

A 3D photo-realistic

environment simulator for
mobile robots

 ISBN: 978-94-6423-139-7

Published by Proefschriftmaken
http://www.Proefchriftmaken.nl

 Cover design by Honglin Yuan

 Copyright © 2021 Honglin Yuan.

 All rights reserved.

A 3D photo-realistic environment
simulator for mobile robots

Een 3D-fotorealistische omgevingssimulator voor
mobiele robots

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht
op gezag van de rector magnificus, prof. dr. H. R. B. M. Kummel-
ing, ingevolge het besluit van het college voor promoties in het
openbaar te verdedigen opmaandag 15 februari 2021 des ochtends
te 10.30 uur

door

Honglin Yuan

geboren op May 13, 1990
te Shandong, China

Promotor: Prof. dr. R.C. (Remco) Veltkamp
Promotor: Prof. dr. Alexandru C. Telea

Summary

Recent years have witnessed great advancement in visual artificial intelligence (AI) re-
search based on deep learning. To take advantage of deep learning, we need to collect a
large amount of data in various environments and conditions. However, collecting such
data is a time-consuming and labor-intensive task. Apart from that, developing and test-
ing visual AI algorithms for robots are expensive and in some cases dangerous processes
in the real world. To address these challenges, in this thesis we investigate algorithms
to design a high-quality simulator for mobile robots. We aim to narrow the gap between
simulation and reality, generate infinitely many photo-realistic color-and-depth image
pairs from arbitrary locations and allow transferring algorithms that are developed and
tested in simulation to physical platforms without domain constraints.

To achieve our goals, we design a view synthesis module used for our simulator to
synthesize free-viewpoint photo-realistic color-and-depth image pairs. Our approach
combines depth refinement, adaptive view selection and layered 3D warping to lower
the rendering complexity and improve the quality of synthesized images. We also de-
sign controller, recorder, and visualizer modules for our simulator. These modules are
designed to work together, providing a variety of data including real-time camera poses,
synthesized color-and-depth image pairs, trajectories of the robot for training robotic
tasks.

Based on our simulator, we build a 3D dataset for benchmarking 6D object pose es-
timation which pays an important role in robotic grasping and manipulation research.
The dataset consists of different objects that cover a variety of shapes, rigidity, sizes,
weight and textures. For our simulator can seamlessly integrate robots with virtual
scenes, we generate a large number of photo-realistic color-and-depth image pairs with
ground truth 6D poses for training data-driven pose estimation approaches. Our dataset
is freely distributed to research groups worldwide by the Shape Retrieval Challenge
(SHREC) benchmark on 6D pose estimation.

We conduct a variety of experiments to investigate the performance of different pose
estimation approaches proposed from our benchmark using different evaluation met-
rics. We learn important lessons from the current pose estimation algorithms. This
gives insight into where researchers’ attention should be paid to make progress on pose
estimation. Apart from that, we propose a novel approach to further improve the per-

ii

formance of 6D object pose estimation by effectively computing hidden representations
from color and depth images, and then fusing them properly with a graph attention net-
work which fully exploits the relationship between visual and geometric features.

Overall, we propose a 3D photo-realistic virtual environment simulator to develop
vision-based algorithms for AI research. Experiments demonstrate our simulator nar-
rows the reality gap between the virtual environment and the real scene. Thus, computer
vision-based algorithms including depth estimation, object recognition and 6D object
pose estimation developed in simulation can be transferred to the real world without
domain adaption.

Samenvatting

De laatste jaren is er grote vooruitgang geboekt in het onderzoek naar visuele kunstma-
tige intelligentie (AI), gebaseerd op diepgaand leren. Om gebruik te maken van deep
learning moeten we een grote hoeveelheid data verzamelen in verschillende omgevin-
gen en omstandigheden. Het verzamelen van dergelijke data is echter een tijdrovende
en arbeidsintensieve taak. Daarnaast zijn het ontwikkelen en testen van visuele AI-
algoritmen voor robots dure en in sommige gevallen gevaarlijke processen in de echte
wereld. Omdeze uitdagingen aan te gaan, onderzoekenwe in dit proefschrift algoritmes
om een hoogwaardige simulator voor mobiele robots te ontwerpen. We streven ernaar
de kloof tussen simulatie en werkelijkheid te verkleinen, oneindig veel fotorealistische
beeldparen in kleur en diepte te genereren vanaf willekeurige locaties en algoritmen die
in de simulatie zijn ontwikkeld en getest over te brengen naar fysieke platformen zonder
domeinbeperkingen.

Om onze doelen te bereiken, ontwerpen we een beeldsynthesemodule voor onze
simulator om fotorealistische kleuren- en dieptebeeldparen met een vrij gezichtspunt
te synthetiseren. Onze aanpak combineert diepteverfijning, adaptieve weergaveselectie
en gelaagde 3D vervorming om de renderingcomplexiteit te verlagen en de kwaliteit van
de gesynthetiseerde beelden te verbeteren. We ontwerpen ook controller-, recorder- en
visualisatiemodules voor onze simulator. Deze modules zijn ontworpen om samen te
werken en bieden een verscheidenheid aan gegevens, waaronder realtime camerahou-
dingen, gesynthetiseerde kleuren- en dieptebeeldparen, trajecten van de robot voor het
trainen van robottaken.

Op basis van onze simulator bouwen we een 3D-dataset voor het benchmarken van
6D-object houdingen, wat een belangrijke rol speelt in het robotgrijpen en manipulatie-
onderzoek. De dataset bestaat uit verschillende objecten die een verscheidenheid aan
vormen, stijfheid, afmetingen, gewicht en texturen omvatten. Omdat onze simulator ro-
bots naadloos kan integreren met virtuele scènes, genereren we een groot aantal fotore-
alistische kleuren- en dieptebeeldparen met ground truth 6D poses voor het trainen van
data-gedreven houdingschatting benaderingen. Onze dataset wordt vrijelijk verspreid
onder onderzoeksgroepen wereldwijd door de Shape Retrieval Challenge (SHREC) ben-
chmark op 6D-poseschatting.

We voeren een verscheidenheid aan experimenten uit om de prestaties van verschil-

iv

lende houdingschattingsmethoden die vanuit onze benchmark worden voorgesteld, te
onderzoeken aan de hand van verschillende evaluatiemetingen. We leren belangrijke
lessen uit de huidige houdingschattingsalgoritmen. Dit geeft inzicht in waar de aan-
dacht van de onderzoekers naartoe moet gaan om vooruitgang te boeken op het gebied
van houdingschatting. Daarnaast stellen we een nieuwe aanpak voor om de prestaties
van 6D object houdingschatting verder te verbeteren door het effectief berekenen van
verborgen weergaven van kleur- en dieptebeelden, en deze vervolgens goed te versmel-
ten met een grafisch attentienetwerk dat de relatie tussen visuele en geometrische ken-
merken volledig benut.

In het algemeen stellenwe een 3D fotorealistische virtuele omgevingssimulator voor
omop visie gebaseerde algoritmen voorAI-onderzoek te ontwikkelen. Experimenten to-
nen aan dat onze simulator de realiteitskloof tussen de virtuele omgeving en de echte
scène verkleint. Zo kunnen computervisie-gebaseerde algoritmen, waaronder diepte-
schatting, objectherkenning en 6D-oorsprongschatting, ontwikkeld in de simulatie, naar
de echte wereld worden overgebracht zonder domeinaanpassing.

Acknowledgements

I would like to thank my supervisor Prof. Remco C. Veltkamp for inspiring and sup-
porting me throughout my PhD study. It was Remco who welcomedme with open arms
when I applied for a PhD position inUU, tellingme hewould like to superviseme. It was
the first day of 2017, a special date that I will always remember. During my PhD, I had
many ups and downs, just like every PhD student experienced. Rejected papers, failed
experiments, unsolved problems made me disappointed. His incredible kindness gives
me courage and inspiration to go through these dark hours. Remco trusts his students
to be self-motivated and to find their own path. I really appreciate this large amount of
freedom and I believe it will benefit me for a lifetime. Thanks also to Prof. Alexandru C.
Telea for agreeing to be my second supervisor, reviewing my thesis and giving valuable
feedback.

Thanks to my colleagues Tao Ku, Ju Zhang, Ilja Gubins. Tao as my longest room-
mate helps me solve many programming problems with his incredible patience. Many
bugs have been spotted and fixed with his help. I also receive many comforts from deep
conversations about life, study or simply mindless talking. Ju is a successful researcher,
being a rolemodel: one whomaintains a goodwork-life balance. Her invaluable help on
revising my papers gives me a lot of inspiration on how to write a research paper. I am
grateful to Ilja. Even thoughwe are in different projects, his creative ideas and incredible
kindness help me a lot.

I am incredibly thankful to my friends Na Li, Chunlei Liu, Xuexia Zhang, Fuqing Li,
Nanjing Chen, Cui Li, Qingwu Liu. I am touched by their firm support and warm talks.
I am also grateful to all my other colleagues and friends.

Many thanks to China Scholarship Council for providingme funding support formy
PhD study.

Finally, I owe my doctoral work to my parents, relatives, and Rongfeng Dong. With-
out their selfless love and support, I would never have been able to finish my thesis.

vi

Contents

1 Introduction 1
1.1 Motivation and goals . 2
1.2 Context . 3
1.3 Contributions . 5
1.4 Structure . 8
1.5 Publications . 9

2 Background 11
2.1 Image based rendering . 11
2.2 3D reconstruction . 20
2.3 Robot Operating System . 33
2.4 Deep learning . 37

3 Free-viewpoint image based rendering 45
3.1 Introduction . 46
3.2 Related work . 47
3.3 Overview . 49
3.4 Free-viewpoint image based rendering 50
3.5 Experimental results . 57
3.6 Conclusion and future work . 67

4 PreSim: A 3D photo-realistic environment simulator 69
4.1 Introduction . 70
4.2 Related work . 71
4.3 Photo-realistic virtual environment . 73
4.4 Tasks . 82
4.5 Experimental results . 84
4.6 Conclusion and future work . 91

5 Sim-to-Real 6D object pose estimation dataset construction 93
5.1 Introduction . 94

viii CONTENTS

5.2 Related work . 96
5.3 The RobotP dataset . 97
5.4 Experimental results . 112
5.5 6D object pose estimation challenge . 117
5.6 Conclusion and future work . 118

6 6D object pose estimation 119
6.1 Introduction . 120
6.2 Related work . 122
6.3 Analysis of benchmarking approaches for 6D object pose estimation . . 123
6.4 Object pose estimation with color/geometry attention fusion 133
6.5 Conclusion and future work . 143

7 Conclusions and future work 145
7.1 Reaching our goals . 145
7.2 Beyond our goals . 147
7.3 Concluding remarks . 149

Curriculum Vitae 151

1
Introduction

Figure 1.1: Over time, we have strived to equip robots with thoughts and movement.
The term ”robot”, is first used in the science fiction play named R.U.R. (left) and the first
physical robot, ELEKTRO, is displayed at the World’s fair (middle). In this thesis, we
aim to develop simulation environment and artificial algorithms for humanoid robots
(right).

Imagine asking a robot to pick up a banana from a table and bring it back to you.
To accomplish such a task, the robot would need a range of skills, such as language un-
derstanding, object recognition, visual navigation and object pose estimation. This goal

2 MOTIVATION AND GOALS

is something we have been working towards for centuries. Already in ancient mytholo-
gies, artificial people such as the talking mechanical handmaidens built by the Greek
god Hephaestus (Vulcan to the Romans) out of gold [Ger03], and clay golems of Jewish
legend had appeared. In a 1920 science fiction play, written by the Czech writer Karel
Čapek, the term ”robot”, was first used, where R.U.R. (Rossum’s Universal Robots) was
a robot which could think and behave like humans [Rob16] (Figure 1.1(a)). By 1939,
the first physical robot, ELEKTRO (Figure 1.1(b)), went on display at the World’s fair.
It could walk by voice command, speak about 700 words, smoke cigarettes, blow up
balloons, and move its head and arms [RS10]. In 1948 the first autonomous robot was
created by William Grey Walter [FIS14]. The robot could find its way around obsta-
cles by making use of a bump sensor. Later, with the importance of simulation being
recognized, in 1997 IBM created Deep Blue, a computer which defeated world cham-
pion Garry Kasparov [CHJH02]. Since then, simulation, specifically 3D simulation has
started to attract much attention. With the remarkable breakthroughs in simulation,
vision and language communities, more and more robots (e.g., humanoid Pepper ((Fig-
ure 1.1 (c)) manufactured by SoftBank Robotics.) are created to achieve human-like
abilities. Various robots have been widely used in manufacturing, transport, space ex-
ploration, surgery, industrial goods and laboratory research [KK17]. While the advent
of deep learning has led to significant progress in computer vision and natural language
processing [Gir15, DCLT18], today’s robots still lack the ability to achieve the aforemen-
tioned goals.

1.1 Motivation and goals

Training robots in the real world presents many challenges: (1) preparing training envi-
ronments is a time-consuming process, and battery drainage or hardware failures can de-
lay the training process; (2) testing in the real world cannot run any faster than real time
and cannot to be parallelized; (3) training robots for tasks like bomb-detection, search-
and-rescue and underwater exploration is resource intensive and in some cases danger-
ous. Furthermore, poorly-trained robotsmay injure themselves or others; (4) replicating
or controlling experiment conditions like temperature, pressure, and air flow are diffi-
cult. Gradually, the simulation environment is becoming an effective way to solve these
problems, for developing and testing algorithms in simulation environments is fast, flex-
ible, safe and reproducible.

A major current focus of the simulation environment is to reproduce high-quality
free-viewpoint rendering of real senses. There are a number of open source simulators
(e.g., Gazebo [KH04] and Chalet [YMB+18]) to achieve this goal by parameter settings
of scene details, including geometry, textures, lighting and 3Dmodeling of static objects.
However, parameter setting is time-consuming and labor-intensive. Even with precise
modeling and suitable parameter settings, the simulated world still lacks richness and
diversity of the real world. This disadvantage may result in the failure of transferring
algorithms that are developed and tested in simulation to physical platforms for many

INTRODUCTION 3

vision-based tasks, such as object recognition, obstacle avoidance, and visual navigation.
In this thesis, we design and implement a photo-realistic environment simulator for

robots and strive toward the following goals:

1. provide free-viewpoint photo-realistic rendering of real scenes, using a collection
of RGB-D images,

2. allow developing robotics applications and seamlessly interfacing with Robot Op-
erating System (ROS),

3. easily control the movement of robots, and provide real-time positions and whole
trajectories of the moving robot, and a global 3D map,

4. generate representative datasets with rich data for training and evaluating algo-
rithms designed for robotic vision tasks, and

5. enable robots to learn artificial intelligence algorithms (e.g., object recognition
and pose estimation) in simulation and allow transforming knowledge learned from
simulation to the real world without domain adaptation.

In order to accomplish these objectives, we look for cross-disciplinary approaches
that coverage robotics, computer vision and deep learning.

1.2 Context

(a) Video game based on Unreal Engine. (b) ”The Jungle Book” film.

Figure 1.2: Snapshots of rendering in the video game and film.

In this thesis, we make the best use of advances in the fields of view synthesis, 3D
reconstruction, robotics frameworks and deep learning.

Rendering or image synthesis refers to the automatic process of generating 2D im-
ages from a 3D model or a set of 2D images of scenes. It has been used widely in video
games, film industry, simulators and free-viewpoint TV [KDW+17, BE01]. Nowadays,
with exhaustive detailed modeling of 3D models, rendering algorithms are very close to
achieve one of the most important goals of computer graphics: realism (see Figure 1.2).

4 CONTEXT

However, achieving realism requires a large amount of laborious work for generat-
ing 3D geometry models that contain lights, viewpoints, material properties (e.g., tex-
tures and normal maps) to describe a scene. One promising approach that avoids time-
consuming content creation and expensive lighting simulation is image based rendering
(IBR) [SCK08]. It gives users real-time free-viewpoint rendering of the real scene, using
a sparse collection of captured images. In the rendering process, instead of using 3D
geometry, 2D images are directly used to synthesize virtual images.

Figure 1.3: A 3D model generated by 3D reconstruction [BCM18].

3D reconstruction is the creation of 3D models or appearance of real objects from a
set of images (see Figure 1.3). Semantically rich and geometrically accurate 3D recon-
struction can provide rich information about the object including 3D shapes, textures,
and 3D coordinates of points on the object. It has been widely used in various vision-
based applications, such as virtual reality, visual navigation, computer animation and
building maintenance [IZU13, CT19]. For example, with 3D reconstructed scenes, peo-
ple can stay at home to take virtual tours for real estate, which allows freely walking
around the room and viewing the scene from vastly different perspectives. With the
development of sensors (e.g., 3D cameras and laser scanners), high-quality 3D recon-
struction results already exist for indoor and out door environments.

Figure 1.4: An image showing the ”ROS equation”: ROS = Plumbing + Tools + Capa-
bilities + Ecosystem.

The Robot Operating System (ROS) [QCG+09], a flexible framework for writing
robot software has simplified the implementation of tasks such as hardware abstraction,
visual perception, and behavior generation. The primary goal of ROS is sharing and
collaboration, which supports code reuse in robotics research and development. It now

INTRODUCTION 5

consists of tens of thousands of usersworldwide, working in domains ranging from table-
top hobby projects to large industrial automation systems. It provides libraries and tools
for software developers to create their robotics applications using an existing founda-
tion rather than doing everything themselves. The philosophy behind ROS is described
in Figure 1.4.

(a) 6D object pose estimation [WXZ+19] (b) Object recognition [PL15]

Figure 1.5: Robotics applications.

In recent years, deep learning has revolutionized the computer vision, natural lan-
guage processing, machine translation and speech recognition fields. Inspired by in-
formation processing and distributed communication nodes in the human brain, deep
learning models are based on artificial neural networks that consist of multiple hier-
archical layers to progressively extract higher level features from the raw input. Deep
learning approaches have achieved state-of-the-art performance on various computer
vision benchmarks, such as face recognition benchmark [HMBLM08], object tracking
benchmark [RDS+15] and ImageNet [RDS+15]. With a large quantity of data, they have
also been used successfully in robotics applications, such as object recognition [PL15],
visual scene understanding [SZZJ17] and 6D object pose estimation [WXZ+19] (see Fig-
ure 1.5).

1.3 Contributions
In this thesis, we focus on developing a 3D photo-realistic simulator for designing arti-
ficial intelligence (AI) algorithms for robots. Our main contribution are as follows:

Chapter 3 focuses on free-viewpoint view synthesis with a sparse set of RGB-D im-
ages. Our main contributions are summarized as follows:

• A novel depth refinement algorithm that respects photo-consistency and edge
preservation to correctmisalignment between color-and-depth image pairs and fillmiss-
ing depth information.

• A novel adaptive view selection approach that effectively avoids selecting redun-

6 CONTRIBUTIONS

dant and useless input views to improve the quality of synthesized images and the ren-
dering speed.

• A novel rendering algorithm providing high-quality free-viewpoint synthesized
images, which is based on layered 3D warping to handle occluded elements and lower
the rendering complexity.

The content of this chapter is based on the following paper:

• Honglin Yuan, Remco C. Veltkamp. Free-viewpoint image based rendering with
layered depth maps. Submitted for publication.

Chapter 4 presents PreSim, a 3D environment simulator for training and testing
vision-based algorithms. Our main contributions are summarized as follows:

• A photo-realistic 3D virtual environment that provides users with ground truth
poses of the multisensory model and free-viewpoint color-and-depth image pairs, even
in regions where a global 3D reconstruction of the scene has inaccurate or missing data.

• A global visualizer providing real-time positions and whole trajectories of moving
robots, and a global 3D map.

•A sequence controller and recorder components to control themovement of robots
and store all the required information for developing AI algorithms.

• A novel view synthesis module providing free-viewpoint rendering that combines
depth refinement, adaptive view selection and layered 3D warping to lower the render-
ing complexity and improve the quality of synthesized images.

The content of this chapter is based on the following paper:

• Honglin Yuan, Remco C. Veltkamp. PreSim: A 3D photo-realistic environment
simulator for visual AI. Submitted for publication.

Chapter 5 presents the RobotP dataset designed for benchmarking in 6D object pose
estimationwhich plays an important role in robotic grasping andmanipulation research.
The awareness of the 3D rotation and 3D translation matrices of objects in a scene is
referred to as 6D, where the D stands for the degree of freedom of the pose. Our main
contributions are summarized as follows:

•Arepresentative dataset providinghigh-qualityRGB-D images, ground truth poses,
object segmentation masks, 2D bounding boxes and accurate 3D models for daily used
objects with different sizes, shapes, and textures, which covers a wide range of pose es-
timation challenges.

•Anovel pose refinement approach that uses a local-to-global optimization strategy
to achieve the improved accuracy of each pose and global pose alignment.

INTRODUCTION 7

•Anovel depth generation algorithmproducinghigh-quality depth images, which is
able to accurately align the depth image to its corresponding color image and fill missing
depth information.

• Careful merging of multi-modal sensor data for object reconstruction, followed by
an algorithm to produce the segmentation mask and 2D bounding box for each object
automatically.

• A training dataset generated by a free-viewpoint image based rendering approach
in a simulated environment. It provides a large amount of high-resolution and photo-
realistic color-and-depth image pairs which have plausible physical locations, lighting
conditions, and scales.

• The Shape Retrieval Challenge benchmark on 6D object pose estimation. The
benchmark allows evaluating and comparing pose estimation algorithmsunder the same
standard. Evaluation results indicate that there is considerable room for improvement
in 6D object pose estimation, particularly for objects which have dark colors or reflective
characteristics, and photo-realistic images are helpful to increase the accuracy of pose
estimation algorithms.

The content of this chapter is based on the following paper:

• HonglinYuan, RemcoC.Veltkamp, GeorgiosAlbanis, Nikolaos Zioulis, Dimitrios
Zarpalas and Petros Daras. SHREC 2020 track: 6D object pose estimation. Euro-
graphics Workshop on 3D Object Retrieval. The Eurographics Association, 2020.

• Honglin Yuan, Remco C. Veltkamp. RobotP: A Benchmark Dataset for 6D Object
Pose Estimation. Submitted for publication.

In Chapter 6 we conduct a variety of experiments to investigate the performance
of different pose estimation approaches proposed from the Shape Retrieval Challenge
benchmark on 6D pose estimation in Chapter 5. Apart from that, we propose a novel
approach to predict the 6D pose of a given object. Our main contributions are summa-
rized as follows:

•A comprehensive evaluation of 6D object pose estimation approaches. We use dif-
ferent evaluation metrics to compare the proposed methods on our benchmark. Eval-
uation results indicate that approaches that fully exploit the color and geometric fea-
tures aremore robust for 6D pose estimation of reflective objects and occlusion. Besides,
methods that estimate the 6D pose in a single and consecutive network are more robust
to texture-less objects and run faster.

• An efficient feature extraction method extracting representative local and global
geometric features from point clouds, which makes it robust to handle heavy occlusion,
low texture and sensor noise for 6D object pose estimation.

8 STRUCTURE

• A new multi-feature fusion network that improves 6D pose prediction perfor-
mance by applying a graph attention network to fully exploit the relationship between vi-
sual and geometric features and compute hidden feature representations between these
features.

The content of this chapter is based on the following paper:

• HonglinYuan, RemcoC.Veltkamp. 6DObject PoseEstimationWithColor/Geometry
Attention Fusion. 2020 16th International Conference on Control, Automation,
Robotics and Vision (ICARCV), pp. 529-535, 2020.

1.4 Structure

 Structure

 Introduction

 Motivation and goals

 Context

 Structure

 Publications

 Background

 Image based rendering

 3D reconstruction

 Robot Operating
 System

 Deep learning Free-viewpoint image
 based rendering

 Depth refinement

 View selection

 Layered 3D warping

 PreSim: A 3D photo-realistic
 environment simulator

 View synthesis

 Scene datasets

 Agents and controllers

 Tasks

 Sim-to-Real: 6D object
 pose estimation

 dataset construction

 Object selection

 Collecting scene data

 Pose estimation

 Depth generation

 3D model generation

 Photo-realistic
 rendering

 Object recognition and 6D
 object pose estimation

 Analysis of
 benchmarking
 approaches for 6D
 object pose estimation

 6D object pose
 estimation with color/
 geometry attention
 fusion

 Conclusion and future
 work

 Reaching our goals

 Beyond our goals

 Concluding remarks

Figure 1.6: PhD thesis structure.

Figure 1.6 shows the structure of this thesis. The first chapter states the motivation,
goals and contributions for ourwork. InChapter 2, we give a brief overviewof basic tech-

INTRODUCTION 9

niques and ideas on image-based rendering, 3D reconstruction, ROS, and deep learning
that are relevant to the methods presented in this thesis.

In Chapter 3, we develop a free-viewpoint image based rendering approach to pro-
duce photo-realistic synthesized images. Based on the view synthesis approach pro-
posed in Chapter 3, in Chapter 4 we design a 3D photo-realistic environment simulator
to develop and test visual AI algorithms for mobile robots. In Chapter 5, we build a 3D
dataset designed for the 6D object pose estimation challenge organized by us. Taking
the advantage of our simulator described in Chapter 4, we produce a large number of
color-and-depth image pairs with ground truth 6D poses for our dataset. In Chapter 6,
we conduct a variety of experiments based on our benchmark organized in Chapter 5 to
investigate how different state-of-the-art pose estimation approaches perform in terms
of various object properties. Apart from that, we propose a novel approach to handle
heavy occlusion, low texture and sensor noise for 6D object pose estimation.

In Chapter 7, we conclude the thesis and present the contributions, limitations and
suggest some possible research directions for future work.

1.5 Publications
This thesis is based on the following publications:

1. Chapter 3: Honglin Yuan, Remco C. Veltkamp. Free-viewpoint image based rendering
with layered depth maps. Submitted for publication.

2. Chapter 4: Honglin Yuan, Remco C. Veltkamp. PreSim: A 3D photo-realistic environment
simulator for visual AI. Submitted for publication.

3. Chapter 5: Honglin Yuan, Remco C. Veltkamp, Georgios Albanis, Nikolaos Zioulis, Dim-
itrios Zarpalas and Petros Daras. SHREC 2020 track: 6D object pose estimation. Euro-
graphics Workshop on 3D Object Retrieval. The Eurographics Association, 2020.

4. Honglin Yuan, Remco C. Veltkamp. RobotP: A Benchmark Dataset for 6D Object Pose
Estimation. Submitted for publication.

5. Chapter 6: HonglinYuan, RemcoC.Veltkamp. 6DObject PoseEstimationWithColor/Geometry
Attention Fusion. 2020 16th International Conference on Control, Automation, Robotics
and Vision (ICARCV), pp. 529-535, 2020.

10 PUBLICATIONS

2
Background

This chapter gives a brief overview of image based rendering, 3D reconstruction, ROS
and deep learning techniques and ideas. The purpose of this chapter is to provide back-
ground knowledge required to understand the rest of the thesis, for readers who are
not familiar with computer vision, robotics and deep learning. For a more extensive
overview, we refer to [SCK08, HZ03, QCG+09, GBC16].

2.1 Image based rendering

Image based rendering (IBR) technology generates photo-realistic images which are
comparable to those produced by conventional computer graphics methods, directly
from 2D images without a full 3D geometric representation. It can be classified accord-
ing to the accuracy and amount of geometric information required, as shown in Figure
2.1. The spectrum of IBR methods varies from algorithms that do not require any ge-
ometry, to use image correspondences (implicit geometry) to require detailed explicit
geometry [SK00].

Another way to classify IBR approaches is based on capture setup and range of mo-
tion. Capture plays an important role on IBR. It determines the freedom of IBR ap-
proaches and has a great impact on the quality of synthesized images. An exhaustive
capture process is helpful to avoid visual artifacts and increase the navigation freedom.

12 IMAGE BASED RENDERING

Rendering with
no geometry

Less geometry More geometry

Rendering with
implicit geometry

Rendering with
explicit geometry

Less captured images More captured images

Figure 2.1: Spectrum of IBR algorithms. Approaches on the left extreme of this spec-
trum use no geometry information and a small number of images as input, while on the
right explicit geometry information and exhaustively capturing a dense set of images in a
scene are required.

2.1.1 Pinhole camera model

We use pinhole cameramodel illustrated in Figure 2.2 to explain the process of captur-
ing an image. The pinhole camera model describes the mathematical relationship be-
tween the coordinates of a point in 3D space and its projection onto an image plane. The
pinhole camera model has no lenses to focus light, so that it is able to avoid geometric
distortions and blurring of unfocused objects caused by lenses.

Focal length

Principal axis

Cam
era center

Principal center

Image plane

Figure 2.2: The pinhole camera model.

BACKGROUND 13

2.1.1.1 Pinhole camera geometry

The geometry of mapping a point in 3D space to an image plane is illustrated in Figure
2.3. Let the center𝑂 of the projection be the origin of a 3D Euclidean coordinate system,
which is called the camera center. The three axes of the coordinate system are referred
to as𝑥, 𝑦, 𝑧. Axis 𝑧 is pointing in the viewing direction of the camera and is referred to as
the optical axis. The plane, 𝑧 = 𝑓 , which is parallel to axes 𝑥 and 𝑦 is called the image
plane, where 𝑓 is the focal length of the pinhole camera. Suppose that a 2D coordinate
system is defined in the image plane, allowing each point on it to be identified by an
image coordinate. The two axes of the coordinate systemare referred to as𝑥′ and 𝑦′. The
point where the principal axis meets the image plane is called the principal point. Under
the pinhole camera model, a 3D point, 𝑃 = [𝑋, 𝑌 , 𝑍]T, in the 3D Euclidean space is
projected to the point 𝑃 ′ = [𝑥′, 𝑦′]T on the image plane with a ray that originates from
the Euclidean space origin,𝑂.

Image plane

Camera center

Principal axis

Camera coordinates

Principal point

(a) The geometry of a pinhole camera as seen in 3D dimensions.

𝑥𝑥 ,

𝑃𝑃,

𝑃𝑃

𝑋𝑋

𝑍𝑍𝑂𝑂𝑓𝑓

(b) The geometry of a pinhole camera as seen from the 𝑦 axis.

Figure 2.3: The geometry of mapping a point in 3D space to an image plane. A 3D
point 𝑃 is mapped to 𝑃 ′ in the image plane by camera intrinsic matrix.

By similar triangles, the mapping function from 3D Euclidean space to the image

14 IMAGE BASED RENDERING

plane is able to be derived. In Figure 2.3(b) which is generated by looking down in the
negative direction of the y-axis, there are two right triangles, having congruent angles.
Based on the similarity theorem, the two triangles are similar. The catheti of the left
triangle are 𝑥′ and 𝑓 , and the catheti of the right triangle are 𝑋 and 𝑍 . Since the two
triangles are similar it follows that

𝑍
𝑓 = −𝑋

𝑥′ 𝑜𝑟 𝑥′ = −𝑓 𝑋
𝑍 . (2.1)

A similar investigation, looking in the negative direction of the x-axis gives

𝑍
𝑓 = −𝑌

𝑦′ 𝑜𝑟 𝑦′ = −𝑓 𝑌
𝑍 . (2.2)

This can be summarized as

[𝑥′

𝑦′] = − 𝑓
𝑍 [𝑋

𝑌
] . (2.3)

The negative sign means the obtained image is an inverted image, while the image
captured by a real pinhole camera is rotated by 180°. In order to produce a non-rotating
image, which is the expected image from a camera, the image plane is placed in front of
the camera, intersecting the 𝑍 axis at 𝑓 instead of at −𝑓 , as shown in Figure 2.2. This
would generate a virtual (or front) image plane which removes the negative sign in the
formula. Therefore,

[𝑥′

𝑦′] = 𝑓
𝑍 [𝑋

𝑌
] . (2.4)

Themapping process can also be expressed as a linear mapping in homogeneous co-
ordinates. Let𝑃 = [𝑋, 𝑌 , 𝑍, 1]T be a point in homogeneous coordinates (a 4-dimensional
vector) and𝑄 = [𝑢𝑧, 𝑢𝑧, 𝑧]T be the image point represented by a homogeneous 3D vec-
tor projected by 𝑃 . Then 5.4 can be written in terms of matrix multiplication as

⎡⎢⎢
⎣

𝑢𝑧
𝑣𝑧
𝑧

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

𝑓 0
𝑓 0

1 0

⎤⎥⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑋
𝑌
𝑍
1

⎤
⎥
⎥
⎥
⎦

. (2.5)

Furthermore, 5.4 can be written compactly as

𝑄 = 𝐻𝑃, (2.6)

where𝐻 is the mapping matrix for the pinhole model.

BACKGROUND 15

Xc
[R, t] K

Xi

Figure 2.4: The geometry of image formation. A 3D point𝑋𝑤in the world coordinates
is mapped to𝑋𝑐 in the camera coordinates by rotation matrix𝑅 and translation matrix
𝑡. Then𝑋𝑐 is projected to𝑋𝑖 in the image plane by camera intrinsic matrix𝐾 .

The formula 5.4 describes the spatial relationship between 3D points and their cor-
responding 2D points in the image coordinates. However, for the image captured by a
real camera, it is made up of pixels. Thus, it needs to sample and quantize the pixels on
the image plane. In order to describe the process that converts the ray into pixels in the
image plane, we define a pixel coordinate system that is attached on the physical image
plane. Without loss of generality, it assumes that the origin of image space lies at top
left corner of the bounded image plane. The two axes of the pixel coordinate system are
referred to as 𝑈 and 𝑉 . The axes 𝑈 and 𝑉 are parallel to axes 𝑥 and 𝑦, respectively.

In Equation 5.4, it assumes that the origin of coordinates in the image plane is at
the principal point. Between the pixel coordinate system and the image plane, there is
a translation of the origin. Therefore, the mapping process from point 𝑞 in the image
plane to point 𝑞′ = [𝑢, 𝑣]T in the pixel coordinates is described as

{ 𝑢 = 𝑥′ + 𝑐𝑥
𝑣 = 𝑦′ + 𝑐𝑦

, (2.7)

where [𝑐𝑥, 𝑐𝑦]T are the coordinates of the principal point. Put 5.4 into 2.7, then we can
get:

⎧{{
⎨{{⎩

𝑢 = 𝑓 𝑋
𝑍 + 𝑐𝑥

𝑣 = 𝑓 𝑌
𝑍 + 𝑐𝑦

. (2.8)

This equation can also be expressed in homogeneous coordinates as:

⎡⎢⎢
⎣

𝑢
𝑣
1

⎤⎥⎥
⎦

= 1
𝑍

⎡⎢⎢
⎣

𝑓 𝑐𝑥
𝑓 𝑐𝑦

1

⎤⎥⎥
⎦

⎡⎢⎢
⎣

𝑋
𝑌
𝑍

⎤⎥⎥
⎦

. (2.9)

16 IMAGE BASED RENDERING

Put 𝑍 to the left side and rewrite 2.9

⎡⎢⎢
⎣

𝑍 ∗ 𝑢
𝑍 ∗ 𝑣

𝑍

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

𝑓 𝑐𝑥
𝑓 𝑐𝑦

1

⎤⎥⎥
⎦

⎡⎢⎢
⎣

𝑋
𝑌
𝑍

⎤⎥⎥
⎦

≜ 𝐾𝑃 ′, (2.10)

where matrix𝐾,

𝐾 =
⎡⎢⎢
⎣

𝑓 𝑐𝑥
𝑓 𝑐𝑦

1

⎤⎥⎥
⎦

, (2.11)

is called camera calibration matrix and 𝑃 ′ = [𝑋, 𝑌 , 𝑍]T is defined in a Euclidean
coordinate system with principal axis of the camera pointing straight down the z-axis.
Such a coordinate system is called the camera coordinate frame.

Camera rotation and translation. Let 3D points be represented in a Euclidean
coordinate system called the world coordinate system. There is a Euclidean 3D transfor-
mation including a rotation and translation, between the world and camera coordinate
systems.

Let𝑋𝑊 = [𝑋, 𝑌 , 𝑍]T be a 3D point in the world coordinate system and𝑋𝐶 be the
same point in the camera coordinate system. Then we write

𝑋𝐶 = 𝑅𝑋𝑊 + 𝑡, (2.12)

where𝑅 is a 3×3 rotationmatrix and 𝑡 is a translationmatrix. 𝑅 and 𝑡 are the extrinsic
parameters which denote the coordinate system transformation from 3D world coordi-
nates to 3D camera coordinates. The combination of the 3D rotation and 3D translation
matrices is called 6D camera pose. Putting this together with 2.10 leads to

𝑍
⎡⎢⎢
⎣

𝑢
𝑣
1

⎤⎥⎥
⎦

= 𝐾(𝑅𝑋𝑊 + 𝑡). (2.13)

This is the general mapping given by a pinhole camera, as described in Figure 2.4. To
obtain the image-space 2D coordinates, a divide is necessary. We define the division
function s as:

𝑝𝑢,𝑣 = s(𝑋𝑥,𝑦,𝑧) =
⎡
⎢
⎢
⎣

𝑥
𝑧
𝑦
𝑧

⎤
⎥
⎥
⎦

, (2.14)

where 𝑝𝑢,𝑣 is 2D point in the image plane converted from its representation 𝑃𝑥,𝑦,𝑧 in
homogeneous coordinates.

BACKGROUND 17

Generalized 3D transformations can be represented as 4 × 4 matrices. Given a 3D
point 𝑃𝑤 = [𝑥𝑤, 𝑦𝑤, 𝑧𝑤, 1]T (a 4-dimensional vector) in the world coordinate system,
we can apply the extrinsic matrix𝐻 , a 4 × 4 transformation matrix,

𝐻 = [𝑅 𝑡
0 1

] , (2.15)

to transform 𝑃𝑤 into the camera coordinate system:

𝑃𝑐 = 𝐻𝑃𝑤. (2.16)

2.1.1.2 Image

Cameras convert the scene information from the 3D world into an image composed of
pixels. It determines which parts of the scene will be observed by the camera. To a
computer, an image which consists of rectangular pixels is just a grid of numbers and
occupies a continuous disk.

Based on the pixel coordinate system we defined in Section 2.1.1.1, the width of the
image is defined by the number of columns in the image along𝑈 axis; The height of the
image is defined by the number of rows in the image along 𝑉 axis. Let 𝑃 = (𝑥, 𝑦) be a
pixel in the pixel coordinate system. It can be recorded as a 8-bit unsigned integer with a
range [0, 255]. For a color image, it has three channels and each of them is composed by
such pixels. These three channels are associated with three primary colors (red, green
and blue), and the value of each primary color indicates howmany photons land on the
pixel. A depth image which is generated by RGB-D sensors or 3D scanners often uses
16-bit integers ([0, 65535]) to record distance information.

2.1.1.3 Depth and disparity

In 3D computer graphics and computer vision, the depth of a 3D point is obtained by
measuring its distance to the plane defined by camera sensors. This is equivalent to the 𝑧
coordinate of the point in the camera coordinate system. Depth is a fundamental concept
used in the scene reconstruction. When reasoning about the image-space motion of 3D
points, it is common to reason about their inverse depths, or disparities. Disparity is
inversely proportional to depth 𝑧 and is often used for depth calculation.

2.1.2 Image based rendering without geometry
Image based rendering approaches without the use of geometry project image-space
points in reference images to a target image plane to synthesize a new image, which
avoids the requirement of scene geometry information. These methods are often based
on the plenoptic function [AB+91] that is used to describe the intensity of each light ray
passing through a certain viewpoint in a scene.

18 IMAGE BASED RENDERING

Figure 2.5: Geometric elements of the plenoptic function.

Let 𝑋 = (𝑉𝑥, 𝑉𝑦, 𝑉𝑧) be the position of an idealized eye. From there, a viewing
direction can be chosen by an angle (𝜃, 𝜑) and a band of wavelengths 𝜆. In the case
of a dynamic scene, we are also able to choose the viewing time 𝑡. Then the plenoptic
function is written as :

𝑃 = plenoptic(𝑉𝑥, 𝑉𝑦, 𝑉𝑧, 𝜃, 𝜑, 𝜆, 𝑡). (2.17)

Figure 2.5 describes the geometric elements of this relationship. If we only consider
static scenes with fixed light conditions, we are able to drop out time 𝑡 and light wave-
length 𝜆. We rewrite 2.17:

𝑃 = plenoptic(𝑉𝑥, 𝑉𝑦, 𝑉𝑧, 𝜃, 𝜑). (2.18)

Thus, image based rendering approaches work by explicitly sampling the plenoptic
function. McMillan et al. [MB95] use cylindrical panoramas as samples. They provide
rendering at discrete locations by stitching images. Similarly, QuickTime VR [Che95]
uses a series of cylindrical panoramic images to build a virtual environment. The panoramic
image is digitally warped on-the-fly to mimic camera panning and zooming. However,
these systems are not able to provide free-viewpoint rendering. Another disadvantage
of these systems is that if users change their view positions, the translation between two
synthesized images is not smooth. It leads to the fact that the synthesized image often
jumps from one position to another just like the google street view.

