
Machine Learning—Basic
UnsupervisedMethods (Cluster
Analysis Methods, t-SNE)

M.Espadoto, S. B.Martins,W.Branderhorst and A.Telea

Abstract

Understanding how trained deep neural net-
works achieve their inferred results is challeng-
ing but important for relating how patterns in
the input data affect other patterns in the output
results. We present a visual analytics approach
to this problem that consists of two mappings.
The so-called forward mapping shows the rel-
ative impact of user-selected input patterns to
all elements of the output. The backward map-
ping shows the relative impact of all input
elements to user-selected patterns in the out-
put. Our approach is generically applicable to
any regressor mapping between two multidi-
mensional real-valued spaces (input to output),

M. Espadoto (B)
Institute of Mathematics and Statistics, University of São
Paulo, Sao Paulo, Brazil
e-mail: mespadot@ime.usp.br

S. B. Martins
Federal Institute of São Paulo, Sao Paulo, Brazil
e-mail: samuel.martins@ifsp.edu.br

W. Branderhorst
University Medical Center Utrecht, Utrecht, The
Netherlands
e-mail: w.j.branderhorst@umcutrecht.nl

A. Telea
Department of Information and Computing Science,
Utrecht University, Utrecht, The Netherlands
e-mail: a.c.telea@uu.nl

is simple to implement, and requires no spe-
cific knowledge of the regressor’s internals.We
demonstrate our method for two applications
using image data—a MRI T1-to-T2 generator
and a MRI-to-pseudo-CT generator.

Keywords

Explainable AI · Sensitivity analysis ·
Medical image synthesis · Image-to-image
transformation · Deep learning regression ·
Visual analytics

1 Introduction

In recent years, machine learning and in particular
deep learning methods have been used in increas-
ingly many applications. However, understand-
ing how such trained models work is challenging,
especially for the case of deep learning architec-
tures [1, 2]. In certain domains, such as medical
science, it is particularly important to gain such
understanding, both for increasing the confidence
and interpretability of the inferred results and also
for increasing their acceptance by a wider public
[3, 4].

Visual analytics (VA) tools and techniques
have emerged as one of the approaches of choice
in the field of Explainable Artificial Intelligence
(XAI) [5–7]. However, while such methods have

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. W. Asselbergs et al. (eds.), Clinical Applications of Artificial Intelligence in Real-World Data,
https://doi.org/10.1007/978-3-031-36678-9_9

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36678-9_9&domain=pdf
mailto:mespadot@ime.usp.br
mailto:samuel.martins@ifsp.edu.br
mailto:w.j.branderhorst@umcutrecht.nl
mailto:a.c.telea@uu.nl
https://doi.org/10.1007/978-3-031-36678-9_9


142 M. Espadoto et al.

proven to be effective in improving training and
explaining how deep learning architectures work,
they have addressed comparatively far less the
task of explaining how trained models achieve
their inference. Moreover, such VA tools have
mainly focused on explaining classifiers rather
than the more general regressor models.

In this paper, we aim to fill the above gaps
by proposing Instance-Based Inference Explain-
ers (IBIX). In contrast to other VA techniques,
which aim to explain how a trained model treats
an entire dataset, our method focuses on explain-
ing individual instances in such a dataset, and even
user-selected parts of such instances, such as parts
of images. To do this, IBIX offers two operation
modes that explain (a) which parts of the inferred
result (output) aremost strongly affectedby auser-
specified part of the input; and (b) which parts of
the input most strongly affect a user-selected part
of the output. IBIX operates generically, requiring
no knowledge of the architecture, hyperparame-
ters, or training of a deep learned model, can be
applied to any n-dimensional to m-dimensional
data regressor, is simple to implement and use,
and is computationally scalable. We demonstrate
the use of IBIX for twodeep learned regressors—a
MR T1-to-T2 image synthesizer and an MRI-to-
CT image synthesizer.

