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Abstract

Static code analysis offers a number of tools for the
assessment of complexity, maintainability, modularity and
safety of industry-size source code bases. Typically, such
scenarios include three main phases. First, the code is
parsed and ’raw’ data is extracted and saved, such as syn-
tax trees, possibly annotated with semantic (type) informa-
tion. In the second phase, the raw data is queried to check
the presence or absence of specific code patterns which
supports or invalidates specific claims on the code. In the
third and last phase, the query results are presented (visu-
alized) such that correlations between code structure and
query results are emphasized in an easily understandable
way. Whereas parsing source code is largely standardized,
using several existing parsers, querying the outputs of such
parsers is still a complex task. The main problem resides in
the difficulty ofeasily translating high-level, cross-cutting
concerns in the problem domain into queries in the raw data
domain. We present here an open framework for construct-
ing and executing queries on industry-size C++ code bases.
Our query system adds several so-called query primitives
atop a flexible C++ parser, offers options to combine these
primitives into arbitrarily complex expressions, has a highly
efficient way to evaluate such expressions on syntax trees of
millions of nodes, and presents the query results in a visual,
compact, intuitive way. We demonstrate our query frame-
work, integratd in theSOLIDFX C++ reverse-engineering
environment, with several real-world analyses on industrial
codebases.

1 Introduction

Static code analysis is one of the most powerful, scal-
able, robust, and accepted techniques for program under-
standing, software maintenance, reverse engineering, and
reengineering activities. Static analysis encompasses a wide
set of operations ranging from code parsing and fact extrac-
tion, fact aggregation and querying, up to interactive pre-
sentation. In contrast to dynamic (run-time) analysis tech-
niques, which require program compilation, instrumenta-
tion and execution and a suitable selection of input data,
static analysis can be applied directly on, and needs solely,
the source code of a system. Static analysis can support a
wide range of code maintainability, quality, and safety as-
sessments, based on methods such as dependency and im-
pact analysis, type inference, and program slicing. Static
code analysis is gaining wider acceptance, as the tools it
involves are reaching the scalability and maturity required
to be applicable on industry-size code bases of millions of
lines-of-code (LOC).

A typical static analysis pipeline includes three types of
tools, as follows:

1. Parsersare used to analyze the input source code and
produce a raw, low-level, representation thereof. This
comes usually as a syntax tree, optionally annotated
with type information.

2. Queryengines are used to check the presence (or ab-
sence) of various facts in the code, by scanning the an-
notated syntax trees for the occurrence of correspond-
ing patterns. Such queries can range from simple ones,
e.g. ”is a variablex of typeT used in functionf ” up
to sophisticated ones,e.g. ”select all variables used
before initialized” or ”extract the system’s call graph”.
Queries are related tometrics, i.e. numerical values as-
sociated to code elements,e.g.cyclomatic complexity,
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3. Presentationengines are used to visualize the query

results in context. These range from simple tabular
listings of the query results, up to complex interactive
visualizations of multiple attributes such as software
graphs, source code, and metrics.

In this paper, we focus on users interested in static anal-
ysis for the C and C++ languages. C++ is one of the most
widely spread programming language in the software indus-
try [1]. However, its complexity poses several non-trivial
problems to the construction of a trulyeffectivestatic C++
analyzer. Considering the static analysis pipeline mentioned
above, these problems are:

1. Parsers:While several C++ parsers exist, few can out-
put complete annotated syntax trees. Complete trees
are required for a flexible query system.

2. Query:Query engines and parsers are often monolith-
ically merged in a single tool. However, users need
custom queries for custom problems. We need anopen
query systemwith

• a flexible, but simple to learn, way to build a wide
range of queries by composing existing queries;

• efficient execution for arbitrarily complex queries
on code bases of millions of LOC;

3. Presentation:Queries and their results can be quite
complex, so users need ways to pose a query on some
given code and examine its results easily and intu-
itively. Ideally, we would like aclick-to-querysystem
working directly with the source code in an editor.

In this paper, we present the design challenges, architec-
ture, implementation, and use of such an open query system.
We start with an existing C++ parser that generates syntax
trees annotated with type information. Secondly, we extend
the parser to make it applicable in an interactive query con-
text, and design an open query system atop the parser’s out-
put, which satisfies the requirements outlined above. Next,
we add a query management mechanism consisting of query
(de)serialization and query archiving in libraries. Finally,
we integrate our query system in SOLIDFX, a fully fledged
Interactive Reverse-engineering Environment (IRE) for C
and C++, which combines code analysis and visualization,
offering to reverse engineers the same look-and-feel that In-
tegrated Development Environments (IDEs) such as Visual
C++ or Eclipse offer to software developers.

This paper is structured as follows. In Sec. 2, we present
related work in the context of interactive static analysis and
reverse engineering, with a focus on C++. Section 3 de-
scribes the architecture of SOLIDFX in rough lines. We
next detail the main components: the C++ parser, the query

1Since we are using a common engine to compute queries and metrics
(Sec. 3.3), following statements about queries also apply to metrics unless
specifiedotherwise.

and software metric engine, and the data views, with a focus
on the query and metric engines. Section 4 presents several
applications of our query and metric engines on three real-
life code bases. Section 5 discusses our experience with us-
ing our solution in industrial practice and feedback obtained
from actual users. Section 7 concludes the paper with future
work directions.

2 Previous Work

To understand the challenges of interactively querying
C++ code during static analysis, we present a brief overview
of results related to fact extraction, the fact querying proper,
and fact visualization, with a focus on C and C++. We fol-
low the three-stage pipeline as in Sec. 1.

2.1 Parsers

C++ parsers can be roughly grouped into two classes:
Lightweight parsers do only partial parsing and type-
checking of the input code, and thus produce only a fraction
of the entire static information. These include SRCML [2],
SNIFF+, GCCXML, MCC [3], and several custom ana-
lyzers constructed using the ANTLR parser-generator [4].
Typically, such analyzers use a limited C++ grammar and
do not perform preprocessing, scoping, type resolution, and
overloading. This makes them quite fast and relatively sim-
ple to implement and maintain. However, such analyzers
simply cannot deliver the detailed information that we need
for our queries, as we shall see later. Worse, lightweight
analyzers cannot guarantee the correctness of all the pro-
duced facts, as they do not perform full parsing and/or type
analysis.

In contrast to these,heavyweightparsers perform
(nearly) all the steps of a typical compiler, except code
generation, and hence are able to deliver highly accurate
and complete static information. Well-known heavyweight
analyzers with C++ support include DMS [5], COLUM-
BUS [6], ASF+SDF [7], ELSA [8], the EDG front-end [9],
and CPPX [10]. However more powerful, heavyweight an-
alyzers are also significantly (typically over one order of
magnitude) slower, considerably more complex to imple-
ment, and hardly customizable.

Heavyweight analyzers can be further classified into
strict ones, typically based on a compiler parser which halts
on lexical or syntax errors (e.g. CPPX); andtolerantones,
typically based on fuzzy or Generalized Left-Reduce (GLR)
parsing, which do a tolerant parsing followed later by the
strict disambiguation and type checking (e.g. COLUM-
BUS). Our earlier work to design the Visual Code Navi-
gator, an interactive query tool for C++, used a strictgcc-
based parser [11]. We quickly noticed the practical lim-
itations of strict parsers: Many users do not have a fully
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dialects, or simply errors in the code. Yet, one still wants to
be able to query such code, or at least its parseable subset.
Consequently, we concluded that a tolerant C++ analyzer is
to be preferred.

2.2 Query engines

There is very little available in terms of a generic, open
static query system for C++. Various analyzers, such as
COLUMBUS and CPPX, provide a limited set of built-in
queries, which aim to cover several code standards con-
formance and ’good coding practice’ checks,e.g. that a
baseclass should declare a virtual destructor, or that overrid-
ing a method should not change its access specifier. Abx-
soft’s CodeCheck [12] offers a scripted C-like query lan-
guage. Although flexible, the query language effective-
ness is bounded by the quite limited set of facts that can
be checked, which is in turn limited by the built-in parser.
ASF+SDF goes probably the furthest in query design flex-
ibility, proposing a formalism to define (and check) com-
plex assertions on syntax trees. However, ASF+SDF is still
very far from full C++ support - for example, it does not
offer complete lookup and scoping. Also, its generic char-
acter makes its rapid applicability to the complex specifics
of C++ quite challenging.

None of the above query systems is directly integrated
with interactive data presentation. Queries are posed in
batch-mode, using script files, which makes rapid ’what-
if’ exploration of large code bases difficult and time-
consuming. A second serious problem of the current state-
of-the-art in static analysis is the extremely limited amount
of detailed implementation information that many papers
provide. This is especially true for C++ analyzers, which
are notoriously complex. However, such ’details’ are of
paramount importance when implementing a complete, ef-
ficient static query system, as we shall see in Sec. 3 and 3.3.

2.3 Presentation

The most frequent way to present static analysis query
results is in tabular or (hyper)textual form [13, 6]. Visu-
alization tools are more effective than plain text, as they
can depict higher amounts of information, and also mul-
tivariate and/or relational information. Many visualiza-
tion tools exist, ranging from line-level, detail visualiza-
tions such as SeeSoft [14] up to architecture visualiza-
tions which combine structure and attribute presentation,
e.g. Rigi [15], CodeCrawler [16], or SoftVision [17]. An
extensive overview of software visualization techniques is
provided by Diehl in [18].

A recent attempt to combine visualization and C++
static analysis is the SOLIDFX reverse-engineering frame-

work [19]. SOLIDFX has several advantages compared to
other similar solutions:

• is based on a heavyweight, tolerant, and extensible
C++ parser;

• offers both line-level and architecture-level visualiza-
tion plug-ins;

• is easily extensible with new analysis plug-ins.

Given the above, we chose to integrate our open C++
query system in SOLIDFX. The integration process, and its
results, are detailed next.

3 System Architecture

To understand the operation of our proposed open query
system, described next in Sec. 3.3, we first outline the ar-
chitecture of SOLIDFX, the Integrated Reverse-engineering
Environment (IRE) into which the query system is com-
bined with parsing and visualization. SOLIDFXis a com-
mercial tool [19], the result of a design process of sev-
eral years, combining our previous experience with a sim-
ilar IRE called the Visual Code Navigator (VCN) [11] in
projects involving commercial, open-source, and academic
C++ code, as well as our experience with COLUMBUS.

SOLIDFXuses atolerantparser, as we noticed that most
users would not accept a tool that halts upon (trivial) syntax
errors. Aheavyweightparser was chosen, for several rea-
sons. First and foremost, we need all the facts in the code,
i.e. a complete syntax tree annotated with type information,
in order to design an open query system, since we do not
know upfront which facts one will need to include in one’s
queries. Secondly, in order to pose queries on-the-fly on
source code and also present their results in code-level vi-
sualizations,e.g. click-to-query in a code editor, we need
fine-grained information such as the location, scope, and
type of each code identifier. This requires a heavyweight
extractor.

A second consequence of this tight integration of pars-
ing, querying, and visualization required by a click-to-query
tool, we need a fine-grainedand efficient interface (API)
to access all the parsed static information on-the-fly. Un-
fortunately, no heavyweight tolerant C++ extractor that we
were aware of offered such an interface, so we had to build
one atop of our tolerant C++ parser. In the following, we
describe the design of our query system and its tight inte-
gration with the C++ parser and data visualization in the
SOLIDFXenvironment. We refer to Figure 1 which shows
the arcitecture of our system and its four main elements:
the fact database, the fact extractor, the query and metric
engine, and the visualization components.
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Figure 1. Dataflow architecture of SOLIDFX

3.1 Fact Database

All parsed or queried static data is stored in a so-called
fact database. This includes theraw facts, produced by the
parser from source code, but alsoderived facts, produced
by the query and metric engines (Sec. 3.3).

A fact database is created by analyzing a given code
project. Similar to a makefile, a project contains a set of
C/C++ files, include paths, preprocessor defines, and lan-
guage dialect settings, and is created either by hand or by
automatic translation of makefiles or Visual C++ project
files, using a technique similar to the ’compiler wrapping’
described for COLUMBUS [6]. For each source file (trans-
lation unit), the parser saves four kinds of data elements in
the database: syntax, type, preprocessor, and location. Each
data element is assigned a unique id. The database is struc-
tured as a set of binary files, one per translation unit.

The IRE components (parser, query engine, visualiza-
tions) communicate with each other by lightweight sets of
ids, calledselections, which resemble table views in a SQL
database. The database creation, which involves parsing the
source code, is by far the most consuming time of static
analysis. After database creation, queries and visualizations
do not change the annotated syntax trees, but only modify
selections, a process which can be done at near-interactive
rates (Sec. 3.3,3.4). To be concrete, queries ranging from
simple ones (”select all functions whose name matches a
regular expression”) up to complex ones (”extract a call
graph involving only non-virtual functions”) take between
one and 3-4 seconds on a code base of a few hundred

thousands lines of code on a standard 4MB 2.2 GHz PC.
The (small) speed fluctuations are mainly dependent on the
database file caching performed by the SQL engine and the
operating system. Moreover, it is illustrative to note that
complexqueries takelesstime, since they have stricter con-
ditions which lead quicker to early query termination, and
also generate less database traffic.

3.2 Extracting Facts with an Extended
Parser

As outlined in Sec. 3, we use a C and C++ heavyweight
analyzer of own construction. We based our analyzer on
ELSA, an existing C++ parser designed using a GLR gram-
mar [8]. We chose ELSA as it is the only open-source heavy-
weight tolerant C++ analyzer we are aware of. ELSA pro-
duces a parse forest of all possible input alternatives, which
are next disambiguated to a single Annotated Syntax Graph
(ASG) using the C++ scoping and lookup rules. In the dis-
ambiguation phase, type information is added to the parse
tree,i.e. information linking each symbol with its declara-
tion. The ASG contains two types of nodes: abstract syntax
tree (AST) nodes, creating during parsing; and type nodes,
created during disambiguation, which are attached to the
typed AST nodes.

Although it comes closest to our architectural and user
requirements outlined earlier in this section, ELSA still
lacks features needed in our interactive click-to-query setup
(Sec. 3). These limitations are as follows:

• L1: ELSA requires preprocessed input, so it cannot un-
derstand or query preprocessor facts;

• L2: Exact (row, column) locations for all AST nodes,
needed for click-to-query, are lacking;

• L3: Error recovery is lacking, so incorrect code gener-
ates no output at all.

• L4: ELSA dumps the entire AST of its input, which
causes large overhead making real-time querying im-
possible;

We have extended ELSA to eliminate limitationsL1 −
L4, as described next. Our extended C++ extractor works
in five phases (see Figure 2 and [20] for full details).

First, the parser reads the token stream from the lexer as
it performs reductions and builds the AST. Traditionally, the
lexer of a C parser would simply get tokens from an already
postprocessed file. In our setup, however, the lexer gets to-
kens bydirectly calling back the preprocessor, which pre-
processes the input on-the-fly. For this, we succesfully used
both the Boost [21] andlibcpp preprocessors, which we
patched to output token locations along with the tokens and
also to save preprocessor information in the fact database.
This setup barely modifies the original ELSA parser, and
addresses limitationL1 andL2.
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Figure 2. Architecture of the SOLIDFX C++ parser (main components shown in bold)

A second extension of ELSA allows us to handle incor-
rect and incomplete C++ input, as follows. When a parse
error is encountered, we switch the parser to a so-calleder-
ror recoverygrammar rule, which will match all incoming
tokens up to the corresponding closing brace (if the error oc-
curs in a function body or class-declaration scope) or semi-
colon (if the error occurs in a method, namespace, or global-
declaration scope). Besides skipping the erroneous code,
we also remove the corresponding parts from the AST. The
net effect is as if the code containing the error up to the
matching ’}’ or ’;’ was not present in the input. This solu-
tion required adding only six extra grammar rules to ELSA’s
original C++ GLR grammar. Our approach, where error-
handling grammar rules get activated on demand, resembles
the hybrid parsing strategy suggested by [22]. Compared to
ANTLR, our method lies between ANTLR’s basic error-
recovery (consuming tokens until a given one is met) and its
more flexible parser exception-handling (consuming tokens
until a state-based condition is met). This design balances
well implementation simplicity with a good error-recovery
granularity, thereby addressing limitationL3, and adds less
than 10% overhead to the parsing.

The error-recovery-enhanced parsing is followed by
ELSA’s original AST dismbiguation and type-checking.
Next, we filter the extracted preprocessor, AST, and type
nodes, and keep only those which originate in, or are re-
ferred from, the project source files (Sec. 3.1). This elim-
inates all code from includedheaders, e.g. declarations
and preprocessor symbols, which is not referred by code in
the analyzedsources. Filtering the parsed output is essen-
tial for performance and scalability, as it reduces the output
with one up to two orders of magnitude, and makes the fact
database queryiable in near-real-time, as we shall see next2.

2This is not surprising, considering that a typical ”Hello world” pro-
gram includingstdio.h or iostream contains 100000 LOC after pre-
processing, of which only a tiny fraction is actually used

Finally, the filtered output is written to the fact database us-
ing a custom binary format. Filtering effectively addresses
limitation L4.