Light fields [LH96] and lumigraph [GGSC96] systems further reduce the parameters
of the plenoptic function to 4. The light rays of the scene are encoded by their intersec-
tions with two parallel planes. In the light fields system, densely sampled images are
obtained by a capturing rig. It produces new images by querying and interpolating rays.

BACKGROUND 19

The lumigraph uses an electronic setup to capture images and allows rendering from
arbitrary positions.

ConcentricMosaics [SH99] is a 3Dparameterization of the plenoptic function. It can
be created by compositing slit images captured at different locations of each circle, as its
rendering is constrained along concentric circles on a plane. Compared with light fields
and lumigraph systems, synthesizing new images by concentric mosaics is faster, due to
the less parameters in the plenoptic function. To overcome the drawback of concentric
mosaics caused by vertical distortion, spherical light field [DDB+15] is introduced. It
uses fisheye camera to capture outward-looking spherical light fields on a programmable
pan/tilt head, as shown in Figure 2.6. The system uses 1728 images to achieve free-
viewpoint rendering within the 35cm radius sphere outlined by the cameras. However,
the capturing process is complicated, which limits its practical application.

Figure 2.6: The capture system for spherical light field and an example of synthesized
images [DDB+15].

2.1.3 Image based rendering with geometry

It is well known that image based rendering algorithms that use geometric informa-
tion can provide better rendering. The technologies from 3D reconstruction are often
introduced to estimate feature correspondences or reconstruct point clouds, meshes or
depth maps which are used as geometric information for rendering. We will give a brief
overview of 3D reconstruction in the next section.

Since geometric information can be represented by correspondences between image
pairs, the first step of IBR using implicit geometry is to find these pixel correspondences
[CW93]. Based on pixel correspondences, the synthesized image is produced by view
interpolation approaches. However, this method is not able to deal with cases when
input images have big differences with each other, for the lack of full geometric infor-
mation. To address this issue, depth information calculated by stereo reconstruction is
used to project the centers of input cameras into the new image. Then these projections
are triangulated and mapped with textures, which is helpful to improve the quality of
the synthesized image. Another solution [BBM+01] is to use a number of weights to
overcome limitations caused by the lack of full geometric information. It can achieve

20 3D RECONSTRUCTION

some degree of free-viewpoint navigation. The weight function is defined as:

𝑤(𝑖) = 𝑤𝑎𝑛𝑔(𝑖) + 𝑤𝑑𝑖𝑠(𝑖) + 𝑤𝑓𝑜𝑣(𝑖), (2.19)

where the angle similarity 𝑤𝑎𝑛𝑔(𝑖) and the distance term 𝑤𝑑𝑖𝑠(𝑖) are used to select
angularly close cameras, and the visibility term 𝑤𝑓𝑜𝑣(𝑖) avoids choosing rays that fall
outside the field of view of the selected camera.

To further improve the quality of the synthesized image, the full depth image is
created with the consideration of local geometry information [CDSHD13, HRDB16].
However, such a depth image can reduce artifacts caused by depth discontinuities. An-
other solution is to use a global point cloud which is obtained by multi-view stereo. The
point cloud allowshigh-quality renderingusing the view-specific depth information. Re-
cently, deep learning-based approaches are also used for IBR algorithms. Convolutional
neural network(CNN) [FNPS16] is introduced to perform new view synthesis directly
from pixels. However, this method is only suitable for narrow-baseline capture. SynSin
[WGSJ20] uses geometric information which are estimated by deep learning to further
improves the quality of the synthesized image, as shown in Figure 2.7. However, in the
current state, learning-based approaches still suffer from blurring and high computa-
tional costs.

Figure 2.7: Examples of synthesized images from deep learning-based IBR. Left two
images are synthesized by learned blending weights [HPP+18] and the right two images
are generated by learned point clouds [WGSJ20].

2.2 3D reconstruction
3D reconstruction is the process of creating 3Dmodels or appearance of real objects. It is
the inverse process of generating 2D images from 3D scenes. The reconstruction process
can be accomplished either by active methods that require special devices, such as laser
scanners, rangefinders to capture geometry information or by passive methods that are
based on a collection of images. In this thesis, we use passive methods, for they do not
require special devices or equipment, which are easily applied in different fields. The
passive algorithm combines Structure fromMotion andMulti-view stereo.

2.2.1 Structure fromMotion
Structure from Motion (SfM) is a pipeline that allows 3D reconstruction starting from
unstructured image collections. It includes four main stages: feature extraction and

BACKGROUND 21

matching, pose estimation, triangulation, and bundle adjustment. Here, we give a brief
overview of each stage.

2.2.1.1 Feature extraction and matching.

Figure 2.8: The example results of feature extraction and matching.

Features are used as starting points for SfM algorithms. Good features are repeat-
able and invariant to rotations, scales, and intensity changes. They are extracted from
some interesting points (2D key points) in the image which provide useful information
for camera pose estimation and scene reconstruction. Feature descriptors such as SIFT
[Low04], FAST [RPD08] and ORB [MAMT15] are often used to describe them. There
are many features such as edges, corners, ridges and blobs from which the feature de-
scriptors are computed.

Once we obtain these key points and their descriptions, we can match key points to
each other and find correspondences of these points in different images using distance
calculation. During this step, some tests and checks are often used to reduce spurious
correspondences. For example, the ratio test used in [Low04] avoids poor matches by
computing the ratio between the best and second-best match. If the ratio is below some
threshold, the match is discarded as being low-quality. The output of this stage is a set
of corresponding key points (see Figure 2.8).

2.2.1.2 Pose estimation

The camera pose consists of 6 degrees-of-freedom (DOF) which is made up of a 3D ro-
tation (roll, pitch, and yaw) and 3D translation of the camera with respect to the world.
The camera pose estimation can be classified into three types, including 2D-to-2D pose
estimation, 3D-to-2D pose estimation and 3D-to-3D pose estimation.

2D-to-2Dpose estimation. Assume that we have a set of 2D point correspondences
between two images, we want to estimate the relative pose of the cameras capturing the
two images. Figure 2.9 shows a pair of correspondence points, 𝑝1 and 𝑝2, and their
sharing 3D point 𝑃 = [𝑋, 𝑌 , 𝑍]T in the world coordinate system. 𝑝1 is projected by
the left camera represented by its center 𝑂1 and 𝑝2 is projected by the right camera
represented by the center 𝑂2. As we can see, the image points 𝑝1 and 𝑝2, 3D point 𝑃 ,

22 3D RECONSTRUCTION

Figure 2.9: Epipolar geometry.

and camera centers 𝑂1 and 𝑂2 are coplanar. This plane is called epipolar plane. The
line joining the camera centers𝑂1 and𝑂2 is called baseline and it intersects image plane
𝐼1 at point 𝑒1 and image plane 𝐼2 at point 𝑒2. The points 𝑒1 and 𝑒2 are called epipoles.
The line 𝑙1 or 𝑙2 which is the intersection of an epipolar plane with the image plane is
called epipole line.

Since we do not know anything about the camera positions, without loss of gen-
erality, we can set the left camera coordinate system as the world coordinate system.
Given camera intrinsic matrix 𝐾, the relative rotation matrix 𝑅 and translation matrix
𝑡 between two cameras, we get:

𝑑1𝑝1 = 𝐾𝑃, 𝑑2𝑝2 = 𝐾(𝑅𝑃 + 𝑡), (2.20)

where 𝑑1 and 𝑑2are the depth values of points 𝑝1 and 𝑝2. Then set 𝑥1 = 𝐾−1𝑑1𝑝1 and
𝑥2 = 𝐾−1𝑑2𝑝2, and put them into 2.20. The relationship between 𝑥1 and 𝑥2 is

𝑥2 = 𝑅𝑥1 + 𝑡. (2.21)

To annihilate 𝑡 on the right hand side, we write 2.21 as

[𝑡]×𝑥2 = [𝑡]×𝑅𝑥1, (2.22)

where [𝑡]× is skew symmetric corresponding to the cross product with 𝑡. Taking the dot
product of both sides with 𝑥T

2 yields

𝑥T
2[𝑡]×𝑥2 = 𝑥T

2[𝑡]×𝑅𝑥1. (2.23)

Since the left hand side is a triple product with two identical entries, the left hand
side is 0. Then we rewrite 2.23 to derive the epipolar constraint

𝑥T
2𝐸𝑥1 = 0, (2.24)

where𝐸 = [𝑡]×𝑅 is a 3 × 3matrix called essential matrix.

BACKGROUND 23

Let𝑥1 = [𝑢1, 𝑣1, 1]T and𝑥2 = [𝑢2, 𝑣2, 1]T be a pair of corresponding points. Based
on 2.24 we get :

[𝑢1 𝑣1 1]
⎡⎢⎢
⎣

𝑒11 𝑒12 𝑒13
𝑒21 𝑒22 𝑒23
𝑒31 𝑒32 𝑒33

⎤⎥⎥
⎦

[𝑢2 𝑣2 1] = 0. (2.25)

Given a set of corresponding image points, it is possible to estimate an essential ma-
trix which satisfies the epipolar constraint for all the points in the set. The simplest
way to obtain the essential matrix is to find the solution of the least squares problem,
commonly known as the eight-point algorithm [Har97]. Now writing

𝐸 = [𝑒11, 𝑒12, 𝑒13, 𝑒21, 𝑒22, 𝑒23, 𝑒31, 𝑒32, 𝑒33]T,

with 8 correspondences, we can form

⎡
⎢
⎢
⎢
⎣

𝑢1𝑢′
1 𝑢1𝑣′

1 𝑢1 𝑢1𝑢′
1 𝑢1𝑣′

1 𝑢1𝑢′
1 𝑣′

1 1
𝑢2𝑢′

2 𝑢2𝑣′
2 𝑢2 𝑢2𝑢′

2 𝑢2𝑣′
2 𝑢2𝑢′

2 𝑣′
2 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑢8𝑢′

8 𝑢8𝑣′
8 𝑢8 𝑢8𝑢′

8 𝑢8𝑣′
8 𝑢8𝑢′

8 𝑣′
8 1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑒11
𝑒12
𝑒13
𝑒21
𝑒22
𝑒23
𝑒31
𝑒32
𝑒33

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0, (2.26)

where 𝑥𝑖 = [𝑢𝑖, 𝑣𝑖, 1]T is a key point and 𝑥′
𝑖 = [𝑢′

𝑖, 𝑣′
𝑖, 1]T is its corresponding point.

Once the essential matrix 𝐸 has been computed, we are able to determine 𝑅 and 𝑡
by performing the singular value decomposition (SVD) [GR71].

3D-to-2D pose estimation. Assume that we already know 3D points in the world
coordinate system and their corresponding 2D projections in the image, the problem
of estimating the pose of a calibrated camera is called Perspective-n-Point (PnP) pose
problem. There are plenty of approaches proposed to solve the PnP problem and the
least number of points required to solve this problem is 𝑛 = 3. These methods can be
divided into direct and iterative solutions. One of the direct solutions is P3P [GR71],
which only uses three pairs of corresponding points to solve the PnP problem.

Let 𝐴, 𝐵 and 𝐶 be the 3D points in the world, 𝑎, 𝑏 and 𝑐 be the corresponding 2D
points in the image, 𝑂 be the center of the camera, 𝛼 = ∠𝑂𝐴𝐵, 𝛽 = ∠𝑂𝐴𝐶 , and
𝛾 = ∠𝑂𝐵𝐶 , as shown in Figure 2.10. For triangles △𝑂𝐴𝐵, △𝑂𝐴𝐶 , △𝑂𝐵𝐶 , we
get:

24 3D RECONSTRUCTION

Figure 2.10: The geometry of the P3P problem.

⎧{
⎨{⎩

𝑂𝐴2 + 𝑂𝐵2 − 2𝑂𝐴 ⋅ 𝑂𝐵 ⋅ cos𝛼 = 𝐴𝐵2

𝑂𝐴2 + 𝑂𝐶2 − 2𝑂𝐴 ⋅ 𝑂𝐶 ⋅ cos𝛽 = 𝐴𝐶2

𝑂𝐵2 + 𝑂𝐶2 − 2𝑂𝐵 ⋅ 𝑂𝐶 ⋅ cos 𝛾 = 𝐵𝐶2
. (2.27)

To simplify the equation system, let𝑥 = 𝑂𝐴/𝑂𝐶 , 𝑦 = 𝑂𝐵/𝑂𝐶 , 𝑣 = 𝐴𝐵2/𝑂𝐶2,
𝑢𝑣 = 𝐵𝐶2/𝑂𝐶2 and𝑤𝑣 = 𝐴𝐶2/𝑂𝐶2. 2.27 becomes

⎧{
⎨{⎩

𝑥2 + 𝑦2 − 2𝑥𝑦 cos𝛼 − 𝑣 = 0
𝑥2 + 1 − 2𝑥 cos𝛽 − 𝑤𝑣 = 0
𝑦2 + 1 − 2𝑦 cos 𝛾 − 𝑢𝑣 = 0

. (2.28)

Now putting 𝑣 = 𝑥2 + 𝑦2 − 2𝑥𝑦 cos𝛼 into 2.28 leads to

{ (1 − 𝑢)𝑦2 − 𝑢𝑥2 − 𝑦 cos 𝛾 + 2𝑢𝑥𝑦 cos𝛼 + 1 = 0
(1 − 𝑤)𝑥2 − 𝑤𝑦2 − 𝑥 cos𝛽 + 2𝑤𝑥𝑦 cos𝛼 + 1 = 0

. (2.29)

This equation has two unknown parameters 𝑥 and 𝑦, which can be calculated by
solving the two quadratic equations. There are many methods to find the positive so-
lutions for 𝑥 and 𝑦 (e.g., Wu-Ritt’s zero decomposition method [GHTC03]). After ob-
taining the solutions, we can get the 3D positions of 𝑎, 𝑏 and 𝑐 in the camera coordinate
system. Then, the PnP problem is converted into the iterative closest point (ICP) prob-
lem [Zha94], from which the rotation matrix 𝑅 and translation matrix 𝑡 are estimated.
In fact, the number of the corresponding points is often more than three. There are also
a large number of approaches [LMNF09, LXX12] to solve the PnP problem with more
than three points.

Iterative solutions often first estimate an initial pose and then use a Gauss–Newton
or Levenberg–Marquardt optimal algorithm to iteratively refine the initial pose to obtain

BACKGROUND 25

the final one. Themost popular algorithm is bundle adjustment which will be described
in Section 2.2.1.4.

3D-to-3D pose estimation. Given a set of 3D-to-3D point correspondences, 𝑋 =
𝑋1, 𝑋2, ..., 𝑋𝑁 and 𝑋′ = 𝑋′

1, 𝑋′
2, ..., 𝑋′

𝑁 , 𝑋𝑖 ↔ 𝑋′
𝑖 (the number of these points is

𝑁), the transformation is defined by:

𝑋′
𝑖 = 𝑅𝑋𝑖 + 𝑡, (2.30)

where 𝑅 is a rotation matrix and 𝑡 is a translation matrix. To calculate 𝑅 and 𝑡, ICP is
widely used, which minimizes the difference between two sets of points.

From 2.30, we get the error function of ICP:

𝑒𝑖 = 𝑋′
𝑖 − (𝑅𝑋𝑖 + 𝑡). (2.31)

It is possible to solve for𝑅 and 𝑡 by the linear least squares which is defined by

min
𝑅,𝑡

𝐽 = 1
2

𝑖=1
∑
𝑁

||𝑋′
𝑖 − (𝑅𝑋𝑖 + 𝑡)||2. (2.32)

The SVD provides a convenient way to find the solution for the linear least squares.
Let 𝑜 and 𝑜′ be the centroids:

𝑜 = 1
𝑁 ∑(𝑋𝑖), 𝑜′ = 1

𝑁 ∑(𝑋′
𝑖). (2.33)

Then, rewriting the right side of 2.33 with 𝑜 and 𝑜′ leads to

1
2 ∑𝑖=1

𝑁 ||𝑋′
𝑖 − (𝑅𝑋𝑖 + 𝑡)||2

= 1
2 ∑𝑖=1

𝑁 ||𝑋′
𝑖 − 𝑅𝑋𝑖 − 𝑡 − 𝑜′ + 𝑅𝑜 + 𝑜′ − 𝑅𝑜||2

= 1
2 ∑𝑖=1

𝑁 ||(𝑋′
𝑖 − 𝑜′ − 𝑅(𝑋𝑖 − 𝑜)) + (𝑜′ − 𝑅𝑜 − 𝑡)||2

= 1
2 ∑𝑖=1

𝑁 ||(𝑋′
𝑖 − 𝑜′ − 𝑅(𝑋𝑖 − 𝑜))||2 + +||(𝑜′ − 𝑅𝑜 − 𝑡)||2

+2(𝑋′
𝑖 − 𝑜′ − 𝑅(𝑋𝑖 − 𝑜))𝑇 (𝑜′ − 𝑅𝑜 − 𝑡)

. (2.34)

Since 2(𝑋′
𝑖 − 𝑜′ − 𝑅(𝑋𝑖 − 𝑜))𝑇 (𝑜′ − 𝑅𝑜 − 𝑡) = 0, we can get

min
𝑅,𝑡

𝐽 = 1
2

𝑖=1
∑
𝑁

||(𝑋′
𝑖 − 𝑜′ − 𝑅(𝑋𝑖 − 𝑜))||2 + ||(𝑜′ − 𝑅𝑜 − 𝑡)||2. (2.35)

26 3D RECONSTRUCTION

From 2.35, we obtain𝑅 that satisfies

𝑅∗ = argmin
𝑅

1
2

𝑖=1
∑
𝑁

||(𝑋′
𝑖 − 𝑜′ − 𝑅(𝑋𝑖 − 𝑜))||2. (2.36)

Then, SVD can be used to solve2.36. Based on𝑅, 𝑡∗ is given by

𝑡∗ = 𝑜′ − 𝑅𝑜. (2.37)

Besides, ICP can also be solved by nonlinear optimization methods. More detailed
descriptions of these approaches can be found in [PCS+15, GIRL03, RL01].

𝑂𝑂1 𝑂𝑂2

𝑥𝑥1
𝑥𝑥2

𝑋𝑋

Figure 2.11: Triangulation. Two rays passing camera centers𝑂1 and𝑂2, and 2D
points 𝑥1 and 𝑥2 will intersect in a 3D point𝑋 in ideal case. However, due to errors,
the intersection point is not𝑋.

2.2.1.3 Triangulation

The problem of estimating the 3D location of a point from a set of corresponding 2D
points in images is known as triangulation. Let 𝑥1 and 𝑥2 be two 2D points in two
matching images, respectively. According to the epipolar constraint, the two rays back-
projected from image points 𝑥1 and 𝑥2 are in a common epipolar plane, that is, a plane
passing through the two centers of camera 𝑂1 and 𝑂2. For the two rays lie in a plane,
they will intersect in point𝑋 in ideal case. However, due to sensor noises and projection
errors, the positions of 2D points are inaccurate, which results in the fact the two rays
do not intersect with each other, as shown in Figure 2.11.

One stable approach to solve this problem is the direct linear transform method
(DLT) [HZ03] by finding the 3D point 𝑋 that lies closest to all the rays back-projected
from 2D image points. For points 𝑥1 and 𝑥2, this amounts to minimize the distance

||𝑥1 − s(𝐾1𝐻1𝑋)||2 + ||𝑥2 − s(𝐾2𝐻2𝑋)||2, (2.38)

BACKGROUND 27

where 𝐾1 and 𝐻1 are the intrinsic and extrinsic matrices of camera 𝑂1, 𝐾2 and 𝐻2
are the intrinsic and extrinsic matrices of camera𝑂2, and s is the division function (see
2.14).

2.2.1.4 Bundle adjustment

Given a set of 3D points 𝑋𝑖 captured by a set of cameras and their corresponding 2D
projections 𝑥𝑖 in the images, we are able to calculate accurate poses 𝑃𝑖 for the cam-
eras. However, if image measurements are noisy, we are not able to get accurate feature
points. Furthermore, matched features often extend over a sequence of images. This
means that the pose of a single camera may have many estimates by using different 2D
to 3D correspondences, and the 3D points calculated by triangulation also have different
values. As a result, with the camera intrinsic matrix𝐾𝑖, the equations 𝑥𝑖 = s(𝐾𝑖𝑃𝑖𝑋𝑖)
will not be satisfied exactly. To address this issue, pose estimation approaches often per-
form bundle adjustment [TMHF99] which is a robust non-linear minimization of mea-
surement errors. It is able to refine the 3D points, the camera poses and the intrinsic
parameters of the cameras used to capture images.

Bundle adjustment can be summarized as minimizing reprojection errors between
2D projections of 3D points and 2D locations of their corresponding features. For this
reason, it is expressed as a function containing motion and structure parameters:

argmin
(𝑃 ′

𝑖 ,𝐾′
𝑖,𝑋′

𝑗)
∑
𝑖,𝑗

𝜑(𝑥𝑖
𝑗 − s(𝐾′

𝑖𝑃 ′
𝑖 𝑋′

𝑗)), (2.39)

where𝑃 ′
𝑖 is the estimated projectionmatrix,𝐾′

𝑖 is the estimated camera intrinsicmatrix,
𝑋′

𝑗 is the estimated 3D point, 𝑥𝑖
𝑗 is the 2D location of 𝑖 in image 𝑗, s is the division

function 2.14, and 𝜑(𝑥, 𝑦) is the geometric image distance between the image points
represented by 𝑥 and 𝑦.

It attempts to fit a nonlinear model to the point correspondences. Its solution can
be achieved using nonlinear least-squares algorithms, such as Levenberg–Marquardt
[Mor78] which has proven to be one of the most successful algorithms.

2.2.2 Multi-view stereo
Multi-view stereo (MVS) is often applied for a dense reconstruction from images with
estimated 6D poses and spare 3D points estimated from SfM. In the section, we give
a brief insight into three main stages of MVS: Stereo matching, Depth estimation, and
Fusion.

2.2.2.1 Stereo matching

Stereo matching is the process of finding dense correspondences in different images that
correspond to the same 3Dpoint in the scene. It uses the epipolar constraint that reduces
the search regions to find pixels with similar appearance on the epipolar lines.

28 3D RECONSTRUCTION

The most widely used matching method that allows finding the conjugate points
is block matching. Correspondences are found by comparing photo-consistency which
estimates the likelihood of two pixels (or groups of pixels) being similar. The photo-
consistency measurement operates by comparing a small region centered at a pixel with
congruent regions extracted from neighboring images. Given a 3D point𝑋 and a set of
images containing the projected point 𝜋𝑖(𝑋) from𝑋, the photo-consistency is defined
by

𝐶𝑖,𝑗 = 𝜙(𝑃𝑖(Ω(𝜋𝑖(𝑋))), 𝑃𝑗(Ω(𝜋𝑗(𝑋)))), (2.40)
where 𝜙(𝑥, 𝑦) is a similarity measurement that compares the two vectors 𝑥 and 𝑦,Ω(𝑥)
is a patch center at point 𝑥, 𝑃𝑖 is the image intensities of the patch Ω, 𝑖 and 𝑗 are a pair
of images.

One of the key factors of photo-consistencymeasurement is how to define themetric
𝜙 and patchΩ. The straightforward way to defineΩ for each pixel is to use a square grid
of pixels centered at that pixel. 3×3 or 5×5 is themost widely used patch size. Formore
complicated scenarios, the size and shape of the patch are not constant [ZPQL04, FP09].

photo-consistency metrics. The metrics often used for photo-consistency mea-
surement includes Sum of Square Differences (SSD), Sum of Absolute Difference (SAD),
Zero-mean normalized cross correlation (NCC), Rank and so on [FH15]. In this thesis,
one of the metrics we use is SAD. Give a patch centered at pixel 𝑥 in an image 𝐴, we
project 𝑥𝑖 in the patch by camera’s intrinsic and extrinsic matrices to 𝑥′ in another im-
age𝐵. Then we compute the photo-consistency by SAD:

𝐶𝑆𝐴𝐷 =
𝑁

∑
1

|𝜌𝐴(𝑥𝑖) − 𝜌𝐵(𝑥′
𝑖)|, (2.41)

where functions 𝜌𝐴 and 𝜌𝐵 extract colors from the images 𝐴 and 𝐵, 𝑥′
𝑖 is the corre-

sponding point of 𝑥𝑖 in the image 𝐵, and 𝑁 is the number of pixel in the patch. It
achieves good performance for applications that can guarantee similar capture condi-
tions for different images (e.g., real-time or mobile applications).

The photo-consistency metrics described above assume all the points be visible in
all views when compute photo-consistency. However, in the general case some points
may be occluded by other points, so that one does not know which points are visible in
which images (See Figure 2.12). In order to select images that are able to capture the
3D geometry for the photo-consistency computation, we need the correct 3D geometry.
However, this model is unknown and is what we want to produce. Techniques breaking
this loop can be divided into geometric and outlier based approaches.

Geometric approaches explicitly model occlusion to determine which scene struc-
tures are visible in which images. One common approach is to use the current recon-
structed geometry to compute occlusion, select which views see which parts of the ge-
ometry, and iterate visibility estimation and reconstruction [Kut00, DP11]. To improve
the performance, images which have similar view angles, small baselines and large over-
laps are often clustered. The view clustering process can be achieved by using the 3D

BACKGROUND 29

A

a

B

b

b
b

C

cM1 M2
M3

Figure 2.12: Visibility problem. Since point𝐴 is occluded by point𝐵 and𝐶 , it cannot
be captured by cameras𝑀2 and𝑀3.

points and 6D camera poses estimated from SfM. The 3D points are used to compute
the number of shared matches between any two views as an indication of the overlap
between them; The 6D pose is used to compute the angle and distance between any two
views.

Instead of modeling occlusion geometrically, the outlier based methods treat occlu-
sion as outliers [GS05]. The intuition behind it is that dissimilar images would yield
poor photo-consistency scores. In order to select views that may have high similarity,
the outlier rejection [Ste99] is often applied to increase the percentage of possible inliers.

2.2.2.2 Depth estimation

Depth estimation in MVS from a pair of images that are often captured by a two-camera
rig has the same formulationwith the traditional two view stereo. Themain advantage of
capturing images by a two-camera rig is that it providesmore accurate depth values. This
is because the camera intrinsic and extrinsic parameters can be carefully calibrated in
advance. Besides, for we only need to compute photo-consistency between two images,
it achieves high speed.

In order to compute the depth value for every pixel, we use epiploar constraintwhich
can reduce the search regions to find corresponding pixels in two images. Let 𝑥1 be a
pixel in the left image, 𝑙2 be the epipolar line in the right image, as shown in Figure
2.13. Based on the epiploar constraint, we can find the projection of 𝑥1 which has the
highest photo-consistency cost in the right image along the epioplar line 𝑙2. Then, we
use triangulation to estimate the depth 𝑑 for 𝑥1.

Depth estimation from multi-view images is more complicated than two-view ap-
proaches, as there are often more images, resulting in more redundancy. Given a collec-
tion of images and their corresponding camera poses, traditional depth estimation ap-
proaches first compute photo-consistency through a possible depth range. And then the
depth value with the highest photo-consistency score is chosen as the estimated depth.

30 3D RECONSTRUCTION

𝑥𝑥1
𝑙𝑙2

𝑥𝑥2?

𝑑𝑑

Figure 2.13: Epipolar searching. The projection 𝑥2 of point 𝑥1 can be found along
epipolar line 𝑙2

A well known method to compute depth values from multiple images is plane sweep
stereo.

The plane sweep computes photo-consistency at a discrete integer depth for each
pixel in a reference image. This is equivalent to computing photo-consistency on fronto-
parallel or oriented planes with respect to a reference image. For the fronto-parallel
plane, a patch centered at a pixel shares the same depth value. However, if the patch
contains slanted surface, the depth values in such a patch are different. The oriented
plane is introduced to deal with this issue. To speed up depth estimation, recent ap-
proaches [BRR11, GLS15] find good depths by iteratively propagate the current estimate
of a pixel to its neighboring pixels rather than initializing depth with a range of depth
values and exhaustively computing photo-consistency at every possible depth.

Smoothness. The depth estimated by photo-consistency may be incorrect, due to
thenoise caused by occlusion, large texture-less regions andnon-Lambertian reflectance.
To address these challenges, many approaches consider the spatial consistency of all the
pixels in the image and enforce smoothness during the geometry reconstruction. The
Markov Random Field (MRF) based approach is one of the most successful approaches,
which works under the assumption that neighboring pixels have similar depth values. It
works by finding a depth value 𝑑𝑖 for each pixel 𝑖, while minimizing the following cost
function:

𝐸(𝑑𝑖) = ∑
𝑖

𝐸𝑐(𝑑𝑖) + ∑
𝑖,𝑗∈𝑁

𝐸𝑠(𝑑𝑖, 𝑑𝑗), (2.42)

where 𝐸𝑐 is the inverse cost of photo-consistency for pixel 𝑖, 𝐸𝑠 is used to enforce
smoothness, and𝑁 is the number of all pairs of neighboring pixels 𝑖 and 𝑗.

The definition of the smoothness function has various forms, e.g., the Potts function:

𝐸𝑠(𝑑𝑖, 𝑑𝑗) = { 1, 𝑖𝑓 𝑑𝑖 = 𝑑𝑗
0, 𝑒𝑙𝑠𝑒

, (2.43)

BACKGROUND 31

which only encourages to exact label matches, or a truncated linear function:

𝐸𝑠(𝑑𝑖, 𝑑𝑗) = 𝑚𝑖𝑛(|𝑑𝑖 − 𝑑𝑗|,𝑊), (2.44)

where𝑊 > 0 is a truncation factor.
There are many efficient approaches to solve 2.42. If the smoothness cost at every

set of neighboring pixels satisfies the modularity condition [KZ04], the alpha-expansion
algorithm [KZ04] is the most popular choice to minimize the cost function. Besides,
Semi-Global Matching method [Hir06] is also a good choice, which achieves good per-
formance for dense reconstruction. Apart from MRF based methods, the estimated

Figure 2.14: Examples of estimated depth images after smoothness from [HRDB16].

depth can be smoothed by edge-preserving filters, such as bilateral and guide filters.
These filters can remove noise while respecting edges and structures by replacing the
depth value 𝑑𝑗 of each pixel with a weighted average valued 𝑑′

𝑖 calculated from depth
values of nearby pixels:

𝑑′
𝑖 = ∑

𝑗∈𝑁(𝑖)
𝑊𝑖,𝑗(𝐼)𝑑𝑗, (2.45)

where the weight function 𝑊𝑖,𝑗 depends on the image 𝐼 , 𝑖 and 𝑗 are pixel indexes, and
𝑁(𝑖) is a local window around the pixel 𝑖.

Theweight function𝑊𝑖,𝑗 has different typeswhen it is used in different edge-preserving
filters. For example, the joint bilateral filter [ED04] uses the weight function consisting
two Gaussian kernels

𝑊𝑖,𝑗 = 𝑒𝑥𝑝(−||𝑖 − 𝑗||2
𝜎2𝑠

) ⋅ 𝑒𝑥𝑝(−||𝐼𝑖 − 𝐼𝑗||2
𝜎2𝑐

), (2.46)

where 𝑖 and 𝑗 are the pixel coordinates, 𝐼𝑖 and 𝐼𝑗 are color values, 𝜎𝑠 adjusts the sensitiv-
ity of spatial similarity and 𝜎𝑐 determines the sensitivity of the filter to image edges. The
guide filter further improves the running time of the smooth process by using a constant
time weight function

𝑥′
𝑖 = 𝑘𝑗𝑥𝑖 + 𝑏𝑗, ∀𝑖 ∈ 𝑤𝑗, (2.47)

where 𝑥′
𝑖 is the filtered value, 𝑥𝑖 is the initial value, and 𝑘𝑗 and 𝑏𝑗 are some linear coef-

ficients which are constant in the local window 𝑤𝑗 centered at the pixel 𝑗. They can be
calculated by the linear ridge regression model [FHT01, DS98].

32 3D RECONSTRUCTION

After smoothness, we obtain the depth map which is a very popular scene repre-
sentation, as shown in Figure 2.14. It can be used for vision-based tasks such as object
recognition, pose estimation, and scene analysis.

2.2.2.3 Fusion

Even though depth maps contain the geometric information of the scene, a global rep-
resentation for geometry, e.g., a global point cloud, is also useful. It can be generated by
merging multiple depth maps and in return, the global geometry is helpful to remove
noise in the depth map. Figure 2.15 shows a 3D point cloud reconstructed by [SZFP16].

Point cloud reconstruction approaches often rely on the geometric consistency as-
sumption. It reconstructs the point cloud with the consideration of neighboring pixels
rather than reconstructing each pixel independently. In order to make the point cloud
to be representative, when merging depth maps, we often use filters to discarding pixels
whose: (1) depth value is much bigger than the depth range, (2) estimated 3D location
is only visible in one image, and (3) estimated 3D location has no neighboring points.

Figure 2.15: The point cloud generated based on depth images [SZFP16].

For IBR approaches, they also convert the point cloud to polygon mesh or triangle
mesh models instead of rendering it directly. The converting process is commonly re-
ferred to as surface reconstruction.

Here, we briefly introduce the popular volumetric surface reconstruction method
which is robust against noisy point clouds. The key factor of surface reconstruction is
how to represent each 3Dpoint in the scene. Oneway is to label each 3Dpoint as exterior
or interior. If the space surrounding a 3D pixel is empty, the pixel is called exterior and
vice versa. The problem to produce a surface model can be considered as a binary seg-
mentation problem, where the boundary between exterior and interior can be extracted
as a surface model. A 3D MRF based method is often used for the label assignment,
where the space behind the depthmap pixel is encouraged to be interior and camera po-
sitions are forced to be exterior. To compute the segmentation, some methods discretize

BACKGROUND 33

the scene with a regular voxel gird, and some approaches are based on a Delauney tetra-
hedralization of the scene [LPK07, JP11].

2.3 Robot Operating System
Robotics is hard to learn as the scale and scope of it continues to grow, and it takes plenty
of time for the software developer to write a software for a robot. Even though many
people work in the robot software development, their robotics frameworks are only suit-
able for their own robots. As a result, these softwares eventually become non-reusable
and quickly forgotten. To address these issues, the Robot Operating System (ROS) is
proposed. The primary goal of ROS is sharing and collaboration, which supports code
reuse in robotics research and development. Apart from that, there are some other main
goals of ROS [QCG+09]:

•Thin: ROS encourages algorithms designed for robotics applications to occur in
standalone libraries. Thus, codes written for ROS can be extracted easily and reused
with other robot software frameworks. On the other hand, ROS reuses codes frommany
other open source projects, e.g., image processing algorithms from OpenCV [BK08] by
only exposing configuration options.

•Language independence: ROS supports different modern programming languages.
It has already been implemented in Python, C++, Octave and Lisp with other language
ports in various states of completion. It allows user to write codes with their preferred
programming languages, which is helpful to reduce programming and debugging time,
and improve running-time efficiency.

In fact, ROS is a middleware rather than an operating system, which is responsi-
ble for handling communication between programs in an existing operating system for
robotics applications. ROS uses a Unix-like system, (e.g., Ubuntu) as its main operating
system. It provides libraries and tools for software developers to create their robotics
applications using an existing foundation rather than doing everything themselves.

Motion
planningMap

Camera

localization

Robot
control

Figure 2.16: An example of the ROS graph structure showing a robot application with
various nodes.

34 ROBOT OPERATING SYSTEM

2.3.1 ROS graph structure

The basic computation graph concepts of ROS are nodes, topics, services and parameter
servers.

Nodes. ROS processes are represented as nodes in a graph structure [ros]. Figure
2.16 shows an example of such a graph structure. A node is an executable that performs
computation and communication with each other by communication tools including
topics and services.

Topics. Topics are used for sending data streams between two or more nodes. The
data steam is called message which has various types and can be defined by users. If a
node interests a certain message, it can subscribe to the message’s corresponding topic.
For example, if the position of a robot is required, the node (subscriber) can subscribe
the topic which sends position information. The node that contains the position topic
is called the publisher. Publishers and subscribers on a ROS topic are anonymous. That
means no node knows which node is sending a topic, only if it is receiving that topic and
vice versa. Besides, a node can publish or subscribe to multiple topics.

Services. Nodes can also communicate with each other by services. A service al-
lows creating a client or server system which has a defined request or response. A node
offers a service under a string name, and a client calls the service by sending the request
message and waiting for the reply. This process is synchronous, where the client sends
a request, and blocks until it receives a response. It is useful to obtain specific data such
as capturing a single-frame image from a sensor. It can also be used for quick actions,
e.g., enable or disable an actuator. Besides, a service server can only exist once, but can
have many clients.

Parameter server. ROS provides users a parameter server to create global settings.
The parameter server is a collection of configuration information that can be accessed
through nodes or launch files which are XML configuration files. It is a shared, multi-
variate dictionary that is able to be accessed at anytime in anywhere in the current ROS
environment (See Figure 2.17). Nodes use this server to store and retrieve parameters at
running time and launch files use this server to set parameters. The parameter server
allows a variety of global settings including the name of a robot, theweight of a robot, the
frequency of sensors, and the simulation flag which is used to tell the robot is running in
the realmode or simulationmode. As the parameters are not used for high performance,
they are designed to be static and globally available values which can be integers, floats
and non-binary values. The benefit of the parameter serve is clear. If the user does not
have a way to save global settings, it would take plenty of time for the user to hardcode
the settings in every node.

Based on nodes, messages, topics, services, and parameters, robotics applications are
able to be developed. Application in ROS is organized in packages which contain ROS
nodes, configuration files, a third-party piece of software, or anything else that logically
constitutes a useful module. The goal of designing a package is similar with the aim
of ROS, which is to provide useful functionality in an easy-to-consume manner, so that
software can be easily reused.

BACKGROUND 35

ROS

Parameter server

Node B1

Node A2

Node A1

/parameter1

/parameter2

Figure 2.17: The parameter server. It contains two parameters which can be accessed
at anytime by the ROS nodes A1, A2 and B1.

2.3.2 Libraries and packages

Apart from those features mentioned above, ROS has plenty of existing ROS libraries
and packages that can be directly added to the user’s own codes.

For example, to develop a virtual environment for a mobile robot, we need to design
many modules, including:

•robot modeling,

•driver for the motors and sensors,

•path and motion planning, and

•pose estimation.

Since writing codes for every module takes a large amount of time, developing such
a software is challenging. However, the problem can be solved with the help of ROS. To
develop such a virtual environment, there are many libraries or packages in ROS can be
used:

•URDF librarywhich contains a parser forUnifiedRobotDescriptionFormat (URDF)
which is an XML file to represent a 3D model of the robot,

•motor and sensor driver packages that have various drives,

•Moveit providing different algorithms for path and motion planning and collision
checking, and

•tf which is a package that provides multiple coordinate frames over time, such as a
world frame, head frame, and camera frame, as described in Figure 2.18.

Apart from the libraries and packages mentioned above, there are other commonly
used packages include rosbridge, amcl, slam toolbox, and navigation. The functional-
ities of these packages cover a wide range of applications including object recognition,
visual navigation, image processing, simulation and motion control.

36 ROBOT OPERATING SYSTEM

Figure 2.18: The tf transformation tree of Nao robot in ROS.

2.3.3 Tools
The main functionalities of ROS can be augmented by a variety of tools which allow
developers to focus on the key features of their applications rather than doing everything.
Like any other algorithms used for robotics applications, these tools are accessible in
packages, and theywork together with the core functionalities of ROS to help developers
efficiently create robotics applications. In the following, we describe themost commonly
used tools.

Catkin. Catkin is the ROS build system based on CMake, and uses CMake macros
and Python scripts to build ROS packages. It has replaced rosbuild which is used for old
ROS versions, for it can provide better distribution of packages, better cross-compiling
support and is language-independent. The workflow of catkin is similar with that of
CMake, but allows building multiple and dependent projects simultaneously.

Roslaunch. Roslaunch is used to launch different remote or local ROS nodes at the
same time. Besides, it can be used to set parameters on the ROS parameter server and
restart processes which have been dead during execution. Roslaunch uses XML format
files to specify the nodes that should be run, parameters that should be set, and the
machines which they should run on. It is useful to convert a complicated startup and
configuration process into a single command.

Rviz. Rviz is a 3D visualizer for ROS. It allows users to visualize robot models, the
global environments, the positions of robots, and the robot’s sensor data. It is helpful to
debug a robot application by visualizingwhat the robot is seeing and doing. Rviz displays
3D sensor data from stereo cameras, lasers, and other 3D devices in the form of point
clouds or depth images. 2D sensor data from RGB cameras and 2D laser rangefinders
can be viewed in Rviz as image data. This can be useful to develop and debug computer
vision tasks for robots.