The structure of this paper is as follows. Section
2 discusses related work in VA techniques for
deep learning engineering explanation and posi-
tions our contribution in this domain. Section 3
explains ourmethod. Section 4 presents two appli-
cations of our method related to medical image
synthesis. Section 5 discusses our contributions.
Finally, Sect. 6 concludes the paper.

2 RelatedWork

Consider a dataset D = {(x 1, y1), . . . , (x n, yn)},
where x i ∈ Rn is a sample of some high-
dimensional data, e.g., an image, text document,
or row in a data table; and yi ∈ Rm is a value
associated with x i . In supervised machine learn-
ing, one typically wants to construct a function
f : Rn → Rm so that, for a training or test set
D, f (x i ) ≃yi ,∀(x i , yi ) ∈ D. If we replace Rm

by a set C of categorical labels, f becomes a
classifier. In the general case, when the codomain
f is a subset of Rm , we speak of a regressor.
Deep learning (DL) is one of the (supervised)

methods aiming to build models f following
the above pattern. While deep neural networks
(DNNs) has been advancing the state-of-the-art in
a variety of domains [8–10], their nature of being
black-boxes results in a lack of interpretability
concerning their learned representations and pre-
dictions (outputs) [11]. While our methodology
for explaining inference, next presented in Sect. 3,
can be applied equally well to any regressor f ,
we limit its discussion in this paper—and thus
the discussion of related work next—to DL
applications.

Several visual analytics (VA) solutions have
been proposed [11–15] to help practitioners
understand, interpret, and improve, the working
of such a model. Following a recent survey on
VA methods for deep learning model engineering
[6], visual explanations aim to explain one
of the following parts of the common deep
learning pipeline: training, model, or inference.
We review methods in all these classes next,
observing already that most such methods have
been designed to help with classification models
[12, 14]. Using VA tools to interpret deep gen-
erative models—the proposal of this paper—has
attracted only limited attention.

2.1 Explaining Training

Using visualization during the training process
aims to explore the training data and their learned
representations, to answer questions such as
which classes did train suboptimally, how are
classes separable in the learned feature space,
and which are hard-to-process observations. We
also note that most VA work we are aware of for
explaining training focuses on classifier models.

A common visual approach to investigate a
dataset is to project its learned deep representa-
tions (feature vectors) onto two dimensions [12,
15] by a dimensionality reduction technique (e.g.,
t-SNE [16]). One can then plot all projected data
instances as points in a scatter plot and assign



Machine Learning—Basic Unsupervised Methods… 143

a different color for each class [17–19]. This
approach is also used to explain the trained model
(Sect. 2.2).

Rauber et al. [17] show that the visual sepa-
rability of classes in a t-SNE projection is highly
correlated with the ability of a classifier to sep-
arate classes in the original feature space. Con-
sequently, the visual inspection supports under-
standing poor predictions in two ways: (i) a pair
of classes grouped in the 2D space can indicate
class imbalance or the need for more data; and (ii)
all classes mixed can indicate that the learned rep-
resentations are not good enough for the addressed
problem. In this sense, somemethods also provide
visual tools to assign labels to new data examples
[19–21], especially in applications in which high-
quality annotated data is absent, such as medical
image analysis.

Some methods investigate the examples
that the model is most uncertain or unsure about
[20, 22, 23].When analyzing these so-called hard
examples, one can have insights on the model’s
inference (e.g., misprediction). For example, a
hard example may have been incorrectly labeled,
or it may have different patterns than others in
its class, or it may be an outlier. To improve the
model’s accuracy, one can then retrain the model,
for example, by assigning a different weight for
each training example [24].

One common approach to visually investigate
hard examples is to retrieve the original data
(e.g., images) associated to specific projected
data points in a 2D scatter plot [12, 15, 18, 25].
The user may then visually inspect the original
data of points from different classes which are
grouped in the projected space. On the other hand,
active learning (AL) strategies automatically
search for hard examples by selecting those near
the model’s decision boundaries and asking the
user for feedback (e.g., labels) to improve the
learning model [22, 23, 26]. Bernard et al. [20]
proposes a visual-interactive labeling (VIAL)
that unifies both approaches to make labeling
more efficient. VIAL uses AL-based methods
to leverage visual interactive interfaces for the
analysis, for example, presenting hard examples
to the user.

