
Alexandru Telea Fac. Wiskunde en Informatica

To Implementation

A General−Purpose Interactive
Simulation System

The Design Path From Specifications

Alexandru Telea

Fac. Wiskunde en Informatica

To An Object−Oriented Implementation

Alexandru Telea Fac. Wiskunde en Informatica

Presentation Top−Down Overview:

Interactive General−purpose

Goal: general−purpose, interactive simulation system

Simulation system

Laws Objects

OO Specification

C++ Specification

Steering

Modelling

Visualization

Extensible

OO Design

Generic

SubclassingInteractors

OO Interface

The
Dependency
Graph

New Classes
Classes Ports

Alexandru Telea Fac. Wiskunde en Informatica

The Simulation System Concept:

(as compared to the imperative programming concept)

LawsObjectsA Simulation = +

Laws

Objects State variables=

An object groups related state variables
and treats them as an entity.

Example: a point, a vector, a field,
a time−dependent PDE

Inter−object

Intra−object

Express constraints
between objects.

Express constraints
between state variables
of the same object.

Alexandru Telea Fac. Wiskunde en Informatica

The Interactivity Concept:

(as compared to the offline simulation concept)

Steering

Modelling

Visualization

Geometrical and physical
problem modelling.

Geometries, scientific
data, animation.

Control a running
simulation.

Interactivity

Alexandru Telea Fac. Wiskunde en Informatica

From Objects and Laws to Classes:

From the abstract object and law concepts we derive the
concrete OO (C++) implementation concepts:

Laws

Objects State variables

Intra−object laws

Inter−object laws

A C++ Class

C++ Class Ports

methods

data members

Overall: We implement objects and intra−object laws
 by C++ classes (data members and methods).

 We implement inter−object laws by C++ class
 ports.

Alexandru Telea Fac. Wiskunde en Informatica

OO Modelling: Objects and Laws

Reasons for using OO modelling and C++:

Objects and laws map directly
on the (C++) class concept

Collections of objects and
laws map directly on the
(C++) class library concept

Objects

Laws

Class Concept

Class 1

Class 2

.

Class n

Class Library

Alexandru Telea Fac. Wiskunde en Informatica

The Class Library:

 Is the central concept of reusing OO design.

 A class library is a set of cooperating classes.

Class
Library

Implement a
set of concepts

Use a set
of concepts

Users

Implementation

Interface

Developers

Alexandru Telea Fac. Wiskunde en Informatica

The Class:

 Is the central concept of a class library.

 A class groups together data and functions.

print()

read()

write()

compute()
write()
{

 ... do something
 with the data
 members ...

}

int a;
float b,c;
POINT p;

a b

c

CLASS

Class Interface

Class Implementation

Alexandru Telea Fac. Wiskunde en Informatica

Designing A Class:

Main rule of OO design:

✂

Interface

Implementation

 separate design of interface
 from

 design of implementation

separation
level

Advantages:

✒ implementation changes don’t affect users

✒ minimize code rewriting and recompilation

✒ users program in terms of interfaces
 and NOT implementations

✂

Alexandru Telea Fac. Wiskunde en Informatica

Class Concepts: Encapsulation

Basic tool for hiding implementation details:

class A
{
public:

compute();
private:

int a,b;
}

user accessible

hidden to user

print()

read()compute()

a b

c

CLASS

Class Interface

Class Implementation

public part:

accessible to all
users

private part:

accessible only
to developers

write()

Alexandru Telea Fac. Wiskunde en Informatica

Class Concepts: Inheritance

Powerful tool for code reuse and class specialization:

✒ implement a class in terms of other classes

 code reuse

✒ add new features to an existing class

 class specialization

B inherits
from A

C inherits
from B,D

class B : A
{ ...
}

class C : B,D
{ ...
}

A

B
A

C

B D

Alexandru Telea Fac. Wiskunde en Informatica

Class Concepts: Inheritance (cont.)

Inheritance creates class hierarchies

(directed acyclic graphs of classes):

A

B

C D

E

base class

single inheritance (SI)

multiple inheritance (MI)

virtual inheritance (VI)

Alexandru Telea Fac. Wiskunde en Informatica

Class Concepts: Polymorphism

Is the key concept to extensible software:

Example: a class hierarchy of graphic shapes

?

