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Abstract. The estimation of optical flow fields from image sequences is incor-
porated in a Mumford–Shah approach for image denoising and edge detection.
Possibly noisy image sequences are considered as input and a piecewise smooth
image intensity, a piecewise smooth motion field, and a joint discontinuity set
are obtained as minimizers of the functional. The method simultaneously detects
image edges and motion field discontinuities in a rigorous and robust way and
it is able to handle information on motion concentrated on edges. Inherent to it
is a natural multi–scale approximation that is closely related to the phase field
approximation for edge detection by Ambrosio and Tortorelli. We present an im-
plementation for 2D image sequences with finite elements in space and time. This
leads to three linear systems of equations, which have to be solved in a suitable
iterative minimization procedure. Numerical results underline the robustness of
the presented approach and different applications are shown.

1 Introduction

The task of motion estimation is a fundamental problem in computer vision. In low level
image processing, the accurate computation of object motion in scenes is a long stand-
ing problem, which has been addressed extensively. In particular, global variational
approaches initiated by the work of Horn and Schunck [18] are increasingly popular.
Initial problems such as the smoothing over discontinuities or the high computational
cost have been resolved successfully [25, 8, 10]. Motion also poses an important cue
for object detection and recognition. While a number of techniques first estimate the
motion field and segment objects later in a second phase [36], an approach of both com-
puting motion as well as segmenting objects at the same time is much more appealing.
First advances in this direction were investigated in [32, 27, 28, 11, 22, 30]. In partic-
ular, Kornprobst et al. [21, 3, 4] have considered piecewise smooth motion pattern on
image sequences characterized by piecewise smooth objects. Their results are phrased
rigorously on the space of functions of bounded variation and they propose suitable
approximations for the numerical implementation. Already, in [21] a joint approach for
the segmentation of moving objects in front of a still background and the computation
of the motion velocities has been proposed. For a given intensity function on an image
sequence a total variation (TV) type functional for the motion field - which allows for
jumps in the optical flow velocity - is analysed in [4, 3]. Recently, Papenberg et al. [29]
considered another TV regularization of the motion field and optical flow constraints
involving higher order gradients.



The idea of combining different image processing tasks into a single model in order
to cope with interdependencies has drawn attention in several different fields. In image
registration, for instance, a joint discontinuity approach for simultaneous registration,
segmentation and image restoration has been proposed by Droske & Ring [15] and
extended in [5] to incorporate phase field approximations. Yezzi, Zöllei and Kapur [19]
and Unalet al. [34] have combined segmentation and registration by applying geodesic
active contours described by level sets in both images. Vemuriet al. have also used a
level set technique to exploit a reference segmentation in an atlas [35]. We refer to [14]
for further references.

Recently, Keeling and Ring [20] investigated the relation between optimization
and optical flow extraction. A first approach which relates optical flow estimation to
Mumford–Shah image segmentation was presented by Nesi [26]. Recently, Rathiet
al. investigated active contours for joint segmentation and optical flow extraction [31].
Cremers and Soatto [13, 12] presented an approach for joint motion estimation and
motion segmentation with one functional. Incorporating results from Bayesian infer-
ence, they derived an energy functional, which can be seen as an extension to the well
known Mumford–Shah [23] approach. Their functional involves the length of bound-
aries separating regions of different motion as well as a “fidelity-term” for the optical-
flow assumption. Brox et al. [9] present a Chan-Vese type model for piecewise smooth
motion extraction. For given fixed image data the decomposition of image sequences
into regions of homogeneous motion is encoded in a set of level set functions and the
regularity of the motion fields in these distinct regions is controlled by a total variation
functional. Our approach is in particular inspired by these investigations.

We combine denoising and edge detection with the estimation of motion. This re-
sults in an energy functional incorporating fidelity- and smoothness-terms for both the
image sequence and the flow field. Our focus is in particular on information on motion
concentrated on edges such as in the case of moving object with sharp egde contours
but without shading and texture. To cope with this, we phrase the optical flow equations
appropriately in regions apart from edges and on the edge set. Moreover, we incorpo-
rate an anisotropic enhancement of the flow along the edges of the image in the sense
of Nagel and Enkelmann [24]. This effectively allows to spread information on the
motion from the edge set onto the whole domain of a moving object. The model is
implemented using the phase-field approximation in the spirit of Ambrosio’s and Tor-
torelli’s[2] approach for the original Mumford–Shah functional. The identification of
edges is phrased in terms of a phase field function, noa-priori knowledge of objects is
required, as opposed to formulations of explicit contours.A particular focus is on opti-
cal flow constraints which are not only continuously distributed over shaded or textured
regions, but might be concentrated on edges, e. g. in case of moving objects without tex-
ture and shading.In contrast to a level set approach, the built-in multi-scale of the phase
field model enables a natural cascadic energy relaxation approach and thus an efficient
computation. Indeed, no initial guess for the edge set and the motion field will be re-
quired. We present here a trulyd + 1 dimensional algorithm, considering time as an
additional dimension to thed-dimensional image data. This fully demonstrates the con-
ceptual advantages of the joint approach. Nevertheless, a transfer of the method for only



two consecutive time frames is possible but not investigated here. The characteristics of
our approach are:

- The distinction of smooth motion fields and optical flow discontinuities is directly
linked to edge detection, improving the reliability of the motion estimation.

- The denoising and segmentation task will profit from the explicit coupling of the
sequence via the brightness constancy assumption.

- The phase field approximation is expected to converge to a limit problem for van-
ishing scale parameter, with a strict notion of edges and motion field discontinuities
not involving any additional filtering parameter.

- The algorithm is based on an iteration. In each step a set of three relatively simple
linear systems have to be solved for the image intensity, the edge description via
the phase field, and the motion field, respectively. Only a small number of iterations
is required.

