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A B S T R A C T

Visualization is a key element of analyzing, interpreting, and under-
standing phenomena described by multidimensional datasets. Many vi-
sualization methods exist for such datasets with strong variations in
their design and use as a function of the dimensionality of the involved
data. However, several challenges concerning the exploration and ex-
planation of multidimensional data via visualization remain open.

In this thesis, we explore these challenges with a focus on the visual-
ization of data by means of three-dimensional (3D) data representations.
We divide our contributions in this respect into two parts. First, we in-
vestigate the usage of visualizations of 3D shapes and low-dimensional
data represented by 3D scatterplots. We identify the choice of a suit-
able viewpoint as an important challenge for this type of exploration
and, in particular, the examination of such 3D representations by ro-
tating the viewed data along a �exibly-speci�ed 3D rotation axes. We
propose a novel technique for interactively specifying 3D rotation axes
that capture the local structure of the data. For this, we use the so-called
skeletons computed from the 2D silhouette of the visualized shape and
augment these with depth information. Our technique is easy to imple-
ment and computationally and visually scalable to large and complex
3D shapes. An evaluation study shows that our technique complements
well existing 3D rotation mechanisms such as the virtual trackball.

Our second contribution regards the visual exploration of high-
dimensional datasets depicted as scatterplots created by dimensional-
ity reduction (DR). We �rst identify explanation of the visual structures
present in such scatterplots to be a key challenge to their understanding.
We improve existing visual explanation techniques by methods that con-
sider the correlation and local dimensionality of the projected points,
and demonstrate how our approaches can bring added value in explain-
ing 2D DR scatterplots. Secondly, we study how 2D DR scatterplots, well
known in the visualization literature, compare with 3D DR scatterplots,
which have been far less explored. We present a quantitative study to
compare 2D and 3D DR scatterplots along a rich selection of datasets,
projection techniques, and quality metrics. We �nd that 3D projections
bring only limited added-value atop of the one provided by their 2D
counterparts, but they can show more structure than their 2D counter-
parts, and thus can stimulate users to further exploration.
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S A M E N VAT T I N G

Visualisatie is een sleutelelement voor het analyseren, interpreteren
en begrijpen van fenomena die beschreven worden door multidimen-
sionale dataverzamelingen. Veel visualisatiemethodes zijn bekend voor
dergelijke datasets met een grote variatie in hun ontwerp and gebruik in
verband met de dimensionaliteit van de te visualiseren gegevens. Niette-
min blijven verschillende uitdagingen voor de exploratie en uitleg van
multidimensionale gegevens via visualisatie nog steeds open.

Dit proefschrift bestudeert deze uitdagingen met een focus op de vi-
sualisatie van gegevens via driedimensionale (3D) representaties. Onze
bijdrage in deze richting kan gesplitst worden in twee delen. Eerst bestu-
deren wij het gebruik van visualisatie van 3D vormen en laagdimensio-
nale gegevens afgebeeld als scatterplots. Ons werk vindt dat het kiezen
van een geschikt kijkpunt een belangrijke uitdaging is voor dit type ex-
ploratie, vervolgd door het bestuderen van dergelijke 3D representatie
door middel van rotatie van de afgebeelde data rond een �exibel gespe-
ci�ceerde 3D rotatieas. We ontwikkelen een nieuwe techniek voor het
interactief speci�ceren van 3D rotatieassen die de locale datastructuur
gebruikt. Dit wordt gerealiseerd door middel van zogenaamde skeletten
die worden berekend uit de 2D silhouette van de gevisualiseerde vorm
en verder verrijkt met diepteinformatie. Onze techniek is makkelijk te
implementeren en ook computationeel en visueel schaalbaar tot grote
en complexe 3D vormen. Een evaluatiestudie laat zien dat onze techniek
een goede aanvulling is voor bestaande 3D rotatiemechanismen zoals
de virtuele trackball.

Onze tweede bijdrage betreft de visuele exploratie van hoogdimensio-
nale datasets afgebeeld als scatterplots gemaakt via dimensionaliteitsre-
ductie (DR). We laten eerst zien dat het uitleg van de visuele structuren
van deze scatterplots een hoofduitdaging is voor het begrijpen daarvan.
Wij verbeteren bestaande technieken voor visueel uitleg door het ge-
bruik van correlatie en locale dimensionaliteit van de geprojecteerde
datapunten en laten zien hoe onze verbeteringen toegevoegde waarde
brengen voor het uitleg van 2D DR scatterplots. Vervolgens bestuderen
wij hoe 2D DR scatterplots, reeds goed bekend in de visualisatielitera-
tuur, zich vergelijken met 3D DR scatterplots die veel minder bestudeerd
zijn. We presenteren een kwantitatieve studie die 2D met 3D DR scatter-

plots vergelijkt over een brede selectie van datasets, projectietechnieken
en kwaliteitsmetrieken. Onze bevindingen laten zien dat 3D projecties
beperkte toegevoegde waarde brengen boven wat de 2D projecties kun-
nen doen, maar, aan de andere kant, beelden meer structuur af dan 2D
projecties en dus gebruikers kunnen stimuleren tot verdere exploratie.
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1I N T R O D U C T I O N

Multidimensional data is increasingly more present in scienti�c re-
search and industrial practice. Such data can be seen as a set of observa-
tions (also called samples or measurements), each consisting of several
measured quantities (also called dimensions or variables or attributes).
The increase of quality and availability of sensing devices, simulation
systems, and storage solutions have led to the current context when ap-
plications generate so-called big data collections consisting of millions
of observations each having tens up to thousands of dimensions.

Visualization is a key element of any data analysis process and several
methods exist for multidimensional data visualization. At a high level,
regardless of the nature and type of the studied dataset, all these meth-
ods aim at the same goal: Provide e�cient and e�ective ways for stake-
holders interested in the problem domain from which the dataset has
emerged to study the respective dataset and �nd interesting patterns
in the data. To achieve this, visualization methods select various ways
to encode the dataset’s attributes into so-called visual variables, such as
position, size, color, transparency, or texture. Next, the stakeholders in-
volved in studying the visualization decode the patterns present in the
data by interpreting the visual patterns created by these visual variables.
During the exploration process, besides the above-mentioned data en-
coding choices of the visualization method, interaction is the second
key element of such visualization methods. Interaction allows users to
select which parts of the data to examine and how to parameterize the
data encoding or, more globally put, how to look at the data.

While present in virtually any visualization method, the two above-
mentioned key ingredients of visualization methods – data encoding
and interaction – di�er signi�cantly depending on the dimensionality
of the dataset at hand. We make a distinction between low-dimensional
and high-dimensional datasets, and their challenges for visualization,
as follows.

1.1 low-dimensional datasets

At one end of the spectrum we have low-dimensional datasets consist-
ing of a few, roughly two to four, dimensions. Unsurprisingly, most vi-
sualization methods for such datasets select spatial coordinates as the
main visual variables to map data to. Within such low-dimensional
datasets, we can further �nd a distinction between inherently spatial
datasets and abstract datasets, as follows.
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introduction

Inherently spatial datasets contain attributes which represent the
measurement of actual positions in the two-dimensional (2D) or three-
dimensional (3D) space. Examples hereof are 2D or 3D shapes mod-
eled by boundary representations (meshes) or volumetric representa-
tions. Such datasets emerge from many application domains such as
3D modeling or 3D scanning present in engineering or the media in-
dustry; numerical simulations of physical processes present in various
�elds of science; and volumetric acquisition techniques such as CT or
MRI scans used in medical science. For such inherently spatial datasets,
the data to visual variable mapping is straightforward and natural: The
spatial dimensions present in the dataset are directly mapped to the spa-
tial dimensions of the visualization. Additional attributes present in the
dataset can be mapped to visual variables beyond spatial ones, such as
color, texture, or transparency. Such inherently spatial datasets form the
topic of a separate sub�eld called scienti�c visualization or scivis (Telea,
2014b; Yu et al., 2010; Jackson et al., 2013).

Depending on the continuity properties of the underlying data, the
resulting visualization can depict compact shapes (such as in the case
of the aforementioned 3D surfaces acquired by modeling or scanning)
or discrete collections of points. The latter case leads to visualizations
typically known as point clouds (Liu et al., 2021; Yu et al., 2012) or scatter-
plots. Finally, an important interaction element for such visualizations
is allowing users to change the viewpoint to examine and explore these
inherently spatial 3D datasets from various angles.
Abstract datasets contain attributes which do not represent the mea-

surement of actual spatial positions. Rather, such attributes can come
from any physical or non-physical domain. Such datasets are most of-
ten represented as tabular collections of measurements performed on
a given population; table rows represent the individual samples taken
(also called observations or data points); table columns represent the dif-
ferent independent measurements (or variables) collected for each ob-
servation. Examples of such datasets are medical data collected on sets
of patients such as gathered by electronic patient dossiers; economi-
cal data gathering a number of indicators measured over a given set
of actors; or data gathered from the simulation or observation of astro-
nomical phenomena. For such datasets, the mapping from data to visual
variables is less straightforward than for their inherently spatial coun-
terparts: One has to decide which of the data dimensions get mapped to
the visual spatial variables (2D or 3D coordinates in the visualization)
and which data dimensions get mapped to other visual variables such
as color.

Visualization techniques aimed at abstract datasets are studied in the
context of the separate sub�eld of information visualization or info-

vis (Munzner, 2014; Yi et al., 2005). Typical visualizations for such low-
dimensional, abstract, datasets involve 2D or 3D scatterplots similar in
construction to those used to visualize inherently spatial datasets. Also,
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1.2 high-dimensional datasets

similar to the inherently spatial case, interaction is a key element that
allows users to examine such scatterplots from di�erent angles, thereby
helping tasks such as �nding data clusters, outlier samples, or correla-
tions between the mapped dimensions.

1.2 high-dimensional datasets

At the other end of the spectrum concerning data dimensionality, we
have so-called high-dimensional datasets. While no universally ac-
cepted formal distinction between low and high dimensional datasets
exists, a practical and useful characterization considers datasets to be
high-dimensional from the moment when there are not su�cient in-
dependent visual variables, such as position, size, color, and the other
ones mentioned earlier in this chapter, to encode all the data dimen-
sions. Following this de�nition, datasets having more than roughly 5
to 10 dimensions are regarded as high-dimensional. To visualize such
datasets, speci�c methods have been developed in the sub�eld of info-
vis. Well-known examples of such high-dimensional data visualization
methods include scatterplot matrices (Yates et al., 2014), parallel coordi-
nate plots (Inselberg and Dimsdale, 1990), and table lenses (Telea, 2006).

Dimensionality reduction (DR) methods, also known as embeddings
or projections, are a special class of methods for visualizing multidimen-
sional data ( Nonato and Aupetit (2018); Espadoto et al. (2019)). Com-
pared to other methods for the same task, such as scatterplot matrices
or parallel coordinate plots, DR methods have a signi�cant data scala-

bility advantage, as they are able to depict datasets having hundreds of
thousands of samples, each with hundreds of dimensions or more. DR
methods use the scatterplot visualization metaphor: Every data point
is mapped to a 2D or 3D visual point, regardless of the number of di-
mensions. Next, similar to the usage of scatterplots for low-dimensional
data, users examine the resulting scatterplots to �nd clusters of samples,
outliers, or other interesting patterns to the problem at hand.

1.3 the exploration challenge

In the previous sections, we have introduced several types of visual-
ization techniques for low-dimensional, respectively high-dimensional
data. While such methods are very di�erent, we believe that their main
challenge is to enable an easy understanding of the depicted data. In
turn, this requires that such methods provide suitable techniques for
the user to explore the depicted data to reach the desired understand-
ing.

The exploration mechanisms proposed by low-dimensional and high-
dimensional visualizations have been extensively studied in separation
within the scivis and infovis domains. However, relatively little work
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introduction

aims to compare and contrast such mechanisms. We aim to take a step in
this direction and compare – and, to a certain extent, contribute to solv-
ing – the challenges faced by low-dimensional and high-dimensional
visualizations. Since this is a huge endeavor, we will need to scope the
research question next, as follows.

We proceed for this by �rstly choosing visualization metaphors to
study. For low-dimensional datasets, we consider both 3D meshes and
3D point clouds visualized by scatterplots, such as present in scivis.
For high-dimensional datasets, we consider DR techniques since, as ex-
plained earlier, these are some of the most scalable approaches to vi-
sualizing high-dimensional data. Moreover, DR techniques also use the
scatterplot metaphor that is used to depict 3D point clouds. This lim-
its the variety of the studied techniques, on the one hand, but makes
comparing and contrasting between techniques easier.

With these preliminaries, we can now state our main research
question:

How can we improve the exploration and understanding of 3D point-based

visualizations encoding various types of low- and high-dimensional data?

1.4 structure of this thesis

The work we conducted next to answer this question can be divided
into two main parts, as follows.

In part 1 of the thesis (Chapters 3 and 4), we examine the exploration
and understanding of low-dimensional datasets – speci�cally, 3D
meshes and 3D point clouds. Since this data is quite low-dimensional
and, in the particular case of 3D meshes, it comes from the sampling of
actual shapes, we conjecture that the understanding problem is largely
reduced to an exploration problem. Moreover, the exploration problem,
for such visualizations and datasets, mainly regards the choice of a
suitable viewpoint to examine the data shown by the 3D visualization.
As such, for these datasets, we re�ne the global research question
stated above to the following:

RQ1: How can we e�ciently and e�ectively specify good viewpoints for

the visual exploration of 3D meshes and point clouds?

We next address this research sub-question as follows. In Chapter 3,
we present a mechanism for specifying 3D rotations around a wide va-
riety of axes used in the visualization design space. In contrast to other
existing techniques that aim to help users to specify such rotations by
varying several axis parameters, we de�ne the rotation axes based on
the visible silhouette of the visualized shapes. This e�ectively allows
users to grab the visualized shape at any desired point and rotate it, with
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1.4 structure of this thesis

a desired angle and/or rotation speed, around the local axis of symme-
try implied by the shape around the selected point. We e�ciently and
e�ectively compute such local rotation axes by leveraging the summa-
rization power of 2D binary-image medial descriptors or skeletons. We
extend these 2D skeletons with depth information to provide approxi-
mations of the abovementioned 3D local rotation axes. Our proposed
technique allows one to specify such complex 3D rotations, we argue,
far more easily than existing techniques, by simple point, click, and drag
gestures.

As with any method aimed to help users to perform a task more e�ec-
tively and/or more e�ciently, our rotation speci�cation method needs
to be evaluated in a practical setting and against other methods for the
same task. To address this, Chapter 4 presents a user study that we orga-
nized to compare our proposed skeleton-based 3D rotation speci�cation
mechanism with its arguably best-known, and most-used, counterpart –
the virtual trackball rotation speci�cation mechanism. Our study shows
that the two techniques – skeleton-based rotation and trackball rotation
– are complementary and have their own advantages and limitations de-
pending on the type of rotation one wants to execute and the type of
shape being examined. This concludes the �rst part of the thesis.

In part 2 of the thesis (Chapters 5 and 6), we examine the exploration
and understanding of 3D scatterplot-based visualizations of high dimen-
sional data using DR methods. Technically, DR methods create point
clouds that are identical to those created from 2D or 3D scatterplots,
i.e., contain a set of 2D or 3D point locations. However, interpreting
point clouds created by projections is far more complicated, since the
axes, or spatial dimensions, of the visualization space do not have a
direct meaning in terms of data dimensions. As such, the research
question that pertains to such visualizations is a joint explanation and
exploration one. In other words, before one can actually explore a DR
projection, one needs to understand what the overall visual patterns
that such a projection shows actually mean in terms of data dimensions.
This aspect is not only relevant to 3D projections (represented by a 3D
point cloud) but also to the more common 2D projections (represented
by a 2D point cloud). As such, we re�ne our general research question
for such visualizations to the following:

RQ2: How can we explain and explore 2D and 3D scatterplots created by

dimensionality reduction techniques?

We next address this research sub-question as follows. In Chapter 5,
we start with the arguably simpler case of 2D projections, which do not
have the additional challenge of choosing a suitable viewpoint for ex-
amination. We address the explanation of these projections by develop-
ing several so-called local explanation techniques which label neighbor
points in the projection by their shared data-related characteristics. The
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resulting visualizations e�ectively split the projection point cloud into
a number of di�erently colored and shaded zones, where each zone can
be e�ectively explained in terms of the original data dimensions. We
show how our additional explanation mechanisms complement exist-
ing explanation mechanisms and lead to a better understanding of data
represented by such 2D projections.

In Chapter 6, we move to consider the more complex 3D projections
and address the exploration part of our research sub-question. We an-
swer this question by comparing the data-encoding abilities of 2D pro-
jections to those of 3D projections for a number of projection tech-
niques and datasets. Our study shows that, as gauged by existing quality
metrics in the projection literature, 3D projections have a measurable
advantage in terms of preserving the structure of the underlying data.
However, they also introduce the added complexity of choosing suit-
able viewpoints to examine them from. To study this aspect, we quali-
tatively compare the same number of 3D projection techniques run on
the selected datasets with the resulting projections being annotated by
the visual explanations presented in Chapter 5. This qualitative study
shows that there are marked di�erences in what one can see, in terms
of visual patterns explained by our techniques, between di�erent pro-
jection techniques. Additionally, our study shows that users also attach
a given preference to certain projection techniques depending on the
ease of deducing insightful patterns from their visual explanations.

Finally, Chapter 7 summarizes our work and obtained �ndings regard-
ing the original research question and also outlines potential directions
for future work.
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2R E L AT E D W O R K

The main topic of this thesis concerns exploring complex multidimen-
sional data by means of visualization. While these data can be of dif-
ferent nature, all ultimately lead to a visual representation that has to
be used to provide explanations. As such, the nature of this visualiza-
tion determines, to a large extent, how the subsequent explanations will
work, and which will be the main challenges that its design will have
to overcome.

As outlined in Chapter 1, our main research question concerns the
design of techniques to improve the exploration and understanding
of 3D point-based visualizations of both low-dimensional and high-
dimensional data. We have given a concise, and necessarily limited, out-
line of what the elements of this research question imply in the previous
chapter. However, �ner points still remain to be detailed. In this chap-
ter, we aim to provide all the necessary background to understand both
the exact implications of our stated research question and the extent
to which various research works in visualization have addressed these
implications.

2.1 visualization model

Before we can discuss the challenges of a data visualization application,
we have to de�ne more formally how such an application operates and,
in the process, also introduce other relevant notations that help us posi-
tion our research scope. Note that, in this process, we will have to make
some necessary simpli�cations to limit the extent of the discussion to
aspects which are directly relevant to our research.

We begin by de�ning the notion of a dataset. Let xi ∈ Rn be a
so-called sample (also called data point or observation) of some phe-
nomenon. We call this a multidimensional sample with dimensionality
n ∈ N. As such, the sample can be expressed as a tuple xi = (x1i , . . . ,x

n
i ),

with x ji ∈ R, 1 ≤ j ≤ n. The values x ji are called the dimensions of the
sample (also known as variables or attributes). With this notation, let
D = {xi } ⊂ Rn be a collection of such samples. We call D a dataset of
n-dimensional samples. The assumption is that all samples in a dataset
D are obtained, by actual measurement or simulation, from the same
phenomenon. Hence,D describes a sampling of such an underlying phe-
nomenon. Note that samples, and hence datasets, can in general take val-
ues which are not real numbers, e.g., ordinal, categorical, or relational.
Although our work can – with suitable modi�cations – also target such
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related work

more general cases, we will, for simplicity, not concern ourselves with
such datasets.

A visualization technique for a class of datasets can be seen as a func-
tion, or mapping, from all possible sets D whose elements are datasets
of the type D, to a visual representation. For a given dataset D, we can
describe its visualization V (D) = I as yielding a color image I that en-
codes the information in D. Good visualization techniques need to obey
a number of properties (Telea, 2014b). Brie�y put, the key to these prop-
erties is that the user of the visualization has to be able to mentally
invert the functionV by inferring properties of D from the imageV (D).
In general, an exact mathematical inverse of the function V does not
and cannot exist, given both the limits of the users’ perception and var-
ious design decisions of V itself which lose information from D when
creating V (D). As such, in practice, a good visualization has to allow
users to reasonably well quantify a subset of properties of D from its vi-
sualizationV (D). Figure 2.1 illustrates both the direct mapping (from D
to V (D)) and the inverse mapping, performed by the visualization user.

Figure 2.1: Visualization pipeline and the concept of inverse mapping. Image
taken from Telea (2014b).

Discussing visualization methods V at the above generality level is
hard since there is no explicit relationship between the data samples xi
of D and the produced image V (D). However, there exists a subclass of
visualizations where V can be characterized in more detail. These vi-
sualizations independently map the individual samples xi via the func-
tion V to individual, recognizable, visual elements V (xi ) ∈ Rd . Here, d
represents the number of so-called visual variables that V uses to en-
code (some of) the data dimensions of xi . Examples of these visual vari-
ables are position (of the visual elementV (xi ) in the visualization), color,
transparency, size, orientation, and texture. As such, the visualization
of a dataset is the (visual) union of the visualizations of its samples, or
V (D) = ∪xi ∈DV (xi ). Many examples of such visualizations exist. In our
work, we will study two main examples of such sample-based visualiza-
tions, namely scatterplots, which map a data point xi ∈ D to a 2D or 3D
visual pointV (xi ) ∈ Rd , d ∈ {2, 3}, and surfaces, which map a local sur-
face element (splat or polygon) xi ∈ D to the 3D shaded representation
thereofV (xi ) ∈ R3. In general, the dimensionality d of the visual space
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2.2 types of data in visualization applications

is limited to about 8 visual variables. De�ning more visual variables is
technically possible but will cause serious confusions, or interference,
when performing the inverse mapping outlined above. In contrast, the
data dimensionality n is not limited.

2.2 types of data in visualization applications

The previous section has shown that the visualization pipeline, or
function V , can be described by a mapping between the data space
(a subset of Rn ) and the visual space (a subset of Rd , where d is
upper bounded by perception). As n can be equal, higher, or much
higher than d , designing suitable visualization techniques V incurs
di�erent challenges. We will thus classify and discuss such challenges
as a function of the dimensionality n of the input data (since the
dimensionality d of the visual space is limited, as explained above). In
this sense, we see two main cases, as follows.

Low-dimensional data. This situation describes datasets whose di-
mensionality n is below or equal to the visual dimensionality d . That
is, every data dimension can be mapped to a di�erent visual dimension.
The key advantage of this situation is that decoding the visual dimen-
sions, i.e., going from the visualization back to the data properties, can
be done relatively easily – each data dimension is, after all, re�ected in
a di�erent visual stimulus.

Within this class of datasets, visualization techniques typically make
a subsequent distinction between spatial data and non-spatial data.
Given that this distinction is important in visualization literature and
practice, we will next discuss it and, more importantly, we will discuss
why we believe this distinction is not crucial to our own research ques-
tion.
Spatial data refers to data which is, by its nature, measured (sampled)

at locations in 2D or 3D, such as scalar or vector �elds, images, CT or
MRI volumes, and scanned or computer-generated geometric shapes.
Given this property, the data samples xi can be directly mapped, one-to-
one, to visual locations in the visualization. As such, one literally ‘sees’
the structure of the data in the visualization. Additional data attributes
(beyond the sample locations, that is, e.g., pressure and velocity in a
�uid �ow simulation or tissue density in a CT scan) can be mapped
to visual variables beyond position such as color, size, or transparency.
Visualization techniques for spatial data fall into the realm of scienti�c
visualization or scivis.

Still, this does not mean that explaining or exploring such data is
trivial. In the particular case of 3D data depicted by a 3D visual repre-
sentation, a simple to explain but not simple to solve problem is where
from to look at the data. Choosing good viewpoints is important espe-
cially in the case of complex datasets, e.g., complex shapes with intri-
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cate structure. No single viewpoint can, in general, su�ce since views
of such datasets inherently su�er from self occlusion due to their com-
plex structure. As such, choosing suitable viewpoints is important. We
discuss this further in Sec. 2.4.
Non-spatial (abstract) data refers to data which is, by its nature, not

de�ned as the sampling of a phenomenon naturally living in 2D or 3D.
However, by the very de�nition of visualization, the visual representa-
tions of such data have to live in 2D or 3D to be visible and visually
explorable. For the low-dimensional case (n ≤ d), such datasets are typ-
ically tables of d dimensions, where each column is the sampling of a
dimension and each row a separate sample xi , respectively. The nature
of the dimensions (columns) need not to be directly spatial, such as e.g. if
one considers a table where rows (samples) are persons from an opinion
poll and columns capture the subjects’ age, salary, and voting intentions.
Such low-dimensional datasets can be visualized by directly mapping
their n data attributes to 2D or 3D coordinates, plus several other visual
variables such as size, color, or annotations. Probably the best-known
example of this type of visualization is the bubble chart which general-
izes classical scatterplots (which encode two or three data dimensions
in spatial dimensions) by using the size, color, and transparency of the
visual shapes used to depict the data points. Visualization techniques
for non-spatial data fall into the realm of information visualization or
infovis.

Such low-dimensional abstract data visualizations share many
commonalities with the low-dimensional visualizations for spatial data.
Most importantly, every data dimension is mapped to a separate visual
dimension, hence the decoding (inverse mapping) of the visualization
is relatively straightforward. In other words, one can directly assign
meaning to the visual axes of the visualization – each such axis encodes
one of the data dimensions. For 3D visualizations, however, the same
main challenge exists here as for spatial data, namely picking a good
viewpoint (or viewpoints) to understand the data structure. Note that
this viewpoint-picking challenge is relatively higher for non-spatial
data visualizations. Indeed, while visualizing spatial data shows some
arguably familiar shapes to the user (such as a 3D scan or brain
CT surface) that can be understood by the professional user from
few viewpoints, visualizing non-spatial data shows a more abstract
scatterplot whose patterns are, in general, harder to understand.

High-dimensional data. Apart from the above, one has data which
consists of a higher number of dimensions n than d . When the number
of dimensions is (signi�cantly) larger, or n � d , the individual data di-
mensions cannot be any more mapped to individual visual variables –
there simply are not enough distinct visual variables for that. A well
known solution for this is to use techniques that reduce the data dimen-
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sions to visual dimensions in such a way that important properties of
the data are preserved by the visualization.

There are many techniques in the information visualization domain
that address such high-dimensional data. At a general level, all such
techniques have to perform a data reduction to �t all the n data dimen-
sions into the available d visual variables. We outline below a few well-
known such techniques with the focus on the one that we choose to
explore in our work next.

Table lens techniques (Telea, 2006) essentially overload the visual spa-
tial dimensions in d to show multiple data dimensions in n. Simply put,
table lenses plot a dataset D as a matrix where each row is a sample
xi and each column is a dimension in n, respectively. The values x ji
of the samples’ dimensions are encoded by table cell visual attributes
such as color or transparency. An important added value of table lens
techniques is their ability to aggregate multiple samples xi and display
them minimally, e.g., as a single row of colored pixels. Interaction mech-
anisms next allow the user to specify which samples of a dataset D can
be aggregated. This e�ectively handles the problem of datasets D hav-
ing many samples. Still, each of the n dimensions needs its own visual
space (table column) to be displayed.

Scatterplot matrices (Becker et al., 1996) also overload the spatial
dimensions in d , but in a di�erent way. They use a so-called small-
multiple design to show N 2D scatterplots of pairs of dimensions
(x i ,x j ), 1 ≤ i ≤ n, 1 ≤ j ≤ n, of the dataset D. Scatterplot matrices
scale well to the number of samples in D but quite poorly (quadrati-
cally) to the number of data dimensionsn. Moreover, relatively involved
interaction is needed to show which points of interest in a scatterplot
correspond to points in all of the other scatterplots in the matrix.

Parallel coordinate plots (Inselberg and Dimsdale, 1990) also overload
the spatial dimensions ind . Every dimension inn gets a separate axis, or
coordinate, to plot its samples. A sample xi is then recognized visually
as a polyline that connects its di�erent values x ji among all the n axes.
Parallel coordinate plots scale similarly to table lenses in the number
of data dimensions n but better in the number of data samples. How-
ever, the latter scaling creates overplotting, that is, multiple polylines
corresponding to multiple samples overlap in the same visual space.

Dimensionality reduction (DR) methods (Espadoto et al., 2019) take a
quite di�erent approach to map the n data dimensions to the d visual
variables. Simply put, DR methods create a low-dimensional (typically,
2D or 3D) scatterplot in which every pointV (xi ) is the result of mapping
a data point xi . Key to their working is that they aim to set the visual dis-
tance between scatterplot points ‖V (xi ) −V (xj )‖ to re�ect as closely as
possible the distance between the corresponding data points ‖xi − xj ‖.
Various heuristics are used for this so-called ‘preservation of the data
structure’, as re�ected by many DR methods such as PCA (Jolli�e, 2002),
t-SNE (van der Maaten and Hinton, 2008), or UMAP (McInnes et al.,
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2018), to mention only the best known ones. Dimensionality reduction
is by de�nition an ill-posed problem as it is, in general, not possible to
preserve all above-mentioned pairwise distances between data points
in the distances between their visual counterparts. As such, many DR
methods have been created which aim to preserve various aspects of
the so-called higher-level ‘data structure’ in the visualization. Elaborate
studies on the relative success of such methods to preserve such data
structure, according to various quality metrics, are present in the DR
literature (Espadoto et al., 2019; Nonato and Aupetit, 2018; Kehrer and
Hauser, 2013; Cunningham and Ghahramani, 2015; Sorzano et al., 2014).
On the other hand, DR methods are far more scalable than other meth-
ods for visualizing high-dimensional data such as scatterplot matrices,
table lenses, or parallel coordinate plots. Indeed, in any DR method, any
number of data dimensions n is ‘collapsed’ to the available two or three
visual spatial dimensions given by a 2D, respectively 3D, scatterplot.
Additionally, every sample xi in a DR plot is mapped to a single point
(in the limit, pixel) in the visualization. This strongly contrasts the sig-
ni�cantly larger visual space needed by other methods to map such a
sample – a horizontal pixel row for table lenses; n2/2 points in the re-
spective pairwise 2D scatterplots for scatterplot matrices; and an entire
polyline for parallel coordinate plots.