Bag. Bag is a format for saving and playing back ROS data. For example, bags can
be used for storing color and depth information captured by color and depth sensors. To
exhaustively capture a dense grid of viewpoints in a scene takes a large amount of time

BACKGROUND 37

and is a labor-intensive task, while a mobile robot can complete this work easily. With
the information saved in the bag file, it saves plenty of time for users to develop and test
algorithms.

2.3.4 The Robot Operating System community

ROS has a huge and growing community including various users all over the world. It
not only attracts users who are in research labs but also those working in companies.
Many companies are sponsoring some open source projects related to ROS, especially
in industrial and service robotics. That is a great guarantee which reduces the user’s
worries about the project not being supported in a few months. The ROS community
enables developers to exchange software and knowledge and benefit from each other.
These main online communities include:

•ROS Wiki. It is the main forum to find most of the tutorials, concept explanations,
and guides for various robotics applications. Anyone can sign up for an account, write
tutorials for their packages, and provide documentation of their algorithms.

•ROS Answers. It is a Q &A site. When users have ROS-related technical questions,
they can ask questions in this site. Besides, it also provides a large number of answered
questions that may be helpful.

•GitHub. GitHub provides a large amount of ROS packages. From it, users are able
to browse source codes, download and make contributions to them.

2.4 Deep learning
…

w1

wk

wK

a1

ak

aK

+

…

…
…

A simple function

c

b

(z)z σ

(a)

(z)

z

σ
0.5

(b)

Figure 2.19: (a): A neuron takes inputs 𝑎𝑖 that are multiplied by weights𝑤𝑖 and a bias
𝑏 to generate the output 𝑐 through an activation function 𝜎(𝑧). (b): The activate func-
tion for (a) is sigmoid function.

38 DEEP LEARNING

2.4.1 Neural networks
Neural networks are computational models that are inspired by biological neural net-
works to process information.

2.4.1.1 Neurons

The basic computational unit in a neural network is the neuron. The neuron multiples
each input𝑥𝑖with its correspondingweight𝑤𝑖, adds an overall bias 𝑏, and then produces
output 𝑐 using an activation function 𝑓 , as described in Figure 2.19(a):

𝑐 = 𝑓(
𝑁

∑
𝑖

𝑥𝑖 + 𝑏). (2.48)

The activation function is nonlinear, and allows computing nontrivial problems us-
ing only a few neurons. The sigmoid function is the commonly used activation function,
as shown in Figure 2.19(b):

𝜎(𝑧) = 1
1 + 𝑒-𝑧 . (2.49)

There are other two commonly nonlinear activation functions: Rectified linear unit
[NH10],

𝑅𝑒𝐿𝑈(𝑧) = { 0, 𝑧 ≤ 0
𝑧, 𝑧 > 0

, (2.50)

and Leaky rectified linear unit (LeakyReLU) [MHN13],

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑧) = { 𝛼𝑧, 𝑧 ≤ 0
𝑧, 𝑧 > 0

, (2.51)

where 𝛼 is constant gradient, which is often set to be 0.01.

2.4.1.2 Neural network architectures

Neural networks often consist of distinct layers that are organized by neurons. Themost
commonly used layer is the fully connected layer where neurons between two adjacent
layers have fully pairwise connections, but neurons within a single layer share no con-
nections. Figure 2.20 shows an example of the fully connected network.

It consists of an input layer, several hidden layers and an output layer. The neurons
in the input layer pass external data, such as images to the network and no computation
is performed in this layer; The hidden layers compute and transfer information to the
neurons in the next hidden layer; The output layer is used for computing and transferring
information from the network to the external world. In this neural network, the output

BACKGROUND 39

Output
layerHidden layersInput

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

Output

My

2y

1y

Input
layer

Figure 2.20: A fully connected neural network with input, hidden and output layers.

from one layer is used as input to the next layer. Such neural networks are called feed-
forward neural networks and sometimes referred to asMulti-Layer Perceptrons (MLPs).
Feedforward means there are no loops in the network and information always moves
forward from the input neurons, through the hidden neurons to the output neurons.

Besides, theword ”deep” in deep learningmeans the number of hidden layers. Train-
ing a deep neural network is to find a set of weights and biases for the neurons that
minimize a loss function.

2.4.2 Loss functions
The loss function is a differentiable function that optimizes network weights in a neural
networkmodel. The loss function produces a single scalar non-negative value indicating
how well the network weights accomplish the task which the network is designed for.

There are mainly two classes of losses. One is the classification loss which is often
used for training a neural network to predict a categorical variable (e.g., a class label).
One of the most popular classification losses is the cross-entropy loss used for multi-
class classification. It measures the performance of a classification model whose output
is a probability value between 0 and 1. To ensure the sum of all probability values 𝑧𝑖 is
equals to 1, the softmax function is used, which is defined by:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)𝑖 = 𝑒𝑧𝑖

∑𝑘
𝑗=0 𝑒𝑧𝑗

, (2.52)

where 𝑘 is the number of classes and 𝑖 is some class. Its outputs are positive values
representing the estimated class probabilities. The cross-entropy loss is the negative
logarithm of the estimated class probability for the true class 𝑖:

𝑃 = -𝑙𝑜𝑔(𝑒𝑧𝑖

∑𝑘
𝑗=0 𝑒𝑧𝑗

). (2.53)

The other one is the regression loss. Regression is used to predict a continuous value
(e.g., object depth) rather than a categorical one (e.g., object class). Regression losses are

40 DEEP LEARNING

computed by performing direct comparisons between the predicted value and the true
value. The 𝐿1 loss and 𝐿2 loss are often used to measure the differences.

The 𝐿1 loss is formulated by summing the absolute value between network output
𝑧′ and the true value 𝑧:

𝐶 = |𝑧′ − 𝑧|. (2.54)

The 𝐿2 loss computes the squared difference:

𝐶 = ‖𝑧′ − 𝑧‖2
2. (2.55)

The loss function plays an important role on deep learning-based tasks. Other spe-
cialized loss functions have been designed for object segmentation [XSNF17, RSEG20],
pose estimation [WXZ+19] and depth estimation problems [FGW+18].

2.4.3 Training neural networks
The aim of training a neural network is to find parameters 𝑃 ∗ = 𝑤1, 𝑤2, ..., 𝑏1, 𝑏2, ...
that minimize the loss function:

𝑃 ∗ = argmin∑
𝑖

𝐶𝑖, (2.56)

where𝐶𝑖 is the loss function for input 𝑖.
One simple way to find the set of parameters 𝑃 ∗ that minimize the loss function, is

random search: try out many sets of parameters, calculate the loss and keep updating
the best set of parameters. Even though this strategymay take plenty of time and compu-
tation, a set of weights with a small loss can be eventually found. In fact, a better result
can be obtained by iterative refinement. That is the training is started with a randomly
selected set of weights and then iteratively refine these parameters over time to get lower
loss. Apart from above approaches, the gradient descent method achieves much better
performance.

2.4.3.1 Gradient descent

Gradient descent is an iterative optimization approach that finds a local minimum of the
loss function by evaluating the gradient. The gradient can be expressed as the partial
derivative of the loss function 𝑓(𝑥)with respect to its input 𝑥. If the loss function is one
dimension, its mathematical expression is defined as

𝑑𝑓(𝑥)
𝑑𝑥 = lim

ℎ→0
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ , (2.57)

where ℎ is a small change near 𝑥.
Consider a weight 𝑤, the 𝑤 with a positive gradient will lead to an increased loss

while 𝑤 with a negative gradient results in the decreased loss. The gradient descent

BACKGROUND 41

algorithm is to repeatedly evaluate the gradient and then to update the weight in the
negative gradient direction:

𝑤 ⟶ 𝑤′ = 𝑤 − 𝛽𝜕𝐶
𝜕𝑤 , (2.58)

where𝑤′ is the updated weight,𝐶 is the loss function, 𝛽 is a small and positive param-

eter which is called the learning rate. This procedure is repeated until
𝜕𝐶
𝜕𝑤 is approxi-

mately small.
To make gradient descent work correctly, the learning rate should be chosen care-

fully. If it is too large, training will become unstable and even never converge. However,
if it is too small, trainingwill converge very slowly. Another important factor is the gradi-
ent computation. The most commonly used approach is the backpropagation algorithm
[RHW86].

2.4.3.2 Backpropagation

The backpropagation approach works by computing gradients of loss functions through
recursive application of chain rule. The chain rule states that the derivative of a com-
posite function 𝑓(𝑢(𝑣(𝑥))) can be represented by multiplication:

𝜕𝑓
𝜕𝑥 = 𝜕𝑓

𝜕𝑢
𝜕𝑢
𝜕𝑣

𝜕𝑣
𝜕𝑥. (2.59)

Backpropagation uses this rule to calculate partial derivatives of the loss functin 𝐶
with respect to weights 𝑤𝑙 in layer 𝑙. The loss function passes through 𝑁 layers with
activations 𝑎𝑙. The calculation is defined by:

𝜕𝐶
𝜕𝑤𝑙

= 𝜕𝐶
𝜕𝑎𝑁

𝜕𝑎𝑁
𝜕𝑎𝑁−1

, ..., 𝜕𝑎𝑙
𝜕𝑤𝑙

. (2.60)

The main steps of the backpropagation algorithm are summarized below:

(1) Forward propagation: The activations in each layer are calculated and stored by
forward propagation.

(2) Backpropagation andweight update: The output errors are calculated and propa-
gated back through the network using backpropagation to calculate gradients. Then the
gradient descent is used to optimize all weights in the network with an aim of reducing
the error at the output layer.

2.4.4 Variants of neural networks
In this sectionwe give a brief overview of themost popular neural network architectures
for computer vision-based tasks.

42 DEEP LEARNING

2.4.4.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of neural networks that have been
successfully used inmany computer vision-based tasks, such as object segmentation, ob-
ject segmentation and image classification. A CNNmainly consists of three types of lay-
ers: convolutional layers, pooling layers, and fully connected layers. We have described
the fully connected layer in Section 2.4.1.2.

Convolutional layers. A convolutional layer is a locally connected layer in which
a neuron is only connected with neurons that are in the same spatial neighborhood with
shared weights in the next layer. It is often used to extract features from input images.
The main advantage of the convolution layer is that it preserves the spatial relationship
between pixels by learning image features using small squares of input data. Apart from
that, it reduces the possibility of overfitting by using sharing weights to reduce the num-
ber of parameters involved in a convolutional network.

Pooling layers. Pooling layers are usually used between two convolutional layers.
Their functionality is to simplify the information in the output obtained from the convo-
lutional layers by taking an average, minimum or maximum of activations over a small
spatial region.

Figure 2.21: VGG

Figure 2.22: Resnet

There are a large number of architectures in the field of CNNs. Here we give two
examples:

1. VGGNet. VGGNet is developed by Simonyan et al. [SZ14]. Their best network
consists of 16 convolutional layers, max-pooling layers and fully connected layers, as
shown in Figure 2.21. The convolutional layer only contains 3 × 3 filters to keep the

BACKGROUND 43

architecture homogeneous. The main contribution of their work is that they show in-
creasing the depth of the network and the training time are able to significantly improve
the performance.

2. ResNet. The main idea of ResNets [HZRS16] is that it introduces shortcut con-
nections to the network, as described in Figure 2.22. With these shortcut connections,
the layers in the network only need to learn a residual mapping function rather than
a unreferenced function. Experiments show that these residual networks are easier to
optimize and allow training deeper networks with lower complexity.

2.4.4.2 Graph Neural Networks

Graph Neural Networks (GNNs) are designed to process graph structured data, such
as social networks, physical systems, molecular structures, web graphs and knowledge
graphs, as shown in Figure 2.23. Even though CNNs are able to extract meaningful
features fromEuclidean data, such as images, they are not able to handle the graph input
properly. Besides, they are not able to learn the reasoning graph from large experimental
data. GNNs are proposed to deal with these issues.

Figure 2.23: Examples of graph structured data

Graphs are a kind of data structure consisting of nodeswhich are connected by edges
[SGT+08]. The nodes represent objects and the edges represent relationships between
these nodes. The aim of GNN is to learn a node embedding for each node, which con-
tains the neighborhood information. Let 𝑓 and 𝑔 be parametric functions. 𝑓 is called
local transition functionwhich is used to learn a node embedding state𝑚𝑣 for each node,
representing the dependence of a node on its neighborhood. 𝑔 is called local output func-
tionwhich is used to obtain output embedding 𝑜𝑣. The relationship between nodes and
edges is defined by:

𝑚𝑣 = 𝑓(𝑥𝑣, 𝑥𝑐𝑜[𝑣],𝑚𝑛𝑒[𝑣], 𝑥𝑛𝑒[𝑣]), (2.61)

𝑜𝑣 = 𝑔(𝑚𝑣, 𝑥𝑣), (2.62)

where 𝑥𝑣, 𝑥𝑐𝑜[𝑣], and 𝑥𝑛𝑒[𝑣] are the features of node 𝑣, edges connected to 𝑣, and 𝑣’s
neighborhood nodes, respectively. 𝑚𝑛𝑒[𝑣] are the embedding states.

Let𝑀 ,𝑂,𝑋, and𝑋𝑛 be thematrices constructed by stacking all the states, outputs,
nodes, and node features. Then we have a compact form as:

𝑀 = 𝐹(𝑀, 𝑋), (2.63)

44 DEEP LEARNING

𝑂 = 𝐺(𝑀, 𝑋𝑛), (2.64)

where 𝑀 is the global transition function, 𝐺 is the global output function and 𝑛 is the
number of nodes in the graph. Based on Banach’s Fixed Point theorem [KK11], the node
state is updated by:

𝑀 𝑙+1 = 𝐹(𝑀 𝑙, 𝑋), (2.65)

where 𝑀 𝑙 is the 𝑙𝑡ℎ iteration of 𝑀 . With the GNN model, the parameters of 𝑓 and 𝑔
can be learned by feeding these states into loss functions and running gradient descent
to train the these parameters. Here we give two commonly used variants of GNNswhich
extend the representation capability of the GNN model. For a more extensive overview,
we refer to [ZTXM19, ZCZ+18, ZCZ+18].

Graph Convolutional Networks. Graph Convolutional Networks (GCNs) aggre-
gate node information from its neighboringnodes by the convolution operation on graphs
[KW16]. Based on the types of convolutions, they can be categorized as spectral ap-
proaches and spatial approaches. For spectral methods, the graph convolutions are de-
fined in the fourier domain and can be computed by taking the inverse fourier transform
of the multiplication between two fourier transformed graph signals. The limitation
of spectral methods is that learned filters depend on the graph structure. Therefore, a
model trained on some graph structure is not able to be directly applied to another dif-
ferent graph. Unlike spectral methods, spatial approaches directly define convolutions
on the graph, aggregating node information from its spatial neighborhood nodes. Thus,
these approaches do not depend on the graph structure.

GraphAttentionNetwork. GraphAttentionNetwork (GAT) is developed byVeličković
et al. [VCC+17]. It incorporates the attention mechanism into the propagation steps.
Veličković et al. compute the hidden state of each node by attending over its neighbors,
based on a self attention strategy. The core layer of GAT is the graph attentional layer
which allows every node to attend on its neighboring nodes. The main contribution of
their work is that their networks allow a node to assign different weights to other nodes
in its neighborhood, without requiring any kind of costly matrix operation (such as in-
version) or depending on knowing the graph structure.

3
Free-viewpoint imagebased
rendering

Figure 3.1: Qualitative comparison between simulated images (first column) and
ground-truth images (second column) on datasets of Attic, Study room, Playroom and
Reading corner.

In this chapter we present a novel depth image based rendering (DIBR) approach to
produce photo-realistic imagery of real scenes. There are several challenges for DIBR:
(1) misalignment of object boundaries between color-and-depth image pairs often leads

46 INTRODUCTION

to ghost contours; (2) projection errors and missing depth information result in the vis-
ibility failure; and (3) useless and redundant input views often produce blurry images.

To address these issues, we propose a pixel-to-pixel multi-view depth refinement
method to produce pixel-accurate alignment between color-and-depth image pairs, and
an adaptive view selection approach to avoid choosing redundant or useless input views.
Furthermore, we propose a layered 3D warping to avoid the loss of visible information.
These components are designed to work together, reducing visual artifacts in synthe-
sized images, while hardly sacrificing rendering speed. The evaluation results indicate
that our method significantly improves the quality of synthesized images, achieves good
performance on a wide variety of challenging scenes (see Figure 3.1) and performs best
among popular DIBR algorithms.

3.1 Introduction
There is increasing demand on reproducing photo-realistic virtual versions of real scenes
for a large number of vision applications, such as free-viewpoint television (FTV), physi-
cal training and virtual navigation. One promising approach that provides such realistic
and interactive imagery is DIBR [Feh04]. DIBR allows users to interactively control the
viewpoint to produce synthesized images from arbitrary positions. However, various
visual artifacts like ghost contours, holes often appear in the synthesized image.

Ghost contours aremainly caused by themisalignment of object boundaries between
a color image and its corresponding depth map. Object edges in the color image always
have transitional pixels, while there are only sharp edges in its corresponding depthmap.
After projection, the edge-transitional regions are split and appear various visual arti-
facts. There are plenty of studies to correct misalignment by erasing edge-transitional
regions [MFY+09, CDSHD13] or smoothing depth edges [LZW+17]. Nevertheless, these
methods are more likely to introduce new visible artifacts, for they may remove useful
information when erasing the misalignment. On the contrary, we introduce a pixel-to-
pixel multi-view depth refinement algorithm to take advantage of useful information
in transitional regions, and produce better alignment between color-and-depth image
pairs. In addition, our refinement method is able to fill missing depth information with
the consideration of photometric and geometric consistency among multiple images.

Redundant and useless input views often lead to blurring or incomplete synthesized
images. Previous studies select input images by comparing angles or distances between
the input and target views [DN17, LLF+16], and the number of input images used for
blending is often fixed. Therefore, they may fail to choose enough input views or choose
incorrect and redundant views. In order to avoid such cases, we propose an adaptive
view selection method with variable well-chosen input views to improve the quality of
synthesized images.

In the blending process, visibility is often solved by the Z-buffer method that only
recovers the front-most pixels [ZDdW10]. However, the Z-buffer approach fails to solve
the visibility problem caused by the incorrect depth information or projection errors. As

FREE-VIEWPOINT IMAGE BASED RENDERING 47

a result, when these errors exist, objects in the foregroundmay be occluded by objects in
the background in the synthesized image. To address this issue, we divide the depthmap
into layers and apply 3D warping to synthesize images on each layer with a switching
median filter to avoid the loss of visible information and over-smoothing. Since layered
depths have the ability to represent occluded elements, our approach is better in dealing
with the visibility problem. Our main contributions are summarized as follows:

• A novel depth refinement algorithm that respects photo-consistency and edge
preservation to correctmisalignment between color-and-depth image pairs and fillmiss-
ing depth information.

• A novel adaptive view selection approach that effectively avoids selecting redun-
dant and useless input views to improve the quality of synthesized images and the ren-
dering speed.

• A novel rendering algorithm providing high-quality free-viewpoint synthesized
images, which is based on layered 3Dwarping to deal with occluded elements and lower
the rendering complexity.

We have applied our algorithm on a variety of complex indoor scenes, demonstrat-
ing that our method provides plausible novel views and significantly improves the peak
signal to noise ratio (PSNR) compared to previous works.

3.2 Related work
Image-based rendering has been an active research area over a long period and a thor-
ough review of it can be found in [SCK08]. Here we only discuss the most related ap-
proaches in DIBR.

The importance of maintaining the alignment of object boundaries between color-
and-depth image pairs has been known for many years [ZK07, EdDM+08]. Zitnick et
al. [ZK07] use color oversegment to detect object boundaries and then use neighbor-
ing Markov Random Filed to reduce artifacts at these areas. Similarly, Chaurasia et al.
[CDSHD13] and Ortiz-Cayon et al. [OCDD15] divide the image into superpixels to pre-
serve depth discontinuities and then project each superpixel to the virtual view by a local
shape-preserving warping to improve the blending quality. Hedman et al. [HRDB16]
combine two multi-view stereo methods to produce depth maps which respect occlu-
sion edges. Alternative solutions including soft visibility [EdDM+08] and alphamatting
[ZKU+04], correct misalignment by building a visibility map to distinguish occlusion
boundaries. However, these approaches do not consider geometric consistency among
input images and still suffer from silhouette flattening and inaccurate occlusion edges.

A different class of approaches is to directly remove edges with high discontinu-
ities in the depth image [MFY+09, ZDdW10]. Mori et al. [MFY+09] expand the border
of edge-transitional regions and use a boundary matting defined by a hard threshold
to remove the mixture combing foreground and background information. Zinger et al.

48 RELATEDWORK

[ZDdW10] detect pixels that have high discontinuities and then label them. After that,
only unlabeled pixels are wrapped to the virtual view. However, the eliminating pro-
cess also erases useful information and can introduce other visual artifacts. In contrast,
our depth refinement method takes the advantage of these useful pixels and is able to
achieve better alignment between color-and-depth image pairs.

There have been a lot of works [MFY+09, CDSHD13, LZW+17] that improve the
quality of synthesized images by filling holes. Schmeing et al. [SJ15] use the inpaint-
ing approach [BSCB00] to fill holes. Solh et al. [SA12] use a hierarchical pyramid-like
method to detect pixels of holes from lower resolution estimates of the synthesized im-
age. They then fill holes use background information. Similarly, Dai et al. [DN17] also
use the hierarchy idea to explore the depth distribution of neighboring pixels around
each hole. Based on the distribution, they choose a number of pixels from the back-
ground and use them for hole filling. However, when there is no background informa-
tion available near a hole, these approaches have poor performance. Li et al. [LZS18]
use multiple reference views to fill holes, which has some similarity with ours. Nev-
ertheless, the number of input views used in their method is fixed, which may lead to
hole filling failure when the chosen view are useless or redundant. Instead, we use an
adaptive number of input views to avoid such cases.

To solve visibility for synthesized images,manyblendingmethods [CCL+05,MFY+09,
SSS09, GAF+10] often use the Z-buffer algorithm. Hedman et al. [HRDB16] use a fuzzy
depth test based onZ-buffer to blendmultiple images. Dai et al. [DN17] defines a thresh-
old to blend images with the similar idea like Z-buffer. However, these methods are gen-
erally unable to remove background information wrongly appearing in the foreground,
which is caused by projection errors or incorrect depths. Unlike these approaches, we
propose a layered 3Dwarping approach to resolve visibility, which can effectively reduce
the loss of foreground information and remove background information that wrongly
appears in the foreground.

More recently, deep learning-based approaches have been applied to synthesize vir-
tual views [FNPS16,XZH+18,HPP+18,MSOC+19a, ZTF+18]. Srinivasan et al. [SWS+17]
train deep learning pipelines to predict the local geometry for blending, and Hedman et
al. [HPP+18] use a Convolutional Neural Network (CNN) based architecture to esti-
mate pixel weights for rendering. Furthermore, Flynn et al. [FNPS16] and Wu et al.
[WZW+17b] directly use deep learning methods for end-to-end view synthesis. How-
ever, in the current state, these methods still suffer from high computational costs and
blurring when the virtual view is substantially different from input views. Besides, they
are not suitable for small datasets collected from a large range of viewpoints. In contrast,
our view synthesis approach does not require a large amount of data, and can provide
consistent rendering with a sparse collection of input images.

FREE-VIEWPOINT IMAGE BASED RENDERING 49

…

(a) Input
(RGB-D)

…

(b) Depth
refinement

…

(c) View
selection

(d) Layered 3D
warping (e) Blending (f) Hole filling

Offline Online

(g) Virtual
images

Figure 3.2: Overview of our algorithm. (a) The input of our method are color-and-
depth image pairs. (b) The initial depth maps are refined to achieve better alignment
between object boundaries of color-and-depth image pairs. (c) Images with small view
angles, short distances and large overlap are chosen as input images. (d) We divide the
depth map into layers and perform 3D warping on each layer. (e) The synthesized im-
ages are blended together. (f) Holes in the synthesized image are filled with other input
images, generating the final virtual images (g).

3.3 Overview

Our goal is to achieve free-viewpoint rendering even in regions where a global 3D recon-
struction of the scene hasmissing or inaccurate data for bothweak and strong computing
power devices.

High-quality DIBR depends on precise depth values and pixel-accurate alignment
of object boundaries between color-and-depth image pairs. This is because inaccurate
depth values and misalignment often lead to various visual artifacts, such as ghost con-
tours. Unlike previous methods [CCL+05, LLF+16], which only aim to correct the mis-
alignment of boundaries between color-and-depth image pairs, we aim to correct mis-
alignment and fill missing depth information at the same time. Inspired by the idea of
Patchmatch stereo [BRR11] that in natural stereo pairs relatively large regions of pixels
can be modeled by approximately the same plane, we propose a pixel-to-pixel multi-
view depth refinement method to refine depth maps. With the consideration of photo-
consistency and edge preservation among multiple images, our approach is able to gen-
erate high-quality depth maps.

Evenwithhigh-quality depthmaps, the synthesized imagemay still haveholes caused
by the lack of input images. However, increasing the number of input images is likely
to introduce redundant or useless images. These additional images can sometimes be
worse than a number of well-chosen images, as they may blur synthesized images. Be-
sides, the more input images are chosen, the more computation time is required. To
overcome these problems, wepresent an adaptive view selection algorithmwhich chooses
input images based on angles, distances and overlaps between two views to avoid select-
ing useless and redundant images. In the rendering process we use a variable number
of input images to synthesize the virtual image to lower the rendering complexity and

50 FREE-VIEWPOINT IMAGE BASED RENDERING

improve the quality of synthesized images.
When blending input images, the Z-buffer method is often used to solve visibility.

The intuition behind it is that closer objects occlude farther objects. However, it is not
sufficient to achieve high quality for DIBR. To further improve the quality of synthesized
images, we divide the depth map into layers, and then apply the 3D warping on each
layer to produce the virtual image. Furthermore, we present a switching median filter
to fill missing information in the layered synthesized image to avoid the loss of visible
information and over-smoothing problem. After that, we blend these virtual images
together to produce the final synthesized image.

Combining the novelties above, our pipeline works as follows: During offline pro-
cessing, we employ a pixel-to-pixel multi-view depth refinement approach to improve
the quality of initial depthmaps by generating pixel-accurate alignment of object bound-
aries between color-and-depth image pairs and filling missing depth information (see
Section 3.4.1). During online processing, to avoid blurring images, we select input im-
ages not only based on angles and distances but also the overlap between the input and
virtual views in the query dataset (see Section 3.4.2). We then apply layered 3D warp-
ing that can better handle occluded elements to synthesize virtual images. Finally, our
adaptive view selection approach is introduced to iteratively fill holes with the other
input images (see Section 3.4.3). Figure 6.2 shows the pipeline of our work.

3.4 Free-viewpoint image based rendering

3.4.1 Depth refinement
High-quality depth maps are necessary for consistent rendering. However, the depth
map generated by 3D sensors often has inaccurate depth values and seldom aligns object
boundaries with its corresponding color image, as illustrated in Figure 6.3(a). There, the
background color pixel𝐴 is wrongly assigned with a foreground depth value, and in the
transitional region the color pixel𝐵 which should be assigned a foreground depth value
turns to have a background depth value. Figure 6.3(b) shows the refined depth map
we aim to produce, where color pixel 𝐴 and 𝐵 are assigned with correct depth values.
To achieve this goal, we propose a pixel-to-pixel multi-view depth refinement approach
with the consideration of photometric and geometric consistency among pixels. Our
matching cost function𝐶 is defined as,

𝐶(𝑖) = 𝐶𝑝𝑖𝑥𝑒𝑙(𝑖) + 𝐶𝑝𝑎𝑡𝑐ℎ(𝑖), (3.1)

where𝐶𝑝𝑖𝑥𝑒𝑙(𝑖) and𝐶𝑝𝑎𝑡𝑐ℎ(𝑖) emphasize photo-consistency and edge preservation for
the pixel 𝑖, respectively.

The photo-consistency𝐶𝑝𝑖𝑥𝑒𝑙(𝑖) for the pixel 𝑖 is measured by projecting it to other
images, where we compare the color and gradient similarities.

𝐶𝑝𝑖𝑥𝑒𝑙(𝑖) = 𝜆||𝑥𝑖 − 𝑥𝑟|| + (1 − 𝜆)||▽𝑥𝑖 − ▽𝑥𝑟||, (3.2)

FREE-VIEWPOINT IMAGE BASED RENDERING 51

*

*

* * *

* * *

Index of color pixels

In
te

n
si

ty

Background Foreground

*

(a) Initial depth map

* * * *

*

*

* * *

Index of color pixels

In
te

n
si

ty

Background Foreground

Color pixel * Depth of the color pixel

(b) Refined depth map

Tr
an

si
ti

o
n

al
 r

e
gi

o
n

Tr
an

si
ti

o
n

al
 r

e
gi

o
n

A

B

A

B

Figure 3.3: Problems in the depth map and refinement results. (a) The background
color pixel𝐴 has incorrect depth information and the foreground color pixel𝐵 mis-
matches background information in the transitional region. (b) The incorrect depth
value and misalignment are corrected after depth refinement.

where𝑥𝑖 is the pixel we calculate cost for in the target image and𝑥𝑟 is the corresponding
pixel of 𝑥𝑖 in the reference image. Also, ||𝑥𝑖 − 𝑥𝑟|| and ||▽𝑥𝑖 − ▽𝑥𝑟|| indicate the
color and gradient differences, respectively. 𝜆 is a measure parameter. We set 𝜆 = 0.9
in all the experiments. For a target image, we select ten reference color images based
on distances and angles between the target and reference views. Next, we iteratively
project pixels in the target image to the reference images and only save the cost value
of the front-most pixel. In this way, we are able to avoid obtaining high cost values for
correct depths.

The edge preserving term 𝐶𝑝𝑎𝑡𝑐ℎ(𝑖) encourages the resulting depth map to have
pixel-accurate alignment with its corresponding color image. It is defined from Patch-
match stereo [BRR11].

𝐶𝑝𝑎𝑡𝑐ℎ(𝑖) = (∑
𝑞∈𝑊𝑖

𝑑𝑖𝑓𝑓)/𝑁, (3.3)

where 𝑊𝑖 denotes a patch centered on pixel 𝑖 and 𝑞 is the neighbor pixel of 𝑖. 𝑁 is
the size of the patch. The matching cost 𝑑𝑖𝑓𝑓 consists of a weighted combination of
||𝑥𝑖 − 𝑥𝑞|| and ||▽𝑥𝑖 − ▽𝑥𝑞||:

𝑑𝑖𝑓𝑓 = 𝜆||𝑥𝑖 − 𝑥𝑞|| + (1 − 𝜆)||▽𝑥𝑖 − ▽𝑥𝑞||. (3.4)

In the depth refinement process, we first select pixels that need to bemodified based
on the cost value. If the cost value of pixel 𝑝 is bigger than the average cost of a (𝑛 × 𝑛)
patch centered on it, we search the patch to find the lowest cost (pixel 𝑞) in the patch.

52 FREE-VIEWPOINT IMAGE BASED RENDERING

This is because correct depth values have low matching costs that are computed with
the consideration of photometric and geometric relationships among pixels. Next, we
replace the depth and cost of 𝑝 with 𝑞’s, for spatial neighboring pixels are likely to have
similar depth values. We run this process until all the pixels are compared. The compar-
ison process is interleaved with the depth refinement. That is propagating good depth
values to neighbors, if the costs are smaller than those of their neighbors. We set𝑛 = 3 in
all the experiments. After propagation, we filter unusual depthswith aweightedmedian
filter [MHW+13] which is guided by the color image. The depth refinement algorithm
is summarized in Algorithm 1.

Algorithm 1 Overview of the depth refinement procedure.
Input: Color images 𝐼1...𝐼𝑁 , patch size 𝑛 × 𝑛 and depth maps𝐷1...𝐷𝑁 .
Output: Refined depth map𝐷1 for color image 𝐼1.
1: Calculate photo-consistency cost 𝐶𝑝𝑖𝑥𝑒𝑙(𝑝) in 𝐼1 and edge preserving cost

𝐶𝑝𝑎𝑡𝑐ℎ(𝑝) in 𝐼1.
2: Calculate matching cost𝐶(𝑝) = 𝐶𝑝𝑖𝑥𝑒𝑙(𝑝) + 𝐶𝑝𝑎𝑡𝑐ℎ(𝑝).
3: if (matching cost 𝐶(𝑝) > average cost of patch P (𝑛 × 𝑛) centered on 𝑝 then
4: for pixel 𝑞𝑖 ∈ patch 𝑃 do
5: Find 𝑞𝑖 with the lowest matching cost 𝐶(𝑞𝑖) and replace the depth and

matching cost of 𝑝 with 𝑞𝑖’s.

6: Run weighted median filter.

3.4.2 View selection
A large number of works (e.g., [MFY+09, CDSHD13, LZW+17]) improve the quality of
synthesized images by correcting misalignment or filling holes. However, less attention
has been paid to select input views, which is also important for improving the quality
of synthesized images. Previous studies may choose incorrect or redundant views based
on angles or distances between two views, which leads to blurring synthesized views. In
order to avoid choosing such input views, we select views not only considering angles
and distances but also overlaps between two views.

Figure 5.7 shows the selection process. Firstly, the distance between the input and
the target views is calculated as shown in Figure 5.7(a), where 𝐴, 𝐵, 𝐶 , 𝐷, 𝐸, 𝐹 are
input views and 𝑇 is the target view. The distance between the input and target views is
defined by:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖) = ‖𝑂𝑡 − 𝑂𝑖‖, (3.5)

where𝑂𝑡 and𝑂𝑖 are the centers of target view 𝑡 and input view 𝑖, respectively.
Then we rank the calculated distances and select the top ten images as a local group.

From these local images, angles between the target and input views are calculated:

FREE-VIEWPOINT IMAGE BASED RENDERING 53

(a) Distance (b) Angle (c) Overlap

T
A

B
C

D E F

(A,B,C,E,T) T
A

B
C

Figure 3.4: View selection pipeline. (a)𝐴,𝐵,𝐶 ,𝐷,𝐸, and 𝐹 are input views and 𝑇 is
the target view. We first select a cluster of images which have short distances between the
target and input views. (b) From the cluster of images, we select a subset of images with
small angles they have with the target view. (c) Based on the overlap between the target
and input views, we remove views having no overlaps with 𝑇 .

𝑎𝑛𝑔𝑙𝑒(𝑖) = arccos(⃗⃗⃗ ⃗⃗ ⃗⃗𝑛𝑡 ⋅ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑛𝑖
‖ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑛𝑡‖ ⋅ ‖ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑛𝑖‖

), (3.6)

where ⃗⃗⃗ ⃗⃗ ⃗⃗𝑛𝑡 and ⃗⃗⃗ ⃗⃗ ⃗⃗𝑛𝑖 are the view directions of target view 𝑡 and input view 𝑖, respectively.
If the angle is bigger than the field of view of the camera capturing input images, we

get rid of it from the local input image group as shown in Figure 5.7(b).
Furthermore, in order to remove views, like𝐴which has a small angle and distance,

but no overlap with the target view, we calculate the overlaps between input and target
views. If the overlap is zero, we remove it from the local image group (Figure 5.7(c)). To
reduce the computation time of calculating overlaps, we downsample the input image
with an equal sampling interval and only project sampled pixels into the target view. In
this way, the computation time can be reduced depending on the sampling interval.

The target virtual image is synthesized by locally blending the input images. How-
ever, directly blending all images is time-consuming. So that, we use a variable number
of input images to produce the virtual image. We first project an input image which is
selected based on our view selection approach in the input image group to the virtual
position, and then detect the holes in the virtual image. If the size of the largest hole is
big, we then choose another image in the local input group to fill holes. We iteratively
run this process until the largest hole has been sufficiently covered.

3.4.3 View synthesis with layered 3D warping
The whole pipeline of our layered 3D warping is described in Figure 3.5. The core part
of DIBR methods is 3D warping. It projects pixels in the input image plane to world
coordinates and then reprojects them to novel positions in another image plane using
the corresponding depth information.

Figure 6.4 shows the projection process. Let 𝑃1 be a pixel point in the image plane
𝐶1. 𝑃1 is projected into the world coordinate system at 𝑃 . The relationship between

54 FREE-VIEWPOINT IMAGE BASED RENDERING

3D
warping

Switching
filter

Blending

Input (Color image)

Layered depth maps Projected depth mapsInput (Depth map)

Projected color images

Filtered depth maps

Filtered color images Output (Synthesized color image)

Output (Synthesized depth map)

Figure 3.5: Layered 3D warping. The input are color-and-depth images. Based on the
maximum and minimum depth values, the depth image is divided into layers. On each
layer, we apply 3D warping to synthesize the new image. A switching median filter is
applied to fill missing information in these images. After that, all the filtered images are
blended to produce the final color-and-depth image pairs.

Z

Y

X

O
U1

V1

U2
O

V2

C1 C2

P

P1 P2

Figure 3.6: 3D warping. A point 𝑃1 in the image plane𝐶1 is projected to a world point
𝑃 and then 𝑃 is projected to another image plane𝐶2 at position 𝑃2.

𝑃 and 𝑃1 can be defined by left camera’s intrinsic matrix 𝐾1, rotation matrix 𝑅1 and
translation matrix 𝑇1:

𝑃 = (𝐾1 ∗ (𝑅1|𝑇1))−1 ∗ 𝑧1 ∗ 𝑃1, (3.7)

where 𝑧1 is the depth value of 𝑃1. Furthermore, 𝑃 is projected into the image plane𝐶2
at the pixel position 𝑃2, which is calculated by

𝑧2 ∗ 𝑃2 = 𝐾2 ∗ (𝑅2|𝑇2) ∗ 𝑃 , (3.8)

where 𝑧2 represents the depth value of point𝑃2. 𝐾2,𝑅2 and 𝑇2 represent the intrinsic,
rotation and translation matrices of the right camera.

However, the projection errors caused by 3Dwarping or incorrect depth information
often lead to background information wrongly appear in the foreground, as shown in

FREE-VIEWPOINT IMAGE BASED RENDERING 55

Figure 6.5.

Figure 3.7: Problems caused by 3D warping in the synthesized image.

layer1 layer3layer2 layer4

Figure 3.8: The layered depth images. A depth image is evenly divided into layers based
on the maximum and minimum depth values.

To solve this problem,we evenly divide the depth image into layers based on themax-
imum and minimum depth values. Figure 6.6 shows an example of the layered depth
maps. On each layer, we apply 3D warping with corresponding color-and-depth image
pairs to produce new images and then introduce a switching median filter to remove
unusual pixels in each new image.

A median filter [ACD+09] is often used to filter unusual pixels in the projected im-
age, for the distribution of these pixels has similar characteristics as salt-and-pepper
noise. However, the traditionalmedian filter is implemented uniformly across thewhole
image and tends to modify both noisy and good pixels at the same time. As a result, the
filtered images aremore likely to lose some details such as edges and small textures. Un-
like the median filter, our switching median filter only refines pixels that have unusual

56 FREE-VIEWPOINT IMAGE BASED RENDERING

information and can avoid smoothing over images. The switchingmedian filter for pixel
𝑃𝑖,𝑗 is defined as follows:

𝑃𝑖,𝑗 = { 𝑚𝑒𝑑𝑖𝑎𝑛{𝑃 ′
𝑖+𝑢,𝑗+𝑣|(𝑢, 𝑣) ∈ 𝑊} if 𝑃𝑖,𝑗 ∈ 𝑆

𝑃𝑖,𝑗 otherwise
, (3.9)

where𝑚𝑒𝑑𝑖𝑎𝑛 is the traditional median filter and𝑃 ′
𝑖−𝑢,𝑗−𝑣 is a pixel in themedian ker-

nel,𝑊 = {(𝑢, 𝑣)| − (𝑁 + 1)/2 ≤ (𝑢, 𝑣) ≤ (𝑁 + 1)/2},𝑁 is the size of the median
kernel and 𝑆 is a cluster of chosen pixels. If 𝑃𝑖,𝑗 is equal to zero and more than half of
the pixels centered on 𝑃𝑖,𝑗 are non-zeros, we consider 𝑃𝑖,𝑗 belong to 𝑆.

After performing the switching median filter, we blend these new images together
to produce the final synthesized images. We found four layers to be a good trade-off
between quality and speed.

3.4.4 Imperfections of DIBR and solutions

In this section, we explain the imperfections of DIBR and summarize the solution for
each of them. There are four basic problems in DIBR, that are ghost contours, cracks,
occlusion, and holes.