A

ABC

concrete
classes

Shape

Rect

RectTxt RectMark

Ellipse Text

abstract class

}

Alexandru Telea Fac. Wiskunde en Informatica

Class and Object Relationships:

Classes and objects can participate in relationships:

has−a: a class A has−a B if B is a member of A.

is−a: a class A is−a B if A is derived from B.

uses−a: a class A uses−a B if it has a B* member
(a pointer−to−B member)

A

B

is−a

A
has−a

B b
C c
D d
int func()

A

uses−a
BB* ptr

Alexandru Telea Fac. Wiskunde en Informatica

Class Ports:

Classes are provided with ports to establish inter−class
relationships:

Example of inter−class constraints:

C1 :: d = C3 :: foo2

C1 :: b = C2 :: mem

Class C1

B b

C c

D d

Class C2

B mem

X foo

Y bar

Class C3

D foo2

N my_np o r t s l i n k

Alexandru Telea Fac. Wiskunde en Informatica

The Dependency Graph:

a g

e

d

c

b

f

Inter−class constraints establish a dependency graph
at simulation level.

Example: having the following constraints between
 objects a,b,c,d,e,f:

 b = f1(a)
 d = f2(b)
 e = f3(d)
 c = f4(a)
 f = f5(c)
 g = f6(c,f)

 we obtain the equivalent dependency graph:

Alexandru Telea Fac. Wiskunde en Informatica

The Dependency Mechanism:

We create a constraint specification and management system
over the C++ simulation classes.

Constraint specification is done by ports.

Ports:

✒ are typed entities representing state parameters.
✒ are attached to classes.
✒ use class’s parameter read/write methods.
✒ constraints are specified connecting ports of
 compatible types:

A

uses−a
BB* ptr

A B

OutPort
(type B*)

InPort
(type B*)

connection

B

X aX has−a
"B’s X = A’s X"

A

Xhas−a
X a

A

Xhas−a
X a

B

X aX has−a

OutPort
(type X)

InPort
(type X)

connection

Alexandru Telea Fac. Wiskunde en Informatica

Interactivity:

Interactivity The Dependency Graph

Direct Manipulation

The Class Interactors

Visualization

Interactivity has the following components:

 ✒ building the dependency graph

 ✒ object manipulation via

class interactors

 ✒ direct manipulation via
cameras (OpenInventor)

 ✒ visualization via cameras
(OpenGL, OpenInventor)

Alexandru Telea Fac. Wiskunde en Informatica

Building the Dependency Graph:
The user can explicitly establish data dependencies by
connecting/disconnecting ports:

connection

"Domain"
(G_DOMAIN*)

tddom

"This"
(G_DOMAIN*)

Alexandru Telea Fac. Wiskunde en Informatica

Class Interactors:
 In order to interact with a class object, the system provides
 interactors.

 Interactors:

✒ are GUI representations of classes.
✒ allow reading/writing class members and
 calling class methods via GUI widgets.

object name

object
method

object ’has−a’ read/write member

object
’uses−a’
members

object
’has−a’
read
only
members

object class type

object ports

Alexandru Telea Fac. Wiskunde en Informatica

Class Interactors(cont.):

 ✒ The ’uses−a’ relations established by interactors are
 automatically translated into explicit (by reference)

 dependencies.

 ✒ A run−time type information (RTTI) component is
 used to check if dependencies are established between
 objects of the correct type.

 ✒ Class hierarchies are paralleled by interactor hierarchies:

 ✒ Class hierarchies are designed completely independent
 on interactor hierarchies (one−way loose coupling)

is−a

A_int

B_int

C_int D_int

E_int

A

B

is−a

C D

E

Class Hierarchy Interactor Hierarchy

uses−a

Alexandru Telea Fac. Wiskunde en Informatica

Simulation System Overview:

Legend:

 System functional components (managers)
 Simulation specification (data)
 Simulation class libraries (problem−specific classes)
 Class interactor libraries (for the simulation classes)

A

B

C

DObject manager

Dependency manager

Interaction manager

Run manager

Simulation description
 (dependency graph)

Objects
Dependencies

Class libraries Class interactors

Alexandru Telea Fac. Wiskunde en Informatica

The General−Purpose Concept:

General−purpose Extensible

Generic

A general−purpose simulation system should easily
accomodate applications coming from various scientific
domains.

Easy introduction of new
domain−specific classes

A set of classes for general
use in scientific simulation
and visualization should be
available

Alexandru Telea Fac. Wiskunde en Informatica

Visualization:

Here is an example of visualization using
an OpenInventor−based camera:

