

Visual Assessment of Software Evolution

L. Voinea, J.J. Lukkien, A. Telea∗

Department of Computer Science, Technische Universiteit Eindhoven, The Netherlands

Abstract

Configuration management tools have become well and widely accepted by the software industry.
Software Configuration Management (SCM) systems hold minute information about the entire evolution of
complex software systems and thus represent a good source for process accounting and auditing. However, it is
still difficult to use the entire spectrum of information such tools maintain. Currently, significant effort is done in
the direction of mining this kind of software repositories for extracting data to supports relevant assessments.

In this article we propose a concerted set of visualization tools and techniques for the assessment of
software evolution based on the information stored into SCM systems. Firstly, we introduce a generic way to
obtain models of source code at different levels of detail and from different perspectives. Secondly, we propose a
set of visual representations and techniques to efficiently and effectively depict the evolution of these code
models. These techniques target specific questions and assessments, from the detailed code developer perspective
to the overview required by system architects and project managers. We detail the concrete implementation of
two such code models and corresponding visual representations. The file view describes code change at line level
across multiple versions of a single file, or small number of files. The project view shows changes at file level
across complete software projects. All our views share the same visual and interactive techniques, enabling users
to easily switch among and correlate between them. We implement our visual techniques to quickly and
compactly display and navigate the evolution of tens of thousands of artifacts on a single screen.

We demonstrate our techniques with several use cases performed on real world, industry-size code bases
and outline the concrete findings and ways our visualizations helped understanding various types of code changes.

Keywords: SCM data mining; Software evolution; Software visualization;

1 Introduction
Software Configuration Management (SCM) systems are an essential ingredient of effectively

managing large-scale software development projects. Due to the growing complexity and size of
industry projects, management systems that automate, help and/or enforce a specific development,
testing and deployment process, have become a “must have” [5].

One of the main characteristics of a SCM system is that it maintains a history of changes done in
the structure and contents of the managed project. This serves primarily the very precise goal of
navigating to and retrieving a specific version in the evolution of the project. However, SCM systems
and the information they maintain enable also a large variety of possibilities that fall outside the above
very precise goal. The intrinsically maintained system evolution information is a very convenient
starting point for empirically understanding the software development process and structure. One of
the main areas that can benefit from this information is the software maintenance of large projects.

Industry surveys show that, in the last decade, maintenance and evolution exceeded 90% of the
total software development costs [11], a problem referred to as the legacy crisis [30]. It is, therefore,
of paramount importance to bring these costs down. This challenge is addressed on two fronts, as
follows. The preventive approach tries to improve the overall quality of a system upfront, at design
time. Many tools and techniques exist to assess and improve the design-time quality attributes
[10][18]. However, the sheer dynamics of the software construction process, its high variability, and
the quick change of requirements and specifications make such an approach either cost-ineffective or
even inapplicable in many cases. Increasingly popular software development methodologies, such as
extreme programming [3], explicitly acknowledge the high dynamics of software and thus fit the

∗ Corresponding author
Email addresses: l.voinea@tue.nl (L. Voinea), j.j.luklkien@tue.nl (J.J. Lukkien), alext@win.tue.nl (A. Telea)

2

preventive approach to a very limited extent only. The corrective approach aims to facilitate the
maintenance phase itself, and is supported by program and process understanding and fault
localization tools (e.g. [9], [20], [35]). In most projects, however, it is often the case that appropriate
documentation does not exist, or it is ‘out of sync’ with the implementation. In such cases, the code
evolution information maintained on a SCM system (assuming such a system is used) is the one and
only up-to-date, definitive reference material available. Efficiently exploiting this information can
greatly help the maintainers to understand and manage the evolving project.

Many tools have been designed to help revealing the structure of software systems starting from
source code (e.g. [9], [33], [35], and [36]). Most such tools focus on visualizing high-level software
abstraction, such as classes, modules, and packages, extracted from source code in a reverse
engineering process. However, such tools do not show lower-level software changes, such as the
many, minute source code edits done during debugging. Moreover, such tools often focus on a fixed
system structural view that does not show all changes the code has undergone in time. Various graph-
drawing techniques, such as the one proposed by Collberg et al. [6], tried to overcome this limitation
by showing also the temporal dimension of software structures and mechanisms evolution. However,
this still to be validated approach does not seem to scale well on real-life code bases. Moreover, the
visual graph representations used are often perceived as too abstract by the actual developers who
think in terms of the source code itself. At the other end of the granularity spectrum, the SeeSoft tool
[9] uses a line-based visual approach. Source files are seen as a set of code lines, each of which is
drawn as a pixel line. This allows visualizing many thousands of lines on a single screen. Several such
techniques and tools have been proposed, such as Aspect Browser [17], Bee / Hive [29], sv3D [24]
and Augur [14]. While these approaches succeed in revealing structure and change dependencies
between code fragments, they only offer snapshots in time, and do not reveal changes in the global
context of an entire project life span. A global overview would allow discovering that problems in a
specific part of the code appear after another part was changed. This kind of insight is easier to get
when visualizing the context of an entire project evolution. In contrast, intensive debugging and
runtime analysis is needed to get it from a single code snapshot. Another, useful case of global
investigations is to identify the files that contain tightly coupled implementations. Such files can be
easily identified in a global context as they most likely have a similar evolution. In contrast, detailed
manual cross-file analysis has to be performed in order to achieve the same result using a static system
visualization.

In this paper, we propose and discuss a set of new techniques for visually assessing the entire
evolution of software projects using the evolution information contained in SCM systems. Typical
questions we try to answer with our techniques are:

- What code was added, removed, or altered and when? Where did the changes take place?
- Who performed these modifications of the code?
- Which parts of the code are unstable?
- How are source code changes correlated?
- How are the development tasks distributed among the programmers?
- What is the context in which a piece of code appeared?
- What are the project files that belong and/or are modified together?

We validated our techniques by implementing them in a toolset that seamlessly combines SCM
data extraction with analysis and visualization. We present in this paper results of using our toolset for
the assessment of several industry-size software projects: the FreeBSD Linux distribution [13], the
ROBOCOP component framework [19], and the VTK library [39].

In Section 2 we overview existing efforts in analyzing the evolution information encapsulated in
SCM systems. Section 3 gives a formal description of the software evolution data that we explore
using visual means. Section 4 presents the visual techniques and methods we propose for the
assessment of evolution. In sections 5, 6, 7 we present three user studies we performed to validate the
proposed techniques, and detail the types of questions our toolset was able to answer. Section 8
reflects on the open issues and possible ways to address them.

3

2 Background
The huge potential of the information stored on SCMs, as a starting point for empirical studies on

software development, has been only recently acknowledged by the research community. The massive
growth in popularity and spread of SCM systems, greatly influenced by open source projects like CVS
[8] and Subversion [34], opened new possibilities in the areas of project accounting, auditing and
understanding. The efforts have been concentrated so far in two directions of research: data mining
and data visualization.

Data mining research focuses on processing and extracting relevant information from the evolution
data stored into SCM systems. However, these systems have not been designed with the support for
empirical studies in mind, so they often lack direct access to important evolution information. Most of
this kind of information is usually inferred from the “raw” information that the SCMs contain, by the
data mining tools themselves. Many methods have been proposed to offer access to higher level,
aggregated information about the project evolution. Fischer et al. propose in [12] a novel method to
extend the evolution data contained in the SCMs with information about file merge points.
Additionally, they present the benefits of integrating SCM evolution data with specific information
about bug tracking. Śliwerski et al. [32] propose a similar integration to predict the introduction of
defects in the code. Recovering of SCM transactions has been more extensively addressed. Gall [15],
German [16] and Mockus [25] propose transaction recovery methods based on a fixed time windows.
Zimmermann and Weißgerber built on this work, and propose in [45] better mechanisms that involve
sliding windows and information acquired from the commit mails. Ball proposes in [2] a new metric
for class cohesion based on the SCM extracted probability of classes being modified together.
Relations between classes based on the change similarities have been proposed also by Bieman et al.
[4] and Gall et al. [15]. Relations between finer grained building blocks, like functions, are also
addressed by Zimmermann et al. in [43][44] and by Ying et al. in [40]. Lopez-Fernandez et al. [23]
apply general social network analysis methods on the information stored in SCMs to characterize the
development process of industry size projects and find similarities between them. Ohira et al. [27]
exploit the user information stored in SCMs to build cross process social networks for easy sharing of
knowledge.

Data visualization, the second research direction, takes a different path. Here, the focus is on how
to make the large amount of evolution information effectively available to the user. Data visualization
techniques make few or no assumptions about the data – the goal is to let the user discover patterns
and trends by himself rather than coding pattern models to be searched for in the mining process.
Consequently, visualization tools strive to present the data in a form that is as intuitive and familiar as
possible to users. SeeSoft [9] is the first tool that uses a direct ‘code line to pixel line’ visual mapping.
Color is used to show code fragments that correspond to a given modification request. The Aspect
Browser [17] uses regular expressions to locate specific artifacts (e.g. key words) and then it
visualizes their distribution. Augur [14], combines in a single visual frame information about both
artifacts and activities of a software project at a specific moment. The above tools are successful in
revealing the line-based structure of software systems, and uncover code line-level change
dependencies at given moments in time. However, they do not provide insight into code attributes and
structural changes made throughout an entire project duration.

As a first step in this direction, UNIX’s gdiff and its Windows version WinDiff visualize code
differences between only two versions of a given file by depicting the line insertions, deletions, and
modifications computed by the diff utility. However effective for comparing pairs of file versions,
such tools cannot give an evolution overview of real-life projects that have thousands of files, each
with hundreds of versions. Furthermore, they do not exploit the entire information potential of SCMs,
such as information related to the time and author of changes between two versions.

Recent efforts try to overcome these shortcomings. The technique proposed by Collberg et al. [6]
visualizes the software structures and mechanisms evolution using a sequence of graphs. However,
their approach does not seem to scale well on real-life data sets. Lanza proposes in [21] a technique to
visualize the evolution of object-oriented software systems at class level. Closely related, Wu et al.
[42] visualize the evolution of entire projects at file level and visually emphasizes the moments of
evolution. These methods scale very well with industry-size systems and provide comprehensive
evolution overviews. Still, they do not offer an easy way to determine the classes and files that have a
similar evolution. Furthermore, they address a relatively high granularity level and provide less insight

4

into the lower-level system changes, such as the many, minute source code edits done during
debugging.

We generalize the above ideas and advocate the visualization of software evolution at different
levels of detail and from different perspectives. Our approach is described next.

3 Data model
The examples presented in this paper contain data extracted from public CVS servers. CVS [8] is

one of the most popular SCMs. Our approach and techniques are, nevertheless, generic, as we use
concepts and structures that naturally exist in most SCM systems we are aware of. In this section, we
describe our assumptions of these concepts and structures by means of a data model.
The central element of a structure-based SCM system is a repository that stores all versions of a given
file. A repository R is a finite set of files. Let NF be the size of R , then:

 { }NFiFR i ..1==

Each file iF is defined as a set of iNV versions:

{ }iiji NVvVF .. , 1==

Each version is a tuple containing several attributes: the unique version id, the author who
committed it to the repository, the time when it was committed, a log message and its source code:

ge,codedate,messaauthoridV ij ,,, =

The first four elements of the above tuple (id, author, date and message) are unstructured attributes.
A file version V can have any number of such attributes as the SCM system chooses to store, each
attribute having some value. To keep the notation simple we drop the file index i in the following
definitions. The fifth element (code) is modeled as a sequential structure, i.e. as a set of entities:

{ }ii NEientitycode ..| 1==

These entities can have different granularity levels, i.e. they can be code lines, scopes, functions,
classes, namespaces, or even entire files, i.e. there can be different, alternative code data models. We
make no assumptions whatsoever on how the versions are internally stored on the server. Our
approach to modeling the evolution of this type of data is straightforward and maintains a generic
form that makes it suitable for instantiation at different levels of detail.
Clearly, to visualize evolution, we need a way to measure change. We say two versions Vi and Vj of
the same file differ if any element of their tuples differs from the corresponding element. Finding
differences in the id, author, date, and message attributes is trivial. For the code attribute, we must
compare the source code)(jVcode and)(1+jVcode of two consecutive versions jV and 1+jV . For

this, we consider both jV and 1+jV at the same granularity level, as it makes little sense to compare
e.g. classes with code lines. If we choose the code line granularity level, we can use for comparison a
tool like UNIX’s diff, which reports the inserted and deleted entities in 1+jV with respect to jV . All

entities not deleted or inserted in 1+jV are defined as constant (not modified). Finally, entities reported
as both deleted and inserted in some version are defined as modified (edited). We denote by li the ith
entity of the version we talk about in some given context. Using diff, we can also find which
entities in 1+jV match constant (or modified) entities in jV . For one such entity, we call the complete
set of matching occurrences in all versions, i.e. the transitive closure of the above match relation, a
global entity l. For every li in some version i,)(ilL denotes the global entity associated with li. Note
that this technique can be applied at any granularity level, as long as we avail of a diff operator for
the entity types of that level. Indeed, in Section 6, we shall demonstrate it for the component
granularity level.

5

From these data, we next build several functional characterizations of the source code evolution.
The most important is the global entity position:

() NNN →×:, iljG

The purpose of this characterization is to assign to each entity a unique global position identifier
that respects the local (i.e. inside one version) order relation. We can explain),(iljG by a graph

analogy as follows. For every global entity l, we build a graph node)(lN . Nodes are created by

scanning versions jV in increasing order of j, and entities li in each version in increasing order of i.
For each consecutives entities li and li+1 in one version, we set a directed arc from

))((ilLN to))((1+ilLN . Finally, when a node N is inserted between two other nodes AN and

BN , we set an arc from any already existing node between AN and BN to N . Figure 1 shows three
versions of a file with lines as entities and their corresponding graph. This graph is directed and
acyclic, and gives a total order relation between all code lines in all versions of a given file. The node
corresponding to the global line l before which no other line existed during the whole project is the
only one having only outgoing arcs.

We label this ‘start node’ (e.g. node “i” in Figure 1) with zero and all other nodes with the maximal
path length (defined as number of arcs) to the start node, e.g. by doing a topological sort of the graph
(see [7]). We obtain then, for every line li in every version jV , that ()))((, lNlabelljG i = , where

)(ilLl = . This gives a unique label to all code lines written during development, keeps the partial
line orders implied by the different versions in the project, and ensures that lines in different versions
identified by diff as instances of the same global line have the same label.

int i;
i = 2;
i = i+1;

i = 2;
i = i+1;

int i;
i = i+1;

int i;
i = 2;
i = i+1;

i = 2;
i = i+1;

int i;

i = i+1;

0

1
2

0

1

0

1
2

0

1

version V1 version V2 version V3

i

j j

h

i

j

h

i

Global line
position

Line position
in file

0

1

0

1

2

0

1

2

Figure 1 Global line position and corresponding graph analogy

A second functional characterization is the entity status
() STATESijS →×NN:,

which characterizes the status of entity with global position i in version jV . S is computed by

comparing the current entity lC at global position i in version jV with entities lP and lN having the same

global position i in the previous and next versions 1−jV and 1+jV respectively. The STATES set
contains the values:

Value Condition
constant { lP exists in 1−jV and is identical with lC }

6

modified { lP exists in 1−jV but differs from lC, or lN exists in 1+jV but differs from lC }

deleted { lP exists in 1−jV and lC does not exist in jV or),1(ijS − = deleted}

inserted { lN exists in 1+jV and lC does not exist in jV or),1(ijS + = inserted}

modified by deletion { lC is modified, and)1,(+ijS = deleted OR modified by deletion}

Note:
This signals that modification occurred in conjunction with deletion, and
therefore it may have a larger impact. That is, the modified entity might be
a completely new one.

modified by insertion { lN is modified, and)1,(+ijS = inserted OR modified by insertion}

Note:
This signals that modification occurred in conjunction with an insertion,
and therefore it may have a larger impact. That is, the modified entity might
be a completely new one.

Further information can be extracted from the source code. Using an appropriate parser one can
extract structural information at each granularity level. We use for example a fuzzy parser with a user
customizable grammar to extract information about constructs such as blocks, comments,
preprocessor macros, at line level. This produces the construct attribute

() GrammarljC i →×NN:,

which describes, for every entity li in every version jV , the grammar construct that entity belongs to.
We will use this information to visualize the structure of a given version in Section 4.

Finally, the last functional characterization we introduce is the file position:
() { } { }NFNFiP: 11 →

This gives the position of a file in its corresponding project. Various instances of this
characterization may exist, each offering a specific type of insight in the evolution of the system. In
the examples we present in this paper, we use as file position the results inferred from different
continuous or discrete metrics such as the file creation time, or the change activity measure (see
Section 7). This enables the user to easily make correlations between the project files based on the
metric values and the other entity-based functional characterizations.

Multiple levels of detail can be modeled using the functional characterizations presented in this
section, by assigning various granularity levels to the entities. The examples we present in this paper
address two extreme cases: the lowest granularity level, i.e. the line level, and the highest, i.e. the file
level. The same mechanisms apply, nevertheless, when visualizing the project evolution at scope,
function, class, namespace, package, or some other desired level.
We next detail the techniques used to map the data model described in this section on visual elements.

4 Visualization model
Our work builds on the assumption that developers are most comfortable with visualizations that

present the code in the same spatial context in which they construct it [9]. Since software maintenance
is mainly done at code level, we decided to use a code-based approach to visualize the software
evolution. Our main concern was to allow users to easily perform investigations by minimizing the
cognitive overhead of multiple representations for the same data. For this, all our visualization
techniques use a single-screen dense-pixel display for visualizing evolution at any given level of
detail. Moreover, we integrated our techniques as separate views in the same toolset, so that users can
easily switch between tasks such as opening a new repository, browsing through it, and requesting a
detailed code-level view. We have implemented the above as an integrated toolset for SCM data

7

extraction, analysis and visualization. Currently, this tool set contains two applications: CVSscan and
CVSgrab. CVSscan visualizes the evolution of code lines as entities across a small number of files
(i.e. it offers a file view on software evolution). CVSgrab visualizes the evolution of files as entities,
across entire software projects (i.e. it offers a project view on software evolution). In the following, we
detail the visualization techniques and methods used in CVSscan and CVSgrab. In sections 5, 6, and
7, we use CVSscan and CVSgrab to validate the presented methods and techniques on real-life,
industry-size software projects.

4.1 Dimensions
Similarly to previous code-based software representations ([9], [17], [14]) we represent every

entity (e.g. code line) as a pixel line on the screen. We took the decision to use a 2D representation.
Our need to visualize many attributes together may first suggest using a 3D view. However, we chose
for 2D in order to have a simple and fast user interface, no occlusion problems and viewpoint choice
problems, and a visual layout perceived as simple for code developers. The main questions we next
had to answer were how to layout the entity representations in a plane, and how to use color and other
visual cues for encoding data attributes.

Our layout approach is different in one major respect from previous code-based layouts. We
visualize on the same screen all versions that an entity has during its evolution (Figure 2), instead of
all entities in a project at a given time. The horizontal axis encodes the time. The vertical one the
entity position li and the position of the containing file in the project.

 Two main sampling strategies are possible on the time axis: version-uniform sampling and time-
uniform sampling. In the version-uniform sampling, each version is shown as a vertical stripe
composed of horizontal pixel bars depicting entities (Figure 2.a). This generates uniform incremental
views on the evolution that are more compact and offer the same resolution both for ‘punctuated’
evolution moments, i.e. sharp variations of project size denoting important changes [42], and for
equilibrium periods. This kind of sampling is more efficient for a set of entities that have many
common change moments, such as all entities that belong to the same file, but it works as well for
entities that belong to different files. For time-uniform sampling, each entity appears as a horizontal
stripe, segmented according to its change moments (Figure 2.b). This generates views that are more
suitable for placing the project evolution in the overall context, with punctuated and equilibrium
periods, but makes correlation more difficult in the punctuated evolution area, due to lack of visual
resolution. Both samplings are illustrated by examples in Figure 5 and Figure 7.

 a)

V1 V2 V3 V4 V5
File A

 Time

 Entity position in file
b)

V1 V2 V3
V4

V5
File A

Time

 Entity position in file

Figure 2: Use of horizontal time axis in code-based visualizations
a) version-uniform time sampling b) time-uniform time sampling

The vertical axis has a double role. First, it gives locally the position of an entity inside the
containing file (e.g. the local entity position). Second, it gives globally the position of the file in the
project it belongs to (i.e. file position) when the contents of more files are displayed in one image.
Figure 3 depicts an example of usage for the vertical axis for two files “a.cpp” and “b.cpp” in
combination with a time-uniform sampling on the horizontal axis. The entities are arranged according

8

to their position in the containing file. The files are arranged in alphabetical order. For a concrete
example, see Figure 7.

 Time

 Entity position in file

File 1
(a.cpp)

File position / order

File 2
(b.cpp)

 Entity position in file

Figure 3: Vertical entity/file position axis: enitites are arranged according to their position in

the file; files are arranged in alphabetical order

For the vertical layout of entities within one file strip, we propose two approaches. The first one,
called file-based layout, uses as y coordinate the local entity position li (Figure 4.a). This layout offers
an intuitive ‘classical’ view on file organization and size evolution, similar to [9]. The second
approach, called entity-based layout, uses as y coordinate the global entity position ()iljG , (Figure
4.b). While this preserves the order of entity of the same version, it introduces empty spaces where
entities have been previously deleted or will be inserted in a future version. In this layout, each global
entity l has a fixed y position throughout the whole visualization. This allows easy identification of
software entities that stay constant in time, or get inserted or deleted. Both approaches are illustrated
by real data in Figure 5.

To show various attributes, different color encodings may be used for the entity status, construct
and author functional characterizations of a version. We use a customizable color map to indicate the
status of entities in a given version. For the construct attribute (e.g. blocks, comments) we use a
customizable color map, and modulate luminance to encode the nesting level. Finally, we use a fixed
set of perceptually different colors to encode the entity authors. At each moment, one color scheme is
active, such that the user can study the time evolution of its corresponding data attribute. When
interesting patterns are spotted, one can switch to another scheme to get more detailed insight in the
matter.

a)

Deleted
 entities Entities to be

inserted

b)

 Constant enity New entity Legend

 Local entity position

Versions

Global entity position

Versions

Figure 4: Entity layout with a version-uniform time sampling:

 a) file-based b) entity -based

Next we present two examples of concrete implementations for the techniques we propose: the file
view, which describes code changes at line level across multiple versions of a single file (or a small
number of files), and the project view, which shows changes at file level across complete software
projects.

9

File view

Figure 5 shows the visualization of a file evolution through 65 versions using CVSscan. CVSscan
provides a file view on the software evolution. It uses the code line as level of detail for the entity
granularity, and a version-uniform sampling of the time axis. In this example color encodes line (i.e.
entity) status: green denotes constant, yellow modified, red modified by deletion, and light blue
modified by insertion respectively. Additionally, in the line-based layout (bottom), light gray shows
inserted and deleted lines. The file-based layout (top) clearly shows the file size evolution and allows
spotting the stabilization phase occurring in the last third of the project. Here, the file size has a small
decrease corresponding to code cleanup, followed by a relatively stable evolution corresponding to
testing and debugging. Yellow fragments correspond to areas that need reworking during the
debugging phase.

stabilization phase

Figure 5: Line status visualization with a version-uniform time sampling.

File-based (top) and line (i.e. entity)-based layouts (bottom)

Figure 6 illustrates different color encodings on a zoom-in of the line-based layout in Figure 5
(bottom). In Figure 6.a, we use yellow to encode lines that suffer modifications when passing from
one version to another, as shown in the highlight. Since the modified state is symmetric (see Section
3), yellow lines always appear in pairs. Switching to the color scheme that encodes the construct
attribute (Figure 6.b) enables the user to discover that the modified piece of code is in a comment,
encoded by the dark green color. This means the modification does not actually alter the code
functionality. Finally, the author attribute (Figure 6.c) shows the developer that performed the
modification, (e.g. the purple one in our highlight).

a) b) c)
Figure 6: Attribute encoding:

 a) line status; b) construct; c) author

10

Project view

Figure 7 uses CVSgrab to visualize the evolution of a project containing 28 files across up to 20
version spanning 4 development years. CVSgrab provides a project view on the software evolution. It
uses the file as level of detail for the entities and a time-uniform sampling of the horizontal axis. In the
depicted example color encodes the author responsible for a given commit – different colors show
different authors. Files are arranged in order of creation time, from top to bottom. One can easily
identify in Figure 7 the main contributors and the punctuated evolution moment that occurs around the
middle of the development period.

Punctuated evolution

creation
time

Figure 7: File author visualization with a time-uniform sampling and files arranged in order of

creation time

4.2 Metric Views
A key factor in understanding the patterns revealed by evolution visualization is to correlate them

with other information about the software. Besides the code-based visualization of code evolution we
presented so far, we propose using additional metric views and a novel text view on selected code
fragments (Figure 8).

Evolution view

Code view

Vertical
metric view Horizontal

metric view

Figure 8: Multiple code views in CVSscan

The metric views encode time and entity-dependent data and show these with vertical, respectively
horizontal color bars to complement the evolution visualization. Different metrics are available. In

11

Figure 9, we show three proposed horizontal metric bars that illustrate, for each version, its number of
entities or its author for a version-uniform sampling on the time axis, and the activity density for a
time-uniform sampling. The top-most metric (version size) uses a classical blue-to-red colormap,
where blue indicates low values, green average ones, and red high values. The middle metric (version
author) uses a simple hue-to-author encoding: every author gets a distinct hue from a predefined
palette. The lowermost metric (activity density) uses a simple graph plot where the graph height
indicates the metric value.

Similarly, the vertical metric bars can display various metrics computed on the entire evolution of
an entity for a given global entity position, e.g. the entity life time, the entity similarity to a reference
entity, the entity activity intensity, and so on. Concrete examples of using metric bars are given
throughout the paper (e.g. Figure 12, Figure 13, Figure 21).

 Version uniform
sampling a)

 b)

 c)

Version uniform
sampling

Time uniform
sampling 2000 2001

Figure 9: Horizontal metric bars: a) version size; b) version author; c) activity density

4.3 Code View
The code view offers a detailed text look at the actual source code. Users can select the code to be

displayed by sweeping the mouse in the evolution view. Vertical brushing, i.e. moving the mouse
over, the code evolution area scrolls through the program code at a specific moment, whereas
horizontal brushing, for example over the entity-based layout (Section 4.1), goes through a given
entity’s evolution in time.

An important issue we address in our work is how to correlate the code and evolution views, when
the latter uses an entity-based layout. The question is what to display when the user brushes over an
empty space in the evolution view. This space corresponds to deleted or inserted entity status values,
i.e. the code at the mouse position was deleted in a previous version or will be inserted in a future
version (e.g. the light gray areas in Figure 5). Freezing the code display would create a sensation of
scrolling disruption, as the mouse moves but the text doesn’t change. Displaying code from a different
version than the one specified by the mouse position would be wrong.

We solve this problem by a new type of code display. We use two text layers to display the code
around the brushed global entity position both from the version under the mouse and from versions in
which this position does not refer to an empty space (Figure 10).

evolution
view

mouse
position

Layer
A

Layer
B

Figure 10: Two-layered code view correlated with a version-uniform sampling entity layout

While the first layer (A) freezes when the user brushes over an empty region in the evolution view,
the second layer (B) pops-up, and scrolls through the code that has been deleted, or will be later
inserted at the mouse location. This creates a smooth feeling of scrolling continuity during browsing.
At the same time, it preserves the context of the selected version (layer A) and gives also a detailed,

12

text level peek, at the code evolution (layer B). The three motions (mouse, layer A scroll, layer B
scroll) are shown also by the captions 1, 2, and 3 in Figure 12.

We must now consider how to assess the code evolution shown by layer B. The problem is that
lines of code corresponding to consecutive global entity positions might not coexist in the same
version. In other words, layer B consecutively displays code lines that may not belong to one single
version. We need a way to correlate this code with the evolution view. We achieve this by showing
the entities’ lifetimes as dark background areas in layer B (Figure 11). Finally, we indicate the author
of each line by colored bars along the vertical borders of the code view (Figure 10).

Summarizing, the code view offers a detailed look on a specific global entity position in a selected
version, including information about its evolution and the developers that make it happen. We use this
view in CVSscan to correlate the line evolution with detailed line information.

2

1

first
version

last
versionlifetime

of line 1
lifetime
of line 2

Figure 11: Code view, layer B. Line 1 is deleted before line 2 appears, i.e. they do not coexist

4.4 User Interaction
In addition to the described visualization techniques, our toolset offers a wide range of interaction

means to facilitate the navigation of data. We describe below, using the well-accepted perspective
proposed by Shneiderman [31], the palette of interactive exploration instruments we provide. All
instruments use a point-and-click approach, making the entire exploration very simple to use. Tool
snapshots illustrating these mechanisms are shown in Figure 12 and Figure 13.

Our toolset offers an intuitive overview on the evolution of software in a single 2D image, even
when the number of entities is larger than the available screen resolution of the monitor. To get more
detailed insight in a specific region of the evolution, zoom and panning facilities are provided. This
enables the user to drill down to more detailed representations, in which the evolution of each
entity/file may be assessed. The tools offers also preset zoom levels: global overview (fit all code to
window size) and one entity-per-pixel-line level.

In order to support the file evolution analysis from the perspective of one given version, CVSscan
offers a filtering mechanism by means of which all lines that are not relevant are removed from the
visualization (i.e. lines that will be inserted after the selected version, or lines that have been deleted
before the selected version). Filtering enables the user to assess a version, selected by clicking on it,
by clearly identifying its lines that are not useful and will be eventually deleted, and the lines that have
been inserted into it since the beginning of the project. In other words, filtering provides a version-
centric visualization of code evolution. Additionally, the tool gives the possibility to extract and
select only a desired interval to study the program evolution. This mechanism is controlled by two
sliders (Figure 12, top) similar to the page margin selectors in word processors. By choosing the
starting and finishing version, one can remove from visualization the code that is not relevant (i.e.
code deleted before the starting version, or code inserted after the finishing one). This mechanism
proved to be useful in projects with a long lifetime (e.g. over 50 versions) in which one usually
identifies distinct evolution phases that should be analyzed separately. The distinct phases were
identified using a project view similar to the one presented in Figure 7, after which detailed file views
were opened and the time span of interest was selected using the version sliders described above.

Both CVSscan and CVSgrab enable the user to correlate information about the software evolution
with overall statistic information (by means of the metric views) and with specific details. By means
of metric bars, users can visually get statistical information about lines (e.g. the lifetime of a line at a
given global position), or versions (e.g. a version’s author or size). The bi-level code view (Section
4.3; Figure 12, captions 2 and 3) offers details-on-demand in CVSscan about a code fragment: the

13

text body, the line authors and the text evolution. The user can select the fragment of interest by
simply brushing the file evolution area. Similarly, in CVSgrab, the user can obtain detailed
information about the brushed version in the form of user commit comments (Figure 13, caption 2).

Version
centric filter

Presets

Zoom controls

Code view, main layer

Right interval selector

Code view, second layer

Left interval selector Evolution overview

2 3

1

Mouse position

Figure 12: CVSscan tool overview. The file version and line number under the mouse (1) is

shown in detail in the text views (2,3)

Although CVSscan and CVSgrab are purely exploration tools that do not alter the visualized data,
they maintain a collection of state variables that can be externalized. This enables the user to keep a
history of his actions and let him recover and reuse specific visualization settings at a later time. In
this direction, a simple extension our users suggested was to add an annotation facility by which they
can add their own comments, and visualize added comments, to a given time and entity position. This
enables a quick and effective way to store insights gained during visualization sessions.

We next present the results of three informal studies performed using the CVSscan and CVSgrab
tools. These studies show how the interaction mechanisms and the visualization techniques described
so far can be efficiently used to investigate the evolution of real-life software systems.

14

Detailed commit information Project evolution view

Zoom controls

Zoom preset

Pan controls Pan controls

Mouse position

File position axis

Time axis

1

2

Figure 13: CVSgrab tool overview. The detailed comments of the version selected by the mouse

(1) are displayed in a correlated view (2)

5 User study 1: Evolution of files
The main target audience of the techniques we describe in this paper is the maintenance

community. The maintainers perform their tasks outside the primary development context of a project,
and most often long after the initial development ended. Therefore, the main activities a maintainer
performs are related to context recovery, such as program understanding and team network building.
CVSscan facilitates this process by visualizing file evolution from the perspective of different
attributes and features, such as file structure, modifications, and authors.

In order to validate the visualization techniques and methods in CVSscan, we organized a number
of informal studies. The aim was to record and analyze the experiences of software maintainers when
they investigate completely new programs, i.e. programs of whose development they did not
participate to, with no other support than CVSscan itself. The task to be accomplished was to quickly
get familiar with the overall code and give a description of several important changes that took place
during the evolution. We present below the outcome of two such studies of the larger set we
organized. In both cases, the users participated first in a 15 minutes training session. During the
session, the tool’s functionality was demonstrated on a particular example file. After that, each user
was given a file for analysis, but no information about its contents whatsoever. A silent observer
recorded both user actions and findings.

Case study 1: analysis of a Perl script file
In the first case, the user was given a script file from the FreeBSD distribution of Linux, containing

457 global line positions and spanning 65 versions. The user was familiar with scripting languages,

15

but had no advanced knowledge about Perl. The user started CVSscan using the default file-based
layout to visualize the evolution of file structure. The navigation steps the user took during the study
are sketched in Figure 14 with half-transparent arrows.

 a) b) c)
Figure 14: Case study 1 - Analysis of a Perl script

The user brushed first over the green areas in the evolution view: “These are comments… Let’s
see first what they say”. He started to brush from the beginning of the file, choosing first the
comments that spanned over the entire evolution. In the same time he read the code fragments
displayed in the code view.

“This is Perl. All Perl scripts have this path on the first line. This one looks like a file description. It
reads that this script handles pre commits of files…“

Then while brushing over the comment fragments (Figure 14.a top → bottom):
“These are annotated textual dividers: Configurable options, Constants, Error messages,

Subroutines, Main body. I use these too in my programs… Here are also some annotations…”
Further on, the user investigated also the large comment fragments that did not span over the whole
evolution:

“It looks like the implementation was either not completed or the developers left a lot of garbage.
There are some code fragments over here that are commented out.”

The user next selected the last version and brushed over the Subroutines area
“It looks like these lines do not belong to any block. Here is a blank line before the write_line

procedure. Here a blank line before exclude_file. So there are white lines before every
procedure? Yes, indeed: check_version, fix_up_file. So there are four procedures. It seems
exclude_file is the most complex one as it has the highest nesting level”

At this point, the user had a high-level understanding of the file structure. He started to make
inquiries about the developers that had worked on the file. For that, he switched back and forth
between the construct and author attributes using shortcut buttons:

“The yellow developer, Dawes, did most of the work. However, the orange one, Robin, wrote that
complex exclude_file procedure. He did that towards the end of the project, so probably that
adds some extra functionality to the core. I see also that the cyan developer, Eich, did some significant
work towards the end in the check_version procedure (Figure 14.b top → bottom). It seems that
his concern was to rule out files containing DOS line breaks... So this script doesn’t handle DOS
files?”
The user then dismissed the authors that had only small contributions and switched to the line status
visualization:

“Apparently a major change took place in the middle of the project. It mainly affected the
check_version procedure”.

16

Then, selecting the version that followed the modified by insertion lines of the major change, the
user started to concentrate on the areas where modifications took place:

“I see a number of modifications between these two versions (Figure 14.c top → bottom). The
first one replaces a file reference with a fully qualified name; the second does the same, the third too,
the fourth, the fifth. Oh, they should have kept that file name in a separate variable!“

“Here they tuned the regular expressions”
“Here they replaced a constant string with a variable”
The user continued to brush all areas where modifications appeared and tried to correlate them with

the code and the authors that committed them. We interrupted the experiment after 15 minutes. At the
end of the exercise, the user was familiar with the overall organization of the file, the focus of each
individual contributor, the places that had gone through important modifications and what these
modifications referred to.

Case study 2: analysis of a C code file
In the second case, an experienced C developer was asked to analyze a file containing the socket

implementation of the X Transport Service Layer in the FreeBSD distribution of Linux. The file had
2900 global line positions and spanned across 60 versions. The user was not involved in any way in
the development of, or familiar with, the examined software. We provided the user with a CVSscan
version able to highlight C grammar and preprocessor constructs (Section 3), such as #define,
#ifndef, etc. The user started the tool in the default mode too, and tried first to look for commented
fragments: “This is the copyright header, pretty standard. It says this is the implementation of the X
Transport protocol, pretty heavy stuff… It seems they explain in this comments the implementation
procedure…”

The user next switched his attention to the compiler directives:
“A lot of compiler directives. Quite complex code, this is supposed to be portable on a lot of

platforms. Oh, even Windows“.
Next, the user started to evaluate the inserted and deleted blocks: “This file was clearly not written

from scratch, most of its contents has been in there since the first version. Must be some legacy
code… I see major additions done in the beginning of the project that have been removed soon after
that… They tried to alter some function calls for Posix thread safe functions (Figure 15.a top →
bottom)… I see major additions also towards the end of the project… A high nesting level, could be
something complex… It looks like code required supporting IPv6. I wonder who did that?”

a) b) c)
Figure 15: Case study 2 - Analysis of a C code file

The user switched then to the author visualization:

17

“It seems the purple use, Tsi, did that (Figure 15.b top → bottom). But a large part of his code
was replaced in the final version by… Daniel. This guy committed a lot in the final version... And
everything seems to be required to support Ipv6. The green user, Eich, had some contribution too…
well, he mainly prints error messages.”

Eventually, the user switched to the evolution of line status and used the predefined “Fit to line”
setting to zoom in.

“Indeed, most work was done at the end… Still, I see some major changes in the beginning
throughout the file... Ah, they changed the memory manager. They stepped to one specific to the X
environment I assume. All memory management calls are now preceded by x (Figure 15.c top →
bottom)… And they have given up the TRANS macro”.

The user spent the rest of the study assessing the modifications and the authors that committed
them. We interrupted the study after 15 minutes. At the end, the user did not have a very clear image
of the file’s evolution. However, he concluded that the file represented a piece of legacy code adapted
by mainly two users to support the IPv6 network protocol. He also pointed out a major modification:
the change of the memory manager. All findings were checked by subsequent detailed code analysis.

6 User study 2: Evolution of components
Component based software engineering is regarded as a promising approach towards reducing the

software development time and costs. While it has proven to be successful in many application
domains such as office and distributed internet-based applications, the component-based approach
toward development is still to be validated in the area of dependable systems, which have special
requirements on the quality attributes. Möller et al. [26] have elaborated a set of such requirements,
and classified a number of existing component models according to their conformance to the set.
However, as the number of component models increases, a new challenge arises: how to discriminate
among models that satisfy the same set of requirements such that the best suited one is selected as
development base for a given system. Using the evaluation methodology proposed in [4], one can
easily reach the conclusion that for example the Koala [28], and PECOS [41]component models offer
similar benefits from the point of view of testability, resource utilization, and availability of a
computational model. When these are the only important nonfunctional requirements for the
component framework, the selection of the best suited model can be further refined with information
on which model fits better with the software development process that will be further used during the
project’s lifecycle.

We next show how CVSscan was used to asses the development process associated with a given
component model, by studying history recordings about the component structure evolution. We
present two mechanisms for distinguishing among component models based on information about
component structure evolution, as follows: assessment of the component development process
(Section 6.3); and assessment of change propagation from framework to components (Section 6.4).
We illustrate the above techniques with examples from the ROBOCOP component framework [19].

6.1 Component System Assessment
Given the data model and visual mappings supported by our toolset (Sections 3 and 4), the

question comes how to use them to assess component-based software. We are interested in assessing
the component development process for a given component model. To use our toolset, or similar ones
such as its predecessor SeeSoft [9] for component-based source code, several assumptions implied by
the toolset’s data model must hold, as described in Section 3. First, the code should be describable by
a sequential entity structure. In our current case, these are the components. Secondly, information
about entity changes should be available, i.e. we should be able to say when a component was
modified, inserted, or deleted.

Assessing a component development process is, in this respect, a conceptually simple task. Indeed,
virtually all component models have a clear mapping between components and their source code.
Additionally, many software projects use software configuration management systems, similar to
CVS, which hold history records about code evolution and offer mechanisms for code comparison.

We next present three mechanisms for assessing a component model based on visualizations built
with the CVSscan tool. We illustrate these mechanisms with real life examples. All these examples
have been obtained from the ROBOCOP framework for component-based software development [19].

18

6.2 Context of assessment
To understand our results, we first sketch the use context. ROBOCOP was developed on a period

of four years by an international consortium of several industry and academic partners. Its focus is on
providing a generic, flexible, and resource-efficient set of mechanisms and tools for implementing,
composing, deploying, and monitoring component-based software applications with a focus on high
volume embedded appliances such as mobile phones, set-top boxes, and embedded controllers. In this
respect, the ROBOCOP component model is similar to Koala [28], Rubus [1] and PECOS [41].
ROBOCOP’s core, the run-time environment (RRE), acts as a virtual machine providing application-
specific component library management, component instantiation and destruction, and inter-
component communication and control interfaces.

Component interfaces are described in the ROBOCOP Interface Description Language (RIDL).
Just as in most component frameworks, this language can be translated to generate classical C
skeleton code. Developers can next add component implementation code to this skeleton and compile
it on a variety of platforms.

For both the RRE and the component libraries, several tens of versions exist, developed by the
different consortium partners during its four-year history. These versions emerged either due to
changes in the framework and/or component interfaces or due to implementation changes when
porting these to different hardware platforms.

Finally, we mention that CVSscan was used in assessing the ROBOCOP framework by different
people than the component framework developers. We had thus the added difficulty of understanding
a third-party large software system mainly through the perspective of our CVSscan visualization tool.

6.3 Assessment of component development
The choice of the component development process is an important issue when selecting the base

component model on which a software system should be built. Investigating history recordings can
give an indication about the effort required to have a minimal working component for testing
purposes, the effort for modifying component interface and/or implementation, and the overhead
related to maintaining framework compliance during development. Questions such as “how hard is to
build a minimal component?” or “how much component code was changed when some framework
interface got added?” can be answered by CVSscan. Once we have been able to answer several such
questions concerning the past evolution of our system, we attempt to extrapolate the results to the
future. Most partners of the ROBOCOP consortium have expressed their high interest in being able to
answer, even if only qualitatively, the above questions.

Figure 16 depicts several CVSscan visualizations of a real-life ROBOCOP component evolution
along 15 versions. We use a line-based layout, so the evolution of each source code line can be easily
followed along the horizontal time axis. The upper part (Content view) shows three snapshots of the
entire system evolution from the perspective of three different versions: version 4, version 7 and
version 13. Color encodes line content, extracted by our custom-grammar based parsing (Section 3):
black shows function headers, yellow shows function bodies. The three snapshots in the Change view
part of Figure 16 correspond to the ones in the Content view, but use a different color encoding: black
indicates lines that do not change from one version to the next one, while yellow encodes changing
lines. In all snapshots, white shows gaps in the code, i.e. places where code was deleted in a previous
version or will be inserted in a future version, as described in Section 4. We can use Figure 16 to
understand our component development process. In the beginning (A), the developer tries to build a
stable component interface. He edits the RIDL component description file and then generates a C
source code skeleton using the RIDL compiler. In the first three versions of the considered use case,
the developer does not add implementation code to the generated C skeleton, but tries to refine the
RIDL interface description. This is apparent in Figure 16 (J), as no code is inserted in the visualized
file besides the C function headers automatically generated by the RIDL compiler, i.e. the thin dark
lines inserted in versions 2 and 3. Additionally, we see that the code is automatically generated, since
the function headers in region K are changed. Generated function headers have an automatically
created textual reference to the line number in the RIDL description file that corresponds to that
function. Inserting new interface specifications causes the textual references to the interface
specifications following after them to change, since the specification location in file changes.

19

 Content view

Change view

Version 4 Version 7 Version 13

A

B

C

D

E

F

G

H

I

J

N

M

O

K

L

Version

Version Code lines

Code lines

Figure 16: Visualization of ROBOCOP component development process

As depicted in Figure 16, however, this can lead to misunderstandings, due to the current skeleton
generation process, as follows. Every time the developer adds new specifications to the RIDL file, he
needs to run it through the RIDL compiler in order to generate appropriate function headers, which
cannot be created by hand. However, once developers start to manually fill in this generated skeleton,
adding new interfaces can be a very cumbersome process. This is mainly caused by the RIDL
compiler, which cannot merge new skeleton information with existing one, but generates the entire
skeleton anew, discarding any hand-coded additions done by the developer. To prevent this, users
maintain copies of the old code, and every time new interfaces are added, the generated function
headers are manually merged by cut-and-paste in the saved copy. In this way, however, textual
inconsistencies are introduced in the existing function headers as they reference invalid locations in
the RIDL specification file. This can be seen also in Figure 16, by comparing area (K) and (N). The
introduction of new interfaces in version 2 and 3 (J) causes existing function headers to be updated
(K). However, in version 7, the developer manually inserts automatically generated headers in the
previous file version (E), which causes no update in the existing headers (N).

Figure 16 shows also the amount of effort required to have a minimal component running for
testing purposes. Version 4 of the considered component was also the first functional one. We
identify the main effort to achieve that as writing the code in the (B) area. From the Change view, we
also see that the code required for a minimal component does not change in time except for some
additional interface additions like the one highlighted in (E).

The evolution of the ‘useful’, not automatically generated, component code can be seen in the areas
D, G and I, where most of the code inserted during component refinement (versions 4 to15) goes
away. Areas C, F, and H in the Content view and the corresponding regions L, M, and O in the
Change view refer to empty function stubs, i.e. unimplemented interfaces. These give the code

20

overhead required for compliance with the ROBOCOP framework and have no other useful purpose
for the component functionality.

Summarizing Figure 16, we concluded that developing ROBOCOP components requires very
careful code architecting. Subsequent interface changes are difficult to accommodate or lead to
inconsistencies. Additionally, the effort required to have a minimal ROBOCOP component running
is relatively high, accounting for almost 50% of the code in the presented example. However, once we
have this code, it does not change significantly during further refinement of the component.
Eventually, ROBOCOP components must always have several pure ‘overhead’ functions with empty
implementations for compliance with the framework.

6.4 Assessment of change propagation
When component frameworks are not yet mature, it is often the case that new framework versions

are not compatible with previous ones. In such cases, existing components need to be re-architected to
various degrees in order to be supported by the new framework. The effort required for this step may
be so high that migrating to a totally different, more mature, component framework or staying with
the old framework may be better alternatives. A good estimation of the transition cost at framework
change is therefore of great importance. CVSscan can help make such estimations, based on history
recordings for components that have been already re-architected to comply with new framework
versions.

Figure 17 shows four CVSscan visualizations for the evolution of the same component as
discussed in Section 6.3, but including two additional versions that correspond to the transition from a
first framework version to a second one. In Figure 17 (top row), we use a file-based layout in
conjunction with a version filter (see [37][38]) to depict the amount of code from one version that can
be found in other versions. Color encodes change: yellow (light) areas are lines that did not change
during development; black (dark) areas show line changes. From this image, we infer that a lot of
code had to be changed when passing from component version 16 to version 17. Additionally, only
about 75% of the component implementation code from version 16 is found in version 17.
Furthermore, the top right image shows that about 40% new code had to be written for version 17 in
addition to what was preserved from version 16. Overall, about 50% of the component code in version
17 differs from the one in version 16. This signals a quite high effort to adapt components cope with
changes in the ROBOCOP framework.

Figure 17 (bottom row) uses a line-based layout (Section 4.1) together with a version filter to show
what interfaces have been removed and what was inserted during re-architecting. Color encodes line
content: black (darker) = function headers; yellow (lighter) = function bodies; white = deleted or
inserted code, just as in Figure 16 (see Section 6.3). Correlating the lower left image (A) with the
content evolution images from Figure 16, we easily see that a major benefit of migrating to the new
version 2.0 of the ROBOCOP framework was to decrease the number of mandatory interfaces that a
component must implement to be compliant with the framework.

CVSscan allows also more in-depth analysis of the re-factoring a component passes through. This
allows us, when browsing the code, to separate framework-induced code changes from those
attempting to achieve a better design for the component itself. Figure 18 depicts such a case. We use
here a line-based mapping to show the evolution of a component’s code over 10 versions. The same
color scheme as in Figure 16 and Figure 17 is used to display line changes. In Figure 18, we can
quickly see an abrupt change performed in version 8. At a first look, we believe to see the addition of
several component interfaces (blue stripes, A) and deletion of some of the existing ones (blue stripes,
D). However, a closer analysis of the image (B) shows that all function declarations from version 7
are also found in version 8, and the actual code deletions refer only to parts of the implementation
(function bodies). Moreover, the newly introduced functions (A) are not interface implementations.
Using the code view (Section 4.3), we can easily investigate the declarations of the newly added
functions and see that they do not have a ROBOCOP signature. Hence, the major re-factoring
performed in version 8 does not change the component interface but is rather an attempt to factor out
common implementation code (C) in order to make the component code more readable.

21

File-based layout

Line-based layout

Versions

Versions

Code lines version 16 version 17

A

Figure 17: Migrating a component from ROBOCOP 1.0 to ROBOCOP 2.0

 Versions

Code
lines

A

B

Version 8interfaces get
deleted hereD

C

functions
get added
here

Figure 18: ROBOCOP component re-factoring: factorizing common functionality

Two final issues emerged at the end of the ROBOCOP component framework assessment. First,
our concrete findings, e.g. “component interfaces stayed unchanged for the following n versions”,
were confirmed by the developers as known, correct facts. Second and more interesting, some
findings led us to hypotheses, e.g. “the patterns seen here denote code re-factoring”, that were

22

unknown to the developers, but, at further detailed code inspection, were found correct. Thus, our
visualizations let the users see known information and also discover new facts about a given
component structure and implementation.

7 User study 3: Evolution of projects
As CVSscan helps spotting correlations at line level, it clearly cannot be able to display all lines in

all files of a million lines of code, industry-size project. Typical limits for CVSscan are visualizing the
evolution of one up to five files together. To show correlations across a larger set of files, we must use
higher granularity entities than lines. CVSgrab uses the highest granularity level, i.e. one file = one
entity, to support cross-file correlations across the evolution of entire projects.

In order to validate the visualization techniques proposed by CVSgrab, we organized a number of
informal user studies. These studies record and analyze the experiences of software developers when
they investigate new code bases with no other support than CVSgrab. Additionally, we compare their
findings with the real state of affairs. The methodology and the promising outcome of such a study are
described next.

Case study: analysis of the VTK library
Three developers participated first in a 15-minute training in which the functionality of CVSgrab

was explained on a small example project containing the evolution of 28 files across up to 22 versions
along 4 years, with several generic use cases that could be easily reproduced on other input data. Next,
the users had to analyze an industry-size project and reason about their findings. In parallel, a fourth
developer, with over seven years of development and use experience with the system under
investigation, checked the findings of the three developers against his knowledge. To better simulate a
real-life project assessment, the knowledgeable developer did not give any feedback during the study.
At the end of the study, the experienced developer commented on the findings. The analyzed system
was VTK, the industry-leader data visualization library of hundreds of C++ classes in over 2700 files,
spanning over 100 versions, developed by more than 40 programmers over 10 years.

The users started CVSgrab in default mode, displaying the evolution of the entire VTK on one
screen, (Figure 19). Each file is represented as a horizontal blue pixel strip, divided in a number of
segments by small bright yellow dots. The horizontal time axis has a uniform time sampling with one-
second resolution. A version is thus implicitly represented as the blue horizontal segment delimited by
two bright yellow commit events. Color encodes the version status: white = before creation of first
version; dark blue = current version; light blue = after creation of last version. In Figure 19, files are
arranged on the vertical axis in the order they are stored in the CVS repository, thus implicitly
grouped on folders.

This layout is interesting for several reasons. First, it is able to compactly display hundreds up to
thousands of files across hundreds of versions on a single screen with no or little scrolling. Second, it
quickly lets users find the main directories, which appear as large, contiguous groups of files on the
vertical axis. In our case, the users quickly identified that VTK consists of the following main
directories: Common, Contrib, Graphics and Imaging. Since the latter two take the most Y-axis space
(Figure 19), they were correctly identified as containing the core of the VTK project. Third, it lets one
quickly spot file with correlated evolutions, i.e. files that were created and changed at roughly the
same time instants. These files appear as horizontal pixel strips having the bright commit events at
roughly the same X-axis positions. If these files also share the same directory, the visual correlation is
even stronger, as the pixel strips appear close to each other along the Y-axis. Two examples hereof are
visible in Figure 19. These are the VTK Python examples in the graphics and imaging directories.

Cross-file evolution correlation, shown by the bright dotted vertical stripes of similar commit
times, is clearly visible across the whole project, not just single directories. In out study, these stripes
invariably caught the users’ attention and one tried out to find more about the nature of these project-
wide events. However, these stripes are not continuous, as files are sorted in the Y-axis according to
directory location, not to commit similarity. Different file orders on the Y-axis can help this problem
by putting files close to each other that have similar evolutions. The first alternative is to arrange the
files according to creation time, starting from the assumption that files created at the same moment
may have a similar evolution. The resulting visualization (Figure 20) proved to be better for
investigating the vertical commit event stripes.

23

Common

Contrib

Graphics

Imaging

other

Python
Examples

Figure 19: VTK system evolution; files are displayed in the order in which they are available in

the repository (i.e. implicitly grouped on folders)

By brushing with the mouse to get detailed information about these events from the commit log,
the users discovered that most system-wide changes addressed copyright text modifications in all
files’ heading sections. However, they detected also an important architectural change: the
introduction of a new design pattern for a widely used type of static methods. This visualization has a
second advantage: It lets one quickly discover the moments when many of files were suddenly
introduced in the project, i.e. so-called moments of punctuated evolution. Four such moments are
clearly visible in Figure 20. A closer look at the file names led us conclude that only one such moment
(highlight 3, Figure 20) was related to the framework functionality, the other three (highlights 1, 2, 4,
Figure 20) being just massive additions of use examples. The second alternative for ordering files
along the Y-axis uses the activity measure, i.e. the total number of commits a file has, and is shown in
Figure 21. Here, files with highest activity are at the top of the visualization. This alternative proved to
be also efficient in assessing the nature of the commit event vertical stripes, associated with system-
wide changes, especially in the later phases of the project. Additionally, this visualization brought new
insights in the project evolution. The users identified a number of outliers, i.e. files whose commit
activity did not match the average activity of the files created in the same period. We identified late
outliers, i.e. files that have come later in the project but had a very high commit activity, and early
outliers, i.e. files that have come early in the project but had a low commit activity. The users’
assumption was that the early outliers corresponded mainly to stable interfaces and the late outliers to
unstable implementations. Using the details-on-demand feature the users started to identify these
outliers. As early outliers they identified mainly header files, e.g. vtkRender.h, vtkCellType.h
vtkMarchingCubesCases.h, but also implementation files vtkStack.cxx, vtkIndent.cxx. As late outliers
the users identified mainly implementation source code files, e.g. vtkRenders.cxx, vtkPolyData.cxx,
vtkImageData.cxx, vtkRenderWindow.cxx but also paired header-implementation files, e.g.
vtkDataObject.cxx/.h, which they correctly associated with architectural patches.

24

Punctuated evolution
 moments

Important architectural changes?

1

2

3

4

Figure 20: VTK system evolution; files displayed in order of creation time

Early outliers Late outliers

vertical metric bar:
commit activity

Highest activity files

Figure 21: VTK system evolution. Files are shown in the increasing order of activity

25

Next the users tried to get insight in the network of VTK developers, or authors. For this, they
changed the color encoding to an author id-based one, i.e. all versions committed by the same author
get the same unique color (similarly to Figure 7). They also used the creation time ordering along the
vertical axis. From the result depicted in Figure 22, they concluded the main work was done by just 6
of the more than 40 developers. They also identified their names:

(1) = schroede Qualified as the project initiator. His contribution seems however to

stop about the middle of the project
(2) = martink The second major developer.
(3) = lawcc More active towards the middle of the project
(4) = hoffman One major contribution in the middle of the project. From detailed

information it appears he performed the major architectural change
related to the introduction of a new type of static methods, identified
in Figure 20.

(5) = lorensen Started to contribute about the same time as martink. However, he
becomes more active towards the middle of the project.

(6) = will Started to contribute after the middle of the project. Apparently he
replaces schroede.

Most active
developers

2

1

3
4

5

6 7 8

7 8

Figure 22: VTK system evolution. Files are shown in order of creation time, color encodes

author IDs
The three users further identified two other authors who appear to have a significant contribution to:

(7) = heiland and (8) = prabhu. However, at a closer look using the details-on-demand mechanism,
they concluded these authors had done only small modifications, i.e. added a variable, in the library
usage example files. They appear as important because they modify many files.

We stopped the study after 2 hours. At the end, we summarized the three users’ observations and
checked them against the knowledge of the expert developer. The latter validated the largest part of
the observations as fully correct. Moreover, he was particularly surprised by the ease with each the
users identified the main people behind VTK, and the problematic / active areas of development,
without any prior knowledge about this code. One aspect he found interesting was the higher-than-
expected ratio between the ‘project core’ and rest of the project activity. He identified also one

26

misinterpretation concerning the authors. He declared that schroede and will refer actually to the same
contributor (Will Schroeder, one of the parents of the VTK project) who changed his user name about
mid-project. Still, this correctly matches with the users’ observation that will replaces schroede.

8 Discussion
We have presented a set of techniques and tools for visually assessing the evolution of source code

in large software projects. Our work builds on the main assumption that developers are most
comfortable with visualizations that present the code in the same spatial context in which they
construct it [9]. Therefore, our approach has the source code in focus, whenever this is possible
(CVSscan). At lower, coarser, levels of detail, it is however not possible to visualize every line of
code, so we keep the same visual metaphor but change the entity under scrutiny from code line to an
entire file (CVSgrab). Our approach and code model (Section 3) is generic and can be applied to any
type of source code.

 CVSscan’s line-based code model currently uses the UNIX-like diff used by the CVS repository
itself to compare code. Although this makes CVSscan applicable to any type of source code, a weak
point is the accuracy of the diff operator. The visualization accuracy depends on the heuristics
behind this operator, which can lead to data misinterpretations, e.g. when too many changes occur
between consecutive versions. However, our techniques and data model can support any user-
provided diff operator. For example, one can use a syntactic, instead of line-based, code model,
where the central entity is a component’s interface, defined e.g. as a list of methods. Once a diff
mechanism is provided for such a model, e.g. by interface comparison via method signatures, the
visualization techniques presented here can be straightforwardly used. Instead of a code line, users
would see a method, class, or component. The larger granularity of the entities would also make the
methods applicable to larger projects. Yet another step in this direction would be to use a diff
operator with support for semantic, instead of purely lexical or syntactic, comparisons. Note, however,
that the existence of such more advanced diff operator possibilities does not invalidate the
usefulness simpler ones, such as the classical line-based one presented here. Simpler diff operators
are fast, easy to implement, work on any source code or even plain text, and perform surprisingly well
in many situations.

Another point of improvement in our work is the methodology of the user studies. All studies we
organized so far involved mainly users who were not familiar with the systems under investigation. In
the first studies we organized (Section 5), we tried to involve users outside the CVSscan and CVSgrab
developers, not to bias the judgment by the expert tool-user point of view. However, we could only
assess the validity of their findings using available means, as we were also not familiar with the
systems under investigation. In the second type of studies we organized (Section 6), we used the
knowledge of expert users to verify the validity of the findings, but we performed the studies inside
our development community, which has extensive expertise with the tools. In the last studies we
performed (Section 7) we involved both users outside our community and an expert user to verify the
validity of their findings at the end. Still, the users performed the investigation as a team, so they
benefited also from the intense discussions they had. For the future, we would like to organize user
studies with more users outside our community. Additionally we would like the users to carry on the
studies without interaction, and eventually to have their findings always validated by an expert.

9 Conclusion
We have presented a new approach for the visualization of large-scale software evolution using

code-oriented displays. We presented a generic code data model that can describe change at various
levels of granularity. Next, we introduced several visual mappings and interaction techniques for
efficiently and effectively visualizing this code model. All work presented here was implemented by
two tools developed by us, CVSscan and CVSgrab, in order to validate the proposed techniques.
These tools, as well as several example source code datasets, are available for download at
http://www.win.tue.nl/~lvoinea/VCN.html.

The main audience we target with our work is the software developer and maintenance community,
ranging from programmers to system architects and technical project managers. The goal is to provide
them with effective support for program and process understanding by exploiting the evolution
information contained in SCM repositories such as CVS or Subversion.

27

Our novel approach uses multiple correlated views on the evolution of a software project. We use
dense pixel displays to show the overall evolution of code structure and attributes of tens of thousands
of elements on a single screen, and we integrate them in an orchestrated environment to offer details-
on-demand.

We have also presented in this paper the typical outcome of a number of user studies we did to
validate our approach on data from real-life, industry-size CVS repositories. Although informal, the
studies show that our proposed code-based evolution visualization of software supports a quick
assessment of the important activities and artifacts produced during development, even for users that
had not taken part in any way in developing the examined projects. The subjects of our user studies
valued most the compact overview coupled with easy access to detailed information such as source
code or developer comments. These enabled them to easily spot issues at a high level and then get
detailed information for further refinement of their assessments. An extremely important acceptance
point was the simplicity of use of our tools: To produce most of the visualizations shown here, or
similar ones, one needs only to start the tool, type in the location of a CVS repository, and wait for the
screen to be populated with visual information about the downloaded data. Most subsequent
manipulations, such as sorting entities, changing color attributes, getting details on demand and so on,
are reachable via just a few mouse clicks.

In the future, we plan to extend and refine our set of methods and techniques for visual code
evolution investigation in two main directions. First, we work to refine the code data model to
incorporate several higher-level abstractions (classes, methods, namespaces) and their corresponding
diff operators. Second, we are actively researching novel ways to display the existing information
in more compact, more suggestive ways. We plan to actively conduct user tests to assess the concrete
value and effectiveness of such visualizations, which is the ultimate proof of our proposed techniques.

References

[1] Articus Systems, Rubus OS - reference manual, 1996

[2] T. Ball, J.-M. Kim, A. A. Porter, and H. P. Siy. If your version control system could talk ... presented at
ICSE ’97 Workshop on Process Modelling and Empirical Studies of Software Engineering, May 1997,
available online at: http://research.microsoft.com/~tball/papers/icse97-decay.pdf

[3] K. Beck, and C. Andres, Extreme Programming Explained: Embrace Change (2nd Edition), Addison-
Wesley, 2000

[4] J. M. Bieman, A. A. Andrews, H. J. Yang, Understanding change-proneness in OO software through
visualization, in Proc.11th International Workshop on Program Comprehension, IEEE CS press,
Washington, DC, USA, 2003, pp. 44–53

[5] C. Burrows, I. Wesley, Ovum Evaluates: configuration Management, Ovum Inc., Burlington, MA, USA,
1999

[6] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, K. Wampler, A System for Graph-Based Visualization of the
Evolution of Software, in Proc. ACM SoftVis ‘03, ACM Press, NY, USA, 2003, pp. 77 – 86.

[7] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, 16th edition, MIT Press, 1996.

[8] CVS online: http://www.nongnu.org/cvs/

[9] S.G. Eick, J.L. Steffen, E.E. Sumner, Seesoft - A Tool For Visualizing Line Oriented Software Statistics, in
IEEE Trans. on Software Engineering, Vol. 18, N. 11, Nov. 1992, IEEE CS Press, Washington, DC, USA,
1992, pp. 957– 968

[10] M. Eiglsperger, M. Kaufmann, M. A. Siebenhaller, Topology-Shape-Metrics Approach for the Automatic
Layout of UML Class Diagrams, in Proc. ACM SoftViz ‘03, ACM Press, NY, USA, 2003, pp. 189 – 198.

[11] L. Erlikh, Leveraging Legacy System Dollars for E-business. (IEEE) IT Pro, May-June, 2000, pp. 17 – 23.

[12] M. Fischer, M. Pinzger, H. Gall, Populating a Release History Database from version control and bug
tracking systems, in Proc. International Conference on Software Maintenance (ICSM 2003), IEEE CS
press, Washington, DC, USA, 2003, pp. 23 - 32

[13] FreeBSD online: http://www.freebsd.org/

28

[14] J. Froehlich, P. Dourish, Unifying Artifacts and Activities in a Visual Tool for Distributed Software
Development Teams, in Proc. ICSE ‘04, IEEE CS Press, Washington DC, USA, 2004, pp. 387 – 396

[15] H. Gall, M. Jazayeri, J. Krajewski, CVS release history data for detecting logical couplings, in Proc.
IWPSE 2003, IEEE CS press, Washington DC, USA, 2003, pp. 13–23

[16] D. German and A. Mockus, Automating the measurement of open source projects, presented at ICSE ’03
Workshop on Open Source Software Engineering, Portland, Oregon, USA, May 2003, available online at:
http://www.research.avayalabs.com/user/audris/papers/oose03.pdf

[17] W.G. Griswold, J.J. Yuan, Y. Kato, Exploiting the Map Metaphor in a Tool for Software Evolution, in
Proc. ICSE ‘01, IEEE CS Press, Washington DC, USA, 2001, pp. 265 – 274

[18] C. Gutwenger, M. Junger, K. Klein, J. Kupke, S. Leipert, P. Mutzel, A New Approach for Visualizing UML
Class Diagrams, in Proc. ACM SoftViz ’03, ACM Press, NY, USA, 2003, pp. 179 – 188

[19] ITEA, ROBOCOP: Robust Open Component Based Software Architecture for Configurable Devices
Project -- Framework concepts. Public Document V1.0, May 2002, available online at: http://www.hitech-
projects.com/euprojects/robocop/

[20] J.A. Jones, M.J. Harrold, J. Stasko, Visualization of Test Information to Assist Fault Localization, in Proc.
ICSE ‘02, ACM Press, NY, USA, 2002, pp. 467 – 477

[21] M. Lanza, The evolution matix: Recovering software evolution using software visualization techniques, in
Proc. International Workshop on Principles of Software Evolution, Vienna, Austria, September 10-11, 2001,
ACM Press, NY, USA, 2001, pp. 37–42

[22] G. Lommerse, F. Nossin, S.L. Voinea, A. Telea, The Visual Code Navigator: An Interactive Toolset for
Source Code Investigation, in Proc. IEEE InfoVis’05, IEEE CS Press, Washington DC, USA, 2005, pp. 24
– 31

[23] L. Lopez-Fernandez, G. Robles, J.M. Gonzalez-Barahona, Applying Social Network Analysis to the
Information in CVS Repositories, presented at International Workshop on Mining Software Repositories
(MSR), Edinburgh, Scotland, UK, May 2004, available online at:
http://opensource.mit.edu/papers/llopez-sna-short.pdf

[24] A. Marcus, L. Feng, J.I. Maletic, 3D Representations for Software Visualization, in Proc. ACM SoftVis
‘03, ACM Press, NY, USA, 2003, pp. 27 – 36

[25] A. Mockus, R. T. Fielding, J.D. Herbsleb, Two case studies of open source software development: Apache
and Mozilla, in ACM Transactions on Software Engineering and Methodology, 11(3), ACM Press, NY,
USA, 2002, pp. 309–346

[26] A. Möller, M. Åkerholm, J. Fredriksson, and M. Nolin, Evaluation of Component Technologies with
Respect to Industrial Requirements, in Proc. of the 30th EUROMICRO Conference (EUROMICRO’04),
Rennes (France), 31 August – 3 September 2004, IEEE CS Press, Washington DC, USA, 2004, pp. 56 – 63

[27] M. Ohira, N. Ohsugi, T. Ohoka. K. Matsumoto, Accelerating Cross Project Knowledge Collaboration Using
Collaborative Filtering and Social Networks, in Proc. International Workshop on Mining Software
Repositories (MSR), Saint Louis, Missouri, USA, May 2005, pp. 111 – 115, available online at:
http://plg.uwaterloo.ca/~aeehassa/home/pubs/MSR2005ProceedingsFINAL_ACM.pdf

[28] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, The Koala Component Model for Consumer
Electronics, in IEEE Transactions on Computers, 33(3), IEEE CS press, Washington, DC, USA, 2000, pp.
78– 85

[29] S.P. Reiss, Bee/Hive: A Software Visualization Back End, presented at Workshop on Software
Visualization, ICSE ‘01, 2001, available online at:
http://www.cs.brown.edu/~spr/research/bloom/beehive.pdf

[30] R.C. Seacord, D. Plakosh, G. Lewis, A. Modernizing Legacy Systems: Software Technologies, Engineering
Process, and Business Practices, SEI Series in Software Engineering, Addison-Wesley, 2003

[31] B. Shneidermann, The Eyes Have It: A Task by Data Type Taxonomy for Information Visualization. Proc
IEEE Symp. on Visual Languages (VL ‘96), IEEE CS Press, Washington DC, USA, 1996, pp. 336 – 343

[32] J. Śliwerski, T. Zimmermann, A. Zeller: When do Changes Induce Fixes? On Fridays, in Proc. International
Workshop on Mining Software Repositories (MSR), Saint Louis, Missouri, USA, May 2005, pp. 24 – 28,
available online at: http://plg.uwaterloo.ca/~aeehassa/home/pubs/MSR2005ProceedingsFINAL_ACM.pdf

29

[33] M.A. Storey, C. Best, J. Michaud, D. Rayside, M. Litoiu, M. Musen, SHriMP Views: an Interactive
Environment for Information Visualization and Navigation, in Proc. CHI ‘02, ACM Press, NY, 2002, pp.
520 – 521.

[34] Subversion online: http://subversion.tigris.org/

[35] A. Telea, A. Maccari, C. Riva, An Open Toolkit for Prototyping Reverse Engineering Visualization. In
Proc. IEEE VisSym ‘02, The Eurographics Association, Aire-la-Ville, Switzerland, 2002, pp. 241 – 251.

[36] S.R. Tilley, K. Wong, M.A.D. Storey, H.A. Muller, Rigi: A visual tool for understanding legacy systems. In
International Journal of Software Engineering and Knowledge Engineering, December, 1994

[37] L. Voinea, A. Telea, J.J. van Wijk, “CVSscan: Visualization of code evolution”, in Proc. of the ACM
Symposium on software Visualization (SoftVis’05), ACM Press, NY, USA, 2005, pp. 47 – 56

[38] L. Voinea, A. Telea, M. Chaudron, “Version Centric Visualization of code Evolution”, in Proc. of the
IEEE Eurographics Symposium on Visualization (EUROVIS’05), IEEE CS Press, 2005, pp. 223-230

[39] VTK online: http://www.kitware.com/

[40] A.T.T. Ying, G.C. Murphy, R. Ng, M.C. Chu-Carroll, Predicting Source Code Changes by Mining Revision
History, in IEEE Transactions on Software Engineering, Volume 30, Issue 9, Sept. 2004, IEEE CS press,
Washington, DC, USA, 2004, pp. 574 - 586

[41] M. Winter, T. Genssler, A. Christoph, O. Nierstrasz, S. Ducasse, R. Wuyts, G. Arvalo, P. Mller, C. Stich,
and B. Schnhage. Components for Embedded Software - The Pecos Approach, presented at Second
International Workshop on Composition Languages in conjunction with 16th European Conference on
Object-Oriented Programming (ECOOP), Malaga (Spain), June 11, 2002, available online at:
http://www.iam.unibe.ch/~scg/Archive/pecos/public_documents/Wint02a.pdf

[42] J. Wu, C.W. Spitzer, A.E. Hassan, R.C. Holt, Evolution Spectrographs: Visualizing Punctuated Change in
Software Evolution, in Proc. 7th International Workshop on Principles of Software Evolution
(IWPSE'04), IEEE CS press, Washington, DC, USA, 2004, pp. 57-66

[43] T. Zimmermann, S. Diehl, A. Zeller, How history justifies system architecture (or not), in Proc. IWPSE
2003, IEEE CS press, Washington DC, USA, 2003, pp. 73–83.

[44] T. Zimmermann, P.Weißgerber, S. Diehl, A. Zeller, Mining version histories to guide software changes, in
Proc. 26th International Conference on Software Engineering (ICSE), Edinburgh, Scotland, May 2004,
IEEE Press Piscataway, NJ, USA, 2004, pp. 429 – 445

[45] T. Zimmermann, P. Weißgerber: Preprocessing CVS Data for Fine-grained Analysis, presented at
International Workshop on Mining Software Repositories (MSR), Edinburgh, Scotland, UK, May 2004,
available online at: http://www.st.cs.uni-sb.de/papers/msr2004/msr2004.pdf