Ghost contour. The ghost contour is mainly caused by the edge misalignment of
object boundaries between a color image and its corresponding depthmap. Object edges
in the color image always contain transitional pixels, while edges in its related depth
map do not have such transitional regions. After projection, the transitional areas of
color images are split and appear various visual artifacts.

To overcome this problem, we refine the initial depth map by correcting the mis-
alignment of boundaries between color-and-depth image pairs and fillingmissing depth
information (see Section 3.4.1). In addition, when blending projected images, we detect
big holes in the projected image and dilate these holes with several pixels, which is also
useful to remove ghost contours.

Cracks. Due to the miss-focus and non-integer index problems, the input pixel is
usually not projected to a point at an integer position. After resampling, there may be
more than one value in a position, while there are no values in other positions, which
results in crack artifacts in projected images.

The median filter is often used to remove cracks. However, traditional median filter
often leads to the over-smoothing problem, which makes images lose small details. We
introduce the switchingmedian filter that only filters pixels among cracks to avoid above
issues (see Section 3.4.3).

Occlusion. When objects in the background and foreground are projected to the
same position, objects in the foreground may be occluded by objects in the background,
which is caused by the incorrect depth information. Besides, objects that are supposed
to show correctly can also be occluded due to projection errors. The Z-buffer approach is
themost commonly usedmethod to address these problems. However, it is not sufficient

FREE-VIEWPOINT IMAGE BASED RENDERING 57

to generate high-quality synthesized images, for there are still many background pixels
appearing in the foreground after applying this approach, especially for dynamic scenes.

To address this problem, we combine the layered 3D warping and switching median
filter to synthesize new images (see Section 3.4.3). The layered depthmap has the ability
to represent geometry of occluded elements and the switching median filter can reduce
the loss of visible information. The two components are designed to work together, giv-
ing high-quality performance.

Holes. Unobserved regions will result in holes in synthesized images. Moreover,
the fixed number of input views used by traditional view synthesis methods is not guar-
anteed to cover the whole virtual view, which results in holes during rendering.

Unlike previous algorithmsusing afixednumber of input images, weuse an adaptive
number of images to fill holes in the synthesized image. Our adaptive view selection
approach makes sure the given virtual view can be sufficiently covered, which avoids
big holes in the synthesized image. At the same time, our approach (see Section 3.4.2) is
able to limit the input views used for rendering. This helps to avoid blurry synthesized
images and improve the rendering speed.

3.5 Experimental results

We test our approach on our own three datasets (Study room, Table1, Table2), four
datasets from [HRDB16] (Attic, Dorm, Playroom, Reading corner), and two datasets
from [ZKU+04] (Ballet and Breakdancers). The breakdancers and ballet datasets are
different from the other seven datasets, for they are dynamic scenes. Each of these two
datasets contains a sequence of 100 color-and-depth image pairs, captured by eight static
cameras that are positioned along an arc.

Figure 3.9: Qualitative comparison between ground-truth images (second row) and
simulated images (first row) on datasets of Breakdancers, Dorm, Table2, Ballet and Ta-
ble1.

Qualitative evaluation. We randomly choose an image from the dataset as our
ground truth image and then use the other images in the dataset to synthesize the chosen
image by our approach. The performance is shown in Figure 5.14, containing some

58 EXPERIMENTAL RESULTS

synthesized image and their corresponding ground truth image. Figure 3.10 shows some
additional synthesized images. From Figure 5.14 and Figure 3.10 we can see that our
proposed method is able to provide high-quality synthesized images.

Figure 3.10: Example results of synthesized images from different scenes (left to right):
Attic, Table2, Playroom, Reading corner, Table1.

Comparison with other methods. We compare our method with state-of-the-
art learning-based algorithms designed for static scenes. The peak signal-to-noise ratio
(PSNR) is used to evaluate image quality, where a higher PSNR value means a better
image quality. Table 3.1 summarizes the quantitative evaluation results.

Table 3.1: The PSNR comparison with different algorithms.

Methods
the average PSNR over 100 images (dB)

Table1 Study room
SM[ZTF+18] 22.15 10.53

LLFF[MSOC+19b] 24.17 13.22
NeRF[MST+20] 37.97 20.41

Ours 31.29 26.60

Aswe can see, even though the result of NeRF [MST+20] is better compared to other
methods on Table1, our method achieves the best performance on Study room. This is
because the Table1 is designed for pose estimation, where the camera poses are densely
sampled, while Study room is a sparse image set. It indicates that our method is more
robust to the dataset which is captured sparsely. Besides, our approach is free from train-
ing and provides plausible synthesized images.

In Table 3.2, we also compare ourmethodwith state-of-the-art algorithmswhich are
designed for dynamic datasets. We use two reference images to synthesize a new image

FREE-VIEWPOINT IMAGE BASED RENDERING 59

on ballet and breakdancers datasets. We can see that our algorithm performs the best
on both datasets.

Table 3.2: The PSNR comparison with different algorithms.

Methods
the average PSNR over 100 images (dB)

Ballet Breakdancers
VSRS [Sof] 30.23 31.17
Liu [LLF+16] 32.52 33.33
Dai [DN17] 32.55 31.77

Loghman [LK15] 30.36 31.64
Ours 33.40 33.59

(a) Attic

(b) Playroom

(c) Dorm

Figure 3.11: Qualitative comparison between Local Light Field Fusion [MSOC+19b]
(first and third column) and our approach (second and fourth column) on different
datasets.

InFigure 3.11we compare ourmethod toLocal Light Field Fusion (LLFF) [MSOC+19b]
which also uses layered depth maps to synthesize images. Since LLFF is designed for
static datasets containing large overlaps, we only compare it on our static datasets with

60 EXPERIMENTAL RESULTS

small changes. As we can see, LLFF suffers from the same limitation as other deep
learning-based view synthesis methods, as images synthesized by LLFF are blurry. In
contrast, our approach can provide sharp new images for various scenes.

Effect of depth refinement.

(a)

0 5 10
100

135

165

In
te

ns
ity

 Color values

0 5 10
3790

3805

3820
Initial depths

0 5 10
Pixel index

3790

3805

3820
Refined depths

A2

A1

A

(b)

Figure 3.12: Example results after depth refinement. (a): The visualization results of
depth refinement on datasets (top to bottom): Reading corner, Ballet and Attic. (b): An
example showing the misalignment between the foreground color𝐴 and background
depth𝐴1 is corrected by our depth refinement, where𝐴1 is replaced with the correct
foreground depth𝐴2.

Figure 3.12(a) visualizes the depth refinement results on different datasets. We can
see that our pixel-to-pixel multi-view depth refinement method is able to improve the
quality of the depthmap by fillingmissing depth information or refining incorrect depth
values. Figure 3.12(b) shows the alignment process where a foreground color pixel𝐴 in

FREE-VIEWPOINT IMAGE BASED RENDERING 61

the object boundary is wrongly assigned a background depth value 𝐴1, and after the
depth refinement, this value is replaced with the correct foreground depth value 𝐴2 in
the refined depthmap. The color and depth intensities are obtained along the horizontal
red line in the Attic dataset in (a).

0 20 40 60 80 100

Index of images

32.5

33

33.5

34

34.5

P
S

N
R

(d
B

)

With depth refinement
Without depth refinement

(a) Ballet

0 20 40 60 80 100

Index of images

32.5

33

33.5

34

34.5

P
S

N
R

(d
B

)

With depth refinement
Without depth refinement

(b) Breakdancers

0 20 40 60 80 100

Index of images

32

33

34

P
S

N
R

(d
B

)

With depth refinement
Without depth refinement

(c) Attic

0 20 40 60 80 100

Index of images

32

32.5

33

33.5

34

34.5

P
S

N
R

(d
B

)
With depth refinement
Without depth refinement

(d) Dorm

0 20 40 60 80 100

Index of images

33

34

35

P
S

N
R

(d
B

)

With depth refinement
Without depth refinement

(e) Table1

0 20 40 60 80 100

Index of images

32

32.5

33

33.5

34

P
S

N
R

(d
B

)

With depth refinement
Without depth refinement

(f) Playroom

Figure 3.13: PSNR comparison with and without depth refinement on each frame.

Figure 3.13 shows the quantitative evaluation results with and without our depth
refinement method on different datasets. As we can see, our proposed approach consis-
tently improves the PSNR through all the testing frames. With the refined depth map,
the growth of PSNR in the Ballet dataset is the largest. This is because the number of
misalignment of boundaries between the color image and the depthmap, and imprecise

62 EXPERIMENTAL RESULTS

depth values in the Ballet dataset is more than those in the other datasets. After the
depth refinement, these issues are solved, resulting in the increased PSNR.

Furthermore, we compare our depth refinement algorithm with the guided filter
[HST12], a popular edge-preserving smoothing filter [HST12] and traditional median
filter [ACD+09]. We use the color image as the guided image and compare the average
PSNR over 100 frames, as shown in Table 5.1. It can be seen that all the approaches
are able to improve the quality of synthesized images, but our approach achieves better
performance in various scenes.

Table 3.3: The PSNR comparison among the guided filter, median filter and our depth
refinement approach.

the average PSNR over 100 images (dB)
guided filter [HST12] median filter [ACD+09] ours

Attic 29.39 17.30 33.28
Dorm 29.82 17.41 33.71
Ballet 28.85 16.23 33.43
Table1 30.37 17.98 34.31
Table2 30.61 17.99 33.21
Playroom 29.44 17.11 33.53
Study room 27.87 16.21 31.75
Breakdancers 30.29 17.72 33.89
Reading corner 28.53 16.54 31.78

Effect of view selection. Previous studies choosing input views by angles or dis-
tances are likely to select incorrect or redundant views, which results in blurring novel
views with the low PSNR. In contrast, our selection algorithm tends to avoid choosing
such views and is more likely to produce sharp synthesized images with the high PSNR.
In Table 3.4, we compare the average PSNR over 100 images on a variety of datasets. It
can be seen that our method selecting input views with the consideration of angles, dis-
tances and overlaps between the input and target views significantly improves the PSNR
by a large margin, especially for the datasets of Dorm and Study room.

FREE-VIEWPOINT IMAGE BASED RENDERING 63

Table 3.4: The PSNR comparison of synthesized images with input views selected with
different strategies.

the average PSNR over 100 images (dB)
distances angles ours

Attic 25.51 24.12 33.28
Dorm 17.84 16.37 33.71
Ballet 26.34 25.89 33.49
Table1 24.90 23.34 34.31
Table2 20.87 18.94 33.21
Playroom 22.53 20.01 33.53
Study room 19.72 17.87 31.75
Breakdancers 28.25 27.19 34.67
Reading corner 20.11 17.86 31.78

Figure 3.14: Synthesized images by one view (first column), two views (second column),
three views (third column) and adaptive views (fourth column) on different datasets.

The quality of synthesized images is influenced by the quantity of well-chosen input
images. We compare the hole sizes of synthesized image using different input views
in Table 3.5 and Figure 3.14. For traditional methods, the number of input views is
fixed, such as two or three, which does not guarantee to cover the whole virtual view.
As a result, big holes often appear in the synthesized image. In contrast, our method
with a variable number of input images is able to reduce the hole size significantly. For
example, for the Study room dataset, the hole size is reduced by 20.13%, and 7.80%
compared to methods with two and three input views, respectively. This is because the
captured images in Study roomdataset are very sparse. If the virtual view is substantially
different from the input images, the synthesized image produced by the fixed number of

64 EXPERIMENTAL RESULTS

Table 3.5: Hole size comparison of synthesized images using different input views. The
hole size is defined by the percentage of missing pixels in the whole image.

Hole size(%)
1 view 2 views 3 views ours (adaptive views)

Attic 50.07 10.31 2.26 0.01
Dorm 60.19 18.35 5.85 0.03
Ballet 50.16 3.15 1.93 0.02
Table1 31.13 2.51 1.33 0.01
Table2 35.19 3.24 2.67 0.02
Playroom 45.96 10.51 6.21 0.03
Study room 60.19 20.15 7.82 0.02
Breakdancers 47.89 2.15 1.21 0.01
Reading corner 23.12 10.49 1.18 0.02

input images may still have large holes.
Effect of layered 3D warping. Figure 3.15 compares the PSNR with layered 3D

warping and Z-buffer on two dynamic datasets which are more challenging than static
ones. We can see that our layered 3D warping consistently improves the PSNR through
all the testing frames. The effectiveness is also demonstrated by Figure 3.16, which
shows some snapshots of synthesized images with our layered 3D warping. As can be
seen, the background pixels are correctly removed and replaced by correct foreground
pixels after layered 3D warping.

0 20 40 60 80 100
32.5

33

33.5

34

P
S

N
R

 (
dB

)

Index of images

Layered 3D warping
Z-buffer

(a) Ballet

0 20 40 60 80 100

33

33.5

34

34.5

P
S

N
R

 (
dB

)

Index of images

Layered 3D warping
Z-buffer

(b) Breakdancers

Figure 3.15: PSNR comparison with layered 3D warping and Z-buffer on each frame.

We introduce the switching median filter to fill missing information in the synthe-
sized image. Compared with the traditional median filter, the main advantage of our
switching median filter is to avoid over-smoothing. To verify its effectiveness, we com-
pare the average PSNR over 100 frames with the median filter, as shown in Table 3.6. It
can be seen that our approach achieves better performance in different scenes.

FREE-VIEWPOINT IMAGE BASED RENDERING 65

(a) Attic (b) Dorm (c) Ballet

(d) Playroom (e) Table1 (f) Table2

Figure 3.16: Synthesized images with (first) and without (second) layered 3D warping
on different datasets.

Table 3.6: Quantitative evaluation of the PSNR on different scenes.

the average PSNR over 100 images (dB)
median filter [ACD+09] ours (switching median filter)

Attic 31.57 33.28
Dorm 30.12 33.71
Ballet 31.15 33.43
Table1 30.63 34.31
Table2 31.11 33.21
Playroom 30.64 33.53
Study room 29.57 31.75
Breakdancers 31.91 33.89
Reading corner 29.67 31.78

Quality and time efficiency. The quality comparison of synthesized images with
different depth layers is shown in Figure 3.17. We can see that more depth layers will
improve the PSNR of synthesized images. However, more layers will also increase the
computation time (see Figure 3.18) . We found four layers to be a good trade-off between
quality and speed.

66 EXPERIMENTAL RESULTS

1 2 3 4 5 6 7
Number of depth layers

26

28

30

32

P
S

N
R

 (
dB

) Attic
Office1
Dorm
Playroom
Student room
Reading corner

Figure 3.17: Performance with different layered depth images.

1 2 3 4 5 6 7
Number of depth layers

350

400

450

500

550

600

S
pe

ed
 (

m
s)

Attic
Office1
Dorm
Playroom
Student room
Reading corner

Figure 3.18: The rendering speed of our method with different layered depth images.

Effect of multi-layered depth maps. To verify the necessity of depth processing
in the view synthesis framework, we calculate the average PSNR over 100 images on dif-
ferent datasets, as shown in Table 3.7. The traditional depth image based rendering, the
method combing depth image based rendering and depth refinement, and the approach
combining DIBR and layered 3Dwarping are referenced as DIBR, DIBR_DR and LDIBR
respectively. The LDIBR_DR is the algorithm combing depth refinement and layered
3D warping. From Table 3.7, we can see that using DIBR_DR or LDIBR alone improves
the performance as they are able to better process depth information and the combined
method LDIBR_DR performs best.

FREE-VIEWPOINT IMAGE BASED RENDERING 67

Table 3.7: Quantitative evaluation of the synthesized image in terms of PSNR with dif-
ferent approaches.

the average PSNR over 100 images (dB)
DIBR DIBR_DR LDIBR LDIBR_DR

Attic 27.99 32.50 31.45 33.28
Dorm 26.89 33.12 31.62 33.71
Ballet 25.43 33.17 33.05 33.49
Table1 28.13 33.21 31.33 34.31
Table2 29.19 30.24 30.21 33.21
Playroom 27.96 29.52 30.21 33.53
Study room 28.12 30.22 29.45 31.75
Breakdancers 26.52 33.26 33.53 33.67
Reading corner 23.12 25.16 27.84 31.78

3.6 Conclusion and future work
In this chapter we have proposed a novel view synthesis framework that first refines
depth maps by correcting misalignment of object boundaries between color-and-depth
image pairs and filling missing depth information. We then divide the depth map into
layers and introduce a fast rendering algorithmcombining an adaptive view selection ap-
proach and layered 3D warping to synthesize high-quality free-viewpoint images. The
experimental results demonstrate that the quality of synthesized images is improved sig-
nificantly with refined and layered depth maps. Since the rendering time of our pro-
posed algorithm only depends on the display resolution of synthesized images, it can
be used in low computational power devices such as mobile phones and virtual reality
head-mounted displays as well as other systems requiring rendering. However, some
limitations are worth noting. When the depth map produced by the depth camera has
too much missing information, the synthesized image generated by our method shows
various artifacts. Therefore, new methods are required to generate high-quality depth
images for scenes with texture-less or reflective objects.

68 CONCLUSION AND FUTUREWORK

4
PreSim: A3Dphoto-realistic
environment simulator

Figure 4.1: Snapshots from PreSim showing a robot moving in an indoor environment:
the left subwindow is the synthesized color image and the right subwindow is the depth
image.

In the previous chapter, we proposed a novel view synthesis algorithm to provide photo-
realistic imagery of real scenes. In this chapter we use this approach to design a 3D en-

70 INTRODUCTION

vironment simulator for synthesizing free-viewpoint RGB-D views, as shown in Figure
4.1. Recent years have witnessed great advancement in visual artificial intelligence (AI)
research based on deep learning. To take advantage of deep learning, we need to collect
a large amount of data in various environments and conditions. However, collecting
such data is a time-consuming and labor-intensive task. Apart from that, developing
and testing visual AI algorithms for multisensory models (e.g., mobile robots) are ex-
pensive and in some cases dangerous processes in the real world. We present PreSim, a
3D environment simulator which provides photo-realistic images using a view synthe-
sis module and supports flexible configuration of multimodal sensors to address both
of these issues. We demonstrate that PreSim has several advantages: (i) it provides a
photo-realistic 3D environment which allows seamlessly integrating multisensory mod-
els in the virtual world and enables them to perceive and navigate scenes, (ii) it has an
internal view synthesis module which allows transforming algorithms developed and
tested in simulation to physical platforms without domain adaption, (iii) it can generate
an infinite amount of data for vision-based applications, such as depth estimation, object
recognition and object pose estimation.

4.1 Introduction
Recent years have witnessed great success of data-driven methods that use deep net-
works for computer vision tasks, such as depth estimation [LRB+16] and 6D object pose
estimation [WXZ+19]. These data-driven methods need a large amount of data to train
and test their models. However, collecting and labeling data are time-consuming and
tedious. Gradually, the simulated environment is becoming an effective way to solve
these problems, for it is able to provide an infinite amount of annotated data for various
AI tasks. A major current focus of environment simulators is to reproduce high-quality
free-viewpoint rendering of real senses. There are a number of open source simulators
[UM20, YMB+18] to achieve this goal by parameter settings of scene details, including
geometry, texture, lighting and 3D modeling of static objects. However, parameter set-
ting is a time-consuming and labor-intensive process. Even with precise modeling and
suitable parameter settings, the simulated world still lacks richness and diversity of the
real world. This disadvantage may result in the failure of transferring algorithms that
are developed and tested in simulation to physical platforms formany vision-based tasks,
such as object recognition, obstacle avoidance, and visual navigation. This problem is
known as the reality gap: the discrepancy between synthetic and real data.

To address this issue, game engines such asUnreal Enginewhich allowphoto-realistic
rendering are introduced to build virtual environments. However, the simulated envi-
ronment heavily depends on the game engine’s detailed datasets, which makes it im-
possible for users to build their own environments with their own datasets. On the
other hand, game engines often use 3Dgraphics pipelines to provide real-time rendering.
Thus, the rendering time increases linearly with the number of polygons to be rendered
(scene complexity). To achieve real-time performance, it requires dedicated hardware

PRESIM: A 3D PHOTO-REALISTIC ENVIRONMENT SIMULATOR 71

and architecture design for 3D graphics. On the contrary, image based rendering which
can provide real-time realistic imagery does not have these limitations. It only requires
a sparse collection of captured images and allows a 3D scene to be visualized realisti-
cally without full 3D reconstruction. This approach has shown high-quality results in
outdoor [CDSHD13] and indoor environments [HRDB16]. In addition, the run time of
image based rendering mainly depends on the display resolution of the output image
rather than scene complexity. Therefore, it can be used for both strong and weak pro-
cessing power devices.

Taking advantage of image based rendering approaches, we introduce PreSimwhich
is a 3D photo-realistic environment simulator for training and testing vision-based algo-
rithms. We aim to narrow the reality gap between simulation and reality by providing
huge amounts of photo-realistic virtual RGB-D views from arbitrary locations for vision-
based applications. The main contributions of our simulator are:

• A photo-realistic 3D virtual environment that provides users with ground truth
poses of the multisensory model and free-viewpoint color-and-depth image pairs, even
in regions where a global 3D reconstruction of the scene has inaccurate or missing data.

•Aglobal visualizer providing real-time positions andwhole trajectories of themov-
ing robot, and a global 3D map.

• A sequence controller and recorder components to control the movement of sen-
sors and store all the required information for developing AI algorithms.

• A novel view synthesis module built on image based rendering that combines
depth refinement, adaptive view selection and layered 3D warping to lower the render-
ing complexity and improve the quality of synthesized images.

Since PreSim is designed in a modular fashion, it allows scene augmentation and
easy expansion to meet the user’s requirements. We hope our simulator will further
enrich and boost the research in robotic vision applications.

4.2 Related work
Herewe discuss several notableworks in environment simulators that are closely related
to our work. For view synthesis approaches, a thorough review of them can be found in
Chapter 3.

There aremany environment simulators, such asGazebo [KH04], CHALET [YMB+18],
RotorS [FBAS16], and Atari [BNVB13], to model and visualize physical environments.
Gazebo [KH04] is a well-known simulator that uses high-performance physics engines
for rendering of indoor and outdoor environments. While Gazebo has rich features, it
has difficulty to create visually rich environment of large scale and offer the realistic im-
agery. CHALET [YMB+18] is a 3Dhouse simulator implemented by a professional game
engine called Unity3D. It allows creating new virtual indoor environments and supports
a range of common household activities. ViZDoom [KWR+16] is a semi-realistic 3D

72 RELATEDWORK

Table 4.1: A comparison of PreSim to other environment simulators. 3D: 3D nature of
the rendered scene, Photo-realistic: photo-realistic rendering, Customizable: flexibility to
be customized to other applications and Extendable datasets: permission for comstomer
datasets.

Simulator 3D Photo-realistic Customizable Extendable datasets
Gazebo [KH04] √ √ √

Atari [BNVB13]
Malmo [JHHB16] √ √

VRKitchen [GGS+19] √ √ √

AI2-THOR [KMH+17] √ √ √

MINOS [SCD+17] √ √

House3D [WWGT18] √ √

Gibson Env [XZH+18] √ √

Habitat [SKM+19] √ √ √

PreSim (ours) √ √ √ √

world simulator. It is based on the first-person shooter video game, Doom and allows de-
veloping bots that play Doom using the screen buffer. HoME [BPA+17] provides 45,000
diverse 3D house layouts. It uses Panda3D [GM04], an open-source 3D game engine to
render indoor scenes based on object textures (wooden, transparent, metal, etc.), light
and shadows. However, the drawback of the above simulators is the same as Gazebo.
They are not capable of photo-realistic rendering.

A different class of approaches based on photo-realistic engines allows rendering of
realistic camera streams [MB19, SDLK18, VS18,QZZ+17,DHH+20]. Among these, both
AirSim [SDLK18] and CARLA [DRC+17] are autonomous vehicle simulators built on
Unreal Engine 4 (UE4) and are able to provide physically and visually realistic simula-
tions. VRKitchen [SDLK18] is an interactive 3D Virtual environment also built on UE4.
It provides users with a variety of virtual kitchen environments. Habitat [SKM+19] uses
Magnum engine to build photo-realistic virtual environments and provides a modular
library for developing AI tasks (e.g., visual navigation) in it. However, these simula-
tors are limited by richness of simulated environments due to their high dependency on
the engines. In contrast, our environment simulator enables users to build their own
environments with their datasets.

More recently, public datasets such as SUNCG[SYZ+17] andMatterport3D [CDF+17]
have been used to create virtual environments. MINOS [SCD+17] is proposed to set up a

PRESIM: A 3D PHOTO-REALISTIC ENVIRONMENT SIMULATOR 73

Multisensory
model
RGB-D
camera

Controllers
Datasets

View
synthesis

Recorders

Simulation Tasks

Simulator

Global
visualizer

Figure 4.2: The architecture of our simulator. It shows the main components of our
simulator including a robot model, sensors, controllers, datasets, a view synthesis mod-
ule and a global visualizer.

benchmark for indoor navigation algorithms. It provides training, validation and testing
datasets generated fromboth SUNCGandMatterport3D [CDF+17] datasets. Since these
datasets consist of real-world scenes, MINOS allows realistic rendering. It also provides
a flexible user API which allows removing and adding objects to configure the indoor
environment. Another simulator that is based on SUNCG is House3D [WWGT18]. It
contains a large number of house layouts with various objects and allows freely explor-
ing the space. Gibson Env [XZH+18] is also based on real captured scenes. It has an
internal view synthesis module allowing deploying the trained models in the real world
without domain adaptation. While the goal of Gibson Env and our work is similar, Gib-
son Env requires a large amount of data to train a view synthesis network to avoid visual
artifacts in synthesized images. A detailed comparison between our system and other
environment simulators is summarized in Table 4.1.

4.3 Photo-realistic virtual environment

4.3.1 System overview
The architecture of our simulator is shown in Figure 4.2. It is composed of a robotmodel,
sensors, controllers, scene datasets, a view synthesismodule and a global visualizer. Our

74 PHOTO-REALISTIC VIRTUAL ENVIRONMENT

 / joint_state_publisher

 / poses_recorder

 / rviz / trajectory

 / read_data

 / point_cloud

 / color_image

 / depth_image / color_view

 / joint_states
 / navigation_controller

 / robot_state_publisher

 / tf_static

 / show_clusters

 / image_based_rendering

 / clustered_pose

 / tf

 / depth_view
 / rosout

Figure 4.3: The ROS node graph of our simulator.

simulator is based on Robot Operating System (ROS) which has a modular design and
can be customized, upgraded and reused. Figure 4.3 shows its ROS graph structure. In
the virtual environment, we first import the point cloud of the real scene, which is gen-
erated from 3D reconstruction into the ROS and show it together with camera poses of
input images inRviz, a 3D visualizer for theROS framework. Thenwe control the virtual
camera’smovement throughout the virtual world and estimate its 6D pose, including ro-
tation and translation matrices. The estimated pose is then taken as a reference to select
the most similar color-and depth image pairs in a query input dataset. Next, we use the
selected color-and-depth image pairs to synthesize the virtual view based on our view
synthesis module. At the same time, the whole trajectory of the moving camera, synthe-
sized color-and-depth image pairs are logged. In the following, we provide more details
on the individual components of our simulator.

4.3.2 View synthesis

Our goal is to build a free-viewpoint photo-realistic environment for vision-based tasks.
Unlike previousmethods that build the whole virtual environment on the perfect recon-
structed 3D geometry, our view synthesis module takes a sparse set of RGB-D images as

PRESIM: A 3D PHOTO-REALISTIC ENVIRONMENT SIMULATOR 75

the input and produces new color-and-depth image pairs from arbitrary viewpoints. An
overview of our view synthesis pipeline is shown in Figure 4.4.

…

(b) View selection (c) Rendering(a) Input: the 6D camera pose and RGB-D images

Figure 4.4: The view synthesis pipeline including input, view selection and rendering.
The input are RGB-D images and the 6D pose (red line shows positions of all the input
image and yellow lines shows the 6D pose of the camera).

It consists of view selection step followed by a fast rendering process. The input are
RGB-D images and the 6D camera pose obtained from tf package. The view selection
step is based on the 6D pose to find the most similar input views with the virtual view.
The selection step is able to avoid selecting redundant or useless input views. The fast
rendering algorithmprovides high-quality free-viewpoint synthesized images by layered
3D warping. The layered 3D warping synthesizes images in different depth layers to
lower the rendering complexity and improve the quality of synthesized image. A more
detailed description about the view synthesis method has been presented in Chapter 3.

4.3.3 Scene datasets
PreSim provides seven datasets that cover different practical scenarios. The Study room,
Table1 and Table2 datasets are collected by us. The color-and-depth image pairs in these
three datasets have a resolution of 1280 × 720 and the depth images are stored in mil-
limeters as 16-bit PNGs. The Attic, Playroom, Dorm and Reading corner datasets are
from [HRDB16]. The color-and-depth image pairs in these four dataset have a resolu-
tion of 1024 × 768 and the depth images are also stored in millimeters as 16-bit PNGs.

Each of these datasets has a sparse set of RGB-D images with corresponding camera
poses and a 3D point cloud. The camera poses and 3D point clouds are produced by
COLMAP, a 3D reconstruction software [SF16b, SZFP16]. Apart from that, users are
also able to integrate their own datasets with PreSim. In the following, we describe the
characteristics of these datasets.

Table1. Table1 dataset contains 233 color-and depth image pairs. There are many
daily used objects such as reflective bottles and boxes in this dataset as shown in Figure
4.5. This dataset can be used for robotic grasping and object recognition tasks. This is

76 PHOTO-REALISTIC VIRTUAL ENVIRONMENT

Figure 4.5: The point cloud of the table1 dataset and examples of color-and-depth im-
age pairs.

because the key challenge of robotic grasping is how to estimate accurate 6D poses for
objects with different sizes, shapes and textures, particularly for reflective objects.

Figure 4.6: The point cloud of the table2 dataset and examples of color-and-depth im-
age pairs.

Table2. Figure4.6 shows the Table2 dataset which contains 201 color-and depth im-
age pairs. This dataset is also designed for robotic grasping and object recognition tasks.
It is a complementary dataset to Table1. In this dataset, apart from daily used objects, it
has texture-less objects such as the milk box and cups which are also challenging for 6D
object pose estimation.

Study room. This dataset has 225 color-and depth image pairs. There are some
black and texture-less objects (e.g., the white walls and writing board) which are chal-
lenges to find features and estimate depth information, as shown in Figure 4.7. This
dataset is suitable for many vision-based tasks such as depth estimation and visual nav-
igation.

Attic. The attic dataset contains 224 RGB-D images. This dataset can be used for
robotic vision tasks such as object recognition and 6D object pose estimation. The con-
spicuous object in this dataset is a doll sitting on a chair in themiddle of the room, which
shows clear occlusion (see Figure 4.8). Apart from this doll, there are mirrors and lights

PRESIM: A 3D PHOTO-REALISTIC ENVIRONMENT SIMULATOR 77

Figure 4.7: The point cloud of the study room dataset and examples of color-and-depth
image pairs.

Figure 4.8: The point cloud of the attic dataset and examples of color-and-depth image
pairs.

in this dataset, which are also challenges for object recognition and 6D object pose esti-
mation.

Playroom. Figure 4.9 shows the Playroom dataset. It includes 219 color-and depth
image pairs. There are some toys, chairs and desks in this room. These things contain
many small geometric details that are difficult to estimate the depth information. Thus,
this dataset can be used for depth estimation and object recognition. The size of this
room is medium-sized. Thus, it is also suitable for visual navigation.

Dorm. There are 202 RGB-D images in the Dorm dataset. As shown in Figure 4.10,
there are some texture-less objects, such as walls, lights and computer monitors in the
room, which are challenges for depth cameras. This dataset is able to be used for depth
estimation, and visual navigation.

78 PHOTO-REALISTIC VIRTUAL ENVIRONMENT

Figure 4.9: The point cloud of the playroom dataset and examples of color-and-depth
image pairs.

Figure 4.10: The point cloud of the dorm dataset and examples of color-and-depth im-
age pairs.

Figure 4.11: The point cloud of the reading corner dataset and examples of color-and-
depth image pairs.

Reading corner. This dataset contains 167 color-and depth image pairs. It can be
used for vision-based tasks such as object recognition and visual navigation. There is a
large leather chair in the corner with strong view-dependent effects as shown in Figure

PRESIM: A 3D PHOTO-REALISTIC ENVIRONMENT SIMULATOR 79

4.11. The scene also contains difficult occlusion characteristics including books and
bookshelves.

Figure 4.12 summarizes the vision-based tasks which these datasets can be used for.

 Depth estimation

 Object recogition

 6D object pose
 estimation

 Visual navigation

 Study
 room

 table2

 Playroom

 Reading
 corner

 Attic

 Dorm

 Table1

Figure 4.12: The overview of eight datasets including Table1, Table2, Study room, Attic,
Playroom, Dorm and Reading corner.

4.3.4 Robots and controllers

(a) Nao (b) Pepper (c) Turtlebot

Figure 4.13: Examples of robot models in PreSim.

80 PHOTO-REALISTIC VIRTUAL ENVIRONMENT

PreSim is designed to study the problem of domain transfer from simulation to the real
world. Therefore, it is important for the robot to be constantly subject to constraints of
space and physics such as collision and gravity, throughout learning.

Robotmodels. Our simulator is designed for arbitrary robot (e.g., humanoid robots)
using Universal Robotic Description Formats (URDFs). Thus, the robot model and its
properties can be configured, such as the type of sensors and the frequency of data trans-
mission. Figure 4.13 shows a series of available robotmodels. As a demonstrator, we use
the Pepper robot, which is a social humanoid robot from SoftBank. TheURDF including
all elements (sensors, joints, links) and meshes are used to describe Pepper.

Integrated controllers. In our virtual world, we provide a set of practical con-
trollers to reduce the controlling complexity for the robot’s dynamic motions. The joint
state controller (see Figure 4.14) is used to control the behaviors of joints of the robot,
including changing the pitch, roll and yaw angles and positions. This control process is
achieved by publishing and subscribing ROS messages under ROS.

Figure 4.14: The controller interface shows various parameters used to configure the
movement of joints of the Pepper robot.

The low-level navigation controller allows controlling the navigation of the robot by
directly sending movement commands to the base of the robot. Besides, the tf package
is used to get the real-time position of the robot, which is also used in rendering pro-
cess. Figure 4.15 shows the ROS graph of the low-level navigation. We use the following
commands to achieve controlling tasks:

(1) start roscore,

(2) bring up the simulated environment,

(3) bring up the robot,

PRESIM: A 3D PHOTO-REALISTIC ENVIRONMENT SIMULATOR 81

 / joint_state_publisher

 / tf_state

 / joint_states

 / keyboard_controller

 / show_marker

 / joint_state_publisher

 / tf

 / trajectory

Figure 4.15: The low-level navigation graph of the mobile robot.

(4) rosrun joint state controller and,

(5) rosrun navigation controller.

Furthermore, we also provide data recorders for users to save all the required infor-
mation including the robot’s trajectory, camera’s poses and synthesized color-and-depth
image pairs. Figure 4.16 shows an example of a robot model and its trajectory.

Figure 4.16: The demonstrator model and its trajectory. Green points and red lines
are positions and view directions of input views, light blue points and small blue lines
are real-time positions and view directions of the virtual camera and the long line is the
whole trajectory of the virtual camera.

82 TASKS

4.4 Tasks
Our virtual environment simulator provides various scenarios which can be used for
different vision-based tasks. Apart from that, our simulator can be quickly set up to
generate datasets with a large amount of photo-realistic color-and-depth image pairs
with ground truth 6D poses (see Figure 4.17).

Figure 4.17: Our environment simulator showing a robot moving in an indoor environ-
ment to synthesize RGB-D views: the left subwindow is the synthesized color image and
the right subwindow is the depth image.

Depth estimation. Recently, deep learning methods have been used to predict
depth images for their corresponding color images. However, current datasets based
on 3D sensors have key limitations, including indoor-only images (NYU) [SHKF12],
small numbers of training examples (Make3D) [SSN08], and sparse sampling (KITTI)
[GLSU13]. Besides, the transparent, irregular and reflective objects are hard captured
by 3D sensors. Comparedwith datasets produced by collecting a large number of images,
synthesizing such a dataset requires less hardware, time and human labor while result-
ing in better quality. Taking advantage of PreSim, we use it to generate depth datasets
which can be used as training data for learning-based depth estimation algorithms. Ex-
amples of the generated images used for depth estimation is shown in Figure 4.18(a) and
(b).

Object recognition. Finding objects in the scene is important for many robotic vi-
sion tasks. Methods for object recognition are divided into feature-based approaches
[DT05, WOC+07] and deep learning-based approaches [Gir15, LAE+16, RDGF16]. For
feature-based methods, scale-invariant feature transform (SIFT) and histogram of ori-
ented gradients (HOG) features are the commonly used features. After obtaining these
features, algorithms such as support vector machine (SVM) are used to do the classifica-
tion. Unlike feature-based approaches depending on particularly defined features, deep

PRESIM: A 3D PHOTO-REALISTIC ENVIRONMENT SIMULATOR 83

(a) Attic

(b) Dorm

(c) Table1

Figure 4.18: Examples of generated datasets for robotic tasks.

learning-based methods are able to directly achieve object recognition. They are often
based on CNN which requires a large amount of data to train their models. Objects in
the dataset used for object recognition should have different sizes, occlusion and scales,
and be captured by a variety of viewpoints. Our simulator is able to generate plenty of
data satisfying the above requirements. Therefore, the dataset generated by our simula-
tor can be used to train object recognition networks. Some example of generated images
used for object recognition is shown in Figure 4.18(c).

6D object pose estimation. For robotic grasping and manipulation tasks, estimat-
ing its 6D pose is a key factor. To estimate the 6D pose, traditional methods first extract
and match local features. Then based on the matched features, the pose is estimated by
solving a Perspective-n-Point(PnP) problem [LMNF09, RRKB11, MAMT15]. Nonethe-
less, these methods have difficulty to estimate pose with texture-less objects. Recently
data-driven methods that use deep networks for pose estimation from RGB-D images
have been proposed [TSF18, XSNF17,WXZ+19]. Our simulator not only produces color-
and-depth image pairs, but also generates their corresponding 6D poses. Thus, the data
generated by our simulator can be used to train deep learning approaches for the 6D

84 EXPERIMENTAL RESULTS

object pose estimation task.
Visual navigation. Training robots by trial-and-error in the real world is an ex-

pensive, tedious and in some cases dangerous process. One promising approach that
addresses this issue is the utility of virtual world [XZH+18, AWT+18]. Our virtual envi-
ronment provides various types of information such as photo-realistic color-and-depth
image pairs, sensor poses and 6Dpose for all the joints of the robot. Such rich datamakes
it possible to design reward functions for robotic vision tasks, and our simulator allows
researchers to integrate reinforce learning approaches to our virtual environment. Thus,
our virtual environment provides the possibility for robots to learn to recognize objects,
localize and navigate themselves to a target position automatically. Besides, our view
synthesis module narrows the reality gap by providing photo-realistic rendering, which
makes it easier to transfer trained models from virtual to reality.

4.5 Experimental results
We evaluate PreSim on our three own datasets (Study room, Table1 and Table2), four
datasets (Attic, Dorm, Playroom, Reading corner) from [HRDB16], and two datasets
(Ballet and Breakdancers) from [ZKU+04]. The breakdancers and ballet datasets are
different from the above seven datasets, for they are dynamic scenes. Each of them con-
tains a sequence of 100 color-and-depth image pairs, captured by static eight cameras
which are positioned along an arc.

4.5.1 Evaluation of View Synthesis

(a) Attic (b) Dorm (c) Play room (d) Reading corner (d) Student room

Figure 4.19: Qualitative comparison of ground truth images (second row) with synthe-
sized images (first row).

Overall performance. We randomly choose an image from the dataset as our ground
truth image and then use our view synthesis method to synthesize the chosen image.
Figure 5.7 shows some examples of synthesized images and their corresponding ground
truth images. Figure 6.4 shows some additional synthesized images. From Figure 5.7

PRESIM: A 3D PHOTO-REALISTIC ENVIRONMENT SIMULATOR 85

and Figure 6.4 we can see that our proposed method is able to provide high-quality syn-
thesized images.

(a) Attic (b) Dorm (c) Play room (d) Reading corner (e) Office

Figure 4.20: Example results of synthesized images from different datasets.

Effectiveness of adaptive view selection. The quality of the synthesized image
is influenced by the quantity of the correct images used. We use the peak signal-to-noise
ratio (PSNR) to evaluate the image quality. A higher PSNR value means a higher image
quality. Table 4.2 shows the average PSNR over 100 images generated in positions with
and without enough well-chosen input images. It can be seen that our view selection
method significantly improves the PSNR of synthesized images. It indicates that our
view selection approach is able to avoid selecting incorrect or redundant views, resulting
in sharp synthesized images with the high PSNR.

Table 4.2: The PSNR comparison with and without variable input images.

the average PSNR over 100 images (dB)
variable input images two input images Three input images

Attic 33.28 25.51 30.41
Dorm 33.71 17.84 28.75
Ballet 33.49 26.34 29.13
Table1 34.31 24.90 27.91
Table2 33.21 20.87 25.34
Playroom 33.53 22.53 29.03
Study room 31.75 19.72 27.98
Breakdancers 34.67 28.25 31.24
Reading corner 31.78 20.11 25.67

86 EXPERIMENTAL RESULTS

Effectiveness of layered 3D warping. Figure 4.21 compares the PSNR with and
without layered 3D warping on a variety of datasets. We can see that our layered 3D
warping consistently improve the PSNR through all the testing frames. This is because
the layered 3D warping has the ability to better handle the occluded elements with lay-
ered depth maps.

(a) Study room

(b) Reading corner

Figure 4.21: PSNR comparison with and without layered 3D warping on each frame.

PRESIM: A 3D PHOTO-REALISTIC ENVIRONMENT SIMULATOR 87

4.5.2 Validation tasks learned in PreSim

In our experiments, we use a number of vision-based tasks to validate PreSim.

(a) Attic (b) Dorm

(c) Playroom (d) Reading corner

Figure 4.22: Examples of depth prediction. The first column is the color image, the sec-
ond column is the ground truth depth map and the third column is the predicted depth
map.

Depth estimation. The dataset generated by our simulator can be used as training
data for single-viewdepth estimationwith deep learning algorithms. We trainDensedepth
[AW18], a popular network architecture for depth prediction on our dataset. Then we
test the trained model with color images that are never seen during training. Figure 6.7
visualizes depth predictions from a random number of testing images. To prove the ef-
fectiveness of our simulator, in Figure 4.23 we also test the trained model on a popular
depth dataset, NYUDv2 [SHKF12].

We can see that knowledge learned from our simulated data can be seamlessly trans-
ferred to real-world data in terms of accuracy, which indicates that our datasets can
bridge the gap between simulation and reality. It is also verified by Table 4.3, where
we evaluate the performance of depth prediction quantitatively based the root mean
squared error (RMS) (lower is better).

Figure 4.23: Examples of depth prediction on NYUDv2 dataset. The first and fourth
columns are color images, the second and fifth columns are predicted depth maps and
the third and sixth columns are ground truth depth maps.

88 EXPERIMENTAL RESULTS

Table 4.3: Quantitative evaluation of the depth prediction in terms of RMS.

Dataset Attic Dorm Playroom Reading corner NYUDv2 Table1 Table2
RMS 0.411 0.435 0.427 0.449 0.791 0.481 0.495

Object recognition. In order to recognize objects in images, we resort to seman-
tic segmentation networks which classify each pixel in the image into an object class.
We use our dataset to train the segmentation network introduced by [XSNF17]. Then,
the trained model is tested with color images that are never seen during training. This
network is an encoder-decoder architecture which takes an image as input, predicts an
object label for each pixel in the input image, and generates a semantic segmentation
image as output. Figure 4.24 shows the segmentation results for four objects.

(a) Banana

(b) Biscuit_box

(c)Milk_box

(d) Vacuum_cup

Figure 4.24: Results of semantic segmentation. The first column is the color image con-
taining the target object , the second column is the ground truth mask for the object, the
third row is the predicted mask and the last column is the comparative map between the
predicted and the ground truth masks.

We use the pixel Intersection over Union (IoU) as the evaluation metric to evalu-
ate the performance of the trained model. The pixel IoU quantifies the percent overlap

PRESIM: A 3D PHOTO-REALISTIC ENVIRONMENT SIMULATOR 89

between the ground truth mask and the predicted output. Specifically, it first computes
the number of pixels in the overlap between ground truth and predictedmasks, and then
divides the number of pixels by the total number of pixels in area of union of the two
masks. Table 4.4 shows the performance of the trained model. As shown in this evalu-
ation, it comes to the same conclusion as the depth estimation experiments: knowledge
learned from our synthesized dataset can be successfully transferred to real-world data.

Table 4.4: Quantitative evaluation of the semantic segmentation in terms of IoU.

Object banana biscuit_box chips_can cookie_box gingerbread_box milk_box pasta_box vacuum_cup
IoU 91.2 89.1 89.5 80.3 90.4 81.1 88.9 82.5

6D object pose estimation. We generate a benchmark dataset using our simulator
for 6D object pose estimation. Based on the generated dataset, we organized the Shape
RetrievalChallenge benchmark on 6Dobject pose estimation (https://yhldrf.github.
io/Datasets.github.io/). The goal of this benchmark is to investigate how differ-
ent state-of-the-art pose estimation approaches perform in terms of various object prop-
erties, including shapes, sizes, textures, changing light conditions, and occlusion. This
benchmark gives us insight into the current state of the field of pose estimation. Besides,
we learn important lessons from the current pose estimation algorithms, including the
advantages and disadvantages of state-of-the-art approaches and understand where re-
searchers’ attention should be paid to make progress, see [YVA+20] for more details.

Several research groups participated in our pose estimation challenge. They trained
their networks on our synthesized training dataset and tested their trained models on a
testing dataset including synthesized and real captured images. The DenseFusion net-
work [WXZ+19] is trained with our data, and then tested with synthesized and real cap-
tured images in order to see if it can transfer the knowledge to the real world data. We
visualize the estimation results as shown in Figure 4.25. It can be seen that the pose es-
timation approach can provide accurate 6D poses for eight objects, which indicates that
knowledge learned from our synthesized dataset can be successfully transferred to the
real world data without domain constraints.

We present ablation studies to investigate the differences of using: (1) captured im-
ages and (2) photo-realistic images as our training images. WeuseDenseFusion [WXZ+19]
and GraphFusion which achieves the best performance on our benchmark dataset for
the performance evaluation. Both models are trained on 1000 captured and synthesized
images respectively, and tested on 100 real captured images that are never seen during
training. Comparison results are shown in Table 4.5.

https://yhldrf.github.io/Datasets.github.io/
https://yhldrf.github.io/Datasets.github.io/

90 EXPERIMENTAL RESULTS

(a) Qualitative evaluation of 6D pose estimation on the synthesized dataset

(b) Qualitative evaluation of 6D pose estimation on the real captured dataset

Figure 4.25: Example of 6D pose estimation results for eight objects (from
top to bottom: banana, gingerbread_box, biscuit_box, milk_box, pasta_box,
cookie_box,chips_can, and vacuum_cup) with DenseFusion [WXZ+19] .

Table 4.5: The 6D pose estimation accuracy in terms of ADD using different input im-
ages.

Real Synthetic
DenseFusin GraphFusion DenseFusin GraphFusion

banana 0.79 0.75 0.82 0.82
biscuit_box 0.80 0.83 0.89 0.91
chips_can 0.21 0.33 0.51 0.66
cookie_box 0.40 0.51 0.56 0.61
gingerbread_box 0.66 0.72 0.83 0.88
milk_box 0.22 0.41 0.50 0.66
pasta_box 0.69 0.68 0.74 0.81
vacuum_cup 0.47 0.47 0.61 0.60
MEAN 0.53 0.59 0.68 0.74

It is noteworthy that photo-realistic images are able to improve the performance of
6D object pose estimation approaches by a large margin. For example, DenseFusion
and GraphFusion models trained on synthetic data outperform the models trained on
real captured images by 14% and 13% in terms of the vacuum cup, respectively. The
main reason is that real images captured by humans have limited viewpoints and lack
the richness of scenes, while synthesized photo-realistic images add extra richness and

PRESIM: A 3D PHOTO-REALISTIC ENVIRONMENT SIMULATOR 91

diversity to the dataset. This is a useful finding, for synthesizing photo-realistic images
needs less hardware and does not require any human effort to capture and annotate
training images.

4.6 Conclusion and future work
Wepropose PreSim, a 3Dphoto-realistic virtual environment simulator to develop vision-
based algorithms for AI research. By leveraging a variety of indoor environment datasets
and augmenting the data through image based rendering, we provide a large amount
of photo-realistic color-and-depth image pairs with ground truth 6D poses. The gen-
erated data can be used for training and testing data-driven approaches for various AI
applications such as depth estimation, object recognition and 6D object pose estimation.
Experiments demonstrate our simulator narrows the reality gap between the virtual en-
vironment and the real scene, so that computer vision-based algorithms developed in
the simulator can be transferred to real vision applications without domain adaption.

Limitationand futurework. Even thoughour virtual environment provides photo-
realistic color-and-depth image pairs, the current renderingmethod is limited by quality
of the initial capture, andwe also suffer from the same limitation as all 3D reconstruction
methods and especially for texture-less and transparent objects. As a result, new meth-
ods are required to generate precise 3D models for these objects. Another limitation is
that our virtual environment does not include dynamic contents, such as moving people
and objects. Our future work is to combine high-quality view synthesis approaches and
virtual object datasets to provide realistic dynamic virtual environments.

92 CONCLUSION AND FUTUREWORK

5
Sim-to-Real 6D object pose
estimationdatasetconstruc-
tion

Figure 5.1: Overview of our dataset

94 INTRODUCTION

This chapter presents RobotP dataset designed for benchmarking in 6D object pose
estimationwhich plays an important role in robotic grasping andmanipulation research.
The RobotP dataset consists of photo-realistic indoor scenes, and the objects in it cover
a variety of shapes, rigidity, sizes, weight and textures, as shown in Figure 5.1. It is
freely distributed to research groupsworldwide by the Shape Retrieval Challenge bench-
mark on 6D pose estimation (https://yhldrf.github.io/Datasets.github.
io/). For our dataset provides a large amount of high-resolution color-and-depth im-
age pairs with ground truth 6D poses, deep learning-based techniques designed for 6D
object pose estimation can be trained on it.

In this chapterwefirst present an extensive literature reviewon existing benchmarks
and proposed datasets for robotic vision tasks. Then we analyze their scopes, advan-
tages and limitations. Based on the literature survey, this chapter addresses two key
challenges of 3D datasets used for 6D object pose estimation: (1) how to produce repre-
sentative datasets containing high-quality color-and-depth image pairs with a variety of
viewpoints, accurate ground truth 6D poses, 3D models, object masks and 2D bounding
boxes, and (2) how to take advantage of simulated environments to generate infinitely a
large amount of data.

5.1 Introduction
Benchmarks play an important role in the development of robot research fields. They
allow comparing different algorithms to offer insight into the effectiveness of each ap-
proach. Recent years have witnessed a large number of data-driven approaches that are
successfully applied to address robotic vision problems, such as robotic manipulation
and grasping. A key requirement in benchmarks to evaluate these approaches is a good
dataset. The dataset should be representative enough for the problem at hand and also
contain a considerable amount of variability. However, there are few datasets satisfying
the above requirements, especially for 6D object pose estimation, due to the inherent
difficulty of data collection.

Generating 6D object pose estimation dataset presents specific challenges. The first
challenge is selecting and modeling objects which are suitable for benchmarking 6D
object pose estimation performance. Most of the research groups select objects based on
the aims they plan to achieve [DUB+17]. As a result, the selected objects maybe do not
cover various pose estimation challenges, and not be available to other researchers (e.g.,
they are only available in certain regions). To address these problems, when selecting
objects, we take several practical issues into consideration, such as the size, cost and
characteristic of the object. To generate high-quality 3D models, we first use a well-
chosen 3D camera to collect RGB-D images and then propose to generate the 3D model
for each object by an image-based 3D reconstruction approach.

The second challenge is to provide high-quality RGB-D images, ground truth poses,
segmentation masks and 2D bounding boxes for each object. 3D cameras allow easy
3D acquisition of objects, but have several limitations. For example, depth images have

https://yhldrf.github.io/Datasets.github.io/
https://yhldrf.github.io/Datasets.github.io/

SIM-TO-REAL 6D OBJECT POSE ESTIMATION DATASET CONSTRUCTION 95

missing data and do not align well with their corresponding color images. Even though
depth recovery algorithms [YYL+14] provide aligned depth images, they fail in occlu-
sion regions when the camera is near the object. In contrast, multi-view stereo (MVS)
can achieve better results for these regions. Taking advantage of these two kinds of depth
images, we propose a novel depth generation approach to create high-quality depth im-
ages by aligning and fusing them.

The Structure fromMotion (SfM) [SF16a] which is based on feature matching to es-
timate 6D poses is often used to generate ground truth poses. A fundamental limitation
of SfM is that it is unable to provide accurate pose for texture-less objects. To address
this problem, a pose refinement approach combining local and global pose optimization
is introduced. Object mask and 2D bounding box annotation is a time-consuming and
expensive process, as the annotation is often generated by humans [RDS+15]. Instead
of relying on humans, we propose a novel method to generate accurate segmentation
masks and 2D bounding boxes automatically and cost-effectively.

The third challenge is generating large numbers of scene images captured in a variety
of viewpoints. Collecting real-world data is a tedious and labor intensive process. Com-
pared with datasets produced by real-world data, synthesizing such a dataset requires
less hardware, time and human labor while it is more likely to result in better quality.
Taking advantage of image based rendering which can provide the free-viewpoint and
realistic imagery of real scenes, we generate a large number of reasonable and photo-
realistic images with ground truth 6D poses. Even though we use synthesized images,
they are still useful, as the synthesized images are photo-realistic, which are able to
bridge the reality gap that allows models trained with synthetic data to the real world
without domain adaption.

Even thoughmore andmore algorithms, aiming to estimate the 6D object pose have
been published, it is unclear howwell scenarios andmethods perform. New approaches
are usually compared with only a few competitors on a particular dataset. To address
these issues, BOP benchmark [HMB+18] is proposed, which combines eight datasets in
a unified format. However, the datasets used by BOP benchmark have high cost (time
and money) associated with ground truth annotation. Besides, these datasets have low
resolution and limited viewpoints. Unlike these datasets, our dataset has higher res-
olution and the distance and view angle between the object and the camera are more
various. Our main contributions are summarized as follows:

•Arepresentative dataset providinghigh-qualityRGB-D images, ground truth poses,
object segmentation masks, 2D bounding boxes and accurate 3D models for daily used
objects with different sizes, shapes, and textures, which covers a wide range of pose es-
timation challenges.

•Anovel pose refinement approach that uses a local-to-global optimization strategy
to achieve the improved accuracy of each pose and global pose alignment.

•Anovel depth generation algorithmproducinghigh-quality depth images, which is
able to accurately align the depth image to its corresponding color image and fill missing

96 RELATEDWORK

depth information.

• Careful merging of multi-modal sensor data for object reconstruction, followed by
an algorithm to produce the segmentation mask and 2D bounding box for each object
automatically.

• A training dataset generated by a free-viewpoint image based rendering approach
in a simulated environment. It provides a large amount of high-resolution and photo-
realistic color-and-depth image pairs which have plausible physical locations, lighting
conditions, and scales.

• The Shape Retrieval Challenge benchmark on 6D object pose estimation. The
benchmark allows evaluating and comparing pose estimation algorithmsunder the same
standard. Evaluation results indicate that there is considerable room for improvement
in 6D object pose estimation, particularly for objects which have dark colors or reflective
characteristics, and photo-realistic images are helpful to increase the accuracy of pose
estimation algorithms.

5.2 Related work

In this section we discuss themost related works in datasets and benchmarks for robotic
vision tasks.

Datasets. Prior works collect various datasets for vision-based applications such as
object detection and image classification [EVGW+10], as well as for benchmarking in
3D shape retrieval [shr]. However, few datasets are available for 6D object pose estima-
tion which plays an importance role in robotic grasping and manipulation. LineMOD
[HHC+11] and YCB-Video [XSNF17] dataset are the twomostly used 3D object datasets
for 6D object pose estimation. However, they have several limitations: the objects are
often located in the center of the image plane; images are captured in similar distances;
captured images have low resolution; and data annotation for these datasets is tedious
and labor-intensive.

The KIT Object Models Database [KXD12] contains 2D images and 3D triangulated
mesh models of over 100 objects which are obtained semi-automatically. Even though
the number of objects in this dataset is large, the viewpoints are limited and the ob-
jects are not easily accessible to other researchers. With the development of data-driven
methods for robotics applications [MML+18], the importance of synthetic data has been
highlighted. Recent works [DFI+15, WSH+19] combine real and synthesized data to
generate 3D object datasets, which render 3D object models on real backgrounds to pro-
duce synthesized images. While the backgrounds are realistic, the synthesized images
are not photo-realistic. This is because the rendered objects are often flying in midair
or out of context [DFI+15]. Unlike these methods, we are able to mimic the physical
behavior of the camera and provide reasonable and photo-realistic images.

SIM-TO-REAL 6D OBJECT POSE ESTIMATION DATASET CONSTRUCTION 97

Benchmarks. Benchmarks is an important part in robotic vision research and its ne-
cessity has been recognized bymany researchers [dPMM06,MLKN09]. The BOP bench-
mark [HMB+18] combines eight different datasets containing daily used indoor objects
for 6D object pose estimation. However, the captured images in these datasets have lim-
ited view angles and positions. The KITTI benchmark [GLU12] provides real-world out-
door data to evaluate approaches designed for autonomous driving, but it needs to record
a large amount of new data using special sensors. To compare and evaluate algorithms
for robotic grasping, the OpenGRASP benchmarking suite [UKA+11] provides the sim-
ulation environment containing test cases, robot models and scenarios to test methods
and rank them. However, the simulation environment is not photo-realistic, resulting
in the reality gap. The probabilistic object detection challenge based on a collection of
simulated indoor images [HDS+20] aims to standardize the evaluation of object detec-
tion for robotics applications. While it provides a large number of synthetic images, the
viewpoints are also limited.

5.3 The RobotP dataset
Our goal is to build a benchmarking dataset that allows evaluating and comparing the
performance of different 6D pose object pose estimation methods under the same stan-
dard. We aim to cover as many pose estimation challenges as possible, including oc-
clusion, poor lighting conditions, and varying viewpoints, shapes and textures, with a
special focus on the effect of training images.

The dataset generation works as follows: We first select eight representative and
daily used objects based on many practical issues (Section 5.3.1). Then we collect real-
world data for these objects by a well-chosen 3D camera under different scenarios (Sec-
tion 5.3.2). Next, from the collected data, we estimate ground truth 6D poses for these
objects (Section 5.3.3) and generate high-quality depth images (Section 5.3.4). After that,
we reconstruct textured 3D models, and based on the 3D models, we generate object
masks and 2D bounding boxes automatically (Section 5.3.5). Furthermore, to augment-
ing the collected data, we produce a large number of photo-realistic images with ground
truth 6D poses (Section 5.3.6).

5.3.1 Object selection
The first step of generating the RobotP dataset is to choose representative objects that are
frequently used in daily life. When selecting objects, several issues have been considered:

(1) In order to cover as many aspects of pose estimation challenges as possible, the
selected objects have a variety of sizes, shapes, textures, and reflective properties. For
example, objects with few textures are added to the dataset, as it is a challenge for pose
estimation approaches to estimate 6D poses for texture-less objects.

(2) We aim to provide a 3D dataset allowing easily carrying, shipping and storing,

98 THE ROBOTP DATASET

which is helpful to carry out robotic manipulation experiments in the real world. Thus,
the portability of the object is taken into consideration.

(3) To make the dataset easily reproducible, we choose the popular consumer prod-
ucts which are low price and easy to buy as our target objects.

With consideration of these practical issues, we select eight representative objects to
create our dataset, as shown in Figure 5.1.

5.3.2 Collecting scene data
The second step is to collect a set of color-and-depth image pairs which are able to rep-
resent the selected objects. We use these images to generate 3D models for the selected
objects and synthesize new images. When collecting the scene data, there are two main
research questions that should be solved: (1)which types of 3D camerawe should choose
to obtain high-quality color and depth images, and (2) how can we collect the data that
allows us to produce better 3D models. To investigate the first question, three main is-
sues should be considered:

•The resolution of the captured image should be as high as possible. This is because
with high resolution images, we are able to get richer information about the captured
object. Even though we can upsample the depth image to get a higher resolution image,
the details of objects are still lost.

•The range of the 3D camera should be long enough, so thatwe can get imageswith a
variety of view positions. Besides, the camera should be portable and low-cost, allowing
large groups of inexperienced users to collect data.

•The 3D camera should have a high frame rate. The higher frame rate promises
better tracking of capture processes, improving the quality of generated 3D model.

Figure 5.2: Different 3D cameras. Left: time-of-flight camera. Middle: structured-light
camera. Right: depth-from-stereo camera.

After analyzing these practical issues, we search for 3D cameras that satisfy the above
requirements. There are threemain types of 3D cameras: time-of-flight, structured-light
and depth-from-stereo 3D cameras, as shown in Figure 6.2. A detailed summary of the
available consumer 3D cameras can be found in [GVS18]. The most popular 3D camera
is Kinect V2, which is based on TOF to estimate depths and has been used by many

SIM-TO-REAL 6D OBJECT POSE ESTIMATION DATASET CONSTRUCTION 99

researchers. However, it has several disadvantages: (1) it is not able to provide high-
resolution images; (2) the camera calibration is not precise enough; (3) Microsoft has
announced that it is no longer manufacturing Kinect. Thus, we do not choose Kinect
V2 as our 3D camera. Another popular type of 3D cameras is based on structured light,
such as Kinect V1. These cameras rely on recognizing a specific pattern generated by a
laser projector in a single image to estimate depths. Therefore, they can be used at night
and the power consumption is low. However, they are easily influenced by sunlight and
other structured-light devices. Besides, they require a dedicated power source, for the
laser projector has to illuminate the entire scene, and the power consumption grows
with range.

Depth from stereo is another alternative approach to structured light. Intel Re-
alSense D400 serial cameras (e.g., depth camera D415) that use depth from stereo to
estimate depth attract more attentions. The Intel RealSense D415 provides more ac-
curate depth perception and longer range, which is helpful to capture more details on
small objects. Besides, D415 uses the infrared projector to improve the depth perception
ability for texture-less scenes. This is a big benefit for improving the quality of the 3D
model generated by the collected data. Because of these reasons, the D415 is selected as
our target 3D camera to collect data. Table 5.1 describes the basic features of the Intel
RealSense D415.

Table 5.1: The basic parameters of the Intel RealSense D415 camera.

Camera Baseline
Depth FOV HD

(degree)
IR Projector FOV Color Camera FOV

Z-accuracy
(or absolute error)

Module
Dimensions (mm)

D415 55mm
H: 65±2/ V:40 ±1/

D:72±2
H: 67/ V:41/ D:75

H:69 ±1/ V:42±1/
D:77±1

<2%
X=83.7/ Y=10/

Z=4.7

To solve the second problem, we also need to take some practical issues into consid-
eration:

(1) Visual overlap. To make sure that the details of objects are able to be recon-
structed completely, the adjacent images should have enough visual overlaps between
each other. Thus, when capturing the object, we need to move the camera slowly to
reduce the motion blur and increase the overlap. Our goal is to make sure the overlap
between two adjacent images is more than 50 percent.

(2) Textures. Features also play an important role in 3D modeling. The captured
images should have rich texture which allows us to extract enough features. Therefore,
we should avoid capturing completely texture-less regions, such as white walls. Since
our dataset contains texture-less objects, we also need to place additional background
objects (e.g., posters) to make sure we can get enough features.

(3) Viewpoints. In order to get a wide variety of images, we need to capture images
fromdifferent viewpoints and avoid repeatedly capturing images at the sameposition. At

100 THE ROBOTP DATASET

the same time, we should make sure we can get enough images from a relatively similar
viewpoint. This is because we need enough overlaps to reconstruct the 3D model.

(4) Illumination conditions. To ensure the 3D camera have the best performance,
we should capture images with similar illumination conditions. For high dynamic range
scenes containing very bright, direct sunlight to extreme shade, there is no differentia-
tion in bright areas as everything appears just pure white, and there is no differentiation
in darker areas as everything appears pure black, which makes it impossible to get fea-
tures.

With the consideration of the above practical issues, we acquire RGB-D videos by
the Intel RealSense D415 camera connected to a laptop. Depth and color frames are
captured with resolution of 1280 × 720. For camera calibration, we use its default pa-
rameters, as Intel has its own calibration system which has advances over the free cal-
ibration software. It has the ability to calibrate both extrinsic and intrinsic parameters,
and calibrate multiple cameras simultaneously. Apart from calibration, we use the Intel
”High Density” setting for depth calculation. It provides us with better quality depth
images containing few holes and allows us to capture as much data as possible in all the
depth ranges. We store scans as compressed RGB-D data on the connected laptop that
allows recording RGB-D videos for several hours.

Figure 5.3: Examples of captured blurring images.

After obtaining RGB-D videos, we process the data offline to remove motion blur
which is caused by the hand-held camera, as shown in Figure 6.4. To get clear color-and-
depth images, we extract all the frames from theRGB-Dvideo. Then based on themotion
blur metric proposed by [CDLN07], we detect blurring images and then delete them.
The reason to remove blurring images is that we are likely to get wrong features in the
blurring image, which results in the failure of feature matching process. Since our pose
estimation is based on thematched features, without goodmatching, the pose estimation
process may fail. After that, we remove images having too similar viewpoints. This is
because more images do not necessarily improve the 3D reconstruction results while
may lead to a slow reconstruction process, or even result in aworse reconstruction result.
The whole selection process is done by downsampling images with an equal sampling
interval and at the same time we check the motion blur to make sure the selected image
is sharp. Finally, we get a subset of color images as our input data to estimate camera
poses.

SIM-TO-REAL 6D OBJECT POSE ESTIMATION DATASET CONSTRUCTION 101

5.3.3 Ground truth pose estimation

RGB images

…

Global pose refinement
Initial pose estimation

(SfM) Local pose refinement Final poses

Figure 5.4: The pipeline of the pose estimation process. The input are RGB images and
the initial poses of these images are estimated by SfM. After that, the initial poses are
refined locally and globally.

We use COLMAP [SF16a], a state-of-the-art Structure from Motion system to cal-
ibrate color images and estimate initial camera poses. However, due to the inherent
limitation of 3D reconstruction methods, when the change between two input images
becomes larger, the estimated camera pose is more likely to have errors. Besides, if the
image does not have enough features, the estimated pose has errors, too. In order to im-
prove the accuracy of estimated poses, we perform pose refinement combing local and
global pose refinement steps. Instead of refining all camera poses simultaneously, we
first divide poses into groups and then refine poses in each group. After that, we choose
a key pose from each group and then refine these key poses globally. Our aim is to re-
spect the local details and also be compatible with global consistency. The pipeline of
pose estimation is described in Figure 5.4.

Figure 5.5: The local pose groups. They are clustered based on angle and distance simi-
larities.

In the pose refinement process, poses are first grouped based on their similarities
among each other. The similarity is measured by comparing the angle and distance
between two poses. We randomly define one pose as our key pose and then calculate
the angle and distance between the key and other poses. We first rank the poses based
on the distances they have with the key pose. Next, we check if their corresponding
angles are bigger than the field of view of the camera. If so, we then delete the pose from
the rank. After that, we choose up to ten top poses as a local group. Then the other
groups are obtained by the same pipeline from the remaining poses. Figure 5.5 shows
the clustered groups used for pose refinement.

We refine the camera pose in the local group under the consideration of its neighbors
with bundle adjustment. Bundle adjustment method is often used in 3D reconstruction

102 THE ROBOTP DATASET

as the joint non-linear refinement of camera parameters and feature points. We choose
the key pose’s corresponding image as the key image, and then we detect feature points
between the key image and other images. For each image, SIFT features are detected and
matched. The reason to use SIFT feature is that it is robust for the major variation, such
as image translation, scaling, and rotation. Next, we project these feature points into the
3D world space using the camera pose of the key image. Lastly, we apply local bundle
adjustment to refine camera poses with these 3D points. To account for potential out-
liers, the Huber function is used as the robust loss function in local bundle adjustment,
and we use Ceres Solver library to solve the optimization function. The cost function for
grouped images is defined as:

1
2

𝑚
∑
𝑖=1

𝑛
∑
𝑗=1

||𝑒𝑖,𝑗||2 = 1
2

𝑚
∑
𝑖=1

𝑛
∑
𝑗=1

||𝑓(𝑃𝑗, 𝑥𝑖) − 𝑋𝑗||2, (5.1)

where 𝑒𝑖,𝑗 is the reprojection error and 𝑃𝑗 is the projection matrix. Assume that 𝑛 3D
points are seen in𝑚 views, function 𝑓 projects point 𝑥𝑖 in the image plane to 3D world
space and𝑋𝑗 is the reference point in the world space.

After the local pose refinement, we build a feature group by computing features from
key images for global pose refinement. However, the feature group may contain multi-
ple instances of the same real-world point which are found in separate pairwise image
matches. To address this issue, we only add features which have been used in local pose
optimization process to the feature group. We then compute the 3D positions of these
features based on the optimized poses. Once the feature points and their corresponding
3D points are obtained, we use the same loss function as local pose optimization to refine
these global poses.

5.3.4 Depth generation

Figure 5.6: The captured depth image. The red rectangle shows left invalid depth band.

SIM-TO-REAL 6D OBJECT POSE ESTIMATION DATASET CONSTRUCTION 103

Color images have been used successfully by deep learning for many robotic vision
tasks, such as object recognition and scene understanding. However, grasping objects
with the exact physical dimensions is a very hard problem which requires not only RGB
data but also extra information. Depth images can provide such a brand-new channel of
information and are essential elements in datasets designed for robotic grasping tasks.
Apart from that, depth images play an important role for improving the performance of
view synthesis approaches. However, captured depth images often suffer from missing
information andmisalignment between color-and-depth image pairs due to the inherent
limitation of depth cameras. The Intel RealSense D415 camera also has the same limi-
tation. Even though the alignment and hole filling methods from Intel are applied, the
quality of the captured depth image is still low, especially when the camera is near the
object (see Figure 5.6). Therefore, new algorithms are required to refine these captured
depth images to improve their quality.

5.3.4.1 Depth and color image alignment

Z2 invalid depth band
Z1 invalid depth band

Z2
Z1

Z2 valid depth

Z1 valid depth

Z2 depth FOV
Z1 depth FOV

HFOV

Baseline

Figure 5.7: Description of depth field of view to depth image.

Figure 5.7 describes the process of depth field of view to depth image. For the Intel
RealSense D415 camera is based on depth from stereo to calculate depth values, it uses
the left sensor as the reference for stereo matching. This leads to a non-overlap region
in the field of view of left and right sensors where no depth information is available at
the left edge of the image (see Figure 5.6).

Based on the stereo vision, the depth field of view (DFOV) at any distance (𝑍) can
be defined by [Int]:

𝐷𝐹𝑂𝑉 = 𝐻𝐹𝑂𝑉
2 + 𝑡𝑎𝑛−1(𝑡𝑎𝑛𝐻𝐹𝑂𝑉

2 − 𝐵
𝑍), (5.2)

where HFOV is the horizontal field of view of left sensor on depth module and𝐵 is the
baseline between the left and right sensor.

104 THE ROBOTP DATASET

Wecan see thatwhen the distance between the scene and the depth sensor decreases,
the invalid depth band increases, which results in the increase of the invalid depth in the
overall depth image. This is because the overall depth image is the combination of in-
valid depth band and valid depth image. Furthermore, if the distance between the object
and the depth sensor decreases, the misalignment between the color and depth image
also increases, as shown in Figure 6.5. This is because the alignment utility performs
per-pixel geometric transformation estimated by the provided depth data . If there is
too much invalid depth data in the depth image, the estimated transformation matrix is
likely to be inaccurate, resulting in the failed alignment.

Figure 5.8: Misalignment of color-and-depth image pairs. The images are generated
when the distance between the object and camera is near, showing large misalignment.

In previousworks, in order to align the depth image to its corresponding color image,
a new depth image is created, which has the same size as the color image but the content
being depth data calculated in the color sensor coordinate system. In other word, to
create such a depth image, the projected depth data is determined by transforming the
original depth data to the color sensor coordinate system based on the transformation
matrix between the color and depth sensors. However, it is difficult to get the correct
transformationmatrix, as the depth and color images are defined in different spaces and
have different characteristics.

To solve this problem, we first create an estimated depth image for each color image
by MVS from COLMAP. The estimated depth image has better alignment with the color
image (see Figure 5.9), as it is estimated with the consideration of photometric priors
and global geometric consistency. Then we align captured depth images to estimated
depth images to achieve better alignment between color-and-depth image pairs. Since
the captured and estimated depth images have the same characteristics, it is easier for
us to align the captured depth image to the estimated depth image.

For two color image patches, the similarity is measured by comparing color differ-
ences. Similarly, in order to find correspondences in depth images, we compare depth
values and normals between them. To compare depth values, we should make sure the

SIM-TO-REAL 6D OBJECT POSE ESTIMATION DATASET CONSTRUCTION 105

(a) Table1

(b) Table2

Figure 5.9: The depth images are estimated by COLMAP on different datasets showing
better alignment.

estimated and captured depth images have the same scene scale. However, a fundamen-
tal limitation of the estimated depth image is that we do not know the scale of the scene.
We use linear regression in a RANSAC loop to find the metric scaling factor. After ob-
taining the scaling factor, we use it to scale the estimated depth image to the captured
depth image.

To estimate normals, we convert the depth image to a point cloud by camera intrinsic
matrix. Then we compute the surface normal at each point in the point cloud. Deter-
mining the normal to a point on the surface can be considered as estimating the normal
of a plane tangent to the surface. Thus, this problem becomes a least-square plane fitting
estimation problem [Rus10]. Let 𝑥 be a point, and �⃗� be a normal vector. The plane is
represented as 𝜋(𝑥, �⃗�). The distance from a point 𝑞𝑖 in a point set 𝑄 to the plane 𝜋 is
defined by 𝑑𝑖 = (𝑞𝑖 −𝑥)⋅ �⃗�. For the values of 𝑥 and �⃗� fit the least-square sense, 𝑑𝑖 = 0.
Then we define 𝑥 as the centroid of𝑄:

𝑥 = 1
𝑘

𝑘
∑
𝑖=1

𝑞𝑖, (5.3)

where 𝑘 is the number of points in𝑄. The solution for estimating the normal �⃗� is there-
fore reduced to analyze the eigenvectors and eigenvalues of a covariance matrix 𝐶 cre-
ated from𝑄. More specifically, the covariance matrix𝐶 is expressed as :

𝐶 = 1
𝑘

𝑘
∑
𝑖=1

𝛼𝑖(𝑞𝑖 − 𝑥)(𝑞𝑖 − 𝑥)𝑇 , 𝐶 ⋅ ⃗𝑣𝑗 = 𝛽𝑗 ⋅ ⃗𝑣𝑗, 𝑗 ∈ {0, 1, 2}, (5.4)

106 THE ROBOTP DATASET

where 𝛼𝑖 is a possible weight for 𝑞𝑖, ⃗𝑣𝑗 is the 𝑗-th eigenvector of the covariance matrix
and 𝛽𝑗 is the 𝑗-th eigenvalue. Based on 5.4, the normal �⃗� can be computed.

For the generated dataset is used for object pose estimation, our aim is to produce
better aligned color-and-depth pairs for objects not the overall scene. We first extract a
patch 𝑃𝑐 containing a target object in the captured depth image𝐷𝑐. Then we define an
offset map whose size is the same as𝑃𝑐 but the content being index differences between
𝑃𝑐 and its corresponding patch in the estimated depth image 𝐷𝑒. In ideal conditions,
the values in the offset map should be zeros.

The matching process which is based on PatchMatch [BSFG09] is implemented by
first initializing the offsetmapwith predefined values by prior information. Then extract
a patch𝑄𝑒 based on the offset map as the corresponding patch for𝑃𝑐. The pixel 𝑝(𝑥, 𝑦)
in 𝑃𝑐 is transformed to pixel 𝑞(𝑥′, 𝑦′) in𝑄𝑒 by:

𝑞(𝑥′, 𝑦′) = 𝑝(𝑥 + 𝑥𝑜𝑓𝑓 , 𝑦 + 𝑦𝑜𝑓𝑓), (5.5)

where (𝑥𝑜𝑓𝑓 , 𝑦𝑜𝑓𝑓) is the index offsets for each pixel in 𝑃𝑐.
After that, we perform an iterative process which allows good index offsets propa-

gating to its neighbors to update the offset map. The iteration starts with the top left
pixel and then an odd iteration starting with the opposite direction. We firstly calculate
the depth differences 𝑑𝑑𝑖 between pixel 𝑝𝑖 ∈ 𝑃𝑐 and pixel 𝑞𝑖 ∈ 𝑄𝑒, and the angles
between normals ⃗𝑛𝑝𝑖

and ⃗𝑛𝑞𝑖
. If the angle is smaller than a predefined threshold, 𝑑𝑑𝑖 is

saved. Then, if 𝑑𝑑𝑖 is smaller than its neighbors, we replace the offsets of 𝑝𝑖’s neighbors
with 𝑝𝑖’s offset. After every iteration, we calculate the sum 𝑐𝑖 of 𝑑𝑑𝑖. We stop propa-
gation when the change of 𝑐𝑖 is negligible. Finally, based on the offset map, we map
the captured depth image to the estimated depth image. The depth alignment process is
summarized in Algorithm 2.

5.3.4.2 Depth fusion

Even though the captured depth image is aligned to its corresponding color image, the
invalid depth band still exists. Apart from that, it has missing information and noise,
especially when reflective or transparent objects are captured. Therefore, the quality of
the captured depth image is not good enough for synthesizing high-quality images. On
the other hand, the estimated depth image generated by MVS not only has better align-
ment with its corresponding color image, but also provides useful depth information in
regions where the depth camera has poor performance. However, the estimated depth
image is not able to provide reliable depth information for texture-less or occluded ob-
jects, due to the inherent limitations of MVS, as shown in Figure 5.10. Thus, we are not
able to use the estimated depth image to synthesize new images, either.

For the characteristics of the captured and estimated depth images are complemen-
tary, we fuse the captured and estimated depth images together to create a fused depth
image. The fused depth image takes advantage of both real captured and estimated depth

SIM-TO-REAL 6D OBJECT POSE ESTIMATION DATASET CONSTRUCTION 107

Algorithm 2 Overview of depth alignment procedure
Input: Captured depth image𝐷𝑐, estimated depth image𝐷𝑒;

Output: aligned depth map𝐷𝑐1 for𝐷𝑐;

1: Run RANSAC to find the metric scaling factor.

2: Extract patch 𝑃𝑐 in𝐷𝑐.

3: Calculate scaled depth values and normals of 𝑃𝑐.

4: Initialize offset map𝑂.

5: Find a patch𝑄𝑒 in𝐷𝑒 based on𝑂.

6: for 𝑝𝑖 ∈ 𝑃𝑐 and 𝑞𝑖 ∈ 𝑄𝑒 do

7: Calculate depth difference 𝑑𝑑𝑖 and normal angle 𝑎𝑛𝑔𝑖 between 𝑝𝑖 and 𝑞𝑖.

8: Run PatchMatch propagation to update offset map𝑂.

9: Mapping𝐷𝑐 to𝐷𝑐1 based on𝑂.

images, resulting in the improved quality. We generate the fused depth image 𝐷𝑓 by
maximum likelihood estimation [THo19]:

𝐷𝑓 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑑

((𝑅𝑒𝑃𝑒)(𝑅𝑐𝑃𝑐)), (5.6)

where 𝑑 is the depth value,𝑅𝑒 is a reliability map and 𝑃𝑒 is a probability map produced
from the estimated depth image, and𝑅𝑐 is a reliability map and 𝑃𝑐 is a probability map
produced from the captured depth image.

The reliability map 𝑅𝑐 for the captured depth image is computed according to the
variation between the depth value and camera’s range. The reliability 𝑟𝑐 of each depth
value 𝑑 is calculated by

𝑟𝑐 =
⎧{
⎨{⎩

𝑀𝑎𝑥𝐷2 − 𝑑2

𝑀𝑎𝑥𝐷2 − 𝑀𝑖𝑛𝐷2 , 𝑀𝑖𝑛𝐷 < 𝑑 < 𝑀𝑎𝑥𝐷
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (5.7)

where𝑀𝑎𝑥𝐷 and𝑀𝑖𝑛𝐷 are the minimum and maximum distances which the depth
camera is able to measure. From 5.7, we can see that when the distance between the

108 THE ROBOTP DATASET

(a) Table1

(b) Table2

Figure 5.10: The estimated depth images by multi-view stereo on different datasets.

camera and the scene increases, the precision decreases. After calculating the reliability
for each pixel, we get the reliability map𝑅𝑐.

