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ABSTRACT

Numerous problems in data science can be described under the common
denominator of analyzing a set of trajectories, or trails, of objects moving in
an embedding space. Two key classes of problems exist in this respect: First,
we must devise methods and techniques to capture, or track, the motion
of such shapes, starting from real-world sensor data such as video images.
Secondly, we must devise methods and techniques to analyze and explore
large sets of trails.
This thesis builds at the crossroads of the two above-mentioned prob-

lems. Our unifying concept is the representation of a trail (of a physical
shape moving in Euclidean 3D space) as a multidimensional measurement,
or data point. We first propose methods for tracking such shapes in the
context of a concrete application – the localization of teats of cows from
low-resolution 3D time-of-flight videos, with direct applications in the con-
struction of automatic milking devices for the dairy industry. Secondly, we
propose novel algorithms for the pre-segmentation of such video images,
with the aim of localizing salient protruding shapes, such as teats, using
shape skeletons – a novel way of representing and understanding grayscale
and color images which generalizes the well-known concept of shape skele-
tons to continuous signals. Thirdly, we show how recent techniques for the
visualization of multidimensional data can help understanding and improv-
ing the performance of complex computer-vision tracking algorithms for
object trails, which is a novel way of utilizing visual analytics techniques.
Finally, we show how truly large-scale trail-sets consisting of millions of
static or dynamic trajectories of aircraft and eye-tracking data can be de-
picted in real-time and in a simplified manner, thereby addressing the ques-
tion of large-scale analysis of trail data.

v
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SAMENVAT T ING

Vele problemen in data science kunnen beschreven worden onder de noe-
mer van het analyseren van een verzameling van trajecten van objecten
die bewegen in de ruimte. Twee belangrijke types van problemen bestaan
in deze richting: Men moet eerst methodes en technieken ontwerpen voor
het tracken van de beweging van dergelijke objecten, op basis van actuele
sensordata zoals videobeelden. Ten tweede moet men methodes en technie-
ken ontwerpen voor het analyseren van grote verzamelingen van trajecten
(tracks).
Dit proefschrift bestudeert de intersectie van de twee hierboven ge-

noemde problemen. Het concept dat wij voorstellen ter vereninging er-
van is de representatie van een traject (trail) van een fysieke eenheid die
beweegt in 3D Euclidische ruimte als een multidimensionele meting of
datapunt. We presenteren eerst methodes voor het tracken van dergelijke
objecten in de context van een concrete toepassing – de localisatie van
koeienspenen uit laagresolutie 3D time of flight video’s, met directe toe-
passingen voor automatische melkrobots in de melkindustrie. Vervolgens
presenteren wij nieuwe algoritmes voor de presegmentatie van dergelijke
videobeelden, met het doel van localiseren van saillante vormen zoals spe-
nen, met behulp van vormskeletten – een nieuwe manier van representatie
en analyse van monochrome en kleurbeelden die het welbekende concept
van vormskeletten generaliseert voor continue signalen. We laten zien, ten
derde, hoe recente technieken voor de visualisatie van multidimensionele
gegevens hulp kunnen bieden tot het begrip en verbetering van de effec-
tiviteit van complexe computervisie tracking algoritmes voor objectpaden,
een nieuwe toepassing van visual analytics technieken. Ten slotte laten we
zien hoe daadwerkelijk zeer grote verzamelingen van paden van miljoenen
statische of dynamische trajecten van vliegtuigen of oogbewegingen afge-
beeld kunnen worden op een versimpelde en interactieve manier, wat het
probleem van analyse van grootschalige padenverzamelingen addresseert.

vi
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1I N TRODUCT ION

We live in a world that is densely populated with shapes. Our familiar sur-
rounding universe consists of three-dimensional shapes representing both
natural and man-made objects. Their structure, form, topology, properties,
behavior, and mutual interactions create a rich and complex set of informa-
tion that we can study to better understand the phenomena surrounding
us.
In the last decade, significant advances in sensing devices, data storage

size and speed, computational speed, and sophistication of algorithms have
made it possible to both acquire more (and more diverse) data and analyze
such data to extract information and, ultimately, knowledge. The above is
also true for data and applications related to shapes. For example, acquir-
ing live high-resolution video streams that capture shapes around us has
become part of commodity realm. More recent developments, such as time-
of-flight cameras, three-dimensional scanners, and tracker devices have
brought the same simplicity, low cost, and high fidelity to the acquisition
of three-dimensional static and dynamic content. Separately, increasingly
sophisticated algorithms have been designed to analyze both static and
dynamic information describing both 2D and 3D shapes [52]. Many such
algorithms can now run at near-interactive framerates on consumer-grade
personal computers or even on low form-factor mobile devices such as
tablets and smartphones [296].
Collecting and analyzing information on shapes (and their behavior)

should, of course, serve specific aims related to specific applications. These
include, for instance, capturing the geometry and topology of real-world 3D
shapes for synthetic reproduction via 3D printing [157]; searching for such
shapes in large collections of pre-recorded exemplars, a process also known
as content-based shape retrieval [261]; capturing the dynamic behavior of
shapes, a process also known as shape tracking [306]; and analyzing the
captured information to detect and extract higher-level knowledge of the
structure and behavior of the surrounding world.

1.1 the dynamics of shape

A particularly interesting subfield of the above domain relates to shape dy-
namics. In this field, one is interested in patterns of change related to various
measurable properties of shapes. Well-known applications in this field in-
clude tracking the motion of humans from video streams to identify anoma-
lous behavior [197]; analyzing repetitive motion patterns to help athletes or
patients in training and/or injury recovery [181]; record motion patterns of
humans that can be next used to realistically animate synthetic characters

1
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in video games or special-effects movies [39]; detect congestion patterns in
vehicle motion over roads, sea, or air so as to optimize traffic [304]; analyze
motion of large groups of vehicles to detect potentially hazardous situa-
tions [122]; and let robots perform activities that involve interacting with
real-world moving objects [55].
To accomplish the above goals, three classes of techniques are typically

considered. First, acquisition techniques are used to collect actual data de-
scribing the moving shapes of interest. Secondly, automatic analysis tech-
niques are used to extract higher-level information from the raw acquired
motion data. Thirdly, visualization techniques are used to further refine the
data analysis in a user-controlled way, and also to present the extracted in-
formation in ways that enables one to gather knowledge or insight on the
underlying phenomena.
However, many challenges still remain open in the above endeavor.

While data acquisition on the dynamics (motion) of 3D shapes is now a
quite mature field, featuring ready-to-use techniques and tools, the analy-
sis and visualization components of the process are, we argue, relatively
less developed, as explained next.

Dynamic shape analysis: For the analysis part, many algorithms exist,
which can be roughly classified into shape detection methods (which aim
to separate a shape of interest from its surroundings in the acquired data),
and shape tracking methods (which aim to extract the change of relevant
shape properties over time). Both 3D shape detection and tracking algo-
rithms are typically studied within the field of computer vision, the main
reason for this being that the acquisition of high-resolution video streams
depicting changing shapes is extremely simple, unexpensive, and non intru-
sive. Many computer vision techniques exist to these ends, ranging from the
segmentation of simple rigid 2D shape silhouettes from static background
in high-quality, high-contrast videos to the tracking of highly deformable,
variable, and possibly occluded 3D shapes in low-quality videos [306].
Generally speaking, the complexity of a shape detection-and-tracking

vision method is increasing as a function of the decreasing quality of the
acquired video data; complexity and variability of shape and its changes; de-
sired level of robustness, accuracy, and automation; and decreasing level of
available computational power.When all above factors take extreme values,
such as low-resolution or low-accuracy videos; handling organic, highly-
deformable, and (partially) occluded shapes; the need for fully automatic,
real-time, and computationally efficient algorithms, which are required e.g.
for controlling robots by embedded devices; and guaranteeing tight track-
ing error bounds that a robot requires to properly operate, many of the ex-
isting state-of-the-art vision algorithms cannot be applied. To address such
use-cases, new custom algorithms have to be designed.
Separate problems appear in the context of designing such new tracking

algorithms, such as validation and optimization. To perform validation, one
typically needs ground-truth information on the 3D tracked data. However,

2
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1.2 focus of this thesis

such information may not be available, or be very expensive to reliably
collect. Separately, to perform optimization, one needs to intimately under-
stand how the proposed tracking algorithmworks, which are the parameter
value-ranges for which it has issues, which are these issues, and how these
can be corrected. In turn, this requires fast, simple, and above all intuitive
ways that let designers explore the potentially very large, or high dimen-
sional, ‘state space’ of a tracking algorithm.

Dynamic data visualization: The depiction of time-dependent data falls
within the field of data visualization, which knows a long history, and has
proposed many techniques [101, 271]. However, our context of understand-
ing dynamic behavior of 3D shapes raises several specific challenges. First,
the dynamic data at hand can be abstract, such as in the case of changes
of internal parameters of a computer vision tracking algorithm. Secondly,
the data can bemultidimensional. For instance, understanding the behavior
of a tracking algorithm requires understanding the dynamic changes of
its input (e.g. a video stream), output (e.g. the degrees of freedom of the
tracked 3D object(s)), internal tracker parameters which control its opera-
tion, and above all how all these variables depend on each other. Separately,
understanding the dynamics of a large and complex set of objects, such
as tens of thousands of vehicles moving over large spatial extents and
time periods with variable direction, speed, height, and other properties,
requires ways to show large amounts of information in a simplifiedmanner.

1.2 focus of this thesis

Summarizing the above, we can say that the analysis and understanding of
large and complex time-dependent behavior of 3D shapes is a topic at the
crossroads of computer vision and data visualization. We need computer
vision to extract high(er) level information from raw acquired motion data;
and we need visualization to show and interpret such higher level infor-
mation. Furthermore, we can use visualization to understand the behavior
of a tracker itself (rather than the tracked objects), so as to understand its
limitations and next improve its operation. This last use-case falls within
the scope of visual analytics, a relatively new discipline which focuses on
the use of interactive visualization techniques to make sense of complex
processes based on large amounts of complex data [276, 297].
Computer vision, information visualization, and visual analytics are all

established disciplines – in this order. However, mainly due to historical
reasons, they have evolved relatively separately, so using methods from
one field (e.g. visual analytics and/or information visualization) to support
another field (e.g. computer vision) is not yet mainstream. Recent example
applications show, however, that important benefits can be gained by com-
bining the three fields [13, 164, 212].

3



521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan
Processed on: 10-8-2018Processed on: 10-8-2018Processed on: 10-8-2018Processed on: 10-8-2018 PDF page: 16PDF page: 16PDF page: 16PDF page: 16

introduction

1.2.1 Research Questions

Given the above, we can now state the main research question of this thesis:

RQ: How can visual analytics help understanding time-dependent multidi-
mensional data to support the analysis of the dynamic behavior of 3D shapes?

We will further split this question into two sub-questions, based on the
relationship between data and images, as follows (see also Figure 1.1):

1. From images to data: Computer vision (tracking) algorithms can be
thought of as algorithms reading images (video streams) and generating
data (characteristics of the tracked objects). We are interested in the de-
sign of computer vision algorithms for tracking complex 3D shapes, under
the constraints mentioned earlier in this section (complex/variable shapes,
low-resolution or low-accuracy acquired data, full automation, high track-
ing accuracy, and low computational power). As mentioned, developing
tracking algorithms under all such constraints is hard and expensive. As
such, we ask ourselves

RQ1: How can we use visual analytics to understand and improve the oper-
ation of fully automated, low-cost, computer vision tracking algorithms for
complex 3D shapes from low-quality video data?

Figure 1.1: From images to data and conversely.

2. From data to images: Visualization algorithms can be thought of
as algorithms reading data and generating synthetic pictures that help
humans understanding the data. Our application context involves, as ex-
plained, data that is multidimensional, potentially abstract (non-spatial),
time-dependent, and potentially large. Understanding such data can help
users to understand the underlying phenomena, be them either the behav-
ior of 3D dynamic shapes or the behavior of a tracker for such shapes. As
such, we ask ourselves

4
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RQ2: How can we develop information visualization techniques that help us
effectively getting insight in multidimensional, spatial or non-spatial, time-
dependent, and potentially large trail datasets?

Given the above, the remainder of this thesis is naturally split into two
parts, each of them covering the research questions RQ1 and RQ2. These
parts, including a specific application demonstrating the relevance of the
respective research questions, are detailed further below in Sections 1.3 and
1.4 respectively.
Before going into the elaboration of RQ1 and RQ2, let us however clarify

a central data concept that links them: the trail.

Trails: The data involved in all our use-cases discussed above has several
special characteristics: it is time-dependent; it has multiple values per mea-
surement (it is multidimensional); and it is large, complex, or both. Besides
these structural properties, our data has a much more important semantic
common denominator: It denotes trajectories, or paths, taken by objects as
these move through their embedding space. We next refer to such trajecto-
ries as trails.
Summarizing the above, the following important properties of trails are

relevant to our work:

• Time-dependence: All measurements along a trail relate to proper-
ties of the tracked object (that is, object that moves along a trail) that
are sampled, or measured, at consecutive moments in time;

• Multidimensionality: At any given time moment, the tracked ob-
ject has several properties. Each of these spawns a different dimen-
sion;

• Embedding space: Properties measured along a trail belong to dif-
ferent spaces. For example, if we consider the motion of a shape in
three dimensions, its measured properties are related to how the ob-
ject moves in 3D space. However, if the object is some abstract data
entity of which none of the measured properties are spatial, then its
trail (as it changes in time) are not directly related to physical (2D or
3D) space. Note that the embedding space is a chosen, not a given,
aspect of change: We can, for instance, examine the properties of a
physical shape, tracked by a computer-vision tracking algorithm, as
this shape moves in its natural embedding physical space (2D or 3D).
Alternatively, we can examine the shape’s properties from the per-
spective of the tracker algorithm’s parameter changes, which do not
(necessarily) constitute a physical (2D or 3D) space;

• Volume: Depending on the application, we can have few trails, such
as in the case we are tracking one or a few shapes as they move
through 3D space. Examples are tracking specific features of a single
natural object, examples of which are given next in Sec. 1.3. However,

5
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we can also track a large set of objects, or compare many tracks of the
same simple object under various configurations; examples are given
in Secs. 1.3 and 1.4. This creates a large variability in the number of
tracked objects, which in turn creates various visualization and anal-
ysis challenges. Separarely, we can, during tracking of a single shape,
consider few, or many, properties of that shape as it changes in time.
This creates a large variability in the number of tracked dimensions,
or variables. Examples are, again, given in Secs. 1.3 and 1.4.

All above aspects contribute to subsequent challenges that relate to both
RQ1 and RQ2. These challenges we will describe next.

1.3 visual analytics for tracker design

Computer vision tracking systems exist in many flavors and for many types
of problems (shapes, input images, type of tracked properties, and usage
context). As such, it is not realistic to approach solving RQ1 in a general
sense. To provide a higher added-value to the approach and solutions we
will propose next, we need a concrete use-case which meets the various
constraints and challenges listed earlier in the formulation of RQ1. Such a
use-case, embodied in a real-world industrial contextwhich also kickstarted
our research, is outlined next.

1.3.1 Use-case: Automatic milking devices

Over the last decades, all industries have seen a gradual move from manual
labor to mechanical labor with increasing levels of automation. One indus-
try branch where this process is relatively more recent, and as such not
yet finalized and still open to research, is the dairy industry. Within this
industry, an important cost-component is the milking of cows. Historically,
this happened by hand. Several decades ago, automatic pumping devices
emerged, which accelerated a part of the process. However, most such de-
vices still require a human operator (the farmer) to manually attach the
suction cups to the cow.
In the process of further automating the milking, so-called automatic

milking devices (AMDs) have emerged. These devices attempt to attach
themselves to the cow’s teats in an automatic way. If this can occur fully
automatic, the manual labor component is significantly decreased, leading
to lower costs and/or higher yields [138].
A key component of an AMD is the detection of the teats of a cow’s ud-

der, so that its moving part, typically a robotic arm, can attach the milk suc-
tion cups to them. A second important component involves tracking these
teats, as a cow cannot be immobilized during the milking process. In early
AMD’s, both detection and tracking have relied on sensing devices such as
laser scanners and standard optical cameras. However, such devices can-
not operate reliably in a typically dusty and dark stable environemnt, and
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1.3 visual analytics for tracker design

they are also mechanically sensitive. Recently, stereo or three-dimensional
(time-of-flight) cameras have become available at framerates, form-factors,
and prices which make them an attractive alternative to explore. However,
such devices come with their own challenges – low resolution, sparse scene
acquisition in terms of a point cloud, and limited depth accuracy [138].
For our use-case, we thus aim to design an efficient and effective front-

end algorithm for teat detection and tracking based on a 3D time-of-flight
camera. To be effective, such a solution needs to work fully automatic (in
order to control the autonomous milking robot), have high accuracy (so as
to steer the milking cups to precisely latch on the teats), be fast (so as to
handle spurious and abrupt movements of the cow), and use limited com-
putational power (so it can be implemented on low form-factor hardware
that can be mounted on the AMD). Clearly, all above requirements match
well the context of RQ1. The selection of this type of use-case is motivated
by the interest in this type of application of Lely Technologies [147], a fore-
front company in the Netherlands in the area of AMD construction, which
was a key supporter of the research described in this thesis.
At first glance, the tracking problem we face is relatively simple, given

the state-of-the-art of research in computer vision. However, most such re-
search is driven by conditions that do not apply to our context, e.g. the
availability of high-resolution and/or good-contrast color images; the avail-
ability of high computational power; the intervention of users for initializa-
tion or calibration of parameters; and a constrained relative position of the
camera and the tracked shape.
To address our problem, we first study existing 3D tracking techniques,

and determine which ones are potentially applicable to our context (Chap-
ter 2). Next, we propose a novel tracking algorithm that complies with our
context’s constraints (Chapter 5).

1.3.2 Verification, validation, and improvement of AMD tracker

Every industrial system needs to be verified and validated before it gets
deployed. This also holds for our tracking system, given its intended use
in an industrial context, and even more specifically so in a robotic device.
Additionally, the intended use of our teat tracking system will have to deal
with live animals in an unsupervised context. As such, the system should
robustly detect the teats of the cow to be milked, so as to steer the AMD
robot precisely towards the target. Failure to do so may result in injury to
the animal and/or damage to the robot.
Tracking systems for (3D) real-world shapes are often verified and val-

idated using ground-truth data which describes where in the image (se-
quence) an object is located. For our case however, this data is not readily
available: We do not know where, in a 2D image acquired by our imaging
device, the teats of a cow to bemilked are precisely located. The only way to
generate such ground-truth data is to manually annotate video sequences
acquired in the field to indicate the teat locations, if teats are visible. How-

7
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ever, generating such manual annotations for tens or hundreds of videos,
each containing hundreds up to thousands of frames, is clearly not practi-
cal.
Hence, we need to investigate other ways to gauge the accuracy of our

proposed tracker. For this, we propose a set of visual analytics methods
which examine and display the entire so-called ‘state’ of our proposed
tracker, including its input information (video sequence), output informa-
tion (3D positions of the tracked teats), and internal variable values (used
during the tracking process). By examining variations of such variables,
and correlations and outliers thereof, we show how the high-level behavior
of the tracker can be understood by a system designer, so that problem-
atic configurations can be spotted and eventually alleviated, and without
necessarily availing of ground-truth data. The aim of our visual analytics
system is to cover the entire spectrum ranging from examination of a single
tracking sequence (video), detailed frame-level investigation of parameter
values, up to the global overview-analysis of a large set of different track-
ing sequences. This way, we aim to cover both low-level defect detection
and removal and broad statistical evaluation of the tracker by means of
a large sequence of test runs. Our proposed visual analytics system, to-
gether with the insights we derived from its use in terms of understanding
and alleviating the limitations of our tracking system, are presented in
Chapter 6.

1.4 visual analytics for large multidimensional dynamic
trail data

The second research question of our thesis (RQ2) takes our focus from the
‘micro’ to the ‘macro’. That is, RQ2 focuses on answering the question of
how we can analyze (and depict) a large set of multidimensional trails –
much larger than the ones delivered when considering RQ1 – in ways that
allow us to understand similarities, outliers, and correlations of measured
variables. Separately, we focus here on the problem of understanding the
tracked information, rather than on the problem of improving the data-
acquisition process (tracking method) which delivers us the information.
As such, RQ2 is concerned much more with information visualization ques-
tions rather than computer vision problems.
Similarly to RQ1 (Sec. 1.3), we need to consider a concrete use-case for

supporting our research. Given the focus ofRQ2 on very large data volumes,
we cannot (arguably) use information obtained from computer vision meth-
ods. In particular, we cannot use the AMD context, since this delivers only
tens or possibly hundreds of moving shapes (cows) over relatively short pe-
riods of time (minutes). Hence, we turn to a quite different source of data:
Trails of large collections of moving vehicles over large periods of time.

8
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1.5 structure of this thesis

1.4.1 Use-case: How airplanes move

There are many sources for such data. One of them is the motion of air-
planes over large spatial regions and long time periods [207]. This context
can provide us with tens of thousands up to millions of moving objects over
periods of time ranging from days to months.
Given the sheer size of the data, and also its availability from third-party

sources (we cannot track planes ourselves), the issue of analyzing tracking-
algorithm parameters for optimization purposes becomes now far less rel-
evant. The challenge, in contrast, is how to display such sheer amounts of
data so that interesting space-time phenomena become easily visible.
To attack this challenge, we proceed as follows. First, we review infor-

mation visualization and visual analyics methods for large dynamic mul-
tidimensional datasets (Chapter 3). Next, we present a novel method that
addresses this type of analysis, with usage examples for our considered use-
case – the analysis of large sets of airplanes moving over time (Chapter 8).

1.5 structure of this thesis

Summarizing the above, the structure of this thesis is as follows.

Chapter 1, the current chapter, presents the scope of our work, which lies
at the crossroads of acquiring and analyzing motion trails of 3D shapes,
using visual analytics methods.

Chapter 2 presents related work on the design of computer-vision trackers
for 3D shapes. This outlines state-of-the-art and how it does (or does not)
match the requirements of our AMD cow-milking application outlined in
Sec. 1.3.1. This chapter relates to RQ1.

Chapter 3 presents related work on the visual analysis of multidimen-
sional time-dependent trail data. This outlines state-of-the-art in this field
and how it does (or does not) match the requirements of our large-scale
airplane motion analysis application outlined in Sec. 1.4.1. This chapter
relates to RQ2.

Chapter 4 presents our work towards the robust segmentation of shapes
from their surrounding backgrounds, which is strongly related to the prob-
lem of tracking shape motion, as outlined earlier in Sec. 1.1. We present
here a novel method that addresses this segmentation problem, and discuss
its suitability for our specific shape-tracking problem (see Sec. 1.3.1) and
also in the wider context of segmenting arbitrary shapes from 2D images.

Chapter 5 presents our solution to the AMD cow-teat-tracking problem
outlined in Sec. 1.3.1. We introduce here several novel algorithms whose
main feature is complying with the complex set of requirements posed by

9
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their application on AMD robots (Sec. 1.3.1). This chapter relates to RQ1.

Chapter 6 presents our visual analytics solution for the examination
and interpretation of the data produced for the AMD tracker proposed in
Chapter 5. We introduce here several visual analytics techniques for the
overview investigation of tracker data, detection of outlier events (track-
ing challenges), comparison of tracking sequences, and explanation of the
tracking problems. This chapter relates to RQ1.

Chapter 7 presents a novel information-visualization solution for the
display and visual analysis of very large collections of trails. The pre-
sented technique is between one and two orders of magnitude computa-
tionally faster than all state-of-the-art techniques we are aware of. It is also
application-agnostic, meaning, it can be used for the simplified visualiza-
tion of massive spatial trail datasets coming from any application domain.
This chapter relates to RQ2.

Chapter 8 presents an adaption of the techniques introduced in Chapter 7,
and validation thereof, for a concrete problem – the examination of a large
set of airplane trails for air-traffic-control (ATC) purposes. This chapter
plays for RQ2 a similar role as Chapter 6 played for RQ1.

Chapter 9 concludes this thesis. Here we compare our techniques and pro-
posals for addressing both RQ1 and RQ2, reflect on their limitations, and
outline potential directions for future work concerning the (as we have
seen) joint topic of shape tracker design and visualization of shape trails.

10
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2RELATED WORK : SHAPE TRACK ING

The design of algorithms for tracking 3D shapes is one of the main research
directions in the field of computer vision. Since this is also an integral part of
our research question outlined in Chapter 1, we next provide an overview
of related work in this area. In this overview, we also identify the chal-
lenges that arise when trying to apply computer vision techniques to our
proposed application of automatic milking devices (AMD’s). Since tracking
algorithms usually consist of two steps, one for finding the shapes of in-
terest in each image of a video and a second step for keeping track how
such shapes move over time, we discuss such methods in separate sections.
The structure of this chapter is as follows: Section 2.1 provides definitions
and introduces properties of tracking methods that are relevant through-
out our work. Section 2.2 discusses object detection algorithms. Section 2.3
discusses tracking algorithms.

2.1 properties of tracking methods

In their noteworthy survey paper on object tracking, Yilmaz et al. [306]
define three key steps in video analysis: Detection of interesting (moving)
objects, tracking of such objects from frame to frame, and analysis of tracks
to recognize their behavior. At first glance, our first research question (RQ1)
ismostly concernedwith the last of these steps. However, we also aim to use
the information gathered during the analysis of tracks to (detect ways to)
improve the object detection and tracking, thereby completing the visual
analytics cycle.
Figure 2.1 shows how the steps of object detection and object tracking are

connected in the object tracking pipeline, also including a temporal compo-
nent by referencing the tracking result of the previous frame. Here and next,
we use the following notations: Ω̃ ⊂ R3 is an actual (physical) shape; I is a
two-dimensional image of Ω̃, captured by a sensing device, such as a video
camera; Ω ⊂ R3 is the shape that the tracking recovers from I ; and, for all

CameraΩ̃i

Ii

Ii+1

Detection Ωi

Ωtemp
i+1 Tracking Ωi+1video

Figure 2.1: Generic object tracking pipeline. From left to right we see the actual
object Ω̃i ; its images Ii obtained by a camera; the detected shapes Ω

temp
i+1

from these images; and the way tracking uses a detected shape Ω
temp
i+1

from the current framewith a tracked shapeΩi from the previous frame
to yield the tracked shape Ωi+1 for the current frame.
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related work: shape tracking

above, a subscript identifies a frame, or time-moment, when the respective
quantities have been measured or computed. Within this framework, de-
tection is responsible for capturing the spatial embedding of the object Ω̃
and tracking captures the temporal variation of Ω̃. In the remainder of this
chapter we discuss relevant related work accordingly. Next, in chapter 5,
we present our tracking solution following these notations and framework.
During each step of tracking our objects, we need a way to represent,

or model, the objects we deal with. The way we choose to represent our
tracked objects also constrains the methods that can be used for tracking;
indeed, some tracking methods require information that is not provided by
certain shape representations. Separately, the targeted application may also
have constraints on the object representation; for instance, if we want to
track an object’s orientation, we need to represent the object by more than
its position.
Besides the way one models the shape of an object, i.e., the surface Ω ⊂

R3, the object’s appearance can also be important. Generically, appearance
can be described by a multivariate function a : R3 → Rn that associates
to any point x ∈ ∂Ω of an object’s surface a (n-dimensional) vector of
properties, such as color, brightness, shading, texture, or surface normals.
Appearance is essential for both object detection, since we can separate
an object’s silhouette from its surroundings only if the two areas have
some appearance-related differences. Appearance is also essential for ob-
ject tracking, since we can say that a certain part π of an object moved that
much between frames i and i+1 of a video only if the image fragments Ii (π )
and Ii+1 (π ) related to the part π are relatively similar. Finding such similar
image fragments is a major challenge in computer vision known under the
names of correspondence computation or image matching [305].
In the remainder of this section we first provide an overview of com-

monly employed shape representations, followed by a similar overview of
appearance representations, both related to shape detection and tracking.
Both overviews follow the survey in [306].

2.1.1 Object representations

Object representations aim at capturing the geometry (or shape) of an ob-
ject, and the embedding thereof (most commonly known as orientation and
position) in the surrounding 3D space. Several object representation tech-
niques exist for this, as follows.

points Arguably the simplest way to represent an object Ω is using a
single point, or a collection of points P = {xi } ⊂ R3, also known
as a point cloud. Single-point representations are common to model
the centroid of an object, as shown in Figure 2.2(a) [284]. Point cloud
representations are more powerful as they can model local shape as
well as orientation and size, as shown in Figure 2.2(b) and [232].

12
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2.1 properties of tracking methods

primitive geometric shapes Objects can also be represented using
simple primitive shapes such as rectangles or ellipses and their 3D
equivalents [47]. Examples can be seen in Figure 2.2(c, d). These rep-
resentations strike a good balance between simplicity and computa-
tional efficiency and ability of modeling a shape’s so-called extrinsic
parameters, such as position, orientation, and scaling in the embed-
ding space. Although the nature of primitive geometric shapes makes
them more naturally suited for representing rigid objects, they are
also used for representing non-rigid objects for tracking.

articulated shape models These representations aim at capturing
more complex deformations of a shape during its temporal evolution,
which cannot be captured effectively by simple rigid primitives, nor
efficiently by point clouds, respectively. Articulated shape models
decompose an object in multiple smaller parts which are linked by
joints. Parts can be next represented by aforementioned methods, i.e.,
point clouds or primitive geometric shapes; joints encode the allowed
deformations of the entire object. To do this, one usually defines some
restrictions in the form of, for example, kinematic motion models.
Figure 2.2(e) shows the application of articulated shape models using
geometric primitives as representation for the different parts of a hu-
man body. More details on articulated shape models can be found in
[248] and related papers.

object silhouettes and contours In some cases, we want to cap-
ture the full outline of the object instead of an approximation. In
this case, we use the boundary of an object, also called its contour.
This can be represented as the full contour (Figure 2.2(h)) or as con-
trol points on the contour (Figure 2.2(g)). When we also include the
region inside the contour, we call this the silhouette of the object
(Figure 2.2(i)). Both representations can be used for tracking complex
nonrigid shapes [305].

skeletal models Besides contour and silhouette models, another way
to represent the shape of an object is using its skeleton (see Fig-
ure 2.2(f)) which can be extracted from the object silhouette using a
medial axis transformation [16]. The skeleton representation is often
used in object recognition [4] and object retrieval [48, 49, 84, 301], but
it can be used to model articulated and rigid objects for tracking as
well. Skeletal representations, augmented with distances to the cor-
responding silhouettes, are shown to be dual shape representations
– that is, they encode as much information as a boundary represen-
tation does [259]. As we will show in chapter 4, skeletal descriptions
can also be used to perform image segmentation, a key step in shape
detection.

13
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Figure 2.2: Different ways to represent an object, in this case a human body, from
[306]: (a) shows the use of a single (centroid) point, whereas (b) shows
how multiple points can be used to describe the same shape. Both (c)
and (d) show the use of a simple geometric primitive as descriptor. In (e)
we see an articulated shape model represented by geometric primitives.
The contour of the object is represented using points in (g) and repre-
sented as continuous outline in (h). Finally, we see the object silhouette
in (i) with the corresponding skeleton in (f).

2.1.2 Appearance representation

Now that we have seen how the object shape can be represented, we will
take a look at the different ways to represent object appearance.

probability densities The probability density of object appearance is
based on object local features, such as color or texture, which can be
computed from an image region defined by the object shape model
(as long as this describes an image patch with sufficient area, as is
the case with the geometric shape and contour/silhouette represen-
tation). To determine the probability density of an object, one can
use parametric methods, e.g. Gaussian [311] or a mixture of Gaus-
sians [196]. However, non-parametric probability density estimation
methods such as Parzen windows [71] or histograms [47] can also be
used.

templates Templates are created from simple geometric shapes or ob-
ject silhouettes [85] which simultaneously encode local shape and
appearance of the desired objects. While templates are simple and
fast to implement and use, they typically only represent the object
appearance from a single viewpoint. Hence, single templates are not
suitable for tracking objects whose appearance is expected to (drasti-
cally) change during tracking. However, as we shall see in Chapter 5,
2D and especially 3D templates can be very effective and efficient in-
struments for tracking constrained shape families such as present in
our AMD context.
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2.2 object detection

active appearance models Active appearance models are another
way to jointly describe the object shape and its appearance [68]. The
object shape is usually defined by a set of so-called landmarks which
are points located in areas where one is specifically interested to
describe the object for the underlying application. An appearance
vector is used to store color, texture and brightness gradient magni-
tude for each landmark. Before being able to use an active appearance
model, one needs to train the model to recognize the specified land-
marks. As such, active appearance models share similarities with
feature and keypoint extraction techniques such as SIFT [160] and
SURF [19].

multiview appearance models To alleviate the problems of single-
view appearancemodels indicated above,multiview appearancemod-
els describe an object from different views. This can be done by gener-
ating a subspace from the available views [25, 182], but also by train-
ing a set of classifiers to find locations of keypoints that match these
multiple views [14, 197].

2.2 object detection

Before a tracking method can start tracking objects, one needs to know
where the objects to be tracked are located – in simple terms, we cannot
track something unless we know what that something is (which means,
in our context, where that something is). For some tracking methods, it
is sufficient to detect the objects when they enter the image, after which
tracking can proceed without repeating the detection. In cases when (the
appearance of) the tracked object changes significantly between frames,
one needs an object detection method to be run every frame. Independent
of which kind of tracking is used, it is clear that a suitable object detection
method is a requirement for successful tracking.
We next discuss several classes of object detection techniques in the con-

text of shape tracking.

2.2.1 Background Subtraction

The simplest divide that can be made when describing an image is that be-
tween foreground and background. In this case, we define the foreground
as the object of interest. While this is a simple concept, its actual imple-
mentation can be quite tricky. For example, say we want to detect a person
walking along a street. In this case, we only want to detect the moving per-
son, not the moving branch of a tree that is also in the image. Therefore,
we cannot define background as those pixels x ∈ I which do not signifi-
cantly change between consecutive frame Ii and Ii+1. More involved solu-
tions have been proposed to deal with such situations, as discussed next in
this section.
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What most, if not all, background subtraction methods have in common
is that they partition an image frame I into a set of foreground pixels F ⊂ I
and a disjount set of background pixels B ⊂ I , F∪B = ∅, such that the shape
of interest Ω̃ is located (nearly) entirely in F . When the foreground set F is
fragmented, connected component or morphological dilation filters can be
used to ‘bridge’ small-scale holes and/or ignore small-scale components.
An early, but relevant, example of background subtraction is given by

Wren et al. [298]. Here, background subtraction is applied to detect a single
human body in front of a (relatively) static background. This is done by
creating a Gaussian model for the color of each pixel in the image, using
several consecutive frames to determine the model parameters. After the
model computation is performed, a pixel is said to be part of the background
if its likelihood is in correspondence with the model, otherwise the pixel is
said to be part of the foreground. While this method is a good fit for its
intended scenario – detecting a human body against a static background –
the method is not suited for tracking against more dynamic backgrounds,
such as our AMD udder-tracking scenario.
To be able to deal with dynamic backgrounds, Stauffer and Grimson [251]

propose the use of a mixture of Gaussians to model pixel color. They also
introduce an update scheme for the mixture of Gaussians to be able to deal
with changes over time in a non-destructive way, i. e., when a background
pixel changes to a different color for a while and then changes back. In such
cases, the former Gaussian model is still present and is used again if there
were no other changes in the meantime. The labeling of a pixel as fore-
ground or background is based on matching with all available Gaussians. A
pixel is said to match with a distribution if it is within a certain threshold of
the distribution. If the matching Gaussian has enough support within the
mixture, the pixel is said to be part of the background.

Figure 2.3: Example of background detection in action. Left: the input image; right:
pixel values are assigned the inverse probability of belonging to the
background (dark = background, bright = foreground). Taken from [72].

Instead of only relying on color information, it is also possible to incor-
porate more information in the background model so as to increase its ac-
curacy. For instance, the background models of neighboring pixels can be
used when labeling a pixel [72]. Similarly, texture features can also be in-
corporated into the model, reducing sensitivity to changes in lighting [156].
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2.2 object detection

However, this changes the results to be region-based instead of pixel-based.
Simply put, one uses spatial filtering to reduce noise-related effects, but the
price to pay is that the foreground-background border becomes then glob-
ally as accurate as the filter radius.
The background subtraction methods listed above are all based on in-

creasingly complex statistical models of the background. Another possi-
ble approach to the problem of background subtraction is to use Hidden
Markov Models to describe the state of a pixel. For example, Rittscher et al.
[219] apply Hidden Markov Models for background subtraction in the case
of tracking cars on a highway. They also introduce a third state to indicate
if an image segment is part of the shadow of an object. Stenger et al. [252]
introduce a technique that can perform online training of a Hidden Markov
Model with changing topology, i. e., the method is capable of changing the
number of states that an image pixel is part of.
Background subtraction is a powerful method given the right circum-

stances. However, an important (implicit) requirement of background sub-
traction techniques is that the camera is stationary, or should only make
small movements between frames. This means that background subtraction
is probably not a suitable technique for detection in our intended applica-
tion, as the camera is mounted on a moving arm which can move relatively
fast. On the other hand, given that we are dealing with distance images,
a simple threshold based background subtraction method could be a good
pre-processing step before another object detection method is applied.

2.2.2 Segmentation

Where the background subtraction methods described above immediately
assign meaning to the results of processing the image, i. e., foreground for
the objects we are interested in and background for the rest, segmentation
takes a different approach. The goal of a segmentation methods is to divide
the image into smaller parts, called segments, where each segment consists
of pixels which are similar to each other. While there are certainly a lot of
ways to define pixel similarity, the important point here is that applying seg-
mentation to an image usually results inmore than the two (or three) classes
generated by background subtraction. Furthermore, assigning meaning to
the segments, i. e., determiningwhich segments are part of the object we are
interested in, is performed as an additional step after segmenting the image.
Globally put, segmentation can be seen as a generalization of background
subtraction; it is more powerful than background subtraction as similarity
within a segment can be defined more flexibly, but it typically generates
more segments than background subtraction, so it requires an additional
segment interpretation step to identify which segments correspond to the
moving shape Ω̃ that we wish to track.
Image segmentation is an extremely rich field, with hundreds of pro-

posed methods, and tens of application areas ranging between medicine,
biology, document processing, surveillance, robotics, and image compres-
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Figure 2.4: Example of image segmentations. From left to right: The original im-
age, image segmented using mean-shift, and image segmented using
normalized cuts. Images taken from [306].

sion [89, 90, 308, 309]. As the content (and even the titles) of the previously
cited papers hint, the segmentation area is huge. It is impossible for us
to give an overview thereof here. As such, we will next limit ourselves to
outline the methods which have a direct connection with our own research
described in the following chapters.

Mean shift: One of the best known algorithms for generic image segmen-
tation is the mean-shift algorithm [46]. The mean-shift algorithm itself
originates in the field of statistics and has many other applications, for
instance in data clustering, or more specifically, in the context of simplified
visualization of trail-sets, as we will demonstrate in chapter 7. The essence
of mean shift for image segmentation is quite simple: Given an image I ,
each pixel x ∈ I is regarded as a point in a high-dimensional space, where
the dimensions comprise the pixel’s (RGB or similar) color and, optionally,
the pixel’s 2D coordinates. The choice of color space is important here,
since we ultimately want to group pixels which look similar to humans.
For this, Comaniciu and Meer [46] suggest using the L∗u∗v-space. Given
this high-dimensional scatterplot of data points, mean shift next estimates
the points’ local density (using kernel density methods), and next shifts
(moves) points in the direction of the density’s gradient. This essentially
‘condendes’ the points around their local means. If one next finds the loca-
tions of these local means, one has readily identified all pixels that belong to
a segment. Mean shift is quite effective and simple to implement. However,
controlling the number of resulting segments, and applying the method
in a computationally efficient way for even reasonably-sized images, is
challenging.

Graph cuts: The second category of segmentation methods we discuss
here is that of graph cuts [299]. Although different from the mean shift
algorithm in many ways, it has in common that it also starts with a trans-
formation to a different image representation. For graph cuts, the image
is represented as a graph where pixels are vertices (nodes) and edges are
inserted for all pairs of neighbor pixels with an associated edge weight
based on the similarity of the pixels. To segment an image, a set of edges is
removed from the graph so that two disconnected graphs remain. The set
of removed edges and its associated cost are usually referred to as the cut.
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By minimizing the cost of the cut, which is described in terms of the pixels’
similarities, optimal segmentations can be achieved. The graph cut segmen-
tation originally proposed by Wu and Leahy [299] uses a cost defined as
a summation of the weights of the removed edges. As discussed there and
in subsequent papers, this gives an undesired bias to smaller segments –
in other words, oversegmentation often occurs. An improved metric called
normalized graph cuts [237] has been proposed to fix this and other short-
comings of the original graph cut segmentation method. The cost function
can also be modified to take into account the depth information created by
a time-of-flight camera as shown by Arif et al. [11], thereby rendering this
method interesting for segmenting video images as produced in robotics
contexts similar to our AMD context. However, in general, controlling the
size, shape, and number of segments generated by graph cuts methods is
hard for low-resolution, high-noise, images.

Image Foresting Transform: Another image processing method based
on graphs that can, amongst other applications, be adapted to perform im-
age segmentation is the Image Foresting Transform (IFT) [82]. The image
representation used by the IFT is similar to that used by graph cut methods:
Image pixels become nodes and the edges represent similarity-encoding
connectivity between pixels. The IFT can be used to design, implement, and
evaluate connectivity-based image processing operators. This is achieved
by defining the a minimum cost function corresponding to the operator and
compute a minimum-cost path forest. IFT has been used to deliver effective
and efficient segmentations of complex images, with notable applications
in the medical domain [81]. Yet, to our experience IFT-based methods work
best in contexts where the user can steer the actual segmentation – a sce-
nario which is not applicable to our fully-automatic AMD context.

Other methods: the goal of all segmentation methods is to subdivide the
image in (hopefully) meaningful segments. Often, we are interested in the
contour, or boundary, of a segment as well as (or even more than) the seg-
ment itself. Instead of first computing the segments and then find the con-
tours, it is also possible to do it the other way around. The gPb-owt-ucm
method [10] segments an image by first determing the image contours us-
ing the gPb contour detector [166] and applying amodifiedwatershed trans-
form [220] on this image. One of the advantages of this approach is that the
produced segmentation is hierachical, allowing the user to select the appro-
priate level using a single level-of-detail parameter. Still, such methods do
not (entirely) cope with our fully-automatic constraints.
Given the right parameter tuning and choice of algorithm, the segmenta-

tion methods can be used to separate the object of interest from the rest of
an image. However, after performing segmentation, we still need to iden-
tify which of the segments corresponds to our object, for example, by com-
paring characteristics of the object of interest and the segment(s). There-
fore, like background subtraction, segmentation can also be viewed as a
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pre-processing step than an actual detection step, especially for more in-
tricate shapes for which segmentation cannot be guaranteed. Compared
to background subtraction, however, segmentation has the additional diffi-
culty that one needs to determine which subset of segments (from all de-
tected segments) are the oneswhich cover the shape to track. As such, while
technicallymore flexible, segmentationmay actually pose too complex chal-
lenges for our object tracking context.
To conclude this section, let us mention our completely different ap-

proach to segmentation which is proposed in chapter 4. In contrast to all
other methods, we use object representation techniques (Sec. 2.1.1), specifi-
cally medial axes, to both model and segment shapes from the surrounding
background [314]. As we shall show there, this allows a good control of the
segmentation level-of-detail with minimal user intervention.

2.2.3 Feature Detection

Where the detection methods described earlier try to divide the image in
segments and then search for a segment containing the object of interest,
feature detection methods try to find features corresponding to the object
of interest in the image directly. While there are a lot of different categories
of feature detection methods, we will focus on the two categories most
appropriate for our use case: point detectors and template matching.

Point detectors: While images are entirely made up of points (pixels),
point detectors try to find the points that stand out from their surround-
ing, the so called interest points or feature points. For example, these can
be points for which the image intensity changes sharply compared to their
neighbors. Invariance to illumination and camera viewpoint are qualities
of most interesting points which makes them suited for use in tracking ap-
plications.
A more in-depth overview on interest-point detectors can be found in

[226]. Next, we will give an overview of some of the more important meth-
ods.
A commonly used method is Moravec’s interest operator which looks for

the maximum intensity change in an image patch over different directions
(horizontal, vertical, and (anti-) diagonal) [183].
The Harris detector is slighty more involved, since it is based on a matrix

of first order derivatives [102]. The interest points are determined based on
the trace and determinant of this matrix of first order derivatives, whereas
the interest point detection of the KLT tracking method uses the eigenval-
ues of this matrix [238].
The interest point detection methods mentioned above are all (theoret-

ically) invariant to rotation and translation, but they are not invariant to
changes in projection or affine transformations. As a solution, the scale
invariant feature transform (commonly referred to as SIFT) was proposed
[160]. The SIFTmethod creates description vectors for interest points over a
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scale space representation of the image, resulting in high-dimensional vec-
tors representing the interest points. When trying to locate a given object
in an image, the same technique is applied to the target image to find the
representing vectors of feature points in the images. Following that, the de-
scription vectors of the target object are matched to the description vectors
in the image to try and locate the target object.
Various ways have been proposed to speed up SIFT, such as Speeded-

Up Robust Features (SURF) which improves the speed by reducing the
complexity of the description vector combined with a different matching
technique [19]. A large gain can be made by increasing the performance of
the matching technique, since the target object will be matched against a
range of images to try and locate it. Secondly, the reduction of complexity
of the description vector means that all steps will perform better, since the
description vector is essential throughout the entire detection pipeline.

Template matching: In contrast with the previous detection methods,
which identify interesting points or segments of the image, template match-
ing techniques try to directly find the location of an example image (the
template) in the image. As discussed in subsection 2.1.2, the template image
captures both the shape as well as the appearance of the target object. At a
high level, template matching methods can be seen to generalize interest-
point detectors by generalizing the concept of a point to that of a (small)
template image. This gives more flexibility in defining what an interesting
feature is. The result of applying template matching to an image is typ-
ically a map representing how well the template matched while moving
over the entire image [18]. A drawback of also capturing object appearance
in the template image is that traditional (cross correlation based) template
matching methods are quite sensitive to differences in intensity between
the input image and the template image. The Normalized Cross Correlation
(NCC) matching technique tries to solve the problem of intensity difference
between the template and input image. The computation of the NCCmatch
coefficient can be sped up by performing the necessary convolutions in the
Fourier domain [151], making it possible to perform real-time detection.
Faster solutions than the Fourier approach have also been proposed [29].

2.3 object tracking

The goal of object tracking is to find the trajectory of an object given a
sequence of images. This can be seen as adding a temporal constraint to the
spatial constraints of the detectionmethods described above. In this section,
we will first give a general introduction to tracking methods and possible
temporal constraints, followed by a more in-depth look at some selected
tracking methods appropriate for our intended use-case of tracking cow
teats.
When determining the trajectory of an object, the most important, but

alsomost challenging, task is that of determining the object correspondence
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Figure 2.5: Object correspondence for different object representations, from [306]:
(a) Multipoint correspondence, (b) parametric transformation of a geo-
metric primitive, (c, d) contour evolution.

between frames. Different object representations (see subsection 2.1.1) lead
to different object correspondence methods and therefor different cate-
gories of tracking methods, as can be seen in Figure 2.5. Most tracking
methods require an external detection method to find the objects in the im-
age. However, some tracking methods are capable of doing detection and
tracking jointly. The latter category usually still requires external (human)
input to indicate the object to be tracked at the start of the tracking process.
In their overview paper on tracking methods, Yilmaz et al. [306] give

a list of constraints for point tracking most of which are, in our opinion,
applicable to the broader problem of object tracking. In the following, we
provide a summary of these constraints.

proximity Themost simple constraint to set on object motion is based on
the assumption an object will not move a lot between frames. There-
fore, the object in the new frame that is closest to where the object
was in the previous frame is most likely the same object (see Fig-
ure 2.6(a)).

maximum velocity By assuming a maximum velocity at which the ob-
ject can move, we can define a spherical neighborhood with the ob-
ject position in the previous frame as the center, constraining the
possible location of the object in the current frame within this neigh-
borhood (see Figure 2.6(b)).

small velocity change Besides assuming a maximum velocity, we
can also constrain the possible changes in velocity. That is, we can
assume the tracked object will keep moving more or less in the same
direction with the same speed, so no jumps in direction and/or speed
will occur (see Figure 2.6(c)). This essentially captures a smoothness
constrain on the trajectories of the moving object.

common motion When using multiple points to represent an object (ei-
ther as separate points or points on the silhouette) we can assume
that points which are close to each other move in the same way (see
Figure 2.6(d)). This essentially captures a rigidity constraint on the
tracked object.

rigidity For rigid objects, we can assume all points on the object will
move in the same way, such that the distance between all points are
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Figure 2.6: Tracking constraints, from [306]: (a) Proximity, (b) maximum velocity
(with r the radius of the spherical neighborhood), (c) small velocity
change, (d) common motion, (e) rigidity. A cross (×) indicates object
position at frame t ; a circle (◦) indicates the position at frame t − 1 and,
where applicable, a triangle (�) indicates the position at frame t − 2.

constant (see Figure 2.6(e)). This is another formulation of the afore-
mentioned rigidity constraint.

The constraints above can be combined to further specify the restrictions
to apply to the motion of the tracked object, for example, combining the
proximity and small velocity change constraints leads to a smaller range
of the possible locations for the object in the new frame than each of the
individual constraints when taken separately. Using appropriate methods
to evaluate these constraints, we can construct a method to keep track of
objects over a sequence of images.
While the point correspondence problem that point based tracking meth-

ods have to solve is complicated, the algorithms themselves are easier to
explain. One of the earliest methods for solving the point correspondence
problem is that of Sethi and Jain [233]. Their approach is based on the con-
straints for proximity and rigidity and uses an iterative optimization algo-
rithm to find the trajectories for all points available in the starting image.
However, the approach does not handle the (dis)appearing of points or pos-
sible occlusions. Salari and Sethi [224] propose a solution to this problem
by adding placeholder points where points are expected to be, but are not
found during point detection.
Another approach to object tracking is to create a statistical model of

the object (or objects) to track, with the model state representing the ob-
ject’s position, velocity, and acceleration. By using statistical correspon-
dence instead of direct correspondence, we can account for uncertainties
in the model and noise that is present in the input sequence.
Probably the most well-known object state estimation method is the

Kalman filter which gives the optimal state estimate when the noise and
model state are assumed to have a Gaussian distribution. The Kalman filter
uses two steps to determine the new state of an object, the prediction and
correction. During the prediction step, an estimate of the new state is made
based on previous observation and the model. The subsequent correction
step updates the current object state taking into account both the estimated
new state as well as the current observation.
The Kalman filter has been applied for tracking purposes [17], for exam-

ple, to estimate point trajectories in noisy images [30]. Another example of
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estimating point trajectories using a Kalman filter is the work of Rosales
and Sclaroff [221], where they are used to determine the 3-dimensional tra-
jectories of the tracked object based on 2-dimensional images.
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3RELATED WORK : V I SUAL ANALY T IC S FOR
MULT ID IMENS IONAL TRA I L S

Visual analysis of large, multidimensional, and time-dependent data is one
of the key focuses of information visualization and visual analytics. As this
problem is central to our research questions, most notably RQ2 (Sec. 1.4),
we present here an overview of existing techniques that address this task.
We focus on the relative pro’s and con’s of such techniques, with an eye on
our specific problem contexts, as overviewed in Chapter 1.

3.1 context

Simply put, the context of visually analyzing multidimensional time-
dependent data can be stated as: How can we present (large amounts of)
such data, so that users can effectively and efficiently accomplish a number
of tasks? Such tasks cover the identification of outliers (data items that
significantly differ from the main corpus of observations); finding which
specific dimensions of the recorded data make certain observations differ-
ent; and emphasizing the dynamics of the recorded data, or how measured
properties change over time.
To address the above, we need first to provide a (formal) notation of our

data of interest is; and next, describe the tasks of interest in terms of this
notation. These items are detailed below.

3.1.1 Multidimensional Data

Generally, data in our problem context can be modeled as a set of observa-
tions having several measurable (and measured) dimensions [185, 271]. The
easiest (and typically, most frequent) way to describe such data is a bottom-
up approach, starting from the lowest-level (simplest) data items, and sub-
sequently proceeding to group, or aggregate, such items based on the most
relevant aspects (dimensions or measurements) they share.
At the lowest level, we identify an observation as being a tuple

xi = (x
1
i , . . . ,x

D
i ). (3.1)

Here, the elements x ji , 1 ≤ j ≤ D are the so-called dimensions of obser-
vation i . Let us denote next the collection, or set, of all such observations
ii by DS , i.e., DS = {xi }. The observations xi are individually measured
aspects of a certain phenomenon, such as, for example, positions, heights,
speeds, heading directions, and identifiers of airplanes moving over a given
region of space and a given time period [112, 118, 119, 137]. That is, each
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measurement on a given airplane at a given timemoment generates a differ-
ent observation xi . For notation simplification, we next denote all values of
dimension j over our measurements by xj . In our context, one of the dimen-
sions j denotes time, i.e., for that respective dimension-index j, xj ⊂ R+.
The collection {xi } of all such measurements denotes, thus, a multidi-

mensional, time-dependent, dataset. The dimensionality of such a dataset
is equal to the number of independent measurements, or D. The number of
measured entities, i.e. |{xi }|, is next denoted by N , i.e., 1 ≤ i ≤ N .
The dimensions of our measured data can have several properties.

Such dimensions are also denoted in information visualization by the
name of variables, attributes, components, features, or columns. Follow-
ing [185, 271], among others, we can classify such dimensions by the
properties they have, or more explicitly, the operations they allow on their
values. A well-accepted classification is as follows [45, 170, 185, 271].

• Quantitative: Quantitative attributes, support operations compris-
ing addition, subtraction, and multiplication by a real number. In
simple terms, such attributes are real values, i.e. R ⊂ R. Such at-
tributes are commonly found in computer vision and in so-called sci-
entific visualization (scivis) applications, such as the exploration of
geographical data, computational flow dynamics (vector fields), nu-
merical simulations of 2D or 3D physical problems, or exploration
of body scans in medical science (e.g. CT and MRI scans) [101]. Ar-
guably the most important property of such attributes is that they al-
low interpolation. Briefly put, this allows us to (a) estimate the value
of such an atribute x j , based on recorded samples, at a spatial location
different (but close to) the locations where the samples were taken.
Interpolation is crucial for operations such as producing (typically
piecewise-continuous) reconstructions of the signal x j from its sam-
ples; eliminating noise during this reconstruction; detecting outliers;
resampling, i.e., producing a set of measurements {x j ′i } from a given

set of measurements {x ji } so that the cardinalities ‖{x j ′i }‖ and ‖{x ji }‖
are different; and, last but not least, reducing the cardinality N of
the set of observations by means of aggregation, an operation key to
handling large datasets.

• Integral: Integral attributes, sometimes also called discrete attributes,
allow only operations such as addition and subtraction (they do not
allow weighting with a real-valued parameter). Such attributes are
typically a subset of Z. Such attributes are very frequently met in
information visualization (infovis). Examples hereof are counts of
various quantities, such as numbers of persons, transactions, sol-
d/bought items, or similar [185, 264, 286]. A key difference with
quantitative attributes is that integral (discrete) attributes do not
allow intepolation.

• Ordinal: Ordinal attributes allow ordering, i.e. define the relations
<, >, and = over their range. Examples of such attributes are ordered
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sequences of measurements, such as e.g. Likert 5-point scales used to
assess the quality of an item, or ranks in an organizational hierarchy
(e.g. rector, dean, full professor, associate professor, assistant profes-
sor, postdoc, PhD student, MSc student, BSc student in an university
organization). Ordinal attributes do not allow interpolation or direct
summarization via aggregation – in other words, we cannot say what
it means to be between a PhD student and a postdoc, or what the ‘av-
erage’ of a PhD student and a postdoc would be.

• Categorical: Categorical, also called nominal, attributes allow only
the comparison operation – that is, they only allow telling if two
categorical values are the same or different. Examples of categorical
attributes are types of elements in a collection, such as brands of car
vehicles; gender (male or female); of file types in an operating system
(e.g. executables, text documents, database, source code, and others).
Categorical attributes are generally themost complex ones to analyze
and visualize [185, 271]. Indeed, as they do not allow interpolation
(thus, aggregation), it is very hard to summarize large sets having
many categorical attribute-values in a compact manner.

• Text: Text attributes are, formally speaking, identical to categorical
attributes – that is, in the conservative case, any two text strings a
and b can be seen as being either identical, or different. However,
in practice, differences exist: For text, we can (usually) compute a
syntactic or semantic difference, or distance, between any two text
strings, which brings such attributes in the realm of quantitative at-
tributes [150, 201, 204, 205]. As compared to all other attribute types
we are aware of, the analysis (and/or usage) of text attributes is
strongly influenced by their semantics, with two possible outcomes:
Either one knows how to compute a continuous similarity between
text attribute values, inwhich case such attributes get largely handled
as quantitiative attributes; or such a similarity cannot be computed,
in which case such attribute values are treated as individual tokens,
thus, just as categorical ones.

• Relational: Relational attributes essentially indicate subsets of ob-
servations, in a given dataset, which share some common proper-
ties. As such, their focus is not the domain (range) values of indi-
vidual attributes xj , but relations between dimensions (j, j ′) ∈ D ×D,
or, in the more complex case, subranges of such dimensions. In sim-
ple terms, relations attributes can be seen as modeling graphs where
nodes are individual observations xi and edges are problem-specific
associations between such observations (xi , xj ). As such, relational
attributes significantly differ from all other attribute types discussed
earlier, in the sense that they do not characterize individual observa-
tions, but groups of observations. Relational datasets are often met
in information visualization and are the focus of graph and network
visualization [59, 61, 62, 67].
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3.1.2 Trail Data

Within the context outlined in the previous section, a trail is defined as a
subset of observations xi that relate to consecutive (time-wise) measure-
ments or the attributes of a single entity. Thus, to formally define a trail,
we need two things:

• Time: We need to specify one attribute 1 ≤ j ≤ D of our dataset
which represents time. That is, two observations xi1 and xi2 for which
the values x ji1 and x

j
i2 of a given dimension j can be ordered, i.e. x ji1 <

x ji2, are said to be measured at two consecutive time moments x
j
i1 and

x ji2. Let us denote the dimension j describing time by jt ime .

• Identity: In general, observations in a dataset do not describe inde-
pendent and unrelated entities. For instance, imagine a table where
rows xi record positions of S moving 3D shapes over time. Clearly,
several such rows describe the position of the same shape over time
(S in total). Thus, it makes full sense to study the entries xi grouped
by the shape (object) they describe. Simply put, it does not (generally)
make sense to lump the positions of a shape with those of another
shape. To do this, one does (in general) assign a specific attribute
xj to denote the identity of an object of interest. That is, the set of
observations {xi |x ji = id } denotes all information for a given shape

id [264, 286]. Let us denote the dimension describing identity by jid .

Given the above, we now can define a trail as being the ordered set of
time-sampled observations, in a given dataset, that pertain to a single shape:

Tk = {xi ∈ DS |∀xu ∈ Tk , xv ∈ Tk ,∃jid ∈ {1, . . . ,D} :
x j

id

u = x j
id

v = k ∧
∃t ∈ {1, . . . ,D} : x tu < x tv ,∀(u,v ) ∈ D × D}. (3.2)

In simpler words, a trailTk is a set of observations xi in our given datasetDS
which (a) belong to the evolution of the same shape k , and (b) have a ‘time’
attribute x t ∈ R+ that tells when they were observed. Trails can depict the
change of position of a physical entity over Euclidean space, such as the
position of a vehicle or another tracked object over time [112]. However, in
the general case, they can represent the change of attributes of a data entity
in any data space, such as the learning dynamics of the values of neurons
in a deep artificial neural network [212]. In our work, we are interested by
both types of trails.
Trail data shares, obviously, commonalities with both multidimensional

data (as many observation attributes can be sampled during the observa-
tion’s evolution), dynamic data (as there are observations having explicit
identities which change in time), and spatial data (as, in most cases, the
recorded observations evolve in a 2D or 3D space). Given the above, trail
visualization has affinities with multidimensional visualization, dynamic vi-
sualization, and spatial visualization. We outline these affinities next.
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3.2 multidimensional data visualization

The general focus of multidimensional data visualization is to show a
dataset DS having high-dimensional observations xi (Eqn. 3.1) so that one
can reason about both observations and their dimensions.
Many visualizationmethods exist in this class. To compare them,we need

to group them in some way. One possible such grouping is based on the
emphasis of the methods on observations or dimensions – that is, which
of the two aspects is more in focus for the method at hand. Given this,
we classify such visualization methods into dimension-centric (Sec. 3.2.1)
and observation-centric (Sec. 3.2.2). Methods in both classes are overviewed
next.
We note that other taxonomies of multidimensional visualization meth-

ods exist, such as the one proposed by Chan [41], which revolves around
the type of visual encoding being used (geometric, icon-based, pixel-based,
hierarchical, graph-based, and hybrid); or the one proposed recently by
Coimbra [45], which identifies axis-based methods, space-filling methods,
projections, and other approaches. We argue that our taxonomy, which is
data-centric, is more appropriate in our context.

3.2.1 Dimension-centric methods

Dimension-centric visualization methods focus on supporting exploration
tasks where the main questions of the user revolve around the dimensions
of a dataset. To understand this, consider that our multidimensional dataset
DS can be thought of as a table, where observations xi are rows, and dimen-
sions xj are columns, respectively. Dimension-centric visualizations, thus,
focus mainly on answering questions concerning the columns of such a
table. Example questions are: Which are the extreme values of a column?
Which columns of a table show similar variations, i.e., are strongly corre-
lated? Which columns are inversely correlated? Which columns are inde-
pendently varying? Which columns show high, respectively low, variance?
Several dimension-centric methods exist for visualizing multidimen-

sional data, as follows.

3.2.1.1 Tables

Arguably the simplest, and oldest, way to visualize a multidimensional
dataset is to directly follow the table metaphor: Observations xi are drawn
as textual rows, so that their values x ji corresponding to a given dimension
j get aligned vertically to yield columns xj . Table views allow detailed
investigation of the data values x ji , and can be enhanced by showing these
values by mapping these to e.g. scaled and/or colored bars drawn in the
background of the cells (Fig. 3.1a). However, while good for examining
details, table views cannot handle more data than a few tens of rows (ob-
servations) and 10 up to 20 columns (dimensions).
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Figure 3.1: Table visualization. (a) Classical layout; (b) table lens; (c) grouping data;
(d) treemap constructed from (c). Visualizations created with the Table-
Vision tool [264]. See Secs. 3.2.1.1 and 3.2.1.2.

A simple but effective way to increase scalability of table views and also
support dimension-centric tasks such as comparing entire columns is pro-
vided by the table lens technique [210]: Inuitively put, every table row is
drawn as a horizontal pixel line, where individual cells are rendered as
scaled and/or colored bars that map the values x ji , as if ‘zooming out’ the
classical table view. Figure 3.1b shows a table lens image for the data in
Fig. 3.1a. It is now easy to notice that, for instance, columns 1 and 2 are in-
versely correlated; columns 4 . . . 7 are strongly directly correlated; and col-
umn 3 does not have a clear relationshipwith any of the remaining columns.
Table lens techniques are, observation-wise, very scalable – they can eas-
ily show hundreds of thousands of observations (rows) on a single screen
having just a few thousand pixel lines in the vertical dimension, by using
suitable data aggregation and clustering techniques [264].

3.2.1.2 Generalized treemaps

One issue of table views (or table lenses) is that, while they allow one to com-
pare entire dimensions, they are not very effective in helping one reasoning
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about specific ranges of dimensions. For instance, consider two dimensions
xj and xk : While there may not be any apparent correlation for the entire
ranges of xj and xk , observations that have low values for xj always have
high values for xk .
Reasoning about ranges of dimensions is supported by group-and-sort

techniques that can be directly applied on table views. Figure 3.1c shows
an example: Here, we first group all observations (rows) based on identi-
cal values of column 1. This partitions the data into four groups, as there
are four different values for x1; such groups can be visually emphasized by
overlaying them with shaded cushions, as shown in the figure. Next, for
each such group, we repeat the grouping process on column 2, and sub-
sequently on column 3. As a result, the entire dataset is transformed into
a hierarchy. Here, the root represents the entire dataset; each subsequent
level represents the grouping of observations based on the values of a dif-
ferent dimension xj . The tree leaves represent the individual observations
xi . The resulting tree can be next visualized using, for instance, treemap
techniques [283], with observations colored on the value of one dimension
and scaled by the value of another dimension.
Depending on the order in which columns are considered for group-

ing, and the exact type of grouping (e.g. based on exact equality of values
or on user-defined data ranges), an entire family of so-called generalized
treemaps can be constructed from a single tabular dataset. This allows ex-
ploring the observations based on their similarity given by a set of user-
chosen dimensions. This technique has been used in many applications for
visualizing, for instance, business and finance data [86, 286]. However, ta-
ble views and table lenses are, in our view, not optimally suited for han-
dling spatial data, such as emerging from the context of computer vision
or tracking applications, as they do not intuitively show how the values of
dimensions (samples) exist, or evolve, in 3D space.

3.2.1.3 Scatterplots

Generalized treemaps are very effective when the tasks at hand revolve
around analyzing observations grouped by various criteria. Besides show-
ing the similarity of observations by spatial grouping, treemaps can also
visually encode up to typically two dimensions per observation, shown via
color, respectively size. However, seeing correlations (or the lack thereof)
of these dimensions can be hard, as a treemap does not usually provide a
‘reading order’ to scan these two dimensions from their low to their high
values.
Scatterplots are probably the best-known tool that help with the above

task of detecting and analyzing correlations. Observations are projected as
points into a low (typically two- or three-dimensional) space, whose axes
encode the values of two, respectively three dimensions xj of the dataset.
An additional dimension can be mapped to point colors. This allows one
to easily see the range of values of these dimensions; detect outlier obser-
vations; globally perceive the distribution (spread) of data points over the
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dimensions’ ranges; and detect potential correlations of the displayed di-
mensions.
Scatterplots are highly scalable in the number of observations N . Over-

plotting can occur when tens of thousands of observations (or more) are
drawn over a small screen area. However, in such cases one can visually
encode the spatial density of observations by using techniques such as
transparency, alpha blending, and accumulation maps. Additionally, obser-
vations can be drawn ordered by the value of a given dimension of interest,
so that extremal values show up better [120]. When color is used to map an
additional dimension, care should however be used as blending and color-
coding are, in general, not commutative operations (see e.g. [271], Sec. 5.1).

Figure 3.2: Scatterplot matrix (SPLOM) showing a dataset of cars having D = 7
dimensions. See Sec. 3.2.1.4.

3.2.1.4 Scatterplot matrices (SPLOMs)

As outlined above, scatterplots are limited to showing around three inde-
pendent dimensions. Three-dimensional scatterplots can add a fourth di-
mension; however, they suffer from problems such as occlusion and the
difficulty to choose a suitable viewpoint [230]. While interactive methods
have been proposed to alleviate such issues, three-dimensional color-coded
scatterplots are still challenging to use [44].
For high-dimensional datasets (D in the range of tens or even hundreds),

the basic scatterplot metaphor can be adapted in several ways. First, one can
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compute scatterplots of all pairs of dimensions, and display then arranged
in a matrix, where each row, respectively column, groups plots for the same
dimension xj . For a dataset ofD dimensions, we thus needD (D+1)/2 plots,
as the matrix is symmetric. The resulting configuration is called a scatter-
plot matrix, or SPLOM. SPLOMs are an instance of the so-called small mul-
tiple design metaphor, which essentially shows a small number of visual-
izations side-by-side, all having the same visual encoding, but depicting
different parts of the data [20, 279].
Figure 3.2 shows a SPLOM for a dataset where observations are cars, each

having D = 7 attributes of various types (miles per gallon, weight, accel-
eration: quantitative; year of fabrication number of cylinders: ordinal; and
country of origin: categorical). As visible, correlations such as the inverse
one between miles per gallon and weight are easy to spot. Moreover, the
diagonal cells show the distribution of values of each dimension, much like
a one-dimensional histogram.
While effectively increasing the number of dimensions that can be vi-

sualized in the same time, SPLOMs have several problems. First, they can-
not accommodate more than roughly D = 10 dimensions, as the matrix
size increases quadratically with D. Secondly, they require a non-negligible
amount of ‘visual scanning’ to analyze all possible interesting patterns in
the data. Thirdly, they do not support observation-centric tasks – indeed,
an observation is essentially a set of D (D + 1)/2 points, one per matrix cell.
While observation-centric analyses can bemade easier by interactive brush-
ing and linking between cells, overplotting can diminish the effectiveness
of such explorations. Finally, SPLOMs are less effective in depicting phe-
nomena that involve more than pairs of dimensions, and as such have also
been called ‘multiple bivariate visualizations’ [100].
The problem of dimensional scalability of SPLOMs can be alleviated

in several ways. First and foremost, one can automatically analyze all D2

dimension-pairs to detect interesting patterns, such as pairs of strongly
correlated (or, conversely, independent) dimensions, or clusters of obser-
vations. These can then be presented as a (typically small) sequence of
scatterplots, ranked in terms of interestingness. The class of techniques
achieving this is known globally as scagnostics [146, 280, 293]. Separately,
one can use interactivity to generate a rich set of 2D scatterplots by allow-
ing users to select the dimensions of interest to map to the visual x and
y scatterplot axes. Interpolation can be used to create smooth transitions
as these mappings change, thereby helping the user to maintain the so-
called ‘mental map’, i.e., follow patterns created by observations between
views [74, 120]. Interestingly for our context, such techniques have also
been used to explore multivariate trails of aircraft [112, 115].

3.2.1.5 Parallel coordinate plots (PCPs)

The challenge of navigating between an observation-centric view and a
dimension-centric view on data, as well as the scalability issues of SPLOMs,
have led to the development of parallel coordinate plots (PCPs) [125]. An
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Figure 3.3: Relationship of table views (a) and parallel coordinate plots (Sec. 3.2.1.5).
Image from [271], Sec. 11.5.1.

easy way to explain PCPs is by contrasting them to table views (see Fig. 3.3).
In a table view, each dimension j is essentially a vertical column listing the
values x ji over all observations i; and each observation i is a row listing the

values x ji over all dimensions j. In a PCP, each dimension is a vertical axis
covering the range of xj ; and each observation is a polyline that links one
point on each axis j representing the value of x ji . In a table view, data can
be thought of as being sorted in order of observations; in contrast, in a PCP
data is sorted in order of the actual values. In both cases, dimensions can be
freely sorted by the user along the horizontal axis.

Figure 3.4: Parallel coordinate plot (PCP) for the same car dataset as shown in
Fig. 3.2. See Sec. 3.2.1.5.

Figure 3.4 shows a PCP for the car dataset shown earlier in Fig. 3.2. In
contrast to SPLOMs, it is now easier to detect patterns involving more than
two dimensions, by visually following bundles of closely-spaced lines (sets
of observations). For instance, by following the line bundle passing through
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the marked red dot, we can see that most four-cylinder cars have a high
mileage and a relatively low horsepower. The distribution of values along
each dimension is visible in much the same way the diagonal cells of a
SPLOM show, and similar blending and accumulation mechanisms can be
used to alleviate clutter problems. Direct and inverse correlation patterns
show up as groups of parallel, respectively crossing, lines.
In contrast to SPLOMs, PCPs scale better with the number D of dimen-

sions – more precisely, linearly rather than quadratically. However, visual
clutter is now more problematic, as there is more ink used per observa-
tion – one line for PCPs instead of a set of D2 points for SPLOMs. More
problematically, relating dimensions whose axes lie far away in the PCP is
difficult. While interactive brushing and linking can alleviate such issues,
just as for SPLOMs, PCPs scale less well with the number N of observa-
tions than SPLOMs. Additionally, the ordering of axes critically influences
the ability to see patterns in the data – an issue that SPLOMs do not have. A
final challenge of PCPs is that they require more time to learn, and they are
less intuitive, we argue, than all other visualization metaphors discussed so
far in Sec. 3.2.1. Also, similar to table views, PCPs do not intuitively map the
spatial nature of (3D) data, such as relative positions and motion directions.

3.2.2 Observation-centric methods

As outlined in the beginning of Sec. 3.2, observation-centric methods pose
the focus of the visualization on the actual data items, or observations,
rather than on their (many) dimensions. As such, these methods are less
suited to reason about e.g. correlations of dimensions or distributions of
data values. However, they are better at supporting tasks that revolve
around identifying groups of similar observations or outlier observations.

3.2.2.1 Dimensionality reduction methods

Given the above tasks, similarity is at the core of many observation-
centric methods. A particular class of such methods is formed by so-called
dimensionality-reduction (DR) techniques. Formally put, a DR technique
can be seen as a function

f : RD → Rd , (3.3)

where d � D (typically, d ∈ {2, 3}). The underlying idea of f is to trans-
form a given a dataset DS ⊂ RD into a low-dimensional dataset DS ′ =
{ f (xi ) |xi ∈ DS }, DS ′ ⊂ Rd , so that the so-called ‘structure of the data’ is
preserved [168, 263]. This structure is defined by means of similarity – or
more precisely, variation thereof – over a given dataset DS . To understand
this, consider e.g. some distance metric δ : DS × DS → R+. The struc-
ture of a dataset DS can be seen in terms of distribution of distance values
{δ (xi , xj ) |∀(xi , xj ) ∈ DS ×DS }. For instance, a dataset DS composed of two
compact, but well-separated similar-size observation clusters in RD , will
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show a bimodal balanced distance distribution, whereas a dataset featuring
a single compact cluster will show a unimodal distribution. Another way
to express data structure is to look at the set of k-nearest neighbors of each
observation xi ∈ DS [13, 148].
DR methods have several key advantages compared to all multidimen-

sional visualization techniques discussed earlier:

• Scalability: DR methods are highly scalable both in the number of
observations N and number of dimensions D. One can argue that
they are close to the optimum – indeed, we require just one pixel to
draw an observation, and the required screen space by aDRmethod is
independent on D. No other multidimensional visualization method
we are aware of can achieve both these constraints;

• Familiarity: DR methods essentially reuse the scatterplot metaphor
(Sec. 3.2.1.3) which, as we have seen, is one of the most familiar ones
in the multidimensional visualization area;

• Observation-centric: As already said, DR methods focus on observa-
tions, not dimensions. As such, analysis tasks where one is interested
in finding how observations relate to each other are well served by
such methods.

Figure 3.5: Dimensionality-reduction visualization for a dataset of image frag-
ments used in the context of classifier design. Image taken from [44].

Figure 3.5 shows the result of applying a DR technique [130] to a set of
2300 observations for the task of image classification. Each observation is a
small pixel block pulled from seven natural-scene images, each such image
being of a different type. For each such block, 19 dimensions are computed,
including typical features used in the design of image classifiers [300]. An
additional categorical attribute is manually added by a human observer, in-
dicating the class (type) of the image each block has been taken from. This
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attribute is color-coded in Figure 3.5. Based on this image, one can assess
howwell themeasured attributes correlate with the class attribute, and thus
how good these are for the potential task of designing a classification sys-
tem able to infer the class attribute. Examples of projections being used to
this end are given in [213].
DRmethods will play an important role in our visual exploration of high-

dimensional time-dependent data (Chapter 6). Hence, we provide next a
brief overview of such methods.

3.2.2.2 Types of DR methods

Dimensionality reduction methods are well known in statistics and data
science since over a century, when Principal Component Analysis (PCA)
was introduced [131]. Tens of DR methods have been proposed In the last
decade, as recent surveys in the area are showing [164, 249]. However, the
(often subtle) differences in aims, constraints, and scope of such methods
are not always clear – owing, probably, to the fact that DR techniques are at
the crossroads of several traditionally separated disciplines such as statis-
tics, machine learning, data science, and data visualization.
To better understand the above-mentioned differences, we propose next

four axes along which DR methods can be classified.

Preservation aims:Key to the idea of preservation of data structure is that
the characteristics of interest are similar over RD and Rd . Depending on
how data structure is quantified, we have two main classes of DR methods.
Distance-preservation DR methods aim to preserve the relative dis-

tances between point-pairs in DS and DS ′. In other words, they aim to
have the ratio δ (xi , xj )/‖ ( f (xi ), f (xj )‖ relatively constant for all point-
pairs ((xi , (xj ) ∈ DS × DS . Here, ‖ · ‖ denotes Euclidean distance over Rd .
Distance preservation is typically quantified by computing the so-called
aggregate normalized stress (cf e.g. [130])

σ =

∑
(xi ,xj )∈DS×DS (δ (xi , xj ) − ‖ f (xi ), f (xj )‖)2∑

(xi ,xj )∈DS×DS δ (xi , xj )2
(3.4)

Variations of this metric are proposed byMartins et al. to find specific point-
pairs which are mapped too close, or too far, by the DR function f [168].
Most known DR techniques fall into the class of distance-preservations
methods, e.g. [83, 124, 130, 193, 199–202, 246, 247].
As outlined at the beginning of Sec. 3.2.2.1, another way to encode

data structure, apart from looking at point-pair distances, is to consider
the neighborhoods of points. In this metaphor, good DR methods are
those which preserve the k-nearest neighbors of points between DS and
DS ′. Neighborhood preservation is often more useful than ‘pure’ distance
preservation, for instance in cases where one is interested to reason about
clusters (groups) of observations. In such cases, one may even want to bias
distances in DS ′, as compared to DS , so that observation groups appear
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more compact and better separated from each other. Note that, in the ideal
case, a perfect distance-preserving DR method is also perfectly preserving
neighbors, for any 1 ≤ k ≤ N . However, the converse is not necessarily
true.
Neighborhood-preservation DR methods are relatively newer, and less

well-known, than distance-preservation DR methods. Examples include
LoCH [80] and the by now famous t-Stochastic Neighbor Embedding (t-
SNE) [162, 163], which we will also use later on in Chapter 6, given its good
ability to separate groups (clusters) of similar observations. Quantifying
the quality of such methods is done by e.g. computing metrics such as the
neighborhood hit [202], silhouette coefficient [260], and various types of lo-
cal set-based metrics that compare the k-nearest neighbors of a point in DS
and DS ′ [169, 200]. Variants of such metrics consider group-membership
preservation, i.e., whether an observation is seen to be part of the same
(compact) group of observations [168]. While assessing projection quality
is important, we consider this to be out of the scope of our work.

Distance-based vs dimension-based: A second way to classify DR meth-
ods is to look at the type of information they use to quantify similarity of
observations. Two situations exist here. First, one can design the function
f (Eqn. 3.3) to directly use the observations xi ∈ RD . One advantage hereof
is that only the actual dataset DS to be mapped to d dimensions is needed –
no additional data structures need to be computed and/or stored. Another
advantage is that the obtained low-dimensional dataset DS ′ can be next
explained by showing how the original high-dimensional attributes xj in-
fluence the point placement, therefore making the low-dimensional image
more usable and useful [44, 168, 243, 245]. DR methods that explicitly use
the high-dimensional attributes are also known as projections.
However, there are cases when one does not avail of explicit dimensions

to describe the observations’ similarities, but however has this similarity
information. An example is the situation when we have a dataset of images
or shapes, for which a user can specify pair-wise similarities, but cannot
encode these in terms of high-dimensional attributes [45]. In such cases, we
can design f to use only the pair-wise similarities, encoded as a distance
matrix di j = δ (xi , xj ). DR methods that rely solely on distances are also
called multidimensional scaling (MDS) methods [278]. Examples of MDS
methods are Landmarks MDS [246], Pivot MDS [28], Isomap [247], Glim-
mer [124], and t-SNE [162]. In general, MDS-like methods are a superset
of projections, since one can usually compute a (meaningful) distance ma-
trix given the dimensions xj . However, this is not always desirable: MDS
methods can be expensive, as computing and storing the similarity matrix
is quadratic in the observation count N .

Linear vs nonlinear: A linear DR method implements a function f which
is linear in the positions of observations. The most known (and arguably
also simplest to implement) such method is PCA. However, linear meth-
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ods usually have difficulties in preserving distances and/or neighborhoods
when the high-dimensional dataset DS is not a two-dimensional manifold
with boundaries embedded in D dimensional space [247]. A classical exam-
ple hereof is projecting to 2D points densely distributed over the surface of a
sphere – this cannot be accurately done using linear projections, as a sphere
and a 2D compact region with boundary have different topologies. Nonlin-
ear methods are better in this respect, as they can choose to ‘deform’ the
space in different places and in different ways to achieve a better error min-
imization (distance and/or neighborhood preservation). One of the earliest
non-linear DR methods was proposed by Kruskal [140]. Most current state-
of-the-art DRmethods are of the nonlinear type [130, 162, 222, 247, 263, 272].
However, accurately estimating distance ratios from the low-dimensional
projection is typically not possible using nonlinear methods. In our work
next, we will consider nonlinear DR methods since their advantage in
better preserving distances or neighborhoods for high-dimensional data
outweigh their limitations in not being able to estimate actual distance
ratios from the resulting projections.

Local vs global: The concept of local vs global DR methods is closely re-
lated to linearity. Global methods typically define the mapping f as a single
transformation in which all coordinates of all observations play a symmet-
ric role. A simple example of such methods is PCA, which is also a linear
method. However, global methods have the undesired property of influenc-
ing the embedding (placement in low-dimensional space of an observation)
by all observations in the dataset. As such, even small changes to a subset
of observations can influence the overall projection result, which is subopti-
mal from a stability and robustness perspective, and makes it hard for users
to preserve their ‘mental map’ of the visualization [214]. Moreover, the com-
putation of f becomes in this case expensive, for example, quadratic in the
number of observations N [140, 222].
To accelerate the computation of f , and also allow a more local con-

trol of the embedding, local methods have been proposed. In brief, such
methods select a small subset of so-called landmark or representative ob-
servations ds ⊂ DS , and first map these to low-dimensional space, using
any existing (and typically high-quality) DR technique. Next, the remaining
observations DS \ ds are mapped to low-dimensional space by considering
only their closest landmark(s) – a process bearing resemblance to data
interpolation by local-support basis functions (see e.g. [271], Ch. 3). Since
|ds | � |DS |, local methods are very fast, up to O (N ) for N observations.
Methods in this class include the Least Square Projection (LSP) [202], Local
Affine Multidimensional Projection (LAMP) [130], Piecewise Laplacian Pro-
jection (PLP) [199], t-SNE [162], Landmarks MDS [246], and force-directed
approaches similar to those used to lay out graphs [40, 132, 263]. However
fast, local methods require a ‘good’ selection of landmarks that represents
well the structure of the high-dimensional dataset DS . What precisely a
good representation is, and how to perform the landmark selection to
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achieve this, is still an open problem [130]. In our work next, we will
consider local methods, since they deliver an overall better embedding
(preservation of high-dimensional data structure in the low-dimensional
projection) than global methods.

3.3 trail visualization

Trail visualization can be briefly described as the process of creating vi-
sual representations of datasets consisting of sets of trails Tk , such as
defined in Sec. 3.1.2. Interestingly, we can classify trail visualization meth-
ods along the same two axes used for multidimensional data visualization,
i.e., observation-centric and dimension-centric methods (see Secs. 3.2.2
and 3.2.1, as follows.

3.3.1 Observation-centric trail-visualization methods

Observation-centric trail visualizations are simple to understand: Given a
trail Tk (as in Eqn. 3.2), one can simply display the sequence of observa-
tions xi ∈ Tk , suitably annotated by their time attribute x ti , so that one
can easily infer their temporal order. Probably the simplest way to achieve
this is to draw a polyline (or similar curve) (x0, . . . , xT ), where xi ∈ Tk ,
1 ≤ i ≤ T , and ∀1 < i < j < T : x ti < x tj . This type of trail visualization
is as old as scientific visualization [172]. Early (but still relevant) trail visu-
alizations include stream objects used to depict flow fields in 2D and 3D,
such as streamlines, streaklines, and particle paths [228]. While its main ap-
peal is simplicity of interpretation and implementation, this ‘static’ form of
trail visualization can make it hard to show the direction (along the trail)
of the tracked objects, as well as their (relative or absolute) speeds. One
way to solve the above issues is to code direction and/or speed along the
trail into color and/or transparency (see e.g. [271], Ch. 5). A more intuitive
– and actually pre-attentive – way to show direction and/or speed is to use
animation: Here, one draws ‘trains’ of particles that move along all trails
Tk in a given dataset. When the trails are suitably densely sampled by par-
ticles, and the set {Tk } also densely covers the considered spatial domain,
the obtained effect is that of a dense moving texture [269, 292]. However, a
limitation of animation-based methods is that they create dynamic clutter
when too many trails Tk spatially overlap over large extents.
Trail visualization is also a very relevant topic in information visualiza-

tion. Here, trails are typically describing positions of monitored objects,
rather than artificial seeds (like in flow visualization), such as vehicles (e.g.
planes [112] and ships [225]), see also Fig. 3.6. The infovis aspect of the
problem is present in the fact that such trails are annotated by multiple
(quantitative but also categorical) attributes, such as e.g. a plane’s flight-ID,
cruising altitude and speed, vehicle type, and actual trajectory spatial lo-
cation. Several visualization techniques are used to explore such data, as
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Figure 3.6: Flight trail visualization (a) and interactive exploration (b,c,d). Images
taken from [118].

follows.

Figure 3.7: Ship trail visualization using shaded density maps. Image taken
from [118].

Interaction: The earliest, and still most used, way to address the multivari-
ate visualization problems related to attributed trails is to use interaction,
to select and highlight groups of attributes and/or attribute-values of in-
terest in the analysis. Figure 3.6 shows such a visualization constructed by
the FromDaDy system [112, 118]. The first image (a) shows a set of about
20000 flights crossing the French territory over the period of one week. The
user can select a particular group of flights to examine in more detail (b).
For the selected flights, one can change the view to display the flights’ lati-
tude data vs their cruising height (c). The selection can be next refined (d),
followed by the creation of additional views to examine the selected flights.
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Density maps: A similar use-case is covered for visualizing ship trajecto-
ries by Willems et al. [225, 294]. However, a very different solution type is
used here: A density map is computed to capture the local spatial density of
the moving vessels (Fig. 3.7). The map is suitably colored, pseudo-shaded,
and textured to emphasize the density of moving ships as well as their in-
dividual trajectories. The key advantage of density maps is their ability to
summarize very large numbers of trajectory into a single (continuous) im-
age, whose resolution offers a multiscale aspect to the visualization, akin to
the early idea introduced byDe Leeuw and Van Liere for the compact visual-
ization of graph drawings [282]. Such techniques share also a commonality
with the earlier-mentioned dense flow-visualization techniques [269, 292]
in the sense that the resulting view consists of a single continuous image,
rather than a (large) group of individual trails. As such, these techniques
are also known under the name image-based techniques. We will also use
density maps to similar ends in our image-based techniques proposed in
Chapters 7 and 8.

Figure 3.8: US airlines graph (a) and its bundled drawing (b). Images taken
from [108].

Bundling techniques:However effective in summarizing local density for
a large set of trails, image-based techniques typically remove the original
data items (trails) from the final visualization. This is not desirable when
one wants to reason about specific trails rather than about their aggre-
gated density [118]. A different way to summarize large sets of trails is of-
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fered by bundling techniques. These have been originally introduced in the
context of summarizing large node-link graph drawings [107]: To simplify
such drawings, and also reduce the edge-crossing clutter, edges which run
largely parallel to each other and at close distance are bent to be grouped
in a so-called bundle, akin to cables being joined in electrical installations.
A key observation is that bundling is not restricted to graphs (or, more pre-
cisely, to graph drawings), even though this may appear so from the ter-
minology used in the literature. Indeed, bundling can be applied to any
drawing consisting of elongated objects, such as trails, which are amenable
to summarization by the aforementioned bending and grouping. In the last
decade, many such graph-drawing and/or trail bundling techniques have
been proposed for hierarchical compound graphs [107, 267] and general
graphs and trail-sets [53, 76, 92, 108, 142, 143]. Figure 3.8 shows a graph in-
dicating the connections between airports (nodes) by airlines (edges) over
the US territory, and its bundling result. As visible, the strong connection
patterns between (groups of close) airports are now easier to discern.
Trail bundling has been recently extended to several additional appli-

cations. Several methods treat dynamic data, i.e., trail-sets whose content
changes in time. This allows one to visualize very large datasets whose ele-
ments (trails) can be chronologically ordered, using either animation tech-
niques or small multiples showing several ‘keyframes’ from such anima-
tions [117, 187]. Interactive exploration techniques are proposed to morph
between the bundled and unbundled (raw) trails, so as to reduce the in-
herent distortion caused by bundling and show the actual location of the
trails [112, 139]. Particle animation along the (un)bundled trails can be used
to indicate the direction of tracked shapes [118]. Directional bundling can
be used to separate trails running in opposite directions from being bun-
dled together, which allows next one to color-code bundled to show their
direction [206, 231]. Pseudo-shading, similar to the one used for density
maps [294], can be used to emphasize bundles better and help one visually
follow them end-to-end over crossings [76, 267]. Finally, bundling has also
been used to produce simplified views of eye-tracking data, where the trails
indicate how a subject’s gaze moves when scanning an image [7, 119, 206].
For a recent overview of the state-of-the-art in graph and trail bundling,
we refer to Lhuillier et al. [152]. Trail bundling, including most visualiza-
tion options described above, will be the topic of our novel visualization
proposals in Chapters 8 and 7.
Separately, we note that trail visualizations can be also classified in

physical vs abstract-space. Physical trail visualizations have as target tra-
jectories created by objects moving in physical (2D or 3D) space1. All
trail visualizations mentioned so far are in this category. Abstract-space
trail visualizations have as target entities that move in abstract, possibly
high-dimensional, spaces. Examples of such trail visualizations are those of
change of software artifacts [245] or of activations of neurons in artificial

1 We refer here to ‘physical’ space in the same sense as it is referred when describing scien-
tific visualization as opposed to information visualization.
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Figure 3.9: Bundled visualizations of abstract trails. (a) Evolution of software enti-
ties attributed by their quality metrics (image from [245]). (b) Evolution
of neurons during the 100-epoch training of an artificial neural network
(image from [212]).

deep neural networks [212] – see Figs. 3.9a,b respectively. In both these
cases, the tracked objects also represent abstract, rather than physical,
items. These items are described by a high number of attributes, and the
visualization aims at showing how they change in time. One salient aspect
of such abstract spaces and their trails is that direction and absolute posi-
tion in the visualization does not have a particular meaning, as opposed
to direction and absolute position in 2D or 3D physical space. Given the
high dimensionality, trails for these objects can be drawn using multidi-
mensional projections, such as those described in Sec. 3.2.2. We will use
such techniques in Chapter 6 for a novel use-case – the exploration of the
high-dimensional parameter space of a shape-tracking system.

3.3.2 Dimension-centric trail-visualization methods

In contrast to observation-centric methods for trail visualization (Sec. 3.3.1),
dimension-centric methods focus on showing how the individual attributes
x ji of points xi in one or more trailsTk (Eqn. 3.2) change in time. Dimension-
centric methods are relatively more effective for visualizing trails of ab-
stract, rather than physical, objects. Indeed, abstract objects do not have
dimensions representing spatial position, so observation-centric methods
such as projections (Sec. 3.3.1) can be quite challenging to use, since the
depicted trajectories take place in a highly abstract space. In such spaces,
only inter-observation distance has an intuitive meaning, as compared to
observations in a physical space, where the (typically 2D or 3D) Cartesian
coordinates of the visualization map one-to-one to physical dimensions (at-
tributes) of the trails.
Globally speaking, such dimension-centric methods are very related to

the dimension-centric visualization methods for multidimensional data dis-
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cussed in Sec. 3.2.1. The table lens method illustrated in Fig. 3.1b is precisely
an instance of such a method. The rows of the table indicate recordings of
the prices of several given stocks over a period of about a month, with a
minute-level resolution [264]. The leftmost column (1 in Fig. 3.1) indicates
the recording time. Columns 4 to 7 in the same figure indicate various stock
attributes. If the table lens is sorted by this column, as shown in the figure,
then the display of columns 4 to 7 are basically four graphs of the time-
dependence of these attributes.

Figure 3.10: Stacked area charts for trail visualization. (a) Evolution of the strength
of several players in a multiplayer game [180]. (b) Evolution of the
coding effort of a software development team (image created with the
SolidTA tool [218, 287].

Stacked area charts are a related visualization method [185]. The spatial
encoding of these charts is identical to the Cartesian one proposed by the
table lens: One dimension of the 2D layout represents time, while the ‘thick-
ness’ of the bars, mapped to the other dimension, represents data values.
The key difference between table lenses and stacked area charts is that the
latter does not leave any empty space between the (colored) bars repre-
senting the values of all attributes at a given time moment (therefore the
‘stacked’ concept), whereas table lenses align all values x ji of a dimension j
along the time axis.
Figure 3.10a shows a stacked area chart used in Microsoft’s (once) pop-

ular game Age of Empires [180]. Here, the horizontal axis represents time,
and each colored ‘timeline’ strip represents the total population of one of
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the game players over the play time. Stacking allows one to easily see when
the game has beenmost intense (sum of all players’ populations ismaximal);
and also removes empty space between the timelines, therebymaking it eas-
ier to spot dominating and weak players at every moment and over time.
Figure 3.10b shows a rather more scientific usage of stacked area charts
(though, one which was inspired from the aforementioned game). Here, the
horizontal axis represents time, and the vertical axis shows the relative and
total development effort of programmers contributing to a software reposi-
tory over the repository’s lifetime [218, 287]. Here, the total thickness of the
chart (at a time moment) indicates development effort of the entire team;
and the relative thicknesses of each developer timeline allow one to com-
pare development effort across one or several programmers at the same or
different time moments.
Essentially, both examples in Fig. 3.10 can be seen as trails, over time,

of the state of a system, described by its various attributes (e.g. players’
strengths or developers’ contributions). Another well-known example of
using stacked area charts to depict evolution of a system’s state is the The-
meRiver tool that visualizes how topics of interest change over time for a
large document collection [104]. In Chapter 5, we will use dimension-based
trail visualizations similar to table lenses and area charts to examine the
evolution in time of the state of a 3D shape tracker.
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4IMAGE SEGMEN TAT ION BY DENSE SKELETONS

As extensively described in Chapter 2, before (even) being able to perform
tracking of shapes from a 2D image or video stream, a critical step is sep-
arating such shapes – or, more formally put, their projections or views in
a two-dimensional image, froun the surrounding background. To this end,
numerous methods have been designed, see e.g. [46, 128, 175, 211, 236, 277].
However, most such methods have various limitations in the sense of the
types of shapes they can segment from the existing background; accuracy of
segmentation (in terms of robustly identifying relevant parts of the shapes
from the surrounding background); ease of use (in terms of amount of in-
put asked from the user before the segmentation method is applicable); and
efficiency, measured in terms of computational scalability vs resolution of
processed images, for instance1.
Why is this problem relevant you our context outlined in Chapter 1?

We find several reasons to this end, as follows. First and foremost, our the-
sis scope is the analysis of dynamics of moving shapes. Clearly, to be able
to say anything about such shapes, we need to be able to quantify them.
This means, first and foremost, separating them from surrounding details
in data-acquisition datasets, such as video streams. Hence, a good (robust)
segmentation method is critical. Secondly, our concrete use-case for RQ1
(Sec. 1.3) is strongly constrained by the topology of the shapes of interest.
Revising the description of our use-case outlined in Sec. 1.3, we are look-
ing to track very specific shapes – teats of a cow, which, although variable,
have a quite specific geometric and topologic signature.
As such, the detection of specific types of shapes in general-purpose

2D images is clearly within our thesis’ research scope. In this chapter, we
present our work towards the segmentation of shapes from 2D luminance
images, which uses structural (topological) properties of the shapes. Besides
being innovative in terms of the used techniques, we argue that our pro-
posed segmentatonmethod can be a first step towards the effective tracking
of complex/articulated natural shapes from 2D video sequences.

4.1 introduction

Skeletons, or medial axes, are well-known 2D shape descriptors used in
many applications in shape analysis and classification, shape recognition,
shape matching, topological analysis, image registration, and path plan-

1 The material in this chapter is based on the following publication: M. van der Zwan,
Y. Meiburg, and A. Telea. A dense medial descriptor for image analysis. In J. Braz, S. Bat-
tiato, and F. Imai, editors, Proc. 8th IEEE International Conference on Computer Vision Theory
and Applications (VISIGRAPP), volume 1, pages 133–140, 2013.
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ning. Medial axis structures, augmented with distance information from
the medial axis to its corresponding shape, generate the so-called Medial
Axis Transform (MAT), which is a true dual for the input shape. In other
words, the MAT can be used for the exact reconstruction and also for the
simplification of shapes at user-specified levels of detail. 2D skeletons and
MATs have been extended to three dimensions to create surface and curve
skeletons and their corresponding medial surface transform (MST), which
allow processing of 3D shapes analogously to their 2D counterparts. In this
chapter, we focus on 2D skeletons and MATs.
However powerful, skeletons and MATs have the crucial limitation that

they require as input a digital shape, i.e. a closed boundary which divides
the embedding space into inside and outside regions. This limits their di-
rect application to datasets containing pre-segmented shapes. However, in
many applications, one has continuous fields as inputs, such as grayscale or
color 2D images or 3D scalar volumes such as CT or MRI scans. Although
pre-segmenting such datasets into binary shapes and further using skele-
tons to analyze such shapes is possible, this is a non-trivial process which
requires a priori knowledge on the nature and position of the shapes of in-
terest. Moreover, since skeletons require binary shapes, they cannot directly
handle fuzzy shapes whose boundaries are defined by a range of scalar val-
ues. Eliminating this limitation, i.e. enabling skeletal andMST descriptors to
directly handle grayscale images, can open new ways for using the analytic
power of such descriptors for image segmentation, editing, and classifica-
tion applications.
In this chapter, we present a framework for representing and manipulat-

ing 2D images using a new descriptor: Dense medial axes. Our framework
operates in three steps. First, we decompose a grayscale image into several
so-called threshold sets Ti , i.e. pixels whose values exceed a given set of
scalar values vi . Next, we compute a simplified medial axis transform Mi

of each threshold setTi , using a suitable simplification value τi . Finally, we
use the medial transformsMi to perform several types of image processing
operations on the initial image, ranging from perfect image reconstruction
to image simplification, segmentation, editing, and artistic painting effects.
The set of threshold-valuesvi andmedial simplification values τi effectively
create a two-dimensional scale-space in which we encode the image lumi-
nance variations and shapes present in the image, respectively. We propose
an efficient GPU-based implementation of our dense medial descriptors,
which can compute these and the associated image processing operations
in real-time on mega-pixel images. We demonstrate our framework with
several image processing applications.
The structure of this chapter is as follows. Section 4.2 overviews re-

lated work on 2D medial descriptors. Section 4.3 details the three steps of
our framework: threshold-set computation (Sec. 4.3.1), medial transform
computation (Sec. 4.3.2), and image reconstruction (Sec. 4.3.3). Section 4.4
presents ways in which we can parameterize the above-described steps
of our pipeline to achieve several types of image processing operations,
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4.2 related work

and illustrates these with examples. Section 4.5 discusses our framework.
Section 4.6 concludes the chapter.

4.2 related work

Given a two-dimensional binary shape Ω ⊂ R2 with boundary ∂Ω, we first
define its distance transform DT∂Ω : Ω → R+ as

DT∂Ω(x ∈ Ω) = min
y∈∂Ω

‖x − y‖ (4.1)

The skeleton, or medial axis, of Ω is next defined as

S (∂Ω) = {x ∈ Ω |∃ f1, f2 ∈ ∂Ω, f1 � f2, (4.2)

‖x − f1‖ = ‖x − f2‖ = DT∂Ω(x )},
where f1 and f2 are the contact points with ∂Ω of the maximally inscribed
disc in Ω centered at x , also called feature transform (FT) points [255] or
spoke vectors [253], where the feature transform is defined as

FT∂Ω(x ∈ Ω) = argmin
y∈∂Ω

‖x − y‖. (4.3)

The skeleton, together with the distance transform, form the Medial Axis
Transform (MAT), which can be used to exactly reconstruct the input shape
Ω [240, 268].
Two-dimensionalMAT techniques can be classified into three groups.Ge-

ometric methods use a polygonized version of ∂Ω to compute its Voronoi
diagram and the skeleton as a subset thereof [189]. Thinning methods itera-
tively remove ∂Ω pixels while preserving connectivity [194]. Pixel removal
in distance-to-boundary order enforces centeredness [208]. Such methods
are simpler than geometric methods and they also directly use a pixel-based
image representation. Distance field methods find the MAT along singular-
ities of DT∂Ω [106, 223, 241, 268, 288], and can be efficiently implemented
on GPUs [33, 65, 255, 256]. General-field methods use fields smoother (with
less singularities) than distance transforms [3, 48, 103], thus are more ro-
bust for noisy shapes. Foskey et al. compute the θ -SMA, an approximate
simplified medial axis, using the angle between feature vectors [87]. The
θ -SMA can get disconnected along the so-called ligature branches. An ac-
curacy comparison of different field methods for 2D distance and feature
transforms is given in [216].
Clear, or regularized, skeletons are extracted fromnoisy shapes by thresh-

olding importance measures to prune skeleton pixels caused by small shape
details [235]. One of the simplest, and most effective, such measures is the
collapsed boundary length metric ρ : S → R+, which ranks skeleton pixels
x by the boundary length, along ∂Ω, between their feature points [52, 189,
268], i.e.

ρ (x ∈ S ) = ‖∂Ω(f1, f2)‖, (4.4)
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where f1 and f2 are the feature points of the skeleton point x, and ‖ · ‖
denotes the arc-length shortest distance along ∂Ω between these points (for
feature points belonging to disconnected boundary fragments, this distance
is set to infinity). The metric ρ increases monotonically on skeletons of
genus 0 shapes from their periphery to their center, so thresholding it is
guaranteed to directly yield a connected skeleton [52, 268].
However effective for shape registration [257], matching [15, 69], clas-

sification [52], and recognition [165], skeletons can only be computed for
binary shapes Ω. Given a grayscale image, Ω can be computed using var-
ious segmentation methods [46, 133, 154, 236]. Simpler, but more generic,
segmentation methods include classical level-sets and threshold-sets [234],
which are nested structures that capture all image points whose grayvalue
is equal to, or respectively larger than, a given value. However, segmenta-
tion poses two problems. First, we need to know, in advance, which shapes
we are searching for in a given image. Secondly, this approach only delivers
skeletons of the image subset captured by the segmentation. In other words,
we do not have a medial descriptor for the entire image, e.g., we cannot talk
about the skeleton of a fuzzy shape or a grayscale image.

4.3 proposed framework

We propose to join the grayvalue information present in threshold set de-
scriptors with the shape information delivered by medial descriptors in a
single new dense medial descriptor (DMD), as follows (see also Fig. 4.1).
First, we reduce an image to a set of threshold-sets (Sec. 4.3.1). Secondly,
we compute a simplified MAT for each threshold-set (Sec. 4.3.2). Finally,
we use the threshold-set grayvalues and computed MATs to generate our
DMD (Sec. 4.3.3), which we can use next for various image processing op-
erations (Sec. 4.4).

4.3.1 Threshold set computation

Given a grayscale image I : R2 → R+ and a grayvalue v ∈ R+, we define
the threshold-set

T (v ) = {x ∈ R2 |I (x) ≥ v}. (4.5)

By definition, threshold-sets for increasing grayscale values are nested 2D
structures. For a digital n-bit-per-pixel image, we have thus 2n threshold
sets, or layers, Ti = T (i ), 0 ≤ i < 2n . Here and further, we use a value of
n = 8. Further, from each layer, we remove foreground and background
islands with an area ϵ smaller than 3% of the layer’s area |Ti |. This further
simplifies our medial descriptors used to encode the layers (Sec. 4.3.2).
The density of layer borders is proportional with the probability of hav-

ing an edge in the image: Low-density areas indicate that consecutive layers
are far apart, thus the image is relatively flat. High-density areas indicate
close consecutive layers, i.e. quickly varying grayvalues. We will further
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image segmentation by dense skeletons

use this observation in the reconstruction pass (Sec. 4.3.3). Threshold-sets
are nested, i.e. ∀i < j,Tj ⊂ Ti . This observation is important, as it implies
that if we remove a pixel from Tj , this pixel will get the (darker) grayvalue
of its closest parent layer.

4.3.2 Simplified medial axis

A threshold-setTi can be seen as an arbitrary ‘slice’ in the image grayvalue
space. Geometrically speaking, Ti can have any shape, e.g. a collection of
noisy disconnected components. We propose here to use MATs to capture
the essence of the shape of a Ti and remove its spurious details.
For this, we compute the distance transformDTi = DT (Ti ) and simplified

skeleton Si = S (Ti ), following Eqns. 4.1 and 4.3 respectively. We compute
DTi using the GPU-based exact Euclidean method of Cao et al. [33]. This
method also computes the feature transform of a shape (Eqn. 4.3). Hence, it
is trivial to modify this method to determine, for each point x ∈ Ti, which
are its two feature points, and next, following a simple arc-length parame-
terization of ∂Ti , analogous to [268], the collapsed boundary length at x.
As noted earlier, Ti can contain a large amount of geometrical and topo-

logical noise. Once we have Si and DTi , we can remove these easily. As
skeleton importance, we use the so-called salience metric

σ : S → R+ = ρ/DT , (4.6)

equal to the collapsed boundary length ρ (Eqn. 4.4) divided by the distance
transform (Eqn. 4.1) [266]. This metric has the desirable property that it
removes small-scale boundary noise, but it keeps salient features, such as
cusps or dents. Figure 4.2 illustrates this: The input image is an 8-bit noisy
human brain CT (a), from which we select the threshold-set correspond-
ing to the level 132 (b). Next, we remove small foreground and background
islands (as mentioned in Sec. 4.3.1), compute the simplified MAT of this
threshold-set, regularized by the saliency metric σ , and reconstruct this
set from this skeleton. The result (c) captures the main shape described
by the threshold-set (b), ignoring small-scale details such as specks, holes,
and boundary noise.

4.3.3 Image reconstruction

So far, we have reduced our input grayvalue image I to a set of threshold-
sets Ti , each having an MAT Si . We can reconstruct a simplified version T̃i
of each Ti (in increasing order of i , i.e. from dark to light layers) from its
corresponding MAT (Si ,DTi ) by either executing a Fast-Marching-Method
(FMM) ‘inflation’ of Si outwards until each point x ∈ Si reaches the distance
DTi (x) [234, 268], or alternatively drawing discs centered at x with radius
DTi (x), and coloring each layer Ti with the grayvalue i . The first approach
(FMM) works best on a CPU, while the second scales better on the GPU.
However, this method is basically a nearest-neighbor (zero-order interpola-
tion) reconstruction of I , so it shows intensity-banding effects around the
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a) b) c)

Figure 4.2: Salience metric for skeleton simplification: (a) grayvalue image; (b)
threshold set; (c) threshold set reconstructed from saliency skeleton.

boundaries ∂Ti of the layers Ti . A better way is as follows: For each two
consecutive layers i and i + 1, whrere i ∈ [0, 255], we reconstruct the layers
Ti andTi+1 as above (either on the CPU or GPU), and next, we set the gray-
value v (x) of each pixel x located between the boundaries ∂Ti and ∂Ti+1 to

v (x) =
1

2

[
min

(
DTTi
DTTi+1

, 1

)
vi +max

(
1 − DTTi+1

DTTi
, 0

)
vi+1

]
(4.7)

This achieves a smooth distance-based interpolation between the bound-
aries ∂Ti (with grayvalue vi ) and ∂Ti+1 (with grayvalue vi+1) in the Haus-
dorff sense. Applying Eqn. 4.7 at all pixels x of the image space yields our
final reconstructed image Ĩ . Examples of reconstruction are discussed next
in Sec. 4.4.1.

4.4 applications

We next present several applications of our dense medial descriptor.

4.4.1 Reconstruction

Overall, the interpretation of our reconstruction technique is simple: Given
several layers Ti with corresponding MATs (Si ,DTi ), we can reconstruct a
smooth version of the original image I from which Ti have been produced.
Thus, I is integrally encoded in our dense MAT (Si ,DTi ). For instance, if
we encode all layers Ti present in the original image, and do not simplify
at all the resulting MATs Si , the reconstruction presented in Sec. 4.3.3 is
an exact copy of the original image, by definition, i.e. since we encode all
luminance layers and since an unsimplified skeleton exactly preserves the
shape of each layer. Thus, our dense medial descriptor (DMD) can encode
the full input information, if desired. However, our DMD can be used to
simplify the input image I in several ways, as follows.
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image segmentation by dense skeletons

a) input image (cameraman)

)cam

c) input image (mandrill)

b) reconstruction (MSSIM=0.84, 102 layers removed)

d) reconstruction (MSSIM=0.55, 61 layers removed)

e) input image (peppers) f) reconstruction (MSSIM=0.73, 198 layers removed)

g) input image (landscape) h) reconstruction (MSSIM=0.69, 96 layers removed)

Figure 4.3: Image reconstruction accuracy (vs SSIM) while removing layers.
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First, we can only encode the relevant layers Ti . A layer is deemed rele-
vant if its removal from the reconstruction (Sec. 4.3.3) causes a too large dif-
ference between the original image I and the reconstructed image (Eqn. 4.7).
Indeed, the advantage of our reconstruction scheme is that it allows to eas-
ily remove, or keep, layers Ti in the reconstruction process. As such, given
a typical image with 255 layers, we can decide on-the-fly which layers are
relevant for the reconstruction or not, depending on application-specific
metrics.
The simplest of such metrics is the relevance of a layer: Given all layers

Ti , we can remove those which contribute less to reconstructing an image
close to the input image I . To compare the reconstruction Ĩ with the origi-
nal image I , we use the well-knownmean structural similarity index (SSIM)
metric [289]. Figure 4.3 ilustrates this. Here, we have removed the least rel-
evant layers to the reconstructed image (as according to SSIM) and plotted
the SSIM metric. We see that we can remove around 30..50% of the 255 lay-
ers of an 8-bit image without a perceptual decrease in image quality: Details
such as salient sharp boundaries, highlights, and even global small-scale
patterns (such as the mandrill’s hair structure) are well preserved. Accord-
ingly, thismeanswe can compress an image, by the same layer removal ratio,
i.e. 60% (a), 23% (b), 78% (c), and 37% (d) respectively, with little perceptual
loss. Consequently, if we accept the implied perceptual difference, between
the input image and our simplification, techniques such as JPEG encoding
can be subsequently applied atop of our simplification.

4.4.2 Segmentation

Segmenting an image into its salient shapes has countless applications in
medical imaging, computer vision, and image classification.We show below
how our DMD representation can be used for image segmentation. Given
an image I with 0 ≤ i < 256 grayvalues, we compute, for each layer Ti ,
its relevance r as being the difference between I and the reconstruction
using all layers exceptTi . Next, we select for reconstruction only the k most
relevant layers, where k is a small user-supplied value. This will keep the
most ’salient’ shapes present in the image. Moreover, since the shape of
each layer is simplified by island removal (Sc. 4.3.1) and boundary jaggies
removal (Sec. 4.3.2), the resulting reconstruction will have simpler shapes.
Figure 4.4 shows an example. Statistics of the input image (a) are dis-

played in Fig. 4.4e. The area |Ti | of a layer is computed as the pixels that
have precisely grayvalue i . We notice, as expected, that the darkest 20% lay-
ers are empty and brighter layers have increasingly less pixels (highlights
are smaller than darker zones). The number of shapes (connected compo-
nents) per layer is relatively large for the layers having a large area, which
indicates that the image is non-trivial to segment. The relevance r shows
several local peaks: These are layers which are (1) globally significant for
the image representation and (2) more significant than layers having similar
grayvalues.We select thek = 6most significant such layers as shown in Fig-
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a b

c d

e

grayvalue i

layer area |Ti|

layer boundary |∂ Ti|

shapes/layer

layer relevance

selected
layers

Figure 4.4: Segmentation example. (a) input image; (b) 5 most relevant layers se-
lected; (c) reconstruction; (d) mean shift segmentation comparison; (e)
layer statistics visualization (see Sec. 4.4.2).

a b c

Figure 4.5: Segmentation example. (a) input image; (b) our method (60% layers); (c)
mean shift segmentation (see Sec. 4.4.2).
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4.4 applications

ure 4.4b. Here, we do not use the linear interpolation of consecutive layer
grayvalues (Eqn. 4.7), so the result shows a luminance-quantization-like
segmentation of the image. In contrast, using linear interpolation (Fig. 4.4c)
blurs the reconstruction where the original image has low contrast (since,
as explained in Sec. 4.3.1, layers in such zones have far-apart boundaries)
but keeps sharp luminance edges visible (since these correspond to high-
density layer boundaries). This yields a fuzzy segmentation of the input
image. For comparison purposes, Fig. 4.4d shows the result of mean-shift
segmentation [46] applied on the input image. Although the produced seg-
ments are not identical to ours (Fig. 4.4b), the overall segmentation impres-
sion is similar.
The exact selection of the k most important layers is not critical for the

segmentation results. Figure 4.5 shows an example. Here, we reconstructed
the input image (a) by using the 60% most relevant layers. The result (b)
is quite similar with the results of mean shift segmentation (c), see e.g. the
segments corresponding to the house walls, window panes, and bush. Our
segments are less jagged than the ones produced by mean shift and still
preserve their salient sharp corners, see e.g. the areas marked in red on the
figure. The reason for this is the working of the salience regularization met-
ric for medial axes, which, as explained, eliminates small boundary jaggies
but keeps salient corners unchanged. On the other hand, our result (b) has a
slightly more fuzzy segmentation aspect than mean shift (c). If a more clear-
cut segmentation is desired (less segments), fewer most-relevant layers can
be selected, as shown in the earlier example (Fig. 4.4).
Figure 4.6 shows a final segmentation example. The input image (a)

shows a skin lesion (naevus) photograph taken with a Handyscope mobile
dermatology device in the framework of a digital dermatology skin-cancer
screening project. A typical network naevus structure is visible herein.
The central part of the naevus has a slightly darker, and denser, network
pattern, which is only visible on the original high-resolution 1936 by 2592
pixels image. The marked boundary (in green) shows the segmentation of
the lesion as manually drawn by a dermatology expert atop of this image.
We processed the input image, without the manually-drawn segmentation,
to obtain the result in Figure (b). Here, we see the three most relevant
layers segmented from the input image, i.e., the lesion’s extent atop of the
healthy skin (A), and two regions corresponding to the darker and denser
central area (B,C). This figure was obtained with relatively low salience
and island-removal values, ϵ = 0.03 and σ = 2 (Secs. 4.3.1 and 4.3.2). If we
increase these values to ϵ = 0.05 and σ = 5, more small-scale islands and
also jaggies on the layers’ boundaries get removed. Figure (c) shows the
result: The lesion’s outer boundary has now been considerably smoothed.
Note, also, that this layer is indeed by far the most relevant from all the
image’s layers, as indicated by its large relevance value (Fig. 4.6d (A)), and
its shape is quite similar to the manual segmentation. The lesion’s inner
layers are also simplified, but to a lesser extent.
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b c

A

d

B

C

A

C

B
a

Figure 4.6: Skin image segmentation. (a) original image showing manual segmen-
tation; (b) detail-preserving automatic segmentation; (c) simplified au-
tomatic segmentation with corresponding relevance metric (d).

The target users (dermatology medical specialists) noted that the tool
can be very useful as a guided aid to their manual work rather than an
automatic segmentation techinque: The relevance values suggest salient
structures in the input images. Seeing such values, users select them in
the relevance metric-bar, visualize the corresponding structures, and decide
whether these are useful segments of the case under analysis.

4.4.3 Artistic editing

Our method can also be used to generate painting-like effects from a given
(sharp) photograph, similar to the artistic edge and corner preserving
smoothing effect of Papari et al. [195]. By increasing the skeleton saliency
metric σ (Eqn. 4.6), we eliminate small-scale jaggies of all threshold-sets,
i.e. isophote contours, while keeping their sharp corners. The reconstruc-
tion (Sec. 4.3.3) interpolates between these simplified contours, yielding
effects akin to painting. Figure 4.7 (c,f) illustrates this on two complex,
fine-grained detail, images. The resulting images, where MSTs have been
simplified by a saliency value of σ = 0.4 and we kept 65% of the original
threshold-sets, show a painting-like effect of the input forest images, where
small-scale details are ‘clustered’ into larger shapes (due to the skeleton
simplification), but the contrast is not unnecessarily blurred (due to keeping
a significant number of the original grayvalues, or threshold-sets). As such,
salient details such as the dark thin trees and light spots are well preserved,
but small-scale and weak-contrast details such as the foliage, are simplified.
The painting effect is strikingly similar with the results produced by the
method of Papari et al., see Fig. 4.7 (b,e).

4.5 discussion

Below we discuss several aspects of our method.

Robustness:We use medial axes for saliency-based simplification and en-
coding of image layers. Although medial axes are known to be unstable and
not robust to noise, we should stress that this does not affect our method. In-
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deed, we use regularizedmedial axes, i.e. eliminate noisy branches bymeans
of the salience metric (Eqn. 4.6). As explained in detail in [266, 268], this reg-
ularization produces medial axes which are robust to arbitrary boundary
noise for shapes of arbitrary genus. Also, we should note that the medial
axes are exact, i.e. precisely centered in their shapes and pixel-thin, by con-
struction, given the exact Euclidean DT we use [33] and the underlying
skeletonization algorithm [268].

cba

Figure 4.8: Original color image (a). Simplified representation using our method in
the RGB space (b) and HSV space (c).

Speed: Our method relies on the fast computation of distance transforms
and skeletons (Secs. 4.3.2,4.3.3). On the CPU, we have used for this the
method presented in [268], which is worst-case O (n logn) for an image of
n pixels. On the GPU, using the method in [33], we achieve a complexity of
O (n). For images of 5122 pixels, our CPU method takes about 1 minute on
a PC at 2.5 GHz, while on an Nvidia 330 GTM GPU, we take 1..2 seconds.
The memory complexity isO (n), as we only need to store a fixed set of 256
MSTs per image.

Parameters: Our method selects a subset of relevant threshold-sets from
the 256 possible sets, and then computes simplified MSTs for each such
threshold-set according to the specified saliency. Hence, saliency and rel-
evance (σ , r ) create a two-dimensional scale-space for the input image.
Selecting less threshold-sets (high r ) emphasizes fewer high-relevance
structures in the image (Sec. 4.3.3. Simplifying each MST (high σ ) reduces
the border-detail of such contours (Sec. 4.3.2). The third and final parame-
ter is the size ϵ of the foreground and background islands to be removed
(Sec. 4.3.1). For typical applications, setting ϵ to values between 3 and 5% of
the area of a layer achieves the desired effect, i.e. removal of small isolated
bright or dark specks.

Color images: Applying our DMD representation to color images is triv-
ial. For this, we apply the entire pipeline (threshold sets, medial axes, and
simplified reconstruction) to each channel of a color image. Figure 4.8 illus-
trates this. As visible, choosing either an RGB or HSV color space does not
create significant differences, as both hues and luminances are well pre-
served. Computing DMDs for color images is three times slower than for
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grayscale images, given that we process each color channel independently.

Applications:We have illustrated our method with applications in image
segmentation, simplification, and artistic manipulation. For all such use-
cases, there exist obviously more specialized methods which yield better
results. Our purpose in selecting these use-cases was mainly to illustrate
the versatility of our framework, i.e. the fact that the proposed DMD repre-
sentation can be seen as a potential, simple, alternative for a wide spectrum
of image processing tasks. As such, we see the DMD as a low-level descrip-
tor atop of which more advanced manipulations can be built, and not as an
end-user instrument by itself.

4.6 conclusions

We have presented dense medial descriptors, a new representation that en-
codes shape and luminance information in grayvalue images. To allow us-
ing medial descriptors for such images, we first decompose an image into
all its possible threshold-sets, and then encode each such set using classi-
cal medial axes regularized by a corner-preserving saliency metric. The re-
sulting descriptor allows an exact reconstruction of the initial image using
distance-based interpolation techniques, and also an application-dependent
simplification by eliminating shapes, or shape details, of low interest or rel-
evance. We have implemented our descriptor using GPU-based techniques
to achieve near-real-time performance. We demonstrate our proposal with
applications in image simplification, segmentation, and artistic painting ef-
fects.
Many possible extensions of our proposal exist. First, we can exploit the

topological information present in our dense medial axes, e.g. branching
or looping structures, to perform higher-level image analysis tasks such as
fuzzy object recognition. Secondly, we can exploit the spatial and topolog-
ical relations of medial axes of consecutive image layers to perform new
types of image editing, e.g. fuzzy object deformation, and also to study new
methods for image compression. Finally, generalizing our method to 3D
scalar volumes is an interesting avenue to explore.

4.6.1 Ongoing work

Following our initial proposal of the dense medial descriptors, several im-
provements and additions to the main idea have been proposed by others.
Most notably, Terpstra [273] has presented a thorough study of the param-
eter space of the image compression proposed by us. This work shows
that, by carefully setting the parameters of our pipeline (skeleton simpli-
fication, selection of relevant layers, run-length encoding of the layers),
one can obtain compression rates of two to twelve times smaller than high-
quality JPEG, while maintaining a similar (or slightly lower) image quality.
In particular, the dense skeleton compression was found to be very effective
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a)

b)

Figure 4.9: Dense skeletons used for image compression: (a) JPEG image (482KB,
1280×1014 pixels); (b) Same image, compressed with ourmethod, yields
a file which is only 184 KB in size. Image from [273].

62



521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan
Processed on: 10-8-2018Processed on: 10-8-2018Processed on: 10-8-2018Processed on: 10-8-2018 PDF page: 75PDF page: 75PDF page: 75PDF page: 75
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for images which present few different intensities and many salient (high-
contrast) and large shapes, such as design, cartoon-like, and other human-
made images. Figure 4.9 shows such an example. Additionally, Terpstra has
shown that our dense skeletons an be used as a preprocessor to increase
the compression rate of standard JPEG by about 10% without visible qual-
ity loss, and also to postprocess images by supporting e.g. relighting. For
full details, we refer to [273]. These results further strengthen our claims
outlined in this chapter that dense skeletons are a useful image descriptor.
As explained in the introduction of this chapter, the initial driver of

proposing a novel image segmentation method was to obtain an automatic
method that would segment grayscale images captured from a video cam-
era of an automatic milking device (AMD) so we can use the resulting
segments to facilitate cow udder tracking. Due to limited time, we have
not been able to validate this claim. Specifically, our dense-skeleton-based
method has proven effective in delivering plausible segmentation of a vari-
ety of 2D grayscale and color images, as illustrated in this chapter. However,
the method’s parameters, i.e. the number of selected threshold sets and the
degree of simplification of the computed skeletons, influence the resulting
segments in subtle ways which do not, yet, allow us to claim that such
segmentations are suitable for delivering us a separation of cow udders
from the surrounding scene in a fully automatic manner. As such, while
we maintain our claims that dense skeletons are a novel and interesting ad-
dition to the segmentation arena, more research is needed to fine-tune this
method to make it fully suitable to the context of AMD tracking. Hence, in
the next chapter, we will explore different methods that support our AMD
tracking goal.
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5TRACK ING COW TEATS

As outlined in Chapter 1, one of our two main research questions is how
can visual analytics help understanding and improving the operation of au-
tomated, low-cost, computer vision tracking algorithms for 3D shapes from
low-quality video data (RQ1). To answer this question, we need first and
foremost a use case. This chapter provides such a use case in the form of
designing a tracker to pilot a robot for the automatic milking of cows, in
support of the dairy industry. We cover this goal by first presenting the con-
text of our endeavor and its specific tracking constraints and requirements
(Sec. 5.1). Next, we overview existing solutions, with a focus on methods
that fit our use case’s context (Sec. 5.2). Section 5.4 describes our tracker so-
lution. Section 5.5 presents the obtained tracking results. Finally, Section 5.6
concludes the chapter1.
The visual-analytics-based evaluation of the tracking results obtained

with the method presented in this chapter, as well as how such analytics
methods can be used to get insight and improve the tracker, forms the sep-
arate scope of Chapter 6.

5.1 use case and its context

Scale economies in the dairy industry increasingly shift manual labor to
robots. One such development is the advent of automatic milking devices
(AMDs): Given a stable populated with cows, AMDs use vision devices to
locate cows in the stable, reach under the cow e.g. with a mechanical arm,
locate the udder and teats, and finally track the teats in order to couple a
suction device to each teat to collect milk [111, 159, 178, 229, 290].
Vision devices used in AMDsmust be small, shock-resistant, able to work

in the dim lighting of a stable, and relatively cheap [290]. This already pre-
cludes the use of solutions such as stereo vision, which rely on delicately
mechanically calibrated video cameras [111]. Separately, AMD vision de-
vices have to operate in near-real-time to cope with the cow’s motion, han-
dle occlusions, locate features of interest with sub-centimeter precision, op-
erate within a wide range of lighting conditions (including hazy images
created by dust in the air), and work fully automatically.
In recent years, time-of-flight (ToF) range cameras have become increas-

ingly popular as the core building-block of such AMD systems [178, 229].

1 The material in this chapter is based on the following publication: M. van der Zwan and
A. Telea. Robust and fast teat detection and tracking in low-resolution videos for automatic
milking devices. In J. Braz, S. Battiato, and F. Imai, editors, Proceedings of the 10th IEEE
International Conference on Computer Vision Theory and Applications (VISAPP), volume 3,
pages 654–667, 2015.

65



521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan
Processed on: 10-8-2018Processed on: 10-8-2018Processed on: 10-8-2018Processed on: 10-8-2018 PDF page: 78PDF page: 78PDF page: 78PDF page: 78

tracking cow teats

Given a 3D scene, a ToF camera produces a per-pixel depth map of the
occluding surfaces found in front of the camera, with a relatively high
frame-rate (24 frames per second (fps)). Compared to traditional stereo vi-
sion [111] or laser-scanning [110] devices, ToF cameras are less sensitive to
lighting conditions and dust specks, generate a full depth-map with depth
data at each pixel, are highly shock-resistant, come in compact form-factors,
need no delicate calibration, and provide many 3D vision functions in em-
bedded software [63, 64]. Hence, high hopes are placed on using ToF cam-
eras in industrial AMD applications. However, their quite low spatial reso-
lution (as compared, among others, to traditional stereo vision) creates new
challenges that are not handled by mainstream computer vision algorithms.
In the following, we present a vision-based solution for AMD robots built

using ToF cameras. We focus on the robust, accurate, automatic, and fast
detection and tracking of cow teats, i.e., the last step of the milking process.
We present the entire pipeline from depth image acquisition, feature ex-
traction and filtering, and udder tracking, and detail a simple and efficient
implementation. We show both qualitative and quantitative validation of
our system in an industrial context.

5.2 related work

We next overview classes of computer vision methods for feature detection
and tracking for natural deformable moving objects, such as cow teats.
Given our application context, we focus only on methods which at least
have some chance to comply with all our requirements: (1) automation, (2)
low-cost, (3) robustness, (4) low computational complexity, and (5) imple-
mentation simplicity. Computer vision methods that obviously do not fit
at least one of these requirements are excluded from the evaluation since
they are not interesting in our context described in Sec. 5.1.

Marker-based tracking: A standard solution to 3D shape tracking is to
mark salient keypoints thereof by textures which can be easily detected in a
2D image. If correspondences can be robustly found between stereo image
pairs, stereo vision solutions can then be used to compute 3D positions of
such fiducial marker-pairs by triangulation [145]. Marker-based solutions
are fast, simple to implement, and quite robust, but not applicable to our
context, as the dairy industry guidelines discourage the placement of mark-
ers on cow teats. Monocular marker-based tracking solutions also exist,
but they are considerably more complex and computationally expensive
for non-rigid, complicated, shapes [2, 248].

Image-based methods: Image-based solutions use the various 2D images
delivered by a camera, e.g. luminance and depth, to detect salient image
features that correspond to parts of the shapes to track. Such features can
be, for example, corners, edges, local signal maxima, and edge crossings.
These can be detected e.g. using SIFT [160] and SURF [19] descriptors.
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However, very low-resolution texture-less images, like our cow udders, the
robustness of SIFT and SURF approaches is very low. In the same class
of image-based methods, template-based methods try to find pre-defined
templates (small predefined patterns) in the image, using statistical ap-
proaches such as correlation [258]. Deformable dynamic templates (DDTs)
can search for more complex configurations, by adapting a deformable
template model to fit image silhouettes [307]. However, DDTs require well-
chosen energy functions, initialization points, and high-resolution images,
and are too computationally expensive for our real-time context.

3D reconstruction: Having a ToF camera, one can reconstruct the 3D
visible-object surface from the depth field delivered by the ToF camera as a
3D point cloud. From this surface, teat tips could be, in principle, found at
maxima of mean or Gaussian curvature, akin to polyp detection methods
used in medical science, e.g. [42]. Yet, reconstructing clean, differentiable,
3D surfaces from point clouds given by ToF cameras is challenging. Most
existing surface reconstruction methods have constraints on the sampling
density, complexity, connectivity, and water-tightness of the sampled sur-
face, and are also quite slow [57, 58, 109, 135, 141]. Also, such methods
cannot find features (like our cow teats) which are occluded in the input
image.

Specialized solutions: Many techniques have been proposed and fine-
tuned to find and track features in moving natural shapes such as humans
or parts thereof, e.g. faces or hands. However, such techniques are not di-
rectly usable for cow udder morphologies, as they have other shape priors.
In the milk industry, very few solutions exist and have been implemented
into AMD robots [111, 159, 178, 229, 290]. All these solutions assume a fully
unoccluded and zoomed-in bottom or side view of the udder, given by a
fixed robot arm that places the camera close to the udder, and given a cow
constrained in a small space, to limit motion. In contrast, we do not assume
that our robot is initially correctly placed close to the cow udder, nor do
we assume that the cow cannot move vs the robot.

Given the above analysis, we exclude marker-based tracking and specific
solutions from our range of interest, but keep 2D image-based tracking and
3D reconstruction as potentially viable solutions. In the next two sections,
we describe how we explore the ‘tracker design space’ based on these two
solution classes.

5.3 technical setup

We first describe the technical setup used for data acquisition. As input
device, we use a SwissRanger SR4000 ToF camera [177], which has one of
the best quality-price ratios to the starting date (2010) of our research [63,
64]. The camera gives a 24-fps stream {Ii }. Each frame Ii has two 176 × 144
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pixel images (Ai ,Di ). Ai is a standard amplitude (luminance) image. Di

is a depth map, where each pixel stores the distance, in millimeters, to the
closest occluding object, with an accuracy of a fewmillimeters for distances
up to roughly 1 meter. Per frame, the camera also delivers a point-cloud
Pi = {pj } with the world-space locations of all visible-surface points in
frame i .
The camera is rigidlymounted on a robot which can reach the zone under

the cow to be milked. As outlined in Sec. 5.1, we focus on the milking stage,
where the camera is already under the cow, roughly between the legs and
looking towards the tail. The cow stands upright, so its legs and teats appear
as vertically-oriented shapes in the image (see, for instance, Fig. 5.8a).

5.4 tracker design

As already detailed in Chapter 2, a typical shape-from-image tracker con-
sists of a combination of a detector that finds relevant features (e.g., shape
parts) in the input image(s), and a tracker proper, that extracts the high-level
evolution over time of the shape of interest by using the evolution over time
of detected features. In our teat tracker design, we follow the same principle.
Our solution has two parts: A detection step finds teats from the image-and-
point-cloud {Ii , Pi } of the current frame i . Next, a tracking step integrates
this data over time, handling occlusion and other model priors. The inter-
action of these two components is depicted in Fig. 5.1, and detailed further
in Sec. 5.4.1.3.
As already outlined in Chapter 2 and Sec. 5.2, many methods exist for

both the detection and the tracking step outlined above. Examining all pos-
sible combinations is, we argue, a too large search space. As such, we pro-
pose to proceed in the tracker design by (a) examining a subset of methods
which (at least) have chances to comply with the constraints of our appli-
cation (type of shape to be tracked, noise level, and characteristics of the
sensor device we use); and (b) excluding, in an early phase, methods which
fail to deliver the required detection and/or tracking information. This anal-
ysis of the search space of possible methods is outlined next.

5.4.1 Detection

To find teats in the a frame Ii , we can use one or several of the fields Ai ,
Di , and Pi given by the camera. After extensive studies, we found that our
imagesAi are very low-contrast and noisy, due to poor lighting in the stable.
Hence, we use only the depth imageDi and point cloud Pi for teat detection.
As Di still contain a small noise amount, caused by dust specks floating in
the stable, we first apply a median filter to them. The filtered images D̃i are
almost noise-free and show little blurring (Fig. 5.8 b).
We next investigate four separate approaches to finding cow teats from

3D reconstructions of the point cloud (Sec. 5.4.1.1), segmented depth im-
ages (Sec. 5.4.1.2), template-based approaches (Sec. 5.4.1.3), and direct point-
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cloud analysis (Sec. 5.4.1.4) respectively. The level of investigation of these
approaches differs – some of the approaches are studied in depth, whereas
others are discarded at an earlier stage. This is in line with the earlier-
mentioned philosophy of giving a fair chance to existing method classes
in the planned design, but excluding them from further study once the per-
ceived ratio of cost (or complexity) vs benefits, exceeds what we deem fea-
sible within the time constraints of our research.

5.4.1.1 Detection: 3D shape reconstruction

Our first detection approach, 3D shape reconstruction, takes the unstruc-
tured point set, or point cloud Pi , from the 3D ToF camera and tries to
construct a surface S ⊂ R3 that best approximates the points. The key idea
here is that, once such a surface is available, one can use existing 3D shape
analysis methods to locate protuberances such as teats, in a more effective
way than when using the unstructured point cloud Pi alone.
Different methods are available in this area. For a survey of the literature,

we refer to the very recent survey of Berger et al. [21]. The main idea of all
these methods is to define an implicit or explicit surface S with constraints,
and then compute the best fit between the surface and the point cloud Pi .
Typical constraints include

• The local smoothness of the surface; Typically, locally smooth sur-
faces are preferred, which eliminates high-resolution, low-spatial-
scale acquisition noise, and also enables the robust computation of
subsequent differential metrics on the surface, such as e.g. curva-
ture [43];

• The global topology of the surface. Depending on the method, simply
connected, or multiply connected surfaces can be extracted. Other
constraints include the water-tightness of the surface and its genus;

• The precision of the fit between S and Pi . At one extreme, we have
interpolating surfaces which pass through the points, i.e., pj ∈ S :
∀pj ∈ Pi . At the other extreme, we have approximating surfaces
which aim to minimize their closeness to Pi , typically described by
means of a Hausdorff metric between S and Pi . Interpolating sur-
faces are preferred, but they can be very sensitive to outlier noise
in Pi . Approximating surfaces deliver better smoothness and robust-
ness to point-cloud noise, but they may have difficulties in capturing
small-scale, but important, details in Pi .

We have tested five different well-known, state-of-the-art, methods for
surface reconstruction from 3D point clouds on the point-cloud datasets
delivered by the ToF camera. In all cases, we used the implementation pro-
vided by the authors. These methods are as follows:

• PR: Poisson-based surface reconstruction [135] as implemented in
CGAL [38];
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• FFTPR: Accelerated Poisson-based surface reconstruction using the
Fast Fourier Transform [134];

• PC: the Power Crust method [5];

• COC: the Cocone method [56];

• HPR: hierarchical Poisson reconstruction (a fast and more robust ex-
tension of [135]).

For testing these methods, we proceeded conservatively in a two-step
process, as follows.

Figure 5.2: Surface reconstruction from clean and noisy point clouds using five
state-of-the-art reconstruction methods (Sec. 5.4.1.1).

First, we considered a number of relatively simple point clouds, obtained
by retaining only the vertices of a set of closed, noise-free, compact, single-
component, genus 0, and uniformly-sampled 3D mesh models. Such point
clouds are arguably very simple – so, if a reconstruction method has issues
here, it will be clearly unsuitable for our ToF point clouds which are noisy,
contain multiple (usually non-watertight) objects, and have a variable sam-
ple density. This test servers thus as an ‘early culling’ of unsuitable meth-
ods.
Figure 5.2 shows the results of surface reconstruction on a simple 3D

model processed by the five above-mentioned methods. The upper row
shows the results obtained from the clean point cloud. The bottom row
shows the results obtained from the point cloud to which we added ran-
dom displacement noise to all points pj of amplitude equal to 15% of the
cloud diameter. As visible in the top rows, different reconstruction meth-
ods produce meshes of highly different resolutions – all being, however, of
quite good quality. When noise is however added to the point cloud, the re-
sults are much more different – see bottom row. The COC and PC methods
are quite sensitive to this noise, as they try to interpolate the point cloud.

71



521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan
Processed on: 10-8-2018Processed on: 10-8-2018Processed on: 10-8-2018Processed on: 10-8-2018 PDF page: 84PDF page: 84PDF page: 84PDF page: 84

tracking cow teats

Figure 5.3: Surface reconstruction from non-watertight point clouds using the
same methods listed for Fig. 5.2 (Sec. 5.4.1.1).

The other methods (PR, HPR, and COC), which are based on approximation
techniques, have a far less pronounced sensitivity to outlier noise.
We next refine the analysis by considering a more complex point cloud

(Fig. 5.3, top row). While still coming from the vertices of a 3D polygonal
mesh, this point cloud does not sample a watertight surface – the hand
model has a large opening at the wrist and a smaller one between the index
and the thumb.More importantly, themodel has a number of protuberances
which are both elongated and close to each other – similar to the teats of
a cow udder. As shown by Fig. 5.3 (top row), the five considered method
perform far worse than for the model in Fig. 5.2: All methods ‘join’ close
fingers with spurious polygons, and the HPR and FFTPRmethods also show
a quite poor approximation (the reconstructed surface is inflated visibly
beyond the point cloud around the wrist area). Another issue is that some
of the considered methods create quite large meshes (tens of thousands
of vertices and triangles). This is prone to cause performance issues for
our subsequent shape-analysis operations, which, as mentioned in Sec. 5.1,
should work in real time and with limited computational resources. To help
this, such models can be decimated, using e.g. the method in [227], which is
readily available in the well-known VTK toolkit implementation [228]. The
bottom row of Fig. 5.3 shows two such decimations for the COC and PC
reconstructions. While the mesh size is considerably reduced, the merging
artifacts are still present. Such artifacts will immediately complicate most
types of surface analysis for detecting protuberances.
From this analysis, which we have also performed on other point clouds

(not shown here for the sake of brevity), we concluded that the only poten-
tially useful method in this context is the hierarchical Poisson reconstruc-
tion (HPR) method. The HPR method is also interesting for our context as
it does not require user input or scene-specific parameter settings. As such,
we next test this method on real point clouds acquired with our ToF camera
from cow udders. Figure 5.4 shows two such point clouds and the obtained
reconstructions. The first point cloud (Fig. 5.4a) has been captured when
the ToF camera was relatively close to the udder (about 50 centimeters),
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Figure 5.4: Surface reconstruction from actual cow-udder point clouds acquired
with a ToF camera (Sec. 5.4.1.1).

pointing to the direction indicated by the red arrow in the figure. While the
reconstruction (Fig. 5.4b) shows a relatively smooth and noise-free surface,
it also has several drawbacks. First and foremost, we see that the recon-
struction of the teat parts which are invisible from the camera’s viewpoint
(along the green lines emerging from the teat tips, indicated by red circles)
is incorrect: Since there is no 3D point cloud information here, the only
constraint the HPR method can use is that of surface smoothness. This cre-
ates artificially shallow slopes, or, in other words, teat shapes which are
far wider than the typical rounded cylinders they should be. This can be a
serious problem for further teat-tip detection methods that use the recon-
structed surfaces, as such methods would typically assess the local curva-
ture of the surface to detect strongly convex and small-scale shapes. If the
reconstructed surface is smoother out by the HPR method due to unavail-
able 3D information, locating such tips can be unreliable. A second problem
is that theHPRmethod computes, by construction, a closed (watertight) sur-
face. This generates spurious protuberances, such as the two indicated in
Fig. 5.4 by clue circles. These appear due to the limited aperture of the ToF
camera, when the camera is close to the udder. Clearly, the geometry char-
acteristics of these protuberances is very similar to that of the true teats
(red circles), which makes their elimination challenging.
A second reconstruction test is shown in Fig. 5.4(c,d). Here, the camera is

further from the udder (about 1 meter). The acquired point cloud is far more
complex (and more non-uniformly sampled), as shown in Fig. 5.4c. Hence,
more elements fall within the camera’s frustum, such as parts of the ani-
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mal’s legs and belly. Reconstructing a single watertight surface from this
point cloud delivers very large approximation errors. To further test recon-
struction, we manually clipped the udder region from the 3D reconstructed
mesh. The resulting shape (Fig. 5.4d is, again, relatively smooth (except, of
course, along the clipping borders). However, due to the larger distance be-
tween the camera and the udder, distance-measurement errors occur, which
result in teats which look relatively flat. More precisely, the clipped recon-
struction shows only three teats (red circles in Fig. 5.4, of which the top-
right one is very shallow). We conclude that the HPR method has serious
challenges to handle our configuration.

Figure 5.5: From left to right: Input point cloud, 3D reconstruction using the PR
method [135], and reconstruction using the RIMLS method [192].

A third reconstruction test is shown in Fig. 5.5. Here, we select a point
cloud which shows both the udder and the four suction cups of the AMD
(Fig. 5.5, left). This cloud simulates a realistic scenario where the AMD
would be very close to the udder and in the process of coupling the suc-
tion cups. This is a more complex geometry, as the point cloud contains
several separated components. The PR method produces a relatively good
result (Fig. 5.5, middle). However, to obtain this result, we needed, again,
to manually clip the region of interest (udder and suction cups) from the
total reconstructed mesh, to eliminate spurious parts. As a final test, we ap-
ply the RIMLS method [192] on the entire point cloud. The result, shown in
Fig. 5.5 (right), has a clearly very poor quality.
Based on the insights obtained from the above experiments, we conclude

that automatically reconstructing a clean udder surface, which captures
well the geometry of the teats, is extremely challenging in general, even
when using state-of-the-art methods. This is due to a combination of fac-
tors – high variability of the camera position vs the input geometry; com-
plex nature of the input geometry, having several disconnected parts and
significant occlusions; and limited resolution and accuracy of the ToF de-
vice. Given the above, we deem the path of detecting teats via 3D surface
reconstruction to have a very low feasibility within our application context.
For completeness, let us mention that other methods have recently entered
the competition of 3D shape reconstruction from single luminance or depth
images. Most notably, Jackson et al. have shown that it is possible to recon-
struct quite accurate 3D models of human faces from single luminance or
HSV images thereof [127]. In a different field, Bronstein et al. have shown
that it is possible to reconstruct 3D watertight mesh models from highly in-

74



521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan
Processed on: 10-8-2018Processed on: 10-8-2018Processed on: 10-8-2018Processed on: 10-8-2018 PDF page: 87PDF page: 87PDF page: 87PDF page: 87

5.4 tracker design

complete single views of such shapes, taken with typical ToF devices [158].
While such methods work nearly fully automatically, and are quite fast (un-
der one second on amodern computer), they require the training of complex
deep neural networks, which in turn requires tens of thousands of ground-
truth data samples. As we do not have such a number of labeled samples in
our AMD context, we rule out this class of methods as well.

5.4.1.2 Detection: 2D depth-image segmentation

Our second approach uses the median-filtered depth images D̃i . As outlined
at the beginning of Sec. 5.4.1, these images are almost free of noise and have
little blurring.

Figure 5.6: Depth image based detection of teats. Depth image (a) and its edges (b).
See Sec. 5.4.1.2.

The key idea in the detection approach considered here is to apply im-
age segmentation techniques to separate the udder from the surrounding
objects. If this is reliably possible, then we can treat the segmented image
part (udder) as a 2D shape and analyze it to find protuberances (teats). The
idea is roughly similar to the approach proposed in Sec. 5.4.1.1, with the dif-
ference that we now work in 2D rather than in 3D. The added-value of the
depth-map segmentation is that, if successful, this approach would have to
process a 2D dense pixel image rather than a 3D sparse point cloud, which
is arguably easier and computationally faster.
Figure 5.6a shows a typical depthmap acquired with our ToF camera. Dis-

tance to camera is mapped to grayscale (close=darker, far=brighter); black
is reserved to map pixels where depth estimation cannot be reliably done –
typically because the first 3D shapes encountered along rays for these pix-
els are too far away for the ToF camera tomeasure a good signal. Figure 5.6b
shows the results of an edge detector applied on the depth map, with edge
strengthmapped to grayscale (darker=stronger).We see that depth disconti-
nuities separating teats and/or the udder from surrounding shapes are quite
well detected, and the image does not show a large amount of edge noise.
We next test our proposal by applying several image segmentation meth-

ods known in the literature on the depth image. To this end, we have
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tried several classical image segmentation methods, such as normalized
cuts [236], histogram thresholding [191, 277], active contours [133] using
gradient vector flow [302], and mean shift [46]. Overall, none of the above
methods has delivered good results in terms of accurate separation of the
udder from its surroundings. Encountered issues range from oversegmen-
tation, sensitivity to parameter setting, and undersegmentation in areas
where the udder is close to other scene parts along the depth axis. Present-
ing the entire spectrum of found limitations is, in our view, not insightful
or helpful towards our final goal. As such, we illustrate the typical en-
countered problems for a single method (mean shift) in Fig. 5.7. The figure
shows three different depth images (A, B, C), segmented for two parameter
configurations (top row vs bottom row). Segment borders are indicated in
green. As visible, the results can be influenced quite heavily, in the sense of
oversegmentation, by the parameter choices. Moreover, it is not easy to find
a parameter configuration in which all teats are segmented. For instance,
for frame A, the top-row shows quite limited oversegmentation (which is
good), but only two teats are identified as segment borders (which is bad).
Using other parameter settings, we can detect for frame A all four teats
(see bottom row), but this creates considerable oversegmentation across
the entire image (which is bad).
In this context, we have also tested our segmentation method based on

dense skeletons whichwe have proposed in Chapter 4.While this method is
able to produce overall plausible segmentations of quite complex natural im-
ages (see e.g. Figures 4.4 and 4.4.2), which compete successfully with mean
shift, it has the same problems outlined above for segmenting depth maps
acquired with our ToF camera as the other tested methods. In particular,
oversegmentation is an issue; we have extensively explored the parameter
space of the method (skeleton simplification, layer selection) but have not
found configurations where the udder is reliably separated as a whole com-
ponent from its surroundings. As such, while the dense skeletons method
proved to be a good instrument for other types of segmentation problems,
and also for other applications (e.g. image compression and simplification,
see examples in Chapter 4), this method does not currently constitute a
solution for our teat tracking problem.
Overall, the performed experiments indicate that depth-image segmen-

tation is very hard to do automatically, at the right level of detail (thus,
avoiding over- and undersegmentation), and in a way that guarantees that
all teats are captured as segment border. Moreover, even if this were pos-
sible, what we actually would need for our application, is to segment the
entire udder from its surroundings as a single, or at worst a very few, compo-
nent(s). Indeed, if this is not possible, thenwe do not see howwe can further
reliably detect the teats. Consider, for instance, the images in Fig. 5.7: For
the oversegmented ones, it is hardly possible to tell which if the resulting
segments corresponds to a teat and which not. Given the above difficulties,
we conclude that 2D depth-image segmentation, while a very attractive op-
tion from a complexity and computational efficiency perspective, is not the
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Frame A Frame B Frame C

Figure 5.7: Applying mean shift segmentation to three different depth frames from
a given video sequence. The top and bottom rows show results for two
different parameter configurations.

best way to proceed. As such, we investigate next different solutions to this
problem.

5.4.1.3 Detection: 2D template-based solution

Our first teat-detection method treats D̃i as regular grayscale images. To
find teats, we use a template-matching technique consisting of four steps:

a. Edge detection: First, we find edges in the depth image D̃i , using a
gradient-magnitude filter ‖∇D̃i ‖. The result Ei of this filter highights val-
ues where D̃i has strong jumps, which are the silhouettes of shapes in our
depth image. Figure 5.8c shows a typical edge-image Ei . Silhouettes of the
cow teats and limbs are clearly visible in this image.

b. Template matching: To find teats, we use a template-matching ap-
proach. For this, we first compute the silhouette (edge-image) of a typical
U-shape of a teat. We call this image a templateT (Fig. 5.8d). Next, we use a
normalized correlation coefficient (NCC) approach [258] to find instances
of T in the edge-image Ei , by convolving Ei with T using the Fast Fourier
Transform provided byOpenCV [190]. Besides speed, the advantage of NCC
becomes apparent if we notice that a teat could be close by in front of a leg,
or far away from the background (stable wall), resulting in edges of highly
different intensities. NCC efficiently corrects for edge-intensity differences
in both Ei and T , which matches our goal to capture the shape of objects
described by the edges, rather than objects’ relative positions with respect
to the background.
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a b c

fd e

Figure 5.8: A frame from a typical video sequence. (a) Amplitude image A, with
visible udder and four teats. (b) Filtered depth image D̃. (c) Edges E in
depth image. (d) Canonical template image T . (e) Correlation image Ci .
(f) Matches found (Sec. 5.4.1.3).

a b c d

FP

FP
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FP FP FP

Figure 5.9: Single-scale (a) vs multiscale matching without time filtering (b). Mul-
tiscale matching with time filtering for two consecutive frames (c,d).
Matches are indicated by rectangles, with ‘FP’ showing false-positives.
Red-marked FP’s are removed by time filtering.

The NCC computation yields a correlation image Ci where each pixel
Ci (x ,y) ∈ [0, 1] tells how well T matches the edge-image Ei at (x ,y), with
higher values encoding better matches (Fig. 5.8e). Maxima ofCi are regions
whereT matches best. Thus, we can find potential teat locations, ormatches
ti , by finding the N largest local maxima of Ci . For all our tests, we fixed
N = 6. We also tried the option of upper-thresholdingCi with a fixed value.
However, this yielded between none and tens of matches per image Ci , so
we prefer the first approach (N -best selection). For eachmatch ti = (x ,y, z)i ,
we store its 2D position (xi ,yi ) in image-space, and also its depth from
camera zi .
The above template matching method is not scale-invariant – it only

finds areas in Ci which match the template T at T ’s own scale. Figure 5.9a
shows this: Here, we miss the front-right teat, which is about twice larger
than the template. Still, the range of teat sizes (in image-space) is bounded
by the fixed size of the cow and the positioning of the robot which is never
more than 1.5 meters away from the udder. Analyzing several production
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videos, we determined that teats range between 1/30 and 1/6 of the image-
width, i.e. between Tmin = 10 and Tmax = 30 pixels. To find teats in this
scale-range, we use the NCC method described above with six template
sizes Ti , 1 ≤ i ≤ 6, uniformly distributed between Tmin and Tmax . This
enables us to find small and large teats (Fig. 5.9b).

c. Match selection:We next collect all matches ti from all different scales
Tj , after which we apply the N -best selection procedure outlined above
for the single-scale case. When using multiple scales, we can find two
(or more) matches ti and tj , for two scales Ta and Tb , whose 2D positions
(xi ,yi ) and (x j ,yj ) are close enough to represent the same teat. We consider
such matches to be duplicates when the center of the inscribed circle in Ti
falls in the inscribed circle of Tj or vice versa (Fig. 5.10). From any set of
duplicates, we only keep a single match for further processing.

(a) (b) (c)

Figure 5.10: Template overlap. (a) Canonical template, with its inscribed circle and
circle-center. (b) Two overlapping templates. (c) Two non-overlapping
templates (see Sec. 5.4.1.3).

d. Match time filtering: Our teat-detection can find a teat where none
actually exists. These are areas where the edge-structure in Ei has U-shapes
similar to our templates, e.g. around the cow’s tail-tip, or around some leg
muscle structures. We call these false positives (FPs). Many such FPs appear
only for a very few consecutive frames. In contrast, true positives (TPs) are
visible for longer periods, until they get occluded or drift out of the camera
view. We remove FPs by time filtering, as follows. Let Mi = {tj } be the
set of matches found in frame i of our input stream. Given the sequence
{Mk }i−K<k<i of matches found in the previous K frames, we remove from
Mi those matches which are not visible in at least τ of the last K frames.
This means that we have a delay (of K frames) in detecting teats. Choosing
a low value for K keeps this delay small, as our camera operates at 24 fps.
Fixing K = 5 and τ = 2 frames effectively removed most FPs while keeping
most TPs. Figure 5.9 shows this. The three FPmatchesmarked red in images
(a,b) are removed in image (c) by time filtering. The remaining FP, marked
green, which corresponds to the cow tail, is however not removed, as this
structure persists in several frames. We show next in Sec. 5.4.2 how such
remaining FPs are removed by using tracking.
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5.4.1.4 Detection: PCA Based Detection

The template-based method described above works well when teats are
roughly vertical and parallel to the camera plane, i.e., when the angle α be-
tween a teat’s symmetry-axis and the camera plane is below roughly 10 ◦.
For such angles, the difference between the edge profiles of the vertically-
aligned U structures in our templates Ti and those of actual teats in Ei is
small enough to yield strong matches.

a b c ed f

A

e2

e1

Figure 5.11: PCA-based detection. (a) Amplitude image. (b) Major eigenvector di-
rection. (c) Elongation values. (d) 2D projected neighborhood of point
‘A’ in the first image. (e) Template used for matching. (f) Correlation
image (Sec. 5.4.1.4).

For larger angles α , template matching has difficulties. In such cases, the
teats’ silhouettes in Ei differ too much from the ones in our templates. We
find two sub-cases here. First, a teat could be rotated into the camera-plane.
To address this, we could use a solution akin to the one dealing with scale-
variance (Sec. 5.4.1.3), i.e., create a family of templates T rot

i rotated in the
camera plane. The second case occurs when teats are rotated out of the
camera plane (see e.g. the two front teats in Fig. 5.11a). In such cases, the
teat silhouette changes from a U-shape to an ellipse or parabola sector. We
verified that rotation invariance cannot be dealt with in this case by using
additional templates, as such shapes have too high an edge variability in
the depth image.
We propose next a method to handle both rotation variance cases. Teats

have a roughly cylindrical shape, whichmeans that locally there is a clearly-
oriented structure in the depth-image data. This structure can be lost in the
projected edge image. To find such structures, consider a ball B of fixed ra-
dius, roughly 4 cm in world space, corresponding to the average half-length
of a cow teat. We next center B consecutively at all locations pi of the point
cloud Pi delivered by the ToF camera, and compute the eigenvectors e

j
i ,

1 ≤ j ≤ 3, and corresponding eigenvalues λ1i ≥ λ2i ≥ λ3i of the covariance
matrix of all points in Pi ∩ B. Figure 5.11b illustrates this, by showing the
direction of the major eigenvector e1i by color coding – red, green, and blue
show eigenvectors e1i alignedwith the x ,y, and z axes respectively. Next, we
find tube-shaped regions Pi∩B by computing the so-called linear anisotropy
or elongation c = λ1i /λ

2
i [291], and selecting only regions for which c > 1.5.

These are potential teat locations. Figure 5.11c shows the elongation c with
a rainbow colormap (blue=low, green=medium, red=high values). As visi-
ble, areas around teats are green, as they have a quite high elongation. Fi-
nally, we project such regions onto the plane defined by (e1i , e

2
i ). If a teat

exists around pi , e
1
i should match its symmetry axis (given the teat’s cylin-
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Figure 5.12: Pipeline of the 3-D template matching method, input moves from left
to right (Sec. 5.4.1.5).

drical shape), so the resulting 2D projection should show a vertical teat
shape, like the ones in our templates. This corrects for the rotational vari-
ance. Additionally, we scale the 2D projection by the value of λ1i divided
by the height of the template T , which takes care of the scale variance. As
such, we can now directly use our single-scale template matching to find
rotationally-invariant teat matches in the projected images.
Given camera resolution limitations, the 2D projections of cloud points

Pi ∩B can yield very sparse point sets. To match these with a teat shape, we
need a compact image. To create this, we render a quad mesh with points
Pi ∩B as vertices and connectivity given by the raster structure of Ii . Mesh
vertices are colored by their depth to the projection plane. Figure 5.11d
shows such a 2D projection for the neighborhood Pi ∩ A around point A
in Fig. 5.11a. Such images typically have jagged edges, given (again) the
low resolution of our cloud Pi clipped by the ball B. Computing edges on
such images yields a high amount of noise, which makes our edge-template
matching not robust. We solve this by a template matching using the full
image of a teat, where pixel grayscale values indicate depth (Fig. 5.11e). The
correlation result (Fig. 5.11f) emphasizes elongated regions whose maxima
correctly capture positions of rotated teats.
Matches found by PCA detection are merged with the ones given by the

template-based detection (Sec. 5.4.1.3) to yield the final match-setMi . This
way, we increase the chances of capturing all matches in a single image. We
next use this joint match-setMi to robustly detect and track all four teats.

5.4.1.5 Detection: 3D template based solution

In the previous sectionwe have seen that the point cloud Pi produced by the
time-of-flight camera can be used as an alternative to the depth image Di

as source of input when detecting teats. However, the used process is quite
involved and the projection step requires a significant amount of computa-
tions and, therefor, time. In this section we present a different approach to
the detection of teats in the point cloud Pi produced by a time-of-flight cam-
era. This approach is based on a simple 3-dimensional template matching
approach which despite its simplicity proves very efficient for this purpose.
The 3-D template matching method consists of a number of steps which

are similar to those used by the 2-D template method. Figure 5.12 shows
the pipeline of going from the point cloud Pi to the (filtered) set of matched
teatsMi , comparing this to the 2-D template detection part of Figure 5.1 we
mostly see a difference in the type of data, stemming from a difference in
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Figure 5.13: The moving parts of the 3D template detector, from left to right: The
image window overlaid on the amplitude image, a schematic of the 3D
template showing the inner and outer template, and a side view of the
3D template with important measures (Sec. 5.4.1.5).

input data. In the remainder of this section, we will provide details for each
step.

point classification The first step of our 3-D teat detectionmethod
is to mark all points in the point cloud as being part of a teat or not. In order
to be able to go through the point cloud and look at the neighborhood of
a point, we need some sort of connectivity information. While the time-of-
flight camera we used does not produce a connected point cloud, we can
use the fact the point cloud Pi is constructed from the images Ii , as we did
in subsubsection 5.4.1.4. Using the connectivity and overall structure of the
pixels in Ii we have a structured way of going through the corresponding
points in Pi and determining their neighbors.
In Figure 5.13 we see a typical template T and its dimensions as used by

our detection method. As can be seen in this figure, the templateT consists
of an inner template Ti and an outer template To . In general, we choose
To such that is a uniformly scaled up version of Ti , aligning the top parts
of both templates. An alternative shape we have also experimented with is
that of a cylinder, using similar ratios between the inner and outer template
as we did for the box shaped template.
Using the structure of image Ii wemove the templateT through the point

cloud Pi such that the point to considerp is in the center ofTi .We then count
the number of points inside both templates To and Ti , excluding points in-
sideTi from the count forTo . By selecting an inner template size that corre-
sponds to the size of an average teat, we can expect a high number of points
inside the inner template when the template is centered on a point that is
part of a teat while the number of points outside should be relatively low.
On the other hand, when we compute Ni and No for a point that is part of
the leg, we will again find a high Ni , but also a high (or at least higher) No ,
because there will also be part of the leg inside the outer template.
Considering the above, we can use the ratio between Ni and No to de-

termine if the considered point p is part of a teat. Therefore, we define the

82



521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan
Processed on: 10-8-2018Processed on: 10-8-2018Processed on: 10-8-2018Processed on: 10-8-2018 PDF page: 95PDF page: 95PDF page: 95PDF page: 95

5.4 tracker design

function θ (p) = Ni

No
as this ratio between point counts. Theoretically, this

ratio could become infinite when No is zero. However, because the teats
are close to other parts of the udder (or to each other) this hardly occurs
in practice. At the same time, when we find a significant amount of points
inside the inner template and none inside the outer template, we have the
cleanest match for a teats that is possible. Therefore, we set θ (p) = Ni when
No is zero making sure we never get a division by zero and still get a useful
value for θ .
As stated above, we want there to be a significant number of points in-

side the inner template in order to consider the point p part of a teat. Our
experiments have shown that a good minimum for Ni is 20 points, which
can still be achieved when the teat is at a large distance from the camera.
For the ratio between inner and outer points, we found that θ > 2 yields
good results.

match selection In contrast to the template matching method used
by our 2-D template detector, the 3-D template matching technique de-
scribed above produces a binary mask instead of a correlation map. In both
cases, however, we have multiple points (or pixels) belonging to the same
physical teat. We have therefore extended our 2-D template match merging
algorithm to work for our dual 3-D templates, as follows.
In order to determine if two points p,q, which are identified as belong-

ing to a teat, belong to the same teat, we look at the intersection of inner
templates centered on the points p and q. If Ti (p) and Ti (q) intersect, we
say the points p,q do belong to the same teat. Conversely, if the templates
Ti (p) and Ti (q) do not intersect, the points belong to different teats.

Applying the process described above to all points marked as possible
teats reduces the (regions of) marked points to a collection of teat positions
in 3D. The resulting set of teats is remarkably stable over time and is better
able to detect teats in situations which are challenging for the 2D template
detection method, such as teats that are close to legs (from the camera’s
point of view) or teats that are almost completely hidden behind another
teat.

noise filtering The 3D template detection method is, as described
above, quite capable at detecting teats in all kinds of configurations. How-
ever, not unlike the 2D template detectionmethod, it sometimes flags image
parts as being a teat while there are not. Keeping inmind that the next stage,
the tracking model, should be able to deal with such issues, we would still
like to reduce the number of such so-called false positives.
The most important cause of false positives we experienced during our

testing is caused, even after applying a noise reduction filter, by noisy in-
put points. Therefore, we added an extra step to our 3D template detection
method to reduce the occurrence of these noise-based false positives.
Observing the characteristics of the false positives based on noisy points,

we found that the point ratio θ for these points can be anywhere within the
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Figure 5.14: Example of using the 3-D template matching based technique for de-
tection teats. From left to right: Amplitude image showing the search
region around a point. Marked teats as found by the detector, all
colored pixels correspond to teats which were classifieds as part of
a teat. A point cloud showing the teats and matched 3-D templates
(Sec. 5.4.1.5).

range of θ for true positives. Therefore, it is not possible to reject a detected
teat based on the point ratio θ solely. On the other hand, the way the pixels
corresponding to the points inside the template are laid out in the image is
very different for false positives than for true positives. For a true positive,
the pixels create a small and dense clump, whereas the pixels corresponding
to a false positive occupy a bigger area and are spread in a more sparse way
over the image. Therefore, we can find the difference between false and true
positives by computing the sparsity of the set of pixels corresponding to the
points inside the template. If we find this value too low (too sparse pixels),
we reject the detected teat, or in other words we flag it as a false positive.
Due to the design of our detection and tracking pipeline, we can use the

3D template based detector instead of the 2D template based detector with
little effort. In subsection 6.2.2 we will compare the difference in detection
performance between the two detectors.

5.4.2 Tracking

Our teat detection technique (Sec. 5.4.1) successfully finds about 90% of the
visible teat tips in our typical videos. Yet, detection still suffers from two
main problems:

Occlusion: In frames where one or more teats are occluded from the cam-
era viewpoint (by cow limbs, other teats or robot parts), detection obviously
fails to find such teats. As our AMD robot needs to find all teats in each
frame to start the milking process, we must locate occluded teats too.

Robustness: Even for frames with no apparent teat occlusion, two addi-
tional teat detection problems exist. First, certain teat configurations are
not detectable, due to resolution limitations of the ToF camera. We call
these false negatives (FNs). Some FNs can be removed by relaxing the detec-
tion method’s parameters, to accept more image structures as teats. How-
ever, this makes detection sensitive to small-scale noise, which next creates
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matches at spurious image locations, i.e., yields unwanted false positives
(FPs).
To reduce the amount of FPs and FNs described above, we need to use ad-

ditional information not present in single video frames. For this, we choose
a model-based approach: We define a parameterized model that describes
the intrinsic variability (priors) of shape, size, orientation, and dynamics
(change in time) of the entire set of four teats that a typical cow has. At
frame i , this set of teats, called the tracked teat-set (TTS), is a quadrilat-
eral Mi = {pj ∈ R3}, 1 ≤ j ≤ 4, whose vertices pj are ordered counter-
clockwise with p0 being the near-left teat from the camera viewpoint. To
computeMi , we use a tracking procedure that fits the TTSMi−1 computed
from frame i − 1 to the match-set Mi detected in the current frame i , sub-
ject to our model’s geometric and dynamic constraints. Figure 5.15 shows
the TTS quad tracked in three frames in a video of several minutes. Our
tracking proposal is detailed next.

a b cframe 36 frame 191 frame 341

Figure 5.15: Three frames from a tracking sequence with matches shown as rect-
angles and TTS shown as a 3D quad (see Sec. 5.4.2).

5.4.2.1 Candidate matches

Key to tracking is finding how vertices of the TTS Mi−1 from the previ-
ous frame correspond to teat-matches inMi found in the current frame. To
find these correspondences, we first construct a collection S = {μ ji }j of all
candidate-match sets μ ji ⊂ Mi each having between one and four matches
as elements. We sort this sequence decreasingly on the number of elements
|μ ji | in each candidate-match set (CMS), and then try to construct a candi-

date TTSMj
i from each such μ ji , in increasing j order. This ordering models

our preference to fit our TTS to more, rather than to fewer, matches in the
current frame, so as to use most of the information present in that frame.
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5.4.2.2 Correspondence finding

Given a CMS μ ji , we find its point-to-point correspondence with the previ-

ous TTS Mi−1 as the set of point-pairs {(qk ∈ μ ji , p
i−1
k
∈ Mi−1)}, 1 ≤ k ≤

|μ ji |, which minimize the metric

Emotion =
1

|μ ji |

|μ ji |∑
k=0

‖qk − pi−1k ‖, (5.1)

where ‖ · ‖ is the Euclidean distance in R3. Intuitively, Emotion captures the
amount of motion between Mi−1 and Mi . Since the cow stays relatively
still during milking, the robot moves slowly, and our camera has a high
frame-rate, teats cannot ‘jump’ from one place to another one between con-
secutive frames. Hence, for a CMS μ ji to be valid, it has to yield a small value
for Emotion . In practice, we allow only values Emotion < 25 mm.

5.4.2.3 TTS estimation

From each CMS μ ji given by correspondence finding, we build a potential

new TTS Mj
i for the current frame i: For all points qk ∈ μ ji which have a

correspondence to a TTS-quad vertex pi−1
k
∈ Mi−1, we set the new value

of pi
k
∈ Mi to qk . For all other vertices p

i
k
∈ Mj

i which have no corre-

spondences in μ ji , a situation which occurs when |μ ji | < 4, we compute
their values by translating their corresponding points pi−1

k
∈ Mi−1 with

the average translation vector

v =
1

|μ ji |

|μ ji |∑
k=0

qk − pk .

5.4.2.4 TTS optimization

The previous step delivers as many potential TTS models Mj
i as the num-

ber ‖S ‖ of CMS configurations. These are all possible TTS models which
can be built by using one or several matches in Mi . We select the best
such TTS as the optimal TTS with respect to three metrics which describe
geometric constraints observed by watching videos of actual cows during
milking, as described below. Let us stress here that we are not searching for
an absolute minimum of these metrics, but for a ‘best fit’, i.e., a TTS which
optimizes these metrics over all possible TTSs.

Shape:Duringmilking, the soft udder shape changes as the cowmoves. Yet,
the relative teat positions are quite stable. Thus, the shape of our quadMj

i

should be constrained. While this is partly done by the motion constraint
Emotion , that allows teats to move only slightly, an accumulation of such
small movements over hundreds of frames can yield very different quad
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shapes. We thus further constrain the quad shape by constraining its area.
We could have used other shape metrics here, e.g. the quad’s aspect ratio.
However, the area constraint performs much better during the tracking-
initialization stage (see next Sec. 5.4.2.5). We model the area constraint by
the difference between the actual quad-area and the expected quad-area
Aexpected as

Eshape =
|A(Mj

i ) −Aexpected |
Aexpected

. (5.2)

Here,Aexpected is a fixed value, computed from actual udder measurements
of the cows under analysis. Setting Aexpected has to be done only once, be-
fore the first time the cow is milked, and can be re-used for subsequent
milking.

Flatness: We also observed that teat tips stay roughly in the same plane.
We therefore want the same to hold for the vertices of the quad Mj

i . We

model this by checking how close each vertex pk ∈ Mj
i is to the plane

formed by the other three vertices, i.e. by the metric

Ef latness =
1

4

4∑
k=0

|nk · vk |. (5.3)

Here, nk is the normal of the plane through all quad points except pk , and
vk is the normalized vector from any point pl�k to pk . When our quad is flat,
every pk lies in the same plane as the other points pl�k , so nk and vk are
orthogonal to each other, thus Ef latness = 0. Higher values of Ef latness > 0
tell that pk do not all lie in the same plane. In particular, note that configu-
rations that include an incorrectly detected point on the cow’s tail yield a
high Ef latness , thus are not favored by this metric.

Orientation: Finally, we note that teat tips are in a plane roughly parallel
to the ground surface on which the cow stands. We encode this prior by
measuring the orientation-deviation between the quad vertex-normals nk ,
computed as for the flatness criterion, and the vertical direction u, by

Eor ient =
1

4

4∑
k=0

|1 − nk · u|. (5.4)

In the ideal case, all normals nk are parallel to u, so Eor ient = 0. Values
Eor ient > 0 indicate deviations from the desired orientation. Similar to the
flatness metric, the orientation metric typically produces higher values for
incorrectly oriented vertices and therefore also favors the correctly oriented
configurations, even when the corresponding value for Eor ient is not opti-
mal in an absolute sense.
To jointly optimize for TTS shape, flatness, and orientation, we use the

total geometric error

Eдeom = wshape · Eshape +wf latness · Ef latness +wor ient · Eor ient (5.5)
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where the weights w sum up to 1. The first TTS Mj
i , in the testing order

given by CMS finding (Sec. 5.4.2.1), that scores Etotal < ϵ , is considered a
good-enough fit, and yields the new value for the TTS Mi for the current
frame i . Here, we use ϵ = 1

3 , meaning that only one of the three errormetrics
can be at its acceptable maximum, while all other error metrics should be
zero for us to accept this configuration.

5.4.2.5 Initialization

To start tracking, we must initialize our TTS M. Also, re-initialization is
needed when we cannot track Mi−1 to the current frame i . This happens
when (a) the current match-set Mi is empty, e.g. due to a bad camera an-
gle, too large distance to the cow, complete occlusion of teats in frame i ,
or limitations of our teat-detection algorithm; (b) no correspondence be-
tween Mi−1 and Mi exists which satisfies the motion constraint Emotion

(Sec. 5.4.2.2), e.g. because of accidental robot jumps due to collisions with
the cow; (c) no candidate TTS Mj

i having a sufficiently good geometry
Eдeom is found, e.g. due to the same reasons as for (a).
In all such cases, we must build Mi afresh, using only data from Mi .

For this, we first find all CMS sets μ ji having at least three points, by the

same method as for tracking (Sec. 5.4.2.2). We regard each μ ji as a potential

TTS Mj
i , and compute its Eдeom . The TTS yielding a minimal Eдeom value

below our threshold ϵ becomes our new Mi . If no such TTS is found, we
set Mi = ∅, i.e. mark that tracking is lost in the current frame, and try to
re-initialize in the next frame.
Let us further detail the difference between tracking and initialization.

During tracking, we optimize for the TTS that (a) fits the most matches
found in the current frame, (b) has the best geometric quality, and (c) has
a small motion with respect to the previous TTS. In contrast, at initializa-
tion we only optimize for geometric quality and number of matches. Indeed,
we cannot optimize for motion, since the previous valid TTS may have oc-
curred many frames ago or there was no such TTS (at the video stream
start). To track, we only need a single valid match in each frame. For ini-
tialization, we need minimally three valid matches in a frame (to be able
to evaluate the geometric constraints). As we shall see in Chapter 6, our
tracking is robust enough to require re-initialization only very seldomly,
and thus deliver a high overall quality of the proposed solution.

5.5 results

Our tracking-and-detection system, implemented in unoptimizedC#, achieves
tracking at 4. . . 8 fps on a 3.0 GHz Windows PC for an input video stream
provided by the SR4000 camera API. For an image resolution of N pixels,
both computational and memory complexities of detection are O (N ); for
tracking, these are bothO (1), since the match-set sizes are not a function of
the image size, but of the anatomical complexity of the udder. This strongly
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suggests that an optimized implementation, e.g. in embedded (parallelized)
C, can run at real-time rates on a low-cost ARM processor such as avail-
able on the milking robot, which further supports our claims for practical
industrial applicability and low cost.

a b c

d e f

Figure 5.16: Tracking sequence, 3 consecutive frames. Top row: amplitude images,
with matches shown. Bottom row: zoom-in on the point cloud around
the tracked TTS. The blue arrow icon shows that the system is suc-
cessfully tracking (Sec. 5.5).

Figure 5.16 shows the interaction between detection and tracking by
showing the TTS results for 3 sequential frames selected from a longer
video. The first frame (a) is an initialization frame. Here, five matches are
found (red rectangles). Of these, the correct four corresponding to teats
are selected by the initialization procedure (Sec. 5.4.2.5) to create the cur-
rent TTS Ma , as using any of the other two false-positives would create
tilted quads which yield a high error Eдeom . The obtained TTS is shown in
Fig. 5.16d atop of a rendering of the point cloud zoomed in on the udder area.
As can be seen, the TTS approximates the actual teat positions quite well.
In the second frame (Fig. 5.16b), we find only three true-positive matches
on the teats, and two false-positives. However, as seen in the correspond-
ing cloud rendering (Fig. 5.16e), tracking correctly estimates the position of
the fourth teat. In the final image, we only detect one true-positive and one
false-positive (Fig. 5.16c). Here again, the tracking succeeds in creating the
correct TTS (Fig. 5.16f).

5.6 conclusion

In this chapter, we have presented the design and implementation of an end-
to-end tracker system for the detection of cow teats for automatic milking
devices (AMDs) in the milk industry. We present several techniques and al-
gorithms that make this detection robust and fully automated when using a
very low resolution time-of-flight camera, which renders classical computer
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vision algorithms not applicable. By combining depth and point cloud infor-
mation analysis with observedmodel priors, we achieve a simple and robust
implementation that can successfully track over 90% of the frames present
in typical AMD videos, which exceeds the performance of all competitive
solutions in the area that we are aware of. In contrast to these solutions,
our proposal is also fully automated, allows large relative camera-subject
motions and orientation changes, and accounts for occlusions.
Several observations are relevant with respect to the work presented

here, as follows.

design space: The design space of such an AMD tracker is, clearly,
very large, and encompasses choices regarding the type of information to
use (luminance image, depth image, or both); type of techniques used to ex-
tract the relevant features (teats) we are interested in (3D shape reconstruc-
tion followed by 3D shape analysis, 2D image segmentation, 2D template-
based detection, and 3D template-based detection); and type of tracker to be
used (individual teat vs deformable four-teat model). Fully covering the en-
tire design space is not possible within the limited amount of timewe had to
our disposition. As such, we have proceeded by eliminating design options
as early as possible in the process, and continued to refine the remaining
(successful) options. A second dimension regarding the design space con-
cerns the setting of the various parameters of the established algorithmic
options. This dimension is discussed below.

validation: For a given algorithmic solution proposed for the AMD
tracking problem, one needs to validate its results, i.e., assess the quality of
the tracking in terms of e.g. how well (accurately) teats are tracked and/or
for how many frames of a given video. Separately, one needs to assess how
the parameter setting of the proposed solution affects the quality of the
tracking. In brief, we need an analysis of the space of input and output
parameters of our algorithm to both validate and, where possible, improve
its quality. This is, in itself, a complex problem which deserves extensive
attention. As such, we treat this problem separately in the next Chapter.

other approaches: As already outlined in the relatedwork, many ap-
proaches exist for object localization and tracking in computer vision. As
such, and given that setting up any single such approach is relatively time-
consuming, it was not possible to compare more extensively our proposal
with such alternative approaches beyond the material already presented in
this chapter. It is well possible that one of these existing computer vision
methods does perform well for our use-case and type of data (however, this
is very challenging, since as already explained many such methods have
been designed for higher-resolution images). Separately, it is very likely
that machine learning approaches, in particular deep learning, would yield
good results for our tracking problem. However, such approaches require
numerous labeled samples, whichmeans in our case video frameswith accu-
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rate associated 3D teat positions. As explained in this chapter, constructing
such rich labeled data is very expensive, which makes the application of
such methods impractical.
On the topic of designing an AMD tracker, several extension directions

are possible atop of our solution presented here. Different teat detectors
can be designed to find teats more accurately under extreme zoom-out con-
ditions, e.g. based on a refinement of the 3D template matching proposed
in Sec. 5.4.1.5. Secondly, using a more complex model including both teats
and udder shape could render our tracking accuracy even higher in con-
texts of high occlusion. However, this will likely pose higher computational
costs which have to be assessed in detail. Finally, deploying our algorithm
implementation on embedded hardware, such as typically found in indus-
trial robots, will very likely imply various algorithmic changes, so that our
pipeline fits the limited computing power and available memory of such
platforms. All such issues are part of future work.
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6V I SUAL ANALYS I S FOR AMD TRACKER OPT IM IZAT ION

6.1 overview

In Chapter 5, we have presented and end-to-end system for the detection of
trails representing the 3D locations of cow teats, by using a computer vision
pipeline based on the analysis of luminance and depth images acquired in
real time with a Time-of-Flight (ToF) camera. As stated there, our system
can achieve good performance – it tracks teats correctly in over 90% of the
available frames.
However, the above statement, if left as such, would be hardly substanti-

ated. First and foremost, we need a detailed quantitative evaluation of the
tracker’s performance. This, by itself, introduces a new question: How to
quantify performance? Given our goal (accurately tracking the 3D positions
of a cow’s teats over time), performance can be defined as the accuracy with
which each teat is tracked over a given video sequence. However, this def-
inition introduces a new problem: To assess this accuracy, we need ground
truth, i.e., the actual 3D positions of a cow’s teats over a given period of
time. Unfortunately, such information is not available to us, nor is it easy
to obtain, as regulations in the dairy industry forbid attaching markers to
udders to collect such data by e.g. marker tracking. Hence, we need other
ways to explore the output (3D teat trail-set) created by our tracker.
A second challenge is to optimize the proposed tracker. As outlined in

Chapter 5, the trails produced by our tracker are affected by a number of de-
sign choices and parameter settings. As such, it is important to understand
how the tracker output depends on these degrees of freedom. In particu-
lar, it is important to analyze the available parameter space so as to detect
ways of improving the tracker’s performance (on the one hand) and situ-
ations where performance, albeit low, cannot be further improved due to
objective limitations of the input images (on the other hand).
To cover the above points, this chapter proposes the use of visual ana-

lytics to explore the large parameter space created by our tracker method’s
internal parameters, input data (images), and output data (3D teat trails).We
proceed in Sec. 6.2 by presenting a visual analytics tool that supports this ex-
ploration process, allowing us to quantitatively evaluate our tracker’s per-
formance, detect and understand situations where performance is low, and
also compare our performance with a brute-force accurate search method
of the parameter space. Next, in Sec. 6.3, we extend this analysis by spot-
ting suboptimal parameter configurations which can next be changed to im-
prove the tracking performance. For this, we show how multidimensional
projection techniques for visualizing multivariate datasets can be leveraged
– an endeavor which, to our knowledge, has not yet been used in the task
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of optimizing shape-tracking systems. We conclude this chapter in Sec. 6.4
outlining our key contributions and findings.

6.2 qantitative assessment of tracker performance

As already explained, analyzing the full tracking process is crucial to vali-
date the robustness and correctness of our proposed solution – or, in other
words, assess whether and/or how much of the trail-set data output by the
tracker actually fit the image data captured by the ToF camera.
The video data we have as input for the tracker is unlabeled, i.e., has no

ground-truth for the correct teat positions. Labeling it would cost a huge
effort (manually marking 3D teat positions in thousands of frames and/or
3D point clouds for several videos). As such, we need a different way to
perform the validation.
For this, we propose a two-step procedure. First, we present in Sec. 6.2.1

a visual analytics tool that allows visualizing the tracked teat-set M
(Sec. 5.4.2) and the different internal parameters of our tracker over time.
We use this tool to get a first impression on the overall tracking perfor-
mance, but also to pinpoint situations (combinations of input images and
parameter values) where tracking has problems. Next, we use the tool to
compare the performance of two different template detectors for finding
teats in the depth image (Sec. 6.2.2). Finally, we extend our quantitative anal-
ysis of the tracking performance by comparing the results of our tracker
to those produced by a completely different 3D tracking method based on
brute-force accurate search (Sec. 6.2.3).

6.2.1 Analysis Tool

In this section, we give a description of the analysis tool we developed to
assess the performance of our tracker. Its set-up follows the overview and
details-on-demand design common for visual analytics tools [239], show-
ing both overall tracking performance, but also finer-level details that ex-
plain this performance. The analysis tool is connected in a feedback loop
with detection-and-tracking (Secs. 5.4.1, 5.4.2) so that the analyst can spot
sub-optimal results in the overview, examine details to find their causes,
adjust the responsible algorithm parameters, see the effects (e.g. improve-
ments), and repeat the process until an optimal algorithm and parameter-
set is found. As input, the analysis tool receives the entire data space that the
tracker operates on, consisting of the luminance and depth video streams;
derived images, match locations, error metrics, and system state (uninitial-
ized, racking, initializing, or tracking lost); and the produced trail-setM(t ).
All these parameters vary in time, i.e., take different values at each frame of
the input video sequence. For an overview of all these parameters, we refer
to Chapter 5.
Our analysis tool consists of two main views, as follows. The first view

gives a high-level overview of the tracking performance overmultiple input
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sequences and/or parameter settings, as shown in Figure 6.1. The second
view gives a more detailed overview of the performance for one selected
result, like the example shown in Figure 6.2. The two-view design follows
the well-known Shneiderman principle of overview-and-details [239]. We
describe these two views next.

Overview: The high-level overview of tracking results are presented in the
form of a table with a row for each dataset to compare. As explained, such
a dataset can be either a different video, or the same video tracked with
different tracker parameters. The columns of the table are configurable by
the analyst and show high-level information (derived) from the analyzed
datasets. This way, the high-level overview effectively allows comparing
several datasets (rows) from the viewpoint of several metrics (columns).
The column information can be split into two categories (as also shown
in Figure 6.1) – model state and model properties – as follows:

model state Themodel state view gives an overview of the self-reported
performance of the tracker using its internal states of uninitialized,
initializing, tracking, and tracking lost (see Sec. 5.4.2). This can be
used to identify (parts of) tracking results where the system func-
tions in a suboptimal way. We provide visual cues to help the analyst
with this task in twoways. First, we indicate the percentage of frames
that have a given state by coloring the same amount of the view’s
background to allow easier finding of the situation one is interested
in, be it good or sub-optimal tracking, based on this visual cue alone.
Secondly, we provide an overview of the tracking state over time as
a small inset for each state indicator. As an example, we can see that
the result marked A in Figure 6.1 has problems with initializing the
tracking even when we look at the cell that indicates when tracking
is successful, since we see a large red part at the beginning of the
overview inset.

model properties The model properties view shows selected statistics
computed over the results such as the minimum, maximum or mean
value of a property over the entire duration of tracking. These values
can for example be used to formulate a first hypothesis on what is
the cause of sub-optimal tracking. For instance, the result marked B
in Figure 6.1 shows bad performance with only a few frames where
the model managed to initialize, but the next frames did not allow to
continue tracking from this initialization. The model properties for
this result show that there were enough teats at all times to be able to
keep tracking – indeed, the minimum number of teats (Fig. 6.1, col-
umn Box min Count) is three. Hence, tracking was lost for the dataset
B due to some other problems than not finding enough teats in the
image. For such cases, the overview tells us that we need to study in
detail other parameters to understand the problem.
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Further study of the results in the overview is supported by allowing
the analyst to sort them based on any column. For instance, if one wants
to focus on problematic results, these can be found by ordering the table
ascendingly on succesful tracking percentage, which puts problematic se-
quences (having lowest number of succesful tracking frames) at top. After
a hypothesis about the cause of (sub-)optimal performance for a given
tracking result has been formulated, a detailed study of this result can be
started by opening the finer-level detailed view for this result.

Model Properties Model State

B
A

Figure 6.1: High-level overview of tracking results.

Detail view: The finer-level view of our analysis tool consists of several
linked views as shown in Figure 6.2. These introduce two additional lev-
els of detail, i.e., the evolution of model properties over time, and detail
information about a selected frame. To achieve this, we use four views, as
follows:

model state The model state view shows a timeline overview of the
TTS model state (uninitialized, initializing, tracking, or tracking lost).
States are shown by categorically color-coded bars, where bluemeans
the model is succesfully tracking, yellow means the model has been
(re-)initializated, and red means tracking is lost, respectively. This
gives an easy-to-follow global overview of the entire tracking pro-
cess and allows quickly spotting frames whose state changes from
neighbor frames, e.g., frames where tracking fails and which occur
in a sequence of correctly tracked frames. After spotting such frames,
one can use the views described below to find causes of the respective
state-change.

tracking view The tracking view refines the overview information
from the model state view by showing graphs of all model param-
eters as functions of time. Correlating values of these signals with

96



521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan
Processed on: 10-8-2018Processed on: 10-8-2018Processed on: 10-8-2018Processed on: 10-8-2018 PDF page: 109PDF page: 109PDF page: 109PDF page: 109

6.2 qantitative assessment of tracker performance

T
ra
ck
in
g
v
ie
w

M
o
d
el

st
a
te

v
ie
w

T
T
S
v
ie
w

F
ra
m
e
d
a
ta

v
ie
w

Fi
g
u
re
6.
2:
V
is
u
al
an
al
y
si
s
to
o
l
fo
r
o
u
r
te
at
d
et
ec
ti
o
n
-a
n
d
-t
ra
ck
in
g
sy
st
em

,h
av
in
g
th
re
e
o
v
er
v
ie
w
v
ie
w
s
(m

o
d
el
st
at
e,
tr
ac
k
in
g
v
ie
w
,a
n
d
T
T
S
v
ie
w
)
an
d

o
n
e
d
et
ai
l
v
ie
w
(f
ra
m
e
d
at
a)
.A

ll
v
ie
w
s
ar
e
li
n
k
ed

b
y
in
te
ra
ct
io
n
.

97



521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan
Processed on: 10-8-2018Processed on: 10-8-2018Processed on: 10-8-2018Processed on: 10-8-2018 PDF page: 110PDF page: 110PDF page: 110PDF page: 110

visual analysis for amd tracker optimization

state values (or state changes) in the model view allows tracing the
cause of the respective states one step back, i.e., to the components of
the error metrics Eдeom or Emotion (subsection 5.4.2). For some model
properties, extra visual cues are provided to help interpret the plot,
such as the shaded regions in the tracking view showing the number
of detected teats in Figure 6.2 that indicate the minimum amount of
teats needed for initialization or tracking to succeed. Another pos-
sibility is to show the expected value for a parameter (such as the
area between the teats) in the corresponding plot. This provides the
analyst a visual indication of how close the actual parameter value
is to the expected value.

tts view The TTS view shows the trajectories (trails) of the four tracked
teats over the entire analyzed video, as 2D camera-view projections.
We can also show 3D world-space trails of the tracked teats (see Fig-
ure 6.3, TTS view, bottom row). From actual tool usage, we found
that the 2D trail projections are easier to interpret, so these are used
as default in this view. Given the assumed smooth motion of both the
tracked shape (cow) and camera (robot), the teat trajectories should
be smooth curves. Also, these curves should have a relatively simi-
lar overall shape, given the geometric constraint that limits the rel-
ative motion of teats from each other (subsubsection 5.4.2.4). Hence,
spotting large line-segment jumps in the TTS view allows us to find
time-ranges when tracking performed incorrectly.

frame data The frame data view shows the raw luminance, depth, and
point-cloud data acquired from the ToF camera for the frame selected
in the other views, as well as numerical statistics on this frame (num-
ber of matches and values of the model metrics). These ‘details on
demand’ allow refining the insight obtained from the overviews.

All views are linked by interactive selection – clicking on a time-instant
or position in the overviews shows details of the selected frame in the frame
data view. Similarly, the selected frame is also indicated in the other views.
This is done for the model state and tracking view using a vertical line to
indicate the selected frame. For the TTS view, the corresponding teat loca-
tions at the selected time-moment are indicated as dots along the plotted
trails.
We next present an actual use-case that demonstrates how the detailed

views an be used to spot and understand tracking problems. Figure 6.3
shows the detailed views with information loaded from a given tracking
run. Three separate insights are discussed below.

Tracking lost due to robot steering: In the model-state view, we immedi-
ately see a suspiciously large amount of red (tracking lost) frames. At first
sight, this suggests that our tracking is not working optimally. Let us focus
on the largest red block, marked A in Figure 6.3. We see that this block
correlates to a zero value for the Ef latness metric (Equation 5.3), which
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6.2 qantitative assessment of tracker performance

is plotted in the tracking view. This tells us that tracking is lost because
this metric had a too low value, which in turn caused Eдeom to exceed the
allowed threshold ϵ . Showing other model parameters in the tracking view
allows back-tracing the cause of a large Ef latness error to earlier data in the
pipeline, such as the number and locations of found matches. Using this
procedure for this dataset, we found out that, for the time-range of blockA,
the cause was that there were no correct matches found in the input image,
due to the robot drifting out of the udder area. As we expect tracking to be
lost in such cases, this does not flag a problem of our tracker, but a problem
of the robot’s steering.

Undesired tracking-lost events: Using the TTS view, we can find areas
where tracking is performing sub-optimally by looking for jumps in the teat
tracks. Such a jump is marked B in Figure 6.3, and is visible for all four teats.
Clicking on such a jump brings the data for the respective time moment(s)
in focus in the other views. The current time is shown in the tracking view
by the dot marker labeled C . We now see that this moment corresponds
to the beginning of the first large red block in the tracking view. Hence,
we know that the jump is caused by a tracking-lost event. If, however, the
jump corresponded to a tracking state (blue in the model state view), this
would have shown severe tracking problems, as the tracking would have
created jumps (not in line with our knowledge of the studied phenomenon)
and would have marked these as valid tracked frames.

Unavoidable tracking-lost events: Finally, the frame data view can be
used to see if there is a relation between the input and the performance
of the model. For instance, the frame data in Figure 6.3 corresponds to the
moment C discussed above. As visible in the amplitude (luminance) image,
the two back teats are now connected to the suction cups of the milking
robot. In such cases, tracking is expected to be lost, due to the robot being
too close to the udder and thereby occluding the teats. Hence, we have
explained that the tracking-lost event observed in the TTS and model-state
views is expected and not due to a tracker problem.

6.2.2 Influence of Template Choice on Performance

So far, we have used our analysis tool to find sequences or parts of se-
quences for which the performance is sub-optimal and used the same tool to
find a relation between this performance and the input sequence or model
parameters.
However, as explained in Chapter 5, the design space of a tracker is larger

than just its parameter set. One other important degree of freedom is the
choice of the template detector being used, which, as we have seen, can
be a 2D one (Sec. 5.4.1.3) or a 3D one (Sec. 5.4.1.5). The related question is:
Which, of these two detectors, delivers better performance in general?
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Model state view

Tracking view

TTS view

Frame data view

A

A

B B B
B

C

suction

cups

Figure 6.3: Our visual analytics tool showing the finer-level details for a tracking
result with sub-optimal performance.
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visual analysis for amd tracker optimization

To answer this, we constructed two trackers using the same set of param-
eters and algorithmic components, except the 2D vs 3D template detectors.
Next we ran the trackers on a set of 16 recorded videos. The high-level
overview of the results is shown in Figure 6.4. We chose to sort the results
in descending order of tracking performance of the 3D tracker (column A,
Fig. 6.4). The shape formed by the decreasing blue bars in this column shows
that the 3D template tracker reaches very good performance for almost all
of the videos, and completely fails tracking only for the bottom-most video.
For the same sequence of videos, the 2D tracker always has a lower tracking
performance.
Comparing columns B and C and the small insets with model the state

overview in Figure 6.4, we can see that, when using the 3D template, detec-
tion is much more robust. When using the 2D template detection method,
there are more frames for which tracking is lost, even if this total count
is just a few frames. For the 3D template based detection, we see a much
lower rate for this state of the detector.
We also examined the performance of tracking using 2D vs 3D templates

at a finer level, using the various detailed views presented in Sec. 6.2.1. The
initial observation that the performance of the 3D tracker is higher was
confirmed. We noticed a few scenarios where the cause of this difference
can be easily explained. For example, when the camera is pointed more up-
wards (towards the udder), the difference in depth between the teats and the
surrounding background is decreased. Indeed, with a horizontal-pointing
camera, the background consists of the cow hind limbs or barn walls, which
are quite far away from the teats; with a more vertically-pointing camera,
the background is the udder itself, which is very close to the teats. This
decrease in contrast causes a strong decrease in performance for the 2D
template based method which heavily relies on this contrast as it works in
the gradient domain (see subsubsection 5.4.1.3). For such types of videos,
the 3D template based detection works well, as it does not rely on contrast
with respect to a background.
Summarizing the above, we found that the 3D template-based method

is more robust for camera orientation, and performs better than the 2D
template-basedmethod. Additionally, the 3Dmethod is easier to implement
and has fewer parameters to control. Taken together, this makes it the can-
didate of choice in the tracker’s design space.

6.2.3 Ground Truth Comparison

As outlined so far, using the 3D template detector, we developed a tracker
that shows successful tracking in about 90% of the frames of all videos we
tested it with. While a high tracking-state percentage is a necessary condi-
tion for a good tracker, it is not a sufficient one. That is, we need also to
show that the tracked structures are indeed the teats, and not other spuri-
ous objects.
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However, as also already explained, showing that our tracker tracks the
correct objects requires ground truth data, which we do not have and can-
not obtain. As such, we opt for a different solution: Given a video sequence
that records the time-dependent positions Ω̃i of an udder shape Ω̃, we ex-
tract a highly-accurate sequence of 3D udder shapes Ω

дt
i that are very close

to Ω̃i , by using a fine-grained (but expensive) parameter-space search. As
such, we argue that Ω

дt
i is very close to the actual ground truth Ω̃i . Hence,

we can measure the tracking accuracy of the results of our tracker by com-
paring them with the ‘proxy’ ground truth Ω

дt
i . We next describe the con-

struction of the proxy ground truth (Sec. 6.2.3.1) and its comparison with
our tracker results (Sec. 6.2.3.2).

6.2.3.1 Constructing a proxy ground truth

The key idea of computing our proxy ground truth sequence Ω
дt
i is to fit a

high-resolution synthetic 3D udder model to the actual point cloud in each
video frame i , subject to rigid transformations. Given the level of detail and
the specific shape of this 3D model, a good fit (to the point cloud) cannot
occur unless the model’s teats match well the corresponding points in the
point cloud. As such, we can use the teat positions in the fitted sequence
Ω
дt
i as proxies for the actual teat positions in the video.

To construct the sequenceΩ
дt
i , we proceed as follows (see also Figure 6.5).

First, we select a video sequence in which the udder is very well visible
in at least one frame – that is, has a depth image with no occlusions, as
few self-occlusions as possible, no teat deformations, low noise levels, and
a good distance to the camera. We next export the corresponding point
cloud for this sequence, and manually crop the udder area from it. Next,
we use a reconstruction method to extract a meshed surface MΩ from this
point cloud – in our concrete tests, the Poisson method [135] gave the best
results. Surface reconstruction was discussed in Sec. 5.4.1.1. As noted there,
a fully automatic surface reconstruction from the type of point clouds we
have was not possible. However, this is not an issue in our case, where we
can both manually crop the udder from spurious surrounding structures,
and fine-tune the reconstruction method’s parameters. The resulting mesh
modelMΩ is shown in Figure 6.6.
Next, for each frame i of a video sequence, we construct the proxy ground

truth Ω
дt
i by minimizing the difference

C (Ω̃i ,Ω
дt
i ) =

∑
x∈P (Ωдti ) (DΩ̃i (x) − DΩдti (x))

2

1 + |P (Ωдt
i ) |

. (6.1)

Here, DΩ indicates the pixel depth map of a shape Ω as seen from a given
viewpoint; P (Ω) indicates all pixels covered by the screen-space projection,
or rendering, of a shapeΩ; and |·| denotes the number of pixels in a rendered
image. Given the above, DΩдti

indicates the depth map of the proxy ground-

truth shape Ω
дt
i , and DΩ̃i is the actual depth image taken by the camera
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6.2 qantitative assessment of tracker performance

which looks at the physical udder Ω̃i . Equation 6.1 thus computes the mean
squared error (MSE), or difference, between the depth maps of the actual
and synthetic udders, normalized by the size of (amount of pixels covered
by) the synthetic shape Ω

дt
i . The difference C is zero when the synthetic

shape Ω
дt
i perfectly matches the depth profile of the actual shape Ω̃i .

To minimize C , we parameterize the synthetic shape as

Ω
дt
i = T (MΩ,ω

j
i ). (6.2)

Here, MΩ is, as explained, the high-accuracy mesh model of the udder; T
represents a rigid transformation (translation, rotation, scaling); and andω j

i

are the parameters of such transformations, e.g., angle and axis of rotation
for a rotation-transformation. Hence, Ω

дt
i is a rigidly transformed udder so

as to best match the depth profile from the ToF camera in the current frame
i .
The computation of the transformation parameters ω j

i is performed us-
ing gradient descent. Gradient descent requires a starting value for these pa-
rameters. For this, we use their values ω j

i−1 from the previous frame. This
works quite well, given the slow motion of the cow and the high frame-
rate of the ToF camera, which together determine that the udder moves
relatively little between consecutive frames. For the first frame i = 0, we
initialize the parameters ω j

0 manually, by interactively changing them and

visually monitoring the actual rendered image Ω
дt
0 until it appears very

close to the rendered image of Ω̃0. After this, gradient descent can be used
to get an accurate fit, just as for the other frames.

Figure 6.6: The 3D model fitting method in action, showing the udder model MΩ

and three different frames where the fitted model (in green) tracks the
udder’s depth map (in red).

A few implementation details follow. The transformationsT (Eqn 6.2) are
implemented as OpenGL scaling, rotation, and translations on the vertices
of the meshMΩ . To obtain the depth map DΩдti

, we render the transformed

mesh Ω
дt
i in an offscreen OpenGL buffer, read the corresponding Z-buffer,

and apply linearization to it to correct for the non-linear effects of typical
fixed-precision Z-buffer schemes. The OpenGL camera parameters are set
so as to emulate the actual ToF camera. The step sizes used by gradient
descent are set to low values, which yields a slow convergence speed but
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high accuracy. Finally, the cost C (Eqn. 6.1) is computed using pixel-wise
operations on the two depth images.
Using this set-up, we are able to track a cow udder for multiple input

sequences with high precision (see Figure 6.6 for an example), providing
us with the ground truth data we need to verify the performance of our
tracking solutions described in Chapter 5. However, this method cannot be
used as a tracker itself. Indeed, the method requires manual initialization
in the first frame, and is also quite slow and computing-resoures hungry.
For instance, when using only translation in the deformation function T
(Eqn. 6.2), and a relatively low-resolution meshMΩ of 5000 vertices, fitting
a single frame takes about 0.5 seconds on a modern PC. However, for our
ground-truth computation, such limitations are not a problem.

6.2.3.2 Tracker vs ground truth comparison

Having the proxy ground-truth sequence Ω
дt
i , we now find the proxy

ground-truth for the four teats by simply extracting the 3D trails (trajecto-
ries) of four vertices of the mesh MΩ that we select, manually, by clicking
on the visible terminations of the teats in this model. Since the mesh’s
topology does not change with the deformationT (Eqn. 6.2), these vertices
correspond to the teat tips also in the deformed mesh T (MΩ).
Next, we pair these four ground-truth trails with the actual trails of the

tracked teat-set (TTS) Mi delivered by our tracker (see Sec. 5.4.2). This is
easy to do, since for both the synthetic model MΩ and the TTS we know
the order in which teats come (left-to-right, front-to-back).
Finally, having these paired trails, we compute and display the 3D dis-

tances, over time, between the corresponding point pairs. Figure 6.7 shows
such a plot, computed for the 3D template-based tracker, which, as dis-
cussed in Sec. 6.2.2, is our preferred design. Several observations can be
made from this plot.
First, we see that the distances never become zero. It is important to un-

derstand that this cannot happen, since the brute-force (gradient) tracker
and the 3D template-based one track different points which are close, but
not identical to, the teats’ tips. As such, we should interpret the graphs with
care.
Secondly, we see that the four graphs, corresponding to the four teats,

evolve relatively ‘in sync’. In other words, the difference between the
ground truth and tracker evolves similarly over time, for all teats. This can
be seen as indiret evidence to the robustness of the tracker.
Thirdly, we see that the ratio of the largest to the smallest error (at any

point in time) is roughly 3 to 1. Since the smallest error is caused by the
aforementioned differences in definition of what is the tip of a teat, which
is about the diameter of a teat (see Sec. 5.4.1.5), then the largest error is
about 3 times this diameter. For the envisaged application (automatic milk-
ing devices), this is an acceptable error.
We can get further insight into the error behavior by analyzing separate

regions of the graphs in Fig. 6.7. We find four such interesting regions
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showing different error behavior (denoted A, B, C, D in Fig. 6.7), as follows:

Region A: Here, we can see that our tracker agrees very well with the
proxy grond truth – keeping, again, in mind the inevitable differences
caused by different teat-tip definitions. The peak at the end of this region
shows a single outlier frame with different behavior in the two sequences.
However, even for this frame, the difference is well within the range of a
teat’s size.

Region B: We see here that the difference between the tracked teats and
ground truth vary identically for all teats. Looking at the tracker’s output
(using the model state detail-view, see Sec. 6.2.1), we found that the tracker
is in a ‘tracking lost’ state – thus, the tracked teat positions do not change
in time, while the ground-truth does. While this is not a desirable situation,
it does not indicate a low accuracy tracking. Indeed, when tracking is lost,
one should simply ignore the tracker’s output.

Region C: In this region, the errors are almost constant, i.e., which sug-
gests that the tracker is simply ‘offset’ away with a fixed distance from the
proxy ground truth. Moreover, we see that two of the teats (green and pur-
ple graphs) are tracked with the same (good) accuracy, while the other two
(blue and orange graphs) are tracked with different, and lower, accuracies.
Examining the actual 3D udder model, we found that the good-acuray teats
are the front ones, while the other two are the back ones (farthest from cam-
era). After studying the individual frames from the actual input, the ground
truth, and the tracker, we found the following explanations for the above.
First, we note that the ground truth computation, which uses only rigid
transformations, is of limited accuracy in cases where the udder deforms
non-rigidly, which was the case in this temporal region. The 3D template-
based tracker can deal with such situations quite well, given the deformable
quadmodel used for the TTS (see Sec. 5.4.2). Moreover, visual inspection (of
the limited time-extent of temporal region C) showed that the location of
the back teats delivered by the 3D template tracker was actually more accu-
rate than the proxy ground truth, as compared to the point-cloud delivered
by the ToF camera. This could make one think that using the proxy ground
truth computed by the method outlined in Sec. 6.2.3.1 is thus unreliable. We
argue that this is not the case:

• When the tracker and ground truth match well, they should also
match the actual data well. Indeed, since the two methods track us-
ing completely different methods (and largely different information
types), the chance that they are both wrong in a consistent way and
at the same times is, we believe, small;

• When the tracker and ground truth do not match well, we analyze
both image sequences manually for the respetive period of time, and
determine which one is wrong, and how much. While this process

107



521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan521345-L-sub01-bw-vdZwan
Processed on: 10-8-2018Processed on: 10-8-2018Processed on: 10-8-2018Processed on: 10-8-2018 PDF page: 120PDF page: 120PDF page: 120PDF page: 120

visual analysis for amd tracker optimization

requires some manual labor, it is far less intensive than manually an-
alyzing the entire collection of videos to assess whether the tracker is
accurate or not. In turn, this analysis can indicate moments when the
proxy ground truth is incorrect (thus, we need to assess the accuracy
of the tracker using purely visual information); and moments when
the ground truth is correct but the tracker is not (thus, tell us valuable
information about specific configurations that we need to refine the
design for).

Region D: This last region shows a more rapidly-varying, high-frequency,
error behavior. Looking at the actual video, we found that the teats here
are quite close to the borders of the video image, a situation where the 3D
template-based tracker is not handling robustly (see Sec. 5.4.1.5). Hence,
the added value of ground-truth comparison is to quickly point us to such
limitations of our tracker, which one can next focus on to alleviate.

A B C D

Figure 6.7: Distance between corresponding teats from the proxy ground-truth and
the 3D template-based tracker, over time. Each graph, having a different
color, indicates one teat.

6.3 parameter space analysis for tracker improvement

In Section 6.2, we have presented ways to quantitatively assess the perfor-
mance of the tracker designs proposed in Chapter 5. Additional to perfor-
mance estimation, this allows us to zoom in on specific sequences where
tracking is suboptimal and trace back problem causes to the values of vari-
ous parameters or input data configurations.
However, the visual analytics tool proposed for the above uses a sequence-

oriented model: The data is organized as a set of sequences (of time-
dependent parameter values and images). The top-down exploration pro-
posed by the tool works by identifying one or a few sequences where
tracking problems exist, followed by zooming on these specific problems
one by one. This works well for a relatively small collection of short se-
quences. However, for a large collections of longer videos, this process is
cumbersome, as it does not elicit correlations and similarities across dif-
ferent time moments and/or videos. In other words, the tool proposed in
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Sec. 6.2 offers a deep, but narrow, view on the behavior of a tracker: One
can e.g. select a small time-range of interest and then analyze how the
various parameter values have caused a certain effect, e.g. a failed tracking.
This is fine for examining isolated events, but does not help generalizing
from such observations over a large collection. For instance, we can find
a few events where tracking failed because the size of the 3D template is
lower than a certain threshold τ . However, how do we know that whenever
the template size is below τ , tracking will fail? Without knowing this, it
does not make sense to start tuning the value of τ , as this may or may not
fix the failed tracking.
To support this kind of generalization from individual observations (or

tracker parameters), we propose next a different kind of visual analysis,
which uses a similarity-oriented model: We model the entire set of time-
dependent parameter values (from all tracking runs in a collection) as a set
of high-dimensional observations xi ∈ D, where D represents the union
of parameter domains (typically, a subset of Rn for n such parameters), in-
put video data, and output 3D trails. Each observation represents the entire
state of the tracker at a given point in time and in a given sequence. Next,
we visually explore this observation dataset using methods that emphasize
similarities and correlations between observations, respectively parameter
values, over the entire corpus of observations. Based on such findings, we
can next draw generalizing conclusions over our tracker’s behavior.

6.3.1 Parameter Space Analysis with Multidimensional Projections

Following the parallel between sequence-oriented and similarity-oriented
noted above, we note a second parallel between the visual analysis intro-
duced in Sec. 6.2 and the one we will propose next: The views presented in
Sec. 6.2 provide a variable-centric exploration, i. e., they allow detailed exam-
ination of the evolution of a few variables over time. In contrast, the views
we will introduce next take a observation-centric perspective: They abstract
away (largely) from the chronological ordering of observations, and also
from the individual variables, and focus on the similarity of states the sys-
tem is in. This allows us to find correlations and similarities over arbitrary
moments in time, and without choosing a subset of parameters of interest.
Key to this approach is the use of multidimensional projections, which

have been introduced in Sec. 3.2.2.1. As explained there, projections scale
very effectively to display large numbers of observations (hundreds of thou-
sands), each having tens of dimensions or more. This is in contrast to other
methods for visualizing high-dimensional data, such as tables (Sec. 3.2.1.1),
parallel coordinate plots (Sec. 3.2.1.5), and scatterplots (Secs. 3.2.1.3, 3.2.1.4).
Given that our datasets consist of tens of thousands of observations or more
(basically, every frame in our tens of minute-length videos, taken at 24
frames per second, is an observation), and that observations have between
10 and 20 dimensions (all internal parameters of the tracker plus the 3D
positions of the four detected teats), projections fit our data best as a visual-
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visual analysis for amd tracker optimization

ization method. Equally importantly, they are observation-centric methods,
which support tasks that relate observations among themselves, rather than
examining individual parameters (Sec. 3.2.2).
By themselves, raw projections of high-dimensional data are of little use

– they can show clusters of similar observations, but not why these are sim-
ilar. As such, we use next a more advanced visual exploration tool which
enhances projections with several interactive visual explanatory and ex-
ploratory mechanisms. The tool itself, called featured, has been developed
for the goal of assessing (and improving) the performance of classification
systems for static (time-independent) image data using machine learn-
ing [244]. Our use here is entirely novel, as we employ it to assess (and
improve) the performance of tracking systems for time-dependent 3D trail-
sets.

Analysis tool: We next present a brief description of the featured visual
analytics system in [244], and its adaptions to our problem and data context.
The tool offers several linked views, as follows:

observation view The observation view shows the raw observations
that the tracker receives as input. As explained in Sec. 5.3, these con-
sist of a set of time-dependent luminance images Ii , depth images Di ,
and point clouds Pi . From these, we choose to display only the lu-
minance images Ii , as these are the easiest to interpret visually, and
thus match the goal of the observation view. Images Ii in this view
are sorted on the index i , thus, chronologically, as they appear in a
video sequence;

feature view The feature view shows all parameters that describe the
state of the tracker, as described in Sec. 5.31. Parameters are grouped
into

• input: these are values computed from the input image. Besides
the number of matches in the match-set Mi (Sec. 5.4.1.3), we
add here various image characterization features known in
the imaging literature, such as average intensity, average edge
strength, and histogram of oriented gradients (HOG), computed
over small image patches of about 16 × 16 pixels. The added
value of these features will become apparent in the discussion
below;

• output: these are values that the tracker computes, such as the
positions of the four vertices of the tracked teat-set (TTS) Mi

(Sec. 5.4.2);

• model: these are internal values of the tracker itself, such as the
TTS areaA(Mi ) (Eqn. 5.2); the various energy components that

1 The terms feature, parameter, and dimension have the same meaning, and refer to inde-
pendent measurements over observations. We use here the term feature so as to be in line
with the terminology employed by the featured tool [244].
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6.3 parameter space analysis for tracker improvement

quantify the TTS quality (Emotion (Eqn. 5.1), Eshape (Eqn. 5.2),
Ef latness (Eqn. 5.3), Eor ient (Eqn. 5.4), and Eдeom (Eqn. 5.5)); and
the tracker state (uninitialized, initializing, tracking, or tracking
lost). Besides the tracker state, which is a categorical variable,
all others are quantitative variables.

The feature view allows selecting several such features, along which
we want to explore the observations, using the views described next.

observation projection view The observation projection view
shows a 2D scatterplot of the projection of all observations using
the features selected in the feature view. This allows seeing how
the available observations (time moments in the currently analyzed
video(s)) are similar from the perspective of the selected features.
Observations can be colored in this view based on the value of a
selected feature. For instance, in Fig. 6.8, observations are colored
based on the categorical ‘tracker state’ attribute. To account for the
different ranges of the input data (dimensions), these are normalized
by standardization, as usual when using multidimensional projec-
tions. Different projection techniques are available to use, among
which we note MDS, LAMP, and t-SNE. In the following images, we
use t-SNE as an example.

feature projection view The feature projection view shows a 2D
scatterplot where each point represents a feature of our data. In
contrast to the observation projection view, where distance between
points reflects the Euclidean distance (in the high-dimensional fea-
ture space) between observations, the feature projection view uses
as distance the correlation between features, measured over all ob-
servations. This allows seeing which features are strongly correlated
(or not).

group view This view allows one to group observations based on vari-
ous criteria. For instance, we can group observations based on their
similarity as shown in the observation projection view, e.g. by inter-
actively selecting observations in that view which form an isolated
cluster; or we can group observations based on the value of one fea-
ture, e.g., we can select all time moments (frames) where the tracking
was lost.

Analysis scenario: We next present how we can use the featured tool to
analyze the high-dimensional information available in a tracking run to un-
derstand causes of tracking problems and proposed improvements to such
problems.
We start by importing the tracking data into featured (Figure 6.8). Next,

we are interested to analyze how observations are similar (or different) with
respect to the tracker’s state. As such, we select all features in themodel cat-
egory in the feature view, and obtain a projection (Figure 6.8, observation
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Group view

Feature view

Feature projection viewObservation projection view

Observation view

Figure 6.8: The featured analysis tool after loading in the data generated by teat
tracking system.

projection view). We know, however, that the total geometric error Eдeom is
a linear combination of other three errors which are already included in the
model feature-set (see Eqn. 5.5). As such, the similarity of observations in
the observation projection view should not depend on using the additional
feature Eдeom . We verify this by removing Eдeom from the set of features
used to construct this projection and by noticing that the observation pro-
jection indeed does not change.

Figure 6.9: Projection of all tracking-model features computed by the tracking
model showing the segregation of observations (frames) into a cluster
of ‘tracking’ frames (A) and a cluster of ‘uninitialized’ and ‘tracking lost’
frames (B).

We are interested, at a high level, to understand how the tracker oper-
ates. If we look at the observation projection, we see two salient regions
with a similar “pointy” shape which are clearly separated from the rest of
the observations ((Figure 6.9), markers A and B). This is a first sign that
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6.3 parameter space analysis for tracker improvement

the tracker’s model parameters describe quite different configurations in
state space – indeed, if all states were similar, from the perspective of the
model parameters, the projection (which, as noted, employs Euclidean dis-
tances based on model parameters between observations) would show an
unstructured ball-like point cloud, as well known from the dimensionality
reduction literature.
Next, we are interested to understand what makes the two point clus-

ters A and B so different. To do this, we color the points in the observation
projection view by the value of the tracker state feature. We now see that
region A is almost completely cyan, which corresponds to the state ‘track-
ing’; and region B is a mix of red (state ‘uninitialized’) and purple (state
‘tracking lost’). Green points correspond to the ‘initializing’ state which, un-
surprisingly, appears to have parameter values located roughly in between
the tracking and not-tracking states. Since the regions A and B are quite
far apart in the projection, this means that their model parameters are also
quite different. In other words, we found that tracking fails (uninitialized
or lost) because of specific value-ranges of the computed model parameters,
which are quite different from those for states where we can track. As such,
we know that our current model parameters are a good indicator of the
ability to track or not.

model state features
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Figure 6.10: Importance of features when comparing the ‘tracking’ state with the
other states of the tracker. (a) Feature scoring bar chart. (b) Feature
projection view.

As we now know that the states where we can track are very different,
parameter-wise, from those where we cannot, the next question is which
specific features and/or feature values discriminate between the two types
of states. To find this out, we select all observations labeled as ‘tracking’ and
rank all model features by their ability to discriminate between these obser-
vations and the remaining ones. This can be done by using so-called feature
scoring techniques. Specifically for our case, we use univariate techniques
(one-way ANOVA), and so-called wrapper techniques, based on the utiliza-
tion of a classification algorithm (randomized decision trees [95], recursive
feature elimination (RFE) [96], and randomized logistic regression [176]).
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According to all these feature scoring techniques (except ANOVA), themost
discriminatory feature between tracking and non-tracking states is Emotion

(Eqn. 5.1), with Ef latness (Eqn. 5.3) being a close second. For ANOVA, the
situation is very similar – Ef latness scores highest, followed by Emotion .
Figure 6.10(left) shows the scores of eight features, computed with RFE.

Each feature is represented as a bar whose height indicates the score. The
two rightmost bars represent Ef latness and Emotion respectively. Bars are
colored to show the distribution of values of a respective feature using a
green (few) to yellow (many) values. Thus, we see that both Ef latness and
Emotion have most values in their lowest respective ranges (yellow is at the
bottom of these bars). Further coloring the observation projection by the
values of these two features (in turn) shows that the low-value rangesmatch
well the tracking state, while high-value ranges match the non-tracking
states, respectively.
Summarizing the above findings, we have learned that

1. tracker parameters strongly correlate with states being separated
into tracking vs non-tracking ones;

2. the two state types are most discriminated by the values of Ef latness
and Emotion ;

3. tracking states have low values of Ef latness and Emotion , while non-
tracking states have high values thereof;

4. state parameters vary continuously over the observation space (in-
deed, we do not see clearly-separated clusters in Fig. 6.9).

The above findings match well the ideas behind our tracker design in Chap-
ter 5, which was based on the assumption that the TTS quadrilateralMi is
relatively flat and moves slowly between frames. As such, when these con-
ditions occur, we can track well, as our above analysis shows. Conversely,
when these conditions do not occur, we loose tracking. Now that we under-
stand the strong correlation of tracking success with these parameter val-
ues, several improvements can be done. First, we can increase themaximum
error allowed for these metrics (see Eqns. 5.1 and 5.5 and related text). This,
indeed, allows tracking more deformed and/or faster-moving udder config-
urations, and is a simple but effective solution. Secondly, we could design
better correspondence finding methods (see Sec. 5.4.2.2) that allow robust
pairing of TTS configurations between consecutive frames when high mo-
tion amounts are found. We have not explored this direction, however.
The feature scoring analysis provides, next, other insightful points. Be-

sides the above-mentioned two features which strongly discriminate be-
tween tracking and non-tracking states, we have, as described earlier in
this section, several other model parameters. These do not have a clear cor-
relation with the tracking vs non-tracking states. This does not mean, of
course, that they do not have a role in the design of the tracker. However,
they do not have critical values that correlate with the tracking success. As
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6.3 parameter space analysis for tracker improvement

such, we know that putting effort into fine-tuning their computation and/or
defining acceptable thresholds for them is not highly likely to optimize the
tracker. While this does not make our tracker better, it saves effort that has
a low chance to do so.
We now explore the feature-values’ correlation with the tracking vs non-

tracking states using the feature projection view (Fig. 6.10). Here, as ex-
plained, a dot is an entire feature (over all observations). We include here all
available features from our system, thus including input, output, and model
features. In total, this gives us over 200 features. Next, we color features by
their discriminative power between tracking vs non-tracking states, using
a blue (low power) to red (high power) colormap. The result shows several
interesting insights. First, we confirm the earlier finding that the two most
discriminative features are Emotion and Ef latness – these correspond to the
dark red dots in the figure. However, more interesting is the fact that none
of the input and output features are strongly correlated with the tracking
vs non-tracking dichotomy. Since we have a rich set of features describ-
ing both input and output, this tells us that, in principle, there is little in
the input data (images) or in the computed teat trails that corresponds to
situations where we can track vs cannot track. As such, a (cautious) infer-
ence is that the tracker’s success is largely based on the way we interpret
the flatness and motion-speed parameters. This supports our earlier obser-
vation that relaxing the thresholding criteria on these parameters can im-
prove the tracking success. The feature projection view (Fig. 6.10) shows
another interesting thing: As there are no clearly separated clusters in this
scatterplot, it means that the features under study are largely uncorrelated
(independent). This is a positive finding, as it tells us that we do not have
redundancy (features that would measure the same property) in our tracker
design.

a) b)

outlier

frames

Eflatness

structure corresponding 

to pattern B (tracking-lost

and uninitialized states)

Figure 6.11: (a) Observation projection excluding feature Emotion . (b) Feature scor-
ing (ANOVA) to discriminate outliers (see image (a)) vs rest.

Let us now further disentangle the impact of the two most important
features that determine the success of tracking – Ef latness and Emotion . As
we have seen, Emotion is related to the speed of motion of the udder. This is
relatively hard to constrain in reality. Moreover, it is expected that during
a normal milking procedure, cows move little; this was indeed not the case
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for our testing sequences, but this was mainly due to the experimental set-
up used for the ToF camera during testing, which caused the animals to
swing more than normally expected. However, Ef latness is much harder to
constrain, as cow udders do often exhibit teats of quite different lengths
(see e.g. Fig. 6.6 left).
To study the separate effect of Ef latness , we remove Emotion from the set

of features selected in the feature view. As explained, this regenerates the
observation projection to ignore this feature. Figure 6.11a shows the result,
color-coded by state, just as in Fig. 6.9. The distinctive ‘tail’ pattern formed
by red (‘uninitialized’) and purple (‘tracking lost’) states visible in Fig. 6.9 is
also present here. However, the cyan ‘tail’ earlier present in Fig. 6.9, which
contained ‘tracking’ frames, is now collapsed to a ball, and mixed with ‘ini-
tializing’ (green) frames. This is indeed logical: Non-tracking (‘uninitialized’
and ‘tracking lost’) states do not carry any motion information, since there
is no previous successfully-tracked frame with respect to which motion of
the TTS Mi can be computed (see Sec. 5.4.2.2). As such, the structure of
these observations does not change if we ignore Emotion , which anyways
has zero values over them. However, the collapse of ‘tracking’ observations
into a ball structure when removing Emotion tells us something very inter-
esting: The tail structure A in Fig. 6.9 was determined mainly by different
values of this parameter. Since this structure is (almost) unidimensional (an
elongated spike), this tells that the main factor that distinguishes between
‘tracking’ frames is the motion speed, Emotion . However, since all observa-
tions in structure A in Fig. 6.9 are cyan (‘tracking’), it means that tracking
works reliably for a large range of Emotion values.
The observation projection in Fig. 6.11a also shows us a few isolated out-

lier observations (frames) located to the right of the main bulk of observa-
tions. Being purple, these indicate frames where tracking failed. If we select
these outliers and use feature scoring to find out which features make them
so very different from the remaining frames, we get the answer that the
overwhelmingly dominating cause is the value of Ef latness , see Fig. 6.11b
(scoring computed usingANOVA). To further understandwhy this happens,
we click on the respective outliers and use the observation view (see Fig. 6.8
top-right) to display their corresponding images. We find that, in these im-
ages, there are very difficult to detect teats (even for a human observer), or
even no teats at all. Hence, we find another added-value of the projection-
based analysis of tracking data as opposed to the first visual analytics tool
we proposed (Sec. 6.2.1): We can now quickly find outlier frames without
having to examine all the tracker state parameters.

6.4 conclusion

In this chapter, we have first introduced a visual analytics tool for the assess-
ment of performance of the tracker designs proposed in Chapter 5 (Sec. 6.2).
The tool provides a top-down, overview-and-details, parameter-centric, ex-
ploration of all data involved in the tracking process, enabling users to
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6.4 conclusion

locate problematic configurations and sequences, and explain the track-
ing problems in terms of the values of the various parameters used in the
tracker, or alternatively in terms of special configurations present in the
input images. The key added value of this approach is to help users narrow
down the focus of exploring for problems (and their causes) to a small set
of parameters, parameter values, and input configurations.
Separately, we have introduced a way to assess a tracker’s performance

quantitatively at several levels of detail. First, we do this by offering an
overview of the percentage of frames where tracking succeeds over an en-
tire collection of videos, which allows one to get a quick statistical impres-
sion of the tracker’s robustness on real-world data. Secondly, we proposed
a way to generate proxy ground truth, using an expensive (but high accu-
racy and robustness) brute-force tracker. Comparing our actual tracker’s
results with this ground truth yields a finer-grained view of the accuracy
and robustness of the former, and also points to corner cases which should
be improved.
Next, we have proposed an extension of the parameter-centric visual an-

alytics system with an observation-centric view (Sec. 6.3). This extension
allows a more global, inter-sequence and intra-sequence, analysis of the
recorded tracker data, to support finding correlations between parameter
values and finding similarities of system states. Together, these extensions
allow one to generalize from individual findings so as to gather more gen-
eral evidence supporting the detection of general tracker problems, and
directions to improve them. In particular, this helped us to find how the
tracker success (tracking vs non tracking) critically depends on two main
parameters (and their values), one of which we can fine-tune to improve
tracking effectiveness; that tracking success is largely independent on the
low-level image characteristics of the input video sequence; and that we
do not have clearly redundant parameters in our design. All these findings
help, implicitly and/or explicitly, reducing the effort of analyzing and/or im-
proving our tracking system. To our knowledge, this is the first time that a
visual analytics approach was used to understand the working, and assess
the performance, of tracking systems.
Overall, we have tested over 100 real-life videos of varying lengths (tens

of seconds to minutes), each acquired in actual stables in a production-
process environment, that cover a wide range of cow udder anatomies,
camera-to-subject distances, angles, lighting conditions, and motion paths.
Using the above-mentioned accuracy analysis, we found that the perfor-
mance of our tracker amounts to over 90% of the frames being successfully
tracked. This clearly exceeds the documented performance of comparable
systems [111, 159, 178, 229, 290]. Moreover, for the tracked frames, our
tracker delivers position information which is within an acceptable mar-
gin of error for the envisaged application. Determining these results, and
also finding the few remaining (10%) outlier situations where tracker per-
formance was suboptimal, and the reasons thereof, would not have been
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efficiently possible without the usage of the visual analytics systems pro-
posed in this chapter.
Many directions for further work exist based on the results presented

here. First and foremost, the visual analytics approach for tracker per-
formance assessment, understanding, and improvement can be further
exploited to all these three ends. Our work has shown that important
insights in all these directions an be easily obtained, but has surely not
worked out these insights to their final conclusions. To do this, one would
need to iterate the insight discovery, design refinement, and tracker perfor-
mance re-evaluation pipeline, or the so-called ‘analytics sensemaking loop’,
several times. This can be directly done using no more than the tooling and
methodology proposed here. Secondly, promoting the various constants
used in the tracker design, such as thresholds, window sizes, and weights
(see Sec. 5.3) to parameters evolving over given ranges, and incorporating
these in the parameter analysis proposed in this chapter, would complete
the scope of tracker design analysis. This way, one could have a full picture
of how all the elements involved in our design presented in Chapter 5
actually affect the quality of the tracking results, and further be able to
select better values for them that lead to higher quality tracking.
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7BUNDL ING FOR S IMPL I F I ED V I SUAL I ZAT ION OF
TRA I L AND GRAPH DATA

In Chapters 5 and 6, we have shown how we can extract 3D trails of a
complex moving shape (the teats of a deformable cow udder), respectively
how we can use visual analytics to assess the accuracy of such trails. In this
chapter, we turn our focus from the visual analysis of trails at the ‘micro’
scale to the ‘macro’ scale. We look here at significantly larger datasets hav-
ing hundreds up to a million trails, which describe the motion of vehicles
over large geospatial areas. As such, our visual analytics focus moves now
from supporting the assessment of the performance and accuracy of the
trail-extraction process to the scalable visual presentation and exploration
of trails. To this end, we propose to use a bundling approach. We present
a new bundling method for large trail datasets, and explain how computa-
tional efficiency and limited clutter can be achieved by several techniques1.

7.1 introduction

Very large graphs and networks have become pervasive in data-intensive
applications such as traffic and network monitoring, software engineering,
bioinformatics, and telecom applications. When the size of such datasets
exceeds certain limits, understanding them becomes challenging. Edge
bundling methods have become an important tool for this task: Given a
large graph having a 2D spatial embedding of its nodes, bundling pro-
duces a simplified view of the graph structure by grouping spatially-close
and semantically-related edges, so that edge-crossing clutter is reduced
and the graph’s main connectivity patterns get easier visible. Bundling
was used for applications in vehicle traffic [115, 142, 225], program under-
standing [50, 218], multivariate data analysis [168], and medical visualiza-
tion [27].
While many bundling methods have been proposed, several key chal-

lenges exist to their usability and usefulness:

Scalability: Recent techniques can bundle graphs of tens of thousands
of edges in subsecond time [92, 116, 184]. While impressive, this speed is
still insufficient for graphs such as Internet connectivity patterns, world-
wide traffic flows, or call graphs of large software systems of millions of

1 The material in this chapter is based on the publications: M. van der Zwan, V. Codreanu,
and A. Telea. CUBu: Universal real-time bundling for large graphs. IEEE TVCG, 22(12):
2250–2263, 2016; and M. van der Zwan, A. Telea, and T. Isenberg. Continuous navigation
of nested abstraction levels. In M. Meyer and T. Weinkauf, editors, Proc. EG/IEEE VGTC
Conference on Visualization (EuroVis) – Short papers, pages 13–17, 2012.
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bundling for simplified visualization of trail and graph data

edges. Moreover, bundling time-dependent (dynamic) graphs, or changing
bundling parameters during interactive data exploration, asks for bundling
methods that are one to two orders of magnitude faster. Such methods do
not exist yet.

Directions: Most bundling methods cannot separately bundle edges hav-
ing different directions. This creates a high amount of overdraw, which
precludes users from reasoning about the directions of edges in a given
bundle [119, 173]. Current directional bundling methods, which aim to
solve this issue, are however too slow to cope with interactive exploration
of large graphs [206, 209, 231].

Level of detail: As bundling highlights the main connectivity patterns
in a graph, users also need level-of-detail techniques able to emphasize
the importance of a given bundle for the overall pattern. Various shading
techniques have been used for this, e.g. colormapping and alpha blend-
ing [107, 119, 142] and shaded tubes [76, 267]. While detail shading can
effectively provide level-of-detail cues, it cannot (yet) be computed in real
time and it is relatively complex to implement.

Generality: A final challenge is the proliferation of bundling techniques.
While each such technique may excel in specific ways e.g. speed, ease of
use, or achieving specific constraints on the resulting layout, achieving all
these goals with a single algorithm is still hard [310]. Hence, users face the
dilemma of implementing and using a large set of algorithms, or settling
with the (dis)advantages of a specific algorithm.

We propose a single bundling algorithm: CUBu (CUDA-based Universal
Bundling) to address all above challenges2. We tackle scalability by a GPU
bundling method that achieves average speed-ups of 50 up to 100 times vs
the fastest existing general-graph bundling techniques [92, 116, 184]. Next,
we propose two directional bundling extensions that are fast, robust, and
easy to use. Thirdly, we show how to create multiscale bundled visualiza-
tions having the same quality as comparable methods [76, 267] and with a
much simpler, and faster, implementation. Finally, we show how to create
bundle styles proposed by widely different methods [53, 76, 107, 142] with
our single method. As CUBu achieves all the above, we dub it an ‘univer-
sal’ bundling algorithm. We illustrate CUBu’s speed and quality by several
applications on large real-world graphs.
The structure of this chapter is as follows. Section 7.2 covers relatedwork.

Section 7.3 describes our general bundling algorithm. Section 7.4 presents
applications of CUBu in several domains. Section 7.5 discusses our method.
Section 7.6 discusses the usage of trail bundling in the context of simplified
(abstract) representations of flow fields. Section 7.8 concludes the chapter.

2 The acronym relates also to the spelling of the syntagm ‘the cube’ in Romanian, a tribute
to the geometric interests and background of the last author of [315].
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7.2 related work

We overview existing bundling methods based on the four feature, or re-
quirements, classes listed in Sec. 7.1:

Scalability: Early bundling methods for compound graphs, e.g. HEB[107],
achieve a high scalability, by exploiting explicit hierarchical information
present in the input graph. Methods for bundling general graphs (with-
out hierarchical information) evolved from slow approaches, such as
force-directed edge bundling (FDEB [108]), to advanced schemes to detect
edge proximity and thus achieve faster bundling, such as control meshes
(GBEB [53]), Voronoi diagrams (WR [142, 143]), medial axes (SBEB[76]),
and radial kernel splatting (KDEEB [119], 3DHEB [184]). The MINGLE
method uses multilevel edge clustering to accelerate the bundling pro-
cess [92]. Scalability is critical for e.g. streaming (time-dependent) graphs:
For the well-known US airlines dataset (900 edges), FDEB [108] achieves
19 seconds/frame on a 1.7GHz PC (see [108], Sec. 4.2); StreamEB achieves
6 seconds/frame on similar hardware [187]; KDEEB reaches 0.17 second-
s/frame [119]; and 3DHEB yields 0.4 seconds/frame [184]. Such speeds are
yet insufficient for real-time bundling of large static graphs or large dy-
namic graphs having hundreds of thousands of edges or more, such as the
wiki or amazon graphs discussed in [92].

Directions:A bundle contains several edges placed close to or atop of each
other. Bundles separate high-density edge groups by large white space ar-
eas, and thereby help perceiving the overall graph structure. Yet, bundling
creates an undesired overdraw issue: We cannot display edge-specific at-
tributes for (all) edges in a bundle, since these share the same screen space.
This, in turn, makes it harder to reason about a bundle’s semantics. The
standard solution to this issue is to aggregate attributes at overlapping
edges e.g. using averaging done by alpha blending [107, 108, 142, 267].
While this works well for quantitative scalar attributes, it yields wrong
results for categorical attributes. Edge directions are one such example. To
address this, one can separate same-direction edges into different bundles
and next directionally color-code edges to show directions. Such direc-
tional bundling methods include divided edge bundling (DEB), which ex-
tends FDEB to include edge-direction compatibility [231]; attribute-driven
edge bundling (ADEB), which extends KDEEB by a flow map encoding
local edge-compatibility metrics [206]; and 3DHEB, which bins edges per-
direction-interval and uses KDEEB to bundle each bin separately [184]. Yet,
all these methods are much slower than undirected edge bundling, making
them unsuitable for interactive large-graph exploration.

Level of detail: Graph splatting first proposed to depict a graph as a
continuous image-space density field, computed by convolving the graph
drawing by a Gaussian filter whose size controls the level-of-detail [282].
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Accuracy issues on computing such dof the node ensity fields are discussed
in [144, 225]. This image-space idea was extended in the LaGO tool by
aggregating edges connecting local node-density maxima [312]. Recent
bundling methods highlight a graph’s main structure (dense bundles vs
isolated edges) by alpha blending [107, 108, 142]. Shaded cushions [283],
adapted to create crisp curved-and-shaded tubes along bundles [76, 267],
better separate different pattern scales in a graph than splatting or alpha
blending, and also separate crossing bundles better than alpha blending or
straight-line edge aggregation. Yet, creating shaded bundle tubes is very
complex, involving operations such as distance transforms and medial
axes [76, 267], which are far from real-time performance.

Generality: Globally, we see three major styles in existing bundling meth-
ods: (1) smooth bundles, having few inflection points between end-nodes,
are created by FDEB, KDEEB, and WR, and help easy visual following of
large bundles; (2) strongly ramified bundles, showing a hourglass-like pat-
tern between end-nodes, are created by HEB, GBEB, and SBEB, and help
an easy detection of connection branching points; and (3) straight-line bun-
dles, showing a highly simplified graph connectivity pattern, are created
by LaGO, and help an easy recognition of end-to-end node connections. All
these drawing styles have their merits (and limitations). The problem is that
obtaining each such drawing style entails changing the bundling method
being used. This is undesirable in terms of application-design simplicity
and also forces users to learn parameter settings of many such methods.

7.3 proposed method

CUBu’s input is a graph drawing G = (V ,E) with vertices V = {vi ∈ R2}
and edges E = {ei ⊂ R2}. Edges ei can be straight lines or 2D curves,
which covers bundling of both straight-line graphs [53, 108, 142] and spatial
trajectories [115, 118, 119, 225]. Edges are modeled as uniformly-sampled
polylines with control points, or sites {xj ∈ E}, and can be either directed
or undirected. Our algorithm’s first phase creates a bundling B ⊂ R2 of
G, based on user-specified preferences: bundling density, directional sepa-
ration, and desired bundle shape (Sec. 7.3.1). For this, we propose a set of
techniques which lead to massive performance improvements of CUBu as
compared to all existing bundling methods. In the second phase, we render
B using suitable shading, transparency, and color-mapping to emphasize
various structures of interest on different spatial scales (Sec. 7.3.2). These
two phases are detailed next.

7.3.1 Bundling algorithm

To achieve our goal of real-time bundling of large graphs, we efficiently use
parallel computing architectures such as NVidia’s CUDA or OpenCL. After
studying thewide family of general-graph bundlingmethods, we found that
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KDEEB, one of the fastest bundling methods, is the most suitable to such
parallelization. Yet, a careful study of KDEEB reveals several performance
and accuracy issues. We next describe these issues, and how CUBu corrects
them.
KDEEB follows the mean shift principle [46]: The edge sites xj are con-

volved with a 1D parabolic (Epanechnikov) radial kernel K of radius R, to
obtain an edge density map ρ : R2 → R+ as

ρ (x ∈ R2) =

∫
y∈E

K

( ‖x − y‖
R

)
dy. (7.1)

Next, the sites xj are advected upwards in the normalized gradient of ρ
with a distance R, or in other words

xnewj = xj + R
∇ρ
‖∇ρ‖ . (7.2)

Edges are next resampled to get an uniform and dense spatial distribution
of the sites xj over G, needed for a good kernel density estimation. Finally,
a 1D Laplacian filter is applied on the edges to remove small-scale jitters
created by the finite-step advection (Eqn. 7.2). The above three steps are
repeated pN = 10 times, while R is decreased from an initial user-specified
value pR by a small fraction at each step, so that, when all iterations are
completed, the final R equals one. We next discuss our changes to all these
steps, and their reasons to be.

Density map: KDEEB computes ρ using OpenGL by splatting the radial
kernels K , encoded as 2D floating-point textures, at the site locations xj ,
and accumulating the result ρ in a floating-point image buffer. While sim-
ple to implement, this takes about 40% of the total bundling time for the
graphs discussed in [116]. For large graphs of over 1M sites, we measured
that splatting reaches over 60% of the total bundling time. This is due to the
fact that splatting uses a scattering model: Data from sites xj is scattered to
neighbor pixels within the kernel radius R, so parallelization is severely lim-
ited by the many concurrent image-writes. We address this by a gathering
strategy, following earlier results that indicate that this is more computa-
tionally efficient than scattering [198]: We compute ρ (y) for each pixel y
in the image ρ by summing up the contributions of all sites xj closer to
y than R. Additionally, we split the 2D convolution (Eqn. 7.1) into two 1D
passes, one over the rows and one over the columns of the image ρ, and
treat several blocks of rows, respectively columns, in parallel via CUDA
kernel invocations.
For gathering to work, we need to know, for each pixel y, all sites xj for

which ‖y − xj ‖ ≤ R. Typical solutions for this use spatial search struc-
tures, e.g. kd-trees. While such techniques exist on CUDA [37, 93], they
all need costly reinitializations after each advection step that moves the
sites (Eqn. 7.2). We propose a faster solution: We first create a per-pixel site-
density buffer C : R2 → N, where C (x) gives the number of sites in E that
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color:
edge density

edge endpoints

edge sampling points

a) b)

Figure 7.1: a) Bundled graph with nodes (green) and edge sampling points (green).
b) Density map for the same graph.

fall inside pixel x, by rendering all sites into the imageC , using atomicAdd
operations to take care of concurrent writes. Next, we compute ρ (y) as

ρ (y) =
∑

x∈T (y)
K (‖x − y‖)C (x), (7.3)

with T (y) being a disk of radius R centered at y. In contrast to scattering,
where speed is bounded by the integral of ρ (Eqn. 7.1) over R2, the speed of
our gathering is bounded by the much lower number of concurrent writes
occurring when computing C , i.e., the probability that two or more sites
fall over the same pixel, i.e. the number of edge intersections in the graph
drawing. To further decrease this probability, rather than sampling edges
uniformly with a step of Δ units (as in KDEEB), we use a sampling step of
Δ + Δ

10δ , where δ is a random real number uniformly distributed in [−1, 1],
computed by CUDA’s cuRAND library. This decreases the chance that
closely-spaced edges, appearing in latter bundling iterations, have clusters
of closely-spaced sites, separated by gaps of size Δ. A good by-product of
our random sampling is that sites are more evenly distributed in image
space, thereby leading to a better estimation of the density gradient ∇ρ
used for advection.

Advection, resampling, and smoothing: KDEEB advection (Eqn. 7.2)
strictly follows the mean-shift idea, i.e. moves sites upwards in the den-
sity gradient. Yet, since div∇ρ is practically never zero for our bundles
(see analysis in [76]), advection increases the local edge-sampling density
in negative-divergence areas, and decreases density in positive-divergence
areas. To ensure a nearly constant sampling density (important for density
estimation [116]), KDEEB resamples edges after each advection iteration.
We measured this resampling cost on a wide family of graphs, and found it
to be about 30% of the total bundling time, in line with [116]. Let us analyze
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what happens when advecting a site: The site’s shift xnewj − xj (Eqn. 7.2)
can be decomposed into a drift along the tangent

τ (xj) =
xj+1 − xj
‖xj+1 − xj ‖ (7.4)

of the graph edge sampled by xj and a motion along the normal nj to the
edge at xj . Tangent drift ((x

new
j − xj ) · τ (xj ))τ (xj ) causes sampling-density

variations. We cancel this drift by advecting sites along nj , i.e., replace
R∇ρ/‖∇ρ‖ in Eqn. 7.2 by its projection along nj . This change, which has
negligible computational cost, yields a much more uniform sampling den-
sity. We can now resample edges every three or four advection iterations,
instead of every iteration, as in KDEEB. We also do one Laplacian smooth-
ing iteration every 3..4 iterations rather that after each iteration (as in
KDEEB), since our advection is controlled not just by the (imprecise) den-
sity gradient, but also by the shape of the edges themselves (due to normal
projection). Our constrained advection gives a performance boost of about
20-30% as compared to KDEEB.

Bundle shape control:Different bundling techniques create different bun-
dle styles, in terms of their shape, curvature, and thickness: HEB creates typ-
ical ‘hourglass’ shapes by its B-spline control polygons that capture the un-
derlying hierarchy tree. HEB shapes have been found effective for tasks in-
volving finding high-level connections between node groups [50, 270]. HEB
bundles also constrain edge directions close to their node endpoints, help-
ing one to visually match edges with node glyphs. FDEB and related meth-
ods, e.g. KDEEB, create bundles with less inflection points and smoother
curvature variation than HEB, which are easier to follow visually [97, 108,
116, 187]. SBEB, GBEB, and WR create highly ramified bundles, which are
good in showing splitting/merging of paths between node groups. While
not typically seen as bundling methods, several techniques route spatially
close edges along constrained paths, yielding highly simplified graph draw-
ings [142, 312]. Summarizing, different bundle styles support different anal-
ysis tasks and/or user preferences.
Changing between bundle styles is hard. Small changes can be done

by parameter tuning, e.g. the amount of Laplacian smoothing or edge re-
laxation [76, 108]. More complex style changes, e.g. creating HEB-style
bundles with FDEB or a schematic bundled layout with KDEEB, are hard
or not even possible without changing the bundling method. We achieve
all such styles by changing a few parameters in CUBu.

HEB style: To create HEB bundles, we modulate site advection by an edge-
profile function, i.e., replace Eqn. 7.2 by

xnewj = xj + Rλ(t (xj ))
∇ρ
‖∇ρ‖ . (7.5)

Here, λ : [0, 1] → [0, 1] controls the amount of motion of each site xj as
a function of the parametric arc-length position t ∈ [0, 1] of xj along its
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c) KDEEB

f) CUBu, standard style

i) CUBU directional (tracks style) j) CUBu directional (inline style)

g) CUBu, small-world style h) CUBu, schematic style

color:
edge length

color:
edge length

color:
edge length

color:
edge 
direction

color:
edge 
direction

d) SBEB

a) FDEB
b) WR

e) 3DHEB

color:
shaded
clusters

Figure 7.2: Bundling styles for migrations graph. (a-e) Existing algorithms. (f-j)
Styles produced by our single CUBu method.
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edge. Using a hourglass-like function λHEB (t ) = ((1− 2|t − 0.5|)3)4, having
two symmetric inflections at its endpoints t = 0 and t = 1 and a plateau
of value 1 in the middle, creates HEB-style bundles, by gradually limiting
the advection of sites close to bundle endpoints. Using a function λ = 1
produces the classical smooth fan-out common to general-graph bundling
algorithms [76, 108, 116, 142].

Figure 7.3: FDEB vsHEB styles for airlines graph, using ‘parallel tracks’ directional
bundling.

Small-world style: When exploring small-world graphs, one wants to see
how a compact and strongly-related node group is connected (or not) to
other node groups. Several methods do this by pre-clustering nodes based
on connectivity and distance, and next drawing straight-line connections
between nodes and their cluster centers, followed by drawing connections
between cluster centers themselves [12, 98, 99, 312]. This yields a typical
‘linked star’ pattern akin to the one in a bubble graph layout [26], where
stars show node clusters and links between star centers show higher-level
connections between node clusters. We obtain the same effect by edge
bundling, without needing to explicitly cluster the input graph, as follows.
Let e be an edge with node endpoints vi and vj . We apply first do mean-
shift clustering on all nodes v ∈ V . This shifts each node v to a location
vc close to the center of its local neighborhood. Next, we insert the points
vci and vcj as the second, respectively one-but-last, sites on the sampled
edge (vi , vj ). Finally, we apply our CUBu bundling method on the resulting
graph drawing.
Figure 7.2g, shows the effect of this technique. Several star structures

appear, showing groups of related nodes. Bundles now link the centers
of these stars, showing the node-group to node-group main connectivity
patterns more explicitly than via standard bundling (e.g. FDEB or KDEEB).
More whitespace is left between the bundles, as edges will first automat-
ically agglomerate by going to the node-group centers vci and vcj prior to
bundling proper. This further helps better visual separation of bundles.
The kernel radius pR used for mean shift clustering of edge endpoints gives
the desired size of node neighborhoods: Large pR values create fewer and
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larger node clusters, i.e. show the coarse-level small-world graph structure.
Small pR values create more and smaller node clusters, i.e. show the fine-
level small-world structure. The lower bound of pR ≤ 1 pixels yields the
standard KDEEB bundling.

Schematic style: Schematic bundled-graph drawing uses simple edge shapes
and, at the same time, groups spatially close edges into bundles. Examples
are orthogonal layouts used for software diagrams [60] and metro map
layouts [188, 254]. CUBu can generate a particular type of schematic draw-
ings, in which (a) spatially close edges are bundled and (b) bundles have
shapes given by simple polylines consisting of a few segments. For instance,
Fig. 7.2h can be seen as the schematic simplification of the bundlings in
Figs. 7.2f or 7.2g. To do this, we simply edge resampling after each ad-
vection iteration. As outlined in Sec. 7.3.1, this makes advection create a
highly non-uniform sampling-point density consisting of a few spatially-
separated dense point clusters. Edges consist of segments linking such
clusters, thus have the desired coarse polyline structure.

Directional bundling: Drawing graphs with edges separated by direc-
tion is of recognized importance. Only a few bundling methods can do
this: DEB [231] adapts FDEB’s edge-compatibility function [108] to add
directional similarity atop of spatial closeness. However, this method is
quite slow. Similarly, ADEB [206] and 3DHEB [184] extend KDEEB’s edge-
density function to include a flow field capturing edge directions (ADEB)
and respectively compute H edge-density maps, uniformly sampled over
the 2π edge orientation range. FDEB and 3DHEB are 5 to 10 times slower
than KDEEB, although implemented on the GPU. Other fast bundling tech-
niques, e.g.MINGLE, are hard to adapt to use directional compatibility. We
describe next two directional bundling techniques that can be easily added
to CUBu to produce similar results to DEB, 3DHEB, and ADEB, while keep-
ing scalability.

Parallel tracks: Given a graph with edges ei and sites xj , bundled by an
undirected bundling method (e.g. FDEB, SBEB, KDEEB, WR, or any simi-
lar method), we move each site xj with a small distance ϵλ(t (xj )) in the
direction τ (xj ) × d, where τ (xj ) is the normalized tangent vector to ei at
xj (Eqn. 7.4), d = (0, 0, 1) is the vector normal to the 2D layout plane, and t
and λ are the edge arc-length parameterization and edge-profile functions
λ used earlier for bundle shape control. This effectively ‘splits’ each bundle
into two parallel railway-like ‘tracks’ separated by a maximal distance 2ϵ ,
so that all edges in a bundle that go in the same direction stay in one such
track. As Figs. 7.3 and 7.2i show, this creates a uniform and regular sepa-
ration of bundles into two thinner, parallel-running, bundles which can be
next easily color-coded to show edge directions. The value ϵ is controlled
by the user, typically set to about 10 pixels for good results. Parallel tracks
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can be applied to any bundling method with negligible cost.

Inline directional bundling:Our second directional bundling technique takes
place during bundling itself rather than in postprocessing. For this, wemod-
ify Eqn. 7.3 to compute, for each edge site y, a density gradient ρ (y) that
accounts only for sites x within a radius R from y which have an edge-
tangent vector τ (x) (Eqn. 7.4) that is compatible with the tangent τ (y). In
detail, we replace Eqn. 7.3 by

ρ (y) =
∑

x∈T (y)
K (‖x − y‖)C (x)κ (x, y), (7.6)

whereκ (x, y) = τ (x)·τ (y) ∈ [−1, 1]. This bundles close same-direction edge
fragments as usual, but forces close opposite-direction edge fragments to
repel each other. In the above, we use for τ (·) the tangent directions of the
original (unbundled) edges, as wewant to estimate directional compatibility
based on the input, and not on the bundled, graph.
Compared to parallel tracks (Fig. 7.2i), inline directional bundling (Fig. 7.2j)

creates larger separations between edges having different directions, and
an overall more natural effect, quite similar to DEB. Bundle shapes can now
adapt more freely, as they are only constrained by directionally compatible
edges.

7.3.2 Visualization enhancements for bundled graphs

We next propose three visual additions that help exploring the information
conveyed by bundled graphs.

Color and opacity: Existing bundling techniques use color to encode geo-
metric edge properties, e.g. direction or length; or edge attributes, e.g. time,
height, or speed when bundling trail datasets [119, 142]. Alpha blending
typically shows edge density ρ, i.e. bundle importance, as opacity [107]. Yet,
tuning alpha blending is not easy: Too high values make the drawing clut-
tered in high edge-density areas [73]; too low values make outliers, like
sparse bundles and isolated edges, hard to see.
We propose an enhanced color-and-opacity mapping scheme that alle-

viates the above issues. Each edge site x has an HSVA (hue, saturation,
value, alpha) attribute. We allow setting H and S based on any edge at-
tribute. Examples below include both local and global attributes, such as
the edge direction at x and the edge length respectively. V and A are set
using a parabolic cushion profile function c , where

V (x) = l/lmax
+ (1 − l/lmax

)c (x), (7.7)

A(x) = α · (1 − l/lmax
+ l/lmax

c (x)), (7.8)

c (x) =
√
1 − 2 · |t (x) − 1/2 |. (7.9)
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Here, l is the length of the current edge; lmax is the length of the longest
edge in E; t is the edge arc-length parameterization explained in Sec. 7.3.1;
and α ∈ [0, 1] is a parameter that controls the drawing’s overall opacity.
Short edges get constant opacity A but a parabolic luminance V profile,
whose gradient makes them appear more salient in the image, which helps
spotting isolated outliers. Long edges get a flat luminance V and parabolic
opacity profile. This way, their end fragments become less opaque, and thus
make their connections to their end-nodes be more visible. Their flat lumi-
nance de-emphasizes them, as opposed to short edges, since their length is
a strong enough visual cue to make them visible. Figures 7.2f-j show how
this works: Compared to Figs. 7.2a-e, which use classical alpha blending,
we now see many more detail edges that connect to isolated nodes.

Multiscale shading: Edges in bundled drawings can be hard to follow end-
to-end due to crossings [173, 267]. This can be helped by a shading effect
that makes bundles appear like 3D overlaid tubes rather than flat 2D shapes.
The shading gradient (high across a bundle, low along it) makes the visual
separation between crossing bundles easier. This can be done by explicitly
computing separated bundles, by clustering edges belonging to the same
bundle, and rendering generalized shaded cushions atop such bundles [283].
Such shading involves complicated and costly operations: edge clustering,
distance transforms, and medial axes [76, 267]. For graphs of tens of thou-
sands of edges or more, doing this at interactive rates is not possible.
We propose a new fast way to compute shaded bundles from a bundled

graph drawing. Consider the density map ρ (Eqn. 7.1) as a height plot sur-
face z = ρ (x). At each pixel x, we estimate the normal n(x) to this surface

as the normalized 3D vector
(
dρ

dx
,
dρ

dy
,−1
)
, with derivatives of ρ computed

by central differences. We next use n(xi ) to shade each edge site xi by the
classical Phong lighting model, like [142]. However, the method in [142]
has a key problem: The density ρ can vary hugely over its domain: Along
dense and tight bundles, ρ derivatives have high values, yielding almost
horizontal normals, thus no illumination (if we use a vertical light vec-
tor); along sparse bundles of just a few edges, ρ derivatives get very low,
yielding an almost vertical normal n, thus maximal illumination. This is
opposite to our goal to de-emphasize dense bundles and emphasize sparse
ones. We handle this by a different shading model: For each pixel x, we
compute the maximal value ρmax (x) of ρ over a disk of radius r centered
at x. Next, we use ρ (x)/ρmax (x) as height in the above lighting computa-
tions. This locally normalizes ρ so that dense bundles appear as shallower
bumps and sparser ones as taller ones, respectively. The parameter r con-
trols the smoothing amount in a multiscale way: Larger values make bun-
dles have larger highlights and less sharply-defined borders; smaller values
create sharper highlights and bundle borders. Computing bundle shading is
easily implemented in CUDA by a single pass over all pixels x of the density
image ρ. Figure 7.4 shows our results. As visible, dense (important) bundles
stand out easily. in terms of color and shading.
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7.4 applications

color:
edge 
direction

color:
edge length

a) migrations graph

b) airlines graph

Figure 7.4: Multiscale tube shading for the migrations and airlines graphs. Insets
show shading details (Sec. 7.3.2).

7.4 applications

We next illustrate the added-value of CUBu’s scalability and various visual
encoding styles by means of several applications involving different types
of datasets, questions, and application domains.

Huge graphs: Our first example uses the amazon graph, which records
about 900K co-purchase relations between about 520K items on ama-
zon.com [92]. Figure 7.5 shows this graph, visualized withMINGLE, KDEEB,
and CUBu. We see that MINGLE only exposes the edge-density pattern in
the graph; KDEEB shows some structure, but cannot outline the main
connection patterns. In contrast, CUBu clearly shows these connection
patterns. We also see how CUBu generates very similar results for two
different sampled versions of this graph, taken from [92] (Figs. 7.5c,e); and
how tuning the radius r used for multiscale shading generates coarser vs
finer-grained visualizations of the graph structure (Fig. 7.5c vs d).
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bundling for simplified visualization of trail and graph data

c) CUBu, 500K edges, 

fine shading 

(color=edge length)

d) CUBu, 500K edges, 

coarse shading 

(color=edge length)

e) CUBu, 899K edges, 

fine shading 

(color=edge length)

h) KDEEB style

(color=direction)

i) small-world style

(color=direction)

f) MINGLE bundling

(color=density)

wiki-vote graph (105K edges)

g) LaGO simplified

drawing

amazon graphn graph

a) MINGLE, 899K edges b) KDEEB, 899K edges

Figure 7.5: Multiscale visualization of large graphs (amazon and wiki) at different
sampling resolutions and shading scales (Sec. 7.4).
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Projection analysis: Multidimensional projections are efficient and ef-
fective tools for mapping multivariate datasets, having tens or hundreds
of attributes per data point or observation, to a 2D scatterplot, so that
high-dimensional similarities between points are preserved in this scat-
terplot [130, 199, 202, 203, 242]. As all existing projection techniques can-
not faithfully preserve high-dimensional distances, showing erroneously-
projected points is crucial to using the resulting projections [168]. One way
to spot wrongly-projected points is to draw point-to-point connections
(edges) and color these by the projection error [168]. However, this creates
a very large, and cluttered, set of lines. Figure 7.6a shows this for a relatively
small set of 2300 19-dimensional points from the well-known segmentation
dataset describing image fragments [88], projected to 2D using the LAMP
technique [130]. Here, point-to-point projection errors are color-coded us-
ing a rainbow colormap (blue=low projection errors, red=high projection
errors). Little structure, in terms of point-groups sharing similar projection
errors, can be seen. Using CUBu, we can create a bundled layout of these
point-to-point error edges, which now better shows that the main errors
affect the top vs bottom point groups (Fig. 7.6b). Using our tube-like shad-
ing, we now can better spot the top-to-bottom bundle, and also see that
an important left-to-right bundle exists (Fig. 7.6c). Finally, using HEB-style
bundles allows us to better see how individual projected points participate
in bundles, i.e., are affected by projection errors (Fig. 7.6d). All these visu-
alizations are generated in real-time on a commodity PC, due to our fast
CUBu bundling technique.

Figure 7.7 shows a more complex usage of CUBu to depict projection
errors in a multidimensional projection of a high-dimensional dataset. The
projected points, visible as blue dots, are grouped into five clusters, based
on their attribute similarity. Each cluster is shown by a colored shaded
cushion, using five categorical colors. Bundles show similar points which
are placed far away from each other by the projection, i.e. the most impor-
tant projection errors, and are colored by the projection error magnitude.
The image is taken from the cover of a recent visualization book [271].

Eye tracking: Our final example shows the eye tracking data set used in
[119], which comes from tracking the eye movement over the instruments
of an airplane, in a scenario involving a pilot performing a landing ma-
noeuvre in a flight simulator. The aim of this experiment was to test a new
cockpit instrument providing landing assistance and its use in combination
along the other instruments in the cockpit [119]. In Fig. 7.8 a, this new in-
strument is indicated as LAI (Landing Assistance Interface). The vertices
in the graph are the points to which the eyes where drawn (so-called fixa-
tion points) and the connecting edges indicate eye-movement between the
vertices (so-called saccades). For this dataset, fixation points and saccades
were obtained from raw eye-tracking data following the protocol detailed
in [119].
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a) raw graph b) standard bundling

c) standard bundling 
    and shading

d) HEB style bundling 
    and shading

Figure 7.6: Projection errors. Color maps edge lengths (Sec. 7.4).

Figure 7.7: Bundled graph showing projection errors between point-groups in a
multidimensional projection. Image from cover of [271].
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7.4 applications

a) ADEB bundling

b) CUBu bundling

Figure 7.8: Eye tracking analysis of pilot gaze (Sec. 7.4).

Drawing the raw saccades between fixation points generates a com-
pletely cluttered image, from which high-level connections between fixa-
tion points cannot be inferred. However, bundling can be used to de-clutter
and simplify such an image [206]. Figure 7.8 compares this approach using
the attribute-driven edge-bundling method (ADEB) [206] and our CUBu
method. The figure shows bundles generated by ADEB vs those generated
by CUBu, both using the same color scheme to show the main direction of
the original (unbundled) edges. Like the image generated with the ADEB
method, the CUBu bundled image (Fig. 7.8 b) shows the same connections
between instruments. However, we can also see a smaller but still sig-
nificant bundle along the central axis of the image due to the different
rendering style allowed by CUBu. Also, CUBu is roughly 100 times faster
than ADEB for this dataset (see also Tab. 1).

Flight exploration: A final application of CUBu is the simplified visualiza-
tion of dynamic flights data, used on the context of helping air traffic con-
trollers with analyzing and planning routes of aircraft [24, 77, 113, 117, 274].
This more involved application deserves more attention, and as such is de-
tailed separately in Chapter 8.
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7.5 discussion

We have implemented CUBu using C++ and NVidia CUDA 2.1 for the
bundling part and OpenGL 1.1 for rendering. All bundling steps are fully
done on the GPU. Once a bundled result is obtained, the bundled dataset is
transferred back to the CPU and rendered by means of standard OpenGL
calls.
We have tested CUBu on Linux and Mac OS X with several GPUs (GT

330M, GeForce 580, and single and dual-GPU GTX 690). For the dual GPU,
we split all work (density estimation, advection, resampling, and smooth-
ing) evenly on the two GPUs. For testing, we used a variety of graphs,
including all static graphs in [92, 108, 116, 168] and the dynamic graphs
in [119, 137]. These range from a few hundred nodes and edges to hun-
dreds of thousands of nodes, almost a million edges, and almost 20M edge
sampling points (sites).