This paper is organized as follows: In Section 2 Mumford–Shah type image denoising
and edge detection is reviewed, in Section 3 we discuss a generalized optical flow equa-
tion and in Section 4 the minimization problem is presented. Section 5 shows how to
approximate the segmentation in terms of a variational phase field model. Furthermore,
we prove existence of solutions of this model and discuss the limit behaviour. Section 6
propounds the corresponding Euler-Lagrange equations, which are discretized applying
the usual finite element procedure in Section 7. We conclude with the results in Sec-
tion 8. Finally, in Appendix A we provide explicit formulas of all matrices and vectors
appearing in the implementation to enable readers to reproduce the algorithm.

2 Recalling the Mumford–Shah functional

In their pioneering paper, Mumford and Shah [23] proposed the minimization of the
following energy functional:

EMS [u, S] = λ

∫
Ω

(u−u0)2 dL+
µ

2

∫
Ω\S

|∇u|2 dL+ νHd−1(S) , (1)

whereu0 is the initial image defined on an image domainΩ ⊂ Rd andλ, µ, ν are posi-
tive weights. Here, one asks for a piecewise smooth representationu of u0 and an edge
setS, such thatu approximatesu0 in the least-squares sense,u ought to be smooth
apart from the free discontinuity setS, and in additionS should be smooth and thus
small with respect to the(d − 1)-dimensional Hausdorff-measureHd−1. Mathemati-
cally, this problem has been treated in the space of functions of bounded variationBV ,
more precisely in the specific subsetSBV [1]. In this paper, we will pick up a phase
field approximation for the Mumford–Shah functional (1) proposed by Ambrosio and
Tortorelli [2]. They describe the edge setS by a phase fieldζ which is supposed to be
small onS and close to1 apart from edges, i. e., one asks for minimizers of the energy
functional

Eε[u, ζ] =
∫
Ω

λ(u− u0)2 +
µ

2
(ζ2 + kε) |∇u|2 + νε |∇ζ|2 +

ν

4ε
(1− ζ)2 dL , (2)



whereε is a scale parameter andkε = o(ε) � 1 a small positive regularizing parameter,
that mathematically ensures strict coercivity with respect tou. On edges the weight
ζ2 is expected to vanish. Hence, the second term measures smoothness ofu but only
apart from edges. The last two terms in the integral encode the approximation of the
d − 1 dimensional area of the edge set and the strong preference for a phase field
valueζ ≈ 1 apart from edges, respectively. For largerε one obtains coarse, blurred
representations of the edge sets and corresponding smoother imagesu. With decreasing
ε we successively refine the representation of the edges and include more image details.

3 Generalized optical flow equation

In image sequences we observe different types of motion fields: locally smooth motion
visible via variations of object shading and texture in time, or jumps in the motion
velocity apparent at edges of objects moving in front of a background. We aim for
an identification of corresponding piecewise smooth optical flow fields in piecewise
smooth image sequences

u : [0, T ]×Ω 7→ R ; (t, x) → u(t, x)

for a finite time interval[0, T ] and a spatial domainΩ ⊂ Rd with d = 1, 2, 3. In what
follows, we assume∂Ω to be Lipschitz. The flow fields are allowed to jump on edges
in the image sequence. Hence, the derivativeDu splits into a singular and a regular
part. The regular part is a classical gradient∇(t,x)u in space and time, whereas the
singular part lives on the singularity setS - the set of edge surfaces in space–time.
Time slices ofS are the actual image edgesS with respect to space–time. The singular
part represents the jump of the image intensity onS, i. e., one observes thatDsu =
(u+ − u−)ns. Here,u+ andu− are the upper and lower intensity values on both sides
of S, respectively. Now, we suppose that the image sequenceu reflects an underlying
motion with a piecewise smooth motion velocityv, which is allowed to jump only on
S. Thus,S represents object boundaries moving in front of a background, which might
as well be in motion. In strict mathematical terms, we suppose thatu, v ∈ SBV (the
set of functions of bounded variation and vanishing Cantor part in the gradient) [16,
1]. In this general setting without any smoothness assumption onu andv, we have to
ask for a generalized optical flow equation. In fact, apart from moving object edges we
derive, as usually, from the brightness constancy assumptionu(t+ s, x+ s v) = const
on motion trajectories{(t+ s, x+ s v) | s ∈ [0, T ]}, that

∇(t,x)u · w = 0 , (3)

wherew = (1, v) is the space–time motion velocity. On edges, the situation is more
complex and in general requires prior knowledge. For instance, a white circular disk
moving in front of a black background is visually identical to a black mask with a cir-
cular hole moving with the same speed on a white background. Hence, it is ambiguous
on which± side of the edgew± vanishes and on which side a non–trivial optical flow
equationns · w± = 0 holds. We will not resolve this ambiguity via semantic assump-
tions. In what follows, we assume instead that locally only one object – in our example



either the circle or the mask – is moving on a stationary remaining background. Hence,
we rule out that foreground and background are in motion. In other words, our back-
ground is that image part which is not moving, and the foregound correspondingly.
Then, one of the two values ofw on both sides of the edge vanishes by assumption and
we can rewrite the optical–flow–constraint on the edge without identifying foreground
or background by

ns · (w+ + w−) = 0. (4)

This in particular includes the case of a sliding motion without any modification of the
object overlap, wherens · w+ = ns · w− = 0.

4 Mumford–Shah approach to optical flow

Now, we ask for a simultaneous denoising, segmentation and flow extraction on image
sequences. Hence, we will incorporate the motion field generating an image sequence
into a variational method. Let us formulate a corresponding minimization problem in
the spirit of the Mumford–Shah model:

Definition 1 (Mumford–Shah type optical flow approach).Given a noisy initial im-
age sequenceu0 : D 7→ R on the space time domainD = [0, T ] × Ω, we define the
following energy

EMSopt[u,w, S] =
∫
D

λu

2
(u− u0)2 dL+

∫
D\S

λw

2
(
w · ∇(t,x)u

)2
dL

+
∫

D\S

µu

2

∣∣∇(t,x)u
∣∣2 dL+

∫
D\S

µw

q

∣∣∇(t,x)w
∣∣q dL+ νHd(S) (5)

for a piecewise smooth image sequenceu, and a piecewise smooth motion fieldw =
(1, v) with a joint jump setS. Furthermore, we require the optical flow constraint
ns · (w+ + w−) = 0 on S from (4). Now, one asks for a minimizer(u,w, S) of the
corresponding constraint minimization problem.

The first and second term of the energy are fidelity terms with respect to the image
intensity and the regular part of the optical–flow–constraint, respectively. The third and
fourth term encode the smoothness requirement ofu andw. Finally, the last terms
represents the area of the edge surfacesS. The fidelity weightsλu, λw, the regularity
weightsµu, µw and the weightν controlling the phase field are supposed to be positive
andq ≥ 2. Let us emphasize that, without any guidance from the local time–modulation
of shading or texture on both sides of an edge, there is still a undecidable ambiguity with
respect to foreground and background.

5 Phase field approximation

Similar to the original model for denoising and edge detection the above Mumford–
Shah approach with its explicit dependence on the geometry of the edge set is difficult



to implement without any additional strong assumptions either on the image sequence
or on the motion field. For a corresponding parametric approach we refer to the recent
results by Cremers and Soatto [13, 12]. The level set approach recently presented by
Brox et al. [9] does not explicitly encode motion concentrated on edges. We do not aim
to impose any additional assumption on the image sequenceu and the motion fieldv
and ask for a suitable approximation of the above model. To gain more flexibility and, in
addition, to incorporate a simple multi–scale into the model, we propose here a phase-
field formulation (2) in the spirit of Ambrosio and Tortorelli [2]. Let us remark, that
in [3] Aubert et al. already proposed to consider this type of phase field approximation
for the regularization of the motion field. Let us introduce an auxiliary variableζ – the
phase field – describing the edge setS. Apart fromS we aim forζ ≈ 1 and onS the
phase field should vanish. As in the original Ambrosio–Tortorelli model a scale param-
eterε controls the thickness of the region with small phase field values. We consider the
following energy functionals:

Eε
fid,u[u] =

∫
D

λu

2
(u− u0)2 dL , (6)

Eε
fid,w[u,w] =

∫
D

λw

2
(
w · ∇(t,x)u

)2
dL , (7)

Eε
reg,u[u, ζ] =

∫
D

µu

2
(ζ2 + kε)

∣∣∇(t,x)u
∣∣2 dL , (8)

Eε
phase[ζ] =

∫
D

(
νε
∣∣∇(t,x)ζ

∣∣2 +
ν

4ε
(1− ζ)2

)
dL (9)

These energy contributions control the approximation of the initial imageu0 (6) and the
optical–flow–constraints (7), the regularity ofu (11) , and the shape of the phase fieldζ
(9). Here, as in the original modelkε = o(ε) > 0 is a ”safety” coefficient, which is later
on needed to establish existence of solutions of our approximate problem. Still missing
is a regularity term for the motion field corresponding to the fourth energy term in the
Mumford Shah model (5). If we would consider in a straightforward way the integral

Ẽε
reg,w[w, ζ]

∫
D

µw

q
(ζ2 + kε)

∣∣∇(t,x)w
∣∣2 dL (10)

the motion field will form approximate jumps onS but without any coupling of a con-
centrated motion constraint onS and the motion field in homogeneous regions on the
image sequence. Fig. 1 clearly outlines this drawback in case of a circle with constant
white image intensity inside moving on a textured background. As an alternative one
might want to decouple the scales for image edges and motion edges introducing a
second phase field with a much finer scale parameterε̃ � ε for the representation of
motion singularities. But this is not very handsome concerning a suitable discretization
on digital images with limited pixel resolution and an parameterε already in the range
of the pixel size. Furthermore, following this approach we obtain in case of finite energy
motion fieldsw bounded inW 1,2, which is not sufficient to ensure compactness of the



optical flow integrant in (7). Thus, to allow for piecewise smooth motion fields and to
enable an extension of motion velocities first concentrated on edges via the variational
approach, we consider

Eε
reg,w[w, ζ] =

∫
D

µw

q

∣∣Pδ[ζ]∇(t,x)w
∣∣q dL , (11)

Here, the following desired properties are encoded in the operatorPδ[ζ]:

- Close to the edges, wereζ ≤ θ− for someθ− with 0 < θ− < 1, Pδ[ζ] should
behave like the original edge indicatorζ2 proposed by Ambrosio and Tortorelli [2].

- Apart from the edges, wereζ ≥ θ+ for θ− < θ+ < 1, Pδ[ζ] is expected to be the
identity matrix, which enforces an isotropic smoothness modulus for the motion
fieldw.

- In the spirit of the classical approach by Nagel and Enkelmann [24],Pδ[ζ] will
be an (approximate) projection onto level sets of the phase field function in the
intermediate region. These level sets are surfaces approximately parallel to the edge
set in space time. Thus, information on the optical flow is mediated along the edge
set, without a coupling across edge surfaces.

An explicit definition forPδ[ζ] fulfilling these properties is the following:

Pδ[ζ] = α(ζ2)

(
1+ kε − β(ζ2)

∇(t,x)ζ∣∣∇(t,x)ζ
∣∣
δ

⊗
∇(t,x)ζ∣∣∇(t,x)ζ

∣∣
δ

)
,

where |z|δ = (|z|2 + δ2)
1
2 represents a regularized normal. Furthermore,α :

R → R+
0 and β : R → R+

0 are continuous blending functions, withα(s) =
max

(
0,min

(
1, s

θ−

))
+ kε andβ(s) = max

(
0,min

(
1, 1−s

1−θ+

))
. Concerning alge-

braic notation,∇(t,x)w(t, x) is a (d + 1)2 matrix and thusPδ[ζ]∇(t,x)w represents
the matrix product. We consider the Frobenius norm of matrices, given by|A| =√

tr(ATA). Suitable choices for the parameters areθ+ = 0.8 andθ− = 0.0025. For
vanishingε and a corresponding steepening of the slope ofu, this operator basically
leads to a separated diffusionon both sides ofS in the relaxation of the energy.

Let us recall, that the energiesEε
reg,u, Eε

phase, and the termEε
fid,u are identical to

those in the original Ambrosio–Tortorelli approach (see above). In addition, we ask
for an optical flow fieldw according to the optical–flow–constraint encoded inEε

fid,w

(cf. Fig. 1 for a first test case). At the same time, this term implies a strong coupling of
the image intensities along motion trajectories – which turns into a flow-aligned diffu-
sion in the corresponding Euler–Lagrange equations – for the benefit of a more robust
denoising and edge detection. Figure 2 shows an example where a completely destroyed
time step in the image sequence is recovered by this enhanced diffusion along motion
trajectories. Due to the regularity energyEε

reg,w this motion field is isotropically smooth
apart of the approximate jump set ofu and the smoothness modulus is characterized by
a successively stronger anisotropy along level sets ofu while approaching the approx-
imate jump set. The energy termEε

reg,w (8) we consider for the regularization of the



motion field is very similar to the corresponding smoothness term in the classical ap-
proach by Nagel and Enkelmann [24], where tangential diffusion is steered by the local
structure tensor. In the above multi–scale approach no additional pre-filtering of the
image sequence in terms of a structure tensor is required.

The projection operatorPδ[ζ] couples the smoothness of the motion fieldw to the
image geometry, which in fact is very beneficial for the purpose of piecewise smooth
motion extraction. The reverse coupling, which would try to align tangent spaces of
level sets ofu to the motion field, is not required and might even be misleading for
our actual goal. The optical flow term in the fidelity energyEε

fid,w already couples
image sequence gradients to the motion field in a direct way. Hence, we don’t ask for
global minimizers of the sum of all energies but formulate the phase field approximation
problem as follows:

Definition 2 (Solution of the phase field model).For given noisy space time image
u0 : D 7→ R and boundary datavδ ∈ W 1,q(D,Rd) for the velocity field, we de-
note a space time imageu ∈ W 1,2(D,R), a motion fieldw = (1, v + vδ), with
v ∈ W 1,q

0 (D,Rd), and a phase fieldζ ∈ W 1,2(D,R) a solution of the phase field
model, ifu andζ minimizes the restricted energy

Eε
fid,u[u] + Eε

fid,w[u,w]Eε
reg,u[u, ζ] + Eε

phase[ζ], (12)

for fixedw in W 1,2(D,Rd+1), and the motion fieldw minimize the global energy

Eε
global[u,w, ζ] = Eε

fid,u[u] + Eε
fid,w[u,w] + Eε

reg,u[u, ζ] + Eε
reg,w[w, ζ] + Eε

phase[ζ] (13)

for fixedu, ζ ∈W 1,2(D,R).

Remark:The definition ofu and ζ as the minimizer of a restricted functional is
not only sound with respect to the applications. Indeed, a simultaneous relaxation of
the global energy with respect to all unknowns is theoretically questionable.Eε

reg,w

is not convex inζ and we can not expect this energy contribution to be lower semi–
continuous on a suitable set of admissible functions. With the above notion of solutions
the direct method in the calculus of variations can be applied and in particular one
observes compactness of the sequence of phase fields associated with a minimizing
sequence of image sequences and motion fields (cf. the proof below).

Theorem 1 (Existence of solutions).Supposed+ 1 < q <∞, λu, λw, µu, µw, ν, ε >
0 and letkε > 0. Then there exist a solution(u,w, ζ) of the phase field problem intro-
duced in Definition 2.

Proof. At first, we rewrite the phase field approach as an energy minimization problem,
which later allows us to apply the direct method from the calculus of variations. For
fixedw the energy functional

Ew[u, ζ] := Eε
fid,u[u] + Eε

fid,w[u,w] + Eε
reg,u[u, ζ] + Eε

phase[ζ]



is strictly convex and by the direct method we obtain a unique minimizer. Thus, let us
denote by(u[w], ζ[w]) this minimizer inW 1,2(D,R) ×W 1,2(D,R) of the quadratic
energy functionalEw[u, ζ] for fixed u ∈ W 1,2(D,R). The minimizing phase field is
given as the weak solution of the corresponding Euler Lagrange equation

−ε∆ζ +
1
4ε
ζ = f [u, ζ] :=

1
4ε
− µu

2ν

∣∣∇(t,x)u
∣∣2 ζ . (14)

Applying the weak maximum principle we observe thatζ ≡ 1 is a super solution and
ζ ≡ 0 a sub solution. Thus,ζ[w] is uniformly bounded, i. e.0 ≤ ζ[w] ≤ 1.

Given (u[w], ζ[w]) we consider the global energyEε
global solely as a functional of

the motion fieldw = (1, v):

E[w] = Eε
global[u[w], w, ζ[w]]

on the admissible set

A := {w |w = (1, v + vδ) , v ∈W 1,q
0 (D,Rd+1)}

and defineE := infw∈AE[w]. Testing the energy atu ≡ 0, ζ ≡ 0, andw = (1, vδ)
we observe thatE ≤ λu

2 |u0|2L2 + µw

q

∣∣∇(t,x)vδ

∣∣q
Lq <∞. Let us consider a minimizing

sequence
(
wk
)
k=1··· ,∞ in A with E[wk] → E for k → ∞. We setuk = u[wk] and

ζk = ζ[wk] and estimate the energyEglobal as follows

Eglobal[u,w, ζ] ≥
λu

4

(
|u|2L2 − 2 |u0|2L2

)
+
µukε

2

∣∣∇(t,x)u
∣∣2
L2 +

µwkε

q

∣∣∇(t,x)w
∣∣q
Lq

+
ν

4ε

(
|ζ|2L2 − 2L(D)

)
+ νε

∣∣∇(t,x)ζ
∣∣2
L2 ,

whereL(D) denotes the Lebesgue measure ofD. From this, we deduce that(uk)k

and (ζk)k are bounded inW 1,2(D,R) and taking into account the boundary con-
ditions that(wk)k is bounded inW 1,q(D,R). Hence, we can extract a weakly con-
verging subsequence again denoted by(uk, wk, ζk)k with weak limits(u,w, ζ). From
the Sobolev embedding theorem and the assumptionq > d + 1 we derive thatwk

strongly converges inL∞. Furthermore, the corresponding sequence(ζk)k of phase
field functionsζk := ζ[wk] are weak solutions of−ε∆ζk + 1

4εζ
k = fk (cf. (14)).

From the bounds onζk in L∞ and onuk in W 1,2 we obtain thatfk = f [uk, ζk] is
uniformly bounded inL1. This observation allows to apply a compensated compact-
ness result to verify that∇(t,x)ζ

k converges to∇(t,x)ζ a.e., which is proven for the
equation−∆ζ = f on the spaceW 1,2

0 in [33, Chapter I, Thm 3.4], but can easily
be generalized for equations of the type−∆ζ + ζ = f onW 1,2. The matrix valued
functionPδ[·] is continuous and bounded. Hence, we obtain thatPδ[ζk] → Pδ[ζ] a.e.
for k →∞. For later use, we define the constantsCu = supk=1,··· ,∞

∣∣∇(t,x)u
k
∣∣
L2 and

Cw = supk=1,··· ,∞max
{∣∣wk

∣∣
L∞

,
∣∣∇(t,x)w

k
∣∣
Lq

}
.



Next, we verify thatu = u[w] andζ = ζ[w]. Indeed, taking into account the lower
semi–continuity ofEw and the modulus of continuity with respect tow we can estimate

Ew[u, ζ] ≤ lim inf
k→∞

Ewk [uk, ζk]

≤ lim inf
k→∞

Ewk [ũ, ζ̃]

≤ Ew[ũ, ζ̃] + lim inf
k→∞

(∣∣wk · ∇(t,x)ũ
∣∣2
L2 −

∣∣w · ∇(t,x)ũ
∣∣2
L2

)
≤ Ew[ũ, ζ̃] + 2Cw

∣∣∇(t,x)ũ
∣∣2
L2 lim inf

k→∞

∣∣w − wk
∣∣
L∞

for any ũ, ζ̃ ∈ W 1,2(D,R). From theL∞ convergence ofwk to w, we immediately
obtain thatEw[u, ζ] ≤ Ew[ũ, ζ̃]. Thus, by definitionu = u[w] andζ = ζ[w]. Based on
these preliminaries, we are able to prove weak lower semi–continuity of the energy. For
this we assume without loss of generality that

E[wk] ≤ E + ρ ,
∣∣Pδ[ζk]− Pδ[ζ]

∣∣
L∞

≤ ρ ,
∣∣wk − w

∣∣
L∞

≤ ρ

for a fixed and small constantρ > 0. Applying Mazur’s lemma we obtain a sequence
of convex combinations

 ∑
i=1,··· ,k

λk
i (ui, wi, ζi)


k

, with
∑

i=1,··· ,k

λk
i = 1 , λk

i ≥ 0 ,

converging strongly to(u,w, ζ) in W 1,2(D,R) ×W 1,2(D,Rd+1) ×W 1,2(D,R). Fi-
nally, taking into account convexity properties of the integrands, Fatou’s lemma and
the modulus of continuity ofEfid,u, Efid,w, andEreg,w with respect tow andPδ[ζ],



respectively, we estimate (using Einstein’s summation convention)

E[w] = Eglobal[u[w], w, ζ[w]] = Eglobal[u,w, ζ]

=
∫

D

λu

2

(
lim inf
k→∞

λk
i u

i − u0

)2

+
λw

2
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w ·
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i
)∣∣∣∣q dL

+
∫

D

µu

2
(ζ2 + kε)

∣∣∣∣lim inf
k→∞

λk
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dL
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q
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This estimate holds for anyρ ≥ 0. Thus, we obtainE[w] ≤ E, which implies thatw is
a minimizer of the energyE and hence(u,w, ζ) a solution of our phase field problem.

Remark:The above problem formulation is not only sound with respect to the actual
modeling, but it will allow a simple relaxation approach (see below). Indeed, on all
tested data sets we obtain convergence in very few iterations (5− 10).

Applying formal asymptotics, one observes that the phase field approach proposed
here indeed converges to the above Mumford–Shah model. For smallε we expect a
steeping of the gradientu on a strip of thicknessε arround the edge set. The phase field
ζ will approximate1 apart from a decreasing neighbourhood of the edge surface. For
ε→ 0 we expect to observe convergence ofEreg,u andEreg,w to

∫
D\S

µu

2

∣∣∇(t,x)u
∣∣2 +

µw

q

∣∣∇(t,x)u
∣∣q dL and ofEε

phase toHd(S). Under these assumptions on the qualitative
behavior

∫
D

(w · ∇(t,x)u)2 dL converges to the second term ofEMSopt, whereas on
the edge surface one observes a concentration of energy on the jump set scaling like
O(ε−1). Thus, we observe that in the limit we reproduce our optical–flow–constraint
nS · (w+ + w−) = 0 from the sharp interface Mumford–Shah approach. A rigorous
validation of this limit behaviour in terms ofΓ convergence is still open. For results on
Γ convergence for the optical flow problem in the context of total variation type models
we refer to [4, 21].



6 Variations of the energy and an algorithm

In what follows, we will consider the Euler–Lagrange equations of the above energies.
Thus, we need to compute the variations of the energy contributions with respect to the
involved unknownsu,w, ζ. The variation of an energyE in directionζ with respect
to a parameter functionz will be denoted by〈δzE, ζ〉. For the ease of implementation
we confine here to the caseq = 2. Using straightforward differentiation for sufficiently
smoothu,w, ζ and initial datau0 we obtain

〈δuEε
fid,u[u], ϑ〉 =

∫
D

λu(u− u0)ϑ dL ,

〈δuEε
fid,w[u,w], ϑ〉 =

∫
D

λw(∇(t,x)u · w)(∇(t,x)ϑ · w) dL ,

〈δwEε
fid[u,w], ψ〉 =

∫
D

λw (∇(t,x)u · w)(∇(t,x)u · ψ) dL ,

〈δuEε
reg,u[u, ζ], ϑ〉 =

∫
D

µu(ζ2 + kε)∇(t,x)u · ∇(t,x)ϑ dL ,

〈δζEε
reg,u[u, ζ], ξ〉 =

∫
D

µuζ
∣∣∇(t,x)u

∣∣2 ξ dL ,

〈δwEε
reg,w[w, ζ], ψ〉 =

∫
D

µwPδ[ζ]∇(t,x)w : ∇(t,x)ψ dL ,

〈δζEε
phase[ζ], ξ〉 =

∫
D

2νε∇(t,x)ζ · ∇(t,x)ξ dL+
∫

D

ν

2ε
(ζ − 1)ξ dL ,

(15)

for scalar test functionsξ, ϑ and velocities type test functionsψ with the structureψ =
(0, π). Here, we use the notationA : B := tr(BTA). Now, summing up the different
terms as in (12) and integrating by parts we end up with the following system of PDEs

−div(t,x)

(
µu

λu
(ζ2+kε)∇(t,x)u+

λw

λu
w(∇(t,x)u·w)

)
+u = u0 (16)

−ε∆(t,x)ζ +
(

1
4ε

+
µu

2ν

∣∣∇(t,x)u
∣∣2) ζ =

1
4ε

(17)

−µw

λw
div(t,x)

(
Pδ[ζ]∇(t,x)v

)
+ (∇(t,x)u · v)∇xu = 0 (18)

as the Euler–Lagrange equations characterizing the necessary conditions for a solution
(u,w, ζ) of the above stated phase field approach. Let us emphasize, that the full Euler–
Lagrange equations, characterizing a global minimizer of the energy would in addition
involve variations ofEreg,w with respect toζ.

The last equation (18) is degenerate in directions tangential to edges ofu, because
the optical flow constraint acts only in directions of the image gradient. To remedy this
degeneracy we consider a gradient descent of (18)

∂sv −
µw

λw
div(t,x)

(
Pδ[ζ]∇(t,x)v

)
+ (∇(t,x)u · w)∇xu = 0. (19)

Consequently the matrices resulting from a discretization are well conditioned and the
corersponding systems can be solved easily (see Section 7).



Inspired by Ambrosio and Tortorelli, we propose the following iterative algorithm
for the solution of the phase field problem withq = 2:

Step 0. Initialize u = u0, ζ ≡ 1, andw ≡ (1, 0) .
Step 1. Solve (16) for fixedw, ζ .
Step 2. Solve (17) for fixedu, w.
Step 3. Compute one step of the gradient descent (19) for fixedu, ζ .
Step 4. Return to Step 1.

Steps 1 and 2 of the algorithm consist of a consecutive solution of linear partial dif-
ferential equations. We consider in Step 3 a gradient descent in particular because for
Neumann boundary conditions (which we actually consider in the application) the Eu-
ler Lagrange equation inw is not guaranteed to be coercive inW 1,q. Indeed, the optical
flow termsw · ∇(t,x)u represents a pointwise rank–1 condition and a priori it is not
known that ”sufficiently many” of these conditions, in the sense of the Lebesgue mea-
sure, are assembled in the image while integrating this term. Let us note that we use
a time step control for Step 3, i.e. the gradient descent. Alternatively we might iterate
first Step 1 and 2 until convergence and then in an other iteration we would consider
the identification of the motion fieldw. Even though, this second variation seems to be
closer to our definition of solutions of the phase field problem, the above algorithm con-
verges to the same solution in the applications we have considered. Our algorithm can
be seen as a diagonal scheme, where the iteration of Steps 1/2 and the gradient descent
iteration in Step 3 are intertwined.

7 Finite Element Discretization

We proceed similarly to the Finite Element method proposed by Bourdin and Cham-
bolle [6, 7] for the phase field approximation of the Mumford–Shah functional. To solve
the above system of PDEs we suppose[0, T ] × Ω to be overlaid by a regular hexahe-
dral grid. In the following, the spatial and temporal grid width are denoted byh andτ
respectively. Hence, image frames are at a distance ofτ and pixels of each frame are
placed on a regular mesh with grid sizeh.

On this hexahedral grid we consider the space of piecewise trilinear continuous
functionsV and ask for discrete functionsU,Z ∈ V andV ∈ V2, such that discrete
and weak counterparts of the Euler Lagrange equations (16), (17) and (18) are fulfilled.
This leads to the solution of systems of linear equations for the vectors of the nodal val-
ues of the unknownsU,Z, V . We refer to the appendix for a detailed description of the
matrices and the resulting systems of equations. A careful implementation is required
to ensure an efficient method. For a time-space volume ofK time steps and images of
N ×M pixels, the finite element matrices forU andZ haveN M K C entries, where
C = 27 is the number of nonzero entries per row, equal to the number of couplings of
a node. The finite element matrix forV has four times more elements, asV is a two-
dimensional vector. Using an efficient custom-designed compressed row sparse matrix
storage, we can treat datasets of up toK = 10 frames ofN = 500,M = 320 pixels
in less than 1GB memory. The linear systems of equations are solved applying a classi-
cal conjugate gradient method. For the pedestrian sequence (Fig. 5), one such iteration



takes 47 seconds on a Pentium IV PC at 1.8 GHz running Linux. The complete method
converges after 10-15 such iterations. To treat large video sequences, we typically con-
sider a window ofK = 6 frames, to avoid boundary effects, and then shift this window
successively in time.

In Figure 7 we have depicted the progression of the various components of the
energyEε

global for the taxi sequence shown in Figure 6. The rapid decay of the global
energy in the first steps of the algorithm is clearly visible. While the image fidelityEε

fid

and its regularityEε
reg,u decay, the other parts of the energy increase. Obviously this is

the case, because we are starting with constant initial valuesζ = 0 andw = (1, 0).

8 Results and Discussion

We present here several results of the proposed method for two dimensional image
sequences. In the considered examples, the parameter settingε = h/4, µu = h−2,
µw = λu = 1, λw = 105h−2 andkε = ε, δ = ε has proven to give good results. We first
consider a simple example of a white disk moving with constant speedv = (1, 1) on a
vaguely textured, low-contrast, dark background (Fig. 1). Let us first consider the top
row in Fig. 1 which corresponds to the energy formulation without the projection com-
ponent. A limited amount of smoothing results from the regularization energyEε

reg,u

(Fig. 1(a)), which is desirable to ensure robustness in the resulting optical flow term
∇(t,x)u · w and removes noisy artifacts in real-world videos, e.g. Fig. 5 and Fig. 8. The
phase field clearly captures the moving object’s contour. The optical flow is depicted in
Fig. 1(c) by color coding the vector directions as shown by the lower-right color wheel.
Clearly, the method is able to extract the uniform motion of the disc’s boundary, which
has a high image contrast. The optical flow information, available only on the motion
edges (black in Fig. 1(b)), is propagated only to a limited extent into the information-
less area inside the moving disk. Indeed, we notice that the model with the standard
regularity term forw (10) is not able to diffuse the optical flow information, concen-
trated on the motion edges, in order to completely and uniformly fill in the moving
circle.

In the bottom row of Fig. 1, the same example is shown, this time run with the
energy formulation including the projection term. We now clearly see a perfect recon-
struction of the optical flow (Fig. 1 c bottom row) also inside the non-textured moving
disc.

In the next example we revisit this simple image sequence of the moving circle.
This time we have added noise to the sequence. At the same time we have completely
destroyed the information of one frame of the sequence (Fig. 2). In Figure 2 we show
the results for frames3, and9 − 11 where frame10 has been completely destroyed.
From the images we see that the phase-field detects the missing circle in the destroyed
frame as a temporal edge surface in the sequence. Indeed theζ drops down to zero in the
temporal vicinity of the destroyed frame. This is still visible in the previous and the next
timestep, shown in the second and third row. But it does not hamper the restoration of
the correct optical flow field shown in the fourth column. This is due to the anisotropic
smoothing of information from the surrounding frames into the destroyed frame. For
this example we have chosenε = 0.4h.



a b c

Fig. 1. One frame of the test sequence (left) and corresponding smoothed images (a), phase field
(c) and optical flow (color coded) (c). Top row: Energy formulation without projection. Bottom
row: energy formulation with projection.

Another synthetic example is shown in Fig. 3. This example is from the publicly
available dataset collection at [17]. Here, a textured sphere spins on a textured back-
ground (Fig. 3(a)). Again, the method is able to clearly segment the moving object
from the background, even though the object doesn’t change position. We used a phase
field parameterε = 0.15h. The extracted optical flow clearly shows the spinning motion
(Fig. 3(d)) and the discontinuous motion field.

A first example on real video data is shown in Figure 8. The video shows a tennis
player whose body moves to the right while the hand goes down as he strikes the ball.
This motion is well captured in the flow field (Fig. 8 c).

Furthermore, we consider a complex, higher resolution video sequence, taken un-
der outdoor conditions by a monochrome video camera. The sequence shows a group
of walking pedestrians (Fig. 5 (top)). The human silhouettes are well extracted and
captured by the phase field (Fig. 5(middle)). We do not visualize a vector plot of the
optical flow, as it is hard to interpret visually at the video sequence resolution of 640 by
480 pixels. However, the color-coded optical flow plot (Fig. 5(bottom)) shows how the
method is able to extract the moving limbs of the pedestrians. The overall red and blue
color corresponds to the walking directions of the pedestrians. The estimated motion is
smooth inside the areas of the individual pedestrians and not smeared across the motion
boundaries. In addition, the algorithm nicely segments the different moving persons.
The cluttered background poses no big problem to the segmentation, nor are the edges
of occluding and overlapping pedestrians, who are moving at almost the same speed.

Finally, let us note on a limitation of the approach we consider here. Let us con-
sider the well-known Hamburg taxi video sequence. The sequence is available from
csd.uwo.ca under the directorypub/vision . Figure 6 shows the taxi sequence
processed both with the classical AT energy component (top row) and with our pro-



a b c d

Fig. 2.Noisy test sequence: From top to bottom frames3 and9−11 are shown. (a) original image
sequence, (b) smoothed images, (c) phase field, (d) estimated motion (color coded)

a b c d

Fig. 3.Rotating sphere: smoothed image (a), phase field (b), optical flow (color coded) (c), optical
flow (vector plot, color coded magnitude) (d)



a b c

Fig. 4.Table tennis sequence: smoothed image (a), phase field (b) and optical flow (c)

jection operator (bottom row). The progression of the various energy contributions is
shown in Figure 7. Here we start withu = 0, i.e. a black image, and a zero veloc-
ity field v = 0. In this sequence, cars of different image contrasts are moving. When
the projection operatorPδ in our model is used (bottom row), only the central, high-
contrast moving car is captured. When the operator is not used (top row), motion edges
corresponding to low-contrast image edges also determine the phase field, hence the
other oppositely moving cars in the bottom part of the image are captured as well and
the corresponding optical flow is extracted. For all the cars in this example, the motion
field is determined largely by the low-contrast shading and not only by high-contrast
image edges, as it was the case in the synthetic example in Figure 1.

A Algorithmic building blocks

In this appendix we would like to focus on the discrete version of the Euler–Lagrange
equations resulting from (12). Let us denote by{Ψi}i=1,...,N the usual nodal basis
of V (cf. Section 7). The corresponding basis of the vector valued discrete functions
Ψ ∈ V2 is given by{Ψie1}i ∪ {Ψie2}i wheree1,2 are the standard basis vectors ofR2:
e1 = (1, 0), e2 = (0, 1). For any discrete functionQ ∈ V we denote byQ the cor-
responding nodal vector. For discrete vector valued functions we order the coefficients
such that thee1 coefficients are followed by thee2 coefficients. Hence, the systems of
discrete equations to be solved in the above algorithm are given in matrix vector notion
as follows. We ask for solution vectorsU,Z ∈ RN andV ∈ R2N , such that denoting
W = (1, V ) we have

(Lu[W, ζ] + M)U = Ru, (20)

(Lζ + Mζ [U ])Z = Rζ , (21)

(Lw[Z] + Mw[U ])V = Rw. (22)

These systems contains the matricesLu[W,Z],Lζ ,M,Mζ [U ] ∈ RN×N ,
Lw[Z],Mw[U ] ∈ R2N×2N , Ru, Rζ ∈ Rn and finallyRw ∈ R2N , which can easily be



Fig. 5. Pedestrian video: frames from original sequence (top); phase field (middle); optical flow,
color coded (bottom)



a b c

Fig. 6. The taxi sequence. Original image (left). Flow extraction without the projection operator
(top row) and with projection (bottom row). Smoothed image (a), phase field (b) and optical flow,
color coded (c)

derived from the variations of the energy (13). We have

(Lu[W,Z])ij =
∫
D

µu

λu
(Z2 + kε)∇(t,x)Ψi ·∇(t,x)Ψj +

λw

λu
(∇(t,x)Ψi ·W )(∇(t,x)Ψj ·W ) dL,

Mij =
∫
D

ΨiΨj dL,

Ru = MIhu0,

as well as

(Lζ)ij = ε

∫
D

∇(t,x)Ψi · ∇(t,x)Ψj dL,

(Mζ [U ])ij =
∫
D

(
µu

2ν

∣∣∇(t,x)U
∣∣2 +

1
4ε

)
ΨiΨj dL,

(Rζ)i =
1
4ε

∫
D

Ψi dL,

and

(Lw[Z])ikjl =
∫
D

µwPδ[Z]∇(t,x)Ψi · ∇(t,x)Ψjδkl dL,

(Mw[U ])ikjl =
∫
D

λw∂xk
U∂xl

U ΨiΨj dL,

(Rw)ik = −
∫
D

λw∂tU∂xk
UΨi dL.



 0.20

 0.25

 0.30

 0.35

 0.40

 0.45

 0.50

 4  6  8  10  12  14  16  18  20  22
Number of Iterations

Im
ag

e 
Fi

de
lit

y 
E f
idε

(a) image fidelityEε
fid,u

 0.0394

 0.0396

 0.0398

 0.0400

 0.0402

 0.0404

 0.0406

 0.0408

 0.0410

 4  6  8  10  12  14  16  18  20  22

Fl
ow

 F
id

el
ity

 E
fid
,w

ε

Number of Iterations

(b) flow fidelity Eε
fid,w

 0.335

 0.340

 0.345

 0.350

 0.355

 0.360

 0.365

 0.370

 0.375

 0.380

 4  6  8  10  12  14  16  18  20  22

Im
ag

e 
R

eg
ul

ar
ity

 E
re
g,
u

ε

Number of Iterations

(c) image regularityEε
reg,u

 0.0270

 0.0275

 0.0280

 0.0285

 0.0290

 0.0295

 0.0300

 0.0305

 0.0310

 0.0315

 4  6  8  10  12  14  16  18  20  22

Fl
ow

 R
eg

ul
ar

ity
 E
re
g,
w

ε

Number of Iterations

(d) flow regularityEε
reg,w

 1.86

 1.88

 1.90

 1.92

 1.94

 1.96

 1.98

 2.00

 2.02

 4  6  8  10  12  14  16  18  20  22

P
ha

se
 F

ie
ld

 E
ne

rg
y 
E p
ha
se

ε

Number of Iterations

(e) phase field energyEε
phase

 2.67

 2.68

 2.69

 2.70

 2.71

 2.72

 2.73

 2.74

 2.75

 2.76

 4  6  8  10  12  14  16  18  20  22

G
lo

ba
l E

ne
rg

y 
E g
lo
ba
l

ε

Number of Iterations

(f) global energyEε
global

Fig. 7. For the example shown in Figure 6 (bottom row) we show the progression of the various
energy contributions during the solution iteration. The decay of the global energy is shown in the
lower right plot (f).



Here,δkl is the usual Kronecker symbol, which is1 if k = l and otherwise0. Let us
remark that the integrands are piecewise polynomials of degree≤ 2. We use a suitable
quadrature rule on the heaxhedra, which ensures exact integration.
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B Variant I

Eε
reg,w[u,w] =

∫
D

µw

q
(ζ2 + k(ε))

∣∣∇(t,x)w
∣∣q dL ,

〈δwEε
reg,w[u,w], ψ〉 =

∫
D

µw(ζ2 + k(ε))∇(t,x)w : ∇ψ , (23)

(24)

for velocitiesψ = (0, π).
Phase field approach.For given noisy image sequenceu0, find a regularized image
sequenceu, a motion fieldw = (1, v), and a phase fieldζ from corresponding sets of
admissible functions, such that for fixedw, u andζ minimizeEε[u,w, ζ].

Euler–Lagrange system:

−div
(
µu

λu
(ζ2 + kε)∇(t,x)u+

λw

λu
w(∇(t,x)u · w)

)
+ u = u0 (25)

−ε∆(t,x)ζ +
(

1
4ε

+
µu

2ν

∣∣∇(t,x)u
∣∣2 +

µw

2ν

∣∣∇(t,x)w
∣∣2) ζ =

1
4ε

(26)

−div
(
µw(ζ2 + k(ε))∇(t,x)w

)
+ λw(∇xu · v)∇xu = −λw∂tu∇xu (27)

as the Euler–Lagrange equations characterizing the necessary conditions for a solu-
tion (u,w, ζ) of the above stated phase field approach. Let us emphasize, that the full
Euler–Lagrange equations, characterizing a global minimizer of the energy in addition
would involve variations ofEreg,w with respect tou.