The estimated depth image is generated based on COLMAP. It runs in two stages:
photometric and geometric. The photometric stage only optimizes photometric consis-
tency during depth estimation. In the geometric stage, a joint optimization including ge-
ometric and photometric consistency is performed, which can make sure the estimated
depth maps agree with each other in space. We generate the reliability map 𝑅𝑒 for the
estimated depth image by comparing depth values 𝑑𝑝 and 𝑑𝑔 computed from photomet-
ric and geometric stages, respectively:

𝑟𝑒 =
⎧{
⎨{⎩

𝛿 − |𝑑𝑔 − 𝑑𝑝|
𝑑𝑔

, 𝑑𝑔 < |𝑑𝑔 − 𝑑𝑝|

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (5.8)

where 𝑟𝑒 is the reliability of each depth value and 𝛿 is the maximum accepted depth
difference which is set to be 50 in our experiments. When the depth value calculated
based on geometric consistency has a large difference compared with the depth value
calculated based on photometric consistency, we consider this value is unreliable.

One of themain limitations of the reliability map is that it does not take the idea that
spatial neighboring pixels are able to bemodeled by similar planes into account. In order
to solve this problem, we introduce the probability map. To calculate the probability of a
depth value in the captured or estimated depth image, we define a (5×5) support region
𝑆 centered at the pixel 𝑖 whose depth value is 𝑑𝑖. For each pixel 𝑗 ∈ 𝑆, if 𝑗 is far from 𝑖,
it is reasonable to associate a low contribution to 𝑗 when calculating the probability for

SIM-TO-REAL 6D OBJECT POSE ESTIMATION DATASET CONSTRUCTION 109

𝑑𝑖. Following this intuition, the probability 𝑝𝑑𝑖
is estimated by

𝑝𝑑𝑖
= ∑

𝑗∈𝑆
𝑒−

Δ𝑖,𝑗
𝛾1 ⋅ 𝑒−

Δ𝜋
𝑖,𝑗

𝛾2 , (5.9)

where Δ𝑖,𝑗 is the euclidean distance between 𝑖 and 𝑗, Δ𝜋
𝑖,𝑗 accounts for the distance

from 𝑗 to the plane 𝜋 calculated by 𝑖 and 𝑆, and 𝛾1 and 𝛾2 control the behavior of the
distribution (see [THo19] for a detailed description). After calculating the probability
for every depth value in the estimated and captured depth images, we produce the prob-
ability maps 𝑃𝑒 and 𝑃𝑐, respectively.

From these maps, we generate high-quality fused depth images based on 5.6. How-
ever, there are still many outliers andmisalignment between color-and-depth pixel pairs
in the fused image. Therefore, we use the pixel-to-pixel multi-view depth refinement ap-
proach which is proposed in Chapter 3 to refine the fused depth image.

5.3.5 3D modeling
Weuse the 3Dpoint cloudproduced byCOLMAPas our initialmodel. However, COLMAP
only uses color images to generate the 3D point cloud. It fails on some objects with fewer
features, such as transparent or texture-less objects. To obtain more accurate 3D point
clouds, we use depth images generated in Section 5.3.4 to refine the initial model, for
they provide reliable depth information in regions with missing features.

To refine the initial point cloud, we project a pixel in a color image to its neighboring
images to check if it is visible in them. These neighboring images are selected by view
selection approach proposed in Chapter 3. If it is visible in more than five images, we
project this pixel to the world coordinate system to get a 3D point which is added to the
initial 3D point cloud. Then we check if there are many similar 3D points around it. If
so, we will not add this point into the 3D point cloud, for we only save key points in our
3D point cloud. After all the pixels in the image are projected, we remove outliers which
are often caused by measurement errors, boundaries of occlusion or surface reflectance
by StatisticalOutlierRemoval filter from PCL [RC11]. This filter performs a statistical
analysis on the neighboring points of each point. Supposing that the filtered point cloud
is Gaussian distribution, all points whosemean distances are outside an interval defined
by the global distance mean and standard deviation can be considered as outliers and
trimmed from the point cloud. We repeat the previous steps until all the images are
projected. The whole process is summarized in Algorithm 3.

Mask and bounding box generation. Apart from 3D models, we also provide
masks and corresponding 2D bounding boxes for the objects in our dataset. Our goal
is to generate accurate segmentation masks and 2D bounding boxes automatically and
cost-effectively. To achieve our goal, we take three practical issues into consideration:

•Quality. Each mask and its corresponding bounding box need to be tight. For ex-
ample, the bounding box should be the minimum bounding box that fully encloses all

110 THE ROBOTP DATASET

Algorithm 3 Overview of 3D point cloud generation procedure.
Input: Input color images 𝐼1...𝐼𝑁 and depth images𝐷1...𝐷𝑁 which contain the object

𝑂, the initial 3D point cloud 𝑃𝐶′ and the visible view threshold 𝜀;
Output: The 3D point cloud 𝑃𝐶 for the object𝑂;
1: for image 𝑖 ∈ 𝐼1...𝐼𝑁 do
2: Find 𝑖’s neighboring images𝑄 and calculate the visible time𝑚𝑗 of 𝑖’s each pixel

in Q.

3: if the visible time𝑚𝑗 > 𝜀 then
4: Project 𝑝𝑗 into 𝑃𝐶′ and check if it is redundant.

5: Filtering outliers.
6: Update 𝑃𝐶′ to 𝑃𝐶 .

visible parts of the object. In order to estimate the 6D object pose, the first step is to detect
the target object. The quality of masks and bounding boxes influences the performance
of object detection algorithms which affects the accuracy of the estimated pose.

•Coverage. Each object instance needs to have a segmentationmask and a 2Dbound-
ing box which should only contain the object other than the background. For learning-
based object detection and recognition approaches, they need to know exactly which
part is the target object in a whole image.

•Cost. The designed algorithm should not only provide high-quality masks and 2D
bounding boxes, but also have the minimum cost, as data annotation is a labor intensive
and time-consuming process.

To address these issues, we take advantage of the generated 3D point cloud and 6D
poses. To produce the segmentation mask, we project the point cloud into each image
plane using the estimated camera pose and camera intrinsicmatrix. In this way, our goal
can be achieved easily. However, this mask may contain missing information caused by
the projection errors or inaccurate points in the 3D point cloud. We fill missing infor-
mation in the mask by the stitching median filter proposed in Chapter 3. After that, we
obtain the 2D bounding box by detecting the minimum area of the mask.

5.3.6 Photo-realistic rendering

In this section, we provide a detailed description of how we generate photo-realistic
color-and-depth image pairs based on extremely realisticmovements of a robot. Our aim
is to overcome the limitations of captured datasets [HHC+11, XSNF17] and build a 3D
dataset containing high-quality images generated from rich viewpoints and scales. In-
spired by the low cost of producing large-scale synthetic datasets with accurate ground
truth information, as well as the recent success of synthetic data used for training 6D

SIM-TO-REAL 6D OBJECT POSE ESTIMATION DATASET CONSTRUCTION 111

pose estimation approaches, we use our physically accurate environment simulator pro-
posed in Chapter 4 to synthesize data for our dataset.

The trajectory generation process should be automated and controllable to avoid
unreasonable images and human labor, for we generate data with various angles and
distances. Previous works often generate the trajectory of camera poses by the SLAM
system which is operated by a person to collect hand-held motions. After that, these
poses are inserted into the scenes to synthesize new images. However, this approach
depending on humans to collect trajectories limits the potential scale of the dataset.
Other methods synthesize images by just randomly projecting 3D objects into an ar-
bitrary scene, for it is difficult to generate new images from the same image distribution.
However, the images generated by random poses are unrealistic compared to real-world
scenes. For example, the projected objects are often flying in midair or out of context.

To address this issue, we import the robot model which is equipped with cameras
into our environment simulator. Then we move the robot to positions where its camera
can capture the target object. At the same time, we record these sparse positions as
our initial poses, which can be obtained by the tf package from ROS. For each pose,
we randomly rotate or move the camera along its axes to obtain new poses. To make
the target object visible, we set the maximum rotation angle to be less than 30 degree
and the movement distance to be less than 0.2𝑚. In this way, we are able to generate
infinitely many reliable camera poses.

Our poses have three main advantages. Firstly, our poses are random, but always
tracking the target object, rather than moving along a wall. Secondly, they contain a
variety of movements like that of a person collecting data. Lastly, they also have limited
rotational freedom that emphasizes yaw and pitch rather than roll which is less impor-
tant in 6D object pose estimation.

Based on the generated camera poses, the view synthesis module of our simulator is
used to synthesize new color-and-depth image pairs. Even though we set rotation and
movement threshold to avoid synthesizing images without the target object, there are
still some such images. During offline processing, we project the 3D model of the target
object to synthesized images to check if these images contain the target object. If not,
we delete the images. In this way, we are able to make sure all the synthesized images
satisfy our requirements.

5.3.7 Content
Based on the pipeline described above, we generate theRobotP dataset containing 8 rich-
texture, low-texture and reflective objects recorded on two table layouts. The RobotP
dataset consists of two subsets. One is a training dataset containing synthesized data
and the other is a testing dataset combining of synthesized and captured data. More
specifically, we provide the following data:

•6D poses for each object.

•Color images with the resolution of 1280 × 720 in PNG.

112 EXPERIMENTAL RESULTS

•Depth images with the resolution of 1280 × 720 in PNG.
•Segmentation binary masks for each image.

•2D bounding boxes for each object.

•3D point clouds with RGB color and normals for each object.

•Calibration information for each image.

This initial release of the dataset contains a training set of 400 synthesized color-and-
depth image pairs and a testing set of 100 captured and synthesized color-and-depth
image pairs. The dataset is available at https://yhldrf.github.io/Datasets.
github.io/.

5.4 Experimental results
We test our approaches on two scenarios (Table1, Table2) used for dataset generation,
which contain a variety of objects with different sizes, shapes, textures and occlusion.

Data collection. Figure 5.11 shows the point clouds generated by RGB images cap-
tured in different conditions. These conditions include visual overlaps, textures, view-
points and illumination. The point cloud shown in Figure 5.12 is produced by RGB im-
ages which are captured with the consideration of all the conditions mentioned above.
As we can see, only when taking all the factors into consideration, we are able to get the
best 3D reconstruction results.

(a) (b)

(c) (d)

Figure 5.11: The point clouds are generated by RGB images captured under four condi-
tions separately: (a) visual overlaps, (b) textures, (c) viewpoints and (d) illumination.

https://yhldrf.github.io/Datasets.github.io/
https://yhldrf.github.io/Datasets.github.io/

SIM-TO-REAL 6D OBJECT POSE ESTIMATION DATASET CONSTRUCTION 113

Figure 5.12: The point cloud is generated by RGB images captured with the considera-
tion of visual overlaps, textures, viewpoints and illumination.

Effect of pose refinement. We use the reprojection error to measure the accu-
racy of the estimated 6D poses. The reprojection error is calculated by first projecting
2D correspondences in an image to its matching image plane and then computing the
pairwise distances in the image space. Figure 5.13 shows the reprojection errors that are
calculated over 100 image pairs. From Figure 5.13 we can see that the refined poses have
lower reprojection errors throughout all the image pairs, which verifies the effectiveness
of the pose refinement step.

0 20 40 60 80 100
Index of image pairs

2

4

6

8

10

12

R
ep

ro
je

ct
io

n
er

ro
r (

pi
xe

l)

With pose refinement
Without pose refinement

(a) Table1

0 20 40 60 80 100
Index of image pairs

2

4

6

8

10

12

R
ep

ro
je

ct
io

n
er

ro
r (

pi
xe

l)

With pose refinement
Without pose refinement

(b) Table2

Figure 5.13: Reprojection error comparison with and without pose refinement on each
image pair.

Effect of depth alignment and fusion approaches. Figure 5.14 shows depth
alignment results on different datasets. It can be seen our alignment approach effectively
aligns the depth image to its corresponding color image.

114 EXPERIMENTAL RESULTS

(a) Table1

(b) Table2

Figure 5.14: Examples of depth alignment results on table1 and table2 datasets. The
first column is the aligned depth image, the second column is the matching between cap-
tured depth and color images, and the third column is the matching between aligned
depth and color images.

Themain advantage of our depth fusion algorithm is its robustness towards texture-
less regions. As shown in Figure 6.4.3, the performance of COLMAP degrades signifi-
cantly when there is texture-less region in the image. In contrast, our method has better
performance in such images.

Point clouds of objects. Weuse point clouds to represent the objects in our dataset.
Themodeling results are shown in Figure 5.16. Comparedwith COLMAP, our approach
achieves better performance, especially for texture-less objects.

SIM-TO-REAL 6D OBJECT POSE ESTIMATION DATASET CONSTRUCTION 115

(a) Table1

(b) Table2

Figure 5.15: The depth fusion results on table1 and table2 datasets. The first column
are color images, and the second column are the estimated depth images by COLMAP
and the third column are the depth images generated by our approach.

(a) (b)

(a) Banana

(a) (b)

(b) Biscuit_box

(a) (b)

(c) Chips_can

(a) (b)

(d) Cookie_box

(a) (b)

(e) Gingerbread_box

(a) (b)

(f)Milk_box

(a) (b)

(g) Pasta_box

(a) (b)

(h) Vacuum_cup

Figure 5.16: The 3D point clouds of eight objects. The point clouds shown in figures (a)
and (b) are generated by COLMAP and our approach, respectively.

116 EXPERIMENTAL RESULTS

Based on the 3D point clouds, we generate the object mask and 2D bounding box
automatically. Figure 5.17 shows example results of object masks and their correspond-
ing bounding boxes. It can be seen that the generated bounding boxes are tight and
stably concentrate on the objects, which demonstrates that our method produces highly
accurate masks and bounding boxes.

(a) Banana

(b) Biscuit_box

(c) Chips_can

(d) Cookie_box

(e) Gingerbread_box

(f)Milk_box

Figure 5.17: Examples of segmentation masks and bounding boxes for different objects.

Qualitative evaluation of synthesized images. Figure 5.18 visualizes some ex-
amples of synthesized images in our dataset. As we can see that our dataset is able to

SIM-TO-REAL 6D OBJECT POSE ESTIMATION DATASET CONSTRUCTION 117

provide photo-realistic color-and-depth image pairs.

Figure 5.18: Example results of synthesized color-and-depth image pairs for six objects.

5.5 6D object pose estimation challenge

6D pose estimation is crucial for many vision-based applications, such as augmented re-
ality, robotic grasping and visual navigation. However, estimating object poses is chal-
lenging, for the objects in the real world have various shapes, sizes and textures. Apart
from that, the captured images from them are affected by sensor noise, changing lighting
conditions and occlusion. On the other hand, different pose estimation methods have
different strengths and weaknesses, and it is unclear howwell they perform, for the lack
of benchmarks with high quality datasets.

To address these issues, we organize the Shape Retrieval Challenge (SHREC) bench-
mark on 6D object pose estimation. It consists of two components: (1) an openly accessi-
ble dataset, and (2) an annual competition and corresponding workshop. We use differ-
ent evaluation metrics to compare the proposed methods based on our RobotP dataset.

The competition and workshop provide a way to measure and track the progress of
pose estimation and discuss the lessons learned from different research groups. Besides,
the benchmark andworkshop have the potential to further enrich and boost the research
of 6D object pose estimation and its applications. A more detailed description of 6D
object pose estimation algorithms will be presented in the next chapter.

118 CONCLUSION AND FUTUREWORK

5.6 Conclusion and future work
In this chapter, we have presented the RobotP dataset, an extremely realistic dataset
containing high-resolution color and depth images, ground truth 6D poses, segmenta-
tion masks, 2D bounding boxes and 3D models. To build the dataset, we choose eight
representative objects with the consideration of many practical issues including cost,
sizes, shapes, textures and portability. Then we use a well-chosen 3D camera to collect
data for these objects. To estimate accurate 6D poses for the collected data, a pose re-
finement approach combining local and global optimization is introduced. To further
improve the quality of captured depth images, we generate new depth images by align-
ing and fusing estimated depth images generated by MVS and captured depth images.
Based on the fused depth images, we produce accurate 3Dmodels, and thenwe use these
models to generate segmentation masks and 2D bounding boxes automatically. Besides,
taking advantage of our simulator described in Chapter 4, we synthesize a large number
of photo-realistic color-and-depth image pairs with ground truth 6D poses.

Our dataset is designed to serve as a widely used benchmark dataset for robotic
grasping and manipulation tasks. Apart from that, it can be used for other robot vi-
sion tasks, such as object detection, semantic segmentation and depth estimation. This
dataset is freely distributed to research groups through the 6D object pose estimate chal-
lenge organized by us. Wehope our datasetwill satisfy the growing need of deep learning
approaches and benefit the 6D object pose estimation research.

We also note some limitations of our dataset, whichwehope to improve in the future.

•The synthetic dataset needs to be expanded by adding more challenging objects
such as reflective and texture-less objects, and challenging conditions such as heavy oc-
clusion and varying lighting conditions.

•We plan to make object models easily integrated into a variety of robot simulation
packages. When these modes are imported into a simulation environment, a variety of
motion planners and optimizers can use thesemodels either as collision ormanipulation
objects.

•We also plan to make the dataset generation process more user-friendly, so that
users can generate their own dataset for their purpose.

•More details about the objects will be proposed, including themass, size and inertia
of each object.

6
6D object pose estimation

Figure 6.1: Visualization of estimated poses by our method. Each 3D model is pro-
jected to the image plane with the estimated 6D pose.

The ability to estimate 6D object pose including its orientation and location is es-

120 INTRODUCTION

sential for many vision-based applications, such as visual navigation, robotic grasping
and virtual reality. The awareness of the 3D rotation and 3D translation matrices of ob-
jects in a scene is referred to as 6D, where the D stands for the degree of freedom of the
pose. However, heavy occlusion, changing light conditions and cluttered scenes make
pose estimation challenging. To address these issues, we created a new dataset (RobotP)
and organized the Shape Retrieval Challenge (SHREC) benchmark on 6D object pose
estimation, introduced earlier in Chapter 5.

In this chapter we conduct a variety of experiments based on our benchmark to in-
vestigate two main issues: (1) how different state-of-the-art pose estimation approaches
perform in terms of various object properties, including shapes, sizes, textures and oc-
clusion; (2) what lessons we can learn from the current pose estimation algorithms and
where the attention should be paid to make progress.

Apart from that, we propose a novel approach to estimate the 6D pose of a given
object. Our method effectively extracts color and geometric features by learning-based
networks. Then, we properly fuse them by a graph attention network, which makes our
approach robust to handle heavy occlusion, low texture and sensor noise for 6D object
pose estimation. The evaluation results indicate that our method significantly improves
the accuracy of the estimated 6D pose.

6.1 Introduction
6D pose estimation is crucial for augmented reality, virtual reality, robotic grasping and
autonomous navigation [WXZ+19]. However, the problem is challenging due to the va-
riety of objects in the realworld. Theyhave varying 3D shapes and the quality of captured
images from them is affected by sensor noise, changing lighting conditions and occlu-
sion. With the emergence of cheap RGB-D sensors, the accuracy of estimated object
poses is improved for both rich and low texture objects [TSF18]. Nevertheless, existing
methods still have difficulty to meet the requirement of accurate 6D pose estimation for
objects with texture-less and reflective property, and heavy occlusion.

Previousmethods usingRGB images as inputwork by extracting andmatchinghand-
crafted features and then 6D pose is estimated by solving a Perspective-n-Point (PnP)
problem. Such methods are often fast and robust to occlusion. However, they heavily
rely on rich features and are unable to handle texture-less objects. Instead of relying
on improving handcrafted features, we learn more robust features and semantic cues by
applying deep learning models.

Taking advantage of depth sensors, RGB-Dbasedmethods [BKM+14, KMT+17] pre-
dict more accurate 6D pose of low texture objects even in poor lighting conditions than
RGB-only methods. However, these algorithms often require a time-consuming pose
refinement step (e.g., iterative closest point (ICP) algorithm) to improve pose accuracy.

Recent approaches [WXZ+19, XCJ19] introduce end-to-end deep learning networks
to improve the performance of 6D object pose estimation with the fused per-pixel color
and geometric feature extracted from RGB-D images. In order to extract geometric in-

6D OBJECT POSE ESTIMATION 121

formation from the depth image, they first transform the depth image to a point cloud
and then process each point independently. However, thesemethods do not consider re-
lationships between point pairs, resulting in the loss of local features and the decreased
accuracy of the estimated 6D pose. To address this issue, we apply edge convolution
which considers both local and global point structures to compute geometric features.

Apart from discriminative geometric features, fusing color and geometric features is
also important for improving the accuracy of the estimated 6D pose. Due to these two
types of features are defined in different spaces, fusing them is a key challenge. Existing
approaches [WXZ+19, XCJ19] just concatenate these two kinds of features, which fail to
fully exploit the correlation between them. Unlike previous approaches, we introduce
a graph attention based framework to effectively compute the hidden representations
between visual and geometric features and then fuse them properly.

Even thoughmore andmore algorithms, aiming to estimate the 6D object pose have
been published, it is unclear how well scenarios and methods perform. This is because
a new approach is often compared with few methods in a special dataset. Based on our
benchmark described in Chapter 5, we conduct a variety of experiments to investigate
how different pose estimation approaches perform in terms of various object properties,
such as shapes, sizes, textures and occlusion. It gives us insight into the current state of
the field of pose estimation. Besides, we learn important lessons from the current pose
estimation algorithms, including the advantages and disadvantages of state-of-the-art
approaches. In summary, we present three main contributions:

•A comprehensive evaluation of 6D object pose estimation approaches. We use dif-
ferent evaluation metrics to compare the proposed methods on our benchmark. Eval-
uation results indicate that approaches that fully exploit the color and geometric fea-
tures aremore robust for 6D pose estimation of reflective objects and occlusion. Besides,
methods that estimate the 6D pose in a single and consecutive network are more robust
to texture-less objects and run faster.

• An efficient feature extraction method extracting representative local and global
geometric features from point clouds, which makes it robust to handle heavy occlusion,
low texture and sensor noise for 6D object pose estimation.

• A novel multi-feature fusion network that improves 6D pose prediction perfor-
mance by applying a graph attention network to fully exploit the relationship between vi-
sual and geometric features and compute hidden feature representations between these
features.

We show performance results on a variety of objects (see Figure 6.1), demonstrating
that our proposedmethod provides high accurate 6D object pose. Our approach achieves
state-of-the-art performance on commonly used twodatasets, includingLineMOD[XSNF17]
and YCB-Video [HHC+11] datasets and our new dataset.

122 RELATEDWORK

6.2 Related work

6D object pose estimation has been an active research area for a long time. Here we only
discuss the most related previous work in 6D pose estimation. A thorough review of 6D
pose estimation approaches can be found in [SGHSK20].

Pose estimation based onRGB images. To estimate the 6D object pose, traditional
RGB based methods first establish 2D-3D correspondences between 2D key points and
3Dmodels either by extracting and matching local features or predicting 2D projections
of predefined 3D key points. Based on these correspondences, 6D poses are estimated by
solving PnP problems [KLS14, WRM+08]. Hand-crafted features, such as SIFT [NH03]
and ORB [MAMT15], are often used by these methods, for they are robust to scales, ro-
tation, illumination and view angles. However, the heavy dependence on hand-crafted
features and fixedmatching process have limited empirical performances of thesemeth-
ods to predict 6D poses for texture-less objects in poor lighting conditions or clustered
scenes.

Othermethods [XSNF17, KGC15] use deep learning-based approaches to directly es-
timate 6D object poses from color images. For example, PoseNet [KGC15] and PoseCNN
[XSNF17] directly regress to a 6D pose by a CNN-based architecture from a single RGB
image. However, their predictions are sensitive to small errors due to the large search
space. Besides, these approaches require careful tuning hyper-parameters for their as-
sociated loss functions.

Pose estimation based on RGB-D images. A different class of approaches takes
advantage of depth sensors that provide rich information to estimate poses for texture-
less objects. These methods [JMP+18, KMT+16] extract 3D features from color-and-
depth image pairs and thenperformcorrespondencematching to predict 6Dposes. Ipose
[JMP+18] uses an encoder-decoder architecture to extract features from color image and
then computes the 2D-3D correspondences between the color image and the 3D model.
Instead of predicting pose directly, the 6D pose is estimated by solving the PnP problem
with the obtained correspondences and depth information.

On the other hand, recent methods [MKB+17, WXZ+19] use the fused RGB-D data
to estimate the 6D pose directly. Michel et al. [MKB+17] fuse the RGB-D information in
the early stage, where the depth information is treated as a fourth channel and concate-
nated with RGB channels. Alternative solutions including Densefusion [WXZ+19] fuse
the color and depth information in the later stage, which generate dense pixel-wise fea-
tures to estimate poses. However, all the methods fail to effectively exploit the fuse strat-
egy between color and geometric information. Inspired by graph attention networks,
we propose a graph attention based architecture to fully exploit the relationships among
RGB-D data for 6D pose estimation.

6D OBJECT POSE ESTIMATION 123

6.3 Analysisofbenchmarkingapproachesfor6Dob-
ject pose estimation

We conduct a series of experiments to make deeper understanding of 6D object pose
estimation, and propose insights for designing the next generation of general 6D object
pose estimation algorithms.

6.3.1 Evaluation metrics
In our benchmark, we require participants to submit the estimated 6D object poses of
the testing set. The performance of 6D object pose estimation is evaluated by ADD(-S)
which are the average distance metric (ADD) [HLI+12] and the average closest point
distance (ADD-S) [XSNF17].

Given the ground truth rotation matrix 𝑅 and translation matrix 𝑇 and its corre-
sponding estimated rotation matrix �̂� and translation matirx ̂𝑇 , the ADD computes
mean distances between all 3D model points 𝑥 transformed by [�̂�| ̂𝑇] and [𝑅|𝑇]:

𝐴𝐷𝐷 = 1
𝑁 ∑

𝑥∈𝑆
||(𝑅𝑥 + 𝑇) − (�̂�𝑥 + ̂𝑇)||, (6.1)

where 𝑆 is a set of 3D model points and𝑁 is the number of points.
The ADD-S is an ambiguity-invariant pose error metric, which takes care of both

symmetric and non-symmetric objects into an overall evaluation.

𝐴𝐷𝐷-𝑆 = 1
𝑁 ∑

𝑥1∈𝑆
min
𝑥2∈𝑆

||(𝑅𝑥1 + 𝑇) − (�̂�𝑥2 + ̂𝑇)||. (6.2)

The area under the accuracy-threshold curve (AUC)which is calculated fromADD(-
S) is another evaluation metric. Specifically, if the ADD(-S) is smaller than a threshold
defined from the diameter of the 3D object model, we consider the estimated pose is
correct. Based on that, we define a variable range of thresholds from 0% to 100% of the
3D object diameter and then compute the ADD(-S) for each threshold. With the two sets
of values, we can get the AUC, and then the area under the AUC is calculated.

We also use the reprojection error, which is often used to evaluate the performance
of 6D object pose estimation approaches based on feature matching, as our fourth per-
formance metric. Rather than computing distances between two 3D point pairs, the
reprojection error is calculated by first projecting 3D points into an image plane and
then computing the pairwise distances in the image space.

6.3.2 Approaches
All the proposed methods are described in the following sections. We choose DenseFu-
sion [WXZ+19] as our baseline approach for the 6D object pose estimation.

124
ANALYSIS OF BENCHMARKING APPROACHES FOR 6D OBJECT POSE

ESTIMATION

6.3.3 DenseFusion: 6DObjectPoseEstimationby IterativeDense
Fusion

DenseFusion [WXZ+19] is a heterogeneous neural network architecture with RGB-D
images as input. It processes color and depth information separately and uses a dense
fusion network to extract pixel-wise dense features, from which the 6D object pose is
estimated. Furthermore, an end-to-end iterative pose refinement network is proposed
to further improve the accuracy of the predicted pose while achieving real-time speed.

Figure 6.2: Pipeline of the DenseFusion networks. The network first generates object
segmentation masks and 2D bounding boxes from color images. The color-and-depth
image pairs are cropped using the bounding boxes and fed into learning-based networks
to learn features. The learned features are fused at each corresponding pixel. The pose
predictor estimates a 6D pose for each fused feature and the predictions are voted to ob-
tain the final 6D object pose.

Figure 6.2 shows the overall architecture of DenseFusion. The architecture consists
of two stages. In the first stage, the target object is detected in the input color image
using semantic segmentation from [XSNF17]. Then, the color and depth images are
cropped based on the segmentation, and the cropped depth image is transformed to a
point cloud using the intrinsic camera matrix. After that, the cropped color image and
the point cloud converted by the cropped depth map are fed to the second stage.

In the second stage, the cropped color image is fed to a CNN-based network Resnet-
18 [HZRS16] encoder followed by 4 up-sampling layers as decoder to extract color fea-
tures. The point cloud is fed into a PointNet-based network [QSMG17] by applying a
multi-layer perceptron (MLP) to produce geometric features. After that, the color and
depth features are fused to estimate the 6D object pose based on an unsupervised con-
fidence score. Lastly, the predicted pose is refined by the iterative pose refinement net-
work.

We implement the DenseFusion network within the PyTorch framework and the

6D OBJECT POSE ESTIMATION 125

model is trained using Adam optimizer with an initial learning rate at 0.0001. The
iterative pose refinement module contains a 4 fully connected layers and 2 refinement
iterations is used for the experiments.

6.3.4 ASS3D: Adaptive Single-Shot 3D Object Pose Estimation
Multimodal inputs can improve the performance of various computer vision tasks, but
it is usually at the cost of efficiency and increased complexity. ASS3D focuses on RGB-
D 6D object pose estimation and exploits multimodal inputs using a lightweight fusion
scheme which is complemented by multimodal supervision through rendering. In this
way, ASS3D overcomes the complexity of multimodal inputs by transferring it to the
model training phase instead of the inference phase. Given the distinct domains that
color and depth information resides in, a disentangled architecture is employed, as de-
picted in Figure 6.3, to process them separately. After that, a learnable fusion scheme is
introduced to fuse features.

Silhouette

Silhouette

Figure 6.3: Overall network architecture. The color and depth images are processed
separately and the extracted features are fused in a later stage. An average-pooling func-
tion is applied as the symmetric reduction function. The features are then fed into a pose
encoder which directly regresses a rotation and translation. The predicted pose is sub-
sequently used for rendering the object and deriving its projected silhouette. This allows
utilizing an additional supervision signal during training, which increases the overall
performance of the model.

More specifically, two ResNet-34 models are used as the backbone encoders for ex-
tracting features, which are later fused and flattened by an average-pooling function.
This approach allows associating the geometric feature of each point to its correspond-
ing image feature based on a projection onto the image plane using the known camera
intrinsic parameters. The fused features are then fed into a pose encoder consisting of
three fully connected layers that eventually disentangled to 3D rotation and 3D trans-
lation heads. Following the definition of the model’s architecture, ASS3D supervises it
using a direct pose regression objective as the weighted sum of two different losses. Par-
ticularly, a 𝐿2 loss 𝜀𝑡 = ||𝑡 − ̃𝑡|| is used for the translation and a geodesic distance for
the rotation 𝜀𝑟 = arccos 𝑡𝑟𝑎𝑐𝑒(𝑅�̃�𝑇)−1

2 , similar to [GZD+20]. The loss for the predicted
pose is then:

126
ANALYSIS OF BENCHMARKING APPROACHES FOR 6D OBJECT POSE

ESTIMATION

𝜀𝑝𝑜𝑠𝑒 = 𝜆𝑠𝑖𝑥𝑑
𝜀𝑡 + (1 − 𝜆𝑠𝑖𝑥𝑑

)𝜀𝑟, (6.3)

where the weight 𝜆𝑠𝑖𝑥𝑑
acts as a regularization term. This is complemented by a silhou-

ette loss which is enabled by a point splatting differentiable renderer [YSW+19]. The
3D vertices 𝜈 ∈ ℝ3 of each object’s point cloud is transformed using the predicted pose.
The differentiable point cloud renderer then renders the transformed model’s silhou-
ette, which is used along with the ground truth annotated silhouettes as an additional
supervision signal. Instead of using a traditional intersection over union (IoU) loss, a
Gaussian smooth silhouette loss as defined in [GZD+20] is applied for the silhouette
loss:

𝜀𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 = 1
𝑁 ∑

∈Ω
𝑆�𝒮(̃𝑆) + ̃𝑆�𝒮(𝑆), (6.4)

where 𝑆 is a Gaussian smoothing function. The silhouette loss is a smoother objective
function compared to the common IoU loss, while it takes the ground truth silhouette
into consideration simultaneously, offering that way a fully symmetric objective. How-
ever, the most appropriate Gaussian filter to be used is dependent on each object shape,
and can also vary during training, offering higher precision as the model converges. To-
wards that end, a new adaptive filter is used by learning the standard deviation of the
Gaussian during training. The final learning objective is a weighted sum of the afore-
mentioned losses:

𝜀𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑝𝑜𝑠𝑒𝜀𝑝𝑜𝑠𝑒 + 𝜆𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒𝜀𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 (6.5)

It is apparent that the introduction of the weights 𝜆𝑝𝑜𝑠𝑒 and 𝜆𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 will intro-
duce similar challenges as aforementioned (e.g., finding the best combination for each
object will be challenging and time-consuming). Motivated by that, those two weights
are treated as learnable parameters and adding them to the learning objective. Thus, the
weights are able to adapt to the various objects and, additionally, to better regularize the
two losses during training.

Finally, themodel is trained for 100 epochs on a GeForce RTX 2080 TI 11 GB. All the
color and depth images are resized to 320 × 180 resolution, and the batch size is set to
16. For optimizing the model’s parameters the Adam optimizer with a learning rate of
1 × 10−4 is used. Additionally, learnable Gaussian standard deviation and the weights
of 6.5 are optimized with a SGD optimizer with a learning rate of 1 × 10−5.

6.3.5 GraphFusion: 6Dobject poseestimationwithgraphbased
multi-feature fusion

GraphFusion proposes a graph based multi-feature fusion network to improve 6D pose
prediction performance, which combines effective feature extraction networks and a
graph attentionnetwork (GAT) [VCC+17] to fully exploit the relationship between visual
and geometric features.

6D OBJECT POSE ESTIMATION 127

Cropped image

Point cloud

CNN

Point
Net

…

Pixel-wise
feature

Attentional
feature

Global feature

… Multi-
feature
fusion

Pose
prediction

Input

Output

Figure 6.4: Overview of the graph based pose estimation architecture. The input of the
networks are captured color-and-depth images pairs. These images are cropped with the
semantic segmentation architecture. After that, the visual and geometric features are ex-
tracted and fused by a graph attention network which is introduced to exploit the fusion
strategy between color and geometric features. The 6D object pose and its corresponding
confidence score are predicted by the fused features and the final pose is chosen based on
the confidences.

The aim of this approach is to achieve the real-time 6D pose estimation, using RGB-
D images as input, as shown in Figure6.4. A CNN-based encoder-decoder architecture
is used to learn visual features from color images. To extract geometric features from
the depth map, the depth map is converted to the point cloud using the camera intrinsic
matrix. There are two ways to process the point cloud. Classic approaches often convert
point cloud data into regular grids by projecting 3D data into 2D images or splitting
raw data into 3D voxel grids. Then the transformed data is processed using approaches
based on regular data. Other approaches are to directly process each point in the point
cloud. PointNet [QSMG17] is thefirst one to apply this idea, which achieves permutation
invariance by use of a symmetric function. Instead of transforming to regular data, a
PointNet-based network is used to extract geometric features from the point cloud.

Even with learned features that contains the visual appearance and geometry struc-
ture information, accurate 6D object pose also depends on the fused features. To ef-
fectively fuse features, a graph attention based framework is introduced to exploit rela-
tionship between visual and geometric features, as opposed to prior works which just
concatenates these features. Combining the insights above, the approach works as fol-
lows:

The input are captured color-and-depth image pairs and a semantic segmentation
architecture from [XSNF17] is used to segment the target object and crop the color and
depth images. Next, the visual features are extracted by a CNN-based network and geo-

128
ANALYSIS OF BENCHMARKING APPROACHES FOR 6D OBJECT POSE

ESTIMATION

metric representations are computed from the point cloud using a PointNet-based net-
work . The point cloud is generated by converting its corresponding depth map. With
these features, a graph attention network is introduced to perform the fusion between
color and geometric features. After that, the 6D object pose and its corresponding con-
fidence score are predicted by the fused features, one pose per fused feature. Then, the
pose with the highest confidence is chosen as the estimated pose. Lastly, the 6D pose is
further improved by iterative pose refinement.

6.3.6 Overall performance

Theoverall performance ofDenseFusion, ASS3D,GraphFusionwithout refinement (Graph-
Fusion_wo) and GraphFusion is shown in Table 6.1 and Table 6.2. DenseFusion and
ASS3D are proposed from two different research groups, and GraphFusion without re-
finement (GraphFusion_wo) and GraphFusion is proposed from one research group.
We use ADD, ADD-S and the area under ADD curve (AUC) to measure the prediction.

We can see that GraphFusion achieves the best performance. GraphFusion outper-
forms ASS3D and DenseFusion 11% and 5% in terms of ADD, respectively.

Table 6.1: Quantitative evaluation of the 6D pose in terms of ADD and ADD-S.

DenseFusion ASS3D GraphFusion_wo GraphFusion
ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S

banana 0.86 0.86 0.70 0.75 0.76 0.80 0.83 0.87
biscuit_box 0.91 0.95 0.78 0.88 0.80 0.84 0.93 0.96
chips_can 0.56 0.94 0.75 0.85 0.53 0.57 0.69 0.97
cookie_box 0.62 0.74 0.49 0.66 0.51 0.56 0.61 0.75
gingerbread_box 0.87 0.94 0.63 0.86 0.79 0.83 0.90 0.95
milk_box 0.50 0.81 0.58 0.62 0.52 0.53 0.66 0.77
pasta_box 0.77 0.91 0.63 0.72 0.76 0.78 0.84 0.96
vacuum_cup 0.61 0.90 0.65 0.75 0.51 0.53 0.63 0.97
MEAN 0.71 0.88 0.65 0.76 0.65 0.68 0.76 0.90

6D OBJECT POSE ESTIMATION 129

Table 6.2: The 6D pose estimation accuracy in terms of the area under AUC.

DenseFusin ASS3D GraphFusion_wo GraphFusion
banana 0.77 0.66 0.66 0.75
biscuit_box 0.77 0.74 0.68 0.79
chips_can 0.74 0.72 0.55 0.76
cookie_box 0.67 0.56 0.53 0.66
gingerbread_box 0.76 0.71 0.64 0.78
milk_box 0.66 0.51 0.52 0.67
pasta_box 0.74 0.61 0.61 0.77
vacuum_cup 0.71 0.64 0.63 0.74
MEAN 0.72 0.64 0.60 0.74

6.3.7 Ablation studies

We present ablation studies to help better understand the functionalities of different
network architectures.

Effectiveness of pose refinement. From Table 6.1 and Table 6.2 we can see that
compared with ASS3D and GraphFusion without pose refinement, DenseFusion and
GraphFusion that perform iterative pose refinement are able to further improve the ac-
curacy of the 6D pose. The effectiveness is further verified by Figure 6.5. In Figure 6.5we
compare the successful pose rate measured by ADD for 8 objects, which is obtained by
varying the ADD threshold. As can be seen, DenseFusion and GraphFusion outperform
other approaches by a large margin, especially when the threshold is small.

Effectiveness of multi-feature fusion. Apart from the successful pose rate gen-
erated by ADD, we calculate the successful pose rate by varying the reprojection error
threshold, as shown in Figure 6.6. From Figure 6.6 we can see that GraphFusion is su-
perior to other approaches, for the performance of ASS3D degrades significantly as the
reprojection error decreases, while the performance of GraphFusion has a smaller de-
crease. It indicates that fusion mechanism considering the relationship between color
and geometric features has a clear advantage over methods ignoring the correlation in-
formation between them.

Time efficiency and accuracy robustness of the single shot model. Compared
with DenseFusion and GraphFusion, ASS3D estimates the 6D pose in a single and con-
secutive network. It runs faster than other approaches, as shown in Table 6.3 which
compares the time efficiency among different methods. In particular, ASS3D runs at
least 4 times faster than GraphFusion. Besides, for the texture-less objects such as milk
box, ASS3D is more robust and has a better performance as shown in Figure 6.5.