The several design choices made for the parser front-
end, i.e. using the ELSA highly-optimized, hand-written,
parser; providing error-recovery at global declaration and
function/class scope levels; filtering unreferenced symbols
from the parser output; and writing the output in an op-
timized binary format, make our modified ELSA parser
roughly three to six times faster than COLUMBUS, one of
the fastest heavyweight C++ parsers that we could test, on
projects of millions of lines of code [20].

3.3 Query and Metrics Engine

3.3.1 Preliminaries

The query and metrics engine is the core of our static code
analysis system, and is described in detail next.

Formally, a query implements the function

Sout = {x ∈ Sin|q(x, pi) = true} (1)

that is, finds those preprocessor, syntax, or type elements
x from a selectionSin which satisfy a predicateq(x, pi),
wherepi are query-specific parameters.

3.3.2 Design and Implementation

Our query engine is designed as a C++ API (class library)
which implements several specializations of the above
query interfaceq, as follows (see also Fig. 3 which depicts
the architecture of our query system).

There are four main subclasses of the Query inter-
face: PreproQuery, TypeQuery, LocationQuery, and Visi-
torQuery. PreproQuery offers a simple way to search for
specific preprocessor constructs,e.g. comments including
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Figure 3. Query system architecture, with main elements mar ked in bold

a given text, macros, macro calls, or conditionals. Since
the C preprocessor grammar is quite flat, PreproQuery has
a straightforward implementation.

TypeQuery offers a way to search the type information
produced during the disambiguation of an extracted ASG.
This interface supports queries such as ”what is the type
of this given variable?”, but also queries to determine the
relation between two given types (identity, subtyping, sub-
suming, etc).

LocationQuery is a simple interface that queries all sym-
bols within a given code location range (file, row, column).

The most complex (and useful) of the Query interface
implementations is VisitorQuery. For AST nodesx, Visi-
torQuery visits the syntax tree rooted atx and searches for
nodes of a specific syntax-typeT , e.g. function, optionally
checking for attributes,e.g. the function’s name. For each
of the approximately 170 syntax typesT in our C++ GLR
grammar [8], we generate a query-class containing children
queries forT ’s non-terminal children and properties, or data
attributes, forT ’s terminal children. For instance, the Func-
tionQuery has a propertyname for the function’s name
(which is an identifier,i.e. terminal, in the grammar), and
two children queriesbody andsignature for the function’s
body and signature (which are non-terminals). All above
query-classes are generated automatically from our C++
GLR grammar, using a modified version of the Elkhound
parser-generator which comes along with Elsa [8]. In this
way, any modification to the C++ grammar used is automat-
ically reflected in the query API.

To perform more complex analyses, the above Query in-
terfaces can be composed in query-trees. The query com-
position semantics is controlled by a separate customizable

Accumulator class. When a childqc of a queryq yields a
hit, q calls its Accumulator’saccumulate() method, which
returns true when the Accumulator’s condition has been
met, else false. By default, all query nodes use anAND-
accumulator, which returns true when all queries in its
query-tree are satisfied. We implemented Accumulator sub-
classes for different operators,e.g. AND, OR, <, =, and
similar. These let us easily implement complex queries by
combining simpler ones. For example, to find all functions
whose name begins with ”Foo” and have at least two pa-
rameters of type ”Bar”, we set the FunctionQuery’sname

attribute to ”Foo*” (using regular expressions or wildcards),
the name attributes of the Type nodes of the function’s
parameter children-queries to ”Bar”, and use an AtLeas-
tAccumulator with a default-value of 2 on the function’s
signature child-query.

As outlined earlier in this section, VisitorQuery applies a
given query-treeq on a given input elementx by using the
visitor pattern to find those elementsy in the AST rooted at
x which match the type ofq’s root, followed by an appli-
cation ofq(y) based on recursion overq’s children-queries.
This design decouples the search implementation from the
specification of what to search for: The former is imple-
mented in the VisitorQuery class, while the latter is imple-
mented in the particular query-tree instance used. Overall,
the query composition can be modified transparently by dif-
ferent accumulators, without having to change the query
classes.

Although flexible, the VisitorQuery design outlined
above cannot go beyond matching a semi-fixed structural
pattern (the query-tree) on the input code (the AST). In
some cases, one wants to query patterns which have a more
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tialized before being used. To support such queries, we
added a set ofiterators over the parsed AST to out query
API. These offer inorder code traversal and full access to
the additional type information. Using the iterators API,
any static query that we are aware of can be implemented.

The system stores query-trees in XML, and provide a
query editor, so users can edit queries on-the-fly, without re-
compilation, and organize queries in custom query libraries.
We have so far designed over 70 queries that cover a number
of static analyses, such as identifying basic code smellse.g.
case branches without break, class member initializations
differing from the declaration order, changing access spec-
ification of a class member when overriden, base classes
with constructed data members and no virtual destructors;
and extracting class hierarchy, include, and call graphs. The
query API allows a flexible specification of a wide set of
static queries, ranging from ”find all variables calledx”
to ”find all classes inheriting fromBase and containing a
method which throws exactly two exceptions of typeE”.
Several examples of queries and their applications are pre-
sented in Sec. 4.

3.3.3 Performance considerations

Queries can be executed on both in-memory and on-disk
fact databases. On-disk queries are very efficient and have
a negligible memory footprint. However, in our click-to-
query scenario (Sec. 3), we require near-real-time query
response, even for large fact databases of hundreds of
megabytes. To achieve this, we designed a few additional
mechanisms, as follows.

