVS, online. www.wincvs.org.

[124] WINDIFF, online. www.microsoft.com.

[125] WU, J., SPITZER, C., HASSAN, A., AND HOLT, R. Evolution spectrographs: Vi-

sualizing punctuated change in software evolution. In IWPSE’04: Proceedings of

the 7th International Workshop on Principles of Software Evolution (2004), IEEE

CS, pp. 57–66.

[126] WU, X. Visualization of version control information. Master’s thesis. University

of Victoria, 2003.

[127] YEE, K.-P., FISHER, D., DHAMIJA, R., AND HEARST, M. Animated exploration

of dynamic graphs with radial layout. In InfoVis’01: Proceedings of 7th IEEE

Symposium on Information Visualization (2001), pp. 43–50.

162

[128] YING, A., MURPHY, G., NG, R., AND CHU-CARROLL, M. Predicting source

code changes by mining revision history. IEEE Transactions on Software Engi-

neering 30, 9 (September 2004).

[129] ZIMMERMANN, T., DIEHL, S., AND ZELLER, A. How history justifies system

architecture (or not). In IWPSE’03: Proceedings of the 6th International Workshop

on Principles of Software Evolution (2003), IEEE Computer Society, pp. 73–83.

[130] ZIMMERMANN, T., AND WEISSGERBER, P. Preprocessing cvs data for fine-

grained analysis. In MSR’04: Proceedings of the 2004 International Workshop

on Mining Software Repositories (2004).

[131] ZIMMERMANN, T., WEISGERBER, P., DIEHL, S., AND ZELLER, A. Mining ver-

sion histories to guide software changes. In ICSE’04: Proceedings of the 26th

International Conference on Software Engineering (2004), IEEE Computer Soci-

ety, pp. 563–572.

163

Publications related to this work

• VOINEA, L., LUKKIEN, J.J. AND TELEA, A., Visual Assessment of Software

Evolution, in Science of Computer Programming, vol. 65, no. 3, Elsevier, 2007,

pp. 222–248

Related chapter: 5

• VOINEA, L., AND TELEA, A., Visual Querying and Analysis of Large Software

Repositories, accepted for Special Issue on Mining Software Repositories of Em-

pirical Software Engineering, Springer, 2007, to appear

Related chapter: 6

• VOINEA, L., AND TELEA, A., Visualizing Debugging Activity in Source Code

Repositories, in VISSOFT’07: Proceedings of 4th IEEE International Workshop on

Visualizing Software for Understanding and Analysis, IEEE Press, 2007, to appear

Related chapter: 6

• VOINEA, L., AND TELEA, A., Visual Data Mining and Analysis of Software

Repositories, accepted for Special Issue on Visual Analytics of Computers & Graph-

ics, Elsevier, 2006, to appear

Related chapters: 2, 4, 5, 6

• VOINEA, L. AND TELEA, A., A File-Based Visualization of Software Evolution,

in ASCI’06: Proceedings of the Annual Conference of the Advanced School for

Computing and Imaging, ASCI Press, 2006, pp. 114–121

Related chapter: 6

• VOINEA, L. AND TELEA, A., How Do Changes in Buggy Mozilla Files Propa-

gate?, in SoftVis’06: Proceedings of the 2006 ACM Symposium on Software Visu-

alization, ACM Press, 2006, pp. 147–148

Related chapter: 6

• VOINEA, L. AND TELEA, A., Multiscale and Multivariate Visualizations of Soft-

ware Evolution, in SoftVis’06: Proceedings of the 2006 ACM Symposium on Soft-

ware Visualization, ACM Press, 2006, pp. 115–124, (Cover image)

Related chapter: 6

• VOINEA, L. AND TELEA, A., Mining Software Repositories with CVSgrab, in

MSR’06: Proceedings of the 2006 International Workshop on Mining Software

165

Repositories, ACM Press, 2006, pp. 167–168, (Second prize at the MSR Chal-

lenge competition)

Related chapter: 6

• VOINEA, L. AND TELEA, A., An Open Framework for CVS Repository Query-

ing, Analysis and Visualization, in MSR’06: Proceedings of the 2006 International

Workshop on Mining Software Repositories, ACM Press, 2006, pp. 33–39

Related chapter: 6

• VOINEA, L. AND TELEA, A., CVSgrab: Mining the History of Large Software

Projects, in EUROVIS’06: Proceedings of the 2006 Eurographics / IEEE VGTC

Symposium on Visualization, IEEE Press, 2006, pp. 187–194

Related chapter: 6

• VOINEA, L. AND TELEA, A., Interactive Visual Mechanisms for Exploring Source

Code Evolution, in VISSOFT’05: Proceedings of 3rd IEEE International Workshop

on Visualizing Software for Understanding and Analysis, IEEE Press, 2007, IEEE

CS Press, pp. 52–57

Related chapter: 5

• LOMMERSE, G., NOSSIN, F., VOINEA, L. AND TELEA, A., The Visual Code

Navigator: An Interactive Toolset for Source Code Investigation, in InfoVis’05:

Proceedings of the 11th IEEE Symposium on Information Visualization, IEEE CS

Press, pp. 24–31

Related chapter: 5

• VOINEA, L. AND TELEA, A., Visual Assessment Techniques for Component-

Based Framework Evolution, in EUROMICRO’05: Proceedings of the 31st EU-

ROMICRO Conference, IEEE CS Press, pp. 168–179

Related chapter: 5

• VOINEA, L., TELEA, A. AND VAN WIJK, J.J., A Line-Based Visualization of

Code Evolution, in ASCI’05: Proceedings of the Annual Conference of the Ad-

vanced School for Computing and Imaging, ASCI Press, 2005, pp. 350–357

Related chapter: 5

• VOINEA, L., TELEA, A. AND CHAUDRON, M.R.V., Version-Centric Visualiza-

tion of Code Evolution, in EUROVIS’05: Proceedings of the 2005 Eurographics /

IEEE VGTC Symposium on Visualization, IEEE CS Press, pp. 223–230

Related chapter: 5

• VOINEA, L., TELEA, A., and Van Wijk, J.J., CVSscan: Visualization of Code

Evolution, in SoftVis’05: Proceedings of the 2005 ACM Symposium on Software

Visualization, ACM Press, pp. 47–56

Related chapter: 5

• VOINEA, L., TELEA, A., AND VAN WIJK, J.J., A Visual Assessment Tool for P2P

File Sharing Networks, in InfoVis’04: Proceedings of the 10th IEEE Symposium on

Information Visualization, IEEE CS Press, 2004, pp. 41–48, (Cover image)

Related chapter: 8

166

• VOINEA, L. AND TELEA, A., A Framework for Interactive Visualization of

Component-Based Software, in EUROMICRO’04: Proceedings of the 30st EU-

ROMICRO Conference, IEEE CS Press, pp. 567–574

Related chapter: 5

167

Summary

Software has today a large penetration in all infrastructure levels of the society. This

penetration took place rapidly in the last two decades and continues to increase. In the

same time, however, the software industry gets confronted with two increasingly serious

challenges: complexity and evolution. The size of software applications is growing larger.

This leads to a steep increase in complexity. Additionally, the change in requirements and

available technologies leads to software modifications. As a result, a huge amount of code

needs to be maintained and updated every year (i.e. the legacy systems problem).

Software visualization is a very promising solution to the above mentioned challenges

of the software industry. It is a specialized branch of information visualization, which

visualizes artifacts related to software and its development process. In this thesis we try

to use visualization of software evolution to get insight in the development context of

software and in its evolution trends. The main question we try to answer with this is:

“How to enable users to get insight in the evolution of a software system?”

Our final goal is to improve both software understanding and decision making during

the maintenance phase of large software projects.

We start by positioning the thesis in the context of related research in the field of

both software evolution analysis and visualization. Then we perform an analysis of the

software evolution domain to formalize the problems specific to this field. To this end, we

propose a generic system evolution model and a structure based meta-model for software

description. Consequently, we use these models to give a formal definition of software

evolution.

Next we propose a visualization model for software evolution, based on the previ-

ously introduced software evolution model. The visualization model consists of a number

of steps with specific guidelines for building visual representations. Then we present

three applications that make use of the proposed visualization model to support real life

software evolution analysis scenarios. These applications cover the most commonly used

software description models in industry: file as a set of code lines, project as a set of

files, and project as a unitary entity. For each application, we formulate relevant use

cases, present specific implementation aspects, and discuss results of use case evaluation

experiments.

We also propose in this thesis a novel visualization of data exchange processes in

169

Peer-to-Peer networks. While this does not address software evolution, it tackles com-

parable issues, e.g., the dynamic evolution of a set of interrelated data artifacts. The aim

of presenting this visualization is twofold. First, we illustrate how to visualize different

types of software-related data than purely software source code. Secondly, we show that

the visual and interaction techniques that we have developed in the context of software

evolution visualization can be put to a good use for other applications as well.

We conclude the thesis with an inventory of reoccurring problems and solutions we

have discovered in the visualization of software evolution. Additionally, we identify

generic issues that transcend the border of the software evolution domain and we present

them together with a set of recommendation for their broader applicability. Finally, we

outline the remaining open issues, and the possible research directions that can be fol-

lowed to address them.