130
ANALYSIS OF BENCHMARKING APPROACHES FOR 6D OBJECT POSE

ESTIMATION

0.1 0.2 0.3 0.4 0.5
ADD threshold

70

80

90

100
T

he
 p

os
e

ac
cu

ra
cy

 (
%

)

DenseFusion
ASS3D
GraphFusion

(a) Banana

0.1 0.2 0.3 0.4 0.5
ADD threshold

75

80

85

90

95

100

T
he

 p
os

e
ac

cu
ra

cy
 (

%
)

DenseFusion
ASS3D
GraphFusion

(b) Biscuit_box

0.1 0.2 0.3 0.4 0.5
ADD threshold

50

60

70

80

90

100

T
he

 p
os

e
ac

cu
ra

cy
 (

%
)

DenseFusion
ASS3D
GraphFusion

(c) Chips_can

0.1 0.2 0.3 0.4 0.5
ADD threshold

40

60

80

100

T
he

 p
os

e
ac

cu
ra

cy
 (

%
)

DenseFusion
ASS3D
GraphFusion

(d) Cookie_box

0.1 0.2 0.3 0.4 0.5
ADD threshold

60

70

80

90

100

T
he

 p
os

e
ac

cu
ra

cy
 (

%
)

DenseFusion
ASS3D
GraphFusion

(e) Gingerbread_box

0.1 0.2 0.3 0.4 0.5
ADD threshold

50

60

70

80

90

100

T
he

 p
os

e
ac

cu
ra

cy
 (

%
)

DenseFusion
ASS3D
GraphFusion

(f)Milk_box

0.1 0.2 0.3 0.4 0.5
ADD threshold

60

70

80

90

100

T
he

 p
os

e
ac

cu
ra

cy
 (

%
)

DenseFusion
ASS3D
GraphFusion

(g) Pasta_box

0.1 0.2 0.3 0.4 0.5
ADD threshold

60

70

80

90

100

T
he

 p
os

e
ac

cu
ra

cy
 (

%
)

DenseFusion
ASS3D
GraphFusion

(h) vacuum_cup

Figure 6.5: The success rate of pose estimation in terms of ADD.

6D OBJECT POSE ESTIMATION 131

10 20 30 40 50
Reprojection error (pixel)

60

70

80

90

100
T

he
 p

os
e

ac
cu

ra
cy

 (
%

)

DenseFusion
ASS3D
GraphFusion

(a) Banana

10 20 30 40 50
Reprojection error (pixel)

20

40

60

80

100

T
he

 p
os

e
ac

cu
ra

cy
 (

%
)

DenseFusion
ASS3D
GraphFusion

(b) Biscuit_box

10 20 30 40 50
Reprojection error (pixel)

30

40

50

60

70

80

T
he

 p
os

e
ac

cu
ra

cy
 (

%
)

DenseFusion
ASS3D
GraphFusion

(c) Chips_can

10 20 30 40 50
Reprojection error (pixel)

20

40

60

80

T
he

 p
os

e
ac

cu
ra

cy
 (

%
)

DenseFusion
ASS3D
GraphFusion

(d) Cookie_box

10 20 30 40 50
Reprojection error (pixel)

40

60

80

100

T
he

 p
os

e
ac

cu
ra

cy
 (

%
)

DenseFusion
ASS3D
GraphFusion

(e) Gingerbread_box

10 20 30 40 50
Reprojection error (pixel)

30

40

50

60

70

80

T
he

 p
os

e
ac

cu
ra

cy
 (

%
)

DenseFusion
ASS3D
GraphFusion

(f)Milk_box

10 20 30 40 50
Reprojection error (pixel)

20

40

60

80

100

T
he

 p
os

e
ac

cu
ra

cy
 (

%
)

DenseFusion
ASS3D
GraphFusion

(g) Pasta_box

10 20 30 40 50
Reprojection error (pixel)

50

60

70

80

90

100

T
he

 p
os

e
ac

cu
ra

cy
 (

%
)

DenseFusion
ASS3D
GraphFusion

(h) Vacuum_cup

Figure 6.6: The success rate of pose estimation in terms of reprojection errors.

132
ANALYSIS OF BENCHMARKING APPROACHES FOR 6D OBJECT POSE

ESTIMATION

Table 6.3: Comparison of the computational run time among different approaches
(second per frame).

DenseFusin ASS3D GraphFusion
banana 0.03 0.01 0.04
biscuit_box 0.03 0.01 0.04
chips_can 0.03 0.01 0.04
cookie_box 0.03 0.01 0.04
gingerbread_box 0.03 0.01 0.04
milk_box 0.03 0.01 0.04
pasta_box 0.03 0.01 0.04
vacuum_cup 0.03 0.01 0.04
MEAN 0.03 0.01 0.04

(a) DenseFusion

(b) ASS3D

(c) GraphFusion3D

Figure 6.7: Examples of accuracy performance. Each 3D model is projected to the im-
age plane with the estimated 6D pose.

Furthermore, in Figure 6.7 we also visualize the comparison results. It can be seen
that DenseFusion, ASS3D and GraphFusion provide more accurate 6D pose for colorful
objects, such as banana, gingerbread box and chips can, while these approaches are less

6D OBJECT POSE ESTIMATION 133

robust against dark color or low texture objects, such as the cookie box and milk box.

6.3.8 Summary
With our benchmark, we have captured some state-of-the-art 6D object pose estima-
tion approaches and systematically measured the progress of pose estimation research.
As open problems, our analysis takes varying texture and shape objects, occlusion and
object symmetries into consideration. The evaluation results indicate that the approach
fully exploiting color and depth features performs best, outperforming pixel fusion based
method and the approach with multimodal supervision. Besides, the single shot model
outperforms other approaches in terms of time efficiency.

These insights are able to be used as a variety of purposes. For example, we can
focus our pose estimation research efforts particularly on the more challenging objects
and scenarios. It would be interesting to develop novel methods to find better feature
representations for estimating poses of these challenging objects. Apart from that, we
can focus our dataset collection efforts. For example, the synthetic dataset needs to be
expanded by adding more reflective objects, occlusion, varying lighting conditions. Be-
sides, more accurate depth images and 3D models need to be provided.

6.4 Objectposeestimationwithcolor/geometryat-
tention fusion

6.4.1 Overview
Our goal is to achieve accurate 6D pose estimation for objects with a variety of sizes,
shapes and textures using RGB-D images as input. Handcrafted features such as SIFT
[NH03] and ORB [MAMT15] are key factors for classical methods to estimate 6D poses.
However, these features are not sufficient to obtain precise poses for texture-less objects.
Instead of designing new approaches to improve the robustness of handcrafted features,
we learn more robust features and semantic cues using deep learning-based models.

We first apply a CNN-based encoder-decoder architecture to learn features from
color images. Rather than directly extracting geometric features from the depth image,
we first convert it to a point cloud which contains rich and scalable geometric informa-
tion using the camera intrinsic matrix. To process point cloud data, previous methods
first convert it into regular grids by projecting 3D data into 2D images or splitting 3D
data into 3D voxel grids. Then they process the transformed data using approaches de-
signed for regular data. Other methods directly extract features from raw point clouds
by processing each point independently.

However, all the above approaches either introduce quantization artifacts or result
in missing local features. To overcome these limitations, we use a graph neural net-
work (GNN) to aggregate feature information from input data. GNN is especially suit-
able for data lying on irregular or non-Euclidean domains, such as point clouds. It has

134OBJECT POSE ESTIMATIONWITH COLOR/GEOMETRY ATTENTION FUSION

Cropped image

Point cloud

CNN

EdgeConv

Pixel-wise
feature

Attentional
feature

Global feature

Multi-feature

(e) Pose prediction

RGB-D

(f) Output

…
(a) Input (b) Segmentation (c) Feature extraction

(d) Multi-feature fusion

…

Figure 6.8: Overview of our architecture: (a) The input are captured color-and-depth
image pairs. (b) A semantic segmentation architecture is used to segment the target ob-
ject. (c) The visual features are extracted by a CNN-based network and geometric repre-
sentations are computed from the point cloud converted by the depth image. (d) A graph
attention network is introduced to perform the fusion between color and geometric fea-
tures. (e) The 6D object pose and its corresponding confidence score are predicted by the
fused features. (f) The pose with the highest confidence is chosen as the final pose.

been successfully applied in many areas, including semantic segmentation [LLS+17]
and physics systems [WZW+17a]. To effectively extract geometric information, we use
graph based edge convolution to process the point cloud. Edge convolution [WSL+19]
generates edge features that describe the relationships between a point and its neigh-
bors. It avoids the fundamental limitation that leads to loss of local features produced
by previous approaches.

For high-precision pose estimation, fusing features is crucial to estimate accurate 6D
poses. To effectively fuse features, we introduce a graph self-attention based framework
(GAT) to exploit relationship between visual and geometric features, as opposed to prior
works which just concatenates these features. Attention mechanisms have been used
together with many neural network architectures that operate on regular and graph-
structured data. Self-attention which is used to compute representations of sequence-
based data attracts many attentions. It has been applied successfully in tasks such as
machine translation [LPM15] and object detection [LLS+17] on Euclidean domains.

Figure 6.8 shows our overall framework. We first perform semantic segmentation to
extract the target object from color-and-depth image pairs (Figure 6.8(b), Section 6.4.2).
Next, we extract color and geometric features, separately, retaining the native structure
of each data (Figure 6.8(c), Section 6.4.2). We apply theCNN-based network to aggregate
visual information in the color image. To extract local and global geometric features
from the depth image, we first convert the depth image to a point cloud and then build

6D OBJECT POSE ESTIMATION 135

the local graph map for each point with the k-nearest neighbors algorithm (kNN). After
that, the geometric features are computed by edge convolution on each local graphmap.
Furthermore, we fuse visual and geometric featureswith theGAT (Figure 6.8(d), Section
6.4.3). Finally, we train the network to predict the 6D pose for chosen pixels and then
apply an iterative refinement method to estimate the final pose (Figure 6.8(e), Section
6.4.4).

6.4.2 Semantic segmentation and feature extraction
Semantic segmentation. Wedetect objects in the input image using semantic segmen-
tation from [XSNF17]. It generates a per-pixel segmentation map which classifies each
pixel into a known object class. From the segmentation map, we get a 2D bounding box
for the target object, and then we use the 2D bounding box to crop the input color-and-
depth image pairs.

Feature extraction. In order to effectively extract information fromcolor and depth
images, we process the cropped color-and-depth image pairs separately. This is because
the color data can be represented in a grid-like structure, while the geometric informa-
tion residing in the depth image is defined in a continuous vector space. The cropped
color image is fed into a CNN-based encoder-decoder architecture to extract visual in-
formation. Specially, given a color image of size 𝐻 × 𝑊 × 3, the network generates
a feature image of size 𝐻 × 𝑊 × 𝑑𝑟𝑔𝑏 which contains the 𝑑𝑟𝑔𝑏-dimensional hidden
representation of each pixel in the color image.

(a) Point cloud
𝑝𝑝𝑖𝑖 ∈ 𝑅𝑅𝑁𝑁×𝐹𝐹

𝑝𝑝𝑖𝑖

(b) Graph construction
𝑝𝑝𝑖𝑖 = {𝑝𝑝𝑖𝑖𝑖,𝑝𝑝𝑖𝑖𝑖, …𝑝𝑝𝑖𝑖𝑀𝑀}

𝑝𝑝𝑖𝑖𝑖
𝑝𝑝𝑖𝑖𝑀𝑀 𝑝𝑝𝑖𝑖

𝑝𝑝𝑖𝑖𝑖

𝑝𝑝𝑖𝑖𝑖

(c) Edge convolution
using 𝑀𝑀𝑀𝑀𝑀𝑀

𝑝𝑝𝑖𝑖𝑖

𝑝𝑝𝑖𝑖𝑀𝑀
𝑝𝑝𝑖𝑖
𝑝𝑝𝑖𝑖𝑖

𝑝𝑝𝑖𝑖𝑖 𝑒𝑒𝑖𝑖𝑖
𝑒𝑒𝑖𝑖𝑖

𝑒𝑒𝑖𝑀𝑀
𝑒𝑒𝑖𝑖𝑖

(d) Geometric features
𝑝𝑝𝑖𝑖′ ∈ 𝑅𝑅𝑁𝑁×𝐹𝐹′

𝑝𝑝𝑖𝑖′

Figure 6.9: Geometric feature extraction: (a) The input is a point cloud converted from
the depth image. (b) Each point of the point cloud is clustered by kNN to produce graph
maps. (c) Geometric information is extracted by edge convolution. (d) A new set of fea-
tures are produced as the output.

To extract features from the depth image, we first project the cropped depth image
to a point cloud based on the camera intrinsic matrix. For a 3D point cloud, features
learned from each point are able to encode the neighboring geometric structure of each
point. However, such features suffer from sensor noises. In contrast, multiple point-pair
features are robust to occlusion and noises. To take advantage of the point-pair feature,
we build a graph map for each point using the kNN (Figure 6.9(b)). Then we use edge
convolution [WSL+19] that applies convolution-like operations on the local graph to

136OBJECT POSE ESTIMATIONWITH COLOR/GEOMETRY ATTENTION FUSION

extract features. The extracted features can effectively describe the relationship between
a point and its neighbors (Figure 6.9(c)). The geometric feature extraction process is
described as follows.

The input to the edge convolution layer is a local graph with 𝑀 points, denoted by
𝑝𝑖 = {𝑝𝑖0, 𝑝𝑖1, ..., 𝑝𝑖𝑀}, 𝑝𝑖 ∈ 𝑅𝑁×𝐹 ,𝑁 is the number of points in the point cloud,𝐹 is
the dimension of each point. The edge feature is defined as 𝑒𝑖,𝑗 = 𝑓(𝑝𝑖, 𝑝𝑗 −𝑝𝑖), where
𝑓 : 𝑅𝐹 × 𝑅𝐹 → 𝑅𝐹 ′ is parametric non-linear function parameterized by a learnable
weight matrix. 𝐹 ′ is the new dimension of each point. We compute the edge feature
by applying a multi-layer perceptron (MLP). After that, we get the output, 𝑝′

𝑖 ∈ 𝑅𝑁×𝐹 ′

shown in Figure 6.9(d).

6.4.3 Multi-feature fusion

Fusing color and geometric features is important for 6D pose estimation. Concatenating
color and geometric features directly is not able to effectively exploit the relationships
between these features for more accurate 6D pose estimation. The key idea of our multi-
feature fusion is to apply GAT to compute the hidden representations of each feature
by attending over its neighbors. Unlike GraphFusion proposed in Section 6.3.5, our net-
work hasmore attention layers and our fusionmodule is able to generatemore semantic
cues.

(b) Pixel-wise
feature

(c) Attentional feature (d)Global feature

(e) Multi-feature

…

CNN

EdgeConv

(a) Input

Figure 6.10: Multiple feature fusion: (a) Color and geometric features are inputs. (b)
We combine these two types of features to generate pixel-wise features. (c) The GAT is
applied to compute attentional features. (d) The global features are generated by atten-
tional features. (e) Features generated from (b), (c) and (d) are concatenated to produce
multiple features.

Ourmultiple feature fusion procedure first concatenates the per-pixel color and per-
point geometric features as node features (6.10(b)) and then feeds them to the GAT. The
graph attention layer updates the node features based on the other nodes. Concretely,

6D OBJECT POSE ESTIMATION 137

the input nodes are firstly transformed by a linear transformation, parameterized by a
weight matrix, 𝐻 ∈ 𝑅𝐷′×𝐷, to achieve a higher representation. 𝐷 is the number of
input features in a node and𝐷′ is the number of new features in a node. Then a shared
attention mechanism 𝐺𝐴 : 𝑅𝐷′ × 𝑅𝐷′ → 𝑅 is applied to the transformed node to
compute attention coefficients 𝑒𝑖,𝑗 = 𝐺𝐴(𝐻𝑥𝑖, 𝐻𝑥𝑗). The coefficient represents the
importance of node 𝑗’s features to node 𝑖.

In our experiments, we use a single-layer feedforward neutral network as the atten-
tion mechanism𝐺𝐴, parameterized by a set of learnable parameters:

𝑔𝑎 = 𝑔𝑎1, 𝑔𝑎2, ..., 𝑔𝑎𝑁 , 𝑔𝑎𝑖 ∈ 𝑅2𝐷′ , (6.6)

where 𝑁 is the number of nodes. The LeakyReLU is used as the activation function
and the softmax function is used to normalize the attention coefficients. The attention
mechanism is expressed as:

𝑔𝑎𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑔𝑎𝑇 [𝐻𝑥𝑖||𝐻𝑥𝑗])), (6.7)

where 𝑇 is the transposition and || is the concatenation operation.
After obtaining the learnable parameter for each node, it is multiplied with the node

features by a nonlinearity, ϴ, to produce the output node features. In order to obtain
stable features,𝐾 attention mechanisms are implemented. Next, all the output features
are concatenated:

𝑥′
𝑗 = ||𝐾𝑘=0ϴ(∑

𝑗∈𝑁
𝑔𝑎𝑘

𝑖𝑗𝐻𝑘𝑥𝑗])), (6.8)

where the attention parameter, 𝑔𝑎𝑘
𝑖𝑗, is computed by the 𝑘-th attention mechanism

(𝑔𝑎𝑘), and 𝐻𝑘 is the corresponding transformation matrix applied to the input node.
In our experiment,𝐾 is set to be two, as shown in Figure 6.10(c).

The resulting attentional features are fed into a CNN-based network to generate a
global feature vector using maxing-pooling reduction function (Figure 6.10(d)). Finally,
we concatenate pixel-wise, attentional and global features together as our multi-fusion
features(6.10(e)).

6.4.4 Pose estimation and refinement
Pose estimation. We predict the pixel-wise 6D object pose with our fusion features by
MLP. We also predict a confidence score for the corresponding pose. It indicates the
possibility of the corresponding pose to be the best pose. During inference, we choose
the pose with the highest score as the final predicted pose. The loss function is defined
based on the Euclidean distance between points transformed by ground truth pose and
those transformed by predicted pose:

𝑙𝑖 = 1
𝑁 ∑

𝑗∈𝑁
||(𝑅𝑥𝑗 + 𝑡) − (𝑅′

𝑖𝑥𝑗 + 𝑡′𝑖||), (6.9)

138OBJECT POSE ESTIMATIONWITH COLOR/GEOMETRY ATTENTION FUSION

where [𝑅′
𝑖|𝑡′𝑖], 𝑖 ∈ 𝑁 , and [𝑅|𝑡] are the estimated and ground truth 6Dpose respectively,

𝑥𝑗 is the selected point from the 3D model and𝑁 is the number of selected points.
Pose refinement. The performance of 6D pose estimation can be further improved

by iterative refinement. We adopt the refinement module from [WXZ+19] to improve
the pose prediction. Concretely, the input of this step are color features computed from
the cropped color image and geometric features computed from the new point cloud
transformed by the predicted 6D pose. The idea behind this transformation is that the
transformed point cloud implicitly encodes the predicted pose. Then the two kinds of
features are fused and fed into the refinement network to predict a residual pose. The
final pose is obtained by𝑀 iterations:

𝑅𝑇 = [𝑅𝑀 |𝑡𝑀].[𝑅𝑀−1|𝑡𝑀−1]...[𝑅0|𝑡0]. (6.10)

We can train the pose refinement network and the main network together. In order
to reduce the training time, we start the refinement network after the main network has
converged.

6.4.5 Experimental results

6.4.5.1 Settings

Datasets. We use three datasets including our own dataset (RobotP), LineMOD dataset
andYCB-Video datasets to evaluate ourmethod. In our owndataset [dat], there are eight
objects covering a variety of shapes, sizes and textures. LineMOD contains 13 texture-
less objects and YCB-Video dataset has 21 objects of varying shapes and textures. We
follow the same training and testing settings as prior learning based approaches [TSF18,
WXZ+19].

Implementation Details. We use the CNN-based network Resnet-18 [HZRS16]
encoder followed by 4 up-sampling layers as decoder to extract color features. The edge
convolution is a MLP with the number of layer neurons defined as {3, 64, 64, 64}. The
graph is constructed using𝑘 = 10 the nearest neighbors. A single-layerGATmodelwith
two attention heads is used for the feature fusion. We implement the networks within
the PyTorch framework, train our model using Adam optimizer and set the learning
rate to 0.0001. Furthermore, we refine the pose predicted from the main work with 2
iterations.

6.4.5.2 Overall performance

The overall performance compared with other state-of-the-art approaches is shown in
Table 6.4, Table 6.5 and Table 6.6. We use ADD(-S), including ADD for non-symmetric
objects andADD-S for symmetric objects, tomeasure the prediction. If ADD-S is smaller
than 2𝑐𝑚which is the minimum tolerance for robot grippers, the predicted pose is con-
sidered to be correct. The evaluation results compared with PoseCNN and Densefusion
in terms of ADD-(S) andAUC on the YCB-Video dataset are shown in Table 6.4. In Table

6D OBJECT POSE ESTIMATION 139

6.5, we compare the percentage of ADD-(s) (< 2𝑐𝑚) with those of SSD-6D [KMT+17],
Implicit+ICP [SMD+18] and DenseFusion [WXZ+19] on the LineMOD dataset.

Table 6.4: Quantitative evaluation of the 6D pose (ADD(-S)) on the YCB-Video dataset
(objects with bold name are symmetric).

PoseCNN DenseFusion C/G-AF
AUC ADD(-S) <2 cm AUC ADD(-S) <2 cm AUC ADD(-S) <2 cm

002_master_chef_can 68.1 51.1 73.3 72.3 88.2 88.9
003_cracker_box 83.4 73.3 94.2 98.2 93.5 94.2
004_sugar_box 97.5 99.5 96.5 100.0 96.7 100.0
005_tomato_soup_can 81.8 76.6 85.5 83.0 93.0 95.8
006_mustard_bottle 98.0 98.6 94.7 96.1 95.1 98.9
007_tuna_fish_can 83.9 72.1 81.9 62.2 89.2 85.7
008_pudding_box 96.6 100.0 93.2 98.6 95.6 99.3
009_gelatin_box 98.1 100.0 96.7 100.0 98.1 100.0
010_potted_meat_can 83.5 77.9 83.6 79.9 87.5 84.6
011_banana 91.9 88.1 83.7 88.4 92.1 97.9
019_pitcher_base 96.9 97.7 96.9 100.0 95.9 100.0
021_bleach_cleanser 92.5 92.7 89.7 90.8 90.0 89.5
024_bowl 81.0 54.9 89.5 95.1 89.9 96.7
025_mug 81.1 55.2 88.9 88.8 93.5 97.1
035_power_drill 97.7 92.2 92.7 96.5 89.9 91.1
036_wood_block 87.6 80.2 92.8 100.0 93.4 98.2
037_scissors 78.4 49.2 77.5 48.6 91.9 89.3
040_large_marker 85.3 87.2 93.0 100.0 94.7 99.8
051_large_clamp 75.2 74.9 72.5 78.7 75.0 78.2
052_extra_large_clamp 64.4 48.8 69.9 74.9 73.9 76.8
061_foam_brick 97.2 100.0 91.9 100.0 94.1 100.0
Mean 86.6 79.9 87.6 88.2 91.0 93.4

Table 6.5: Quantitative evaluation of the 6D pose (ADD(-S)) on the LineMOD dataset
(objects with bold name are symmetric).

ape ben. cam can cat driller duck eggbox glue hole. iron lamp phone MEAN
DenseFusion 92.3 93.2 94.4 93.1 96.5 87.7 92.3 99.8 100.0 92.1 97.0 95.3 92.8 94.3
SSD-6D 65.0 80.0 78.0 86.0 70.0 73.0 66.0 100.0 100.0 49.0 78.0 73.0 79.0 77.0
Implicit+ICP 20.6 64.3 63.2 76.1 72.0 41.6 32.4 98.6 96.4 49.9 63.1 91.7 71.0 64.7
C/G-AF 96.3 97.4 97.8 97.6 98.5 96.8 97.4 99.8 100.0 95.3 97.3 98.8 98.6 97.8

We can see that our proposed approach applying color/geometry attention fusion
(C/G-AF) achieves the best performance on both datasets. It is also verified by Table

140OBJECT POSE ESTIMATIONWITH COLOR/GEOMETRY ATTENTION FUSION

Table 6.6: Quantitative evaluation of the 6D pose (ADD and ADD-S).

DenseFusion ASS3D GraphFusion C/G-AF
ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S

banana 0.86 0.86 0.70 0.75 0.83 0.87 0.85 0.91
biscuit_box 0.91 0.95 0.78 0.88 0.93 0.96 0.94 0.98
chips_can 0.56 0.94 0.75 0.85 0.69 0.97 0.74 0.97
cookie_box 0.62 0.74 0.49 0.66 0.61 0.75 0.62 0.79
gingerbread_box 0.87 0.94 0.63 0.86 0.90 0.95 0.92 0.96
milk_box 0.50 0.81 0.58 0.62 0.66 0.77 0.69 0.80
pasta_box 0.77 0.91 0.63 0.72 0.84 0.96 0.86 0.97
vacuum_cup 0.61 0.90 0.65 0.75 0.63 0.97 0.65 0.98
MEAN 0.71 0.88 0.65 0.76 0.76 0.90 0.78 0.92

6.6 which shows the comparison results with benchmarking methods. These results
demonstrate that our fusion strategy is superior to those that do not exploit the rela-
tionship between color and geometric features or do not effectively extract geometric
features. For the LineMOD dataset, our method outperforms Implicit+ICP and Dense-
Fusion 33.1% and 3.5%, respectively.

Furthermore, in Figure 6.11we also visualize the comparison results betweenDense-
Fusion and our method on our own new dataset (RobotP). The overlap is generated by
projecting 3D object models to the image plane with the estimated 6D poses. We can see
that the overlap generated by our approach is larger than DenseFusion, which indicates
our method is more robust against occlusion and low texture objects.

6.4.5.3 Ablation study

To verify the effectiveness of each module of our proposed network, we perform the
ablation study on the LineMOD and RobotP datasets.

Effectiveness of geometric feature extraction. By varying the reprojection error
threshold on our RobotP dataset, we plot the accuracy-threshold curves, as shown in
Figure 6.12. It can be seen that our method using geometric features extracted from
point pairs outperforms the approach which extracts geometric features by processing
each point separately by a large margin, especially for low texture objects, such as the
milk box.

Effectiveness of multi-feature fusion. Table 6.7 summarizes the comparison re-
sults with and without graph attentionmechanism in terms of ADD(-S). As can be seen,
compared with DenseFusion, the graph attention mechanism increases the accuracy of
estimated poses significantly (8.7%), and our approach predicts more accurate poses for
symmetric objects, like glue. Compared with our method without multi-feature fusion
module, the performance is also increased by a large margin (5.9%).

6D OBJECT POSE ESTIMATION 141

(a) Banana (b) Biscuit_box

(c) Chips_can (d) Cookie_box

(e) Gingerbread_box (f)Milk_box

(g) Pasta_box (h) vacuum_cup

Figure 6.11: Examples of accuracy differences between DenseFusion and our approach
on RobotP dataset. The first image is the result of DenseFusion and the second image
is the result of our approach. Each 3D model is projected to the image plane with the
estimated 6D poses to generate the overlap.

142OBJECT POSE ESTIMATIONWITH COLOR/GEOMETRY ATTENTION FUSION

10 20 30 40 50
Reprojection error (pixel)

80

85

90

95

100

T
he

 p
os

e
ac

cu
ra

cy
 (

%
)

Without graph features
With graph features

(a) Banana

10 20 30 40 50
Reprojection error (pixel)

70

80

90

100

T
he

 p
os

e
ac

cu
ra

cy
 (

%
)

Without graph features
With graph features

(b) Biscuit_box

10 20 30 40 50
Reprojection error (pixel)

40

50

60

70

80

T
he

 p
os

e
ac

cu
ra

cy
 (

%
)

Without graph features
With graph features

(c) Chips_can

10 20 30 40 50
Reprojection error (pixel)

40

50

60

70

80
T

he
 p

os
e

ac
cu

ra
cy

 (
%

)

Without graph features
With graph features

(d) Cookie_box

10 20 30 40 50
Reprojection error (pixel)

85

90

95

100

T
he

 p
os

e
ac

cu
ra

cy
 (

%
)

Without graph features
With graph features

(e) Gingerbread_box

10 20 30 40 50
Reprojection error (pixel)

50

60

70

80

T
he

 p
os

e
ac

cu
ra

cy
 (

%
)

Without graph features
With graph features

(f)Milk_box

Figure 6.12: The accuracy-threshold curves (AUCs) generated by reprojection error on
RobotR dataset.

6D OBJECT POSE ESTIMATION 143

Table 6.7: Accuracy comparison with and without attention in terms of ADD(-S) on the
LineMOD dataset (objects with bold name are symmetric).

ape ben. cam can cat driller duck eggbox glue hole. iron lamp phone MEAN
DenseFusion 80.5 83.2 78.5 88.1 89.3 79.9 77.9 99.6 99.1 79.5 93.2 93.5 89.2 87.1
C/G-AF(w/o attention) 85.3 88.5 88.7 88.9 90.1 87.5 89.3 98.2 98.9 84.9 88.6 90.4 89.9 89.9
C/G-AF 93.8 95.4 95.6 95.8 96.5 92.7 95.7 99.7 100.0 91.3 95.9 96.6 96.8 95.8

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Invisible surface percentage threshold (<)

0.75

0.8

0.85

0.9

0.95

1

T
he

 p
os

e
ac

cu
ra

cy
 (

A
D

D
(-

S
)<

 2
cm

PointFusion

DenseFusion

PoseCNN+ICP

Ours

Figure 6.13: Accuracy comparison with different degree of occlusion.

Robustness against occlusion. In Figure 6.13 we compare our approach with
DenseFusion, PointFusion and poseCNN+ ICP in terms of the robustness against occlu-
sion. We first calculate the visible surface ratio of each sampled object when the object
is projected to the image plane. Then we calculate the number of successful predictions
among all the testing frames. If the ADD(-S) is smaller than 2𝑐𝑚, we consider the pre-
diction is correct. In detail, we sample a set of points from the 3D object model and
project these points to the image plane to synthesize a depth image using the ground
truth 6D pose and camera intrinsic matrix. Next, we compare the pixel value in the syn-
thesized depth image with the ground truth depth image. If the calculated pixel value
is smaller than ground truth value, we consider its corresponding 3D point is invisible.
This is because only the front-most pixels are shown in the depth image. After that, we
calculate the number of invisible points from our sampled points and then obtain the in-
visible ratio. As shown in figure 6.13, our approach performs best among thesemethods.
The increasing invisible ratio does not reduce our method’s performance significantly,
while the performance of PoseCNN degrades greatly.

6.5 Conclusion and future work

The 6D object pose estimation is a challenging but important research direction for vir-
tual reality, robotic grasping and visual navigation. With our benchmark, we have an-

144 CONCLUSION AND FUTUREWORK

alyzed some state-of-the-art approaches in this field and summarized the success and
failure modules of these algorithms. The evaluation results indicate that data-driven
methods are the current trend in 6D object pose estimation and the approach fully ex-
ploiting the relationships between color and depth features performs best. This bench-
mark and comparative evaluation results have the potential to further enrich and boost
the research of 6D object pose estimation and its applications.

We have proposed a novel 6D object pose estimation framework that first extracts
discriminative color and geometric features from RGB-D images. We then fuse these
features based on a graph attention mechanism to predict the object pose. Experimen-
tal results have demonstrated that the feature extraction and fusion modules can in-
crease the overall accuracy of estimated 6D poses, and the proposed approach can be
used for robotic grasping tasks. However, some limitations are worth noting. Although
our method is robust to objects with different sizes and shapes, when the object is re-
flective and under the changing lighting condition, our method still fails to predict the
accurate pose, as shown in Figure 6.14. It would be interesting to explore more efficient
approaches to estimate the 6D pose of the object with reflective property under more
complicated conditions in the future.

Figure 6.14: The typical limitations of our approach: the estimated pose for the reflec-
tive object is not accurate, as the object projected by the predicted pose does not com-
pletely overlap onto the ground truth object. This is because it is hard to extract reliable
features from reflective objects, which are used to estimate the pose.

7
Conclusionsandfuturework

In this thesis, we explore methods to build a photo-realistic simulation environment for
mobile robots and develop robotic vision tasks based on this simulator. While many
recent simulators successfully provide physical environments by parameter settings of
scene details, including geometry, texture and lighting, our focus is on producing photo-
realistic simulated environments with a sparse set of RBG-D images to avoid precise
modeling and time-consuming parameter settings. At the same time, we aim at a deeper
understanding of developing 6D object pose estimation algorithms based on synthesized
data.

7.1 Reaching our goals
In order to provide evidence for our work, we first revisit our goals from Chapter 1:

1. provide free-viewpoint photo-realistic rendering of real scenes, using a collection
of RGB-D images,

2. allow developing robotics applications and seamlessly interfacing with Robot Op-
erating System (ROS),

3. easily control the movement of robots, and provide real-time positions and whole
trajectories of the moving robot, and a global 3D map,

4. generate representative datasets with rich data for training and evaluating algo-
rithms designed for robotic vision tasks, and

146 REACHING OUR GOALS

5. enable robots to learn artificial intelligence algorithms (e.g., object recognition
and pose estimation) in simulation and allow transforming knowledge learned from
simulation to the real world without domain adaptation.

InChapter 3, we focus onproviding photo-realistic rendering (goal 1). Anovel image
based rendering approach is proposed to generate photo-realistic imagery of real scenes.
We first introduce a pixel-to-pixelmulti-view depth refinementmethod to produce pixel-
accurate alignment between color-and-depth image pairs and correct inaccurate depth
values in the depth image. Based on the refined depth images, we combine an adaptive
view selection approach and layered 3D warping which warps images in different depth
layers to lower the rendering complexity and improve the quality of synthesized image.
The experimental results demonstrate that the proposed approach provides plausible
and photo-realistic rendering on a variety of complex indoor scenes.

Based on the view synthesis algorithm proposed in Chapter 3, in Chapter 4 we de-
sign a 3D environment simulator (PreSim) for synthesizing free-viewpoint RGB-D views
and developing robotic vision applications under ROS (goal 2 and 3). The main charac-
teristics of PreSim are: (i) it provides a photo-realistic 3D environment which allows
seamlessly integrating multisensory models in the virtual world and enables them to
perceive and navigate scenes, (ii) it has an internal view synthesis module which allows
transforming algorithms developed and tested in simulation to physical platforms with-
out domain adaption, (iii) it can generate an infinite amount of data for vision-based ap-
plications, such as depth estimation and object pose estimation. We demonstrate three
applications of this virtual environment and show that our simulator narrows the reality
gap between the virtual environment and the real scene.

Taking advantage of our simulator described in Chapter 4, Chapter 5 proposes a
representative dataset (RobotP) for various vision-based tasks, with a special focus on
6D object pose estimation (goal 4). The RobotP consists of extremely photo-realistic
indoor scenes, and the objects in it cover a variety of shapes, rigidity, sizes, weight and
textures. We use our simulator tomimic the physical behavior of the sensors and provide
high-quality synthesized color-and-depth image pairs with ground truth 6D poses.

To obtain captured color-and-depth image pairs used for synthesizing new image
and object modeling, we present an extensive analysis for objects and 3D camera selec-
tions, scenario design, and trajectory generation. As the accuracy of the 6D pose used
for synthesizing new image plays an important role in high-quality view synthesis, we
propose a pose refinement method to refine the poses estimated from SfM. To improve
the quality of our captured depth images, we first introduce a depth alignment method
to align the captured depth image to its corresponding color image. Then we propose
a depth fusion approach to fuse the captured depth image and estimated depth image
generated bymulti-view stereo. Based on the captured data, we generate not only virtual
images but also 3D modes for our chosen objects. From the 3Dmodels, we also propose
an algorithm to automatically and cost-effectively generatemasks and corresponding 2D
bounding boxes for the objects in our dataset.

Based on our dataset, we organize the Shape Retrieval Challenge benchmark on 6D

CONCLUSIONS AND FUTUREWORK 147

pose estimation. It consists of two components: (1) an openly accessible dataset, and (2)
an annual competition and corresponding workshop. The competition and workshop
provide a way to measure and track the pose estimation progress and discuss the lessons
learned from research groups. This benchmark and comparative evaluation results have
the potential to further enrich and boost the research of 6D object pose estimation and
its applications.

In Chapter 6, we further investigate how different pose estimation approaches per-
form in terms of various object properties, such as shapes, sizes, textures and occlusion
using different evaluation metrics (goal 5). It gives us insight into the current state of
the field of pose estimation. We learn important lessons from the current pose estima-
tion algorithms: (1) approaches that fully exploit the color and geometric features are
more robust for 6D pose estimation of reflective and texture-less objects and occlusion;
(2) the single shot model outperforms other approaches in terms of time efficiency and
is more robust to occlusion. We also investigate where researchers’ attention should be
paid to make progress and propose insights for designing the next generation of general
6D object pose estimation algorithms.

Apart from that, we propose a novel network to further improve the performance of
6D object pose estimation (goal 5). We first apply a feature extraction network which
effectively extracting local and global geometric features from point clouds. Next, a new
multi-feature fusion network is proposed to improve 6D pose prediction performance,
which applies a graph attention network to fully exploit the relationship between visual
and geometric features and compute hidden feature representations between these fea-
tures. Experiments indicate that our approach is robust to handle heavy occlusion, low
texture and sensor noise for 6D object pose estimation.

At the end of the day, the simulator and approaches presented in this thesis strike
a compromise between our five goals. As discussed in above chapters, improvements
can be made towards each goal without sacrificing the others. Besides, we believe our
simulator does not yet provide enough functionality modules for robotic vision tasks.
We discuss a few possible improvements below.

7.2 Beyond our goals

7.2.1 Photo-realistic rendering

Our view synthesis approaches provide photo-realistic rendering by blending layered
color-and-depth image pairs. This works well when the depth image has high quality.
However, generating high-quality depth images is challenging, especiallywhen there are
many texture-less, transparent and reflective objects (e.g., white walls, windows, light
and mirrors) in the scene. This can be addressed with an approach that processes each
special object separately and generates more accurate depth images.

148 BEYOND OUR GOALS

7.2.2 Functionality modules

Even though our simulator provides different functionality modules for robotic vision
tasks, it is only designed for static scenes which do not include dynamic contents, such
as moving people and objects. A system that allows training robotic tasks such as au-
tonomous navigation in dynamic environment or is able to simulate a variety of object
changeswould benefit the development of robotics applications. An approach thatmod-
els different objects separately is likely to provide dynamic rendering of the scene. Be-
sides, training a robot from scratch is extremely challenging in the complicated environ-
ment. A system that allows human participation in the simulated environment would
facilitate the training process of the robotics research, for the robot could learn from
demonstrations given by human users.

7.2.3 Datasets

When collecting the dataset, we take many practical issues such as the cost and prop-
erty of objects into consideration. However, in order to further improve the accuracy
of vision-based algorithms, the dataset needs to be expanded by adding more challeng-
ing objects with various properties. Besides, more details about the objects including
the mass, sizes and inertia of the objects would benefit a variety of motion planners and
optimizers. They could use these models either as collision or manipulation objects.

For we collect the data by a hand-hold 3D depth camera, it requires patience and a
steady hand to avoid blurring and noisy images. This makes capture tedious and labor-
intensive, especially for good 3D modeling results. A system that allows capturing a
much larger view of the scene would reduce the number of captured images. Apart
from that, a system which is robust to motion blur and noise would enable users to
capture images by simply waving a camera around in the scene without worrying about
the quality of captured images.

7.2.4 6D object pose estimation

Current algorithms including our method proposed in this thesis estimate the 6D object
pose by extracting features from RGB-D images. This works well for colorful objects
(e.g., the cookie box and chips can shown in Chapter 6). However, they are not able to
provide accurate 6D poses for certain types of objects. For example, the reflective and
texture-less objects tend to be particularly challenging. An approach that focuses on
the challenging objects would further enrich and boost the research of 6D object pose
estimation and its applications. Even though color and geometric features are extracted
and fused for pose estimation, the extraction and fusion strategies are not fully explored,
which would be interesting research direction.

CONCLUSIONS AND FUTUREWORK 149

7.3 Concluding remarks
In this thesis, we present a 3D environment simulator for mobile robots and provide ev-
idence that algorithms developed and tested in simulation are able to be transformed to
the real world without domain adaption for many robotic vision tasks. Our simulator
creates photo-realistic color-and-depth image pairs with ground truth poses, which can
be used for vision-based tasks such as depth estimation, object recognition and 6D pose
estimation. Based on our simulator, we generate a 3D object dataset and organize the
Shape Retrieval Challenge benchmark on 6D pose estimation. It provides a way to mea-
sure and track the progress in 6D object pose estimation and discuss the lessons learned
from research groups. We further improve the accuracy of the pose estimation by a graph
attention network. There is plenty of interesting future work left to explore, including
further improvements towards the goals we stated in Chapter 1 and research outside the
scope of this thesis.

The proposed 3D environment simulator designed formobile robots facilitatesmany
robotics applications, such as object recognition, depth estimation, robotic grasping, ob-
stacle avoidance and visual navigation. For example, as our simulator can generate an
infinite amount of photo-realistic data, the deep learning-based visual AI algorithms
(e.g., object recognition and robotic grasping algorithms) can be developed and tested in
it. This makes it easier to take advantage of deep learning to further boost robot manipu-
lation ability. Apart from that, our virtual environment provides a variety of information
including color-and-depth image pairs, sensor poses and robot trajectories, which can
be used to design visual navigation approaches. This provides the possibility for robots
to learn to localize and navigate themselves to a target position automatically. In the
near future, we may even see some of these applications become available to consumers
and the goal that equips robots with most of human-like abilities is achieved.

150 CONCLUDING REMARKS

Curriculum Vitae

Honglin Yuan was born in Shandong, China in 1990. She obtained her bachelor’s in Au-
tomation fromWuhan Textile University. After graduating fromWuhan Textile Univer-
sity, she moved to Beijing to study Precision Instruments and Mechanology in Beihang
University. After obtaining her master’s degree, she joined in the Multimedia group
at Utrecht University in 2017 to pursue a PhD degree under the supervision of Prof.
Remco.C. Veltkamp. Her research focused on developing virtual reality environments
and deep learning-based applications for mobile robots.

152 CONCLUDING REMARKS

Bibliography

[AB+91] Edward HAdelson, James R Bergen, et al. The plenoptic function and the
elements of early vision, volume 2. MIT Press, 1991.

[ACD+09] Ery Arias-Castro, David L Donoho, et al. Does median filtering truly
preserve edges better than linear filtering? The Annals of Statistics,
37(3):1172–1206, 2009.

[AW18] Ibraheem Alhashim and Peter Wonka. High quality monocular depth
estimation via transfer learning. arXiv preprint arXiv:1812.11941, 2018.

[AWT+18] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson,
Niko Sünderhauf, Ian Reid, Stephen Gould, and Anton van den Hengel.
Vision-and-language navigation: Interpreting visually-grounded naviga-
tion instructions in real environments. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 3674–3683,
2018.

[BBM+01] Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and
Michael Cohen. Unstructured lumigraph rendering. In Proceedings of the
28th annual conference on Computer graphics and interactive techniques,
pages 425–432, 2001.

[BCM18] SimoneBianco, Gianluigi Ciocca, andDavideMarelli. Evaluating the per-
formance of structure frommotion pipelines. Journal of Imaging, 4(8):98,
2018.

[BE01] Gabriel J Brostow and Irfan Essa. Image-based motion blur for stop mo-
tion animation. InProceedings of the 28th annual conference onComputer
graphics and interactive techniques, pages 561–566, 2001.

[BK08] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision
with the OpenCV library. O’Reilly Media, 2008.

154 BIBLIOGRAPHY

[BKM+14] Eric Brachmann, Alexander Krull, FrankMichel, StefanGumhold, Jamie
Shotton, and Carsten Rother. Learning 6D object pose estimation using
3D object coordinates. In European conference on computer vision, pages
536–551. Springer, 2014.

[BNVB13] Marc G Bellemare, Yavar Naddaf, Joel Veness, andMichael Bowling. The
arcade learning environment: An evaluation platform for general agents.
Journal of Artificial Intelligence Research, 47:253–279, 2013.

[BPA+17] Simon Brodeur, Ethan Perez, Ankesh Anand, Florian Golemo, Luca
Celotti, Florian Strub, Jean Rouat, Hugo Larochelle, and Aaron
Courville. Home: A household multimodal environment. arXiv preprint
arXiv:1711.11017, 2017.

[BRR11] Michael Bleyer, Christoph Rhemann, and Carsten Rother. Patchmatch
stereo-stereo matching with slanted support windows. In Bmvc, vol-
ume 11, pages 1–11, 2011.

[BSCB00] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma
Ballester. Image inpainting. In Proceedings of the 27th annual conference
on Computer graphics and interactive techniques, pages 417–424, 2000.

[BSFG09] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Gold-
man. Patchmatch: A randomized correspondence algorithm for struc-
tural image editing. ACM Trans. Graph., 28(3):24, 2009.

[CCL+05] Wan-YuChen, Yu-Lin Chang, Shyh-Feng Lin, Li-FuDing, and Liang-Gee
Chen. Efficient depth image based rendering with edge dependent depth
filter and interpolation. In 2005 IEEE International Conference on Mul-
timedia and Expo, pages 1314–1317. IEEE, 2005.

[CDF+17] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias
Niessner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang.
Matterport3D: Learning fromRGB-D data in indoor environments. arXiv
preprint arXiv:1709.06158, 2017.

[CDLN07] Frederique Crete, Thierry Dolmiere, Patricia Ladret, andMarina Nicolas.
The blur effect: perception and estimation with a new no-reference per-
ceptual blur metric. InHuman vision and electronic imaging XII, volume
6492, page 64920I. International Society for Optics and Photonics, 2007.

[CDSHD13] Gaurav Chaurasia, SylvainDuchene, Olga Sorkine-Hornung, andGeorge
Drettakis. Depth synthesis and localwarps for plausible image-based nav-
igation. ACM Transactions on Graphics (TOG), 32(3):1–12, 2013.

BIBLIOGRAPHY 155

[Che95] Shenchang Eric Chen. Quicktime VR: An image-based approach to vir-
tual environment navigation. In Proceedings of the 22nd annual confer-
ence on Computer graphics and interactive techniques, pages 29–38, 1995.

[CHJH02] Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue.
Artificial intelligence, 134(1-2):57–83, 2002.

[CT19] Chao Chen and Llewellyn Tang. Bim-based integrated management
workflow design for schedule and cost planning of building fabric main-
tenance. Automation in Construction, 107:102944, 2019.

[CW93] Shenchang Eric Chen and Lance Williams. View interpolation for im-
age synthesis. In Proceedings of the 20th annual conference on Computer
graphics and interactive techniques, pages 279–288, 1993.

[dat] 3D object datasets. https://yhldrf.github.io/Datasets.
github.io/. Accessed: 2020-05-31.

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

[DDB+15] Paul Debevec, Greg Downing, Mark Bolas, Hsuen-Yueh Peng, and Jules
Urbach. Spherical light field environment capture for virtual reality using
a motorized pan/tilt head and offset camera. In ACM SIGGRAPH 2015
Posters, pages 1–1. 2015.

[DFI+15] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner
Hazirbas, Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and
Thomas Brox. FlowNet: Learning optical flow with convolutional net-
works. In Proceedings of the IEEE international conference on computer
vision, pages 2758–2766, 2015.

[DHH+20] Matt Deitke, Winson Han, Alvaro Herrasti, Aniruddha Kembhavi, Eric
Kolve, Roozbeh Mottaghi, Jordi Salvador, Dustin Schwenk, Eli Vander-
Bilt, MatthewWallingford, et al. RoboTHOR: An open simulation-to-real
embodied AI platform. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3164–3174, 2020.

[DN17] Ji Dai and Truong Nguyen. View synthesis with hierarchical clustering
based occlusion filling. In 2017 IEEE International Conference on Image
Processing (ICIP), pages 1387–1391. IEEE, 2017.

[DP11] Amaël Delaunoy and Emmanuel Prados. Gradient flows for optimizing
triangular mesh-based surfaces: Applications to 3D reconstruction prob-
lems dealing with visibility. International journal of computer vision,
95(2):100–123, 2011.

https://yhldrf.github.io/Datasets.github.io/
https://yhldrf.github.io/Datasets.github.io/

156 BIBLIOGRAPHY

[dPMM06] Angel P del Pobil, Rad Madhavan, and Elena Messina. Benchmarks in
robotics research. InWorkshop IROS. Citeseer, 2006.

[DRC+17] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. CARLA: An open urban driving simulator. arXiv
preprint arXiv:1711.03938, 2017.

[DS98] Norman R Draper and Harry Smith. Applied regression analysis, volume
326. John Wiley & Sons, 1998.

[DT05] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for hu-
man detection. In 2005 IEEE computer society conference on computer vi-
sion and pattern recognition (CVPR’05), volume 1, pages 886–893. IEEE,
2005.

[DUB+17] Bertram Drost, Markus Ulrich, Paul Bergmann, Philipp Hartinger, and
Carsten Steger. Introducing MVTec ITODD - A for 3D object recogni-
tion in industry. In Proceedings of the IEEE International Conference on
Computer Vision Workshops, pages 2200–2208, 2017.

[ED04] Elmar Eisemann and Frédo Durand. Flash photography enhancement
via intrinsic relighting. ACM transactions on graphics (TOG), 23(3):673–
678, 2004.

[EdDM+08] Martin Eisemann, Bert de Decker, Marcus A. Magnor, Philippe Bekaert,
Edilson de Aguiar, Naveed Ahmed, Christian Theobalt, and Anita Sell-
ent. Floating textures. Comput. Graph. Forum, 27(2):409–418, 2008.

[EVGW+10] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn,
andAndrewZisserman. The pascal visual object classes (VOC) challenge.
International journal of computer vision, 88(2):303–338, 2010.

[FBAS16] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart.
RotorS—a modular Gazebo MAV simulator framework. In Robot Op-
erating System (ROS), pages 595–625. Springer, 2016.

[Feh04] Christoph Fehn. Depth-image-based rendering (DIBR), compression,
and transmission for a new approach on 3D-TV. In Stereoscopic Displays
and Virtual Reality Systems XI, volume 5291, pages 93–105. International
Society for Optics and Photonics, 2004.

[FGW+18] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and
Dacheng Tao. Deep ordinal regression network for monocular depth es-
timation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2002–2011, 2018.

BIBLIOGRAPHY 157

[FH15] Yasutaka Furukawa andCarlosHernández. Multi-view stereo: A tutorial.
Foundations andTrends® inComputerGraphics andVision, 9(1-2):1–148,
2015.

[FHT01] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of
statistical learning, volume 1. Springer series in statistics NewYork, 2001.

[FIS14] Dario Floreano, Auke Jan Ijspeert, and Stefan Schaal. Robotics and neu-
roscience. Current Biology, 24(18):R910–R920, 2014.

[FNPS16] John Flynn, Ivan Neulander, James Philbin, and Noah Snavely. Deep-
stereo: Learning to predict new views from the world’s imagery. In Pro-
ceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 5515–5524, 2016.

[FP09] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multi-
view stereopsis. IEEE transactions on pattern analysis and machine in-
telligence, 32(8):1362–1376, 2009.

[GAF+10] Michael Goesele, Jens Ackermann, Simon Fuhrmann, Carsten Haubold,
Ronny Klowsky, Drew Steedly, and Richard Szeliski. Ambient point
clouds for view interpolation. In ACM Transactions on Graphics (TOG),
volume 29, page 95. ACM, 2010.

[GBC16] IanGoodfellow, YoshuaBengio, andAaronCourville.Deep learning. MIT
press, 2016.

[Ger03] Deborah Levine Gera. Ancient Greek ideas on speech, language, and civi-
lization. Oxford University Press, USA, 2003.

[GGS+19] Xiaofeng Gao, Ran Gong, Tianmin Shu, Xu Xie, Shu Wang, and Song-
Chun Zhu. Vrkitchen: an interactive 3D virtual environment for task-
oriented learning. arXiv preprint arXiv:1903.05757, 2019.

[GGSC96] Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F Co-
hen. The lumigraph. In Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, pages 43–54, 1996.

[GHTC03] Xiao-Shan Gao, Xiao-Rong Hou, Jianliang Tang, and Hang-Fei Cheng.
Complete solution classification for the perspective-three-point prob-
lem. IEEE transactions on pattern analysis and machine intelligence,
25(8):930–943, 2003.

[Gir15] Ross Girshick. Fast R-CNN. In Proceedings of the IEEE international
conference on computer vision, pages 1440–1448, 2015.

158 BIBLIOGRAPHY

[GIRL03] Natasha Gelfand, Leslie Ikemoto, Szymon Rusinkiewicz, and Marc
Levoy. Geometrically stable sampling for the ICP algorithm. InFourth In-
ternational Conference on 3-DDigital Imaging andModeling, 2003. 3DIM
2003. Proceedings., pages 260–267. IEEE, 2003.

[GLS15] Silvano Galliani, Katrin Lasinger, and Konrad Schindler. Massively par-
allel multiview stereopsis by surface normal diffusion. In Proceedings of
the IEEE International Conference on Computer Vision, pages 873–881,
2015.

[GLSU13] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vi-
sion meets robotics: The KITTI dataset. The International Journal of
Robotics Research, 32(11):1231–1237, 2013.

[GLU12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for au-
tonomous driving? theKITTI vision benchmark suite. In 2012 IEEECon-
ference on Computer Vision and Pattern Recognition, pages 3354–3361.
IEEE, 2012.

[GM04] MikeGoslin andMarkRMine. The panda3D graphics engine. Computer,
37(10):112–114, 2004.

[GR71] Gene H Golub and Christian Reinsch. Singular value decomposition and
least squares solutions. In Linear Algebra, pages 134–151. Springer, 1971.

[GS05] Pau Gargallo and Peter Sturm. Bayesian 3D modeling from images us-
ing multiple depth maps. In 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05), volume 2, pages
885–891. IEEE, 2005.

[GVS18] Silvio Giancola, Matteo Valenti, and Remo Sala. A survey on 3D cameras:
Metrological comparison of time-of-flight, structured-light andactive stere-
oscopy technologies. Springer, 2018.

[GZD+20] Albanis Georgios, Nikolaos Zioulis, Anastasios Dimou, Dimitris
Zarpalas, and Petros Daras. Dronepose: Photorealistic uav-assistant
dataset synthesis for 3D pose estimation via a smooth silhouette loss.
In Proceedings of the European Conference on Computer Vision (ECCV)
Workshops, August 2020.

[Har97] Richard I Hartley. In defense of the eight-point algorithm. IEEE Transac-
tions on pattern analysis and machine intelligence, 19(6):580–593, 1997.

[HDS+20] David Hall, Feras Dayoub, John Skinner, Haoyang Zhang, Dimity Miller,
Peter Corke, Gustavo Carneiro, Anelia Angelova, and Niko Sünderhauf.
Probabilistic object detection: Definition and evaluation. In The IEEE

BIBLIOGRAPHY 159

Winter Conference on Applications of Computer Vision, pages 1031–1040,
2020.

[HHC+11] Stefan Hinterstoisser, Stefan Holzer, Cedric Cagniart, Slobodan Ilic, Kurt
Konolige, Nassir Navab, and Vincent Lepetit. Multimodal templates for
real-time detection of texture-less objects in heavily cluttered scenes. In
2011 international conference on computer vision, pages 858–865. IEEE,
2011.

[Hir06] Heiko Hirschmuller. Stereo vision in structured environments by consis-
tent semi-global matching. In 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’06), volume 2, pages
2386–2393. IEEE, 2006.

[HLI+12] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary
Bradski, Kurt Konolige, and Nassir Navab. Model based training, detec-
tion and pose estimation of texture-less 3D objects in heavily cluttered
scenes. In Asian conference on computer vision, pages 548–562. Springer,
2012.

[HMB+18] Tomas Hodan, Frank Michel, Eric Brachmann, Wadim Kehl, An-
ders GlentBuch, Dirk Kraft, Bertram Drost, Joel Vidal, Stephan Ihrke,
Xenophon Zabulis, et al. BOP: benchmark for 6D object pose estimation.
In Proceedings of the European Conference on Computer Vision (ECCV),
pages 19–34, 2018.

[HMBLM08] Gary B Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller.
Labeled faces in the wild: A database for studying face recognition in
unconstrained environments. University of Massachusetts, 2008.

[HPP+18] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George
Drettakis, and Gabriel Brostow. Deep blending for free-viewpoint image-
based rendering. ACM Transactions on Graphics (TOG), 37(6):1–15,
2018.

[HRDB16] Peter Hedman, Tobias Ritschel, George Drettakis, and Gabriel Brostow.
Scalable inside-out image-based rendering. ACMTransactions onGraph-
ics (TOG), 35(6):1–11, 2016.

[HST12] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image filtering. IEEE
transactions on pattern analysis and machine intelligence, 35(6):1397–
1409, 2012.

[HZ03] Richard Hartley and Andrew Zisserman. Multiple view geometry in com-
puter vision. Cambridge university press, 2003.

160 BIBLIOGRAPHY

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[Int] Intel RealSense Depth Camera D415.
https://www.intelrealsense.com/depth-camera-d415/. Accessed:
2020-06-18.

[IZU13] Umit Isikdag, Sisi Zlatanova, and Jason Underwood. A bim-oriented
model for supporting indoor navigation requirements. Computers, En-
vironment and Urban Systems, 41:112–123, 2013.

[JHHB16] Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The
Malmo platform for artificial intelligence experimentation. In IJCAI,
pages 4246–4247, 2016.

[JMP+18] OmidHosseini Jafari, SivaKarthikMustikovela, Karl Pertsch, Eric Brach-
mann, and Carsten Rother. iPose: instance-aware 6D pose estimation of
partly occluded objects. In Asian Conference on Computer Vision, pages
477–492. Springer, 2018.

[JP11] Michal Jancosek andTomás Pajdla. Multi-view reconstruction preserving
weakly-supported surfaces. In CVPR 2011, pages 3121–3128. IEEE, 2011.

[KDW+17] Petr Kellnhofer, Piotr Didyk, Szu-Po Wang, Pitchaya Sitthi-Amorn,
William Freeman, Fredo Durand, andWojciechMatusik. 3DTV at home:
eulerian-lagrangian stereo-to-multiview conversion. ACM Transactions
on Graphics (TOG), 36(4):1–13, 2017.

[KGC15] Alex Kendall, Matthew Grimes, and Roberto Cipolla. PoseNet: A con-
volutional network for real-time 6-DOF camera relocalization. In Pro-
ceedings of the IEEE international conference on computer vision, pages
2938–2946, 2015.

[KH04] Nathan Koenig and Andrew Howard. Design and use paradigms for
Gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS)(IEEE Cat.
No. 04CH37566), volume 3, pages 2149–2154. IEEE, 2004.

[KK11] Mohamed A Khamsi and William A Kirk. An introduction to metric
spaces and fixed point theory, volume 53. John Wiley & Sons, 2011.

[KK17] Ms Shakeeba S Khan and AS Khan. A brief survey on robotics. Interna-
tional Journal of Computer Science and Mobile Computing, 6(9):38–45,
2017.

BIBLIOGRAPHY 161

[KLS14] Laurent Kneip, Hongdong Li, and Yongduek Seo. UPnP: An optimal O
(n) solution to the absolute pose problem with universal applicability. In
EuropeanConference onComputer Vision, pages 127–142. Springer, 2014.

[KMH+17] Eric Kolve, RoozbehMottaghi, Winson Han, Eli VanderBilt, LucaWeihs,
Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali
Farhadi. AI2-THOR: an interactive 3D environment for visual AI. arXiv
preprint arXiv:1712.05474, 2017.

[KMT+16] WadimKehl, FaustoMilletari, Federico Tombari, Slobodan Ilic, and Nas-
sir Navab. Deep learning of local RGB-D patches for 3D object detec-
tion and 6D pose estimation. In European conference on computer vision,
pages 205–220. Springer, 2016.

[KMT+17] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan Ilic, and
Nassir Navab. SSD-6D: Making rgb-based 3D detection and 6D pose esti-
mation great again. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1521–1529, 2017.

[Kut00] Kiriakos N Kutulakos. Approximate N-view stereo. In European Confer-
ence on Computer Vision, pages 67–83. Springer, 2000.

[KW16] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[KWR+16] Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and
Wojciech Jaśkowski. ViZDoom: A doom-based ai research platform for
visual reinforcement learning. In 2016 IEEE Conference on Computa-
tional Intelligence and Games (CIG), pages 1–8. IEEE, 2016.

[KXD12] Alexander Kasper, Zhixing Xue, and Rüdiger Dillmann. The KIT object
models database: An object model database for object recognition, local-
ization and manipulation in service robotics. The International Journal
of Robotics Research, 31(8):927–934, 2012.

[KZ04] Vladimir Kolmogorov and Ramin Zabin. What energy functions can be
minimized via graph cuts? IEEE transactions on pattern analysis and
machine intelligence, 26(2):147–159, 2004.

[LAE+16] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C Berg. SSD: Single shot multi-
box detector. In European conference on computer vision, pages 21–37.
Springer, 2016.

[LH96] Marc Levoy and Pat Hanrahan. Light field rendering. In Proceedings of
the 23rd annual conference on Computer graphics and interactive tech-
niques, pages 31–42, 1996.

162 BIBLIOGRAPHY

[LK15] Maziar Loghman and Joohee Kim. Segmentation-based view synthe-
sis for multi-view video plus depth. Multimedia Tools and Applications,
74(5):1611–1625, 2015.

[LLF+16] Jing Liu, Chunpeng Li, Xuefeng Fan, Zhaoqi Wang, Min Shi, and Jie
Yang. View synthesis with 3D object segmentation-based asynchronous
blending and boundary misalignment rectification. The Visual Com-
puter, 32(6-8):989–999, 2016.

[LLS+17] Xiaodan Liang, Liang Lin, Xiaohui Shen, Jiashi Feng, Shuicheng Yan,
andEric PXing. Interpretable structure-evolving LSTM. InProceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages
1010–1019, 2017.

[LMNF09] Vincent Lepetit, FrancescMoreno-Noguer, and Pascal Fua. EPnP: An ac-
curate O (n) solution to the PnP problem. International journal of com-
puter vision, 81(2):155, 2009.

[Low04] David G Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004.

[LPK07] Patrick Labatut, Jean-Philippe Pons, and Renaud Keriven. Efficient
multi-view reconstruction of large-scale scenes using interest points, de-
launay triangulation and graph cuts. In 2007 IEEE 11th international
conference on computer vision, pages 1–8. IEEE, 2007.

[LPM15] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective
approaches to attention-based neuralmachine translation. arXiv preprint
arXiv:1508.04025, 2015.

[LRB+16] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari,
and Nassir Navab. Deeper depth prediction with fully convolutional
residual networks. In 2016 Fourth international conference on 3D vision
(3DV), pages 239–248. IEEE, 2016.

[LXX12] Shiqi Li, Chi Xu, andMing Xie. A robust O(n) solution to the perspective-
n-point problem. IEEE transactions on pattern analysis and machine in-
telligence, 34(7):1444–1450, 2012.

[LZS18] Shuai Li, Ce Zhu, and Ming-Ting Sun. Hole filling with multiple refer-
ence views in DIBR view synthesis. IEEE Transactions on Multimedia,
20(8):1948–1959, 2018.

[LZW+17] Jianjun Lei, Cuicui Zhang, Min Wu, Lei You, Kefeng Fan, and Chun-
ping Hou. A divide-and-conquer hole-filling method for handling dis-
occlusion in single-view rendering. Multimedia Tools and Applications,
76(6):7661–7676, 2017.

BIBLIOGRAPHY 163

[MAMT15] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. ORB-
SLAM: a versatile and accurate monocular SLAM system. IEEE transac-
tions on robotics, 31(5):1147–1163, 2015.

[MB95] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-
based rendering system. In Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques, pages 39–46, 1995.

[MB19] Patrick Mania and Michael Beetz. A framework for self-training percep-
tual agents in simulated photorealistic environments. In 2019 Interna-
tional Conference on Robotics and Automation (ICRA), pages 4396–4402.
IEEE, 2019.

[MFY+09] Yuji Mori, Norishige Fukushima, Tomohiro Yendo, Toshiaki Fujii, and
Masayuki Tanimoto. View generationwith 3Dwarping using depth infor-
mation for FTV. Signal Processing: Image Communication, 24(1-2):65–
72, 2009.

[MHN13] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlin-
earities improve neural network acoustic models. In in ICML Workshop
onDeep Learning for Audio, Speech and Language Processing, volume 30,
page 3, 2013.

[MHW+13] ZiyangMa, Kaiming He, YichenWei, Jian Sun, and EnhuaWu. Constant
time weighted median filtering for stereo matching and beyond. In Pro-
ceedings of the IEEE International Conference on Computer Vision, pages
49–56, 2013.

[MKB+17] FrankMichel, Alexander Kirillov, Eric Brachmann, Alexander Krull, Ste-
fan Gumhold, Bogdan Savchynskyy, and Carsten Rother. Global hypoth-
esis generation for 6D object pose estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 462–471,
2017.

[MLKN09] Raj Madhavan, Rolf Lakaemper, and Tamás Kalmár-Nagy. Benchmark-
ing and standardization of intelligent robotic systems. In 2009 Interna-
tional Conference on Advanced Robotics, pages 1–7. IEEE, 2009.

[MML+18] Jeffrey Mahler, Matthew Matl, Xinyu Liu, Albert Li, David Gealy, and
Ken Goldberg. Dex-Net 3.0: Computing robust vacuum suction grasp
targets in point clouds using a new analytic model and deep learning. In
2018 IEEE International Conference on Robotics andAutomation (ICRA),
pages 1–8. IEEE, 2018.

[Mor78] Jorge JMoré. The Levenberg-Marquardt algorithm: implementation and
theory. In Numerical analysis, pages 105–116. Springer, 1978.

164 BIBLIOGRAPHY

[MSOC+19a] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and Abhishek
Kar. Local light field fusion: Practical view synthesis with prescriptive
sampling guidelines. ACM Transactions on Graphics (TOG), 2019.

[MSOC+19b] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and Abhishek
Kar. Local light field fusion: Practical view synthesis with prescriptive
sampling guidelines. ACM Transactions on Graphics (TOG), 38(4):1–14,
2019.

[MST+20] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Bar-
ron, Ravi Ramamoorthi, and Ren Ng. NeRF: Representing scenes as neu-
ral radiance fields for view synthesis. arXiv preprint arXiv:2003.08934,
2020.

[NH03] Pauline C Ng and Steven Henikoff. SIFT: Predicting amino acid changes
that affect protein function. Nucleic acids research, 31(13):3812–3814,
2003.

[NH10] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international
conference on machine learning (ICML-10), pages 807–814, 2010.

[OCDD15] Rodrigo Ortiz-Cayon, Abdelaziz Djelouah, and George Drettakis. A
Bayesian approach for selective image-based rendering using superpix-
els. In International Conference on 3D Vision-3DV, 2015.

[PCS+15] François Pomerleau, Francis Colas, Roland Siegwart, et al. A review of
point cloud registration algorithms for mobile robotics. Foundations and
Trends® in Robotics, 4(1):1–104, 2015.

[PL15] Sudeep Pillai and John Leonard. Monocular slam supported object recog-
nition. arXiv preprint arXiv:1506.01732, 2015.

[QCG+09] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. ROS: an open-source
Robot Operating System. In ICRAworkshop on open source software, vol-
ume 3, page 5. Kobe, Japan, 2009.

[QSMG17] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. PointNet:
Deep learning on point sets for 3D classification and segmentation. In
Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 652–660, 2017.

BIBLIOGRAPHY 165

[QZZ+17] Weichao Qiu, Fangwei Zhong, Yi Zhang, Siyuan Qiao, Zihao Xiao,
Tae Soo Kim, and Yizhou Wang. UnrealCV: Virtual worlds for computer
vision. In Proceedings of the 25th ACM international conference on Mul-
timedia, pages 1221–1224, 2017.

[RC11] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library
(PCL). In IEEE International Conference on Robotics and Automation
(ICRA), Shanghai, China, May 9-13 2011.

[RDGF16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 779–
788, 2016.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, JonathanKrause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, et al. ImageNet large scale visual recognition challenge. Inter-
national journal of computer vision, 115(3):211–252, 2015.

[RHW86] David E Rumelhart, Geoffrey EHinton, and Ronald JWilliams. Learning
representations by back-propagating errors. nature, 323(6088):533–536,
1986.

[RL01] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the ICP al-
gorithm. In Proceedings Third International Conference on 3-D Digital
Imaging and Modeling, pages 145–152. IEEE, 2001.

[Rob16] Adam Roberts. The history of science fiction. Springer, 2016.

[ros] Understanding ROS nodes. http://wiki.ros.org/ROS/
Tutorials/UnderstandingNodes. Accessed: 2020-05-30.

[RPD08] Edward Rosten, Reid Porter, and Tom Drummond. Faster and better: A
machine learning approach to corner detection. IEEE transactions on
pattern analysis and machine intelligence, 32(1):105–119, 2008.

[RRKB11] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB:
An efficient alternative to SIFT or SURF. In 2011 International conference
on computer vision, pages 2564–2571. IEEE, 2011.

[RS10] Robert W Rydell and Laura Burd Schiavo. Designing Tomorrow: Amer-
ica’s World’s Fairs of the 1930s. Yale University Press, 2010.

[RSEG20] Christoph B Rista, David Schmidta, Markus Enzweilera, and Dariu M
Gavrilab. SCSSnet: Learning Spatially-Conditioned Scene Segmentation
on LiDAR Point Clouds. In Proc. of the Intelligent Vehicles Symposium
(Best Paper Award), 2020.

http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes

166 BIBLIOGRAPHY

[Rus10] Radu Bogdan Rusu. Semantic 3D object maps for everydaymanipulation
in human living environments. KI-Künstliche Intelligenz, 24(4):345–348,
2010.

[SA12] Mashhour Solh andGhassanAlRegib. Hierarchical hole-filling for depth-
based view synthesis in FTV and 3D video. IEEE Journal of Selected Top-
ics in Signal Processing, 6(5):495–504, 2012.

[SCD+17] Manolis Savva, Angel X Chang, Alexey Dosovitskiy, Thomas
Funkhouser, and Vladlen Koltun. MINOS: Multimodal indoor
simulator for navigation in complex environments. arXiv preprint
arXiv:1712.03931, 2017.

[SCK08] Heung-Yeung Shum, Shing-Chow Chan, and Sing Bing Kang. Image-
based rendering. Springer Science & Business Media, 2008.

[SDLK18] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. AirSim:
High-fidelity visual and physical simulation for autonomous vehicles. In
Field and service robotics, pages 621–635. Springer, 2018.

[SF16a] Johannes L Schonberger and Jan-Michael Frahm. Structure-from-
motion revisited. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4104–4113, 2016.

[SF16b] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-
motion revisited. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2016.

[SGHSK20] Caner Sahin, Guillermo Garcia-Hernando, Juil Sock, and Tae-Kyun Kim.
A review on object pose recovery: From 3D bounding box detectors to full
6D pose estimators. Image and Vision Computing, page 103898, 2020.

[SGT+08] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and GabrieleMonfardini. The graph neural networkmodel. IEEE Trans-
actions on Neural Networks, 20(1):61–80, 2008.

[SH99] Heung-Yeung Shum and Li-Wei He. Rendering with concentric mosaics.
In Proceedings of the 26th annual conference on Computer graphics and
interactive techniques, pages 299–306, 1999.

[SHKF12] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. In-
door segmentation and support inference from RGBD images. In Euro-
pean conference on computer vision, pages 746–760. Springer, 2012.

[shr] SHREC2020 - 3D Shape Retrieval Challenge 2020. http://www.
shrec.net/. Accessed: 2020-06-13.

http://www.shrec.net/
http://www.shrec.net/

BIBLIOGRAPHY 167

[SJ15] Michael Schmeing andXiaoyi Jiang. Faithful disocclusion filling in depth
image based rendering using superpixel-based inpainting. IEEE Trans-
actions on Multimedia, 17(12):2160–2173, 2015.

[SK00] Harry Shum and Sing Bing Kang. Review of image-based rendering tech-
niques. In Visual Communications and Image Processing 2000, volume
4067, pages 2–13. International Society for Optics and Photonics, 2000.

[SKM+19] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik
Wijmans, Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra
Malik, et al. Habitat: A platform for embodied ai research. In Proceedings
of the IEEE International Conference on Computer Vision, pages 9339–
9347, 2019.

[SMD+18] Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian Durner,
Manuel Brucker, and Rudolph Triebel. Implicit 3D orientation learning
for 6D object detection from rgb images. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 699–715, 2018.

[Sof] Software for view synthesis. Software for view synthesis.
http://www.fujii.nuee.nagoya-u.ac.jp/multiview-data/
mpeg2/VS.htm.

[SSN08] Ashutosh Saxena, Min Sun, and Andrew Y Ng. Make3D: Learning 3D
scene structure from a single still image. IEEE transactions on pattern
analysis and machine intelligence, 31(5):824–840, 2008.

[SSS09] Sudipta Sinha, Drew Steedly, and Rick Szeliski. Piecewise planar stereo
for image-based rendering. InProceedings of the International Conference
on Computer Vision (ICCV), pages 1881–1888, 2009.

[Ste99] Charles V Stewart. Robust parameter estimation in computer vision.
SIAM review, 41(3):513–537, 1999.

[SWS+17] Pratul P Srinivasan, Tongzhou Wang, Ashwin Sreelal, Ravi Ramamoor-
thi, and Ren Ng. Learning to synthesize a 4D RGBD light field from a
single image. In Proceedings of the IEEE International Conference on
Computer Vision, pages 2243–2251, 2017.

[SYZ+17] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and
Thomas Funkhouser. Semantic scene completion from a single depth
image. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1746–1754, 2017.

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014.

http://www.fujii.nuee.nagoya-u.ac.jp/ multiview-data/mpeg2/VS.htm
http://www.fujii.nuee.nagoya-u.ac.jp/ multiview-data/mpeg2/VS.htm

168 BIBLIOGRAPHY

[SZFP16] Johannes L Schönberger, Enliang Zheng, Jan-Michael Frahm, and Marc
Pollefeys. Pixelwise view selection for unstructuredmulti-view stereo. In
EuropeanConference onComputer Vision, pages 501–518. Springer, 2016.

[SZZJ17] Zhiqiang Sui, Zheming Zhou, Zhen Zeng, and Odest Chadwicke Jenk-
ins. SUM: Sequential scene understanding and manipulation. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3281–3288. IEEE, 2017.

[THo19] T.R. THoogenkamp. A simulation environment for robot depth and color
sensors. Master’s thesis, 2019.

[TMHF99] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W
Fitzgibbon. Bundle adjustment—a modern synthesis. In International
workshop on vision algorithms, pages 298–372. Springer, 1999.

[TSF18] Bugra Tekin, Sudipta N Sinha, and Pascal Fua. Real-time seamless single
shot 6D object pose prediction. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 292–301, 2018.

[UKA+11] Stefan Ulbrich, Daniel Kappler, Tamim Asfour, Nikolaus Vahrenkamp,
Alexander Bierbaum, Markus Przybylski, and Rüdiger Dillmann. The
OpenGRASP benchmarking suite: An environment for the comparative
analysis of grasping and dexterous manipulation. In 2011 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pages 1761–
1767. IEEE, 2011.

[UM20] Claudio Urrea and Rodrigo Matteoda. Development of a virtual reality
simulator for a strategy for coordinating cooperative manipulator robots
using cloud computing. Robotics and Autonomous Systems, 126:103447,
2020.

[VCC+17] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[VS18] Sai Vemprala and Srikanth Saripalli. Vision based collaborative path
planning for micro aerial vehicles. In 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 1–7. IEEE, 2018.

[WGSJ20] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin Johnson.
SYNSIN: End-to-end view synthesis from a single image. In Proceedings
of the IEEE/CVFConference onComputer Vision andPatternRecognition,
pages 7467–7477, 2020.

BIBLIOGRAPHY 169

[WOC+07] Jianxin Wu, Adebola Osuntogun, Tanzeem Choudhury, Matthai Phili-
pose, and James M Rehg. A scalable approach to activity recognition
based on object use. In 2007 IEEE 11th international conference on com-
puter vision, pages 1–8. IEEE, 2007.

[WRM+08] Daniel Wagner, Gerhard Reitmayr, Alessandro Mulloni, Tom Drum-
mond, and Dieter Schmalstieg. Pose tracking from natural features on
mobile phones. In 2008 7th IEEE/ACM International Symposium on
Mixed and Augmented Reality, pages 125–134. IEEE, 2008.

[WSH+19] HeWang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song,
and Leonidas J Guibas. Normalized object coordinate space for category-
level 6D object pose and size estimation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 2642–2651,
2019.

[WSL+19] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bron-
stein, and Justin M Solomon. Dynamic graph CNN for learning on point
clouds. ACM Transactions on Graphics (TOG), 38(5):1–12, 2019.

[WWGT18] Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian. Building gen-
eralizable agents with a realistic and rich 3D environment. arXiv preprint
arXiv:1801.02209, 2018.

[WXZ+19] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martín-Martín, Cewu Lu,
Li Fei-Fei, and Silvio Savarese. Densefusion: 6D object pose estimation
by iterative dense fusion. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3343–3352, 2019.

[WZW+17a] Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Raz-
van Pascanu, and Andrea Tacchetti. Visual interaction networks: Learn-
ing a physics simulator from video. In Advances in neural information
processing systems, pages 4539–4547, 2017.

[WZW+17b] Gaochang Wu, Mandan Zhao, Liangyong Wang, Qionghai Dai, Tianyou
Chai, and Yebin Liu. Light field reconstruction using deep convolutional
network on EPI. In Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 6319–6327, 2017.

[XCJ19] Zelin Xu, Ke Chen, and Kui Jia. W-PoseNet: Dense correspondence regu-
larized pixel pair pose regression. arXiv preprint arXiv:1912.11888, 2019.

[XSNF17] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox.
PoseCNN: A convolutional neural network for 6D object pose estimation
in cluttered scenes. arXiv preprint arXiv:1711.00199, 2017.

170 BIBLIOGRAPHY

[XZH+18] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and
Silvio Savarese. Gibson env: Real-world perception for embodied agents.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9068–9079, 2018.

[YMB+18] Claudia Yan, Dipendra Misra, Andrew Bennnett, Aaron Walsman,
Yonatan Bisk, and Yoav Artzi. Chalet: Cornell house agent learning en-
vironment. arXiv preprint arXiv:1801.07357, 2018.

[YSW+19] Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli, and Olga
Sorkine-Hornung. Differentiable surface splatting for point-based geom-
etry processing. ACMTransactions on Graphics (TOG), 38(6):1–14, 2019.

[YVA+20] Honglin Yuan, Remco C. Veltkamp, Georgios Albanis, Nikolaos Zioulis,
Dimitrios Zarpalas, and Petros Daras. SHREC 2020 Track: 6D Ob-
ject Pose Estimation. In Tobias Schreck, Theoharis Theoharis, Ioannis
Pratikakis, Michela Spagnuolo, and Remco C. Veltkamp, editors, Euro-
graphicsWorkshop on 3DObject Retrieval. The Eurographics Association,
2020.

[YYL+14] Jingyu Yang, Xinchen Ye, Kun Li, Chunping Hou, and Yao Wang. Color-
guided depth recovery fromRGB-D data using an adaptive autoregressive
model. IEEE transactions on image processing, 23(8):3443–3458, 2014.

[ZCZ+18] Jie Zhou, GanquCui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A
review of methods and applications. arXiv preprint arXiv:1812.08434,
2018.

[ZDdW10] Sveta Zinger, Luat Do, and PHN de With. Free-viewpoint depth image
based rendering. Journal of visual communication and image representa-
tion, 21(5-6):533–541, 2010.

[Zha94] Zhengyou Zhang. Iterative point matching for registration of free-form
curves and surfaces. International journal of computer vision, 13(2):119–
152, 1994.

[ZK07] C Lawrence Zitnick and Sing Bing Kang. Stereo for image-based render-
ing using image over-segmentation. International Journal of Computer
Vision, 75(1):49–65, 2007.

[ZKU+04] C Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele, Simon
Winder, and Richard Szeliski. High-quality video view interpolation us-
ing a layered representation. In ACM transactions on graphics (TOG),
volume 23, pages 600–608. ACM, 2004.

BIBLIOGRAPHY 171

[ZPQL04] Gang Zeng, Sylvain Paris, Long Quan, and Maxime Lhuillier. Surface
reconstruction by propagating 3D stereo data in multiple 2D images. In
EuropeanConference onComputer Vision, pages 163–174. Springer, 2004.

[ZTF+18] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah
Snavely. Stereomagnification: Learning view synthesis usingmultiplane
images. arXiv preprint arXiv:1805.09817, 2018.

[ZTXM19] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph con-
volutional networks: a comprehensive review. Computational Social Net-
works, 6(1):11, 2019.

	add_pages
	PhD
	Introduction
	Motivation and goals
	Context
	Contributions
	Structure
	Publications

	Background
	Image based rendering
	3D reconstruction
	Robot Operating System
	Deep learning

	Free-viewpoint image based rendering
	Introduction
	Related work
	Overview
	Free-viewpoint image based rendering
	Experimental results
	Conclusion and future work

	PreSim: A 3D photo-realistic environment simulator
	Introduction
	Related work
	Photo-realistic virtual environment
	Tasks
	Experimental results
	Conclusion and future work

	Sim-to-Real 6D object pose estimation dataset construction
	Introduction
	Related work
	The RobotP dataset
	Experimental results
	6D object pose estimation challenge
	Conclusion and future work

	 6D object pose estimation
	Introduction
	Related work
	Analysis of benchmarking approaches for 6D object pose estimation
	Object pose estimation with color/geometry attention fusion
	Conclusion and future work

	Conclusions and future work
	Reaching our goals
	Beyond our goals
	Concluding remarks

	Curriculum Vitae