Typical C++ syntax trees are shallow. A translation unit
(the root of the syntax tree) contains thousands of rela-
tively limited-depth subtrees, one per global symbol. The
largest such trees occur for namespaces and class declara-
tions, which in turn may contain hundreds of shallow sub-
trees for their symbols (e.g. methods in a class). Exten-
sive testing confirmed that the largest part of the time spent
in a query is in iterating over all these subtrees to find the
requested one(s), during the VisitorQuery visit process de-
scribed earlier. Hence, we can accelerate the query process
by precomputing hash-maps that store all global symbols of
a given kind,e.g. functions, class declarations, and global
variables. We implemented this technique during the fact
database extraction, right after the filtering and before seri-
alization (Sec. 3.1). Using these precomputed hash-maps,
VisitorQueries can now directly iterate over global-scope
subtrees of a given kind, without having to visit the entire
translation unit. Within the subtree of a global construct,the
usual visiting process is used. This relatively simple opti-
mization accelerates the query process by a factor between
8 and 10 on typical C++ code bases which include stan-

dard library headers, as these contain (tens of) thousands of
global-scope symbols.

A second optimization provides a cache mechanism
which loads and keeps entire parsed translation units in
memory on a most-recently-used policy. This improves
query speed even further by a factor between 3 and 7, at
the expense of more memory, roughly one megabyte per
5000 parsed-LOC. A third simple and effective speed-up
uses early query termination when evaluating the query-
tree accumulators. All in all, these mechanisms allow us to
query millions of ASG nodes in a few seconds on a 3GHz
PC with 2 GB RAM. This gives us the desired performance
for our interactive click-to-query scenarios.

3.3.4 Code Metrics

Several code metrics can be implemented directly using the
query engine. For example, the metrics of the type ”number
of occurrences of code patternP ” can be implemented as

m(x) = |q(x, pi)| ∈ R, ∀x ∈ Sin. (2)

This associates a numeric valuem(x) to each elementx
of a selectionSin based on the number of hits of a corre-
sponding queryq which searches patternP . Interestingly,
many typical static-analysis metrics, such as McCabe’s cy-
clomatic complexity, class interface sizes, coupling metrics,
and most of the object-oriented metrics discussed in [23]
can be implemented in this way. For more complex met-
rics, one can always implement them by directly calling the
query API described above.

3.4 Queries and the Data Views

The third and final component of SOLIDFX provides
a set of interactive datavisualizations, or views. These
views serve both as input and output to the query opera-
tions: Users can click-to-select code fragments in the views
and pass them as input to queries or metric engines, whose
outputs can be further displayed in the views.

Figure 4 shows several data views. Theproject viewlets
users set up an analysis project, much like one sets up a
build project in Visual Studio or Eclipse. Theoutput view
shows the fact database files created by the parser, while the
selection viewshows all selections in the database. In the
selection view, one can specify which selections are to be
shown in the other views and how to color their elements
(as discussed next)3. The query viewshows all available
queries in the XML query library (Sec. 3.3).

Code viewsshow the actual source code in the desired
files. Selected code is highlighted in the respective selec-
tions’ colors, thereby enabling one to spot the occurrence

3We recommend viewing this document in full color
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database view
output view

selection monitor

Figure 4. Overview of the SOLIDFX Integrated Reverse Environment

of particular events. We now see that, to construct such
highlights, we need the exact (row,column) locations of ev-
ery AST node and preprocessor directive from the parsing
phase (Sec. 3.2). Code views can be zoomed out by de-
creasing the font size, up to the point when one code line
becomes a (colored) pixel line, thereby allowing one to
overview larger amounts of code than using standard edi-
tors.

Queries can be applied in two ways, as follows. To per-
form a query,e.g.”select all function definitions withn pa-
rameters”, one first selects the query in the query view, fills
in the desired attributes,e.g. the value forn in the query
GUI, and clicks on the selection to query in the selection
view. A new selection, containing the query’s output, is au-
tomatically added to the selection view. Secondly, one can
right-click on any code element in the code view, exposing
a menu with all queries which can take the clicked code el-
ement as input. Upon selection of a query, this is applied
on the clicked code, and its result is added to the selection
view.

To browse the elements in a selection and their code met-
rics, if any, we provide a separate view calledselection mon-
itor. The selection monitor is essentially a table having the
selection elements as rows and their textual representation,
code location, and various code metrics (if any) as columns.
Some selections can have thousands of elements,e.g.the re-

sult of a ”select all functions” query. Understanding such a
table can be difficult. To facilitate the creation of overviews,
we use the well-known ’table lens’ technique [24]: When
zoomed in, the table lens looks like a usual Excel table.
When zoomed out, each row becomes a pixel row colored
and scaled to show the code metric values, so the entire table
becomes a set of vertical graphs. Clicking on the table col-
umn headers sorts the respective columns on their values,
thereby enabling one to quickly find those code elements
having a minimal or maximal value of a given metric.

TheUML viewis a custom view showing UML class dia-
grams. The diagrams themselves are extracted from the fact
database using queries which search for classes, inheritance
relations, and associations. Associations can be definede.g.
as function calls, variable uses, or type uses. The extracted
diagrams can be laid out by hand or automatically using
the GraphViz library [25] or a custom graph-layout library
we developed. Moreover, class and method metrics can be
drawn atop of the laid out diagrams using icons scaled and
colored to show the metric values, following an extension
of the technique described in [26]. The combination of dia-
grams and metrics enables users to perform various types of
code quality and modularity assessments, as shown further
in Sec. 4.

Besides these built-in views, external visualization tools
can be integrated within our IRE by writing appropriate data
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which uses the SQLite database browser executable, with
no modification, to visualize the data in a selection,i.e. the
code element ids, their actual code, and the metrics com-
puted on it, saved as a SQL database table by a data ex-
porter. This type of integration allows us to extend our IRE
by reusing several existing software analysis and visualiza-
tion tools with a minimal amount of effort. External views
are preferred when the interaction between the fact database
and the view is rather loose, and when the amount of data
to be passed to the view is limited. In contrast, the built-in
views are preferred in scenarios which heavily access the
fact database at a fine-grained level.