Apart from using the position visual variables to encode data dimen-
sions, DR methods can naturally use other visual variables (color, point
size, texture) to encode additional data dimensions. In this sense, DR
methods are quite similar to the 2D or 3D scatterplots discussed above
for low-dimensional non-spatial data. However, there is a major di�er-
ence between scatterplots created from low-dimensional data and those
created by DR methods: The former, as explained earlier, explicitly en-
code one of the n data dimensions in a visual spatial dimension in the
d-dimensional visual space. DR methods, as they have to handle many
more data dimensions, encode sets of these dimensions in the visual spa-
tial dimensions in the d dimensional visual space. As such, interpreting
a DR scatterplot is far harder than interpreting a ‘classical’ scatterplot
for low-dimensional data: For the DR case, the visual spatial dimensions
cannot be directly mapped to data dimensions. To give arguably the sim-
plest example, the x and y visual spatial dimensions of a 2D PCA scat-
terplot encode, each, linear combinations of all the n data dimensions
that the projection has worked on.

As such, the task of explaining DR plots gains strong signi�cance
since, without suitable explanations, the user cannot readily interpret
the visual patterns such a plot presents. Many methods exist for such
DR explanatory tasks. Recently, local techniques have been proposed
to annotate groups of close points in the projection by the identity of
the data dimension in the n ones that makes such points similar. We
discuss this class of techniques, which we choose to further explore
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and improve, as well as other explanatory techniques for DR plots in
Sec. 2.6.

2.3 scope of investigations

Summarizing the above review of item-based visualization methods for
both low-dimensional and high-dimensional data, we draw the follow-
ing general conclusions:

• A main challenge for low-dimensional data visualizations,
whether of spatial or non-spatial data, is to choose good view-

points to examine the respective visual mappings. This challenge
is most important for 3D visualizations which allow multiple
viewpoints for their exploration.

• Visualizations of high-dimensional datasets is arguably best
served, in terms of visual scalability, by dimensionality reduction
(DR) methods.

• A main challenge for high-dimensional data visualizations, which
are typically by their nature handling non-spatial data, is to ex-

plain what the visual patterns shown in a projection mean.

• The challenge of choosing a good viewpoint to explore a visual-
ization is quite similar for visualizations of low-dimensional data
and high-dimensional data (that is, choosing a good viewpoint is
hard for both situations, as long as both visualizations use a 3D
scatterplot metaphor).

We next discuss existing methods to address these speci�c challenges
– that is, choosing a good viewpoint for exploring 3D scatterplots of data
and explaining 3D scatterplots of data created by DR methods.

2.4 exploring by changing the viewpoint

In order to choose good viewpoints for visualizations of spatial data or
low-dimensional abstract data, one has to essentially control all param-
eters that specify such a viewpoint. Formally put, a 3D viewpoint can be
de�ned as a tuple V = (x, v, u,P) consisting of a point x ∈ R3 where the
viewer is located; a view direction v ∈ R3; a so-called up vector u ∈ R3

contained in the view (or projection) plane and indicating the vertical
direction in that plane; and a projection function P , typically set to per-
spective projection or orthographic projection (Marschner and Shirley,
2021). The speci�cation of P is typically done by using control keys,
given that, in most cases, this involves a choice from a prede�ned set of
projections. As such, the challenge of interaction concentrates mainly
in specifying x, v, and u.
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In general, fully specifying all components of x, v, and u is complex to
be done interactively and not needed for exploring a 3D shape or scene.
As such, typical interaction techniques restrict themselves to specify-
ing a constrained subset of the space in which these three vectors can
vary. Moreover, one can note that this speci�cation amounts to giving a
transformation from the canonical 3D coordinate system (in which the
3D shape to be explored is de�ned) and the coordinate system de�ned
by the vectors (v, u, v×u) and having as origin the point x. In turn, such
a transformation can be de�ned as the composition of a translation T
and a rotation R.

Figure 2.2: Virtual trackball rotation (a) and rotation around the world coordi-
nate axes (b). Left image taken from Henriksen et al. (2004b). Right
image taken from NASA (2022).

Specifying the rotation componentR is signi�cantly harder than spec-
ifying the translation T , given that R has in general 7 degrees of free-
dom while T has only 3 degrees of freedom1. Two main 3D rotation
types exist – a rotation around a center and rotation around an axis –
at least, if we are to stay concerned with how users employ existing
rotation-speci�cation mechanisms, leaving away the technicalities of
how rotation is actually implemented.

Both rotation types are important for exploration tasks, e.g., when
examining a 3D shape from multiple viewpoints. Rotations around a
center can be easily speci�ed via classical (mouse-and-keyboard) or
touch interfaces by well-known metaphors such as the virtual trackball
(Fig. 2.2a) as described by Chen et al. (1998) and Jackson et al. (2013).

1 From a formal viewpoint, one can specify a line using fewer than 7 degrees of freedom.
Minimally put, a line direction in 3D is a 3D vector which requires only 3 degrees of
freedom, with the rotation along that vector being a fourth degree of freedom. Yet, in
practice, specifying such minimal information is cumbersome and non-intuitive for the
typical user. Existing tools allow a 3D line-and-rotation-along speci�cation mainly by
specifying two 3D points and a rotation, which amounts to 7 degrees of freedom.
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Virtual trackball mechanisms e�ectively simulate the so-called ‘shape
in hand’ metaphor where the user looks at a shape held in hand from
multiple viewpoints. In line with what we stated above, trackball rota-
tion mechanisms can be thought of using a rotation axis; however, for
all practical purposes, users are not exposed to this, and as such, we can
claim that, from an user perspective, the actual location (and depiction
and speci�cation) of an exact rotation axis is irrelevant to the trackball
mechanism.

Rotations around an axis are also simple to specify if the rotation axis
coincides with one of the world-coordinate axes (Fig. 2.2b) as described
by Du�n and Barrett (1994). In contrast, rotations about arbitrary 3D
axes are signi�cantly more complex to specify since these involve the
full 7 degrees of freedom (six degrees to specify the 3D rotation axis
and an additional degree specifying the rotation angle around this axis).
To picture such a situation, one can imagine that the rocket shape in
Fig. 2.2b) were de�ned in a di�erent world coordinate system than the
one shown in that �gure and one would still want to rotate the shape
around its main symmetry axis.

We further discuss interactive mechanisms for specifying 3D rota-
tions for viewpoint manipulation purposes, including their advantages
and limitations, in the context of our own work in this area in Sec. 3.2.

2.5 exploring by reducing dimensionality

As discussed earlier in Sec. 2.2, when the number of data dimensions n
exceed the number of available visual variables d , one needs to some-
how reduce the information captured by the n dimensions to the dis-
playable ‘bandwidth’ of the d visual variables. As also outlined there,
dimensionality reduction (DR) methods, also known as projections, are
a particularly successful class of techniques for this task, as they are
able to handle datasets having both very large number of samples and
dimensions. Figure 2.3 illustrates a typical use of 2D projections to ex-
plore a high-dimensional dataset, FashionMNIST (Xiao et al., 2017), con-
sisting of 10K samples, where each sample is a 28 × 28 grayscale im-
age of a fashion item (so the dataset has a dimensionality d = 784).
Each sample (image) is depicted as a point and colored by the class
of the respective sample (out of a total of 10 classes). The left image
(Fig. 2.3a) shows the dataset’s projection using the by now famous t-
SNE (van der Maaten and Hinton, 2008) projection technique. The right
image (Fig. 2.3b) shows the same dataset projected with a sparse vari-
ant of one of the earliest DR techniques, Principal Component Analysis
(PCA) (Zou et al., 2006). As visible from the �gure, the t-SNE projection
shows clusters of similar-colored points, i.e., conveys the insight that
similar-looking images in the dataset are of the same type (class). PCA
shows a similar insight but the visual separation of same-color clusters
is far less pronounced.
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a) projected with T-SNE b) projected with PCA

Figure 2.3: FashionMNIST (Xiao et al., 2017) dataset projected by (a) t-SNE and
(b) PCA dimensionality-reduction techniques.

Since Principal Component Analysis (PCA) was �rst proposed, tens
of di�erent projection techniques have been developed, o�ering many
options to data scientists, but also the added challenge in choosing a
suitable technique for their goals (Nonato and Aupetit, 2018). Choosing
a suitable projection technique for a given context (application, task,
or dataset) is critical since, even for the same dataset, di�erent tech-
niques yield di�erent visualizations, thus leading to potentially di�erent
insights and courses of action in the underlying problem solving. This is-
sue, well recognized in the infovis and Machine Learning (ML) commu-
nities, has been mainly addressed by surveys that compare projection
techniques from various perspectives. Sorzano et al. (2014) discussed 30
such techniques with a focus on optimization heuristics and cost func-
tions used by the underlying projection algorithms. Heulot et al. (2017)
proposed a taxonomy of the types of errors generated by projection
techniques. Kehrer and Hauser (2013) proposed a di�erent taxonomy
to capture the tasks that DR addressed. Nonato and Aupetit (2018) sur-
veyed the use of 28 projections in visual analytics (VA) tasks, and cat-
egorized these based on the type of errors that they produce and their
e�ect on the performed tasks, thereby extending insights from Heulot
et al. (2017) and Kehrer and Hauser (2013). More recently, Espadoto et al.
(2019) presented the most comprehensive, to our knowledge, quantita-
tive evaluation of projections, which included 44 techniques evaluated
against 7 quality metrics over 18 datasets.

However, most of the above surveys consider only 2D projections,
i.e., projections that create a scatterplot V (D) ⊂ R2. 3D projections,
which create a scatterplot V (D) ⊂ R3, are discussed only rarely. There
are several reasons for this. First, surveys that consider the taxonomy
of projection algorithms or tasks supported by projections arguably do
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not have to make a distinction between 2D projections and 3D projec-
tions, since (a) the vast majority of projection algorithms operate simi-
larly (if not identically) whether their target space is R2 or R3; and (b)
typical tasks that projections address, such as the identi�cation of com-
pact clusters of sample points, correlation of these clusters with data
labels, or �nding outlier points, should be supported by both 2D and
3D projections. Secondly, 2D projections are far more present in actual
application scenarios, as they are (a) easier to use (they do not require
complex mechanisms for choosing viewpoints in 3D), (b) easier to com-
municate about (one can easily include snapshots of 2D projections in a
website or paper since there are no viewpoints to choose from), and (c)
easier to interpret (there is no depth component of the resulting image
to reason about). Several authors also argue that 2D projections pose
fewer interpretation and exploration challenges than their 3D counter-
parts (Newby, 2002; Westerman et al., 2005; Sedlmair et al., 2013).

However, 3D projections also arguably o�er advantages in compar-
ison to their 2D counterparts. First and foremost, reducing the n data
dimensions to d = 3 visual dimensions is a smaller ‘drop’ in dimension-
ality than when going from the same n tod = 2. As such, 3D projections
should be able to better preserve data patterns, a fact veri�ed empiri-
cally by Coimbra et al. (2016) and separately by Poco et al. (2011) on a
few datasets and projection techniques. Figure 2.4, taken from Coimbra
et al. (2016), illustrates this for a 12-dimensional dataset describing soft-
ware systems. In this dataset, every sample is a software project (around
6000 in total); its 12 dimensions are average software quality metrics
computed for the respective project. Image (a) shows the dataset pro-
jected to 2D using the LAMP (Joia et al., 2011) projection technique. One
can easily distinguish two well separated clusters of points A′ and B′ in
the projection which, upon closer investigation, show to contain large
libraries and applications, respectively small software systems. Image
(b) shows the same dataset projected to 3D using also LAMP. In con-
trast to the 2D projection, we now see three clusters which, upon inves-
tigation, show to contain large libraries (A), large applications (B), and
small systems (C). Hence, the use of a 3D projection enabled us to split
the dataset into �ner-grained sample groups.

Other arguments in favor of 3D projections include the observation
that such methods are better at encoding data structure for datasets
with intrinsic dimensionality exceeding three (Jolli�e, 2002). A separate
argument that we outline – and which, to our knowledge, has not been
systematically explored – is that 3D projections are able to create a
richer set of visual patterns than their 2D counterparts and, as such,
have the potential to better capture the underlying data structure. More
related work concerning the evaluation of both 2D and 3D projections
and also their relative advantages and limitations is discussed in the
context of Chapter 6.
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a) b)

Figure 2.4: Software quality dataset projected to (a) 2D and (b) 3D using the
LAMP technique. Figure taken from Coimbra et al. (2016).

2.6 explaining the reduced dimensionality

As outlined in Sec. 2.2, ‘raw’ projections, whether 2D or 3D ones, are
of little use as one may see certain visual patterns, e.g., clusters of
points or outlier points, but does not know what these visual patterns
mean in terms of underlying data patterns. To address this issue,
several so-called explanatory techniques have been proposed for DR
projection methods. At a high level, these techniques enrich the raw
projection scatterplot with additional information aiming to connect
the scatterplot (or parts thereof) with the original data dimensions (or
parts thereof). We discuss below several such explanatory techniques.
All techniques are illustrated in Fig 2.5 (taken from Coimbra et al.
(2016)) using the same software dataset described earlier in Sec. 2.5.

Color coding: Arguably the simplest and most frequently used ex-
planatory technique for DR scatterplots colors the points V (xi ) by the
values x ji of a dimension 1 ≤ j ≤ n of the projected dataset. The color
gradients one can next observe in the projection, if correlated with the
visual point groups exhibited by the projection, allow one to explain
such groups in terms of their values for dimension j. For example, in
Fig. 2.5, the 3D projection is colored by the values of the ln-cof attribute
(which describes how strongly �les in a software project are coupled
with each other). The projection exhibits three well-separated point
clusters denoted A, B, and C in the �gure. One can see that A is blue,
i.e., contains samples having a low coupling value. In contrast, clusters
B and C are gray and yellow, denoting samples having a medium, re-
spectively medium-to-high, coupling value. Hence, the ln-cof attribute
is useful in distinguishing cluster A from the other two.

However e�ective and easy to use, and applicable to both 2D and
3D projections, color coding asks the user to manually select in turn
all the dimensions j of a dataset to color code the projection and detect
interesting patterns. As such, it does not scale well for datasets having

18



2.6 explaining the reduced dimensionality

(a) color coding a dimension

(b) y axis legend

(b) x axis legend

(b) z axis legend

(c) viewpoint legend (d) correlation

      view

(e) biplot axes

Figure 2.5: Explanatory techniques for the 3D projection of a software dataset.
(a) Color coding a dimension. (b) Axis legends. (c) Viewpoint legend.
(d) Correlation view. (e) Biplot axes. Figure taken from Coimbra et al.
(2016).

more than 5 to 8 dimensions.

Biplot axes: Another simple and generic explanatory technique is
given by biplot axes (Gower and Hand, 1995; Greenacre, 2010). In their
original implementation, these are lines drawn atop a 2D projection
scatterplot which indicate the directions of maximal variation of every
of the n dimensions in the projection plane. They can be seen as gen-
eralizing the usual Cartesian plot x and y axes in helping the reader
understand in which directions do each of the data dimensions vary
the most. Coimbra et al. (2016) generalized the straight-line biplot axes
(which were originally computed only for linear projections) to curved
biplot axes and thereby made them applicable to any (linear or nonlin-
ear) projection technique. They also applied them to annotate 3D pro-
jections. Figure 2.5 shows, in the center of the scatterplot, these biplot
axes, two of which are annotated to indicate that they correspond to the
dimensions ln-sum-tloc and ln-cof of the dataset. One can see, for exam-
ple, that the ln-cof axis is horizontal in the respective view – hence the
respective dimension varies strongest left-to-right in that scatterplot.
This is con�rmed by noting the dark blue to yellow-red color gradient
observable along the same direction and noting that color maps the di-
mension ln-cof.

Biplot axes have several other uses such as �nding dimensions
which are correlated or independent of each other. While simple to
compute and interpret, and applicable to both 2D and 3D projections,
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they are global explanations of a projection. Indeed, if a projection
exhibits e.g. multiple clusters and the direction of strongest variation of
some variable di�ers among these clusters, then the respective biplot
axis will show only the average direction among all clusters, which
may not be insightful.

Axis legends: In contrast to the previous mechanisms which aimed to
explain the scatterplot, axis legends aim to explain the meaning of the
viewing space dimensions in terms of data dimensions. Introduced by
Broeksema et al. (2013) for 2D linear projections, these work as follows.
For each of the x and y screen axes, a bar chart of n bars is displayed,
showing how much of the variance of the n data dimensions is cap-
tured by the respective screen axis. Intuitively put, compared to classical
Cartesian scatterplots, where the x and y screen axes are mapped to a
single data dimension, axis legends show that, in a projection, the screen
axes encode a mix of di�erent dimensions with di�erent weights. Hence,
long bars indicate data dimensions that explain well the spread of points
along the respective screen axis, and conversely. Coimbra et al. (2016)
extended this idea to 3D projections (linear or nonlinear) by adding a
third legend for the depth axis. Long bars in this third legend indicate
thus dimensions that one cannot see in the projection viewed from the
current viewpoint. Figure 2.5 illustrates this. We see here that the di-
mension ln-cof has the largest bar in the x axis legend, which matches
the fact that the biplot axis for that dimension is oriented horizontally.

Axis legends are slightly more complex to learn to use and interpret
than color coding and biplot axes. Also, as biplot axes, these are global
techniques as they explain the screen axes and not the individual visual
patterns (e.g. clusters) in a projection.

Viewpoint legends and correlation views: Introduced by Coimbra
et al. (2016), these tools jointly aim to explain which dimensions are
best visible for a given viewpoint for a 3D projection. Figure 2.5 illus-
trates both techniques. The viewpoint legend shows a sphere on whose
surface one conceptually maps all possible viewpoints one could look at
the 3D projection from. For every such viewpoint, the technique com-
putes the two data dimensions (of the total n ones) which are best ex-
aminable from the respective viewpoint, i.e., whose bars would be the
longest in the x and y axis legends for that viewpoint. The respective
dimension-pair is then color-coded and mapped to the sphere surface.
The color mapping is depicted separately in the correlation view, which
is a matrix plot showing, for all dimension-pairs, which ones were cho-
sen for color coding some viewpoints on the sphere. For example, in
Fig. 2.5, the current viewpoint, depicted by the small crosshair in the
middle of the viewpoint legend sphere, is surrounded by a large green
region. Looking at the correlation view, we �nd that green encodes the
dimension-pair (ln-cof, ln-sum-tloc), which matches the fact that, in the
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current view, these dimensions have the longest bars in the x andy axis
legends, respectively. Since the green region on the sphere is quite large,
rotating the viewpoint from its current position will, for some amount
of time, still show best the same dimension-pair in the projection.

Viewpoint legends and correlation views are speci�c explanatory
tools for 3D projections. However, they are limited in scalability to
datasets having about 10 dimensions (due to the use of the matrix plot
to show dimension pairs). Also, they use, per viewpoint, only two
of the n data dimensions to characterize (explain) the 3D projection
viewed from that viewpoint.

Dimension color coding: The �nal explanatory technique for projec-
tions we discuss here takes a radically di�erent approach from the above
ones. Rather than explaining every point separately (as in color coding)
or explaining the entire projection in terms of data dimensions (as the
other techniques discussed above), dimension color coding, proposed
originally by da Silva et al. (2015), aims to explain groups of close points
in the projection. These coincide well with the aforementioned idea of
explaining visual patterns in a projection. Indeed, such visual patterns
are naturally formed by groups of close points. The technique works
as follows. For every point V (xi ) in the projection, data points xj in D
which project close to V (xi ) are selected. The data dimension which
varies least over the set of selected points is next determined and color-
coded to mark V (xi ). The brightness of the used colors indicates how
much of the data variance in the studied neighborhood is captured by
the color-coded dimension.

Figure 2.6 illustrates this for the software dataset using a 2D projec-
tion constructed by LAMP – the same projection as in Fig. 2.4a. Points
are drawn as disks so as to �ll the gaps between them in the projec-
tion and create compact color patterns that are arguably easier to in-
terpret than discrete colored scatterplots. The depicted projection has
two ‘lobes’ which both contain a purple region, meaning that samples
in such a region have similar values of the lines of code dimension. The
fact that there are two such distinct regions is explained, upon further
investigation, by the fact that the two regions refer to di�erent val-

ues of the lines of code dimension. Since lines of code characterizes the
size of a software system, note that this matches the explanatory labels
(from Coimbra et al. (2016)) in Fig. 2.4a) which explain those two lobes
as containing large, respectively small, software systems.

Dimension color coding has several attractive properties. It can ex-
plain local patterns in a projection, unlike any of the techniques dis-
cussed so far. These patterns do not need to be manually selected but
rather are determined by the size of the considered neighborhoods in
the computation of the explanation. The explanation is quite straightfor-
ward to interpret and does not take additional screen space unlike the
axis legends, viewpoint legends and correlation views, or biplot axes.
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Figure 2.6: Dimension color coding explanation for a software dataset. Figure
taken from da Silva et al. (2015).

However, it is limited by its use of categorical color coding to showing
only about 8 to 10 dimensions. More importantly, it uses a single and
simple criterion to determine what explains a neighborhood in a pro-
jection, namely the variance of dimensions over its points. Also, this
technique has been applied so far only to explain 2D projections.

Summarizing our discussion of 2D and 3D projections, we �nd that
both projection types are assisted in di�erent ways by several existing
explanatory techniques. However, no such technique manages to ex-
plain well all patterns visible in the projection in terms of data dimen-
sions. Separately, 3D projections have a number of arguable advantages
but also arguable limitations compared to 2D ones, and only limited
studies exist that compare 2D and 3D techniques. 3D projections also
strongly depend, in their understanding, on the viewpoint one chooses
to examine them from. Finally, the comparison of 2D vs 3D techniques
have been mostly limited to using raw, unannotated, projections for this
task. Finding out how such projections fare with respect to each other
when enhanced by explanatory techniques is still a largely open issue.
We address several of these limitations further in our work. Speci�cally,
in Chapter 5, we extend the dimension color coding explanation to use
additional criteria involving the dataset. Separately, in Chapter 6, we
apply such explanations to both 2D and 3D projections and compare
them both quantitatively and qualitatively for a number of datasets and
projection techniques.
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3I N T E R A C T I V E A X I S - B A S E D 3 D R O TAT I O N
S P E C I F I C AT I O N U S I N G I M A G E S K E L E T O N S

Abstract: Specifying 3D rotations of shapes around arbitrary axes is not
easy to do. We present a new method for this task, based on the concept
of natural local rotation axes inferred from the local shape structure,
in support of 3D exploration and manipulation tasks. We de�ne such
axes using the 3D curve skeleton of the shape of interest. We compute
e�ective and e�cient approximations of such skeletons using the 2D
projection of the shape. Our method allows users to specify 3D rotations
around parts of arbitrary 3D shapes with a single click or touch (plus a
drag motion), is simple to implement, works in real time for large scenes,
can be easily added to any OpenGL-based scene viewer, and can be used
on both mouse-based and touch interfaces 1.

3.1 introduction

Interactive manipulation of 3D scenes is a key part of many applica-
tions such as CAD/CAM modeling, computer games, and scienti�c vi-
sualization (Jackson et al., 2013). 3D rotations are an important manipu-
lation type, as they allow examining scenes from various viewpoints
to e.g. select the most suitable one for the task at hand. Two main
3D rotation types exist – rotation around a center and rotation around
an axis. The �rst one can be easily speci�ed via classical (mouse-and-
keyboard) (Zhao et al., 2011) interfaces or touch interfaces (Yu et al.,
2010) by well-known metaphors such as the trackball. The latter is
also easy to specify if the rotation axis coincides with one of the
world-coordinate axes. Rotations around arbitrary axes are consider-
ably harder to specify, as this requires a total of 7 degrees of freedom (6
for specifying the axis and one for the rotation angle around the axis).

For certain tasks, users do not need to rotate around any 3D axis.
Consider examining a (complex) 3D shape such as a statue: We can ar-
gue that a natural way to display this shape is with the statue’s head
upwards; and a good way to explore the shape from all viewpoints is
to rotate it around its vertical axis while keeping its upwards orienta-
tion �xed. This keeps the shape’s global orientation (which helps under-
standing the shape) but allows one to examine it from all viewpoints

Several methods support the above exploration scenario by �rst align-
ing a shape’s main symmetry axis with one of the world coordinate
axes and then using a simple-to-specify rotation around this world

1 This chapter is based on the paper ‘Interactive Axis-Based 3D Rotation Speci�cation Us-
ing Image Skeletons’ Zhai et al. (2020).
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axis (Du�n and Barrett, 1994). This scenario falls short when (a) the
studied shape does not admit a global symmetry axis, although its parts
may have local symmetry axes; (b) computing such (local or global) sym-
metry axes is not simple; or (c) we do not want to rotate along an axis
which is �rst aligned with a world axis.

To address the above, we propose a novel interaction mechanism:
Given a shape viewed from an arbitrary 3D viewpoint, we allow the
user to choose a part of interest of the shape. Next, we propose a fast
and generic method to compute an approximate 3D symmetry axis for
this part. Finally, we interactively rotate the shape around this axis by
the desired angle. This e�ectively allows one to rotate the viewpoint
to examine shapes around a multitude of symmetry axes that the users
can easily select. Our method can handle any 3D shape or scene, e.g.,
polygon mesh or polygon soup, point-based or splat-based rendering,
or combination thereof; is simple to implement and works at interactive
rates even for scenes of hundreds of thousands of primitives; requires no
preprocessing of the 3D geometry; and, most importantly, allows speci-
fying the rotation axis and rotation angle by a single click (followed by a
drag motion), therefore being suitable for both classical (mouse-based)
and touch interfaces. We demonstrate our method on several types of
3D scenes.

3.2 related work

We structure related work around two topics, namely methods for speci-
fying rotations of 3D objects around arbitrary axes (Sec. 3.2.1) and meth-
ods for computing medial descriptors that capture a shape’s symmetry
(Sec. 3.2.2).

3.2.1 Rotation speci�cation

3D rotations can be speci�ed by many techniques. The trackball
metaphor (Chen et al., 1998) is one of the oldest and likely most pop-
ular techniques. Given a 3D center-of-rotation x, the scene is rotated
around an axis passing through x and determined by the projections
on a hemisphere centered at x of the 2D screen-space locations p1 and
p2 corresponding to a (mouse) pointer motion. The rotation angle α
is controlled by the amount of pointer motion. While simple to imple-
ment and use, trackball rotation does not allow precise control of the
actual axis around which one rotates, as this axis constantly changes
while the user moves the pointer (Bade et al., 2005; Zhao et al., 2011).
Several usability studies of trackball and alternative 3D rotation mecha-
nisms explain these limitations in detail (Jacob and Oliver, 1995; Hinck-
ley et al., 1997; Frokjaer et al., 2000; Partala, 1999). Several re�nements
of the original trackball (Chen et al., 1998) were proposed to address
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these (Hultquist, 1990; Shoemake, 1992). In particular, Henriksen et al.
(2004a) formally analyze the trackball’s principle and its limitations and
also propose improvements which address some, but not all, limitations.
At the other extreme, world-coordinate-axis rotations allow rotating a
3D scene around the x , y, or z axes (Zhao et al., 2011; Jackson et al.,
2013). The rotation axis and rotation angle are chosen by simple click-
and-drag gestures in the viewport. This works best when the scene is
already pre-aligned with a world axis, so that rotating around that axis
yields meaningful viewpoints.

Pre-alignment of 3D models is a common preprocessing stage in visu-
alization (Chaouch and Verroust-Blondet, 2009). Principal Component
Analysis (PCA) does this by computing a 3D shape’s eigenvectors e1,
e2 and e3, ordered by their eigenvalues λ1 ≥ λ2 ≥ λ3, so that the co-
ordinate system {ei } is right-handed. Next, the shape is aligned with
the viewing coordinate system (x ,y, z) by a simple 3D rotation around
the shape’s barycenter (Tangelder and Veltkamp, 2008; Kaye and Ivris-
simtzis, 2015). Yet, pre-alignment is not e�ective when the scene does
not have a clear main axis (λ1 close to λ2) or when the major eigenvector
does not match the rotation axis desired by the user.

3D rotations can be speci�ed by classical (mouse-and-keyboard)
mechanisms (Zhao et al., 2011) but also touch interfaces. Yu et al. (2010)
present a direct-touch exploration technique for 3D scenes called Frame
Interaction with 3D space (FI3D). Guo et al. (2017) extend FI3D with con-
strained rotation, trackball rotation, and rotation around a user-de�ned
center. Yu and Isenberg (2009) used trackball interaction to control ro-
tation around two world axes by mapping it to single-touch interaction.
Hancock et al. (2007, 2010) use two or three touch input to manipulate
3D shapes on touch tables and, in this context, highlighted the chal-
lenge of specifying 3D rotations. All above works stress the need for
simple rotation-speci�cation mechanisms using a minimal number of
touch points and/or keyboard controls.

3.2.2 Medial descriptors

Medial descriptors, also known as skeletons, have been used for decades
to capture the symmetry structure of shapes (Blum, 1967; Siddiqi and
Pizer, 2008). For shapes Ω ⊂ Rn , n ∈ {2, 3} with boundary ∂Ω, skele-
tons are de�ned as

SΩ = {x ∈ Ω)|∃f1 ∈ ∂Ω, f2 ∈ ∂Ω : f1 , f2∧||x−f1 | | = | |x−f2 | | = DTΩ(x}
(3.1)

25



3d rotation specification using image skeletons

where fi are called the feature points (Meijster et al., 2002) of skeletal
point x and DTΩ is the distance transform (Rosenfeld and Pfaltz, 1968;
Costa and Cesar, 2000) of skeletal point x, de�ned as

DTΩ(x ∈ Ω) = min
y∈∂Ω

‖x − y‖ (3.2)

These feature points de�ne the so-called feature transform (Hesselink
and Roerdink, 2008; Tagliasacchi et al., 2016)

FTΩ(x ∈ Ω) = argmin
y∈∂Ω

‖x − y‖, (3.3)

which gives, for each point x in a shape Ω, its set of feature points on
∂Ω, or contact points with ∂Ω of the maximally inscribed disk in Ω
centered at x.

Many methods compute skeletons of 2D shapes, described as either
polyline contours (Ogniewicz and Kubler, 1995) or binary images (Telea
and van Wijk, 2002; Costa and Cesar, 2000; Falcão et al., 2004; Falcao
et al., 2017). State-of-the-art methods regularize the skeleton by remov-
ing its so-called spurious branches caused by small noise perturbations
of the boundary ∂Ω, which bring no added value, but only compli-
cate further usage of the skeleton. Regularization typically de�nes a so-
called importance ρ(x) ∈ R+ |x ∈ SΩ which is low on noise branches and
high elsewhere on SΩ . Several authors (Falcão et al., 2004; Ogniewicz
and Kubler, 1995; Costa and Cesar, 2000; Telea and van Wijk, 2002; Fal-
cao et al., 2017) set ρ to the length of the shortest path along ∂Ω be-
tween the two feature points f1 and f2 of x. If more than two such fea-
ture points exist, existing methods typically just choose two points from
the available ones. Upper thresholding ρ by a su�ciently high value re-
moves noise branches. Importance regularization can be e�ciently im-
plemented on the GPU (Ersoy et al., 2011) using fast distance transform
computation (Cao et al., 2010). Overall, 2D skeletonization can be seen,
from a practical perspective, as a solved problem.

In 3D, two main skeleton types exist (Tagliasacchi et al., 2016): Sur-
face skeletons, de�ned by Eqn 3.1 for Ω ⊂ R3, consist of complex inter-
secting manifolds with boundary, and hence are hard to compute and
utilize (Tagliasacchi et al., 2016). Curve skeletons are curve-sets in R3

that locally capture the tubular symmetry of shapes (Cornea et al., 2007).
They are structurally much simpler than surface skeletons and enable
many applications such as shape segmentation (Rodrigues et al., 2018)
and animation (Bian et al., 2018). Yet, they still cannot be computed in
real time, and require a well-cured de�nition of Ω as a watertight, non-
self-intersecting, �ne mesh (Sobiecki et al., 2013) or a high-resolution
voxel volume (Reniers et al., 2008; Falcao et al., 2017).

Kustra et al. (2013) and Livesu et al. (2012) address the above chal-
lenges of 3D curve-skeleton computation by using an image-based ap-
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proach. They compute an approximate 3D curve skeleton from 2D skele-
tons extracted from multiple 2D views of a shape. While far simpler and
also more robust than true 3D skeleton extraction, such methods need
hundreds of views and cannot be run at interactive rates. Our proposal
also uses an image-space skeleton computation, but uses di�erent, sim-
pler, heuristics than Kustra et al. (2013); Livesu et al. (2012) to estimate
3D depth, and a single view, thereby achieving the speed required for
interactivity.

3.3 proposed method

We construct a 3D rotation in �ve steps (Fig. 3.1). We start by loading
the scene of interest – any arbitrary collection of 3D primitives, with
no constraints on topology or sampling resolution – into the viewer (a).
Next, the user can employ any mechanisms o�ered by the viewer, e.g.
trackball rotation, zoom, or pan, to choose a viewpoint of interest, from
which the scene shows a detail around which one would like to further
rotate to explore the scene. In our example, such a viewpoint (b) shows
the horse’s rump, around which – for the sake of illustration – we want
to rotate to examine the horse from di�erent angles (Fig. 3.1).

click
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sihouette boundary ∂Ω

skeleton SΩ distance field DT
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clicked point pskeleton
anchor sp
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neighbors N(sp)
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axis a
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Figure 3.1: Skeleton-based local rotation pipeline. Blue boxes indicate tool
states. Green boxes indicates user actions.

3.3.1 Rotation axis computation

From the above-mentioned initial viewpoint, we next perform three
image-space operations to compute the 3D rotation axis. These steps,
denoted A, B, and C next, are as follows.

A. Silhouette extraction: This is the �rst operation in Fig. 3.1, step
(d). We render the shape with Z-bu�ering on and using the GL_LESS

OpenGL depth-test. Let Ωnear be the resulting Z-bu�er. We next �nd
the silhouette Ω of the shape as all pixels that have a value in Ωnear dif-
ferent from the default (the latter being 1 for standard OpenGL settings).
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B. Skeleton computation: We next compute the silhouette skeleton
SΩ (Eqn. 3.1) by the method in Telea and van Wijk (2002) (Fig. 3.1, step
(d)). To eliminate spurious skeletal branches caused by small-scale noise
along ∂Ω, we regularize SΩ by the salience-based metric in Telea (2011).
This regularization works as follows – see also the sketch in Fig. 3.2c.
For every point x ∈ SΩ of the full skeleton delivered by Eqn. 3.1, we �rst
compute the importance ρ (Telea and van Wijk, 2002), i.e., the shortest
path along ∂Ω between the two feature points of x (see also Sec. 3.2).
This path is marked red in Fig. 3.2c. As shown in Telea and van Wijk
(2002); Falcao et al. (2017); Tagliasacchi et al. (2016), and also outlined in
Sec. 3.2, ρ monotonically increases along skeletal branches from their
endpoints to the skeleton center, and equals, for a skeleton point x, the
amount of boundary which is captured (described) by x.

We next de�ne the salience of skeletal point x as

σ (x) =
ρ(x)

DTΩ(x)
, (3.4)

that is, the importance ρ normalized by the skeletal point’s distance
to boundary. As shown in Telea (2011), σ is overall high on skeleton
branches caused by important (salient) cusps of ∂Ω and overall low on
skeleton branches caused by small-scale details (noise cusps) along ∂Ω.
Figure 3.2c shows this for a small cusp on the boundary of a 2D sil-
houette of a noisy 3D dino shape. As we advance in this image along
the black skeleton branch into the shape’s rump (going below the grey
area in the picture), ρ stays constant, but the distance to boundary DTΩ
increases, causing σ to decrease. Hence, we can regularize SΩ simply
by removing all its pixels having a salience value lower than a �xed
threshold σ0. Following Telea (2011), we set σ0 = 1. Fig. 3.2 illustrates
this regularization by showing the raw skeleton SΩ and its regularized
version

SΩ = {x ∈ SΩ |σ (x) ≥ σ0} (3.5)

for the noisy dino shape. Salience regularization (Fig. 3.2b) removes
all spurious branches created by boundary noise, but leaves the main
skeleton branches, corresponding to the animal’s limbs, rump, and tail,
intact. Images (d-g) in the �gure show the silhouette Ω, importance
ρ, distance transform DTΩ , and salience σ for a zoom-in area around
the shape’s head, for better insight. Looking carefully at image (e), we
see that ρ has non-zero values also outside the main skeleton branch
corresponding to the animal’s neck, visible as light-blue pixels. While
such details may look insigni�cant, they are crucial: Thresholding ρ
by too low values – the alternative regularization to our proposal –
keeps many spurious skeletal branches, see the red inset in Fig. 3.2a.
In contrast, σ is practically zero outside the neck branch (Fig. 3.2g).
So, thresholding σ by σ0 = 1 yields a clean skeleton, see the red inset
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Figure 3.2: Raw skeleton SΩ with (a) noise-induced branches and (b) salience-
based regularized skeleton SΩ . c) Principle of salience regulariza-
tion. (d-g) Details of silhouette, importance, distance transform, and
salience values for the noisy dino’s head.

in Fig. 3.2b. Salience regularization is simple and automatic to use,
requiring no free parameters, and hence preferable to ρ regularization
– which requires careful setting of the threshold for ρ – or to any
other skeleton regularization we are aware of. For further details on
salience regularization, we refer to Telea (2011) and also its public
implementation (Telea, 2014a).

C. Rotation axis computation: This is step (e) in Fig. 3.1. Let p be the
pixel under the user-controlled pointer (blue in Fig. 3.1e). We �rst �nd
the closest skeleton point sp = argminy∈SΩ

‖p − y‖ by evaluating the
feature transform (Eqn. 3.3) FTSΩ

(p) of the regularized skeleton SΩ at p.
Figure 3.1d shows the related distance transform DTSΩ

. In our case, sp
is a point on the horse’s rump skeleton (cyan in Fig. 3.1e). Next, we �nd
the neighbor points N (sp ) of sp by searching depth-�rst from sp along
the pixel connectivity-graph of SΩ up to a �xed maximal distance set to
10% of the viewport size. N (sp ) contains skeletal points along a single
branch in SΩ , or a few connected branches, if sp is close to a skeleton
junction. In our case, N (sp ) contains a fragment of the horse’s rump
skeleton (red in Fig. 3.1e). For each q ∈ N (sp ), we set the depth qz as
the average of Ωf ar (q) and Ωnear (q). Here, Ωnear is the Z-bu�er of the
scene rendered as described in step A above; and Ωf ar is the Z-bu�er
of the scene rendered as before, but with front-face culling on, i.e., the
depth of the nearest backfacing polygons to the view plane.
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Figure 3.3: Depth estimation of rotation axis for (a,b) non-overlapping part and
(c,d) overlapping parts. In both cases, the rotation axis (red) is nicely
centered in the shape. See Sec. 3.3.1.

Fig. 3.3 shows how this works. The user clicks above the horse’s rump
and drags the pointer upwards (a). Image (b) shows the resulting rota-
tion. As visible in the inset in (a), the rotation axis (red) is centered inside
the rump, as its depth qz is the average of the near and far rump faces. To
better understand this, the image left to Fig. 3.3a shows the horse ren-
dered transparently, seen from above. The depth values in Ωnear and
Ωf ar are shown in green, respectively blue. The skeleton depth values
(red) are the average of these. Note that, when the rotation ends, the
new silhouette skeleton does not match the rotation axis – see inset in
(b). This is normal and expected. If the user wants to start a new rotation
from (b), then the 2D skeleton from this image will be used to compute
a new, matching, rotation axis.

Next, we consider a case of overlapping shape parts (Fig. 3.3c). The
user clicks left to the horse’s left-front leg, which overlaps the right-
front one, and drags the pointer to the right. Image (d) shows the re-
sulting rotation. The rotation axis (red) is centered inside the left-front
leg. In this case, Ωf ar (q) contains the Z values of the backfacing part
of the left-front leg, so (Ωnear (q) + Ωf ar (q))/2 yields a value roughly
halfway this leg along the Z axis. The image left to Fig. 3.3c clari�es
this by showing the horse from above and the respective depth values
in Ωnear (green) and Ωf ar (blue).

Separately, we handle non-watertight surfaces as follows: If Ωf ar (q)
contains the default Z value (one), this means there’s no backfacing sur-
face under a given pixel q, so the scene is not watertight at q. We then
set qz to Ωnear (q).

We now have a set N3D = {(q ∈ N (sp ), qz )} of 3D points that approx-
imate the 3D curve skeleton of our shape close to the pointer location
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p. We set the 3D rotation axis a to the line passing through the aver-
age point of N3D and oriented along the largest eigenvector of N3D ’s
covariance matrix (Fig. 3.1e, red dotted line).

3.3.2 Controlling the rotation

We propose three interactive mechanisms to control the rotation
(Fig. 3.1), step (f)):

• Indication: As the user moves the pointer p, we continuously
update the display of a. This shows along which axis the scene
would rotate if the user initiated rotation from p. If a is found
suitable, one can start rotating by a click following one of the
two modes listed next; else one can move the pointer p to �nd a
more suitable axis;

• Single click: In this mode, we compute a rotation speed σ equal
to the distance ‖p − sp ‖ and a rotation direction δ (clockwise or
anticlockwise) given by the sign of the cross-product (sp − p) ×n,
where n is the viewplane normal. We next continuously rotate
(spin) the shape around a with the speed σ in direction δ ;

• Click and drag: Let d be the drag vector created by the user as
she moves the pointer p from the current to the next place in the
viewport with the control, e.g. mouse button, pressed. We rotate
the scene around a with an angle equal to d · (n × a) (Fig. 3.1e).

We stop rotation when the user releases the control (mouse button). In
single-click mode, clicking closer to the shape rotates slowly, allowing
to examine the shape in detail. Clicking farther rotates quicker to e.g. ex-
plore the shape from the opposite side. The rotation direction is given
by the side of the skeleton where we click: To change from clockwise
to counterclockwise rotation in Fig. 3.1, we only need to click below,
rather than above, the horse’s rump. In click-and-drag mode, the rota-
tion speed and direction is given by the drag vector d: Values d orthog-
onal to the rotation axis a create corresponding rotations clockwise or
anticlockwise around a; values d along a yield no rotation. This matches
the intuition that, to rotate along an axis, we need to move the pointer
across that axis.

The skeleton-based construction of the rotation axis is key to the ef-
fectiveness of our approach: If the shape exhibits some elongated struc-
ture in the current view (e.g. rump or legs in Fig. 3.1c), this structure
will yield a skeleton branch. Clicking closer to this structure than to
other structures in the same view – e.g., clicking closer to the rump
than to the horse’s legs or neck – selects the respective skeleton branch
to rotate around. This way, the 3D rotation uses the ‘natural’ structure
of the viewed shape. We argue that this makes sense in an exploratory
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scenario, since, during rotation, the shape parts we rotate around stay
�xed in the view, as if one ‘turns around’ them.

The entire method requires a single click and, optionally, a pointer
drag motion to execute. This makes our method simpler than other 3D
rotation methods that rotate around freely speci�able 3D axes, and also
directly applicable to contexts where no second button or modi�er keys
are available, e.g., touch screens. Moreover, our method does not re-
quire any complex (and/or slow) 3D curve-skeleton computation: We
compute only 2D (silhouette) skeletons, which are fast and robust to ex-
tract (Telea and van Wijk, 2002; Ersoy et al., 2011). We can handle any
3D input geometry, e.g., meshes, polygon soups, point clouds, or mixes
thereof, as long as such primitives render in the Z-bu�er (see Sec. 3.4
for examples hereof).

3.3.3 Improvements of the basic method

We next present three improvements of the local-axis rotation mecha-
nism described above.

Zoom level: A �rst issue regards computing the scene’s 2D silhouette
Ω (Sec. 3.3.1A). For this to work correctly, the entire scene must be
visible in the current viewport. If this is not the case, the silhouette
boundary ∂Ω will contain parts of the viewport borders. Fig. 3.4a
shows this for a zoomed-in view of the horse model, with the above-
mentioned border parts marked purple. This leads to branches in the
skeleton SΩ that do not provide meaningful rotation axes. We prevent
this to occur by requiring that the entire scene is visible in the viewport
before initiating the rotation-axis computation. If this is not the case,
we do not allow the skeleton-based rotation to proceed, but map the
user’s interaction to standard trackball-based rotation.

Skeleton junctions: If the user selects p so that the skeleton anchor sp
is too close to a skeleton junction, then the neighbor-set N (sp )will con-
tain points belonging to more than two branches. Estimating a line from
such a point set (Sec. 3.3.1C) is unreliable, leading to possibly mean-
ingless rotation axes. Figures 3.4b-d illustrates the problem. The cor-
responding skeleton points N (sp ) used to estimate the axis are shown
in yellow, and the resulting axes in red. When sp is far from the junc-
tion (Figs. 3.4b,d), N (sp ) contains mainly points from a single skeleton
branch, so the estimated rotation axes are reliable. When sp is very close
to a junction (Fig. 3.4c), N (sp ) contains points from all three meeting
skeletal branches, so, as the user moves the pointer p, the estimated axis
‘�ips’ abruptly and can even assume orientations that do not match any
skeleton branch.

We measure the reliability of the axis a by the anisotropy ratio
γ = λ1/λ3 of the largest to smallest eigenvalue of N3D ’s covariance
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Figure 3.4: Two problems of estimating rotation axes from skeletons. (a)
Zoomed-in scene. Anchor points close to (c), respectively farther
from (b,d) a skeleton junction. See Sec. 3.3.3.

matrix. Other anisotropy metrics can be used equally well (Emory and
Iaccarino, 2014). High γ values indicate elongated structures N3D , from
which we can reliably compute rotation axes. Low values, empirically
detected as γ < 5, indicate problems to �nd a reliable rotation axis.
When this occurs, we prevent executing the axis-based rotation.

Selection distance: A third issue concerns the position of the point
p that starts the rotation: If one clicks too far from the silhouette Ω,
the rotation axis a may not match what one expects. To address this,
we forbid the rotation when the distance d from p to Ω exceeds a given
upper limitdmax . That is, if the user clicks too far from any silhouette in
the viewport, the rotation mechanism does not start. This signals to the
user that, to initiate the rotation, she needs to click closer to a silhouette.
We compute d as DTΩ(p), where Ω is the viewpoint area outside Ω, i.e.,
all viewport pixels where Ωnear equals the default Z-bu�er value (see
Sec. 3.3.1A).

We studied two methods for estimating dmax (see Fig. 3.5). First, we
set dmax to a �xed value, in practice 10% of the viewport size. Using a
constant dmax is however not optimal: We found that, when we want
to rotate around thick shape parts, e.g. the horse’s rump in Fig. 3.5b, it is
intuitive to select p even quite far away from the silhouette. This is the
case of point p1 in Fig. 3.5b. In contrast, when we want to rotate around
thin parts, such as the horse’s legs, it is not intuitive to initiate the rota-
tion by clicking too far away from these parts. This is the situation of
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Figure 3.5: Improvements of axis-based rotation method. (a) A view of the shape
to be rotated. (b) Fixed maximum-distance setting for two clicked
points p1 and p2. (c) Thickness-based maximum-distance setting for
two clicked points p1 and p2.

point p2 in Fig. 3.5b. Hence, dmax depends on the scale of the shape part
we want to rotate around; selecting large parts can be done by clicking
farther away from them than selecting small parts.

We model this by setting dmax to the local shape thickness (Fig. 3.5c).
We estimate thickness as follows: We �nd the closest point on the sil-
houette boundary ∂Ω to the clicked point p as q = FTΩ(p). The shape
thickness at q is the distance to the skeleton, i.e., DTSΩ

(q). This is the
2D equivalent of the more general 3D-shape-thickness estimation pro-
posed in Telea and Jalba (2011). In Fig. 3.5c, the point p1 is the farthest
clickable point around q1 to the silhouette that allows starting a rota-
tion around the rump. If we click further from the silhouette than the
distance dmax from p1 to q1, no rotation is done. For the leg part, the
farthest clickable point around q2 must, however, be much closer to the
silhouette (Fig. 3.5c), since here the local shape thickness (distancedmax
from p2 to q2) is smaller.

3.4 results

Figure 3.6 shows our 3D skeleton-based rotation applied to two 3D mesh
models – a hand and a ship. For extra insights, we recommend also
watching the demonstration videos (Zhai et al., 2019). First, we consider
a 3D mesh model of a human hand (100K faces), which is not watertight
(open at wrist). We start from a poor viewpoint from which we cannot
easily examine the shape (a). We click close to the thumb (b) and drag
to rotate around it (b-e), yielding a better viewpoint (e). Next, we want
to rotate around the shape to see the other face, but keeping the shape
roughly in place. Using a trackball or world-coordinate axis rotation
cannot easily achieve this. We click on a point close to the shape-part
we want to keep �xed during rotation (f), near the the wrist, and start
rotation. Images (g-j) show the resulting rotation.
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Figure 3.6: Examples of two rotations (a-e), (f-j) for the hand shape and four
rotations (k-o), (p-u), (v-z), (aa-ad) for the ship.

Figure 3.6(k-ad) show a more complex ship object (380K polygons).
This mesh contains multiple self-intersecting and/or disconnected parts,
some very thin (sails, mast, ropes) (Kustra et al., 2014). Computing a 3D
skeleton for this shape is extremely hard or even impossible, as Eqn. 3.1
requires a watertight, non-self-intersecting, connected shape boundary
∂Ω. Our method does not su�er from this, since we compute the skele-
ton of the 2D silhouette of the shape. We start again from a poor viewing
angle (k). Next, we click close to the back mast to rotate around it, show-
ing the ship from various angles (l-o). Images (p-u) show a di�erent ro-
tation, this time around an axis found by clicking close to the front sail,
which allows us to see the ship from the front. Note how the 2D skele-
ton has changed after this rotation – compare images (p) with (v). This
allows us to select a new rotation axis by clicking on the main sail, to see
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Figure 3.7: Exploration of astronomical point cloud dataset. (a) Volume-
rendered overview J. Dubinski et al. (2006). Rotations around three
3D axes (b-f), (g-j), (k-n).

the ship’s stern from below (w-z). Finally, we click on the ship’s rump
(aa) to rotate the ship and make it vertical (ab-ad). The entire process of
three rotations took around 20 seconds.

Figure 3.7 shows a di�erent dataset type – a 3D point cloud that mod-
els a collision simulation between the Milky Way and the nearby An-
dromeda Galaxy (Dubinski, 2001; J. Dubinski et al., 2006). Its 160K points
describe positions of the stars and dark matter in the simulation. Image
(a) uses volume rendering to show the complex structure of the cloud,
for illustration purposes – we do not use this rendering in our method.
Rather, we render the cloud in our pipeline using 3D spherical splats
(b). Image (c) shows the cloud, rendered with half-transparent splats, so
that opacity re�ects local point density. Since we render a 3D sphere
around each point, this results in a front and back bu�er Ωnear and
Ωf ar , just as when rendering a 3D polygonal model. From these, we
can compute the 2D skeleton of the cloud’s silhouette, as shown in the
�gure. Images (d-f) show a rotation around the central tubular struc-
ture of the cloud, which reveals that the cloud is relatively �at when
seen from the last viewpoint (f). Image (g) shows the new 2D skeleton
corresponding to the viewpoint after this rotation. We next click close
to the upper high-density structure (f) and rotate around it. Images (h-
j) reveal a spiral-like structure present in the lower part of the cloud,
which was not visible earlier. To explore this structure better, we next
click on its local symmetry axis (l) and rotate around it. Images (l-n)
reveal now better this structure. As for the earlier examples, execut-
ing these three rotations took roughly 15 seconds. Scientists involved
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with studying this dataset for roughly a decade appreciated positively
the ease of use of the skeleton-based rotation as compared to standard
trackball and multi-touch gestures.

3.5 discussion

We next outline our method’s advantages and limitations:

Ease of application: We can rotate around 3D axes locally aligned
with the scene’s features with a single click and optionally pointer drag
motion. This makes our method usable to contexts where no second
button, modi�er keys, or multi-touch input is available. Finding the
axis works with even inexact click locations as we use a set of closest
2D-skeleton points for that (N (sp ), Sec. 3.3).

Reversibility: Since 3D rotation axes are computed from 2D silhouette
skeletons, rotations are not, strictly speaking, invertible: Rotating from
a viewpoint v1 with an angle α around a 3D local axis a1 computed
from the silhouette Ω1 leads to a viewpoint v2 in which, from the
corresponding silhouette Ω2, a di�erent axis a2 , a1 can be computed.
This is however a problem only if the user releases the pointer (mouse)
button to end the rotation; if the button is not released, the computation
of a new axis a2 is not started, so moving the pointer back will reverse
the rotation.

Genericity: We handle 3D meshes, polygon soups, and point clouds;
our only requirement is that these generate fragments with a depth
value. This contrasts using 3D curve skeletons for interaction, which
heavily constrain the input scene quality, and cannot be computed in
real time, as already mentioned. Also, the skeleton tool can be directly
combined (used alongside) any other interaction tool, such as trackball,
with no constraints.

Novelty: To our knowledge, this is the �rst time that 2D image-based
skeletons have been used to perform interactive manipulations of
3D shapes. Compared to similar view-based reconstructions of 3D
curve skeletons from their 2D silhouettes (Livesu et al., 2012; Kustra
et al., 2013), our method requires a single viewpoint to compute an
approximate 3D curve skeleton and is two to three orders of magnitude
faster.

Scalability and implementation simplicity: Our method uses
OpenGL 1.1 (primitive rendering and Z-bu�er reading) plus the 2D
image-based skeletonization method in Telea and van Wijk (2002) used
to compute the skeleton SΩ , its regularization SΩ , and the feature trans-
form FTSΩ

. We implemented skeletonization in NVidia’s CUDA and
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C++ to handle scenes of hundreds of thousands of polygons rendered at
10002 pixel resolution in a few milliseconds on a consumer-grade GPU,
e.g. GTX 660. The skeletonization computational complexity is linear in
the number of silhouette pixels, i.e., O(|Ω |). This is due to the fact that
the underlying distance transform used has the same linear complexity.
For details on this, we refer to the original algorithm (Cao et al., 2010).
The separate code of this skeletonization method is available at A. Telea
(2019).

Implementing the two improvements presented in Sec. 3.3 is also
computationally e�cient: The skeleton’s distance transform DTSΩ

is
already computed during the rotation axis estimation (Sec. 3.3.1C). The
distance DTΩ and feature transforms FTΩ require one extra skeletoniza-
tion pass of the background image Ω. All in all, our interaction method
delivers frame rates over 100 frames-per-second on the aforementioned
consumer-grade GPU. For replication purposes, the full code of the
method is provided online (Zhai et al., 2019).

Limitations: An important limitation regards the e�ectiveness of our
rotation mechanism. While our tests show that one can easily rotate a
scene around its parts, it is still unclear which speci�c tasks are best sup-
ported by this rotation, and by how much so, as compared to other ro-
tation mechanisms such as trackball. In the next chapter, we will aim to
quantify this aspect by presenting several controlled user experiments
in which we select a speci�c task to be completed with the aid of rota-
tion and quantitatively compare (evaluate) the e�ectiveness of our ro-
tation mechanism as compared to another established mechanisms, the
virtual trackball.

Another more subtle point of discussion concerns the de�nition of
choosing a good viewpoint. Technically speaking, there is no di�erence,
in terms of implementation, between rotating a shape along some ro-
tation axis (and keeping the OpenGL viewpoint �xed) and changing
the viewpoint (but keeping the shape �xed), as both end up to what is
known as the OpenGL modelview transform. However, users may per-
ceive the two tasks – rotating a shape while keeping the viewpoint �xed
vs changing the viewpoint but keeping a shape �xed, i.e., looking at
a �xed shape from di�erent viewpoints – as di�erent. Exploring how
actual users form a mental model of the two types of operations and
whether they see signi�cant di�erences between the two is an interest-
ing and important future work direction.

3.6 conclusion

We proposed a novel method for specifying interactive rotations of 3D
scenes around local axes using image skeletons. We compute local 3D
rotation axes out of the 2D image silhouette of the rendered scene, using
heuristics that combine the silhouette’s image skeleton and depth in-
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formation from the rendering’s Z-bu�er. Specifying such local rotation
axes is simple and intuitive, requiring a single click and drag gesture,
as the axes are automatically computed using the closest scene frag-
ments rendered from the current viewpoint. Our method is simple to
implement, using readily-available distance and feature transforms pro-
vided by modern 2D skeletonization algorithms; can handle 3D scenes
consisting of arbitrarily complex polygon meshes (not necessarily wa-
tertight, connected, and/or of good quality) but also 3D point clouds;
can be integrated in any 3D viewing system that allows access to the
rendered Z-bu�er; and works at interactive frame-rates even for scenes
of hundreds of thousands of primitives. We demonstrate our method on
several polygonal and point-cloud 3D scenes of varying complexity.

Several extension directions are possible as follows, apart from the
user evaluation of the e�ectiveness of our skeleton-based rotation mech-
anism which will be discussed in the next Chapter. More cues can be
used to infer more accurate 3D curve skeletons from image data, such as
shading and depth gradients. Di�erent simpli�cation techniques for the
inferred 3D skeletons can be proposed, thereby making the computed
3D rotation axes become more robust to noise present in the visualized
shapes and, more importantly, able to capture the ‘natural’ axis of ro-
tation implied by that shape at a given location. Finally, a challenging
but interesting extension direction considers computing such 3D rota-
tion axes directly from a volume-rendered visualization, by extracting
salient structures in the visualization and reducing these to their skele-
tons.
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4E VA L UAT I N G T H E E F F E C T I V E N E S S O F T H E
S K E L E T O N -A N D -T R A C K B A L L I N T E R A C T I O N
T E C H N I Q U E

Abstract: In Chapter 3, we presented a method for interactive speci�ca-
tion of rotations of 3D shapes and point clouds around axes determined
by the underlying structure of such shapes. We showed there how our
method is simple to implement, computationally e�cient, and applica-
ble to any 3D content that can be rendered in an OpenGL viewer. Its
usage requires only simple point, click, and drag gestures. In this chap-
ter, we study the e�ectiveness and ease of adoption of the method in
practice. For this, we compare our method with classical trackball ro-
tation, both in isolation and in combination, in a controlled user study.
Our results show that, when combined with trackball, skeleton-based
rotation reduces task completion times and increases user satisfaction,
while not introducing additional costs, being thus an interesting addi-
tion to the palette of 3D manipulation tools 1.

4.1 introduction

Three-dimensional content such as polygonal models or point clouds
appear in a multitude of contexts and are targeted by a wide range of
users. As such, having e�cient and e�ective tools to explore such scenes
is a major component that in�uences the success (or lack thereof) of ap-
plications that handle such content such as editors or content viewers.

In Chapter 3, we proposed a new such exploration mechanism tar-
geted at specifying rotations around 3D axes de�ned by the content
itself. In brief, the user points at a region of interest (part) of the viewed
3D shape, from which a local symmetry axis is computed. Next, one
can rotate the shape around this axis with an interactively speci�ed an-
gle. This method allows an easy selection of parts and automatic com-
putation of their approximate 3D symmetry axes, both done using the
shape silhouette’s 2D skeleton. The method handles any 3D scene, e.g.,
polygon mesh or polygon soup, point-based or splat-based rendering,
or combination thereof, without preprocessing; can be implemented us-
ing simple image processing operations; and works at interactive rates
for scenes of hundreds of thousands of primitives. As such, we argue
that our proposed method complies well with the desiderata of compu-
tational scalability, genericity, and simplicity of implementation, which

1 This chapter is based on the paper ‘Skeleton-and-Trackball Interactive Rotation Speci�-
cation for 3D Scenes’ Zhai et al. (2022).
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together cover the e�ciency term mentioned in the beginning of this
section.

However, the e�ectiveness of our method also needs to be studied.
In Chapter 3, we mentioned that our skeleton-based rotation is not to
be seen as a replacement, but a complement, of classical trackball rota-
tion. This observation was made based on our own impressions gath-
ered during the actual development and testing of our method in an
application which availed of the traditional – and ubiquitous – virtual
trackball mechanism. However, many concrete questions related to ef-
fectiveness are still open. We classify these into two groups, as follows.

To start with, how precisely the skeleton-based and trackball rota-
tion mechanisms relate to each other is not yet known. Many possibil-
ities exist, such as each mechanism behaving best for a particular type
of manipulation and/or a particular type of 3D content. It is, however,
also possible that one mechanism is consistently better than the other,
regardless of the manipulation or content (shape) type. Knowing this is
important to be able to next suggest a particular mechanism for a given
use context in real applications.

Secondly, how the skeleton-based interaction mechanism is received
by actual end users is another important question to be answered. Pos-
sible subquestions hereof are how users experience the mechanism in
terms of ease of learning, ease of use, precision of the operations it sup-
ports, and overall satisfaction. Separately, it is useful to compare how
users rate the skeleton-based interaction mechanism as compared to the
trackball one. Answering such questions can point to focused directions
for improving our proposal but also ways to deploy it for supporting
speci�c operations in real applications.

In this chapter, we aim to answer several of the above questions by
the following two contributions:

• We present the design and execution of a controlled user study
aimed at gauging the added value of skeleton-based rotation
when used against, but also combined with, trackball rotation;

• We analyze the results of our study to show that, when used to-
gether with trackball rotation, skeleton-based rotation brings in
added value, therefore being a good complement, and not replace-
ment, of trackball rotation.

The structure of this chapter is as follows. Section 4.2 presents a forma-
tive evaluation of our method. Section 4.3 presents an in-depth quantita-
tive and qualitative user study that studies the hypotheses outlined by
the formative study. Section 4.4 discusses the skeleton-based rotation
and our �ndings regarding its best ways of use. Section 4.5 concludes
the chapter.
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4.2 formative evaluation

To evaluate our method, we conducted �rst a formative evaluation.
In this evaluation, only the authors of this work and a few other re-
searchers, familiar with 3D interactive data visualization, were involved.
This evaluation aimed at (a) verifying how the skeleton-based rotation
practically works on a number of di�erent 3D shapes; and (b) eliciting
preliminary observations from the subjects to construct next a more
in-depth evaluation study. We next present the results of this �rst eval-
uation phase. Section 4.3 details the second-phase evaluation designed
using these �ndings.

The evaluation used the three shapes presented earlier in Chapter 3
in Figures 3.6 and 3.7. As described there (Sec. 3.4), these three shapes
are quite di�erent – a simple model of a hand consisting of a few parts, a
more complex polygonal model of a ship having several tens of parts of
di�erent sizes and structures; and a point cloud. No explicit tasks were
given in this evaluation apart from the general indication to (freely) ex-
plore and examine the shape from di�erent viewpoints. Also, no explicit
time limit was placed on the exploration.

We gathered several insights during our formative evaluation by free-
form discussions with the participants – that is, without following a
strict evaluation protocol based on tasks and quantitative responses. We
summarize below the most important ones:

• Skeleton rotation works quite well for relatively small changes
of viewpoint; more involved changes require decomposing the
desired rotation into a set of small-size changes and careful selec-
tion of their respective rotation axes;

• Skeleton rotations seem to be most e�ective for precise rotations,
in contrast to typical trackball usage, which works well for larger,
but less precise, viewpoint changes;

• All participants stated that they believe that skeletons allow them
to perform certain types of rotation easier than if they had used
the trackball for the same tasks. However, they all mentioned that
they do not feel that skeletons can replace a trackball. Rather, they
believe a free combination of both to be most e�ective. Since they
could only use the skeleton rotation (in our evaluation), they do
not know whether (or when) this tool works better than a track-
ball;

• All participants agreed that measuring the added-value of skele-
ton rotation is very important for its adoption.
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4.3 detailed evaluation – user study

The formative evaluation (Sec. 4.2) outlined that there is perceived
added-value in the skeleton rotation tool, but this value needs to be ac-
tually measured before users would consider adopting the tool – either
standalone or in combination with trackball. To deepen our understand-
ing of how skeleton-based rotation works, and to answer the above
questions, we designed and conducted a more extensive user evalua-
tion. We next describe the design, execution, and analysis of the results
of this evaluation.
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Figure 4.1: Top: User evaluation showing the 12 trials for one modality
(Sec. 4.3.1). Each trial consists of a source window in which the user
interacts to align the shape to match the target window. Bottom: Exe-
cution of end-to-end user evaluation. The use of our interactive tool
in both design and evaluation modes is shown in red (Sec. 4.3.2).

4.3.1 Evaluation design

Tool: To assess how the skeleton rotation modality compares with the
trackball modality, we designed an experiment supported by an inter-
active tool. The tool has two windows: The target window shows a 3D
shape viewed from a viewpoint (pose) that is preselected by the eval-
uation designer. No interaction is allowed in this window. The source
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window shows the same shape, which can be freely manipulated by the
user via the skeleton (S), the trackball (T), or both tools (B), activated
via the left, respectively right, mouse buttons. Both windows have the
same resolution (5122 pixels), use the same lighting and rendering pa-
rameters, and have a �xed position on the computer screen, to simplify
usage during the experiment that invokes multiple runs of the tool. Be-
sides rotation, the tool also allows panning and zooming. We also added
an option to automatically zoom out to show the full extent of a shape.
This eliminates the issues described in Sec. 3.3.3, i.e., manipulations that
move part of the shape outside the window. When in S mode, the tool
shows the silhouette skeleton (black), nearest skeleton points (yellow),
and estimated rotation axis (red) as explained earlier in Sec. 3.3.1 and
shown e.g. in Fig. 3.3. The user can interactively tune the simpli�cation
level of the skeleton via the ‘+’ and ‘-’ keys, to show more or fewer
branches from which to select a suitable rotation axis (cf Fig. 3.2).

Figure 4.1 (central inset) shows a �owchart of the tool’s operation,
which we detail next. Participants are asked to use the tool with each
modality in turn (S, T, B) to align the source with the target – up to
translation, which is deemed not important, since our goal is to inves-
tigate interactive tools for rotation speci�cation. The tool continuously
computes, after each motion of the mouse pointer, the value

α = arccos
(
Tr (MVs ·MVT

t ) − 1
2

)
, (4.1)

where MVs and MVt are the 3 × 3 OpenGL rotation matrices (ignoring,
thus, translation and scaling) corresponding to the pose of the shape in
the source and the target, respectively; Tr is the matrix trace operator;
and T denotes matrix transposition. The value α ∈ [0, 180] is the
smallest rotation (around any axis) needed to obtain the target pose
from the source pose (Belousov, 2016). Note that Eqn. 4.1 is sensitive
to mirroring, which is desired, since rotations cannot cause mirroring.
Alignment is considered completed when α < αmin ; in practice, we set
αmin = 15 degrees. Also, note that Eqn. 4.1 only checks for rotation,
and not scaling or panning, di�erences. This makes sense, since the
tested modalities S, T, B control rotation only; scaling (zooming) and
panning, though allowed to help users to inspect shapes, are not part
of our evaluation, and perform identically with S, T, and B. During
manipulation, the tool continuously displays the current value of α .
This shows users how far away they are from the target rotation MVt ,
thus, from completing a task. This feedback is useful when visual
comparison of the source and target poses is hard to do.

Shapes: We use the alignment tool to evaluate the performance of
the S, T, and B modalities on N = 4 shapes Ωi , 1 ≤ i ≤ N , shown in
Fig. 4.1(top). Shapes were selected so as to be familiar, have a structure
that exposes potential local-rotation axes, and have geometric com-
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plexity ranging from simple (horse, hand) to complex (ship). The �ower
shape is of lower complexity than the ship; however, its manifold
structure makes it particularly hard to understand and manipulate,
since it looks quite similar from many viewpoints. All shapes use
identical material properties and no opacity or textures, to favor
uniform evaluation. We excluded the more complicated point-cloud
shape (Fig. 3.7) used during formative evaluation (Sec. 4.2) since no
more than �ve of our recruited subjects had the technical background
needed to understand what such data means in the �rst place.

Task di�culties: For each shape, we use three target poses MVt to
capture three levels of di�culty of the alignment task:

• Easy: Alignment can be done by typically one or two manipula-
tions, such as a rotation around one of the x or y window axes,
or a rotation around a clearly-visible symmetry axis of the shape.
For example, the blue-framed target in Fig. 4.1 can be obtained
from the green-framed pose (left to it) by a single counterclock-
wise rotation of the horse with 90 degrees around the y axis or,
alternatively, the rump’s skeleton;

• Hard: Alignment requires multiple rotations around many di�er-
ent rotation axes; it is not easy to see, from the source and target,
which would be these axes;

• Intermediate: Alignment di�culty is gauged as between the above
two extremes.

We call next the combination of shape Ωi and start-and-end pose
(MVs ,MVt ) a trial. Using multiple-di�culty trials aims to model tasks
of di�erent complexity. Trial di�culty was assessed by one of the au-
thors (who also designed the actual poses MVt ) and agreed upon by
the others by independent testing. We veri�ed that users employing all
three modalities could accomplish all trials within a time t lower than
a prede�ned timeout tmax = 120 seconds.

Figure 4.1(top) shows the source (left window in each window-pair)
and target (right window in the same pair) windows for the 12 trials
spanning the 4 shapes using the T modality. Source windows show the
currently-enabled modality in red text, to remind users how they can
interact. We see, for instance, that the easy trial would require, in T
mode, a simple 90-degree rotation around the y axis for the ship model,
or around the main skeleton branch passing through the horse’s rump
for the horse model, respectively. In contrast, the hard task requires
several incremental rotations for all modalities. The 12 trials use iden-

tical initial poses MVs and target poses MVt . That is, the user is asked
to perform, for each shape, the same alignment MVs → MVt using all
three modalities, thus ensuring that only the the target pose (endpoint
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of manipulation) and, of course, the used modality, a�ect the measured
execution time.

In total, we thus execute 12 trials ×3 modalities = 36 runs. For each
run, we record the time needed for the user to complete it. If the user
fails to perform the alignment within the allowed timeout, the run is
considered failed and the user moves automatically to the next run.
Users can at any time (a) abort a run by pressing ‘ESC’ to move to
the next run; this helped impatient users who did not grasp how to
perform a given alignment task and did not want to wait until the
timeout; (b) abort the entire evaluation, if something goes entirely
wrong; and (c) reset the viewpoint to the initial one (MVs ), to ‘undo’ all
manipulations performed so far if these are deemed unproductive.

Pose design: The di�erent target poses MVt were designed in advance
by us by using the S and T tools – intermixed – to freely change the
shape’s pose until obtaining the desired target poses, and stored, as ex-
plained, as 3 × 3 OpenGL rotation matrices.
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software

Gender Student

m
al

e
fe

m
al

e

ye
s

no
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Figure 4.2: (a) Setup employed during the user evaluation. (b) Self-reported char-
acteristics of the experiment participants. See Sec. 4.3.2.

4.3.2 Evaluation execution

Subjects: Twenty-seven persons took part in the evaluation. they
self-report ages of 9 to 64 years (median: 24, average: 26.9); and gender
being male (16) and female (11), see Fig. 4.2b. To gauge their experience
with 3D manipulation, we asked them to report how many times a year
they used 3D games and/or 3D design software. Both categories are
reported in Fig. 4.2b as ‘3D software usage’. Results show a median of
30 times, with the minimum being zero (never) and the maximum being
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basically every day. From these data we conclude that most participants
should have a good practical mastery of 3D manipulation. From the 27
participants, 13 were students in �elds as diverse as Computer Science,
social science, medicine, economy and society, and mathematics; the
other 14 were primary or secondary school pupils (6) or employed
in various liberal professions (8). All participants reported no color
blindness issues. All except one were right-handed. They all reside in
the Netherlands or Belgium. Communication during the training and
experiment was done in the native language of each participant by a
(near-)native speaker. For participants with limited English pro�ciency,
all English material (tutorial, questionnaires) was transcribed by the
trainer.

Work�ow: Participants followed the evaluation work�ow showed in
Fig. 4.1(bottom). First, we created the information needed to execute
the 36 runs (Fig4.1(bottom, A)), as explained in Sec. 4.3.1. Next, partic-
ipants were given access, prior to the actual experiment, to a web tu-
torial which describes both S and T tools in general, and also allows
users to practice with these tools by running the actual application to
execute some simple alignment tasks. No statistics were collected from
this intake phase. After intake, users were asked if they felt interested
in, and able to follow, the tutorial. This intake acted as a simple �lter
to separate users with interest in the evaluation (and potential ability
to do it) from the rest, so as to minimize subsequent e�ort. Seven per-
sons dropped from the process due to lack of general computer skills (1
user), one too young (6 years), one too old (82 years), and four due to
technical problems related to remote-deployment of the tool. These per-
sons are not included in any of the statistics further on, nor in Fig. 4.2b.
For clarity, we did not ourselves drop the too-young and too-old users
from the study – the decision to quit was their own based on their own
assessment of not being able to complete the tasks being asked.

Next, a trainer (role �lled by di�erent co-authors) took part in a con-

trolled session where they explained to either individual participants or,
when social distancing rules due to the Corona pandemic were not appli-
cable, to groups of participants how the tool works and also illustrated it
live. The aim of this phase was to re�ne the knowledge disseminated by
the web tutorial and con�rm that participants understood well the eval-
uation process and tooling. Participants and trainers used Linux-based
PCs (16 to 32GB RAM) with recent NVidia cards, wide screens, and a
classical two-button mouse. To maximize focus on the experiment, no
application was run on screen during the evaluation besides the two-
window tool described in Sec. 4.3.1. Training took both the in-person
form (with trainer and user(s) physically together), and via TeamViewer
or Skype screen sharing, when social distancing rules mandated separa-
tion. Training took between 20 and 40 minutes per user, and was done
until users told that they were con�dent to use the tool to manipulate
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both a simple model and a complex one via all three modalities (S, T, B).
During this phase, we also veri�ed that the tool runs at real-time frame
rates on the users’ computers so as to eliminate confusing e�ects due
to interaction lag; and that the users did not experience any di�culty
in using the keyboard shortcuts outlined in Sec. 4.3.1.

After training, and con�rmation by participants that they understand
the evaluation tool and tasks to be done, participants started executing
the 36 runs (Fig. 4.1(bottom, B). They could pause between runs as de-
sired but not change the orders of the runs. Figure 4.2a shows the setup
used during the evaluation by one of the actual participants; notice the
two-window interaction tool on the screen. At the end, the results of all
36 runs – that is, either completion time or run failure (either by timeout
or user abortion) – were saved in a database with no mention of the user
identity. Next, users completed a questionnaire covering both personal
and self-assessment data and answers to questions concerning the us-
ability of the tool. Both types of results (timing data and questionnaires)
were further analyzed (Fig. 4.1(bottom, C)), as described in Sec. 4.3.3.

4.3.3 Analysis of results

We next present both a quantitative analysis of the timing results and
an analysis of the qualitative data collected via questionnaires.

4.3.3.1 Analysis of timing results

A most relevant question is: How did performance (measured in com-
pletion time and/or number of aborted runs) depend on the interaction
modality and shape? Figure 4.3a shows the average completion time, for
the successful runs, aggregated (over all users) per modality and next per
shape. User identities are categorically color-coded for ease of reading
the �gure. Median and interquartile ranges for each modality are shown
by black lines, respectively gray bands. We see that the S modality is sig-
ni�cantly slower than T. However, the B modality is faster than T, both
as median and interquartile range, and also for each speci�c shape. This
is an interesting observation, as it suggests that, in B mode, users did
gain time by using S only for some speci�c manipulations for which T
was hard to use. A likely explanation for this is that the B modality was
always used last during the trials. Hence, when in B mode, users could
discover the situations when S outperformed T, and switch to S in those
cases to gain time. We will analyze this hypothesis further below.

Figure 4.3b shows the number of failed runs per modality, shape, and
user. These are largest for the S modality. This tells again that S cannot
be used alone as a general-purpose manipulation tool. If we combine
this insight with the total times per shape (Fig. 4.3a), we see that the
perceived di�culty of the task varies signi�cantly over both shapes and
modalities: T and S behave quite similarly, with horse and ship being eas-
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Figure 4.3: Completion time (a) and number of failed runs (b) per modality and
shape, all users. See Sec. 4.3.2.
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ier to handle and �ower being the hardest. In contrast, hand seems to
be the hardest to handle by the S modality, as it has most aborted runs.
Upon a closer analysis, we found that the pose used by the ‘hard’ trial for
hand (see the respective image in Fig. 4.1(top)) is quite easy to achieve
with T (and thus also B), but quite di�cult to obtain using S, since it im-
plies, at several points, performing a rotation around an axis orthogonal
to the hand’s palm, for which no skeleton line exists in the silhouette.
The second-hardest shape for S is ship. Analyzing the users’ detailed
feedback showed us that ship’s complex geometry produces a wealth
of potential rotation axes with quite di�erent angles, which makes the
users’ choice (of the optimal rotation axis) hard. This happens far less
for the other simpler-structure shapes. Separately, Fig. 4.3b shows that
the number of aborted runs in B mode is far lower than that in S mode,
being practically the same as for T mode. This, and the fact that B mode
is fastest, reinforces our hypothesis that users employ the S tool in B
mode only for very speci�c manipulations and revert to T for all other
operations. Hence, S works best as a complement, not a replacement, of
T.

Figure 4.4a introduces additional information in the analysis by show-
ing how the average times vary over the three task di�culty levels (easy,
moderate, hard, see Sec. 4.3.1). For all shapes and modalities, the task
labeled ‘easy’ by us is, indeed, completed the fastest. The other two dif-
�culty levels are, however, not signi�cantly di�erent in execution times.
We also see that e�ort (time) is distributed relatively uniformly over all
di�culty levels for all shapes and modalities. This indicates that there
is no ‘outlier’ task or shape in our experiment that would strongly bias
our evaluation’s insights.

Finally, we examine the data from a user-centric perspective. Fig-
ure 4.4b shows the total time per user, split per modality, with the fastest
users at the right and the slowest at the left. We see a quite large spread
in performance, the fastest user being roughly 2.5 times faster than the
slowest one. We see that the T modality does not explain the big speed
di�erence – the red bars’ sizes do not correlate with the total time. In
contrast, the blue bars show an increase when scanning the chart right-
to-left, at the 8th leftmost bar – meaning that the 8 slowest users needed
clearly more time to use the B modality as opposed to the remaining
19 users. Scanning the graph right-to-left along its orange bars shows a
strongly increasing bar-size. That is, the main factor di�erentiating slow
from fast users is their skill in using the S tool. We hypothesized that this
skill has to do with the users’ familiarity with 3D manipulation tools. To
examine this, we show a scatterplot of the average time per user (all tri-
als, all shapes) vs the user’s self-reported number of days per year that
one uses 3D computer games or 3D creation software (Fig. 4.4c). All
points in the plot reside in the lower range of the y axis, i.e., all users
report under 100 days/year of 3D tool usage, except user 12 who in-
dicated 3D gaming daily. The computed correlation line shown in the

51



evaluating the skeleton vs trackball interaction

�gure (R2 = 0.0022, p = 0.813) indicates a negligible inverse correla-
tion of average time with 3D software usage. Hence, our hypothesis is
not con�rmed. The question what determines the variability in users’
average completion times is still open.
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Figure 4.4: a) Average completion time per di�culty levels, modality, and shape.
b) Total time for all users, from slowest to fastest, split per modality.
c) Correlation of average time (all runs) with users’ frequency of 3D
software usage. See Sec. 4.3.2.

4.3.3.2 Questionnaire results

As mentioned at the beginning of Sec. 4.3.2, users completed a question-
naire following the experiment. They were asked to answer 13 ques-
tions concerning their experience with each of the three modalities (T,
S, B) using a 7-point Likert scale S (1=strongly disagree, 2=disagree,
3=disagree somewhat, 4= no opinion, 5=agree somewhat, 6=agree,
7=strongly agree). An extra question (Q14) asked which of the three
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modalities users prefer overall. Figure 4.5(bottom) shows these 14 ques-
tions. Here, ‘tool’ refers to the modality being evaluated. Following ear-
lier studies that highlight that user satisfaction is not the same as user
e�ciency or e�ectiveness when using interactive tools (Frokjaer et al.,
2000; Partala, 1999), we included questions that aim to cover all these
aspects. Users could also input free text to comment on their perceived
advantages and limitations of all three modalities or any other remarks.

Figure 4.5(top) shows the aggregated answers for Q1..Q13 for each
of the three modalities with box-and-whisker plots (box shows the in-
terquartile range; whiskers show data within 1.5 times this range). We
see that the S modality ranks, overall, worse than the T modality, except
for accuracy (Q5). Accuracy (Q5) can be explained by the fact that users
need to control a single degree of freedom with S – the rotation angle –
but two degrees of freedom with T. In other words, once a suitable rota-
tion axes is chosen, S allows one to precisely specify the rotation angle
around this axis. We also see that S helps completing the task less often
than T (Q10), which matches the failure rates shown in Fig. 4.3b. How-
ever, the B modality ranks in nearly all aspects better than both T and
S. This supports our hypothesis that S best complements, rather than
replaces, T. An interesting �nding are the scores for Q8 and Q6, which
show that B was perceived as less tiring to use, and needing fewer steps
to accomplish the task respectively, than both T and S. This matches the
results in Fig. 4.3a that show that B is faster than both T and S – thus,
arguably less tiring to use. For Q14, 22 of the 27 users stated that they
prefer B overall, while the remaining 5 users preferred T, with none
mentioning S as the highest-preference tool. As for the previous �nd-
ings, this strongly supports our hypothesis that the S and T modalities
work best when combined.

From the free text that captures the user’s comments on the perceived
advantages and limitations of all three modalities, we could distil several
salient points. For space constraints, we list only a few below:

• Trackball (T): Several users praised T for being “easy to use”.
However, users also complained about trackball being imprecise
for performing �ne adjustments;

• Skeleton (S): This modality was mentioned as better than the
other two by only a few users, and speci�cally for the horse, hand,
and �ower models, because of their clear and simple skeletons,
which allow one to intuitively rotate the shape around its parts
(“easy to turn the hand around a �nger”’; “easy to turn the horse
around a leg”; “S helps to turn the �ower around its stem”). How-
ever, several users mentioned advantages of S when used in com-
bination with T. These are discussed below;

• Both (B): Overall, this modality received the most positive com-
ments. It was deemed the “most accurate”; and “feeling quick to
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Trackball only (T) Skeleton only (S) Both modalities (B)
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S

Q1 The tool met my needs for performing the alignment task
Q2 The tool worked as expected (after following the training)
Q3 The tool helped me be more e�ective than the two other tools
Q4 The tool was easy to use
Q5 The tool was accurate
Q6 The tool requires the fewest steps (compared to the other two) to accomplish my goals
Q7 I felt that I have to think carefully to get a good result with this tool
Q8 The tool was tiring to use
Q9 Both occasional and regular users would like the tool
Q10 I can use the tool successfully every time
Q11 I learned to use the tool quickly
Q12 I easily remember how to use the tool
Q13 I am satis�ed with the tool
Q14 Which tool (T, S, or B) do you overall prefer?

Figure 4.5: Results of 13-point user questionnaire for the three modalities. Ques-
tions are shown below the charts. See Sec. 4.3.3.2.
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use when we have two methods [to choose from]”. Speci�cally,
users noted that B is “good for doing �nal adjustments / �ne tun-
ing the alignment” and that “S helps T to getting the desired re-
sult easily” and “I started with T and used S for �nal touches”.
One user also commented: “I work as a graphic designer with a
lot of 3D tools; I see how S helps me by providing a lot of con-
trol when rotating, and I would love to have this tool along my
other manipulation tools in my software [...] but I would not use
it standalone”.

Summarizing the above, we see that our initial hypothesis that the S
modality helps (complements) T for precision tasks is largely supported
by user experience.

4.4 discussion

The evaluation described in Sec. 4.3 con�rmed the insights elicited from
the earlier formative study (Sec. 4.2), i.e. that skeleton rotation is best for
precise, small-scale, �nal alignment touches; and that skeleton rotation
best works as a complement, and not replacement, of trackball rotation.
The latter point was supported by all types of data from our evaluation
– task timing, scores assigned by users to evaluation questions, and free-
form text feedback. The same data shows that users rank the combined
modality (B) as better than both S and T modalities taken separately.
The user scores also show that, overall, the combined modality is easy
to learn and use (Fig. 4.5, Q2-4-8-11-12). Put together, all above support
our claim of added value for the skeleton-based rotation technique.

Besides the above results, the user study also unveiled several
questions which we cannot fully answer:

User performance: There is a large variability of user performance,
measured as task success rates and completion times (see Fig. 4.4b
and related text). We cannot explain this variability by di�erences in
the experiment setup, previous user familiarity with 3D manipula-
tion, amount of training with the evaluated tool, or other measured
factors. This variability may be due to user characteristics which the
self-reported variables (Fig. 4.2b and related text) do not capture; to the
high heterogeneity of the user population; but also due to dependent
variables which we did not measure, e.g., how often did users use the
skeleton simpli�cation level (Sec. 4.3.1) to produce suitable skeletons
for generating rotation axes. Repeating the experiment with a more
homogeneous population and more measured variables would help
answering this question.

Applicability: An important limitation of our study is that, for the
B modality, we did not measure how (much) the task was completed
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using each separate modality, i.e., S and T. The formative study
(Sec. 4.2), textual user feedback for the controlled experiment, and
our observation of the users during the experiment jointly show that,
in most cases involving moderate or hard tasks, trackball was �rst

used to obtain a viewpoint roughly close to the target one, which
was next �ne-tuned using skeleton. This is fully in line with our
initial design ideas (see Fig. 3.1 and related text) and also with earlier
�ndings on what trackball best works for Jacob and Oliver (1995);
Partala (1999); Henriksen et al. (2004a). However, understanding
more precisely which are the rotation types that skeleton best sup-
ports would greatly help to improve the combined modality by e.g.

suggesting this modality to the user when it appears �t, and/or con-
versely, blocking this modality when it does not match the task at hand.

Study limitations: A limitation that, by now, should have become ap-
parent to the reader is that the compared rotation modalities – virtual
trackball and skeleton-based – specify two di�erent kinds of rotation.
Indeed, virtual trackball speci�es a rotation around a point; in contrast,
the skeleton modality speci�es a rotation around an axis. As such, the
di�erences in usage of the two modalities can be partially explained by
the intention of the user: One would prefer the trackball when want-
ing to rotate a shape around a given point, and respectively the skele-
ton modality when wanting to rotate a shape around a given axis. One
could argue that a fairer comparison would be that between our pro-
posed skeleton modality and other modalities for specifying rotation
around 3D axes. We have considered this possibility. However, we have
observed that mechanisms to specify rotations around 3D axes are, in
general, quite complex to implement in terms of user interface – see also
the discussion in Sec. 3.2 – unless one would use multitouch screens.
As such, an important driver in our evaluation was to select a rotation
mechanism that is comparably easy to use to our skeleton modality,
and also have both modalities able to run on classical set-ups involving
simple mouse-and-keyboard input. The virtual trackball emerged as a
clear candidate concerning these requirements, which is why we chose
it for executing the user evaluation. An evident direction of improving
this comparison is to have our skeleton modality implemented on mul-
titouch devices and compared via an user evaluation with easy-to-use
rotation speci�cation mechanisms for such devices such as FI3D and its
extensions (Yu et al., 2010; Guo et al., 2017; Yu and Isenberg, 2009).

Besides the above-mentioned aspects, our study (Sec. 4.3) has further
limitations: It uses only four shapes that cannot capture the rich distri-
butions of 3D shapes that need manipulation. Also, it only covers the
task of rotating from an initial pose to a given �nal pose. Yet, manipu-
lation is also used for free exploration and/or design actions which do
not require reaching a prede�ned pose. It is unclear how to quantita-

tively measure the added value of interaction tools in such contexts,
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beyond qualitative user-satisfaction questionnaires (Henriksen et al.,
2004a). Also, we cannot exclude learning e�ects between the trials
that address the same task with di�erent modalities. Finally, what is
the exact added-value of all the rotation-speci�cation improvements
(Sec. 3.3.3) was not currently measured. Exploring all these directions
is left to future work.

4.5 conclusion

In this Chapter, we described the execution of a user evaluation study
aimed to compare and contrast the 3D rotation speci�cation mechanism
using image skeletons introduced in the previous Chapter with other
established mechanisms for specifying 3D rotations. We measured the
added value of our proposed rotation technique by a formative study
(to elicit main concerns from users) followed by a controlled user study.
Results showed that, when combined with the classical virtual trackball
rotation, our method leads to better results (in terms of task completion
times) and higher user satisfaction than trackball rotation alone. Also,
our method is easy to learn and does not carry a signi�cant learning or
execution cost for the users, thereby not increasing the costs of using
standard trackball rotation.

Several future work directions are possible. More cues can be used to
infer more accurate 3D curve skeletons from image data, such as shad-
ing and depth gradients, leading to more precise rotation axes. Such
data-driven cues could be also used to better control the rotation, and
also suggest to the user which of the two modalities (skeleton-based or
trackball rotation) are best for a given context. Separately, we aim to
deploy our joint skeleton-and-trackball rotation tool on touch displays
(single or multiple input) and evaluate its e�ectiveness in supporting do-
main experts to perform 3D exploration for speci�c applications, such
as the astronomical data exploration outlined in Sec. 4.2.
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5U S I N G M U L T I P L E AT T R I B U T E - B A S E D
E X P L A N AT I O N S O F M U L T I D I M E N S I O N A L
P R O J E C T I O N S T O E X P L O R E H I G H - D I M E N S I O N A L
D ATA

Abstract: Multidimensional projections (MPs) are e�ective methods
for visualizing high-dimensional datasets to �nd structures in the data
like groups of similar points and outliers. The insights obtained from
MPs can be ampli�ed by complementing these techniques by several
so-called explanatory mechanisms. We present and discuss a set of six
such mechanisms that explain MPs in terms of similar dimensions, local
dimensionality, and dimension correlations. We implement our explana-
tory tools using an image-based approach, which is e�cient to compute,
scales well visually for large and dense MP scatterplots, and can handle
any projection technique. We demonstrate how the provided explana-
tory views can be combined to augment each other’s value and thereby
lead to re�ned insights in the data for several high-dimensional datasets,
and how these insights correlate with known facts about the data under
study1.

5.1 introduction

Multidimensional Projections (MPs) are among the methods of choice
for visualizing high-dimensional data, as they scale well in terms of
the number of data points and data dimensions that they can show on
a given screen space. They are useful in exploring the data structure,
speci�cally in identifying similar sets of points and outlier points. How-
ever, understanding what, in terms of data values, ranges, or relations
between dimensions, makes these structures appear in the projection
(and thus, in the data) is not trivial. Several mechanisms exist to this end,
as follows. Global explanations, such as biplot axes (Greenacre, 2010;
Gower et al., 2011) and axis legends (Broeksema et al., 2013; Coimbra
et al., 2016) show how dimensions in�uence an entire projection, and
as such cannot, in general, explain the formation of local patterns like
clusters. Linked views and tooltips show local explanations, but require
one to manually select structures of interest in the projection (Pagliosa
et al., 2015; Joia et al., 2011; Rauber et al., 2015). Image-based tech-
niques (Aupetit, 2007; Schreck et al., 2010; Martins et al., 2014) display

1 This chapter is based on the papers ‘Enhanced Attribute-Based Explanations of Multidi-
mensional Projections’ (van Driel et al., 2020) and ‘Using Multiple Attribute-Based Expla-
nations of Multidimensional Projections to Explore High-Dimensional Data’ (Tian et al.,
2021c).
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local explanations everywhere on the projection, not requiring one to
select speci�c point subsets. They scale well visually and computation-
ally, are clutter-free, and can generically handle any high-dimensional
dataset.

da Silva et al. (2015) proposed an image-based explanation that col-
ors every projection point by the dimension that contributes most to
the similarity of data points in that neighborhood or, more technically
put, the dimension which has the lowest variance over the respective
neighborhood, or the dimension which contributes the least to the Eu-
clidean distance between the points across that neighborhood. However,
as noted in this work, having a single explanation is usually not su�-
cient to understand what points that are nearby in a projection, e.g.,
which form a visual cluster, share among themselves. This is not sur-
prising since there are many dimensions in the input dataset that the
MP technique is jointly analyzing to create the respective projection.

To alleviate this situation, we create additional explanatory views
which capture other aspects of the high-dimensional data at hand, as
follows. First, we use principal component analysis (PCA) to analyze
point neighborhoods to deduce and encode the local (intrinsic) dimen-
sionality of the data. This allows users to separate regions of high in-
trinsic dimensionality in the projection (hard to explain by just a few
dimensions) from low-dimensionality regions where such explanations
are feasible. Secondly, we analyze point neighborhoods to detect and
depict strong linear relationships (not captured by PCA) between di-
mensions. Our techniques complement existing mechanisms for projec-
tion explanation such as the attribute variance of Da Silva et al., can be
computed e�ciently on the GPU, and can be applied generically on any
high-dimensional dataset visualized by any MP technique.

Our work o�ers six explanatory views (distance contribution, vari-
ance, three ways to view dimensionality, and correlation) to explore
MPs, arguing that more explanations would provide more insights in
the data. However, how these �ve views can be combined, in practice, to
explore real-world data, and how the obtained �ndings match ground-
truth information about such data, are additional important questions
to be answered to support our proposal. To answer such questions, we
show several examples of how our �ve proposed views can be combined
in a visual analytics fashion to �nd relevant insights in �ve real-world
high-dimensional datasets that cannot be found using a single view. We
also correlate the obtained insights with ground-truth information inde-
pendently extracted by other researchers from three of these datasets.

Our six-view toolset depends on multiple technical settings such as
hyperparameters controlling the computation of the various explana-
tions involved in the views, e.g., local neighborhood size, but also, most
evidently, the choice of the MP technique used to generate the projec-
tions in the �rst place. To shed more light on how our produced expla-
nations are to be interpreted, we study and discuss how they depend on
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the values of these hyperparameters across a number of well-known
MP techniques.

The structure of this chapter is as follows. Section 5.2 presents related
work. Section 5.3 details our six explanatory views (including the orig-
inal two proposed by da Silva et al. (2015)). Section 5.4 shows how the
total set of six views can shed insights on projections of non-synthetic
datasets, which we next correlate with available ground-truth informa-
tion. Section 5.5 discusses our techniques. Section 5.6 concludes the
chapter.

5.2 related work

We start introducing a few notations. Let D = {xi } ⊂ Rn , 1 ≤ i ≤ N , be
a n-dimensional dataset with points xi = (x1i , . . . ,x

n
i ), also called sam-

ples or observations. We call the vectors Xj = (x
j
1, . . . ,x

j
N )

T , 1 ≤ j ≤ n,
the dimensions of D, also known as variables or attributes. Hence, D
can be seen as a matrix of N rows (samples) and n columns (dimen-
sions). A projection is a function P : D → Rm , m � n, which
maps a high-dimensional point x to a low-dimensional one P(x). In
practice, m ∈ {2, 3}, so projecting an entire dataset D, denoted by
P(D) = {P(x)|x ∈ D}, yields a 2D or 3D scatterplot. Projections aim to
place points that are similar in D close to each other in P(D) to enable
users to recover the structure of D from the scatterplot P(D). Similar-
ity can be computed based on Rn distances (Tenenbaum et al., 2000; De
Silva and Tenenbaum, 2004; Joia et al., 2011) or Rn neighborhoods (van
der Maaten and Hinton, 2008; McInnes et al., 2018). Recent surveys pro-
vide more details on the technicalities of MPs (Nonato and Aupetit, 2018;
Espadoto et al., 2019). In our work next, P can be any projection tech-
nique chosen by the user as desired or demanded by one’s application
context.
Explanatory techniques for projections aim to enrich the bare scat-

terplot P(D) with additional information that guides the user in in-
terpreting P(D). We classify such techniques as observation-centric,
dimension-centric, and hybrid, as follows.

5.2.1 Observation-centric explanations

These techniques aim to provide information about speci�c projec-
tion observations P(x). Many such techniques aim to show the er-
rors produced by the projection function P measured by e.g. normal-
ized stress (Joia et al., 2011; Martins et al., 2014), correlation (Geng
et al., 2005), Shepard diagrams (Joia et al., 2011), trustworthiness (Venna
and Kaski, 2006b), continuity (Venna and Kaski, 2006b), neighborhood
hit (Paulovich et al., 2008), distance consistency (Sips et al., 2009), rank-
ing discrepancy (Lee and Verleysen, 2009; Lueks et al., 2013), projec-
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tion precision score (Schreck et al., 2010), stretching and compres-
sion (Aupetit, 2007; Lespinats and Aupetit, 2011), and class consistency
metrics (Tatu et al., 2010). Continuity and trustworthiness are closely
related to the so-called missing neighbors, respectively false neighbors,
of a projected point P(x) (Martins et al., 2014). For a recent survey that
discusses most above metrics, we refer to Nonato and Aupetit (2018).

Error metrics can be computed at three aggregation levels. Global
errors generate a single (scalar) value for an entire scatterplot P(D),
so they help gauging the quality of such a scatterplot, but do lit-
tle in explaining it. Point-pair errors quantify the projection error
of a point pair (P(x), P(y)) ∈ P(D) × P(D) and can be rendered as
Shepard diagrams (Joia et al., 2011) or line plots simpli�ed by edge
bundling (Martins et al., 2014). Point-neighborhood errors quantify the
projection error of a point P(x) ∈ P(D) with respect to all its neigh-
bors in P(D) or, alternatively, all neighbors of x ∈ D. These are further
visualized using heatmaps (Schreck et al., 2010; Martins et al., 2014) or
Voronoi diagrams (Aupetit, 2007; Lespinats and Aupetit, 2011), thereby
informing the user about projection problems at the location of every
scatterplot point. This further assists one in determining where, and
how much, one can trust a projection. However, such techniques can-
not explain why certain points are projected close to each other (or not).

5.2.2 Dimension-centric explanations

These techniques show how the dimensions Xj of a dataset D relate
to the scatterplot. The simplest, and still most used, dimension-centric
explanation colors a scatterplot by the values of a selected dimension
Xj . This explains speci�c groups of points in the scatterplot by that
dimension’s values. Several dimensions can be used via interaction or
small multiples. Yet, this approach cannot easily handle more than a few
dimensions, leaving their selection to the user. Biplot axes (Greenacre,
2010; Gower et al., 2011) involve all dimensions in the explanation by
drawing n lines atop of the scatterplot P(D), each indicating the em-
bedding of one of the dimensions Xj in the projection space Rm . Axis
legends (Oeltze et al., 2007; Broeksema et al., 2013) take a di�erent route,
by explaining how the n dimensions map to the 2D scatterplot’s x andy
axes using bar charts. Both biplots and axis legends have been general-
ized to explain also 3D projections and nonlinear projections (Coimbra
et al., 2016).

All above dimension-centric explanations act as generalizations of
the classical axis labels present in 2D Cartesian scatterplots – that is,
they allow users to see which are the values of one or multiple dimen-
sions that determine the overall projection shape. However, they do not
explicitly connect the explanations to individual scatterplot points or
point groups, leaving this to be done (visually) by the user. In contrast,
observation-centric techniques explicitly mark individual points by the
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provided explanations (e.g., errors); however, such techniques do not
involve dimensions in the explanation.

5.2.3 Hybrid explanations

Hybrid techniques aim to join the strengths of observation-centric and
dimension-centric ones. The simplest form involves brushing points to
show their attributes in a tooltip. More involved techniques involve in-
teractively selecting and/or modifying speci�c points S in the projection.
By next arranging P(D) \ S around S , one can explain P(D) \ S in terms
of (known) attribute values of S . The VIBE system (Olsen et al., 1993) al-
lows selecting and placing points of interest (POIs) in the 2D projection
space according to one’s mental map of how the respective data sam-
ples relate to each other. The remaining data points are projected based
on their similarity to POIs. A similar approach is proposed in Joia et al.
(2011) and by the ForceSPIRE text visualization system (Endert et al.,
2012). The “dust and magnets” technique (Yi et al., 2005) extends these
interaction metaphors by allowing users to interact with both POIs and
data points, using animation to map the data-to-POI similarities. In-
teraction also supports navigating through a space of 2D scatterplots
(whose axes are directly explained by their dimensions) created from
the high-dimensional data (Piringer et al., 2004; Elmqvist et al., 2008).
Pagliosa et al. propose a ‘projection inspector’ that o�ers several such in-
teractive exploratory mechanisms. Interactive techniques are very pow-
erful in providing ‘details on demand’ (on both observations and dimen-
sions) to the user. However, they require interaction e�ort, and also can-
not explain an entire projection, but rather the point(s) interacted with.
Image-based techniques, also known as dense maps, are a di�erent hy-

brid approach. These rasterize the 2D projection space R2 and synthe-
size, for each pixel p, an explanation based on the points in P(D) nearest
to p. This space-�lling approach allows a large amount of information
to be conveyed; and removes issues of observation-centric techniques
caused by overlapping points in P(D). Da Silva et al. create dense maps
where pixel hues encode the dimension that best explains the similarity
of points in P(D) close to each pixel, and brightness encodes the expla-
nation con�dence (da Silva et al., 2015). We extend this technique with
explanations of the local dimensionality of data and dimension correla-
tions. We detail both above techniques in Sec. 5.3.

Dense maps have been used to explain projection errors (Martins
et al., 2014; Schreck et al., 2010; Lespinats and Aupetit, 2011)). Rodrigues
et al. used dense maps to visualize the decision zones of classi�ers of
high-dimensional data (Rodrigues et al., 2019). Like us and Da Silva et

al., they also use pixel hues and luminances to encode a classi�er’s de-
cision, respectively decision con�dence, at a data point x mapping to
a pixel P(x). Our goals are di�erent, as we aim to explain a dataset in
terms of its dimensions, rather than a classi�er in terms of its decisions.
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5.3 explanatory mechanisms

The image-based explanatory techniques introduced in Sec. 5.2.3 ex-
ploit the distance or neighborhood preservation property of MPs: Let
νi ⊂ P(D), νi = {y ∈ P(D)| ‖y − yi ‖ ≤ ρ}, be a neighborhood of size ρ
of scatterplot points y centered at yi . Since points in νi are, by construc-
tion, close, and since P is expected to (reasonably) preserve similarities,
the points µi ∈ D that project to νi are expected to be similar. Hence, it
makes sense to compute an explanation of µi and next visually encode
this on all scatterplot points yi .

Da Silva et al. propose two such explanations (da Silva et al., 2015).
Let λjx,x′ = ‖x

j − x′j ‖21/‖x − x′‖2n be the contribution of dimension j
to the distance between two points x and x′ in D, where ‖ · ‖k is the
Euclidean distance in Rk . This point-pair contribution is extended to
neighborhoods µi by averaging the local contributions of xi and all its
neighbors, as

λ
j
i =

∑
x∈µi

λjx,xi /|µi |, (5.1)

where | · | denotes set size. These average contributions are next nor-
malized as

λji =
λ
j
i /γ

j∑n
j=1

(
λ
j
i /γ

j
) , (5.2)

where the normalization γ j is the contribution λ
j

of dimension j of
the full dataset D (see Eqn. 5.1) with respect to its centroid. Since nor-
malized, λji ∈ [0, 1], with lower values indicating dimensions that con-
tribute little to distances in µi , i.e., explain well why points in µi are
similar. Da Silva et al. also propose an alternative to Eqn. 5.2 by com-
puting the relative variance ω j

i of dimension j over the neighborhood
µi as

ω j
i =

LV j
i /GV

j∑n
j=1(LV

j
i /GV

j )
, (5.3)

where LV j
i is the variance of dimension j for all points in µi , normalized

by the variance GV j of the same dimension j over all points in D. Just
as λji , ω

j
i ∈ [0, 1], with lower values telling dimensions that vary little

in a neighborhood.
The scatterplot P(D) is explained by color-coding its points by the

C dimensions that have overall low values of λji (or ω j
i , depending on

the user’s choice) over all points. C is set to a low value, e.g. 8, since
categorical colormaps should be small. Luminance is used to encode
the con�dence in the visual explanation: If j is the dimension picked to
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color point i , con�dence κ is computed as the sum of λji (or ω j
i ) values

for all points in the neighborhood µi , normalized by the sum of the
same terms over all dimensions over µi . If neighbors of point i are best
explained by the same dimension j as i , the color will appear bright,
and conversely. We render the scatterplot by drawing radial splats of
R pixels radius, textured with color and luminance computed as above,
and using a opacity (alpha) varying from fully opaque in the center to
slightly transparent at the borders, to smoothly blend neighbor splats.
Setting R is discussed further in Sec. 5.5.
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Figure 5.1: Explanatory techniques illustrated on a synthetic cube dataset. The
(a) dimension contribution and (b) variance color points by the di-
mension (X, Y, Z) that makes them most similar to their neighbors.
The local dimensionality with total (c), minimal (d), and variance ra-
tio (e) color points by their local intrinsic dimensionality (2D or 3D).
The (f) dimensions correlation colors points to indicate the strongest-
correlated dimension pair (X-Y, Y-Z, X-Z) close to each point. Bars in
the legends show the number of points explained by each dimension
(a,b), dimensionality (c,d,e), and dimension pair (f). See Sec. 5.3.

Figure 5.1a,b show a 3K point dataset spread over three faces of an
axis-aligned cube (with added noise), projected with PCA to 2D, ex-
plained by dimension contribution, respectively variance. Points on
each cube face share very similar values of a dimension, so are bright
and colored by the respective dimension. It is important to see that
these are the original data dimensions (x , y, z), and not latent dimen-
sions synthesized by PCA (eigenvectors). Points along cube edges are
dark, since two (or three, for the cube corner) dimensions are needed
to explain their similarity with neighbors. Hence, their color coding in
the visualization and corresponding legend. Although these two expla-
nations are practically identical for the cube dataset, we will see later
on that they can subtly di�er, thus both bringing in added value in the
projection understanding process. We note that the similarity of the di-
mension contribution and variance explanations for a similar synthetic
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cube dataset was observed originally by Da Silva et al. (da Silva et al.
(2015)) in their seminal paper where these two techniques were pro-
posed. However, they did not further explore how these explanations
vary on real-world datasets and/or how the visual analyst should in-
terpret these di�erences – a limitation that we aim to alleviate in our
current work.

5.3.1 Adding dimensionality explanation

Da Silva et al.’s explanations (Eqns. 5.2 and 5.3) cannot provide full in-
sights into the structure of high-dimensional data. Take e.g. a non-axis-
aligned cube like in Fig. 5.1a and embed it into a high-dimensional space.
While the data structure stays the same, both distance contributions and
variances cannot select a single dimension to explain the cube’s faces,
since all dimensions contribute to the data structure.

We improve this by explaining the data’s local (or intrinsic) dimen-

sionality. For each neighborhood µi of a point xi ∈ D, we compute the
n eigenvalues αi of its covariance matrix, sorted decreasingly. From
these, we compute the local dimensionality δ of µi and its con�dence κ
in three di�erent ways (see Tab. 1).

De�nition Dimensionality δ Con�dence κ

Total variance minδ
��∑δ

i=1 αi∑n
i=1 αi

≥ θ 1 −
∑δ
i=1 αi−α∑n
i=1 αi

Minimal variance
����{ αi∑n

j=1 α j
≥ θ , 1 ≤ i ≤ n

}���� ∑δ
i=1 αi∑n
i=1 αi

Variance ratio 1 +minδ
��∑δ

i=1 ∆λi∑n
i=1 ∆λi

≥ θ 1 −
∑δ
i=1 ∆λi∑n
i=1 ∆λi

Table 1: De�nitions of local dimensionality and con�dence.

Total variance (TV): We de�ne dimensionality δ as the minimal
number of largest eigenvalues α1 ≥ . . . ≥ αδ needed to explain a
user-set fraction θ of the data variance in µi . The con�dence κ equals
how much the sum of these largest δ eigenvalues deviates from the
mean of all n eigenvalues.

Minimal variance (MV): The TV model works well when eigenvalues
signi�cantly drop. However, take the (limit) case where all eigenvalues
are equal. TV then computes δ = θ/n, even though locally the data
is truly n-dimensional. To capture this, we de�ne δ as the number of
eigenvalues larger than a minimal user-set variance θ , and con�dence
κ as the sum of these divided by TV, similar to Kaiser’s criterion used
in explanatory factor analysis (Cli�, 1988; Jolli�e, 2002).
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Variance ratio (VR): Several metrics are known in 3D di�usion tensor
analysis to describe the shape of local neighborhoods (O’Donnell and
Westin, 2011). We generalize these tonD data and compute dimensional-
ity δ by summing di�erences of consecutive eigenvalues ∆λi = λi −λi+1
normalized by the largest one, λ1. Each di�erence captures a signi�-
cant ‘drop’ in consecutive eigenvalues, and the sum accounts for the
e�ect of all drops. Thresholding this sum by a user-set θ yields the local
dimensionality. P and Falguerolles (1993) and North et al. (1982) have
described similar models of local dimensionality. Note that, in the def-
inition of δ for VR (Tab. 1), we de�ne λn+1 = 0. Also, if λ1 > θ , we set
δ = 1; if λ1 < θ , we set δ = 0 (the whole dataset is concentrated in a
single n-dimensional point).

Figures 5.1c-e show the total, minimal, and variance ratio explana-
tions for the noisy cube. The thresholds θ are listed in the �gure and
discussed next in Sec. 5.5. The explanations are color-coded on the pro-
jection points, as detailed in the legends. The legend bars’ sizes tell how
many points are assigned a given explanation (dimensionality). The
cube’s faces are blue, meaning that these points are locally in δ = 2
dimensional neighborhoods embedded in nD. Close and on the cube
edges, green tells that δ = 3 dimensions are needed to explain the data
here. The blue and green area are separated by (thin) dark bands, indicat-
ing projection areas where the con�dence of assigning a dimensionality
of δ = 2 or δ = 3 is low – these are the transition areas between the blue
(δ = 2) and green (δ = 3) areas. The three local dimensionality explana-
tions are very similar to each other, indicating that the PCA-based anal-
ysis underlying all three computations makes sense. For more complex
datasets, the explanations can slightly di�er and convey interesting in-
sights, similar to the di�erences between the distance contribution and
variance explanations discussed earlier (see Fig. 5.1a,b).

5.3.2 Adding correlation explanation

High-dimensional data is often explained by how its dimensions corre-
late. Yet, assessing global correlation over an entire dataset is of limited
value when the underlying phenomenon is a mix of local (linear) pat-
terns. To address this, we compute and depict correlations over neigh-
borhoods. For each point neighborhood µi , we compute the K = n(n +
1)/2 Pearson or Spearman correlations between all dimension-pairs
(j,k) ∈ n1,no × n1,no. We sort these pairs in descending correlation-
strength order, and select theC top-ranked pairs that are most frequent
over all points i . This resembles selecting the explaining dimensions
in da Silva et al. (2015), but now we select dimension-pairs rather than
individual dimensions. We show these C pairs via a categorical col-
ormap, using luminance to map the absolute correlation values. Fig-
ure 5.1f shows this for the noisy cube. The legend tells that the three
faces map to strong correlations of the three dimensions x , y, and z,
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Figure 5.2: Matrix view, concrete dataset. Clicking on the FlyAsh-Caggr cell (a)
allocates a color to it, showing where in the t-SNE projection these
two variables are strongly correlated. To make room for this, the
weakest-correlated pair Water-Caggr is removed from the explana-
tion (c) Additional insight is obtained by color-coding the dependent
dimension (c), the variance explanation (d), and correlation views us-
ing smaller neighborhood sizes ρ (e,f). See Sec. 5.3.3.

as expected. The edges orthogonal to faces show the same correlation.
Indeed, for the face xy, for instance, the orthogonal edge has near-
constant x and y, and strongly varying z, values, so x and y are cor-
related along it.

This visualization can only show the C top-ranked, most frequent,
correlations from all possible K ones. However, users may want to ex-
amine the presence (or absence) of speci�c correlations. For this, we
show the entire set of K dimension-pairs using a matrix view. To illus-
trate how this works, we consider next a real, non-synthetic, dataset
example.
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5.3.3 Concrete dataset

This dataset (Yeh, 1998a; Lichman, 2013) has 1030 samples measuring
how 8 ingredients in�uence concrete strength. The independent di-
mensions are Cement, blast furnace slag (BFSlag), �y ash water (Fly-
Ash), superplasticizer (Splastic), coarse aggregate (Caggr), �ne aggre-
gate (Faggr), and Water, each in kg per cubic meters; and the concrete
Age, measured in days. One is interested to understand which indepen-
dent dimensions in�uence concrete strength.

Figure 5.2a shows the matrix view next to the t-SNE projection of this
dataset. Matrix cells are colored by the same colormap as used in the
projection. Dark blue tells all dimension-pairs whose correlations have
a frequency higher than zero but lower than theC top-ranked pairs. To
see where, on the projection, a pair correlates, the user clicks a dark
blue cell, e.g. the FlyAsh-Caggr one in Fig. 5.2a. Note that, for lack of
visual space, we did not list all variables in the horizontal and vertical
legends of that t�gure. The color used for the Cth top dimension-pair
(Water-Caggr, cyan) is then used for the clicked pair and the Cth pair
is made dark blue. Doing this shows a single cyan spot in the projec-
tion (Fig. 5.2b, dashed circle) – the only place where FlyAsh and Caggr

strongly correlate.
The matrix view supports two other tasks. The cells of the top C

(strongest correlated) dimension-pairs are outlined in white, helping
one to easily return to the original color mapping after having selected
some other dimension-pairs to explain. Rows and columns having many
cells with the non-default (dark blue) color indicate groups of strongly
correlated variables. For instance, the second top row in Fig. 5.2a, for
the Faggr dimension, shows four such cells that indicate Faggr’s strong
correlation with Cement (yellow), BFSlag (green), FlyAsh (orange), and
Caggr (purple), respectively.

Da Silva also used this dataset (da Silva, 2016), also projected with
t-SNE, to �nd attributes that predict high concrete strength. For this,
they colored the projection by each of the 8 independent dimensions,
and next by the dependent dimension (concrete strength). Figure 5.2b
(same as Fig. 5.10 in da Silva (2016)) shows the dependent dimension,
allowing one to �nd two high-concrete-strength clusters. By manually
comparing the values of all independent dimensions over these clusters,
Da Silva found that BFSlag also had high values in these areas. However,
this manual comparison of color-coded dimensions is quite tedious.

We next show how our explanatory views help re�ning the above
insights. In Fig. 5.2a,c, we see a correlation between Cement and BFSlag

attributes in the selected region. Now, if cement and BFSlag correlate
with each other, and BFSlag correlates with high concrete strength, ce-
ment likely correlates to concrete strength as well. To search for addi-
tional correlations over subsets of points in the selected region (smaller
neighborhoods), we next decrease the radius ρ used to compute the
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correlation view. In Fig. 5.2e, computed with ρ = 0.05, we see a BF-

Slag-Faggr correlation (pink upper cluster), and also a Water-Faggr
correlation (green lower cluster). Also, the cement-BFSlag correlation
stays strong in the middle (yellow) cluster. In Fig. 5.2f, computed with
ρ = 0.03, we see the cement-BFSlag and water-Faggr correlations in
the purple, respectively green, clusters; the red upper cluster shows an
additional Caggr-Faggr correlation. Now, because BFSlag was found to
correlate with Faggr in this region, Faggr might be related to high con-
crete strength (especially in combination with large BFSlag values). And
because Faggr might be correlated, and we found a water-Faggr correla-
tion and aCaggr-Faggr correlation, bothwater andCaggr might explain
high concrete strength.

We now use the variance view (Fig. 5.2d) to get extra insights in the
selected region. The entire region is yellow, i.e., points there have a
small FlyAsh variance. Also, FlyAsh varies little also far beyond the re-
gion borders. Putting it all together: BFSlag, cement, Faggr, water, and
Caggr (but not FlyAsh) might together help shaping a regressive model
for high concrete strength. Wu et al. (2010) independently studied this
dataset for of predictive modeling, showing the Pearson correlation co-
e�cients between the data attributes (Table II in Wu et al. (2010)). They
found a relatively strong positive cement-BFSlag correlation (0.29), in-
verse correlations of BFSlag-Caggr (-0.31) and BFSlag-Faggr (-0.31), and
an inverse Faggr-water correlation (-0.44). Our �ndings, obtained via
our correlation views, are consistent with these results – except that
we do not visualize the sign of the correlation.

5.3.4 Parameters

Our explanations depend on the following user parameters:

Neighborhood size: Given as a fraction of the projection size (so
ρ ∈ [0, 1]), ρ tells the scale of the visual structures we want to explain.
Figure 5.4 illustrates this for the variance explanation of the wine

dataset. Smaller ρ values explain �ner-grained structures, but can
create noisy visualizations, since, in the limit, every (small) neighbor-
hood can be potentially best explained by a di�erent dimension; since
we usually do not have as many categorical colors as the dataset’s
number of dimensions n, many such neighborhoods will not receive an
explanation (see Sec. 5.3). Large ρ values will attempt to explain large
visual structures by a single dimension, which, in the limit, when ρ
equals the projection’s size, amounts to showing the dimension having
globally least variance, which is not insightful. Good values for ρ range
around 0.1 of the projection’s size. This is the default value used in
all the views in this paper unless otherwise speci�ed. Indeed, for a
dataset having a few thousand samples, this ρ value yields a few tens
of samples per neighborhood νi , which is su�cient, as a lower bound,
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Figure 5.3: Explanation of wine dataset. The contribution and variance views
(b,c) split the projection in four main clusters, characterized by simi-
lar values of sugar (red), chlorides (yellow), and alcohol (purple). The
correlation view (d) further explains the yellow and red clusters by
the correlation of sugar with density (similar interpretations exist
for the red cluster). The dimensionality views (e,f) indicates that the
blue area, which falls inside the red zone in (b,c), can be explained
by a single dimension, which is thus the earlier-identi�ed sugar di-
mension. See Sec. 5.4.1.

to reliably compute all the proposed explanations.

Dimensionality threshold: The value θ ∈ [0, 1] (Tab. 1) speci�es
how much of the data’s local dimensionality we want to explain. For
TV and VR, a high θ value explains more of the local dimensionality,
but can lead to projections where most points are marked as high-
dimensional, which is not very useful. A too low θ value can generate
false con�dence that the 2D projection captures all the intrinsic
dimensionality of the data. For MV, θ behaves oppositely – low values
explain more of the intrinsic data dimensionality. We empirically found
that θ ∈ [0.6, 0.9] (for TV and VR), respectively θ ∈ [0.05, 0.1] (for MV)
yield an informative, but not too strict, visualization.

Splat radius: The value R gives the size, in pixels, of the splats that
render the explanation and its con�dence (Sec. 5.3). Small R values cre-
ate discrete-looking scatterplots, where the colors of neighbor points
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do not visually merge, thereby breaking the color-and-luminance gra-
dients which are key to explaining regions in the scatterplot. High R
values create too much overlap between neighbor points, so regions
smaller than R cannot be visually distinguished. R and the neighbor-
hood radius ρ act as dual scale parameters – ρ controls the scale at
which we compute explanations, and R controls the scale at which we
render them. We studied several options of setting R automatically, e.g.,
based on the average local density of scatterplot points, following sim-
ilar work in Martins et al. (2014). We found such automatic methods
risky, as they tend to indiscriminately ‘�ll in’ gaps of all sizes in a pro-
jection, including those which separate faraway point clusters. Hence,
we leave R as a parameter for the user to set. A good preset for R is
the average distance-to-the-closest-neighbor in the projection, which
amounts to ρ ∈ [0.03, 0.05] of the image size for the �gures in this pa-
per.

ρ=0.05 ρ=0.10 ρ=0.15 ρ=0.20

ρ=0.25 ρ=0.30 ρ=0.35 ρ=0.40

Figure 5.4: Variance explanation for the wine dataset, projected by LAMP, for
eight values of ρ (as fraction of the projection size). rho functions as a
scale parameter: As it increases, the computed explanation becomes
coarser, and small-scale details are removed. See Sec. 5.4.1.

5.4 applications

We show next how the six explanatory views – distance contribution,
variance, correlation, and local dimensionality computed by total vari-
ance, minimal variance, and variance ratio – can be combined to ex-
tract insights from four non-synthetic datasets. We also correlate these
insights with ground truth extracted by independent research that stud-
ied the same datasets.
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5.4.1 Wine quality dataset

We �rst consider the wine dataset, which has 6497 samples of Por-
tuguese vinho verde (Cortez et al., 2009a), each with n = 12 physico-
chemical attributes such as acidity, residual sugar, and alcohol rate. Fig-
ure 5.3a shows the raw projection of this dataset using LAMP (Joia et al.,
2011). Besides a dense point cluster bottom-right, there is not much
else this image tells us. While other projection methods, e.g. t-SNE, may
show better separated clusters, the question still remains how to explain
these.

Figures 5.3b-c show the contribution and variance explanations re-
spectively. These are quite similar and split the projection roughly into
four areas, explained by small variations of alcohol (purple), chlorides
(yellow), sugar (red), and acidity (beige), respectively. The correlation
view (Fig. 5.3d) brings additional insights: We see a large purple area
bottom-right that matches well the area earlier explained by small varia-
tions of chlorides, alcohol, and acidity. Over this purple area, the legend
of image (d) tells that sugar and density strongly correlate. Also, we see
that the red area in Figs. 5.3b-c, where sugar has a low variation, is now
roughly split in Fig. 5.3d into smaller areas – red (�xed acidity-citric acid
correlation), yellow (�xed acidity-pH correlation), beige (�xed acidity-
density correlation), and brown (chlorides-density correlation). Note
that the contribution-variance and correlation explanations are comple-

mentary: They cannot, when taken separately, split the projection into
�ne-grained local explanations, but do so when combined. Indeed, the
red area in Figs. 5.3b-c is further split (explained) by using correlation,
as explained above; conversely, the purple area in Fig. 5.3d is further
split (explained) by using contribution or variance.

At this point, the analyst may wonder which projection areas are suf-
�ciently explained by the above views. The dimensionality view helps
here. Figure 5.3e shows the local dimensionality of the projected data,
computed by total variance (Sec. 5.3.1). We see how increasingly more
dimensions are needed to capture increasing fractions θ ∈ [0.3, 0.9] of
the total variance – in the limit, we need all n = 12 dimensions to ex-
plain θ = 100% of the variance. More interestingly, we see in Fig. 5.3e a
gradient of local dimensionality, from highest in the bottom-right area
(red-purple colors for θ ≥ 0.85) to blue in the top-left area (blue for
θ ≤ 0.75). Besides color hue, the local dimensionality gradient is also
visible in the brightness, which tells that the con�dence κ shows that
the color-coded number of dimensions locally explain θ percent of the
variance. The e�ect is very similar to the enridged contour maps used
to visualize scalar �elds (van Wijk and Telea, 2001): The visual nesting
of the ‘cushions’ created by varying brightness conveys the absolute
value of the encoded signal, i.e., the local dimensionality. The way we
compute these cushions (Sec. 5.3.1) is, however, completely di�erent
to van Wijk and Telea (2001).
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The local dimensionality view helps interpreting the contribution,
variance, and correlation views as follows: As we have seen, local di-
mensionality is high in the bottom-right (red-purple) area, where we
need 7 to 9 dimensions to explain θ = 0.85 of the data variance. In
this area, the contribution-variance and correlation views jointly give
us information about only �ve variables – alcohol, chlorides, acidity,
sugar, and density. Hence, these two views do not fully explain this
area, so we need to search for more explanations here. In contrast, the
local dimensionality is low in the top-left (blue) area, where we can ex-
plain θ = 0.75 of the data variance by a single dimension. From the
contribution-variance views, we see that this area is well explained by
a small variance of sugar. Hence, in this area, sugar’s low variance is
su�cient to explain the data.

Figure 5.3f shows the local dimensionality computed by VR as op-
posed to TV (Fig. 5.3e, for the three largest θ values. While the exact bor-
ders of the explained regions di�er, we see overall the same pattern, i.e.,
low dimensionality to the left, respectively high dimensionality to the
right, of the projection. The insights described above – obtained with
TV dimensionality – stay the same. The actual dimensions assigned to
comparable regions in the two explanations are similar – for instance,
the blue areas in Fig. 5.3f (θ = 0.75), of local dimensionality 1 and 2,
match well the blue-and-green areas in Fig. 5.3e (θ = 0.75) which are
also of dimensionality 1 and 2.

Beh and Holdsworth (2012) studied this dataset by correspondence
analysis, multiple regression analysis, classi�cation, and visual evalua-
tions. Using the classi�cation technique of Cortez et al. (2009a), they ex-
amined the mean value of each attribute for the classi�cation as scored
by assessors. They found a relationship between low sugar, density,
�xed acidity and volatile acidity, and higher-quality white wine. Also,
stronger values of alcohol, pH and sulfur are implied to lead to higher-
quality wine. For red wine, high levels of alcohol and sulfur are also
found to be a strong quality indicator, while low chloride levels can
lead to higher quality red wine. Residual sugar and density are found to
be statistically irrelevant in predicting red wine quality. If we compare
Fig. 5.3 to these �ndings, checking for value ranges by brushing the pro-
jection, we �nd several matches: The high-quality wines (brown area,
Fig. 5.3b) have indeed high sulfur (brown area, Fig. 5.3c) and are in a re-
gion of high sugar-density correlation (both these attributes having low
values, con�rmed by brushing – purple area, Fig. 5.3c). We con�rm the
additional layer behind sugar-density correlation (purple area, Fig. 5.3c),
speci�cally in regions where similarity is explained by chlorides and al-
cohol (purple and yellow areas, Figs. 5.3b,c), as all these attributes add to
predicting wine quality. In the purple area in Fig. 5.3c, the sugar-density
correlation is roughly of 0.9. This is in line with the sugar-density cor-
relation of 0.83 reported for all the samples of this dataset by earlier
studies (Zeng, 2021).
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5.4.2 Software quality dataset

This dataset contains 6773 software projects from SourceForge written
in the C programming language Meirelles et al. (2010). Each project has
10 independent dimensions, these being metrics used in software en-
gineering to gauge software quality: coupling between modules, com-
plexity, lack of cohesion, number of source �les, number of lines of code,
number of function parameters, number of public variables, number of
methods, number of data members, and structural complexity. Two ad-
ditional dimensions measure the number of downloads and number of
developers of a given software project.

θ=0.5 θ=0.6

θ=0.75

d) correlationb) contribution c) variance

e) local dimensionality computed for four different accuracy values θ  
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Figure 5.5: Explanation of software dataset. The contribution (b) and variance
(c) views show two purple lobe-like clusters corresponding to small,
respectively large, systems. The correlation view (d) shows that large
systems also have their method and parameter counts correlated.
The local dimensionality views (e) shows that the two lobes can
be explained by about three dimensions, while the area connecting
them requires more e�ort to explain. See Sec. 5.4.2.

Figure 5.5a shows the dataset projected with LAMP. As for the wine
dataset (Sec. 5.4.1), the raw projection is not very informative. Fig-
ures 5.5b,c show the projection explained by contribution, respectively
variance. As for the wine dataset, these two explanations are very sim-
ilar: The purple and yellow regions in both Fig. 5.5b,c show software
systems which are mostly similar due to size (lines of code), respec-
tively complexity. The two disjoint purple regions indicate two groups
of systems which are similar due to two di�erent value ranges of lines of
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code. Brushing the image shows that projection is roughly split into a
left lobe consisting of small software systems, and a right lobe contain-
ing large systems. However, the contribution and variance explanations
are not identical: The red region in Fig. 5.5b shows systems which are
similar in number of members. This region matches very well the union
of the red and beige regions in the variance explanation (Fig. 5.5c), i.e.,
systems with similar number of parameters or �les. Hence, the number
of members, parameters, and �les appear to be correlated in this region.

The correlation view (Fig. 5.5d) adds more insights: The large purple
area indicates systems which have correlated numbers of methods and
parameters. From the earlier correlation/variance analysis, we know
that these are large systems. Upon further study of the names of these
systems in the original data (Meirelles et al., 2010), we �nd that these are
mainly software libraries – for which, indeed, the total number of meth-
ods and total parameter count are correlated, since, in libraries (APIs),
methods have typically similar parameter counts. The left lobe of the
projection, i.e., the small software systems, are yellow and red, indicat-
ing correlated lack-of-cohesion and complexity, respectively correlated
lack-of-cohesion and number of �les. Like for the wine dataset, such
�ndings are only possible when joining the three di�erent explanatory
views. The correlated lack-of-cohesion with complexity is also a known
signal in software quality analysis: Poor quality software is very often
incohesive and complex (Richter, 1999).

We now examine the dimensionality of the projected data. Figure 5.5e
shows this for four di�erent values of θ . Overall, these views tell us that
the extremities of the two projection lobes are quite low-dimensional,
being well explained by about three dimensions. In contrast, the area
connecting the lobes requires �ve to six dimensions to explain. This
area roughly corresponds to the red, respectively red-and-beige, regions
in the contribution, respectively variance, views. The dimensionality
view tells us that more explanations are needed in this central area since
the projection is there not su�ciently well explained by the number
of members, respectively lack-of-cohesion and number of parameters
dimensions.

We next compare our �ndings with those of Meirelles et al. (2010).
They found high correlations of complexity vs lack of cohesion (Pear-
son: 0.786, the highest correlation of all dataset dimension-pairs; Spear-
man: 0.773; Kendall tau: 0.597); and number of methods vs parameters
(Pearson: 0.762; Spearman: 0.765; Kendall tau: 0.596). They also found
a strong correlation between complexity and lines of code (Pearson:
0.666; Spearman: 0.685; Kendall tau: 0.497), the third strongest corre-
lation for complexity, and a correlation between lack of cohesion and
lines of code (Pearson: 0.472; Spearman: 0.490; Kendall tau: 0.341), the
second strongest for the lack-of-cohesion attribute. These two correla-
tions combined match our �nding of complexity and lack of cohesion
correlated (Fig. 5.5d, yellow areas) over a region of similar lines-of-code
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values (Fig. 5.5b, left purple lobe). Their strong-reported correlation of
number of methods vs number of parameters noted above matches the
purple lobe in Fig. 5.5d, on which we found a correlation of roughly
0.92. Note that the �ndings of Meirelles et al. are averages over the en-
tire dataset. Our correlation view re�nes such insights by showing local

correlations over subsets of the data.
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Figure 5.6: Explanation of city pollution data, PCA and t-SNE projections. The
variance views (a,c) show that both projections split the data into
clusters with similar explanations. The dimensionality views show
that PCA needs more additional dimensions to explain its clusters
(b) than t-SNE (d). See Sec. 5.4.3.

5.4.3 City pollution dataset

This dataset, from the UCI Machine Learning repository, contains
420768 measurements of 6 air pollutants (PM2.5, PM10, SO2, NO2, CO,
O3) and 6 meteorological variables (temperature, pressure, dew point
temperature, rain, wind direction, and wind speed) measured hourly
from March 2013 to February 2017 at 12 sites in Beijing (Zhang et al.,
2017). We removed the time dimension (aggregating all measurements
together) and projected the resulting dataset using both PCA and t-SNE.

We use this dataset to contrast how our explanations work for dif-
ferent projection types. Figure 5.6a shows the variance explanation for
PCA. This projection is split into four similar-size regions explained by
the temperature, CO, O3, and PM2.5 dimensions. The dimensionality ex-
planation of the PCA projection (Fig. 5.6b, θ = 0.75) shows that we need
�ve to seven dimensions to explain the projection, with more dimen-
sions needed in the center thereof. The t-SNE projection is also split into
similar-variance zones explained by the same variables (temperature,
CO, O3, and PM2.5). Interestingly, these regions are placed relatively
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to each other quite similarly to their counterparts in the PCA projec-
tion. The dimensionality explanation of the t-SNE projection (Fig. 5.6d,
θ = 0.75) is very di�erent from PCA’s one: We do not see the low-to-
high dimensionality gradient present in Fig. 5.6b; rather, the projection
is locally either 4-dimensional (green) or 5-dimensional (red). Hence, t-
SNE achieves a better ‘spread’ of the high-dimensional dataset in 2D
than PCA. More interestingly, the red-green borders in Fig. 5.6a match
relatively well the borders of the red and pink regions in Fig. 5.6c. This
tells us that the dew-point and O3 explained regions in that �gure are
�ve-dimensional, whereas the CO, PM2.5, and temperature explained
regions are four-dimensional, respectively.

5.4.4 Air quality dataset

This dataset, also from the UCI repository, has 9358 samples of air qual-
ity measurements (CO, NOx, NO2, benzene, and non-metanic hydro-
carbons (NMHC)) done by both an experimental sensor and a refer-
ence ground-truth (GT) analyzer. Apart from these, temperature, rel-
ative humidity (RH) and absolute humidity (AH) are measured. Data
were recorded from March 2004 to February 2005 in a highly polluted
area of an Italian city (Vito et al., 2008), and its authors outline signi�-
cant di�erences between the experimental sensor and GT values.

As for the city pollution dataset, we use our views to explain the PCA
and t-SNE projection of this data (aggregating the time dimension). Fig-
ure 5.7a shows the variance explanation of the PCA projection. This
projection shows �ve visually separable clusters (dashed outlines A-E).
Cluster D is actually an overlap of three clusters explained by the di-
mensions CO(GT) – pink, AH – yellow, and NMHC (GT) – red. The
dimensionality view (Fig. 5.7b, θ = 0.68) increases the con�dence in the
variance explanation: Clusters A, B, and C, which showed little over-
lap of explanations, are intrinsically two-dimensional, so we can trust
the PCA projection here. Cluster E, which has a line structure, is in-
trinsically one-dimensional, so its explanation by the single dimension
NOx (GT) in Fig. 5.7a is complete. In contrast, cluster D is two-to-three
dimensional, which is exactly what its explanation by three ‘overlap-
ping’ dimensions in Fig. 5.7a tells us. Figure 5.7c shows the variance
explanation of the t-SNE projection. We see here six visually distinct
clusters (A′-F′). Upon closer inspection, by brushing, we found that A′
corresponds roughly to the union of A, B, and the pink part of D; B′ cor-
responds to the red part of D; D′ and F′ correspond to the yellow part
of D; C′ corresponds to C; and E′ corresponds to E. Saliently, the colors
in Fig. 5.7c correspond almost perfectly to visually distinct clusters. We
also see no dark points in this �gure, meaning that the con�dence of
the explanation is very high. Hence, the t-SNE projection both groups

similar-value points better than PCA (see the pink points), and separates

di�erent-value points better (see the red, yellow, and green points). The
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dimensionality view (Fig. 5.7d, θ = 0.68) con�rms this: except a tiny
red area, all points indicate neighborhoods of intrinsic dimensionality
of one (blue) or two (green). Since this is a 2D projection, this tells us
that t-SNE did a very good job in preserving the high-dimensional data
structure, and in any case, better than PCA.
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Figure 5.7: Explanation of air quality dataset, PCA and t-SNE projections. Col-
ors in the variance views (a,c) help �nding the main variable explain-
ing what makes points in a cluster similar. The local dimensionality
views (b,d) tell us how many extra variables we need to fully explain
these clusters. See Sec. 5.4.4.

5.5 discussion

We detail several aspects of our method, as follows.

Genericity and scalability: Our method can handle any type of
quantitative data projected by any MP technique. Correlations and
PCA are computed with Eigen (Jacob and Guennebaud, 2020). Since
explanations are computed and rendered independently on local point
neighborhoods, we parallelized this using multithreading on the CPU.
We generated all images in this paper in seconds for datasets up to
tens of thousands of points, tens of dimensions, on a modern PC (3.6
Ghz CPU, GeForce 900 GPU). Table 2 shows timing measurements
for several datasets having a wide range of dimensions n, samples N ,
and sizes ρ of the neighborhoods νi , sorted ascendingly on the total
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attribute count n · N .

Table 2: Computational performance of explanatory views

Dataset Dimensions Samples Total Time (secs)

n N n · N ρ = 0.1 ρ = 0.2 ρ = 0.3
D1 17 143 2431 0.013 0.016 0.016
D2 20 740 14800 0.025 0.028 0.029
D3 32 520 16640 0.016 0.019 0.019
D4 11 4177 45947 00.68 0.069 0.082
D5 25 2584 64600 0.046 0.045 0.047
D6 11 6497 71467 0.133 0.136 0.165
D7 179 11500 2058500 2.611 3.168 5.033
D8 64 41188 2636032 0.845 3.082 13.884

Combining explanations: The examples in Secs. 5.3 and 5.4 show
that no single explanation su�ces. One has to combine the partial
insights of di�erent explanations from the total six ones (distance con-
tribution, variance, three local dimensionality variants, and dimensions
correlation) to arrive at relevant, stronger, �ndings. In this process,
one can (a) use explanations of the same type, e.g. local dimensionality,
which, where matching, strengthen the obtained �ndings; or (b)
explanations of di�erent types, e.g. correlation and variance, which
performs ‘logical AND’ like operations on their partial insights.

Projection quality: Our explanations rely on the assumption that
points close in P(D) correspond to points close in D – that is, that
the projection exhibits high values of trustworthiness (Venna and
Kaski, 2006b). In other words, our explanations require that the

neighborhoods shown in a projection are meaningful. If they are, then
we can explain them. If not, then we will produce wrong explanations,
but arguably any use of such a projection will be �awed, not only
our explanations, since the projection contains errors. The extent to
which various MP techniques realize this neighborhood preservation
varies (Espadoto et al., 2019). One way to address this is to use pro-
jection error views (Martins et al., 2014) to exclude neighborhoods
which do not respect this condition (Rodrigues et al., 2019), or re-
�ne their computation by e.g. using larger radii ρ. To address this
issue, Table 3 shows the continuity, trustworthiness, and Shepard
correlation quality metrics computed for all the datasets and all the
projections discussed earlier in this paper. For the exact de�nitions
of these metrics, we refer, for brevity, to Table 5 in Espadoto et al. (2019).
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Dataset Projection Continuity Trustworthiness Shepard

Concrete t-SNE 0.99810535 0.99517108 0.53527163
(Fig. 5.2)

Wine LAMP 0.84132354 0.92384026 0.79137224
(Figs. 5.3,5.4)

Software LAMP 0.90646675 0.98470294 0.91487058
(Fig. 5.5)

City pollution PCA 0.93095898 0.99232401 0.95164997
(Fig. 5.6) t-SNE 0.99888747 0.98818749 0.84766134

Air quality PCA 0.94080419 0.99208358 0.97113638
(Fig. 5.7) t-SNE 0.99916219 0.99601412 0.56614243

Table 3: Quality metrics for all projections and datasets in this paper.

Table 3 shows that all the computed projections are of high quality,
their values being very close to the maximum value of 1. For t-SNE,
the Shepard correlation is relatively lower, but this is expected, as this
metric quanti�es the preservation of distances and the t-SNE technique
does not aim to preserve distances, but neighborhoods. All in all, the
projections shown in this paper are of su�ciently high quality to
vouch their visual exploration by means of our explanatory techniques,
and also to trust their computation which relies on the assumption of
high trustworthiness already mentioned above.

Limitations: While we can technically handle datasets of any dimen-
sionality n, we need more variables for the explanation as local dimen-
sionality grows. Also, the correlation isO(n2) in computation and space
needed for the dimension matrix (see Fig. 5.2 and related text). Our
method works well up to 20 dimensions in practice; it does not target
datasets with hundreds of dimensions such as from deep learning. Yet,
such datasets have abstract dimensions which do not have a meaning
for users, so using them to explain projections is likely not desirable.
Our method scales visually well even for many dimensions, since it uses
only the top ranked ones which contribute to explaining most of the pro-
jected points (Sec. 5.3).

One can ask whether using nD point neighborhoods ξi = {x ∈
D | ‖x − xi ‖ ≤ ρ}, P(xi ) = yi , instead of 2D neighborhoods νi (and
their correspondents µi in nD), is a valid option. Doing this is techni-
cally trivial, but we argue against it: We aim to explain the point-groups
one sees in a projection (2D scatterplot) and not the point-clusters that
exist innD, but may not be visible in 2D due to e.g. projection continuity
issues Venna and Kaski (2006a). Also, setting the neighborhood size ρ
would be tricky for ξi , as one has to assess what is the ‘natural’ scale of
patterns in nD. This motivates our choice to use 2D neighborhoods as
a basis for our explanations.
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A separate limitation involves color coding, which is used to create
categorical color maps (contribution, variance, and correlation plots)
and also ordered color maps (dimensionality plot). As explained in
Sec. 5.4, several such plots are to be used together to arrive at a good
understanding of a projection. This may potentially confuse users
since the respective colormaps contain similar colors. The problem can
be partly alleviated by designing colormaps with a smaller overlap in
terms of such colors. However, as we next aim to extend our approach
with additional explanatory views, this alleviation strategy is not a full
solution. For now, we prominently display the respective color legends
next to each explanatory plot, aiming thereby to attract the attention
of the user of the particular meaning of colors in that plot.

User perception: As our techniques aim to explain the patterns one
sees in a projection, they should be tested in experiments where
subjects use them to perform some explanatory tasks. Earlier stud-
ies (Etemadpour et al. (2014)) provide good guidelines of perceptual cues
and visual tasks that users address with projections. We aim to extend
this work by making such tasks more speci�c to include explanations
that refer to the names of involved dimensions. With this set of tasks,
we can next present various combinations of datasets D and projections
P(D), computed by several projection techniques P to the users, to �nd
which are the dataset and/or projection-technique aspects that best suit
our explanatory techniques. A similar study can be used to �nd optimal
parameters for our explanatory techniques.

5.6 conclusions

We have presented a set of visualizations for explaining the visual pat-
terns present in 2D projections of high-dimensional data in terms of the
underlying data dimensions. We extended the explanations proposed in
earlier work (da Silva et al., 2015) by three ways to evaluate the local
data dimensionality and a technique to detect and inspect local dimen-
sion correlations. We show that the combined visual analysis of all these
explanatory techniques can lead to non-trivial insights in the data that
correlate well with independent �ndings obtained using other methods.
We illustrate our approach on �ve experimental datasets. Our methods
are simple to use, have a few parameters with good presets and clear
e�ects, and scale well computationally to datasets of hundreds of thou-
sands of samples and 10..20 dimensions.

Several extensions to our work are possible. Adding more expla-
nation types, such as inverse correlation, correlation of more than
two dimensions, or the presence of speci�c nD data patterns, is a low
hanging fruit. We aim to compute, in parallel, a wide range of local
explanations based on a pattern library, and next show the most salient
ones in the �nal view, thereby enriching the current contribution,
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variance, correlation, and dimensionality views. This would perform a
scagnostics-like (Wilkinson et al., 2005) local analysis of the projection,
but using patterns described by the high-dimensional data rather
than by the scatterplot. Computing a hierarchical explanation, where
projection regions are recursively split by additional explanations, is
another direction we aim to pursue.
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6Q UA N T I TAT I V E A N D Q UA L I TAT I V E C O M PA R I S O N
O F 2 D A N D 3 D P R O J E C T I O N T E C H N I Q U E S F O R
H I G H - D I M E N S I O N A L D ATA

Abstract: Projections are well-known techniques that help the visual
exploration of high-dimensional data by creating depictions thereof in a
low-dimensional space. While projections that target the 2D space have
been studied in detail both quantitatively and qualitatively, 3D projec-
tions are far less well understood, with authors arguing both for and
against the added-value of a third visual dimension. We �ll this gap
by �rst presenting a quantitative study that compares 2D and 3D pro-
jections along a rich selection of datasets, projection techniques, and
quality metrics. To re�ne these insights, we conduct a qualitative study
that compares the preference of users in exploring high-dimensional
data using 2D vs 3D projections, both without and with visual explana-
tions. Our quantitative and qualitative �ndings indicate that, in general,
3D projections bring only limited added-value atop of the one provided
by their 2D counterparts. However, certain 3D projection techniques
can show more structure than their 2D counterparts, and can stimulate
users to further exploration. All our datasets, source code, and measure-
ments are made public for ease of replication and extension 1.

6.1 introduction

Visual exploration of high-dimensional datasets is a key component of
modern data science pipelines, with many applications spanning disci-
plines as diverse as social sciences, medicine, biology, and the exact sci-
ences (Ho�man and Grinstein, 2002; Liu et al., 2015; Kehrer and Hauser,
2013; Tang et al., 2016). In the last decades, many visualization methods
have been proposed for high-dimensional data, such as parallel coordi-
nates (Inselberg and Dimsdale, 1990), table lensing (Rao and Card, 1994;
Telea, 2006), and scatterplot matrices (Becker et al., 1996). Dimensional-
ity reduction (DR) methods, also known as projections, occupy a partic-
ular place in this palette of methods, as they are able to handle datasets
having both a very large number of samples (also called observations
or data points) and dimensions (also called attributes or variables). Tens
of projection methods have been proposed by the information visual-
ization (infovis) and machine learning (ML) communities (Nonato and
Aupetit, 2018; Sorzano et al., 2014; van der Maaten and Postma, 2009),

1 This chapter is based on the paper ‘Quantitative and Qualitative Comparison of 2D and
3D Projection Techniques for High-Dimensional Data’ (Tian et al., 2021d).
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such as the by now famous t-SNE (van der Maaten and Hinton, 2008)
technique.

Choosing a suitable projection technique for a given context (appli-
cation, task, or dataset) is critical since, even for the same dataset, dif-
ferent techniques yield di�erent visualizations, thus leading to poten-
tially di�erent insights and courses of action in the underlying problem
solving. This issue, well recognized in the infovis and ML communities,
has been mainly addressed by surveys that compare projection tech-
niques from various perspectives, including type of algorithm used (Yin,
2007; Sorzano et al., 2014), types of errors generated (Heulot et al., 2017;
Nonato and Aupetit, 2018), and types of tasks addressed (Ho�man and
Grinstein, 2002; Kehrer and Hauser, 2013). The most recent survey in
this area (Espadoto et al., 2019) aimed to provide �ne-grained quantita-
tive evidence to help practitioners choose suitable projections by com-
paring 44 techniques over 18 datasets from the perspective of 7 quality
metrics. The study outlined that, from the perspective of such metrics,
most algorithms fare relatively similarly, after one optimizes for their
various hyperparameters.

All the above work in comparing projection techniques consid-
ered only two-dimensional variants thereof, which reduce the high-
dimensional data to 2D scatterplots. While 2D projections are the most
common in practice, 3D projections have also been proposed (Poco et al.,
2011; Coimbra et al., 2016; Sedlmair et al., 2013). Some researchers ar-
gue for their added value in terms of better capturing the structure of
high-dimensional data (Jolli�e, 2002; Poco et al., 2011; Coimbra et al.,
2016). Other researchers argue that 3D projections are challenging to
use given the need to choose suitable viewpoints and the presence of
clutter and occlusion (Newby, 2002; Westerman et al., 2005). However,
3D projections have been far less studied in the infovis literature – to
our knowledge, no quantitative studies have measured 3D projections
as Espadoto et al. (2019) did for 2D projections.

The e�ectiveness of projections in explaining data structure can be in-
creased by explanatory tools that annotate the scatterplots to highlight
the perceived patterns in terms of the underlying data dimensions, as
introduced by da Silva et al. (2015). While such tools have been shown
to add value when analyzing 2D projections (van Driel et al., 2020; Tian
et al., 2021c), whether and how much they support 3D projections has,
to our knowledge, not been studied.

In this chapter, we aim to shed more light on how 3D projections
fare when compared to their 2D counterparts by the following contri-
butions:

• We run a quantitative study that compares 29 projection tech-
niques, run to create both 2D and 3D scatterplots, from the per-
spective of 3 quality metrics over 8 high-dimensional datasets. We
compare the computed quality metrics of the respective 2D and
3D scatterplots to gauge the added-value of the third dimension;
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• We perform a qualitative user study that compares the resulting
2D and 3D projection scatterplots, augmented with the visual ex-
planation proposed by da Silva et al. (2015), from the perspective
of explaining projection patterns by the data dimensions;

• Our two studies show that, in general, 3D projections have
roughly the same quality (measured by metrics and user feed-
back) as compared to their 2D counterparts, while they require
more e�ort to analyze. However, we also found that, in some
cases, 3D projections – when augmented by visual explanations
– can show more data structure; and they can motivate users to
explore the data more than 2D projections do.

This chapter is structured as follows. Section 6.2 introduces several
notations and discusses related work on evaluating 2D and 3D projec-
tions. Section 6.3 presents our �rst contribution, the quantitative com-
parison of 2D and 3D projections. Section 6.4 presents our qualitative
study of the same projections, augmented by visual explanations. Sec-
tion 6.5 discusses the main �ndings and limitations of our study. We
conclude by outlining directions of future work (Sec. 6.6).

6.2 related work

6.2.1 Preliminaries

We start by reminding the reader about some key concepts and nota-
tions, useful for explaining related work as well as our contribution
(related notations, albeit not that exhaustive, were introduced in Chap-
ter 2).

Let x = (x1, . . . ,xn), x i ∈ R, 1 ≤ i ≤ n be a n-dimensional (nD) real-
valued sample, and let D = {xi }, 1 ≤ i ≤ N be a dataset of N samples.
Let xj = (x j1, . . . ,x

j
N ), 1 ≤ j ≤ n be the jth dimension of D. Thus, D can

be seen as a table with N rows (samples) and n columns (dimensions).
A projection technique is a function

P : Rn → Rq , (6.1)

where q � n. In our work, we consider q ∈ {2, 3} and denote the cor-
responding projection functions by P2, respectively P3. The projection
P(x) of a sample x ∈ D is a qD point. Projecting an entire dataset D
yields a qD scatterplot, denoted as P(D). The projection function P is
also in�uenced by so-called hyperparameters which are typically �ne-
tuned by the user to optimize for speci�c quality metrics (discussed be-
low).

The quality of a projection technique P can be gauged by several
metrics de�ned as

M : {(D, P(D))} → R+. (6.2)
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A metric M measures how well the projection P(D) captures speci�c
properties of the dataset D, the underlying idea being that a good pro-
jection will keep similar points in D close to each other in P(D). We
detail the speci�c metrics used in our work in Sec. 6.3.3.

6.2.2 Evaluating projections

Since Principal Component Analysis (PCA) (Pearson, 1901; Hotelling,
1933) was �rst proposed, tens of di�erent projection techniques have
been developed, o�ering many options to data scientists, but also the
added challenge in choosing a suitable technique for their goals. To
guide this choice, several surveys of projection techniques have been
performed. We organize these surveys from the perspective of their
goal, as follows.

Technique-centric surveys: These works aim to compare projection
methods from the viewpoint of the cost function used to create
P(D) from D and the algorithms used to optimize this cost. Fodor
(2002) presented the �rst such survey that we are aware of, which
organizes 12 projection techniques in a taxonomy based on their
respective cost functions. Sorzano et al. (2014) discussed 30 such
techniques with a focus on optimization heuristics and cost functions.
Cunningham and Ghahramani (2015) re�ned the work of Sorzano
et al. (2014) with a focus on linear projections. Conversely, Yin (2007)
performed a survey for nonlinear projections. Engel et al. (2012)
proposed a taxonomy covering nine projections from the viewpoint of
out-of-sample ability and computational complexity. Bunte et al. (2012)
proposed a theoretical framework to unify nine existing projection
techniques from the perspective of how similarity is computed and
which error metric a projection minimizes. Finally, Xie et al. (2017)
surveyed 27 variants of the Random Projection (RP) method (Dasgupta,
2000), aiming to provide a literature guide to this subclass of techniques.

Task-centric surveys: These surveys categorize projection tech-
niques based on the visual exploration tasks that these support. Buja
et al. (1996) and Ho�man and Grinstein (2002) compared projections
from an interaction perspective. Kehrer and Hauser (2013) compared
projections with other visualization algorithms from the perspective of
visual exploration of multidimensional, multi-source, and multi-type
data. A similar comparison of projections with other visualization
algorithms was performed by Liu et al. (2015). Nonato and Aupetit
(2018) surveyed the use of 28 projections in visual analytics (VA) tasks,
and categorized these based on the type of errors that they produce
and their e�ect on the performed tasks.
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Quantitative surveys: These works compare projections by mea-
suring various quality metrics (M , Eqn. 6.2) on di�erent datasets.
Gisbrecht and Hammer (2015) evaluated 10 projection techniques
on 3 synthetic datasets from the perspective of one quality metric
as well as computational complexity. van der Maaten and Postma
(2009) evaluated 14 projection techniques from the perspective of three
quality metrics, out-of-sample ability, and computational complexity.
More recently, Espadoto et al. (2019) presented the most comprehen-
sive, to our knowledge, quantitative evaluation of projections, which
included 44 techniques evaluated against 7 quality metrics over 18
datasets. For each technique, grid-search was used to derive optimal
hyperparameter values. We use the work of Espadoto et al. (2019) as a
model and inspiration for our comparison of 2D with 3D projections
(see Sec. 6.3).

The above surveys provide a wealth of information helping practi-
tioners in understanding how di�erent projection techniques operate
and how to choose a suitable one for a given problem context. How-
ever, they largely omit 3D projections.

6.2.3 Three-dimensional projections

Technically, most existing projection techniques can be used equally
easily to create a 2D or a 3D projection. Using a 3D projection would be
likely advantageous, since there are more dimensions (q = 3)which can
capture the structure of the high-dimensional data. Yet, the literature on
3D projections is far less rich than on their 2D counterparts.

A �rst challenge for 3D projections is �nding a good way to explain
the patterns that one sees in them in terms of the original data vari-
ables or dimensions, a problem that is inherent also to 3D scatterplots
which are not produced by projection techniques. This can be done by
using multiple 2D views linked by interaction (Piringer et al., 2004) or by
smoothly animating transitions between 2D scatterplot views (Elmqvist
et al., 2008; Sanftmann and Weiskopf, 2009). More speci�c for 3D pro-
jections, Coimbra et al. (2016) proposed a tool to aid users in choosing
suitable viewpoints for a 3D projection and interpreting the spread of
points along the screen’s X, Y, and depth axes. Additional explanatory
techniques for 3D scatterplots are discussed in Sec. 2.6.

A second, more fundamental, challenge is to show why, what for, and
how much 3D projections are better than 2D projections. There is evi-
dence both for and against 3D projections (Tavanti and Lind, 2001). For
visualizing text data, 2D projections were found easier to use and in-
teract with than 3D projections (Newby, 2002; Westerman et al., 2005).
Sedlmair et al. (2013) empirically found 2D and 3D projections equally
e�ective at visual cluster separation tasks. 2D projections were found
to work better for tasks related to inter-sample distance assessment
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and searching speci�c sample structures (Westerman and Cribbin, 2000;
Fabrikant, 2000). On the other hand, Jolli�e (2002) argued that 3D pro-
jections are better at encoding data structure for datasets with intrin-
sic dimensionality exceeding three. Other arguments in favor of 3D
scatterplots (as opposed to their 2D counterparts) are better showing
variations in sample density (Sanftmann and Weiskopf, 2009) and de-
crease of information loss (Chan et al., 2014). Yuan et al. (2021) also
showed how speci�c sampling methods can be used to decrease the
amount of occlusion in 3D scatterplots while retaining the patterns
these visually encode. 3D scatterplots allow one to easier select spe-
ci�c structures, e.g., point clusters for further investigation than cor-
responding 2D scatterplots, as the third dimension allows more space
for getting these structures separated from each other (Yu et al., 2012).
A survey of use-cases where 3D scatterplots are preferable to 2D ones
was produced by Sanftmann and Weiskopf (2012). The well-known Ten-
sorFlow (TensorFlow, 2021) embedding tool features both 2D and 3D
projections using UMAP, PCA, and t-SNE, and uses 3D as default view.

Closest to our work, Poco et al. (2011) compared 2D and 3D
projections computed using the LSP projection technique (Paulovich
et al., 2008). Their quantitative comparison (by a single quality metric)
showed higher accuracy for the 3D projection; the qualitative compari-
son (done by user studies) showed increased user con�dence and satis-
faction. Another example arguing the decrease of information loss for
3D projections, along the lines �rst argued by Chan et al. (2014), is given
by Coimbra et al. (2016) and also discussed in Sec. 2.5. However, both
above papers (Poco et al., 2011; Coimbra et al., 2016) only studied one
projection technique, and for this used a single quality metric. General-
izing such �ndings for more 3D projections needs more evaluations – a
task we approach in this chapter.

6.2.4 Explaining projections

Whether 2D or 3D, ‘raw’ projections that show only the scatterplot P(D)
are of little use. Hence, several techniques aim to enrich such scatter-
plots with additional information to help users understand the visual
structures they contain. The simplest explanation color codes points in
P(D) by the value of a dimension xj or, for image data, a thumbnail
representing each sample point (Eler et al., 2009). While simple to im-
plement, understanding how several such dimensions explain the plot
requires the use of small multiples or manually cycling through color-
coding all dimensions. Biplot axes (Greenacre, 2010; Gower et al., 2011)
and axis legends (Broeksema et al., 2013; Coimbra et al., 2016) explain
the projection’s global structure in terms of the dataset dimensions. Lo-
cal projection errors (Aupetit, 2007; Schreck et al., 2010; Martins et al.,
2014) explain how well visual patterns in P(D) encode the structure of
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the corresponding data in D. A more comprehensive discussion of ex-
planatory techniques is given in Sec. 2.5.

Besides projection errors, local explanations also aim to explain what,
in the data, is common to groups of close points in P(D), such as the con-
tribution and variance of each dimension xj (da Silva et al., 2015); cor-
relation of two dimensions xj and xk , local dimensionality (van Driel
et al., 2020); and salient values common to point clusters (Paulovich
et al., 2012), to mention only the most common such techniques. The
key added value of such techniques is that they explicitly annotate vi-
sual structures in the projection P(D)with information from D, thereby
making it directly visible what these structures mean data-wise. To our
knowledge, such local explanations, most notably the ones in (da Silva
et al., 2015; van Driel et al., 2020), have not been used so far for 3D
projections. Related to our research question, we would like to �nd out
whether 3D projections would fare better than their 2D counterparts
when supported by such explanations.

6.3 qantitative study

As explained in Sec. 6.2, there is currently very little quantitative evi-
dence on how 3D projections perform, in terms of quality metrics, as
compared to their 2D counterpart. We address this problem by design-
ing and evaluating a benchmark, similarly to the earlier one proposed
by Espadoto et al. (2019) for 2D projections, which we will next refer to
as the ‘2D benchmark’ for simplicity. Constructing the benchmark in-
volves selecting a number of datasets (Sec. 6.3.1), projection techniques
(Sec. 6.3.2), and quality metrics to compute (Sec. 6.3.3). We describe
these next, also outlining important aspects where we di�er from the
2D benchmark.

6.3.1 Datasets

To compare 3D vs 2D projections, we �rst selected a number of 8
datasets. Table 4 lists their details, including their sparsity ratio γn =
1 − u

nN , γn ∈ [0, 1], where u is the number of non-zero data values; and
intrinsic dimensionality ρn ∈ [0,n], de�ned as the number of princi-
pal components (of the total n), computed by PCA, needed to explain
95% of the data variance (Espadoto et al., 2019). More information about
these datasets is available in the supplementary material. These met-
rics can be interpreted as follows: The sparsity ratio is typically quite
high for text word-vectors (the data is sparse), and quite low for ta-
ble data having a small number of dimensions (the data is dense). If
a dataset is sparser, its points are closer in the nD space (Bellman, 1957;
Beyer et al., 1999), and as a consequence projection techniques have
more challenges to identify and separate point-clusters in the projec-
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tion space. The intrinsic dimensionality intuitively tells how many di-
mensions we actually need to represent the data. Datasets having an
intrinsic dimensionality equal to, or close to, q are far easier to project
to qD, as their structure can be ‘unfolded’ to be mapped to the qD space.
This was recognized early on by algorithms such as Isomap (Tenenbaum
et al., 2000) which explicitly exploited the (low-dimensional) manifold-
like structure of the data when constructing the projection. Conversely,
datasets having a high intrinsic dimensionality are far more challenging
to project.

The metric values in Tab. 4 show that our selected datasets cover
quite di�erent characteristics, in line with those selected in the 2D
benchmark. Using more datasets is de�nitely desirable. However, this
would be too expensive, given that we aim next to project each of them
by several techniques, both in 2D and 3D, and compute several quality
metrics for each combination.

In additional contrast to the 2D benchmark, we selected datasets
which are known, from earlier studies, to exhibit discernible structure in
terms of clusters of samples. This will be important for our qualitative
study (Sec. 6.4) in which we aim to compare how easily such structure is
perceived in 2D, respectively 3D, projections. Indeed, selecting some ar-
bitrary dataset that would not have any clear structure would make the
qualitative comparison of 2D vs 3D projections useless. Secondly, we se-
lected on purpose 7 of the 8 datasets as being relatively low-dimensional
(up to 30 dimensions): If 3D projections would not prove better than 2D
ones, even for such datasets, then the challenge would be even harder
for higher-dimensional ones. The eighth dataset (Reuters) was taken as
a control sample, to gauge how our results would extrapolate for data
having high (intrinsic) dimensionality.

6.3.2 Projections

From the 44 projection techniques present in the 2D benchmark, we
selected those which could compute, out-of-the-box, both 2D and 3D
projections, yielding a total of 29 projection techniques for our evalua-
tion. We excluded techniques which are not open source. Table 5 lists,
for these, whether they are (non)linear, accept samples or sample-pair
distances as input, project local neighborhoods di�erently or work glob-
ally the same for the entire dataset, their computational complexity,
whether they have out-of-sample quality, whether they are determin-
istic or stochastic, and the public source of their implementation (for
replication purposes). Complexity is a function of the number of dimen-
sions n, number of samples N , number of iterations i (for iterative meth-
ods), and number of weights w (for deep learning methods). As Table 5
shows, the selected projections cover a wide spectrum of methods.
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6.3.3 Metrics

Table 6 lists the projection quality metrics we used, which are the most
common ones used in the projection literature to gauge the quality of
dimensionality reduction (van der Maaten and Postma, 2009; Espadoto
et al., 2019). All metrics range in [0, 1] (0=minimal quality, 1=maximal
quality). These metrics are explained below.

Trustworthiness Mt : Measures the fraction of close points in D that
are also close in P(D) (Venna and Kaski, 2006b), being the inverse of the
false neighbors metric in Martins et al. (2014). Mt tells how much one
can trust that clusters in a projection represent actual data patterns.
In its de�nition (Tab. 6), U (K )i is the set of points that are among the
K nearest neighbors of point i in Rq but not among the K nearest
neighbors of point i in Rn ; and r (i, j) is the rank of the point j in the or-
dered set of nearest neighbors of i in Rq (ordering being here given by
Euclidean distance). We useK = 7, in line with earlier similar work (van
der Maaten and Postma, 2009; Martins et al., 2015; Espadoto et al., 2019);

Continuity Mc : Measures the fraction of close points in P(D) that are
also close in D (Venna and Kaski, 2006b). It is the inverse of the missing
neighbors metric in Martins et al. (2014). In its de�nition (Tab. 6), V (K )i
is the set of points that are among the K nearest neighbors of point i in
Rn but not among the K nearest neighbors in Rq ; and r̂ (i, j) is the rank
of the Rn point j in the ordered set of nearest neighbors of i in Rn . As
for Mt , we chose K = 7.

Shepard diagram correlation MS : In a scatterplot of the point-pair
distances in P(D) vs the corresponding distances in D – the Shepard
diagram S – points close to a diagonal indicate good distance preser-
vation (Joia et al., 2011). Points below, respectively above, the diagonal
indicate distance ranges for which false neighbors, respectively missing
neighbors, occur. We measured distance preservation by the Spearman
rank correlation MS of the Shepard diagram. A value of MS = 1 indi-
cates a perfect (positive) distance correlation. Note that, in Tab. 6, the
Shepard diagram S is not, formally speaking, a quality metric, since its
result is not a scalar-valued function as the other metrics. However, we
included its de�nition in the respective table for ease of reading as S is
needed next for computing the goodness metric MS .

We did not consider additional projection quality metrics in the lit-
erature such as metrics which cannot be (easily) aggregated to a single
scalar value per scatterplot, e.g., the projection precision score (Schreck
et al., 2010), stretching and compression (Aupetit, 2007; Lespinats and
Aupetit, 2011), average local error (Martins et al., 2014), and the co-
ranking matrix (Lee and Verleysen, 2009), since we want next to com-
pare hundreds of such scatterplots. We also did not consider metrics
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Table 6: Projection quality metrics used in our quantitative evaluation
(Sec. 6.3.3).

Metric De�nition

Trustworthiness (Mt ) 1 − 2
NK (2n−3K−1)

∑N
i=1

∑
j ∈U (K )i

(r (i, j) − K)

Continuity (Mc ) 1 − 2
NK (2n−3K−1)

∑N
i=1

∑
j ∈V (K )i

(r̂ (i, j) − K)

Shepard diagram (S) {(‖xi − xj ‖, ‖P(xi ) − P(xj )‖)}, 1 ≤ i ≤ N , i , j

Shepard goodness (MS ) Spearman rank correlation of S

which do not make sense for all types of projection, e.g., normalized
stress (Joia et al., 2011); and metrics which require labeled data, e.g.,
neighborhood hit (Paulovich et al., 2008) and the Class Consistency Mea-
sure (CCM) (Sips et al., 2009; Tatu et al., 2010).

6.3.4 Evaluation results

We evaluated all 29 projection techniques, for their 2D and 3D variants
on our 8 datasets using the 3 quality metrics in Sec. 6.3.3. Projection hy-
perparameters were set to the optimal defaults found in Espadoto et al.
(2019). We next analyzed the computed quality metrics from several per-
spectives.

Figure 6.1 shows the three quality metrics (Sec. 6.3.3) per dataset, pro-
jection technique, and 2D vs 3D projection variant, sorted ascendingly
on trustworthiness per technique, for ease of examination. The metric
values for City pollution (DM, SPE, MDS, N-MDS, and LE projections),
Air quality (NPE projection), and Defaultcc (DM, SPE, MDS, N-MDS,
and LE projections) are missing, as these techniques failed executing on
the respective datasets, due to unknown factors (likely, implementation
issues of the respective techniques). Overall, from Fig. 6.1, we see a glob-
ally small variation across techniques – which is fully in line with the
results of Espadoto et al. (2019). More interestingly, the 3D techniques
scored almost always better but only marginally compared to their 2D
counterparts. All these �ndings do not seem to depend on the dataset.
These observations strongly suggest that 3D projections consistently
bring some, but marginal, increase of quality vs their 2D counterparts,
regardless of the technique, dataset, and metric being used.

Figure 6.2 re�nes these insights. Image (a) shows the averages trust-
worthiness, continuity, and Shepard correlation, for each 2D projection
technique (circles), respectively 3D technique (triangles). Continuity is
slightly higher for 3D techniques – on average, 0.02 over all projection
techniques. Trustworthiness shows the same trend – 3D techniques are
0.05 more trustworthy than 2D ones on average. While Shepard correla-
tion varies more per technique, 3D projections still score slightly better
than 2D ones, 0.03 more on average. Image (b) merges the trustworthi-
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Figure 6.1: Quality metrics per projection technique (rows), dataset (colors), and
projection dimension (2D vs 3D, second column), sorted ascendingly
on technique trustworthiness.

ness and continuity plots in image (a) showing a positive correlation of
the two metrics over all projections. We placed the origin of this plot
at 0.5 × 0.5, since none of the two metrics is below this value. Globally,
we see that N-MDS scores poorest, followed by LTSA. The best scoring
techniques are t-SNE, UMAP, and AE. For these, however, the quality
gain given by 3D projections is negligible. The technique showing the
largest gain between 2D and 3D is H-LLE, where 3D adds about 12% in
trustworthiness and 8% in continuity, respectively. The stacked bars for
H-LLE in Fig. 6.1 show us that this gain is independent of the dataset.
Hence, for H-LLE, the use of a third dimension brings some signi�cant
added value.

Summarizing the above, we see that the use of a third dimension
brings only minimal increase of quality metrics for all projections be-
ing studied, over all studied datasets, except H-LLE, whose 3D variant
scores about 10% higher quality than its 2D variant.

6.4 qalitative study

The analysis in Sec. 6.3 showed that 3D projections do not come with
signi�cant higher quality metrics than their 2D counterparts. However,
we cannot say, based solely on this, that they do not have added value.
Indeed, the quality metrics used in Sec. 6.3 capture only a fraction of the
expressive nature of a projection. Many other quality metrics exist, for
example those used to capture the visual separation of clusters in projec-
tions (Albuquerque et al., 2011; Sedlmair et al., 2013; Motta et al., 2015).
For labeled data, the so-called Class Consistency Measure (CCM) (Sips
et al., 2009; Tatu et al., 2010) was shown to model well the way hu-
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mans visually separate same-label clusters in a projection (Sedlmair and
Aupetit, 2015). However, computing such cluster-separation metrics as-
sumes one to project labeled data and also that the respective data con-
tains well-separated same-label point groups. This is not always the
case for datasets which are explored using projections, as also noted
in Espadoto et al. (2019). Moreover, the actual way users would perceive
the added value (or lack thereof) of 3D projections cannot be fully cap-
tured by metrics such as the ones mentioned above.

We further gathered insight in how 2D and 3D projections di�er, by
a three-part qualitative study, in a bottom-up fashion – starting from
an easy task and proceeding with more complex ones – as follows.

6.4.1 Identifying visual structure

We �rst considered the task of using the projection to �nd any apparent
data structure depicted therein. For this, we looked at whether the pro-
jection is separated into distinct clusters, since this is one of the main
use-cases behind visual exploration of projections (Nonato and Aupetit,
2018; Sedlmair et al., 2013; Poco et al., 2011). Note that we did not con-
sider labels in this task, but rather only whether the projection cap-
tures the ‘modes’ of the underlying data distribution. More precisely,
we aimed to see whether 3D projections reveal better such existing sep-
aration – if present in the data – than their 2D counterparts. For this,
we created scatterplots of all the 8 datasets in Tab. 4 projected in 2D
and 3D by all the 29 projection techniques in Tab. 5. Next, we visually
compared the corresponding 2D and 3D projection plots – to be more
exact, the 2D plots with 2D views (from selected viewpoints) of the 3D
plots. In all plots, we colored points based on the ID of the correspond-
ing high-dimensional points using a heat colormap. This allowed us to
see whether di�erent plots place points close to each other in similar
ways – if so, they will exhibit similar color gradients. Note that this
should not be confused with the typical color-by-attribute-value mode
used in exploring projections, whose aim is di�erent, i.e., to explain pat-
terns in a projection by data values. Next, we interactively rotated the
3D plots aiming to �nd the view which best conveys separated clusters.
Finally, we aligned this view (by means of manual rotation around the
view axis and viewport scaling) to best match the corresponding 2D
projection, for visual comparison purposes.

Figure 6.3 shows the results of this evaluation for the Wine dataset,
with 2D projections always to the left of their 3D counterparts for the
same technique. Results for H-LLE, LTSA, and M-LLE are omitted since
these projections create a very large amount of point overlap, making
their visual exploration useless (both in 2D and 3D). Similar results
to Fig. 6.3 for all studied datasets are in the supplementary material,
including videos showing the 3D projections from multiple viewpoints.
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Figure 6.3: Visual comparison of 2D vs optimal views of the 3D projections
for the task of identifying separated data clusters, Wine dataset
(Sec. 6.4).
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These images convey us several interesting insights, as follows.

Data patterns: The vast majority of projections show that the Wine

dataset is roughly split into two clusters (red-purple, respectively
yellow points in Fig. 6.3). This is in line with other works that studied
this dataset (Coimbra et al., 2016; da Silva et al., 2015; van Driel et al.,
2020). As a baseline, this tells us that our study is properly set up to
next explore the other projections.

2D vs 3D projections: In almost all the cases, the 3D projections show
the same patterns as their 2D counterparts. The exceptions are I-PCA,
NMF, and (partly) T-SVD. For these techniques, the 2D plots do not
show any data structure, whereas the 3D plots show a clear separation
of the two underlying data clusters. Separately, we see that ‘good’
projection techniques work equally well in 2D and 3D to create visual
structure – or equally poorly. For the latter case, we have N-MDS,
L-LTSA, LLE, LPP, NPE, and S-RP. These techniques are not able to
identify any visually salient patterns in the data, neither in the 2D nor
in the 3D case.

Projection quality: As explained in the beginning of this section, qual-
ity metrics are not to be used as a sole mean to assess whether a pro-
jection is useful in conveying data patterns. Figure 6.3 con�rms that:
We see a large variation in the ability of projections to �nd data pat-
terns, ranging from very strong cluster separation (T-SNE and UMAP)
to almost no structure (N-MDS, NPE). This is only partly re�ected by
the metric values (Fig. 6.1): While the techniques that score poorly in
�nding visual structure (N-MDS, L-LTSA, LLE, LPP, NPE, and S-RP) also
have some of the lowest quality metrics, AE scores third-highest metric-
wise, but arguably shows a poorer visual separation of data structures
than MDS which has the 7th lowest metric values.

Summarizing the above, we found that 3D projections produce
roughly the same visual patterns as their 2D counterparts, these pat-
terns depending far more on the projection technique being used than
on the dimensionality of the output scatterplot (2D or 3D). Also, pro-
ducing the same informative views cost more time for the 3D projec-
tions, since a suitable viewpoint must be found by interactive rotation,
whereas the 2D projections required no user interaction.

6.4.2 Explaining visual structure

Our �rst evaluation (Sec. 6.4.1) showed that 3D projections seem, over-
all, to be able to generate similar amounts of visual structure to their
2D counterparts. However, by itself, this does not directly tell us that
3D and 2D projections are equally e�ective in understanding data struc-
ture. Indeed, visual structures in a projection need explanations to be
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further understood and interpreted by users (Sec. 6.2.4). Without these,
a ‘raw’ projection, even when showing some visual structure, is of little
use. We next studied how the variance-based explanation of projections
of da Silva et al. (2015); van Driel et al. (2020) augments the added-value
of 3D vs 2D projections. This explanation colors projected points P(xi )
by the identity of the dimension xj which has the least variance over
a small neighborhood around P(xi ). Color brightness encodes the ex-
planation con�dence, i.e., how much of the total variance (over all n
dimensions) in a neighborhood in P(D) is explained by the color-coded
dimension there. Among other projection explanations (Sec. 6.2.4), we
selected this one since it works generically for any projection technique,
acts locally per projection neighborhood (so, can handle both local and
global projection techniques), is fast and simple to compute, and is easy
to introduce to users. We implemented this explanation for 3D projec-
tions by extending the earlier work (da Silva et al., 2015) that considered
2D projections only. We next applied the explanation to all our 2D and
3D projections computed as outlined in Sec. 6.3.

Figure 6.4 shows a selected subset of 2D and 3D projections for the
Wine dataset (for space reasons, all results are in the supplementary ma-
terial, see reference (Tian et al., 2021d) for details) color-coded by the
Da Silva explanation. Points are rendered with blended splats, follow-
ing da Silva et al. (2015). Legends indicate the data dimensions color-
coded in the explanations. Since we wanted to test how the Da Silva
explanation helps understanding visual structure, we separated projec-
tions in those found (Sec. 6.4.1) to exhibit a clear visual structure in 2D
(Fig. 6.4 top half), respectively those which showed such structure far
less clearly (Fig. 6.4 bottom half).

A �rst analysis of Fig. 6.4 shows that, for the top projections, the pat-
terns visible in the 3D projections are quite similar to those shown by
their 2D counterparts. For instance, UMAP (2D) separates the data into
two clusters. The color-based explanation further splits the larger left
cluster into wines that are similar mainly because of chlorides (pink), re-
spectively alcohol (red). The smaller right cluster is nearly completely
explained as wines having similar sugar content, apart from a few points
at the bottom which are wines having similar alcohol percentages. The
3D projection created by UMAP tells us essentially the same story. The
same situation occurs for FA, where the 2D and 3D projections are both
split into essentially three zones explained by alcohol (pink), sugar (yel-
low), and chlorides (red). This suggests that 3D projections do not help
gaining more, or di�erent, insights as compared to their 2D counter-
parts.

However, comparing the 2D and 3D projections in Fig. 6.4 has a prob-
lem: Di�erent colormaps are used to encode the same dimensions for
the same dataset. For example, the 2D Isomap projection of the Wine

dataset in Fig. 6.4 (top left) uses pink, yellow, red, and green to encode al-
cohol, chlorides, sugar, and volatile acidity, respectively. The 3D Isomap
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Figure 6.4: Comparison of 2D and 3D projections explained by dimension vari-
ance, Wine dataset. Dimension-to-color mapping is computed per
individual projection (Sec. 6.4.2).
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projection of the same dataset uses pink, yellow, and green for the same
dimensions, but allocates green to sulfur. This is inherent to how the al-
gorithm in da Silva et al. (2015) works: Each projected point is assigned a
dimension that best explains the neighborhood around it; next, for each
dimension 1 ≤ j ≤ n of the dataset, the number of projected points ej
that choose dimension j as best is computed. Finally, the values ej are
sorted descendingly and the �rst C dimensions that emerge from this
sort are mapped to a categorical colormap ofC = 8 colors. This way, col-
ors are allocated to those dimensions which can explain the most pro-
jected points. Since 2D and 3D projections (of the same dataset) have
di�erent structures, their top-voted C dimensions can di�er, leading to
the same dimension being mapped to di�erent colors and/or the same
color allocated to di�erent dimensions.
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Figure 6.5: Comparison of 2D and 3D projections, Wine dataset. Same as Fig. 6.4,
but using the same dimension-to-color mapping for 2D and 3D pro-
jections created by the same technique.

104



6.4 qalitative study

To remove this confusion, we redid in Figure 6.5 the plots in Fig. 6.4
using the same dimension-to-color mapping for each pair of 2D and 3D
projections created by the same technique. For this, we ran the Da Silva
algorithm once, e.g., when explaining the 2D projection, and saved the
dimension-to-color mapping it produces. Then, we ran the algorithm
for the 3D projection. If this run selected dimensions already assigned
to colors in the �rst run, then we used the colors assigned the �rst time;
if new dimensions are mapped to colors (by the second run), then we
allocated colors not used by the �rst run.

Looking at Fig. 6.5, the di�erence between the top projections (found
earlier to exhibit visible structure in 2D) and the bottom ones (found
earlier to have less visible 2D structure) becomes now clearer: For the
top projections, we see nearly the same explanations for the 2D and 3D
variants of the same technique; there is little added value apparent in
using a 3D projection instead of a 2D one, the structures shown by the
3D variant were already visible in the 2D variant. For the bottom pro-
jections, the situation is slightly more nuanced. 2D and 3D projections
often show the same main explanation patterns, see e.g. the yellow (left)
and pink (right) clusters present in both the 2D and 3D I-PCA variants
(Fig. 6.5, bottom). The 3D projections often introduce additional expla-
nations which were not easily visible in the 2D variants, see e.g. the
blue �xed acidity cluster for L-LTSA (3D) or the green and red clusters
for alcohol and sugar respectively for S-RP (3D). In the extreme case
of N-MDS, which had an extremely poor explanation in 2D, using a
3D projection does not improve the situation at all. To conclude, this
analysis tells that 3D projections, even when explained (by the Da Silva
method), do not bring signi�cant extra value as compared to their 2D
counterparts.

6.4.3 Expert evaluation

To gain more insights in how explained 3D projections compare to
their 2D counterparts, we performed a user evaluation, detailed next.

Participants: We asked four data scientists to take part in our study.
All were familiar with dimensionality reduction, and with the Da
Silva technique, and worked in information visualization for 2, 3, 9,
and 13 years, respectively. They were instructed �rst in how to use
a visualization tool that allows examining the 2D or 3D projections
via zoom, pan, rotation, and brushing points to see their attributes.
They were also o�ered videos showing the respective projections
visualized in the tool, for convenience. We precomputed all pro-
jections ourselves so that all users would see the same results and
would not be bothered with tweaking projection-algorithm parameters.
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Data: We computed 2D and 3D projections for the �rst 7 datasets in
Tab. 4 using all 29 techniques in Tab. 5. We did not use the Reuters

dataset since this is very high-dimensional (1000 dimensions) and
thus not suitable for the Da Silva explanatory technique. Also, 11
dataset-technique combinations failed to compute (see Sec. 6.3.4).
Hence, a total of 7 × 29 − 11 = 192 projection-pairs were o�ered for
investigation to the users.

Tasks: As outlined earlier, the main use-case behind the Da Silva ex-
planatory technique and its variants is to allow users to visually ‘parti-
tion’ a projection into di�erent zones, each being explained by a di�er-
ent dimension. Note that such zones need not be separated by whites-
pace, i.e., they can be di�erent, and usually are a superset of, the vi-
sual clusters that projections are typically used to �nd. For example, the
UMAP (2D or 3D) projections in Fig. 6.5 show, each, two visual clusters
(red-pink and yellow), but three zones (red, pink, and yellow). Given
this use-case, we next asked the users to study the provided 2D-3D pro-
jection pairs by comparing them side by side, and to note down how
they would rank the variants, using four classes:

1. the 2D and 3D variants are equally good and informative;

2. the 2D variant is clearly preferred;

3. the 3D variant is clearly preferred;

4. both variants are equally poor (hard to understand, thus use-
less).

For classes 2 and 3 above, we also asked the users to note down why
they preferred one variant against the other and save screenshots of
the respective variants. We also asked the users to write down, at the
end of the study, any global comments they had concerning the use of
2D vs 3D explained projections. There was no hard time limit imposed
for the study – the users could stop when they wanted.

Results: From the projection-pairs o�ered to study, 43 were marked in
class 4, i.e., hard to understand and further useless. From the remaining
ones, about 80% were marked in class 1 (2D and 3D variants address
the task equally well). The remaining 20% was roughly evenly split into
class 2 (2D variant clearly preferred) and class 3 (3D variant clearly
preferred). We did not �nd correlations between these classes and the
projection methods and/or the datasets. We found, however, more
interesting facts when reading the comments given by the users to
their rankings. We list the most salient �ndings next – see also Fig. 6.6
for user-made screenshots supporting these �ndings.

Perceived advantages of 3D projections

106



6.4 qalitative study

a)
 D

ef
au

ltC
C

 (
T-

S
V

D
)

c)
 C

ity
P

ol
lu

tio
n 

(K
-P

C
A

-S
)

b)
 C

ity
P

ol
lu

tio
n 

(U
M

A
P

)
d)

S
of

tw
ar

e 
(t

-S
N

E
)

E
xplained 3D

 projections are b
e

tte
r than 2D

 projections

e)
 W

in
e 

(U
M

A
P

)

E
xplained 3D

 projections are

s
im

ila
r to 2D

 projections

f)
 C

ity
 P

ol
lu

tio
n 

(t
-S

N
E

)
g)

 S
of

tw
ar

e 
(F

A
)

E
xplained 3D

 projections are w
o

rs
e

 than 2D
 projections

h)
 K

-P
C

A
-S

 (
W

in
e)

2D projections 3D projections (three viewpoints selected for illustration)

Figure 6.6: Selected examples from the user evaluation showing how variance-
explained 3D projections can be better than, similar to, or worse than,
2D projections (Sec. 6.4.3).
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• 3D projections spread the points over a larger space, so can show
more complex patterns. Figure 6.6a shows an example: the 2D T-
SVD projection essentially creates two narrow bands along which
little structure is visible. The 3D variant creates two plane-like
structures that can show more explanation details. The 3D dimen-
sion also increases the chance that more variables will be involved
in the explanation, which is good, since the explanation becomes
more �ne-grained. Figures 6.6b,c show this for CityPollution pro-
jected with UMAP and K-PCA-S: In both cases, the 2D projection
cannot really show the orange cluster (points similar due to the
SO2 dimension). This is because points are too tightly packed in
2D, so there is no room to ‘spread out’ this dimension. In 3D, the
projections yield a similar (triangular-shape) surface to the 2D
case. Yet, the additional spatial dimension allows spreading out
points above the surface, so the orange cluster becomes visible.
Also, the third dimension gives more chance for visual cluster
separation as compared to 2D projections.

• 3D projections were found to give the user a sense of control in
terms of selecting which are interesting views. While no ideal
viewpoint can be found in general, di�erent viewpoints could be
used to show di�erent parts of the data in turn, one by one. This al-
lows further �nding and exploring structures (one by one) which
would otherwise be occluded, and have no chance to show up, in a
2D projection – see e.g. the three viewpoints for Figs. 6.6b,c; only
in two of these is the orange cluster visible. Overall, 3D projec-
tions were found more versatile than 2D ones, being able to tell
di�erent stories about the data, depending on the chosen view-
point.

Perceived advantages of 2D projections

• One user remarked that the key advantage of 2D projections was
their ease of use. No interaction is required to examine them,
while one can get lost or frustrated in the process of zooming,
panning, and viewpoint rotation for 3D projections. As such, this
user noted that, in about 80% of the class-1 cases (2D found similar
to 3D), this did not take into account the interaction e�ort. If this
e�ort were to be considered, then those cases should be marked
as class 2 (the 2D variant is preferred). Quoting from this user:
“Both 2D and 3D are �ne. Yet, I prefer 2D because it gives very
clear results without further interaction needed.” Figures 6.6d,e
show two such cases. The visible clusters and their explanations
are very similar in 2D and 3D, so, for these cases, the 3D variant
does not add any perceived value.

• Some projection techniques, in particular t-SNE, were consis-
tently found to create clearer explanations in 2D than in 3D –
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something already visible in Figs. 6.4 and 6.5. This is an impor-
tant observation, since t-SNE is known as a very high-quality pro-
jection. Such quality would, thus, be lost if using the 3D variant.
Figure 6.6f shows this. The 3D t-SNE projection actually spreads
points on a ball-like surface, with some points also being placed
inside. It is very hard, even with interaction, to �nd out which
points are close together on the same ‘side’ of the surface.

• 2D projections were de�nitely preferred in the cases where the
nature of the data would create densely-packed clusters. These
would map to close groups of points in the 2D projection (which
are �ne). In 3D, however, this would create a densely packed ‘hair-
ball’ of regions explained by the di�erent variables (Fig. 6.6h). Oc-
clusion would then prevent the user from discovering interesting
structures and/or explanations inside such a 3D structure.

• Outliers were also found easier to spot with 2D projections. They
would appear as points separated by large amounts of whitespace
from the high-density ‘core’ of the projection. In 3D, however,
outliers could appear in front or behind the high-density core, and
thus be hard to spot (Fig. 6.6h).

6.5 discussion

We discuss several points concerning our �ndings and methodology,
as follows.

Quantitative results: The comparison of 2D vs 3D projection quality
metrics discussed in Sec. 6.3 is, to our knowledge, the �rst study of
its kind in projection literature. Overall, our results show that t-SNE,
UMAP, AE reach the best metric values for 3D projections, similar to
the results found earlier for projections (Espadoto et al., 2019). Our
main novelty is to show that, metric-wise, 3D projections are only
marginally better than their 2D counterparts – a fact which, to our
knowledge, was never quanti�ed by quality metrics.

Pattern identi�cation: Our �rst qualitative study (Sec. 6.4.1) showed
that 3D projections do not bring signi�cant added value over their
2D counterparts in terms of �nding data structures. 3D projections
either show the same structure type, or otherwise do not show any
structure at all, similar to their 2D counterparts. Our �ndings match
those of Sedlmair et al. (2013) – but generalize them, since we explored
29, as opposed to just 4, projection techniques (PCA, Robust PCA,
MDS, and t-SNE) used by Sedlmair et al. (2013); also, we used optimal
parameter presets for the studied techniques, something not considered
by Sedlmair et al. (2013). Our subsequent qualitative study (Secs. 6.4.2,
6.4.3) showed that, when augmented with the Da Silva explanation,
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3D projections can, in some cases, show more insights in the data
than their 2D counterparts, e.g., they partition the dataset into more
zones explained by more data dimensions. However, in most cases, the
patterns shown by 3D projections are very similar to the 2D ones; and
3D projections introduce additional challenges such as occlusion and
additional user e�ort for exploration.

Choice of projection techniques: An important point must be made
concerning the choice of studied projection techniques and the pre-
sented �ndings. Clearly, not all techniques are equally good for pro-
jecting any dataset. Espadoto et al. (2019) have extensively documented
this, by benchmarking 44 such techniques against 19 datasets for 2D
projections. Their results showed only small variations of the projec-
tion quality, measured by 7 quality metrics. As such, the question of why
certain projection techniques are better than others cannot be gauged
simply by quality metrics, as already argued in Sec. 6.4. A separate ques-
tion is how projection techniques perform with respect to other dataset
traits, beyond intrinsic dimensionality and sparsity (see Sec. 6.3.1). For
instance, the distribution of samples in a dataset can be an important
trait that characterizes the quality of a projection technique. We do not
examine this aspect in this chapter for the following reasons:

• The question “which projection technique is the best for a
given dataset type” is not in our scope. Rather, as explained in
Sec. 6.1 and next in this chapter, our research question is how
can visual explanations and/or 3D projections bring added value.
These questions do not focus on comparing projection techniques

against each other, but the same techniques against their in-
stances with or without visual explanations, and with or without
a third dimension;

• Comparing ‘raw’ projection techniques against each other has
been done in detail by Espadoto et al. (2019). As said earlier, we
aim here not to compare raw techniques, but techniques with (or
without) the additions of a third dimension and/or visual expla-
nations;

• It is inherently hard to link the performance of projection tech-
niques to the ‘nature’ of a given dataset. We did this by using the
so-called dataset traits (dimensionality, intrinsic dimensionality,
and sparsity) outlined in Sec. 6.3.1. Of course, additional traits can
be de�ned, such as the nature of the distribution that character-
izes the samples in a dataset. However, doing this is far from triv-
ial: There are, to our knowledge, no established ‘classes’ of can-
nonical distributions for nD datasets. The goal of characterizing
how projection techniques cope with various such distributions
is de�nitely an interesting topic to study, but one out of scope of

110



6.5 discussion

our chapter which focuses on comparing 2D vs 3D projections,
with vs without visual explanations.

Availability: All our experimental results, including snapshots of the
2D projections, videos of exploring the 3D projections, are available
online (Tian et al., 2021a). The source code of the visualization tool
that implements the variance-based projection explanations, written
in Rust using OpenGL, is publicly available at (Tian et al., 2021b).

Qualitative aspects: The question whether 3D projections are prefer-
able to 2D projections involves multiple aspects. We can classify these
into objective and subjective ones. Objective aspects include how the
two projection types fare against formal quality metrics. In this respect,
we showed that 3D projections provide only marginal advantage with
respect to their 2D counterparts (Sec. 6.3). Subjective aspects involve,
among others, personal preferences of users, as detailed in Sec. 6.4.3.
As the question asked to our expert users was quite broad – namely,
which projection (2D or 3D) they �nd the most informative – there was
more freedom for users to react by listing a wide range of reasons for
their preferences. Still, even with this freedom, the results showed that,
from the 192 projection-pairs o�ered to study, only 15 were marked as
3D clearly preferred to 2D, and 15 were marked as 2D clearly preferred
to 3D. This suggests that the impact of personal preference in the
choice of 2D vs 3D projections is quite small. It is, still, interesting
to explore the reasons underlying personal preferences, such as the
‘sense of control’ and ability of creating di�erent stories about the data
(Sec. 6.4.3). Better understanding these aspects can lead to the creation
of more engaging exploration tools, both for 2D and 3D projections.

Limitations: As any evaluation work in visualization, ours has several
limitations. We only explored 8 (real-world) datasets, and considered
only relatively simple tasks such as cluster separation identi�cation.
However, we argue that, if even for such simple datasets and tasks 3D
projections cannot show a clear added-value vs their 2D counterparts,
then this becomes even harder for more complex situations. We believe
that re�ning our �ndings with more speci�c (types of) datasets and
tasks is a promising direction for future work, which would either high-
light use-cases where 3D projections are really superior to 2D ones, or
conclude even more �rmly that the addition of a third dimension does
not bring added value.

A more important limitation regards our expert evaluation
(Sec. 6.4.3), which involved only four experts and a general task of
ranking projections in terms of being more or less informative. It
can be certainly argued that de�ning more precise tasks, e.g., �nding
a speci�c subset of data points which are similar due to a given
condition on the data attributes, and measuring the task accuracy and
completion time, is needed to re�ne our insights. However, we also
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argue that our preliminary evaluation presented here is valuable in
a formative sense. Our evaluation is a qualitative assessment and, as
such, has no generalizable power – we are not aiming to ‘prove’ or use
inferential statistics to claim something. Rather, the purpose is to derive
preliminary observations that will inspire future work to generate
(and thereafter test) hypotheses. Also, for basic usability studies, it is
common to have a limited number of participants (typically 2 to 5).
In our case, we further focused on expert evaluators; such studies are
also common to have a small sample, both due to feasibility and due
to emphasis on in-depth analysis. Our formative study allowed us to
discover several speci�c cases where certain 3D projection techniques
produce more visual structures of interest than their 2D counterparts
(see Fig. 6.6). Moreover, this formative evaluation allowed us to discover
that the preference for 2D vs 3D projections involves a wide range of
factors, going beyond what quality metrics can capture. For example,
3D projections are listed as superior to 2D ones as they invite the user
to explore the data more by interactively choosing various viewpoints,
something that 2D projections cannot do. We aim to further re�ne
these insights by a formal evaluation which involves techniques and
tasks that can exploit the perceived advantage of 3D projections.

6.6 conclusions

We presented a multi-faceted comparison of 2D and 3D dimensionality-
reduction methods, or projections, for the purpose of �nding patterns
in high-dimensional data, with the aim of �nding added-value (or the
lack thereof) for using the third dimension in the scatterplots used to
explore such data. As a benchmark, we used 29 projection algorithms
and 8 datasets. Our �rst facet – a quantitative study of three quality
metrics – showed consistent, but marginal, added value of the 3D pro-
jections. Our second facet – a study in �nding visual patterns depicted
in the projection – showed that 2D and 3D projections fare almost iden-
tically. Our third facet added visual explanations (in terms of attribute
variance) to the compared 2D and 3D projections, and showed that both
have roughly the same ability in showing very similar patterns. Finally,
we executed a user evaluation to elicit additional �ndings on how 2D
and 3D projections compare. We found that, overall, both projection
types are found equally insightful, but the 3D ones generate additional
challenges and e�ort.

Summarizing the above, there is little consistent evidence that 3D
projections would structurally add value to high-dimensional data ex-
ploration atop what 2D projections can do. Still, our study also high-
lighted several cases where the third dimension does make a di�erence
– in showing more visual structure, more detailed explanations, or en-
gaging users in the data exploration. We aim to re�ne these �ndings
in several directions. First, we want to test more explanatory tools on
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both 2D and 3D projections to see whether some of them can further
leverage the third dimension. Secondly, we want to re�ne the analy-
sis of the cases where 3D projections were found to be better than 2D
ones, and thereby develop specialized projection-and-exploration meth-
ods that can bring extra value atop what standard 2D projections can
deliver. Finally, and in support of both these future work directions, we
aim to design more �ne-grained controlled experiments where more
users than in the current study are given speci�c quanti�able tasks to
execute using 2D and 3D projections in order to compare more precisely
their advantages and limitations.
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7C O N C L U S I O N S

We now conclude our work on our research described in this thesis.
For this, we revisit our main research questions and also the way we
attempted to answer these.

Recalling the points made in Chapter 1, our key research question
was how to improve the exploration and understanding of 2D and 3D
visualizations, of low- or high-dimensional data. The unifying element
of the work in this thesis is, thus, the dimensionality of the represen-

tation of the visualized data, which is, namely, 3D vs 2D. However, we
found out, following the hypotheses outlined in Chapters 1 and 2, that
the dimensionality of the actual data makes a signi�cant di�erence on
how we can assist users in exploring and understanding it.

We support the above statement by the following �ndings. We �rst
examined the exploration of low-dimensional, spatial, data – more pre-
cisely, 3D spatial datasets such as meshes and point clouds whose co-
ordinates map directly to data dimensions. We found out that, for such
datasets, a key challenge is �nding good viewpoints to examine them
from, and to address this challenge, a major missing component are in-
struments to �exibly specify rotations around arbitrary axes in 3D. To
address this, and thus RQ1, we presented, in Chapter 3, a mechanism for
specifying 3D rotations around a wide variety of axes de�ned in the vi-
sualization space. We e�ciently and e�ectively computed such local ro-
tation axes by leveraging the summarization power of 2D binary-image
medial descriptors or skeletons. We extended these 2D skeletons with
depth information to provide approximations of the above-mentioned
3D local rotation axes. Our proposed technique allows one to specify
such complex 3D rotations, we argued, far more easily than existing
techniques, by simple point, click, and drag gestures. We compared our
novel rotation method to the classical virtual trackball rotation mecha-
nism, both in isolation and in combination, in a controlled user study
in Chapter 4. We measured the added value of our proposed rotation
technique by a formative study (to elicit main concerns from users) fol-
lowed by a controlled user study. Results showed that, when combined
with the classical virtual trackball rotation, our method leads to better
results (in terms of task completion times) and higher user satisfaction
than trackball rotation alone. Also, our method is easy to learn and does
not carry a signi�cant learning or execution cost for the users, thereby
not increasing the costs of using standard trackball rotation.

Concluding this �rst part of our work, and also RQ1, we state that
improvements are certainly possible to existing 3D viewpoint manip-
ulations tools. While our skeleton based rotation showed some clear
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advantages, it also appeared not to be able to fully replace virtual track-
ball rotation. More speci�cally, we found that skeleton-based rotation is
slower than trackball rotation when used alone (for completing a given
task); however, when both rotation mechanisms are o�ered to the user,
and the user can freely switch between the two during the given task,
the addition of the skeleton-based rotation results in a decrease of the
time needed to accomplish that task. Our work, as such, justi�es the
statement that current 3D viewpoint manipulation tools are still limited;
and provides evidence that novel tools, such as our skeleton approach,
can provide added value. At a high level, we believe that the main added
value of our work showed the unexplored potential of novel interaction
mechanisms for 3D viewpoint manipulation and, in particular, the po-
tential value of mechanisms that use the inherent local structure of the
visualized 3D data.

The second part of our work focused on the visual exploration, also
by 3D visualizations, of high-dimensional data using dimensionality re-
duction (DR) methods. This covers our research question RQ2. Concern-
ing this, we focused on the task of explaining the meaning of visual
structures present in such projections by means of the underlying data
dimensions. To do this, and thus answer RQ2, we �rst addressed the
simpler case of 2D projections in Chapter 5. Such 2D projections do not
have the additional challenge of choosing a suitable viewpoint for ex-
amination. We address the explanation of these projections by develop-
ing several so-called local explanation techniques which label neighbor
points in the projection by their shared data-related characteristics. The
resulting visualizations e�ectively split the projection point cloud into
a number of di�erently colored and shaded zones, where each zone can
be e�ectively explained in terms of the original data dimensions. We
show how our additional explanation mechanisms complement existing
projection explanation mechanisms and lead to a better understanding
of data represented by such 2D projections. More importantly, we ar-
gue that there is no single projection explanation mechanism which can
fully expose to the user what the meaning of such local structures in the
projection is. Rather, it is the examination and combination of several
such mechanisms, including the ones we proposed, that contributes to
forming a good picture of the data for the user. At a higher level, we
thus argue that understanding DR projections cannot be done by any
‘single’ technique; several techniques, each addressing a di�erent aspect
of the data, need to be used in turn by the explorer to form a holistic
picture. This is, fundamentally, not surprising – after all, many (tens
or hundreds) of data dimensions are ‘collapsed’ into such a projection.
Hence, something is needed to get their meaning back in the projection
– such as our proposed explanatory techniques.

We next moved to address the use of 3D DR projections in Chapter 6.
More precisely, given our earlier work, we investigated how well 3D pro-
jections fare against the use of 2D projections for a number of datasets
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and projection techniques. We �rst approached this comparison in a
classical way, using projection quality metrics known from the liter-
ature. This quantitative comparison showed consistent, but marginal,
added value of the 3D projections. We next moved to comparing 2D vs

3D projections in terms of the visual patterns one can detect in such
projections. This study showed that 2D and 3D projections fare almost
identically. While this may not appear as surprising, we are not aware
of a similar controlled experiment that compared 2D vs 3D projections.

Next, we compared 2D vs 3D projections when both are leveraged
by the explanatory techniques we introduced in Chapter 5, since, as
argued there, one can best understand what a projection means only
when it is suitably explained. Our third study added visual explanations
(in terms of attribute variance) to the compared 2D and 3D projections,
and showed that both have roughly the same ability in showing simi-
lar patterns. Finally, we executed a user evaluation to elicit additional
�ndings on how 2D and 3D projections compare. We found that, over-
all, both projection types are found equally insightful; and that the 3D
projections generate additional challenges and e�ort but also can, in
some cases, expose more patterns than the 2D projections can. Also,
our �ndings showed that users can get more engaged in exploring 3D
projections than the 2D ones. This is a signi�cant signal that shows that,
when appropriately supported by exploration mechanisms, 3D projec-
tions can have an end-to-end added value compared to their 2D coun-
terparts.

Concluding this second part of our work, and also our answer
to RQ2, we can state that explanation techniques (for both 2D and
3D projections) are de�nitely a valuable instrument in the toolkit of
data scientists using projections. Without them, the overall value of
exploring a projection (whether 2D or 3D) is highly limited. As a second
�nding, we have evidence that 3D projections do indeed bring some
added value vs their 2D counterparts. More interestingly, we found
that such evidence cannot be traced back to classical projection-quality
metrics, but rather resides in aspects (of users evaluating such projec-
tions) which cannot be quanti�ed by such metrics. This is, we believe,
a very interesting �nding which motivates a deeper, and potentially
di�erent, way of looking at projections to assess their quality and/or
added value, beyond the ‘bare’ quality metrics used nowadays.

Several directions for future work can be outlined based on our re-
sults, as follows.

Concerning the 3D skeleton-based rotation mechanism proposed in
Chapter 3: We argue that we just ‘scratched the surface’ of what is possi-
ble in this direction. Numerous extensions can be envisaged, e.g., using
more cues from the actual data to infer better 3D rotation axes (such as
shading and depth gradients); for point clouds, using volume rendering
and kernel density estimation (KDE) methods to locate ‘dense’ struc-
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tures in the data and compute local 3D skeletons from those, e.g., using
isosurfacing methods. More widely, there is a whole gamut of possibil-
ities of reducing a rendered image (of a 3D structure) to local axes that
can serve for rotation, based on heuristics or domain knowledge, that
can be explored.

Concerning our explanation of DR scatterplots (Chapters 5 and 6),
numerous extensions are also possible. Adding more explanation types,
such as inverse correlation, correlation of more than two dimensions,
or the presence of speci�c nD data patterns, is a low hanging fruit. One
can compute, in parallel, a wide range of local explanations based on a
pattern library, and next show the most salient ones in the �nal view,
thereby enriching the current contribution, variance, correlation, and di-
mensionality views. This would perform a scagnostics-like (Wilkinson
et al., 2005) local analysis of the projection, but using patterns described
by the high-dimensional data rather than by the scatterplot. Comput-
ing a hierarchical explanation, where projection regions are recursively
split by additional explanations, is another direction we aim to pursue.

Finally, we argue, at this point we believe convincingly, that the ex-
ploration of low-dimensional and high-dimensional datasets visualized
by means of 3D metaphors are not fundamentally di�erent techniques.
Rather, there is a continuum between the two. Our 3D viewpoint manip-
ulation techniques (proposed for spatial low-dimensional data) could be,
indeed, adapted and used to explore 3D projections of high-dimensional
data. Conversely, our techniques to explain why points in a 3D DR scat-
terplot of high-dimensional data are related could be also used to ex-
plain why points in a spatial, low-dimensional, 3D scatterplot are re-
lated. At the highest level, and as the �nal conclusion of this thesis, we
believe that methods that unify the exploration and explanation of data
(of whichever dimensionality or spatiality) are the way to go forward.
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