7.5.1 Parameter settings

As visible from the earlier discussion, CUBu offers a quite large flexibility
in terms of styles of bundling and rendering. However, this comes at the
expense of offering a wide range of parameters to the end user, who should
be able to effectively understand them. We discuss these parameters (pur-
pose, effect, range, good preset values) below.

Kernel sizepK :The initial kernel size, specified in pixels, controls bundling
coarseness. In detail, pK tells the user the maximum distance at which two
edges ‘see’ each other, i.e. get bundled. Small values yield more, and sparser,
bundles; large values yield a simpler view having less and denser bundles.
A good preset for pK is 5% of the size of the graph drawing.

Bundling iterations pN : The number of bundling iterations should be
large enough so that bundling converges to a stable structure. For all tested
graphs, we verified that pN ∈ [10, 15] leads to convergence, although
graphs having already closely spaced edges, such as trail sets [119] con-
verge with less iterations. Hence, we conservatively preset pN = 15.

Image resolution pI : The output image size controls the accuracy of
density estimation, and thus also of gradient estimation and subsequent
bundling result. Typical applications would use pI = 5122 pixels. For high-
quality results, such as the images in this chapter, we usedpI = 1024

2 pixels.

Sampling points pS : The edge sampling density, equal to the total num-
ber of sampling points divided by the sum of all edge lengths, also affects
bundling quality. Intuitively, we want the sampling density to be high
enough to capture the smallest details of interest in our graph drawing, but
not higher, as this decreases speed. For all our test graphs, we found this
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7.5 discussion

FDEB DEB SBEB GBEB ADEB 3DHEB KDEEB MINGLE CUBu

65 27.5 26.6 5.6 1.3 0.7 0.5 0.2 0.014

Table 1: Bundling times (seconds) for several methods for the US airlines graph
(235 nodes, 2099 edges, 86K sample points), see Sec. 7.5.2.

optimal density to be roughly equal to one sampling point per 10 pixels of
edge length.

7.5.2 Performance

CUBu’s performance depends on its four parameters: kernel size pK , num-
ber of bundling iterationspN , image resolutionpI , and sampling point count
pS . To analyze scalability, we varied all four parameters, one at a time, while
keeping the other three fixed around good default values, and measured
the bundling time. Figure 7.9 shows our timings on the single and dual-
GPU GTX 690 platform, thereby also showing multi-GPU scalability. We
see that bundling speed is linear in pN , pS ,

√
pI , and roughly independent

onpR . Also, we see that CUBu scales well on a dual-GPU platform. Since our
dual-GPU design simply splits workload between the two GPUs, it should
also scale well on a platform having more than two GPUs. This is an im-
portant result, as none of the bundling algorithms known so far do takes
advantage of multi-GPU capabilities.
The complexity of CUBu is O (pIpNpS ), worst-case identical to KDEEB

and ADEB. Yet, the highly-parallel design of CUBu ensures that it is 30 to
100 times faster than KDEEB, the fastest known undirected bundling com-
petitor (Tab. 2). Compared to ADEB, CUBu is 60 to 200 times faster, as ADEB
is half the speed of KDEEB [206]. Further comparison, done on the well-
known US airlines graph (235 nodes, 2099 edges, 86K sample points), are
listed in Tab. 1. These results are not surprising given that the complexities
of MINGLE, FDEB, GBEB, and DEB are essentially quadratic with respect
to pS , while the complexity of CUBu is linear with respect to pS .
The above performance results are difficult to beat. After this work was

completed, Lhuillier et al. presented FFTEB, a general trail-bundling al-
gorithm that is about two times faster than CUBu for undirected graphs,
and about 3 times faster than CUBu for directed graphs, respectively [153].
FFTEB is basically identical to CUBu, except that the computation of the
density map ρ (Eqn. 7.1) is performed by multiplication in the Fourier do-
main, rather than by spatial convolution, in our case. However, this requires
additional costs to transform the graph drawing G to the Fourier domain
and back, at each iteration step. As noted above, a certain performance
increase an be obtained, but not a dramatic one.
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Graph Nodes Edges KDEEB CUBu (1 GPU)

Samples Time (ms) Samples Time (ms)

US airlines 235 2099 86K 500 86K 14

US migrations 1715 9780 220K 1500 221K 24

Radial 1024 4021 290K 1500 290K 23

France airlines 34550 17275 330K 1800 330K 25

Poker 859 2127 50K 400 50K 11

Amazon 738491 899791 19M 8053 19M 152

Table 2: Timings for CUBu and KDEEB [116] for several graphs (Sec. 7.5.2).

7.5.3 Generality

CUBu can handle graphs of any topology and having an initial edge layout
given by curves or straight lines, as long as we have a 2D node layout. By
varying a few parameters, we can achieve undirected or directed bundling
and several bundling styles (FDEB, HEB, small-world, and schematic) and
shading effects (flat, emphasizing outlier edges, and tube-like) with a single
implementation. All bundling parameters, except the image resolution, can
be controlled locally, by simply making them a function of the data values
at any edge sampling point (site) or neighborhood thereof. This way, we can
create a rich family of bundling variations. For example, we can set the ker-
nel radius pK as a function of the parametric site coordinate t to control the
bundles’ shapes; or we can set the directional compatibility κ as a function
of edge attributes, to achieve data-driven bundling. Such variations require
only minimal code changes to CUBu and incur no performance penalty, as
CUBu treats all sites independently and in parallel.

7.5.4 Relation to mean shift

As already outlined, CUBu and its underlying predecessor KDEEB are very
similar to computing 2D mean shift (MS) [46] on the edges’ sample points.
However, there exist some algorithmic differences between these methods,
as outlined below.

• MS computes the kernel density estimation (ρ, Eqn. 7.1) only once, at
the beginning of the advection process, and next uses a fixed gradient
∇ρ for the entire process. In contrast, we re-estimate ρ and ∇ρ after
each advection step. From our experiments, where we also tried the
MS-based approach, we observed that re-estimating the density (as
points move) yields a better bundling, which is also less sensitive to
the choice of the initial kernel radius R;

• Our advection uses a step whose size does not depend on the gradient
magnitude ‖∇ρ‖ (Eqn. 7.2). In contrast, MS uses the actual gradient
∇ρ as advection step. In our case, we need to normalize the gradient,
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since we recompute the density on-the-fly. As such, as sample points
get increasingly denser as advection proceeds, ‖∇ρ‖ will also get in-
creasingly larger, which will cause points to move faster as they get
closer to each other in the final bundles. This would cause instabilities
and major convergence problems. We remove such issues by gradi-
ent normalization. Moreover, this allows us an explicit control of the
advection speed, independent on the local point density, something
that MS cannot do.

• During advection, we progressively reduce both the kernel size R and
the advection step. MS does not do this – it only uses one kernel size
to estimate the initial density, after which the advection step is fully
given by the gradient magnitude. We believe our approach to be bet-
ter: By reducing the kernel size, we effectively obtain a multiscale
effect: During the first advection steps, a coarse-scale bundling struc-
ture is identified. Next, this structure is progressively refined. In MS,
this effect is not possible, since there is a single kernel size. Secondly,
our approach guarantees that the advection process converges, re-
gardless of the initial kernel radius R and number of advection steps.
Indeed, as explained in Sec. 7.3.1, at the final iteration, the kernel
radius R reaches one, meaning that points do not ‘see’ other points
further than a distance of one pixel. Moreover, following Eqn. 7.2, the
actual advection step is also one pixel. As such, the advection process
is guaranteed to reach equilibrium. Obtaining a similar effect withMS
is not trivial, as it requires a careful setting of the initial radius and
number of advection steps.

As outlined above, we experimented with both classical MS and our mod-
ified version, and obtained (visually) better, and easier controllable, results
with the latter for the bundling use-case. This opens the question whether
our MS modifications would not be of added value in more general appli-
cations such as e.g. data clustering or image segmentation. We believe that
this is a low-hanging-fruit direction of future research.

7.5.5 Limitations

While fast, generic, and highly configurable, CUBu has a few limitations.
Like all other bundling methods, its bundles are not fully controllable in
terms of exact shape and position. Interpreting such bundles should thus be
done with care, especially when spatial positions are important. Tomitigate
this, CUBu adds bundle relaxation [115], which allows users to interactively
interpolate between bundled and original edges. Separately, the design of
effective bundle shapes is clearly application-dependent. The styles shown
in Sec. 7.3.1 are just a sample subset which does not claim to be generally op-
timal nor exhaustive. Specific applications may need different bundle styles.
Such styles are easy to get by using other suitable edge profiles (Eqn. 7.5)
and/or edge similarity functions (Eqn. 7.6).
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7.6 extensions: abstract visualization of flow fields

A separate technical limitation concerns the scalability of CUBu with re-
spect to the number of sampling points pS . As noted in Sec. 7.5.2, CUBu
scales linearly with pS . However, an implicit limitation is that the sampled
graph must fit in the available GPU memory. Given that, for a sampling
point, one typically needs to store two floating-point coordinates, one color
attribute, and optionally one floating-point data attribute, a typical GPU
having 4 GB VRAM will fit about pS = 250 million sampling points (the
costs of storing the density and shading images, as well as those for the
windowing system not being accounted for). While this pS value may seem
large, accurately representing a graph like amazon (900K edges) at an im-
age resolution of 20002 pixels, by having one sample point every few pix-
els, easily yields over one billion sample points. This limitation is solved
by FFTEB [153] which extends CUBu by proposing a CCPU-GPU stream-
ing scheme for large graphs, at the expense of speed. They show that this
streaming scheme allows bundling graphs of over 60 billion sampling points
on consumer-grade GPUs. A possible refinement of this streaming scheme
that would increase its speed would be to use an adaptive sampling resolu-
tion, where a relatively low number of sampling points pS is used for the
first bundling iterations, and increasingly more sampling points are used
for the latter iterations. This would parallel our current coarse-fo-tine mul-
tiscale approach where we use large kernels for early iterations and finer
kernels for the latter ones.

7.6 extensions: abstract visualization of flow fields

Apart from the material published in [315], on which this chapter is based,
we have investigated the use of bundling for the simplified (abstract) repre-
sentation of flow fields. The key goal in this context is similar to the above-
mentioned examples where bundling was used to depict a dense set of trails
in a simplified, clutter-reduced, manner. The key difference is that, in the
current context, the input data is not a set of trails, but a vector field which
is densely-sampled over a compact spatial region. As such, trails in this case
are a derived visualization primitive, rather than raw data.
We approach the task of producing simplified (abstracted) representa-

tions of vector fields as follows. First, in Sections 7.6.1 - 7.6.6, we introduce
the general idea of using continuous visual abstractions to depict vector
fields, and present our first solution for this, which does not use bundling.
Next, in Section 7.7, we present our second solution to the same task, which
uses the CUBu bundling techniques discussed earlier in this chapter, and
compare it with the continuous abstract visualization outlined above.

7.6.1 Context

To begin with, let us clarify the relation between abstraction and trails
bundling.
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Abstraction is a—if not even the—fundamental principle employed in vir-
tually all areas of visualization because it allows one to uncover and un-
derstand principles about the subject matter that we visualize, rather than
just seeing the raw data. As Rautek et al.[215] note, abstraction can be in-
troduced in a visualization either implicitly by selecting a certain style of
depiction (“low-level visual abstractions”) or explicitly by employingmeans
such as focus+context or distortion (“high-level visual abstractions”). The
latter group of high-level abstractions are of particular interest because they
are created to emphasize specific chosen aspects of interest to the viewers.
Bundling, as discussed earlier, is a particular type of distortion-based ab-
straction which essentially replaces spatially close trails by a single, com-
pact, visual depiction – the bundle. Or, in the light of the mean shift analogy
(Sec. 7.3.1), bundling replaces a complex trail-density signal with a simpler
one, where high-density regions are emphasized, and low-density ones are
essentially removed. Often, however, there exist many different means to
achieve explicit or high-level abstractions, all of which are valid and show
different important aspects of the same dataset. Therefore it is essential that
we can link these different types of abstraction with each other [66] to allow
viewers to understand the relationship between them.
As explained in the previous sections, CUBu provides a multiscale view

on a trail-set, where the scale parameter is essentially controlled by the KDE
kernel radius R (Sec. 7.3.1). However useful, such visualizations have the
same level of simplification everywhere, as R is a global parameter. More-
over, even for different R values, used e.g. in different images, the same
representation is used for the trail-set, which consists of a set of curved and
shaded trails.
Different design decisions can, however, be used to create a multiscale

visualization. In the following, we examine the idea of combining multiple
different layers of abstraction, or scales, of the same dataset. We specifically
consider datasets whose abstract representations are spatially and semanti-
cally nested. By spatially nested, we mean that such abstractions have the
same spatial embedding but each uses a different amount of screen space,
so that more abstract representations are, generally, ‘inside’ less abstract
ones. This generalizes the bundling principle where a bundled set of trails
is, typically, located inside (to be more precise, is centered within) the spa-
tial extent of the corresponding set of unbundled trails.
Separately, our input data to visualize is also more general than trail-sets.

Specifically, we consider vector fields defined over compact spatial regions
D ⊂ R3. One of the representation choices for such vector fields is as a
set of streamlines, densely seeded, and densely covering, D. These are es-
sentially nothing but trail-sets, much like the airplane or eye-track trails
discussed in Sec. 7.4. Given their 3D embedding, such dense streamline sets
exhibit very similar clutter and overlap problems as their 2D counterparts
discussed earlier. As such, one of the goals of our simplified visualization
(reducing such problems) is identical to the key goal of bundling. However,
there is a key difference: For all the examples presented so far, the con-
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sidered trail-sets were the actual data that we wanted to visualize. For 3D
vector fields, streamline sets are just one of the possible representations one
can choose for the actual vector field data.
The representation nesting property mentioned above allows us to use

two-dimensional techniques to generate real-time halos which appear vol-
umetric and visually separate the different flow field visualizations. This
allows us next to create transitions between different abstractions which
do not naturally allow seamless interpolation as demonstrated using differ-
ent representations of fluid flow.We also incorporate lens-based navigation
into the defined abstraction space allowing investigation of additional in-
termediate abstraction levels. Taken together, these techniques facilitate an
intuitive continuous navigation of a set of nested abstractions of a given
3D flow visualization. This is analogous in spirit to changing the bundling
kernel-radius parameter R, or the relaxation factor (see Sec. 7.3.1), but very
different in terms of design. That is, in both cases, we achieve a visually
continuous change of the depicted image from a more complex to a simpler
one; however, for bundling, this is done using the same visual metaphor,
instantiated with different parameter values. For the techniques presented
next, this is done using a mix of different visual metaphors.

7.6.2 Visually abstracting data

Abstraction is a core principle in visualization and takes many forms, de-
pending on the visualized data. Dedicated controlled abstraction has been
investigated not only in non-photorealistic rendering (e. g., [54, 179, 295])
but also in visualization. In the field of information visualization many
forms of intentional abstraction are used, the main ones being edge
bundling (already extensively discussed) and focus+context (e. g., [35]).
In scientific and specifically illustrative visualization many “high-level
visual abstractions” [215] are used.
Relevant for our own work are those high-level visual abstractions that

not only show more or less relevant parts of a dataset in more or less de-
tail, but which can relate different visual representations (i. e., different ab-
straction levels) to each other. Duke [66] describes this problem nicely and
suggests linking different types or representations to each other to uncover
and understand the structure of a dataset, naming molecular visualization
as one example. In a separate work, we have demonstrated such seamless
transition between molecular abstraction levels in an interactive [316] and
a spatially explicit [161] manner. However, our realization of abstraction
level transitions in [316] requires that meaningful intermediate stages ex-
ist. This is not the case for many forms of abstraction — a problem that we
address next.
We use halos as one visual technique to visually separate layered ele-

ments and thus enhance spatial perception.While halos enhance the spatial
perception of the depicted objects in volume [31, 126] and other visualiza-
tion domains [79, 262], we use them to support visual layering and thus
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related to their function of showing occlusion relationships in line-based
techniques [9, 70]. In addition, we use interactive lenses to locally explore
our layered abstractions. Lenses are not only frequently used to support
focus+context techniques [35] but also to interactively reveal otherwise
hidden information, an approach pioneered by Bier et al.[22, 23]. Their so-
called Magic Lenses locally affect a 2D screen region using a user-selected
operator. While lenses can be used in a 3D context to distort the projection
[303], they can also be used to specify non-view changes for a 3D scene
in a separate 2D layer [123, 186]. Lenses have also been used for exploring
bundled trails by essentially restricting the bundle relaxation factor with
respect to the lens position [114]. Our lenses have a similar function as we
use them in a 2D layer over the 3D model to locally reveal relationships be-
tween abstraction layers, thus also relating to a number of so-called ‘smart
visibility’ methods in visualization [285].

7.6.3 Visualization Model

We start with a dataset d ∈ D, where D ⊂ R3, and consider several visual-
izations of d , modeled as images V1≤i≤N : D → R2. A visualization Vi can
be seen as a function that takes d to produce a 2D image Ai = Vi (d ). We
call these images abstractions of d if they represent the information in d on
different levels of detail. We distinguish two abstraction types: Semantic ab-
stractionsAi simplify the information in d by showing varying amounts of
the information present in d using different visual representations. For ex-
ample, a fluid flow volumed ⊂ R3 can be rendered as an entire flow volume
using LIC [32, 250], as stream LIC structures for a set of given streamlines
[105], and as flow topology [275]; these are increasingly simplified semantic
representations. Bundling is also a semantic abstraction. Sampling abstrac-
tions reduce the amount of points produced by a given semantic abstrac-
tion Ai using data sampling. Rendering different numbers of streamlines,
for example, are samplings of the streamline abstraction. We denote all Si
samplings of a semantic abstraction Ai by A

j
i , 1 ≤ j ≤ Si with A1

i = Ai the

most detailed and ASi
i the coarsest sampling.

To be useful in an exploration scenario, abstractions must be described in
terms of the amount of simplification they produce on some input dataset.
In ourmodel we assume that, for a given application domain (e. g., flow visu-
alization), the abstraction setA = {Ai } can be ordered in decreasing amount
of provided simplification from the densest abstraction A1 to the sparsest
oneAN . We also require that simpler abstractions are visually nested within
less simple ones, i. e. Aj ⊂ Ai ,∀i < j. This is often the case in scientific visu-
alization where abstraction reduces the size and/or spatial dimensionality
of the depicted visual elements while keeping them aligned in the space
D. Our flow visualization scenario is such a case of nested abstractions: the
topology is a part of the streamlines, these are nested within stream LIC rep-
resentation, which in turn is a part of a LIC volume. Bundling also obeys the
nesting property – a bundled image is spatially located within the extent
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(hull) of the unbundled image. Another example of nesting is the multiscale
representation of 3D shapes by means of medial axes or skeletons [217]: A
shape can be visualized by drawing its actual boundary (A1), its 3D medial
surface consisting of a set of manifolds (A2), its curve skeleton (A3), and its
barycenter (A4) are increasingly simple, and nested, semantic abstractions.
Reducing the number of points on each such abstraction by means e.g. of
surface decimation or skeleton pruning creates additional nested sampling
abstractions.

7.6.4 Navigating the Abstraction Space

Given an abstraction set A as just described, one typically wants to nav-
igate A to get different types of insight which are best visible at different
abstraction levels. One navigation option is to start withAN (most abstract)
and browse through Ai until A1 (most detailed), optionally using spatial
sampling to restrict the dense-data areas to zones of interest using, e. g., fo-
cus+context techniques. One can also start with the most detailed level A1

and simplify the visualization to the coarsest level AN is reached. During
both navigation types, we call the level of the highest abstraction Af being
visualized the focus of the visualization: Given a user-selected f , we aim to
produce a visualization combining all context abstractionsAi , i < f andAf

in a single visualization such that all abstractions and their spatial nestings
are shown. This will permit smooth navigation in the combined space of
semantic and sampling abstractions (as introduced in subsection 7.6.3).
Such navigations are typically realized by toggling the rendering of the

elementsAi on and off. However, this creates sharp visual discontinuities in
the transition, especially if the abstractions differ visually. Continuity can
be added by smoothly interpolating the transparency or shape of consec-
utive Ai using fading or morphing while navigating through A. Bundling
can be seen in this light too: The unbundled data A1 can be continuously
morphed to the fully bundled versionAN by changing the so-called bundle
relaxation parameter with N steps. However, interpolation here between
the abstractions Ai is done along the temporal dimension, while the con-
text we are examining here regards interpolation in the spatial dimension.
Blending blurs the spatial nesting insight and can result in too high opac-
ities when too many abstractions are blended. Morphing is not trivial for
any pair of (nested) shapes, works only for shape pairs, and requires 3D
shape representations rather than their 2D visualization results Ai .
We propose to create a continuous navigation functionNav : A×[0, 1]→

R2 to help navigation in the abstraction space. Given our set A of ordered,
nested abstractions and a focus abstraction level f ∈ [0, 1], we combine all
abstractionsA to build a visualizationV . As the user changes the focus level
f ,V continuously changes to show onlyA1 (at f = 0), next show the focus
abstraction Af nested within lower abstractions as context, and finally AN

(at f = 1). The design of Nav should be such that it can be computed on
any set of nested 2D or 3D abstractions, is continuous in f , clearly empha-
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sizes the focus-context relation of nested abstractions, and is computed us-
ing only 2D image information instead of 3D shape information to achieve
maximal performance.
We use an additive blending of the abstractions Ai in nesting lev-

els (decreasing i) and compute the navigation function as Nav (A, f ) =∑n
i=1 αi ( f )Ai (see Figure 7.10). The design of the blending factors αi :

[0, 1] → [0, 1] is essential, we use αi ( f ) = ϕi ( f ) · ψi ( f ) · hi ( f ). Here,
ϕi : [0, 1] → [0, 1] is the function used to fade in an abstraction Ai ,
ψj : [0, 1] → [0, 1] is the function responsible for fading out a (context)
abstraction Aj , j < i , and hi : [0, 1] → [0, 1] is the halo function used to
create a halo around the selected abstractions. As fade-in function we use

ϕi = max
(
0,min

(
1,

f −f (i )in

f
(i )
f ul l
−f (i )in

))
where f (i )in is the focus value fromwhichwe

start fading in abstractionAi and f (i )
f ull

is the value at whichAi is completely

visible. In practice, wewant to start fading in the next abstractionAi+1 when

the current abstraction Ai is fully visible. Hence, we choose f (i+1)in = f (i )
f ull

.

Similarly, we define the fade-out functionψi = min
(
1,max

(
0,

f
(i )
дone−f

f
(i )
дone−f (i )out

))
.

Here, f (i )out is the value for which we start fading out the context abstrac-

tion Ai and f (i )дone is the value for which abstraction Ai is no longer visible.
Similar to fading in, we start fading out abstraction Ai+1 when the Ai is no

longer visible and, thus, set f (i )дone = f (i+1)out . Also, we constrain f iout > f i+1
f ull

such that Ai does not start fading out before Ai+1 is fully in focus. Finally,
we set f 1

f ull
= 0, f Nout = 1 so that we start with a fully focused A1 and end

with a fully focused AN .
While combining ϕi and ψi allows us to fade abstractions in and out of

view continuously, the resulting image will be unable to clearly show
the nesting structure of the abstraction space: Depending on the spe-
cific abstraction image shapes and colors, it may be hard to see which
result pixels belong to a (thin) abstraction being nested within a (larger)
context abstraction, especially if both have similar colors. We therefore
use the halo function hi to generate halos around abstractions: hi ( f ) =

min
((
DTAi+1/δ

)ki (f ) , 1) . In this function, DTΩ : R2 → R+ is the distance

transform of a 2D binary shape Ω, which gives, for any points x ∈ R2,
its distance to Ω [51]. DT is zero inside Ω and smoothly increases outside
the shape. In our case, we construct such shapes by simply thresholding
the rendered abstractions Ai into foreground (rendered) and background
(not rendered) pixels. Having DTAi+1 , we compute a halo around Ai+1 by
modulating the distance transform with a power function ki ( f ). The halo’s
width is limited to a maximal value of δ > 0 pixels. The effect of the power
function is to create a smoother transition from the contextAi ofAi+1 than
if linear distance functions were used. Finally, we set ki = ϕi to increase the
halo around the fading-in abstractionAi+1, thus making it more prominent
in its context Ai where it is nested. Perspective-like halos can easily be
obtained by modulating the value of δ with the depth of Ai+1 at each pixel.
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7.6 extensions: abstract visualization of flow fields

Figure 7.10: Continuous navigation in a flow visualization abstraction space with
four abstractions A1–A4.

Figure 7.11: Construction of the focus guided lens. Typical values are ρc = 5 pixels
and ρAl (c) = 90 pixels.

The above process describes how semantic abstractionsAi are combined
into a single image. However, as defined in subsection 7.6.3, our input may
contain sampled versions thereof.We integrate these smoothly in the above
process by replacing, in the navigation function Nav (A, f ), each semantic
abstractionAi with its sampled versionA

j
i , the sampling parameter j being

controlled by the distance from the user-set focus f to the full-visibility

f i
f ull

as j =
f −f i

f ul l

f iout−f if ul l
Si . In other words, as the user increases f , the full-

visibility abstraction is progressively simplified from A1
i to ASi

i (coarsest
variant). During this process, all remaining visualization elements stay the
same (halo sizes, overall abstraction transparency). When f reaches f iout ,

the coarse abstractionASi
i is further faded out. For abstractions which have

no level-of-detail representations, the process simply uses the unique rep-
resentation Ai . This directly accommodates any number of semantic ab-
stractions with any number of sampling representations thereof, effectively
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intertwining the navigation in the semantic and sampled spaces of abstrac-
tions.

7.6.5 Interactive Local Exploration

While this navigation facilitates an effective global abstraction space explo-
ration, in many cases we are interested in getting local detail information.
We thus also provide context-sensitive local lenses, whose goal it is to allow
parts of an abstraction Al>f located inside the lens to become visible even
when otherwise hidden due to the global abstraction level f . While a naïve
implementation would change the blending factors αi ( f ) close to the lens
center, this would interfere with our transparent distance-based halos. In
multi-layer visualizations such as ours one also wants to see ‘deeper’ within
the abstraction stack inside the lens and locate the parts of deeper-nested
abstractions closest to to the lens.

Figure 7.12: Navigating the flow visualization abstraction space: (a-c) Introducing
seed LIC as focus in the LIC volume, (d) has the flow topology as focus
abstraction and the previous abstractions as context from which the
LIC volume is removed in (e).

Figure 7.13: Fluid flow abstracted (a-b) locally with a guided lens and (c-d) with
sampling abstractions (streamline filtering).

For this, we use a focus-guided lens. Given a global abstraction level f ,
we combine revealing deeper-nested information at the lens center with
revealing higher-abstraction structures Al>f close to it. We first locate the
closest pointAl (c) of abstractionAl to the lens center c. The point c can be
directly computed as Al (c) = FTAl (c). Here, FTAl : R2 → R2 is the feature
transform of the shape Al [51]. The feature transform of a shape Ω ⊂ R2

is defined as FTΩ(x) = {y ∈ Ω |DTΩ(x) = ‖x − y‖}, i. e.the closest point
y ∈ Ω to a given target point x, restricting ourselves to a one-point feature
transform [75]. With the lens center c and closest abstraction point Al (c),
we construct our focus-guided lens by multiplying the halo functions hl>f
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7.6 extensions: abstract visualization of flow fields

with the distance transform of a beam-like shape created by two circles
connected by a trapezium (light blue in Figure 7.11). As the lens is moved,
it behaves similarly to a light beam that shows the shortest spatial path from
the lens center to the desiredAl . This is useful as one does not need to fully
remove (make transparent) all abstractions Ak<l in order to discover Al .
Hence, one can stay at a desired semantic focus level f and use the lens to
search for another desired Al>f in the vicinity of any point.

7.6.6 Implementation and Results

For the realization we only require a set of N − 1 2D images depicting the
different context abstraction levels and one image depicting the abstraction
in focus at the selected abstraction level, as our method works entirely in
image space. These images are either generated on-the-fly or are precom-
puted if they do not change during the exploration. From these images we
compute the soft halos for our nesting (within 10ms on a modern graphics
card) by employing a recent CUDA-based implementation [265] of exact Eu-
clidean distance transforms and feature transforms [34]. Finally, blending
is implemented via OpenGL alpha blending. The entire process, including
rendering LIC, seed LIC, streamlines, and precomputed topology, works at
5 frames per second on aMacBookwith 2 GB RAM and an NVIDIAGeForce
320M graphics card with 256 MB RAM.
We present results created using our technique by providing an example

use case scenario. We use a data set which results from a direct incompress-
ible Navier-Stokes simulation of the flow around a cylinder with a resolu-
tion of 100× 60× 20 grid cells. A researcher interested in studying this data
set might start with looking at the LIC visualization (the least abstracted
representation, shown in Fig. 7.12a). Increasing the abstraction level f re-
sults in the next abstraction (the streamline LIC structures) being slowly
blended in, generating a halo around this new focus abstraction to make it
visually distinguishable from the LIC visualization which is now the con-
text abstraction. Images (a)-(c) provide the result of several steps in this
transition, resulting in an image in which the streamline LIC abstraction
can be studied while the least abstracted visualization (LIC) is used to pro-
vide context.
Our second example concerns the visualization of the results of a differ-

ent incompressible Navier-Stokes simulation, with a resolution of 128×85×
42 grid cells, where flow enters the domain through a small inlet and flows
around two planes. Fig. 7.13a shows the global behaviour of the flow using
the SeedLIC abstraction as focus and the LIC volume as context and the lens
used to explore the highest level of abstraction (see Sec. 7.6.2). This lens al-
ways indicates the closest point of the selected abstraction as also shown in
Fig. 7.13b. Figure 7.13c shows the streamlines in focus with the LIC volume
as context. Increasing the focus f not only blends in the next abstraction
(the seeded streamlines) but also reduces the amount of streamlines away
from the flow inlet. While less streamlines are shown, the soft halos still
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provide a good separation between the streamlines and the seedLIC abstrac-
tion in which the streamlines are nested. Increasing the abstraction level f
further removes all streamlines from view, resulting in an image where we
can study the realation between the seeded streamlines and the seedLIC
structure while still using the LIC volume as extra context (Fig. 7.13d).

7.7 simplified flow field visualization via bundling

As outlined in Sec. 7.6.1, bundling can be seen as a form of abstraction. As
such, it is interesting to compare its results with the continuously-nested
visualization abstraction proposed for flow fields in the above sections, on
the same dataset.

a) b)

c) d)

e) f)

A B

C

D

E
F

Z Z

Figure 7.14: Fluid flow abstraction using streamline bundling. (a) Unbundled
streamlines. (b-d) Progressively bundled streamlines. (e,f) Visualiza-
tion of bundling distortions. See Sec. 7.7.

However, to do this directly, wewould need to avail of a bundlingmethod
able to handle 3D trails, given that our flow datasets shown in Sec. 7.6.6
are volumetric. While implementing such an extension of CUBu is possible,
in theory, this is quite hard to achieve in practice. Key to this problem is
the efficient computation of the density map ρ (Eqn. 7.1). As explained in
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Sec. 7.3.1, this is done using a gathering strategy implemented using CUDA
2D floating-point textures. To extend this to 3D, we would need large-scale
3D floating-point textures. While such textures are supported in CUDA, the
speed of the corresponding KDE estimation would be significantly lower
than the 2D bundling algorithm we have presented. Additionally, memory
constraints would prevent us from using volumes larger than roughly 5123

voxels on current consumer-grade GPUs.
Given the above, we approached the problem of bundling 3D streamlines

by considering a two-dimensional view thereof. For this, we ignore the third
coordinate of the streamline sampling points, which yields a set of 2D trails,
that we can directly bundle with CUBu.
Figure 7.14 shows the obtained results. The first image (a) shows the raw,

unbundled, streamlines, colored by streamline length, using the same col-
ormap as in earlier figures, e.g., Fig. 7.2g,h. The dataset used is the same
as in Fig. 7.13, as seen from above. Imagess (b-d) show three progressively
simplified flow views, obtained by using increasingly large kernel radii K
for bundling (see Eqn. 7.1). As visible, the flow structure is abstracted into
its key elements – the two locally laminar flow areas A and B, and the two
vortices C and D, indicated by dashed annotations in Fig. 7.14a. Moreover,
remote outliers, such as streamline E, are still visible in the bundled image,
since the radius K limits the spatial extent of the simplification. However,
local flow details, such as the helix-like flow region F , are quickly disap-
pearing in the simplified visualizations.
If we compare these results with those produced by our continuous-

nested method, called next CNM for brevity, see Fig. 7.13, several points
appear. First, the bundling simplification has a global nature, and cannot
allow several levels of abstraction to co-exist in the same image; this is
possible by construction in the CNM method. However, bundling offers a
continuous nesting in the temporal dimension, by allowing one to inter-
actively change the kernel radius K and view different abstraction levels.
In turn, bundling does not need to cope with the problem of combining
different visual abstraction levels, since there is only one visible at a time.
This challenge does exist for CNM, and it is solved by halos and blending.
Finally, CNM offers an interactive local level-of-detail tool. Our images in
Fig. 7.14 do not show this. However, such tools are easily implementable
for bundled visualizations, as discussed in detail in [114]. Summarizing the
above, trail bundling can be seen as a supplementary level of abstraction
in the nested hierarchy discussed in Sec. 7.6.4, as it has all the required
properties (simplification, continuity, and spatial nesting). As such, it could
be incorporated in the CNM visualization solution we have presented so
far in this section.
However, as compared to CNM, bundling has the property that it distorts

streamlines as it simplifies the visualization. This can lead to undesired ef-
fects in terms of the type and correctness of insights that one obtains from
the bundled visualization. For instance, looking at Fig. 7.14b-d, one cannot
(easily) assess that there is a helix flow in region F, while such a flow is
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evident in the unbundled data or in the CNM visualizations (Fig. 7.13). The
issue of bias introduced by bundling pertains to all applications where one
bundles trails (rather than abstract connections in a graph), including the
flight visualizations and eye trails discussed in Sec. 7.4.
We propose here two techniques to alleviate this issue. First, we allow

the user to specify a maximal displacement dmax for all points of a bun-
dled drawing. For this, we essentially modify Eqn. 7.2 to include a test that
compares the current position of an advected sample point xj with its orig-

inal position x
or iд
j in the unbundled data. The advection is then stopped

(ignored) if ‖xj − x
or iд
j ‖ > dmax . Secondly, we color the bundled trails by

the displacement of each point xj with respect to its counterpart x
or iд
j in

the input dataset. Figures 7.14e,f illustrate these techniques. The image in
Fig. 7.14e shows the original unbundled streamlines of our 3D flow dataset,
colored by displacement, using a rainbow colormap. Obviously, since we
show the unbundled data, there is no displacement. Next, we set dmax to
a small value and bundle the data to obtain Fig. 7.14f. Compared to the
(highly) bundled images (b-d), we now see, indeed, there is far less defor-
mation. Moreover, we can find the areas where we can highly trust the data
by looking for the blue zones, and areas where the deformation was maxi-
mal by looking for the red zones, respectively. As visible in the image, there
is a single area where a high deformation level occurred (Fig. 7.14f, marker
Z). Visually comparing this area with the unbundled data (Fig. 7.14e) shows,
indeed, that there is a high deformation here. This technique is simple to
implement, works real-time, can be easily incorporated in any bundling
method, and allows one to easily see and control where, and how much,
bundling deformations occur.

7.8 conclusions

In this chapter, we have addressed the visual analysis of large sets of spatial
2D and 3D trails. To this end, we focused mainly on the reduction of visual
clutter caused by overlap when visualizing such large trail sets. To reduce
visual clutter, we investigated two approaches. First, we introduce CUBu, a
general-purpose framework for creating high-quality bundlings from very
large graphs. CUBu proposes a GPU-based design that addresses the main
desirable features of existing bundling algorithms (scalability, directional
bundling, level-of-detail visualization of bundled results) in a single unified
algorithm. CUBu is 50 to 100 times faster than state-of-the-art bundling
methods, thereby opening the door to real-time bundling of graphs of mil-
lions of edges. Separately, CUBu can produce bundling styles similar to a
wide variety of existing graph visualization algorithms, such as hierarchical
edge bundling, skeleton-based edge bundling, force-directed edge bundling,
schematic graph drawing, image-based edge bundles, and dynamic-graph
bundling. We compare CUBu with seven related bundling algorithms and
show its scalability and generality on several graphs and trail-sets up to
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7.8 conclusions

one million edges. Separately, we propose a continuous visual abstraction
method for 3D trail sets which consists of several nested visual representa-
tions. We explain how such representations can be constructed, and how vi-
sual continuity can be achieved between them, both locally and globally, by
using a set of interpolation, shading, and interaction techniques.We demon-
strate this technique for the simplified visualization of 3D flow fields, and
also compare it with the simplification achieved by bundling for the same
type of data, rendered as streamlines.
Several directions of future work exist. Related to bundling, it is defi-

nitely interesting (and useful) to investigate the bundling of 3D trail sets.
As outlined in Sec. 7.7, we cannot still do this, and we use for such datasets
a dimensionality-reduced proxy, where one of the spatial dimensions is
dropped. For our concrete use-case and dataset discussed there, this re-
duction had limited effect, as the dataset does not exhibit a high extent
or large value variations along the dropped dimension. However, in gen-
eral, ‘deep’ volumetric datasets exist, and for these bundling should be per-
formed natively in 3D. Exploring how to extend CUBu to efficiently han-
dle such datasets is a first challenge. With this in place, one can then next
explore novel ways to produce simplifications of diffusion tensor images
(DTI) using bundling, by extending and improving existing work in this
direction [27].
Apart from the above, and as a concrete larger-scale application of CUBu

than the examples already covered by this chapter, we will show next in
Chapter8 how the fast and scalable bundling offered by CUBu enables the
construction of interactive exploratory visualizations for very large time-
dependent trail datasets, for the study of spatio-temporal patterns of air-
craft trails. This work also fits within another general extension direction,
namely studying how bundled visualizations can displaymultiple attributes
per trail and/or trail point, so as to handle multivariate datasets.
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8BUNDLED DYNAM IC V I SUAL I ZAT ION OF F L IGH T
DATA

In Chapter 7, we have introduced CUBu, a fast and scalable method for gen-
erating simplified visualizations of large graph or trail drawings. As shown
by the various examples introduced at that point, CUBu can effectively and
efficiently generate images of such datasets where clutter is (significantly)
traded off for overdraw. This simplifies the resulting images, allowing one
to detect easier large-scale connectivity patterns in the underlying data,
such as groups of edges in a graph that link densely packed sets of nodes, or
groups of closely running trails in a trail-set. Additionally, we have shown
how extra information can be encoded atop of the resulting simplified (bun-
dled) images by suitable color mapping and shading. However, the bundling
work presented in Chapter 7 have two limitations:

1. the bundling techniques in Chapter 7 handle only static trails, with
no or maximally one attribute (direction). Showing whether and how
CUBu can handle dynamic andmultivariate trails is still an open ques-
tion;

2. the bundling examples in Chapter 7 focuses mainly on illustrating
the technique’s capabilities. Seeing how CUBu actually helps in an
end-to-end application is still to be shown.

This chapter focuses precisely on covering the above two issues1. To this
end, we choose an application where large trail-sets are the key data – the
visual exploration of massive datasets containing flight trails. The users in
focus for this type of application are Air Traffic Control (ATC) experts, who
are interested in quickly getting overviews of large trail-sets and also using
visualization to pose and answer specific queries involving the flight data.
To make the problem more challenging with respect to the data size, we
consider also dynamic datasets, i.e. trail-sets in which the contained trails
have timestamps indicating both their lifetime as well as the instantaneous
positions of the respective aircraft. We show how the trail bundling offered
by CUBu can be used to create interactive explorations of such large spatio-
temporal trail sets. Additionally, we show how the basic visual encodings
proposed in Chapter 7 can be extended to show extra information which is
relevant to the ATC tasks at hand.

1 This chapter is based on the publication: T. Klein, M. van der Zwan, and A. Telea. Dynamic
multiscale visualization of flight data. In S. Battiato and J. Braz, editors, Proc. of the 9th IEEE
International Conference on Computer Vision Theory and Applications (VISAPP), volume 1,
pages 232–240, 2014.
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bundled dynamic visualization of flight data

8.1 problem context

In the last years, the availability of large and accurate data sources describ-
ing the motion of various types of vehicles, e.g. airplanes, vessels, automo-
biles, and pedestrians, has massively increased [6–8, 136, 207]. The avail-
ability of such movement datasets can help in a wide range of analyses and
use-cases, such as Air Traffic Control (ATC), epidemics propagation, and
crisis situation analysis.
All above datasets can be described essentially as a set of spatio-temporal

trails, i.e. paths of moving objects, annotated with both location and time
information. Within this context, we focus next on the analysis of airplane
movement datasets (other types of vehicle trails can be treated similarly).
Such datasets consist of several airplane trajectories, or trails, each one
being in turn a temporal sequence of data points describing the position,
height, velocity, flight direction vector (and possibly more attributes) of a
single airplane over its flight time span. Visualization of flight trails can as-
sist in numerous ATC scenarios, such as finding and explaining historical
flight outliers; understanding the correlation between flight congestion and
weather patterns; training of ATC controllers; and better planning of flight
routes over given spatio-temporal intervals [24, 77, 113, 117, 274].
However, visualizing large trail datasets poses several challenges, of

which we consider here the following:

Computational scalability: Movement datasets are by their nature or-
ders of magnitude larger than their static counterparts. For instance, Fig. 8.1
shows a single day of air traffic over France, which contains 20K trajecto-
ries, each having hundreds of data points (one data point is recorded every
4 minutes). The trail datasets in Chapter 7 are of a similar order of mag-
nitude – for example, the dataset used in Fig. 7.1 has also approximately
20K trajectories. However, a dataset capturing the air traffic over the entire
world and over several weeks will easily have millions of trails. Generating
real-time visualizations from such datasets is clearly a computational chal-
lenge.

Visual scalability:Besides the computational challenge, large trail datasets
will also contain many high-density traffic regions. In turn, visualizing such
regions will create visual clutter and occlusions. Moreover, if we want to
depict not just spatial positions, but additional attributes such as speed,
flight ID, and flight height, the information density increases even further.
Finally, if we want to focus on the study of the dynamic properties of the
data, such as showing how airplane trajectories change over days or weeks,
simply using a static visualization that shows all trails is clearly not optimal.

In this chapter, we present a visualization system for air traffic that
aims to address the above challenges. In contrast to ATC systems that
address more specific use-cases [77, 94, 113, 274], our goal is to efficiently
and effectively visualize attributed trails over large time and space inter-
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8.2 related work

a b

Figure 8.1: (a) Flights over France, July 5th , 2006, visualized with [113], color-coded
by height. (b) Zoom-in over Paris area. Compare to Fig. 7.1.

vals. We achieve visual scalability by several level-of-detail, or multiscale,
techniques: bundling, animation, and density maps. We achieve compu-
tational scalability by implementing all above techniques efficiently on
the GPU. Overall, our contribution extends earlier work in trail visualiza-
tion [113, 117, 225], and particularly our CUBu technique from Chapter 7,
with several temporal attributes, on the one hand, and making the vi-
sualization suitable for large dynamic datasets, on the other hand. We
demonstrate our visualization on both medium-scale datasets (French air
traffic, one week) and very large datasets (the world, one month).
The structure of chapter is as follows. Section 8.2 overviews related work

in the area of trail visualization. Section 8.3 introduces the proposed visual-
ization techniques. Section 8.4 presents several visualization results for the
analysis of country-scale and world-scale air traffic. Section 8.5 discusses
our techniques. Section 8.6 concludes the chapter.

8.2 related work

Visual air-traffic analysis techniques and tools can be roughly divided into
two classes – decision support systems and exploration systems – as fol-
lows.

Decision support systems, such as ATC systems, typically handle low-to-
moderate size datasets, such as the region over an airport or city (Fig. 8.1b),
or thousands of trails over larger geographical areas. These tools provide
sophisticated query mechanisms to support various ATC tasks. The Future
ATM Concepts Evaluation Tool (FACET) is capable of quickly generating
and analyzing thousands of aircraft trajectories [24]. It provides a simula-
tion environment for the climb, cruise, and descent phases of an aircraft’s
flight. Traffic patterns are shown in 2D and 3D, under various current and
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projected conditions for specific airspace regions. Similar systems have
been developed by Eurocontrol, the European Organization for the Safety
of Air Navigation. For example, the Network Strategic Tool (NEST) [77] is a
tool used by air traffic practitioners for airspace structure design and devel-
opment, capacity planning and post-operations analysis, the organization
of traffic flows, the preparation of scenarios for fast time simulations, and
ad-hoc studies at local and network level. EPOQUES [94] is a tool which
gathers and analyzes radar recordings and audio communications. It pro-
poses underlying techniques to treat Air Traffic Management (ATM) safety
occurrences, such as helping operators to detect and analyze situations
when two aircraft go beyond safety distance. CoFlight [274] is a flight data
processing (FDP) open-architecture framework for the storage, analysis,
and visualization of 4D (spatio-temporal) flight data. A comprehensive
list of over 50 ATC-related systems and tools is given in [91]. While such
systems emphasize the importance of visualization for ATC systems, they
all lack high visual scalability and/or the ability to show multiple data
attributes at the same time. Specifically, there is no way to continuously
navigate between the different levels of abstraction, which makes it harder
to link global and local scale patterns.

Exploration systems, in contrast to decision support systems, aim at show-
ing as much traffic data to the user as possible, without prior filtering, so the
user can spot unexpected behavior. By next detecting outlier and/or main-
stream patterns in such visualizations, users can focus on a subset of the
data, and refine their understanding thereof. Many such systems employ a
space-filling (also called dense-pixel, or image-based) metaphor [167]: By
trying to use each screen pixel to convey data, users can explore larger
datasets on a wider range of levels of abstraction, from fine-grained and
local patterns to coarse global patterns. Image-based techniques also natu-
rally map to GPU implementations, which helps their computational scala-
bility. For instance, [294] use density maps to show thousands of trajecto-
ries of nautical vessels on 2D maps and also to emphasize high-congestion
areas. By next combining several density maps, a few attributes can be ana-
lyzed simultaneously [225]. [142] use GPU techniques to quickly compute
uncluttered layouts of large aircraft trajectories in both 2D and 3D [143].
The FromDaDy system allows interactive linking and brushing of airplane
trails to support complex queries in the entire attribute space recorded in
the dataset [113]. Density maps are effective to tackle the visual scalability
problem, by aggregating spatially close information for trajectory analy-
sis [7, 8, 171]. Multimodal interactions help users in posing complex queries
with little effort [149]. Bundling techniques are effective in showing the
coarse-scale connectivity structure of a set of trails that link a set of spatial
locations in a clutter-free manner [53, 76, 108, 116]. Bundling can also be
used to show the dynamics of trails, e.g., how flight patterns change over a
geographical area over a week [117]. Our CUBu technique also falls within
this class, although the algorithm presented in Chapter 7 does not handle
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8.3 visualization techniqes

the dynamic aspect. Focus+context interaction techniques help in further
reducing clutter and posing complex spatial- and data- queries in trajectory
visualizations [114, 139].

8.3 visualization techniqes

We now introduce our image-based visualization techniques for plane trails
exploration. Throughout the exposition, we use as running example the
one-week French air traffic dataset from [117] (52K flights, about 900K
recorded plane positions).

a b

c d
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Toulouse

Lyon
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Figure 8.2: Animatedmultivariate visualization, French airline dataset. (a) Instanta-
neous plane positions, with color-coded height. (b) Trail segments over
short time periods, with color-coded height. Trails over entire studied
one-week period with color coding height (c) and direction (d).

8.3.1 Data model

We model a flight path, or trail T , as a sequence of points

T = {pi = (x ∈ R2,h ∈ R+, t ∈ R+)i } (8.1)

which we order along increasing values of ti . The points pi hold recorded
samples of the plane’s position (x ,y), flying altitude h, and possibly addi-
tional quantities such as ground speed and air speed. Our dataset is thus
a collection TS = {Ti }. Attributes can be also defined at the trail level, e.g.,
the flight ID. At an even higher level, we can have attributes at the level of
a group of spatially-and-temporally close trails, which we call a trail bun-
dle [117].
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bundled dynamic visualization of flight data

8.3.2 Multivariate data shown using animation

To address the challenge of showing the trail data outlined in Sec. 8.3.1, we
first consider using animation and density maps, akin to [225, 294]. How-
ever, we take several different design decisions, leading to different visual-
izations, as follows.
First, we consider four instantaneous attributes (that is, sampled at all

moments ti , see Eqn. 8.1):

A1: instantaneous positions of in-flight airplanes (x in Eqn. 8.1);

A2: height along flight trails (h in Eqn. 8.1);

A3: flight directions along trails ( dx/dt
‖dx/dt ‖ with x as given by Eqn.8.1);

A4: airplane flight speed along their flight trails (‖dx/dt ‖ with x as given
by Eqn. 8.1).

Given these data attributes, we construct a density map

ρ (x) =
∑

Ti ∈TS

∫
p∈Ti

K
(
x − p
h

)
(8.2)

by convolving the trail-set with a 2D Gaussian or Epanechnikov (parabolic)
kernel K : R2 → R+ of width h. This step is essentially identical to CUBu’s
kernel density estimation (Eqn. 7.1).
The density ρ is subsequently interpreted as luminance to become the

background of the visualization, similarly to [225]. However, in contrast
to [225], we use the density map only as a context visualization atop of
which our actual fine-grained animation takes place, whereas [225] use the
density map as their prime visualization vehicle. Figure 8.2a shows the den-
sity map for the French airline dataset. Bright white-gray areas show re-
gions of intense traffic for the entire considered time range. Dark gray re-
gions indicate areas where few or no flights were recorded in this period.
Note that this use of the trail density ρ is different from its use in CUBu
(Chapter 7): Indeed, CUBu used density simply to alpha-blend trails, and
thus essentially show the degree of overplotting of trails. In contrast, we
show ρ at all points x in our considered 2D domain. This creates a blurred
version of the trails, which thus acts as a context information for the actual
trail information displayed atop (as explained next).
Next, we have to address the fact that our dataset TS is time-dependent.

For this, we consider a so-called sliding time-window w (t ) = [t , t + Δ],
which moves with constant speed (given by a user-controlled animation
setting) over the considered time range. Here, Δ > 0 controls the size of the
time window, and thus the amount of information our animation will show
at anymoment. Given such a time-window, we select all data points pi ∈ TS
for which ti ∈ w (t ). Rather than drawing entire trails T atop of the back-
ground, such as e.g. [225] or [117], we now consider trail segments TΔ(t )
which contain all trail sample-points falling in w . We draw these trail seg-
ments, textured with a transparency (alpha) texture. This texture is built by
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placing at the sample point positions pi a train of 1D Gaussian half-pulses
ϕi tangent to the trail segments (pi , pi+1). The pulses ϕi are scaled so that
they are 1 at the location of pi and near zero at a distance δvi downstream
the flight path, where vi is the instantaneous plane speed at pi and δ > 0 is
a user-set parameter. The final texture is built by modulating the pulses ϕi
with a large 1D Gaussian envelope ΦΔ placed over w and summing up the
modulated values. The entire process is explained in Fig. 8.3.
Texturing serves two purposes, as follows. First, setting both Δ and δ to

very low values creates images where the arrow-like (high to low alpha)
shapes created by ϕi , and their motion due to the sliding window w (t ),
shows the instantaneous plane positions at a given time moment (A1) as
well as their motion along trails (Fig. 8.2a). In contrast, setting δ to low val-
ues and Δ to larger values creates ‘trains’ of arrow-like shapes that slide
along trails. Figure 8.2b shows a snapshot from such an animation. Here,
short pulses indicate slow-motion planes – indeed, slower planes mean
closer-spaced trail sample-points, thus shorter pulses. Analogously, longer
pulses show fast planes. Finally, we can add a third attribute to the visual-
ization by using color mapping. For instance, in Fig. 8.2b (inset), we use a
blue-to-red (rainbow) colormap tomap altitude2.We see here a fine-grained
blue trail segment indicating a slow, low-altitude, outlier flight in an area
with fast (long pulses) and higher (green) flights (A4).

t

t t+ΔΔ

pi pi+1 pi+2 pi+3

φ
i

ΦΔ
α=1

α=0

φ
i+1

φ
i+2

φ
i+3

δvi

δvi+1

Figure 8.3: Construction of directional pulses for animation.

Increasing both δ and Δ also allows us to smoothly navigate from instan-
taneous views on the data to more global views. Figure 8.2c shows this for
Δ set to roughly 8 hours and δ to 4 hours respectively for our one-week
flight dataset. Colors map flight altitude (A2). Blue spots indicate regions
densely populated by landing zones (airports). Warm lines show in-flight
routes. By looking at the latter, we can see that most studied flights have the
same altitude. This observation correlates with flight rules for civil aircraft
for the studied territory (France). Figure 8.2d shows a similar map, with
trails colored now using a directional hue colormap (see colorwheel in the
image), thus addressingA3 over the entire studied time period. Directional

2 As mentioned at other points in this thesis, we are aware of the limitations of rainbow
colormaps, but use them here as they prove best for a sparse dataset (trails) being drawn
on a bright white background.
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color coding lets us discover several close-and-parallel, opposite-direction,
flight paths, e.g.A1,A2; B1,B2,C1,C2 andD1,D2 (going southwest-northeast
and conversely); and E1,E2 (going roughly northwest to southeast and con-
versely). Similar patterns (not shown here for conciseness) exist for almost
all the other similar-size time intervals in the studied 7-day period. From
such images, we can conclude that flights linking pairs of airports follow
parallel paths but are structurally not overlapping in space.

However useful in showing the flight directions, flight speed, and over-
all flight locations, the above visualizations suffer from a certain amount
of clutter, especially for large values of Δ. Indeed, in such cases, our trail-
segment set contains many crossing flights, especially in high-density areas
such as close to airports, and if the dataset changes significantly over the
studied time period. Understanding flight patterns in such areas is impor-
tant for many ATC planning tasks [113, 149]. We further help users in
getting clearer, less cluttered, insight in such areas by using several trans-
fer functions, as follows:

Alpha transfer function: Consider, for instance, that we are interested
in low-altitude flight segments (close to airports). To focus on these re-
gions, we modulate the pulse textures ϕi with a nonlinear transfer function

f (h) =
(
hmax−h
hmax

)kα
, where h and hmax are the altitude and its maximum

value respectively. Values of kα < 1 render low-altitude trail segments
gradually transparent, allowing one to focus on the high-altitude ranges.
Values of kα > 1 render high-altitude trail segments more transparent,
allowing to focus on low-altitude ranges.

Color transfer function:Consider, for instance, that we colormap the alti-
tude attribute (h in Eqn. 8.1). If we are interested in focusing on altitude vari-
ations for the low-altitude (close to airport) range, we need to dedicatemore
dynamic range to this signal range. To do this, we apply a transfer function
f (x ) = xkcolor to the normalized altitude attribute prior to color mapping.
Values of kcolor < 1 emphasize high altitude ranges. Values kcolor > 1, in
contrast, emphasize low altitude ranges.
Figure 8.4 shows the effects for our French airline dataset. Image (a)

shows the effect of kcolor = 1 and kα = 2. As the high-altitude trail seg-
ments become more transparent, we can now better focus on the airport
zones and thus the landing and take-off trail segments. These are apparent
on the image as colder colors (blue). Image (b), taken for a longer time-
window Δ value, shows the effect of kcolor = 0.5 and kα = 1.5. We see
now more and longer trails, since Δ is longer. However, the clutter due
to overdraw stays limited, due to the fading out of high-altitude trail seg-
ments caused by kα . The low kcolor value allows us to visually separate
the warm-colored cruise trail segments (which have higher altitude) from
the cold-colored landing and takeoff segments (which have lower altitude).
Images (c-e) show three snapshots from our one-week period taken at dif-
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Tue 8 April 2008, 06:30 AM Thu 10 April 2008, 06:30 AM Fri 11 April 2008, 19:30 PM

Paris area

a b

c d e

Figure 8.4: Emphasizing specific flight ranges and decreasing occlusion by color
and alpha transfer functions.

ferent moments of the morning and evening, for Δ = 30 minutes. Here, by
using kα = 3, we are able to declutter even more of the crowded airport
regions, and see the so-called ‘approach lanes’ of the planes, i.e. the general
paths that planes take when taking off or landing at an airport. Although
images (c-e) are for three different days and two diffent times of day, we
notice that the approach lanes above the Paris area are quite similar. This
is not a trivial finding since, if we look at other times of day, such patterns
are quite different. The found explanation (in discussions with ATC con-
trollers) is that planes that land and/or take off early in the morning or late
in the evening are typically long-distance hauls, which have more stable
approach lanes than shorter-range flights common during the day.
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Figure 8.5: Emphasizing airport connection patterns by trail bundling.
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8.3.3 Bundling-based simplification

As shown so far, our flight visualization offers several scales, or levels of
detail, at which the data can be examined – ranging from instantaneous
plane positions to trail fragments and ending with large trail sets over sev-
eral days. However, apart from this temporal multiscale, we can also ex-
ploit the spatial multiscale of our trail data. Looking at e.g. Fig. 8.2d, we
see that trails come naturally grouped in sets of closely spaced, relatively
parallel, trails. This observation has been exploited by many bundling al-
gorithms that simplify the visualization by bringing together all trails in
such sets, e.g. [53, 76, 108, 116]. The resulting images, although they distort
the spatial information, are much more effective than trails in showing the
connectivity patterns between airports, and how these change in time. Sim-
ilar examples of bundling of static datasets donw by our CUBu method are
shown in Chapter 7.
Recently, Hurter et al. [117] have shown how trail bundling can be ap-

plied to airline trails, by applying the efficient and robust KDEEB bundling
algorithm [116] to a so-called ‘streaming graph’ containing only trails
whose start time moment falls within a sliding time-window. However,
their solution does not show any additional attributes atop of the emerging
bundles, such as flight directions, height, or speed. Moreover, as discussed
in Chapter 7, KDEEB is one up to two orders of magnitude slower than
CUBu.
We extend here the idea of dynamic bundling from [117] by combining

our fast CUBu bundling with our multivariate attribute-based animations
presented earlier in Sec. 8.3.2. In detail, we apply CUBu to trails selected by
our time-window w (t ). This delivers a set of bundled trails. Next, we map
on these bundled trails the attribute values of the corresponding sampling
points (for identical time moments) from the original, unbundled, trails. In
the end, we use the visualizations described in Sec. 8.3.2 to create the final
images.
Figure 8.5 illustrates this idea. Images (a,b) use the same color coding as

in Fig. 8.2d. However, the trails are now given by two frames of the bundled
flight graph, which correspond to twomoments in two different days in our
one-week dataset. Since trails are bundled, geographical (spatial) informa-
tion is lost: Bundles indicate now just connections between airports, rather
than actual flight paths. Still, directional color-coding is useful to show tem-
poral insights. First, we see that the connection pattern is roughly identical
for the two studied moments. Flights in bundles A and B keep their direc-
tions over time, respectively northwest (green) and southeast (pink). Flights
in the big central white bundle structure C go equally in both directions at
both studied moments, since white is the result of additively blending op-
posite colors in our colormap. In contrast, flights in bundle D go southwest
(yellow D1 in Fig. 8.2e) and then return northeast at moment 2 (blue D2

in Fig. 8.2f). All the other visualizations described in Sec. 8.3.2, such as an-
imating pulses along bundles to show flight directions, or using transfer
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8.3 visualization techniqes

functions to focus on specific data ranges, are further directly applicable
on the bundled trail-set.

8.3.4 Congestion detection

Figure 8.6: Congestion detection. The kernel size corresponds to a time-interval of
30 minutes. Alpha blending is used to focus on higher flights.

An important and frequently occurring task inmovement data analysis is
detecting and examining so-called congestion areas, i.e. spatial zones where
many vehicles are present at a given time moment [113, 225]. In ATC, such
areas are particularly important to prevent air traffic congestion and, thus,
delays or an increase in fuel consumption. On small spatial scales, conges-
tion areas become collision areas, i.e. zones where a high risk of vehicle
collision exists. Correlating the appearance of such zones with other pa-
rameters can give important insights in the reasons why such problems
occurred and ways to solve them [24, 77, 94].
An early, and relatively simple, approach to congestion area detection

was given by [225] for vessel (ship) trails: By visualizing the density map
ρ (Eqn. 8.2), we can detect zones of high vehicle densities. However, this
solution was proposed in a static setting: There is a single density map ρ
computed for the entire studied time period (or alternatively put, for the
entire trail-set TS). As such, dynamic congestion patterns that occur and
disappear on smaller time-scales are not visible. Secondly, this basic solu-
tion does not assume there is a higher probability of collision in the direc-
tion of vehicle motion and for rapid vehicles than for other situations. Such
situations are more relevant for our use-case, where we consider airplanes,
which more more rapidly than ships.
We extend this idea by using anisotropic kernelsK in Eqn. 8.2. In contrast

to the isotropic radial kernel, such kernels are larger in the direction of
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instantaneous motion of a vehicle than in other directions. A simple way
to implement this is to use e.g. elliptic kernels whose large axis is tangent

to the trail, i.e., oriented along the normalized vector dx/dt
‖dx/dt ‖ , and scaled to

be equal to the instantaneous velocity. A further refinement involves using
asymmetric kernels, which are longer in the motion direction than in the
opposite direction, thereby modeling the fact that congestion or collision
is more probable in front of a moving vehicle than behind it. Other kernels
can be immediately used to model other types of congestion probabilities,
as and when desired. Moreover, the computation of the density map ρ still
follows Eqn. 8.2, using the suitable kernel K
Figure 8.6 shows the result of visualizing this congestion density map for

the French airline dataset. Here, we color mapped the quantity max(ρ−1, 0)
to a rainbow colormap. Indeed, ρ is by construction equal or larger than 1
at every plane location, and only values larger than 1 indicate a congestion
probability, i.e., the overlap of two kernels corresponding to two different
planes that are close to each other.We also used kα = 0.2 to focus on higher-
altitude trail segments, as we are more interested to detect and assess in-
flight congestion rather than congestion close to or on the airstrips. The
kernel size h was set to be equivalent to a duration of 30 minutes, thereby
modeling a use-case where if several planes at high altitude get closer to
each other than a flight time of 30 minutes, we consider the area as being
congested. The red patterns visible in the image delineate quite clearly the
emerging congestion patterns. These patterns are not (easily) visible using
any of the earlier-presented visualizations. We notice that the congestion
areas are, in most cases, well aligned with the the main flight routes, which
is expected. However, we also see a few red blobs which do not follow the
elongated structure parallel to these routes. These indicate congestion areas
that occur at the intersection of several routes rather than on a single route.

8.4 analysis results

We used our visualizations to analyze several trail datasets over different
space and time periods. Statistics for the datasets shown in this chapter
are given in Tab. 3. Besides the French dataset, we show also a dataset
with three days of flights over Europe and one with one-month flights over
the entire world. Our goal was the explorative scenario outlined in Sec. 8.2,
which consists of two related questions:

• Given a large and unknown dataset, can we (as users) quickly form
a general impression on the distribution of flights in terms of spatial
location, direction, speed, and height?

• Can we discover outlier flight patterns, which diverge, in some sig-
nificant way, from the overall flight patterns in the same dataset?

We next present several of our findings that we obtained when trying to
answer the above questions.
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Sun 6 April 2008 Tue 8 April 2008 Sat 12 April 2008a b c

Figure 8.7: Height-colored trails over a duration of 24 hours with an alpha-based
emphasis on low flights (and airports). We see a clear difference in land-
ing directions Sunday vs Tuesday. Saturday shows a significant increase
in traffic around Paris.

Attributes French Europe World

air-traffic air-traffic air-traffic

start date 06/04/2008 01/06/2013 01/06/2013

end date 12/04/2008 03/06/2013 30/06/2013

# flights 52547 50984 748057

# sample 870880 873240 14711646

points

Table 3: Dataset statistics for examples in this chapter.

Outlier landing/takeoff patterns: In Fig. 8.4 (d-e), we found that land-
ing/takeoff patterns over the Paris area, for three moments, are quite simi-
lar. However, we cannot generalize to infer that such patterns are constant
for all moments. Also, the zoom level in Fig. 8.4 is too low, so potential
small-scale pattern changes would not be visible.
We repeated the experiment shown in Fig. 8.4 (d-e) at a finer zoom level.

Also, we set Δ to 24 hours, to show more data in one animation frame,
thereby allowing us to move the animation faster to cover a longer time pe-
riod quicker. Next, wewatched the animation for our one-week dataset. Pat-
tern changes are easily spotted as changes in the animation.We thus discov-
ered that pattern changes indeed exist. Figure 8.7 shows three frames from
this animation, for three different days. We quickly see that the Saturday
traffic is muchmore intense than on Sunday and Tuesday. This confirms the
expected week variation of flight patterns. More interestingly, the Tuesday
landing/takeoff routes are quite different than the ones for the other two
days. To explain this further, we looked up data for wind direction around
the Paris area for these three days, and found out that the wind patterns
on Tuesday were quite different than for the other two days. This explains
our finding, as ATC rules indicate that landing/takeoff flight segments are
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Figure 8.8: (a,c) Overview of world traffic, June 1, 2013. (d-f) Details over Europe
(see Sec. 8.4).

indeed computed based on wind directions.

Global flight patterns: We now consider a larger dataset, covering the
entire world. The data, available online [207], is gathered continuously by
hobbyists that record ADS-B plane feeds [1] used by commercial and pri-
vate planes to transmit their name, position, altitude, callsign, status, and
other information, and consolidated into a global server. ADS-B is gradu-
ally replacing radar as the most efficient method for ATC, so our visual-
izations will potentially become directly relevant for ATC-related tasks in
the near future. In contrast to the French airline dataset, obtained directly
from the French ATC authorities, the world dataset is far less uniformly
sampled, depending on the position of hobbyist receivers throughout the
world. However, this dataset is orders of magnitudes larger (see Tab. 3). We
processed this data to create the trails dataset necessary for our visualiza-
tion, by matching IDs of the same flight, removing duplicate sample points
(coming from different beacons), and separating flights having the same ID
that occur during different days.
Figure 8.8 shows an overview of the world traffic on June 1, 2013. Im-

age (a) is a snapshot from [207], showing plane positions at one moment
during the day with icons. Besides flight densities, little is visible on this
image. Image (b) shows our visualization of flight routes for that day, color-
coded by flight direction. As for the smaller French dataset (Fig. 8.2d), we
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see here too that flights linking the same (close) airports but having differ-
ent directions follow parallel, but separated, lanes – such as the broad one
between Europe and the US. However, the densely flown regions, such as
Europe, are too cluttered at this scale. One solution to de-clutter is to reduce
the parameters δ and Δ, to focus on shorter time-ranges. Image (c) shows
this result. Here, the arrow-like glyphs become visible and as such indicate
the flight directions more clearly (see insets). As such, the European region
also becomes more de-cluttered. To further de-clutter and obtain local de-
tail, we zoom in over Europe (image (d)), and increase back δ and Δ to see
full one-day trails, like in image (b). We can again see here the lane separa-
tion patterns, such as the one linking the Canary islands with the mainland
and connecting the main hubs, e.g. London, Paris, and Amsterdam with the
rest of the map. Image (e) shows the same region, this time color-coded
by altitude. Low-flight zones such as airport areas are blue, and cruise seg-
ments are green. We see that the average cruise heights over Europe are
quite similar. The sizes of the blue spots indicate the extent of low-flight
zones close to airports. Interestingly, the entire of south-east Britain is such
a zone, which is not crossed by any high-altitude flight (yellow trails). In
contrast, the Paris area shows a similarly-sized blue zone, but which gets
crossed by quite many high-altitude flights.
Image (f) shows the Europe traffic with trail bundling, colored by flight

directions.We notice here manywhite bundles: These are parallel and close
trails which have nearly equal counts of flights in opposite directions. In-
deed, since the KDEEB algorithmworks by grouping trails in distance order,
trails that end up in the same bundle are by construction the closest ones
to that bundle’s location. And, secondly, since trail colors are additively
blended and we use directional hue-coding, we achieve gray (or white)
when a bundle contains (nearly) equal trail amounts running in opposite
directions. We can thus infer that most trail groups over Europe over the
considered day contain roughly equal numbers of flights in opposite direc-
tions. This situation was different for the two considered day moments for
the French airspace shown in Fig. 8.5. Thus, we infer that, at a coarser day-
over-Europe scale, air traffic is more balanced. Finally, we see in Fig. 8.8f
also a few outlier colored trails (see markers in image). These are groups
of flights that go in a single direction, i.e., there are no opposite-direction
flights in the same spatial region for the entire considered day.
However useful, the above images do have an important limitation: They

group trails that represent airplanes flying in opposite directions. As ex-
plained in Chapter 7, this type of simplification can be too high for use-cases
where we aim to answer questions about directed connections between var-
ious positions on a spatial map. A separate technical problem regards color
mapping:When undirected bundling is used, trails being close to each other
and going in opposite directions get bundled together. In turn, when using
color-mapping to show direction, and when using a variable-hue colormap
(such as most directional colormaps are), colors that represent different di-
rection values get blended together, resulting in wrong insights. This is a
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well-known problem that can be easily explained by the fact that blending
(summing) and color mapping (translating data values into colors) are not
commutative operations for variable-hue colormaps (see [271], Chapter 5,
for more details). Using a blending safe’ colormap, such as the grayscale
colormap or other single-hue colormaps, is not a good option, as such col-
ormaps are not well suited for encoding directions.
As such, we propose to address the above issues using directional

bundling, which has been discussed in Chapter 7. The key advantage
hereof is that close trails that run in opposite (or, more generally, highly
different) directions are not aggregated in the same bundle. This allows
both the creation of images where one can reason about directional con-
nections in the dataset, and also solves the technical problem of blending
colors from a variable-hue colormap.
To achieve directional bundling, we cannot use existing directed bundling

methods [108, 206, 231], as these are orders of magnitude too slow for the
real-time requirements of dynamic trail exploration, where we need to
create tens of frames (thus, bundled layouts) per second to yield a smooth
animation. Note that the required speed here is much higher than when
generating static directionally bundled images, such as covered by the
examples in Chapter 7.

a) no bundling

b) directed bundling

A

A

B

B

C

C

Paris detail

Paris detail

Figure 8.9: World flights (June 1st 2013), raw vs directed bundling (Sec. 8.4).

CUBu’s fast directional bundling solves the speed problem. Figure 8.9
shows a frame of the dynamic bundling of all world flights in the database [207],
corresponding to the morning of June 1st , 2013 (about 26K flights from a to-
tal of 750K flights in the database). The unbundled flight display (Fig. 8.9a)
shows several clutter areas, where we see only a single direction-color (A)
or false colors, not even existing in our directional colormap (B,C). The
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fact that undirected bundling creates false colors is more visible in the
detail inset in Fig. 8.9, corresponding to a small zone above Paris: Here, we
see an X-like crossing pattern colored white. However, the directional col-
ormap we use does not contain white (see color wheel legend, bottom-left
in the images). Directional bundling (Fig. 8.9b) clearly separates trail-sets
running in opposite directions. We now see that in all regions A..C there
is symmetric traffic in both directions. This tells us how planes connect
different regions of the world – for example, for flights linking Europe with
North America (detail A), we see that flights from Europe to North Amer-
ica (Fig. 8.9b, purple bundle) fly at a lower latitude than flights from North
America to Europe (Fig. 8.9b, yelow bundle). Quite interestingly, the same
pattern can be seen for most other long-haul flights over the entire world
– flights going roughly to the east are at lower altitudes than flights going
to the west. Also, no false colors are created when directional bundling is
used (see inset in Fig. 8.9b).

8.5 discussion

Several aspects are relevant to our presented techniques, as follows.

Scalability: We implemented our visualization in Python and C++, using
OpenGL pixel shaders for the rendering part (texture computation, blend-
ing, transfer functions, and congestion map, see Sec. 8.3). For bundling
(Sec. 8.3.3), we use the CUBu method described in Chapter 7. Table 4 shows
our timings on a 2.6 GHzWindows PC with a NVidia 690 GTX card, for var-
ious trail selections. The bundling cost is roughly linear with the number of
sample points. Compared to the earlier fastest-known bundling technique
to us (KDEEB, [116]), our bundling is about 30 times faster, on identical
hardware. These results are in line with those presented in Chapter 7 for
static bundling. The slightly lower speed-up shown here as compared to
Chapter 7 can be easily explained by the implementation overhead required
to handle dynamic bundling, i.e., selecting trails that fall in the sliding time
window, passing these to the GPU, getting the bundled results from the
GPU, and displaying these using OpenGL CPU-side calls. The computa-
tional complexity of our technique is linear in the number of trail sample
points falling in the considered time-window of length Δ. Given the above-
mentioned design decisions, we can all in all create real-time animations
of flight data for a few million sample points. This performance was not
achievable with earlier techniques [77, 113, 117, 139].

Limitations:While our technique has significantly less visual clutter than
e.g. [113, 117, 139] by means of transfer functions and bundling, highly
dense flight areas viewed at a coarse scale will still have a high amount
of overlapping flights. This problem is solved in [225] by showing only ag-
gregated information. In contrast, we choose to tolerate a clutter to be able
to show individual outliers in such areas. To increase resolution, we use a
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Statistics # flights # sample bundling time

points (msecs)

Dataset 1 50984 683216 74

Dataset 2 23433 886323 89

Dataset 3 50984 1280680 124

Table 4: Dynamic CUBu bundling statistics.

large 60-inch touchscreen, which makes finer-grained patterns easier vis-
ible. A second limitation concerns the number of attributes that we can
show simultaneously on a trail – currently, this is limited to three (speed,
direction, and altitude). Showing more attributes is an open challenge to
all similar research. A final, implementation-level, limitation concerns the
architecture of our dynamic bundling solution. As outlined above, bundling
is done by CUBu fully on the GPU, but the final rendering and interaction
is done by issuing OpenGL calls from the CPU. As such, at every frame, we
need to transfer data from the GPU to the CPU, a process which is well-
known to be slow. This can be easily accelerated by shading the bundle
data between CUDA and OpenGL, by using so-called vertex buffer objects
(VBO’s), at the expense of a slightly more complex implementation. Early
results in this direction (not included in this thesis due to their preliminary
status and insufficient benchmarking) indicate that one can remove more
than half of the rendering overhead by this approach.

8.6 conclusions

We have presented a set of visualization techniques for the interactive explo-
ration of very large movement datasets emerging from Air Traffic Control
(ATC). On the application side, our main goals were to achieve high infor-
mation density with limited clutter, present several movement attributes
such as altitude, position, and speed at the same time. On the technical
side, our goals were to extend CUBu, our fast bundling technique presented
in Chapter 7, to handle multivariate and time-dependent trail-sets, and to
demonstrate its applicability for assisting the above-mentioned application
goals.
We achieve the above goals by following an image-based visualization de-

sign based on density maps (to show amount of flights), animation (to show
direction and change in flight patterns over time), and graph bundling (to
show coarse-scale similar patterns and their change over time). We achieve
computational scalability by using our CUBu technique presented in Chap-
ter 7, which can be easily adapted to handle dynamic trail-sets by using
a sliding-window technique. The visualization design and implementation
also allows users to smoothly navigate, in both space and time, between lo-
cal detail and global patterns. We demonstrated our techniques on several
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8.6 conclusions

flight datasets ranging from hours over a single country to one month over
the entire world.
Although visual scalability is still challenged by the sheer amount of in-

formation to be shown, our method is considerably more scalable both in
visual space and computational complexity than current methods used for
the same types of datasets and analyses, most notably the one of Hurter
et al. [117] In the future, we plan to augment our visualization by adding
interactive queries in order to enable users to compare and search spatio-
temporal patterns of interest, and also enhance the image-based design to
allow for the display of more data attributes at the same time.
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9CONCLUS ION

We conclude here our work on visual analytics of multidimensional time-
dependent trails with a revisit of the core research question introduced in
Chapter 1, and a reflection on the extent, ways, and limits of our proposed
answers.
The main research question (How can visual analytics help understanding

time-dependent multidimensional data to support the analysis of behavior of
3D shapes?) has been, first, refined by the introduction of the key concept of
dynamic trails. These trails are simple (2D or 3D) curves which characterize
the motion of shapes (or shape parts). As such, our work’s common denom-
inator is the understanding of such trail-sets by visual analytics methods.
To manage the domain of interest, we further split the research question

based on the scale and type of dynamic 3D shapes we considered into a
small-scale problem and a large-scale problem, as described next. To better
allow the comparison of the various challenges, design decisions, and re-
sults obtained in each case, we discuss the two sub-domains of our work
along the following axes:

1. level-of-detail: This dimension describes the amount of information
available in each of the dynamic shapes being part of a studied
dataset;

2. size: This dimensions describes the amount of shapes being part of
a single studied dataset, as well as the amount of samples along the
trail of a single shape;

3. dimensionality: This dimension describes the amount of independent
variables being recorded for each dynamic shape. At minimum, this
is equal to a time-dependent position in 2D or 3D;

4. data acquisition: This dimension describes the procedure involved in
acquiring, or preprocessing, the input data in order to obtain the trail-
sets we want to study;

5. visual analytics: This dimension describes the type of techniques used
to visually explore the data in order to obtain the desired understand-
ing;

6. validation: This dimension describes the goal and procedure used to
validate the findings obtained by the proposed visual analytics meth-
ods.

We next describe our results obtained in the analysis of the dynamics
of trail-sets from small-scale, respectively large-scale, trail-sets along the
above-mentioned dimensions.
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conclusion

9.0.1 Small-scale trail-sets

In this context, we consider the analysis of a small-scale shape – the dynam-
ics of a cow udder. The involved use-case concerns the design of a computer
vision front-end for the construction of automati milking robots (AMDs) in
the dairy industry. The problem is characterized by the following aspects:

1. level-of-detail: The considered shapes are quite complex (deformable,
having a wide variability in form and size). As such, even if we are
interested chiefly in the dynamics of just four points (the teat tips),
studying the acquisition of the dynamic data is unavoidable;

2. size: The size of this dataset is small in number of shapes – we track
three, maximally four, teats per udder. However, in terms of samples
per trail, such datasets an be relatively large, as a trail can contain
thousands of position samples;

3. dimensionality: The raw trail-set has a low dimensionality – for each
trail-point, we only have its 3D position and timestamp. However,
we need to study also the various variables produced by the tracking
system that delivers us suh trail-sets from the raw input video infor-
mation (see below). As such, the dimensionality of a trail point can
be between 10 and 15;

4. data acquisition: The available input data, though dynamic (time-of-
flight videos), does not deliver us directly the desired trail-sets. As
such trail-sets are not readily available by existing means, and since
their generation from the available video data is a practical prob-
lem of interest to the main sponsor of this work (Lely Technologies),
we dedicate special attention to the design of computer vision algo-
rithms for trail extraction. Chapter 5 presents a family of such al-
gorithms, based on various technical elements, the most important
being our proposed 2D and 3D template-based teat detectors and de-
formablemodel tracking. Separately, we present amethod to segment
grayscale and color images using an extension of the novel concept
of dense skeletons (Chapter 4). While this method, unfortunately,
has not proven useful for supporting our teat tracking application,
it has given very good results in the context of segmenting high-
resolution general-purpose images. The main result of this work is
that we showed that it is possible to accurately track teat configura-
tions from low resolution, noisy, variable-viewpoint video sequences
which contain large amounts of camera and subject motion as well as
occlusions. To our knowledge, our results surpass the state-of-the-art
in computer vision based tracking results for AMD devices;

5. visual analytics: The key use of visual analytics in this context is
to study the performance of our proposed tracker, so as to under-
stand the causes of its limitations, and, when possible, to correct these
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(Chapter 6). The employed visualization techniques we propose here
are relatively simple – timelines, linked views, and multidimensional
projections. However, the key added value here is that we showed
how such relatively simple techniques can open the ‘black box’ of
tracker design, and reveal subtle constraints and limitations of such
systems to the end user. To our knowledge, this is a novel utilization
of visual analytics, not used in the context of validating and/or im-
proving computer vision trackers;

6. validation: As we lack ground truth information for our trail-sets,
we perform validation by using a proxy ground truth, computed by
brute-force fitting of a 3D deformable udder model to the depth in-
formation in the input videos. Comparing these results with those
delivered by our tracker, we find a very good match. All in all, we
conclude that our proposed tracker can successfully handle over 90%
of the frames available in our test videos. As outlined earlier, the key
merit of visual analytics here was to help us narrow down the search
space in the large design and parameter space, and offer us efficient
ways to assess and improve our tracker’s performance.

9.0.2 Large-scale trail-sets

Our second application context concerns the analysis of several large-scale
trail-sets, such as the trajectories of airplanes over countries, continents, or
even the entire world; eye movements recorded from subjects performing a
task; relations in a node-link graph drawing; and streamlines describing the
motion of 3D fluid flow. These problems are characterized by the following
aspects:

1. level-of-detail: The considered shapes in this context are relatively
simple – in all cases, they can be seen as point-like objects moving
in 2D or 3D. This contrasts the high complexity of the deformable
udder shapes discussed earlier in Sec. 9.0.1;

2. size: Similarly to the above, and in contrast to our small-scale shape
context, we consider now large to very large sets of trails, varying be-
tween tens of trails (eye tracks) to thousands (streamlines), and tens
up to hundreds of thousands (planes and node-link relations). Such
sizes pose very different problems in terms of computational and vi-
sual scalability as compared to the small-scale context discussed ear-
lier;

3. dimensionality: Our trails have a relatively low dimensionality – 2D
or 3D point positions, time stamps, trail IDs, and occasionally ad-
ditional information such as flight height and speed for the airline
datasets considered. All in all, the dimensionality of such datasets is
not more challenging than that of the trail-sets discussed in the ear-
lier small-scale context;
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4. data acquisition: In contrast to the situation we had for our small-
scale trails, data acquisition is not an issue for our large-scale con-
text: We avail here directly of the required trail-sets, which are deliv-
ered directly by third-parties (ATC operators, flight databases, or eye-
tracking experiments), easily computed by standardmethods (stream-
line tracers), or directly available from the application context (link
positions in a graph layout). As such, all the problems related to ex-
tracting reliable trail-sets, and validating the extraction procedure,
which we discussed in the context of small-scale trail-sets (udder
tracking) are not applicable here;

5. visual analytics: Since we do not have the problem of fine-tuning
or validating a trail extraction procedure, visual analytics focuses
now of very different tasks than those described for the small-scale
context. Specifically, since we now have very large datasets, the key
goal is to obtain a simplified visualization that highlight the essential
patterns present in the data, and also reduce the clutter caused by
drawing too many trails. Our key contribution here is the proposal
of CUBu, a method to generate bundled visualizations of trail-sets
(Chapter 7). We show how CUBu can be efficiently implemented on
the GPU, being able to create high-quality bundled drawings of trail-
sets up to a million trails in under a second on consumer grade GPUs.
We also show how CUBu can emulate the bundling styles of most ex-
isting comparable methods by parameterizing its degrees of freedom
– thereby justifying our dubbing of CUBu as an ‘universal’ bundling
method. Separately, in Chapter 7, we introduce a method for produc-
ing a continuous interpolation of different levels-of-details of trail vi-
sualizations, demonstrate it for the depiction of 3D vector fields, and
discuss it in relation with the natural multiscale generated by CUBu’s
bundling. In Chapter 8, we extend CUBu to handle time-dependent
multivariate trails, and demonstrate this extension for the analysis of
dynamic trail-sets of airplanes in an ATC context;

6. validation: In contrast to the use-case described for small-scale trail-
sets, we do not have now the issue (or goal) of validating a set of trails
with respect to a ground truth, since our trails are the actual ground
truth. For large-scale trail-sets, validation concerns other aspects:
Specifically, we validate the technical quality of CUBu by comparing
it both in terms of results and computational scalability with state-
of-the-art bundling methods. This comparison shows that CUBu
delivers similar quality, but is up to 100 times faster than the fastest
general-trail-set bundling method in existence at the time of writ-
ing our results. Application-wise, we validate our bundling results
by showing that they deliver comparable insights to other methods
(see the case of simplified 3D flow visualization in Chapter 7), or by
showing their concrete added-value in supporting specific use cases
(see the ATC scenarios in Chapter 8).
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9.0.3 Impact

Our work presented in this thesis has led to several notable follow-ups. On
a practical side, our work in designing the teat-tracking solutions in Chap-
ter 5 has helped an actual company (Lely Technologies) in their work for
the design of the next generation of AMD machines. On a research side,
our CUBu trail bundling algorithm has been the basis of numerous exten-
sions in the field by other researchers, such as the visualization of errors in
multidimensional projections [168, 169]; the visualization of the behavior
of deep neural networks [212]; and the dynamic visualization of software
evolution [245]. The performance of CUBu has been exceeded only very re-
cently, and marginally (by a factor of roughly 3), using a refinement of our
design [153]. Separately, our work on dense skeletons for image segmen-
tation and analysis (Chapter 4) has formed the basis of a new method for
image compression that achieved better results, for similar quality, than the
well-known JPEG compression [273]. Our work on simplified visualization
of streamlines (Sec. 7.6) has led to recent developments in the visualization
of various types of 3D vector fields [121]. On a less scientific level, CUBu
has been featured on the cover image of one of the top recent textbooks in
data visualization [271].

9.0.4 Future work

Many directions of futurework are possible based on thematerial presented
in this thesis. Without claiming exhaustivity, we believe the following to be
the most promising, and lowest hanging, fruits:
First and foremost, the flexibility of CUBu makes it nearly directly possi-

ble to explore the visual simplification of other kinds of trail-like data. The
early experiments in simplifying streamline-based visualizations of 3D fluid
flow in Chapter 7 deserve detailed attention to be generalized for a true vol-
umetric simplification of 3D fluid flow visualizations, possibly extending
the even-streamline designs in [129, 155, 174, 281]. Separately, a similar ex-
tension to CUBu could be readily envisaged for the simplified visualization
of DTI fiber tracts, along earlier results in [27, 78, 121, 271].
Amore challenging extension regards the simplified visualization of mul-

tivariate trails using bundling. The key difficulty here is how to aggregate
multiple attribute values, recorded at multiple sample points, which end
up being displayed over the same pixel in a bundled visualization. This
challenge is fundamental to the bundling metaphor, as it generalizes the
challenge of overdraw which is present in all (even non-atributed) bundled
drawings. CUBu offers the computational and implementational basis for
this extension, given its generic design and its very high computational
speed.
Finally, our results shown in Chapter 6 support the claim that visual an-

alytics is a powerful, and easy to use, instrument for getting insights in
complex algorithms such as computer vision tracker pipelines. Generaliz-
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ing this idea, it is definitely worth exploring how, and howmuch, visual ana-
lytics can indeed ‘open up the black box of machine learning methods’ [36].
Recent results, which not coincidentally use some of the results in this the-
sis (CUBu) show that this is indeed possible and effective [212]. It is up to
future research to (re)define and refine such promising results.
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