4 Applications

We illustrate now the usage of the query and metrics en-
gines added to SOLIDFX with several examples from a
number of industrial projects4. The main characteristics of
the applications discussed here are as follows:

• Input: A given C++ code base developed by a third-
party team (i.e. not the persons doing the analysis).

• Aim: Assess a given quality attribute (e.g.modularity,
maintainability, complexity) of a given C++ code base,
and answer quality-related questions specific to each
code base.

• Method: The code base is analyzed using our C++
parser; several queries and metrics are computed on
the extracted fact database; the results are interactively
examined using the SOLIDFX views and discussed
with the project stakeholders.

• Duration: A typical analysis session takes a few hours
from the initial code hand-over until the results are
available. A complete code base assessment typi-
cally takes three to six such sessions, where increas-
ingly refined questions and hypotheses are tested dur-
ing the later sessions by means of specific queries on
narrowed-down parts of the code base.

In the following, four such code assessments are de-
scribed.

4.1 Finding Complexity Hot-Spots

In the first application, we examine the complexity of
the wxWidgets code base, one of the most popular C++
GUI libraries having over 500 classes and 500 KLOC [27].
After extraction, we query all function definitions and
compute several metrics on them: lines of code (LOC),
comment lines (CLOC), McCabe’s cyclomatic complex-
ity (CY CLO), and number of C-style cast expressions

4A video showing our tool is available atwww.solidsource.nl/
video/SolidFX/SolidFX.html

(CAST ). Next, we group the functions by file and sort
the groups on descending value of theCY CLO metric, us-
ing the selection monitor widget. Figure 5 bottom shows a
zoomed-out snapshot of this widget, focusing on two filesA

andB (more files can be examined, we only selected these
two for presentation clarity). Each pixel row shows the met-
rics of one function. The long red bar at the top of fileB

indicates the most complex function in the system (denoted
f1). Although complex, we see thatf1 is also the best doc-
umented (highestCLOC), largest (highestLOC), and, in-
terestingly, in the top-two as number of C-casts (CAST ).
Clearly,f1 is a highly complex function, but the developers
took extra care to comment it well.

Double-clicking the table row off1 opens up a code
view showing all the selected function definitions and our
clicked f1 flashing (Fig. 5 top, see also the video). The
functions in this code view are colored to showtwometrics
simultaneously, using a blue-to-red colormap: theCY CLO

metric (highlight fill color) and theCAST metric (highlight
border color). We see thatf1 stands out as having both the
fill and border in red (or dark gray in a monochrome print-
out), i.e. being both complexandhaving many casts. In the
selection monitor, we also see that the function having the
most casts,f2 (located in fileA), is also highly complex
(high CY CLO), but is barely commented (lowCLOC).
This may point to a redocumentation need (confirmed at
close code inspection).

The exponential decrease of complexity shown by the
coloredCY CLO bar-graph at the bottom of Fig. 5 is typ-
ical to the entire wxWidgets code base. Its interpretation
is easy: there is a very small percentage of highly-complex
code, the vast majority being of moderately low complex-
ity. The highly-complex code is well documented. All in
all, we conclude that wxWidgets has just a few complexity
hot-spots, and these are well explained.

4.2 Modularity Assessment

In this second application, the stakeholders were inter-
ested to assess the overall modularity of two given subsys-
tems of a commercial database solution. The assessment
was needed as a first step in a subsequent porting process,
i.e. deciding which subsystems (if any) can be decoupled
and ported in an incremental approach.

For this, we first extracted the static call graphs from the
code, using a custom designed query that looks for func-
tion definitions and function calls, and links calls to the def-
initions using a technique which basically reproduces the
working of a classical linker. This query also naturally and
easily handles constructor, conversion-operator, and over-
loaded operator calls, since our C++ parser extracts and
saves all this information in the AST. Using our query API,
the complete code for the call graph extraction is under
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Figure 5. Finding complexity hot-spots in the wxWidgets cod e base

100 LOC of C++. Besides the call graphs, we also extract
the system hierarchy, seen as methods-classes-files-folders.
The call graph and hierarchy trees are next exported and vi-
sualized by Call-i-Grapher, a third-party tool designed to
display large hierarchical graphs [28]. The hierarchy is
shown as a set of concentric rings, the sectors of which in-
dicate methods, classes, and files (from inside to the out-
side) (Fig. 6). Call relations are drawn as splines, bundled
to indicate relations emerging from, or going to, the same
hierarchy ancestor, as described in [28].

Figure 6 shows immediately a striking difference. The
left subsystem shown is quite modular. We can easily dis-
cern the way its five subsystems (indicated by labels) call
each other. Edge colors indicate the call direction: callers
are red (medium-gray in a monochrome print-out), callees
are blue (dark gray in a monochrome print-out). We imme-
diately see, for example, thatlibraries is only called from

databaseand that emphcore does not calllibraries. This
information can be directly used in the design of a phased
porting plan. In contrast, the right subsystem, albeit of a
similar size in terms of methods and classes, is far less mod-
ular. Here, we basically have two files which call each other
in a highly complex way. There is little call structure to see,
so little hope that one can easily split these files into smaller
loosely coupled units and port these incrementally. Here,
we used the edge color to show the call type: green indicates
static calls, whereas blue shows virtual calls. This informa-
tion is immediately available from a FunctionQuery where
we ask for functions having thevirtual attribute set. The
blue edges appear to be somewhat bundled, so there is still
some hope we can locate some interface classes (containing
mainly virtual functions) in this way.

Overall, the stakeholders concluded that the left system
is modular and envisaged a phased porting with relatively
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it is not modular, and the porting should be not attempted at
this stage.

4.3 Maintainability Assessment

In the third application, we are interested to assess the
maintainability of a C++ code base implementing an editor
using OpenGL, wxWidgets, and the Standard Template Li-
brary (STL). The application was developed over a period
of several years by three persons. The last developer, who
worked for the second half of the period, did not have in the
end a clear idea of the entire code architecture. His manag-
ing architect was concerned about the code maintainability,
for which this developer could not give a clear indication.