170

Acknowledgements

Throughout this thesis I have used the pronoun “we” instead of “I” when I referred to the

work that was done. However, “we” is far from being the pluralis majestatis. It has a

more humble meaning. It acknowledges that the work presented in the thesis is based on

the efforts of more people than just me, people to whom I am very thankful.

First of all, I owe a great deal of gratitude to dr.ir. Alex Telea, my first copromotor and

direct supervisor, who closely supported me during the four years I spent on this thesis.

He always helped me find the path I was looking for, and supplied me with the necessary

motivation to carry on when wandering in the endless mazes of visualization and software

engineering.

I would like to thank prof.dr.ir. Jack van Wijk, my promotor. His critical and con-

structive observations helped me to maintain an objective stance throughout my research,

keeping a balance between my enthusiasm and my claims.

I am also grateful to dr. Johan Lukkien, my second copromotor, for challenging me to

look at my work from different perspectives and for helping me to perfect my models of

software evolution.

I am very thankful to the members of my doctoral committee, prof.dr. Stephan Diehl,

prof.dr. Mark van den Brand, prof.dr. Arie van Deursen, and prof.dr. Jos Roerdink for

their constructive remarks on my thesis manuscript and for accepting to be part of the

opposition.

My roommates have also had an important contribution to this thesis. In chronological

order of meeting them, I would like to thank Hannes Pretorius, Frank van Ham, Dennie

Reniers and Danny Holten, Koray Duhbaci, Yedendra Shrinivasan, and Jing Li for their

suggestions, help and the interesting discussions we had over lunch or coffee. They knew

how to make our big room a welcoming place that I was always entering with pleasure.

I would also like to thank my other colleagues from the VIS, OAS and SAN groups,

for offering me a challenging working environment and a lot of inspiration during the last

four years.

I am equally grateful to Tineke van den Bosch, Cecile Brouwer, and all the employees

of the PO department that took care of the administrative jobs and helped me fight the

bureaucracy that comes with being a foreigner in The Netherlands. Their faithful support

allowed me to concentrate on my work and worry less about administrative problems.

171

I would like to give special thanks to Harold Weffers and Maggy de Wert from the

Stan Ackermans Institute for being very supportive both from a professional and personal

point of view. They have always welcomed me and made me feel appreciated throughout

my staying at Technische Universiteit Eindhoven.

On the personal side, family support is something I could have not worked without.

First of all I would like to thank my parents for their unconditional love and support. They

had a great influence in me taking up the challenge of a doctorate. I thank my mother,

Elena, for making me appreciate and respect the world of science, and my father, Radu,

for giving me the sense of adventure and the curiosity with respect to foreign cultures.

I would especially like to thank to my grandmother, Mami, for taking care of me for

such a long time, and for teaching me to hope and to have faith, qualities that are so

necessary when you embark on an unknown journey.

I am enormously grateful to my close relatives, Jeni, Bazil, Radu, George, Alina and

Sorin for taking care of the family I left behind when moving to The Netherlands. Without

their support I could have not concentrated on my work, far away from home.

Last but not least, I would like to thank my wife, Daniela. Her love and support have

been the only solid ground I had all these years. Iti multumesc, steluta mea norocoasa!

Lucian Voinea

August 2007

172

Curriculum Vitae

Stefan-Lucian Voinea was born on May 22nd 1976 in Constanta, Romania. He followed

undergraduate studies at Politehnica University in Bucharest, where he obtained in June

2000 his Bachelor and Master degrees, both in Computer Science and Electrical Engineer-

ing. In 2001 he moved to The Netherlands where he followed the Software Technology

postgraduate studies of the Stan Ackermans Institute in Eindhoven. In September 2003

he obtained his Master of Technological Design title. Since October 2003 he has been a

PhD student at Technische Universiteit Eindhoven under the supervision of dr. ir. A.C.

Telea, prof. dr. ir. J.J. van Wijk and dr. J.J. Lukkien. His research concerns visualization

of software evolution, and has led amongst others to several publications at international

conferences and in journals, and to this thesis.

173

	Contents
	1. Introduction
	2. Background
	3. Software evolution domain analysis
	4. A visualization model for software evolution
	5. Visualizing software evolution at line level
	6. Visualizing software evolution at file level
	7. Visualizing software evolution at system level
	8. Visualizing data exchange in peer-to-peer networks
	9. Lessons learned
	Bibliography
	Publications related to this work
	Summary
	Acknowledgements
	Curriculum Vitae