We started the analysis by extracting a number of class
diagrams from the source code. The classes were loosely
grouped into diagrams manually by the developer, based on
his intuition and insight as to which belong together (func-
tionally or otherwise). As association relations, we consid-
ered method calls and referring to class types. Next, we
computed three metrics on the methods: the lines-of-code
(LOC), lines-of-comment-code (CLOC), and McCabe’s
cyclomatic complexity (CY CLO).

Figure 7 shows one of the extracted class diagrams, laid
out automatically using GraphViz. Class heights are propor-
tional to their number of methods. Inheritance relations are
drawn as black (bold) lines, while associations are drawn
as light-gray (thin) lines, in order to reduce the visual clut-
ter. On this picture, the architect recognized three main sub-
systems of the considered code base, along a Model-View-
Controller pattern: thedata model, containing the main ap-
plication data structures; thevisualization core, containing
the control functions; and thevisualization plug-in, contain-
ing rendering (viewing) functions. The diagram also shows
that these subsystems are quite decoupled, which suggests a
good maintainability. Further, we see the heavy use of a few
STL classes, mainly for the data model. This does not pose
any maintenance problems, as it was agreed to use STL in
the system implementation from the beginning, and STL is
stable and well-documented software.

Atop the class icons, we visualized the computedLOC

andCY CLO metrics using colored bar-graphs. Long, red
(medium gray) horizontal bars indicate high values. Thin,
blue (dark gray) bars indicate low values. Within each class,
the bar graphs are sorted from top to bottom in decreas-
ing order of theCY CLO metric. Looking at Fig. 7 top,
we quickly discover an outlier class, markedX , in the vi-
sualization plug-in subsystem. This class has the highest
CY CLO and LOC values in the entire system, and has
also many methods. All other classes have relatively small
CY CLO andLOC values, as indicated by the thin bars.

Figure 7 bottom shows a zoomed-in view of the visual-

ization plug-in. The sorted bar graphs, coupled with textual
tooltips (not shown in the image), allow us to quickly locate
the names of the most complex methods of the entire sys-
tem, found of the classX . The most complex method has
a McCabe value of 40, which is very large. Looking in de-
tail at the code ofX using a code view (Sec. 3.4), we could
later see that it was indeed very complex. However, there is
an essential observation that the UML view lets us perform:
The diagram shows us also that classX is not referred to
directly from outside the visualization plug-in. Plug-insare
optional in this system, so their maintainability is far less
crucial than that of the system core. The lead developer rec-
ognized the complex classX as containing his own code,
which was indeed not yet cleaned up and refactored. Hence,
although maintaining this class is indeed hard, this problem
will not propagate to the entire system, but stay confined
within the plug-in. Overall, the architect concluded that the
entire system is in a satisfactory maintainability state, and
recommended clean-up and refactoring work on the plug-in.

4.4 Change Propagation Assessment

We consider now the same editor code base as for the
maintainability assessment (Sec. 4.3). During its develop-
ment, its architect noticed that coding due to change prop-
agation (e.h. modifying an interface or data field that is
used frequently) consumed a higher-than-expected amount
of time. In this fourth and last analysis, we want to assess
whether our system is resilient to changes. In other words:
would a change in the code of a class trigger lots of changes
in other classes, due to data-dependencies?

Figure 8 shows a UML diagram extracted from source
code, as explained earlier in Sec. 4.3. For each method,
we now compute two new metrics: the number of variables
read (INPUTS), respectively written (OUTPUTS). Metrics
are sorted in decreasing order ofINPUTS, and visualized
with scaled bars, blue (dark gray in a monochrome print-
out) for INPUTSand purple (medium gray) forOUTPUTS.
Both ranges ofINPUTSandOUTPUTSare set to the same
value, since the metrics have the same dimensionality.

We quickly see that there is no correlation betweenIN-
PUTSandOUTPUTSvalues, but also discover some inter-
esting outliers. The class markedA reads and writes a lot.
This class is responsible for the rendering of UML model
elements. Following the UML diagram, we discover it in-
herits from aVisitor interface. Looking at its method signa-
tures, we understand that it accepts objects of UML Data
Model types through itsVisitor interface. A quick code
browse of this class shows that the high read and write met-
rics are actually due to theV isitor pattern implementation.
Since this is a clean design pattern, we assess that the strong
dependency ofUMLModelVisualizerfrom the Data Model
subsystem is a safe, acceptable one.
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Figure 6. Call graph visualizations. Modular system (left) versus ’spaghetti code’ (right)

We also discover the classB that reads a lot of data (high
INPUTSmetrics on most of its methods). Looking at its as-
sociation relations (arrows on the UML diagram), we dis-
cover that this class has asinglerelation, which is actually
an arrow (read) pointing to thestd::pair class, which be-
longs to the STL library. Since STL can be considered as a
very stable component, we conclude that our classB is also
resilient to change.

Overall, our system’s classes have a low number of exter-
nal data-dependencies. For those few with numerous read
and/or write dependencies as classesA andB), we could
examine these dependencies, by following the diagram’s re-
lationships, and see that they point to stable components.
All in all, we conclude that the system is stable with respect
to change propagation.

5 Discussion

To assess the effectiveness of our proposed solution for
static analysis of C++ code bases, we refer again to its three
main ingredients introduced in Sec. 1.

5.1 Parsing

The extension of the tolerant heavyweight ELSA parser
with preprocessor data, location information, error recov-
ery, and filtering was essential for its success in an inter-
active click-to-query environment such as SOLIDFX. In-
tegrating the preprocessor was needed since users want to
analyze the code as they have written it, and not as the

preprocessor expands it. Location information is needed
to perform the code highlights (seee.g. Fig. 5) and click-
to-query mechanism. Error recovery is needed since all of
the four code bases considered here contained syntax errors
and/or missing includes at the analysis time. Finally, filter-
ing improved the query speed by one order of magnitude
(Sec. 3.3.3).

It is interesting to consider whether all these features
could be offered by, or added to, another C++ parser than
ELSA. The set of mature available parsers for C++ is how-
ever extremely limited (Sec. 2). More importantly, even
fewer of those are open source and/or modularly designed to
easily incorporate additions. At the present moment, we do
not know of any other C++ parser that could provide (with
or without additions) all the functionalities required by our
context.

5.2 Querying

The query engine, designed using the visitor pattern and
the user-designed query-trees, was extremely effective in
writing new queries. Once a basic set of around 40 queries
was developed, subsequent queries were coded quickly in
a matter of minutes, as a query takes on the average 40-50
XML lines. The query composition was used less than ex-
pected, one preferring simply to cut-paste-modify existing
queries. This can be explained by the small code size of a
query. Also, it is fair to say that, so far, the stakeholders
did not design their own queries, but relied on one of the
authors to do that, given that he was very fast in this task.
The efficiency of the query system proved to be sufficient
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visualization plug-in

 complex implementation class X

visualization core

STL classes

data model

LOC CYCLO most complex
method (CYCLO=40)

class X

Figure 7. Maintainability assessment. Model-View-Contro ller architecture view (top). Zoomed-in view
on the subsystem containing the most complex class (bottom)

for our interactive click-to query functionality.

The examples presented in this paper involve only rel-
atively simple metrics: lines of code, lines of comments,
cyclomatic complexity, number of read and written vari-
ables, and number of C casts. In turn, these involve sev-
eral queries: select comments, control statements, local
and global variables and function parameters, function call
graphs, class inheritance relations, and C cast expressions.
The selection of the examples and their subsequent queries
and metrics was done on purpose to illustrate our engines
on relatively simple scenarios that are relevant and apply
to a large audience, and demonstrate the generic character
of our solution. It is important to stress again that we can
design more complex queries, metrics, and scenarios with
the same ease as for the simpler cases. However, detailing
such scenarios (and their code bases) would take consider-

able space and is beyond the scope of this paper. We plan to
do this in an upcoming publication.

Although powerful, the visitor and query-tree combina-
tion is essentially a (flexible) pattern matching engine. As
already noted in Sec. 3.3, more complex, context-dependent
queries, or fuzzy queries, suchas needed to support the
MISRA standard [29], have to be implemented manually
based on the AST iterators which are part of our query API.
However, since all these queries essentially subclass a sin-
gle Query interface (Fig. 3), they are directly available to
be composed with existing queries. As our experience pro-
gresses, we plan to work on higher-level refinements of the
query API, such as detection of more complex design pat-
terns, and possibly program slicing and dataflow analysis.
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Figure 8. Change propagation analysis

5.3 Presentation

The basic views already existing in SOLIDFX, i.e. the
code view, selection view, and UML view, seem so far to
be sufficient to allow a simple but effective usage of the
query and metric facilities solely via the GUI. The single
largest request for a new presentation interface from users
was to allow presenting relations and source code in a sin-
gle view, e.g to show the declaration locations of various
symbols directly in the code editor, at the locations where
they are used. As we are not aware of the existence of such
a technique, we are working in the direction of designing a
new visualization to support this.

5.4 General remarks

All in all, we believe that the integration of our query-
and-metrics engine in the SOLIDFX IRE largely improved
the usefulness of this tool, which can now do full C++
parsing, custom analyses, and visualization, all in one en-
vironment. As noticed during the applications described
here (and others), this integration considerably shortensthe
time needed from code-base acquisition to assessing spe-
cific questions related to its static analysis. We believe that
this tight feature integration is paramount to the success.
During numerous pilot projects, as early as [17], we ob-
served that some of the greatest obstacles in the acceptance

of a proposed static analysis tool or technique were the high
difficulty of setting up an analysis project, the steep learn-
ing curve of a set of hybrid tools, and the need to program
(be it even only as scripting) in order to use a toolset. Few
stakeholders in the software industry are willing to invest
the effort required in all the above, and few tools offer the
three-element integration we propose here.

For theextractionphase, we also noticed that using the
SOLIDFX IRE was not much more effective than using
scripted command-line tools, which is often performed in
batch mode [6, 7, 5, 10]. However, for the exploration
phase, where new queriesand presentations need to be
specified and combined on-the-fly, the IRE and its tight tool
integration were considerably more productive than using
the same tools standalone, connected by small scripts and
data files.
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7 Conclusions

We have presented the design of an open query frame-
work for static C++ code analysis and its integration in
SOLIDFX, an Integrated Reverse Engineering environment
for C and C++. Our query framework involved the mod-
ifications of an existing heavyweight C++ parser to add
preprocessor support, location information, parse error re-
covery, and output filtering, and the design and imple-
mentation of a new composable query API based on a
pattern-matching visitor architecture. The integration of the
modified parser and query API in the SOLIDFXintegrated
reverse-engineering environment offers a simple, but pow-
erful, way to execute a number of code analyses pertaining
to maintenance, refactoring, and software understanding,in
a visual manner, by simple point-and-click operations on
the code artifacts. Due to the high integration of querying
with parsing and visualization, our solution enables users
to conduct reverse-engineering sessions with the same ease
as software development is traditionally done in IDEs. We
illustrated the application of our solution to four typicalas-
sessments involving static analysis of C++ code bases.

We are currently working on extending our C++ static
query framework in several directions. Refined static infor-
mation can be queried from the basic facts, such as con-
trol flow and data flow graphs, leading to more complex
and useful safety analyses. Secondly, we are working to
implement a number of predefined ready-to-use analysis
packages atop our query system, such as checking for the
MISRA C Standard [29], thereby making our framework
more readily applicable in a number of industry use-cases.
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