2.2 Explaining theModel

This class of visual methods enables users to
explore intrinsic characteristics of the learned
model such as its learned parameters [13, 27, 28]
and architecture [29–31]. Visualizing such infor-
mation helps model developers troubleshoot and
further improve their models [11, 13, 29, 32].
Explaining the model consists of answering
questions such as: How do the weight patterns
correlate with specific architecture layers? How
do activations (for each class) look? What types
of latent features are learned by specific model
layers?

VA solutions visualize model architectures
commonly using a computational graph in which
nodes represent neurons and weighted edges
represent connections between a pair of neurons
[29–31, 33]. One can also encode the weight
magnitude using color or link thickness [12].
This design is taken by TensorBoard [31], a
popular VA tool that visualizes learning curves
during training and displays images generated by
the trained model. Wongsuphasawat et al. [30]
present a design study of the network architec-
ture visualization from TensorBoard. Drawing
computational graphs does not scale well for
production-size architectures having millions
of links. To address this, Liu et al. [29] use a
bi-clustering-based edge bundling technique to
reduce visual clutter caused by too many links.

Visualizing the learned filters (weights) allows
investigating what a deep model has learned for a
given problem—e.g., which filters are responsible
for separating a class from others [27, 33]. SUM-
MIT [34] analyzes activation patterns by visual-
izing the interaction between the learned features
and the model’s predictions.

Other methods aim to investigate how neuron
activations respond to particular classes through-
out the network [13, 33, 35]. ActiVis [36] repre-
sents the model architecture as a graph (nodes are
operations) from which users can visualize acti-
vation patterns at each layer and for each class
by an interactive table view (columns are neu-
rons and rows are activation instances). The tool
displays also a 2D projection of instance activa-



144 M. Espadoto et al.

tions colored according to their classes. Rauber et
al. [13] also project activations to investigate the
relationships between neurons. Other techniques
map neuron activations to the input pixel space
to display patterns recognized by the deep model
[33, 35, 37].

Several techniques aim to explain what is the
role of each network layer in the model infer-
ence [14]. Using such techniques, one could find
that, in deep learning images, lower layers cre-
ate representations of simple features (e.g., edges)
while higher layers contain specific information
about classes [38–40]. Other VA tools support
finding stable layers—that learned a stable set of
patterns—and layers that do not contribute to solv-
ing a given classification problem [28].

A few VA tools have aimed to explain gen-
erative adversarial networks (GANs) by explor-
ing their internal structures. Gan Lab [41] is an
interactive tool designed for non-experts to learn
and experiment with GAN models. DGMTracker
[42] and GANViz [43] aim to explain the training
dynamics of GANs, e.g., by visualizing their neu-
ral activations, to help developers better train the
models.

2.3 Explaining the Inference

The third and final class of VA methods, to which
our proposal also belongs, aims to explain how
outputs f (x ) of a trained model f depend on the
input instances x .

Saliency maps [27, 39, 44–47] are likely the
most used and best known visual tool for infer-
ence explanation. For models whose inputs x are
images, they mark each pixel p ∈ x with a value
indicating p’s contribution, or influence, to the
decision f (x ).

Also for image-processing networks, Zeiler
and Fergus [27] used deconvolutional networks,
as proposed in [35], to project learned feature
activations to the input image space. This allows
users to debug the deep model by visualizing
the learned features from specific layers, with
multiple variations of the technique being pro-
posed afterwards [12]. Zhou et al. [44] propose
Class Activation Mapping (CAM), a technique

that shows the discriminative active region in
an image for a given label. Selvaraju et al. [45]
presented its relaxed generalization, Grad-CAM,
which uses label-specific gradients to calculate the
importance of spatial locations in convolutional
layers.

All methods so far presented generate visual
explanations based on components of the learned
DNNs, such as their architectures and activations.
Despite presenting impressive results for many
problems [12], these visual methods are designed
for a restricted class of DNNs. In contrast, a dif-
ferent approach, referred as reverse engineering
[48], only uses the input x and inference f (x )
of the deep model without exploiting any model
internals. For a learned deep model, this approach
applies a random perturbation to the input and
compares its inference with the unperturbed one
[48]. One can then create visual explanations, e.g.,
a heatmap, from this comparison. Note that this
approach is independent of the kind of DNN.

Bazzani et al. [49] use the reverse engineer-
ing approach for weakly supervised object detec-
tion. Given a pre-trained deep model designed
for image classification, their method analyzes the
degeneration in classification scores when artifi-
cially perturbing different regions of the image by
masking themout. Themasked regions that signif-
icantly drop the classification scores are consid-
ered as including the target objects. Other object
detection methods use a similar strategy [50, 51].

Our proposed framework follows the reverse
engineering approach when creating a heatmap
fromcomparing the original inference and the per-
turbed one. This heatmap shows which parts of
the inference—e.g., a reconstructed image by a
generative neural network—have been influenced
by input variables selected by the user and vice
versa. This allows for a fine-grained study of how
specific sets of output variables are affected by
perturbations to input variables.

A distinctive attribute of our framework is that
it enables the study of black-box models having
continuous multivariate inputs and outputs, such
as autoencoders and GANs. This is in stark con-
trast with most existing techniques described ear-
lier, that either seek to explain single-output clas-
sification models, or require the use of internal



Machine Learning—Basic Unsupervised Methods… 145

structures of the network to derive an explanation
of the model. This makes our framework particu-
larly suitable for understandingmodels created for
image transformation, for example, but not limited
to those. Our framework can work with different
types of models, regardless of their internal struc-
ture, as long as they have n inputs and m outputs,
both real-valued, as detailed next.

3 IBIXMethod

3.1 Definitions

Let x ∈ Rn be an input sample, such as a n-
dimensional feature vector or a grayscale image
having n pixels. Let f : Rn → Rm be the learned
model by a deep neural network. Note that the out-
put space (and its dimensionality m) need not be
identical to the input space (and its dimensionality
n). We next denote x = (x1, . . . , xn), i.e., xi ∈ R
is the i th component of the n-dimensional vec-
tor x . Similarly, if f (x ) = (y1, . . . , ym), then let
fi : Rn → R, fi (x ) = yi , be the i th component
of the function f . Note that fi is a real-valued
function with n variables.

Let M x be a region in x , i.e., a subset of compo-
nents of x that we are next interested to analyze.
For example, if x is a 2D image, then M x is a
mask that we draw on the image to select some
of its pixels. Formally, M x can be modeled as an
indicator with ones for the selected variables (pix-
els) xi and zero elsewhere. That is, M x ∈ {0, 1}n .
Hence, M = (M x

1 , . . . M x
n ) so that M x

i = 1 if vari-
able xi is selected and zero otherwise. Similarly,
for the output, let M f be a region in f (I ). Intu-
itively, M f allows us tomark components of f (x )
that we want to ‘trace back’ to the input x . Just as
M x , M f ∈ {0, 1}m canbemodeled as an indicator.
That is, M f = (M f

1 , . . . M f
m ) so that M f

i is one
if output component fi (x ) is selected for analysis
and zero otherwise.

3.2 ForwardMapping

As outlined in Sect. 1, the first goal of out IBIX
method is to visually explain how much specific

parts of the input x—more precisely, thosemarked
by the user in a mask M x—affect the output f (x ).
We call this a forward mapping and denote it
as F(M x ). Formally put, F(M x ) = (F1, . . . , Fm)

with Fj ∈ [0, 1], 1 ≤ j ≤ m. That is, F(M x ) is
a weight vector, with one value Fj per output
dimension.

We compute F(M x ) by perturbing, or jittering,
the marked part M x of the input sample x , pass-
ing the perturbed data through f , and seeing how
much f (x ) has changed. The intuition behind this
idea is simple: If changing the marked area of x
does not affect the inferred value f (x ), then the
respective input part can be seen as neglected by
the regressor. Conversely, if a small change to the
marked area strongly affects f (x ), then the regres-
sor has somehow learned to be very sensitive to
the respective input part. When the two above sit-
uations occur, it is the user who has to decide if
neglect or high-sensitivity are desirable behavior
or not for the regressor, depending on the actual
location of M x and variation of F(M x ).

Computing F(M x ) consists of two steps, as
follows.

Single perturbation: Consider a (small) jitter
value h ∈ R. Let !x = hM x , that is, a vector
which is zero outside the region M x and equal
to h inside M x , respectively. With it, we com-
pute f (x + !x ), i.e., the model’s response to the
input x jittered by !x , normalized by the change
size. We denote this normalized change by a vec-
tor Fh(M x ) = (Fh

1 , . . . , Fh
m), where

Fh
j = f j (x + !x ) − f j (x )

h
, 1 ≤ j ≤ m. (1)

If h is small, Fh
j is the sumof the components of

the forward finite-difference-approximated gradi-
ent of f j that considers only the variables selected
by M x . This is analogous to taking the derivative
of f j in the direction given by the n-dimensional
unit vector corresponding to the ones in M x , i.e.

Fh
j ≃ ∂ f j

∂ M x . (2)

As the directional derivative is linked to the gra-
dient of a function by the dot product



146 M. Espadoto et al.

∂ f j

∂ M x = ∇ f j · M x , (3)

it follows that

Fh
j ≃

∑

1≤i≤n|M x
i =1

∂ f j

∂xi
. (4)

where ∂ f j
∂xi

is the partial derivative of f j with
respect to the variable xi .

Multiscale perturbation: To eliminate the effect
of the choice of the jitter size h, we evaluate Eq. 1
for a N zero-centered, uniformly-spaced, jitters
hk = k H/N , with −N ≤ k ≤ N , where H is an
application-dependent parameter specifying the
maximum jitter, set typically to 10 to 20% of the
norm of the input signal x . The final forward map-
ping is then computed as

F(M x ) = 1
2N

∑

−N≤k≤N

Fhk (M x ), (5)

that is, the average of the responses for all pertur-
bations hk . Note that, conceptually, Eq. 5 is equiv-
alent to computing a scale-space version of the
directional derivative in Eq. 2. Intuitively, F(M x )

will be large for output components of f which
are strongly affected by changes in input variables
selected in M x , and conversely.

3.3 BackwardMapping

The second goal of our IBIX method is to
visually explain how much all variables in x
affect a part of f (x ) that is selected by some
mask M f . By analogy to the forward mapping
F(M x ) in Sect. 3.2, we call this the backward
mapping and denote it by B(M f ). Formally
put, B(M f ) = (B1, . . . , Bn) with B j ∈ [0, 1],
1 ≤ j ≤ n. That is, B(M f ) is a weight vector,
with one value B j per input variable.

Unlike F(M x ), we cannot compute B(M f )

directly since we do not have the inverse func-
tion f −1 of our deep learned model. Hence, we
proceed differently: We partition the input space
of n variables into a set of K block regions Dk ,
1 ≤ k ≤ K . Intuitively, if x is an image, the blocks

Dk can be seen as a tessellation of x into so-called
superpixels. Each block Dk acts as a region mask
M x for the input x . Next, we compute for each
block Dk the forwardmapping F(Dk) usingEq. 5.
Subsequently, we define the backward mapping
from the mask M f in the output space to block
Dk in the input space, denoted as BDk , as the frac-
tion of the integral of the forward mapping F(Bk)

that falls within M f , i.e.,

BDk =
∑

1≤i≤m|M f
i =1 F(Dk)i

∑
1≤i≤m F(Dk)i

, 1 ≤ k ≤ K .

(6)
Note that, if the blocks Dk are of unit size, i.e.,

the input space is partitioned into K = n blocks,
one per input variable xk , and we consider a single
scale h in Eq. 5, then F(Dk)i = ∂ fi

∂xk
. Then, for xk ,

we get the backward mapping expression as

Bk =
∑

1≤i≤m|M f
i =1

∂ fi

∂xk
. (7)

That is, the value of the inversemapping B at input
variable k is the sum of all partial derivatives of
f with respect to xk for all components that are
marked one in the mask M f .

The forward mapping (Eq. 4) and the back-
ward mapping (Eq. 7) have similar expressions—
both are sums of partial derivatives, the difference
being the indices that vary and the ones that are
fixed. However, evaluating the backwardmapping
is more costly, since, in Eqs. 6 and 7, we sum over
all dimensions i selected in the output-mask M f .
For each such dimension, we need to evaluate the
full forward mapping F (Eq. 6) or, if we use the
notation in Eq. 7, a partial derivative. The problem
is that a typical DL model implementation does
not let one ‘selectively’ evaluate a single output
component fi ; we need to evaluate all the m out-
put components even if some fall outside themask
M f . In contrast, for the forward mapping (Eq. 4),
we sum over all input variables marked as one in
the input mask M x . This can be done very effi-
ciently simply by changing the respective inputs
of the neural network.

Following the above, computing the backward
mapping is K times more expensive than comput-



Machine Learning—Basic Unsupervised Methods… 147

ing the forward mapping, where K is the number
of blocks used to represent the input space. Using
fewer blocks (low K ) accelerates computing this
mapping but creates a low resolution understand-
ing of how input variables affect the output region
M f —all variables in a block are seen as ‘act-
ing together’ to influence the output. Conversely,
using more blocks is slower, but gives a fine-
grained understanding of how output dimensions
in M f depend on input variables—in the limit, for
K = n, we see how how every single variable of x
contributes to outputs in M f . We discuss efficient
ways to trade off computational speed vs insight
resolution further in Sect. 4.1.2.

4 Explainer Applications

Our IBIX framework (Sect. 3) can be used to
explain any Rn to Rm regressor, whether imple-
mented by deep learning or not. The required
adaptations for this are (1) defining ways to select
the regions of interest M x and M f ; (2) defining
the jitter range H (Sect. 3.2); and (3) suitably visu-
alizing the direct and inverse mappings F and B.
We next illustrate IBIX on different deep learning
applications: two image-to-image regressors for
medical data (Sects. 4.1 and 4.2).

4.1 Explaining Autoencoders

We considered the generation of MR-T2 brain
images (Fig. 1b) from MR-T1 brain images
(Fig. 1a) using convolutional autoencoders
(CAEs) [52]. This use-case is of interest when
one wants to simulate the effect of a T2 scan but
only avails of T1 scans as input data.

Figure 1a presents the CAE architecture we
used, having three 2D convolutional layers with
16, 8, and 8 filters of 3 × 3weights each, followed
by ReLU activation [53] and 2D max-pooling
in the encoder. The decoder contains the corre-
sponding reconstruction operations. The model is
trained to minimize mean squared error (MSE)
between the generated and target T2 images using
the nadam gradient optimizer [54].

We trained the CAE using the CamCan public
dataset [55], which has 653 pairs of 3D MR-T1
brain images of 3 Tesla from healthy men and
women between 18 and 88 years. For each 3D
MR-T1 image, CamCan also has a corresponding
3D MR-T2 image. To our knowledge, CamCan
is the largest public dataset with 3D images of
healthy subjects acquired from different scanners.

We applied typical MRI noise reduction and
bias field correction to all MR-T1 and MR-T2
images.Next,we registered the images to the same
MNI template [56]. Since the considered CAE
only supports 2D images, we extracted the cen-
tral 2D axial slice from all 3D images to build
our final training set (Fig. 1b, c). Each training
instance is therefore an 8-bit grayscale 2D image:
pixels’ intensities within [0, 255]. Training the
CAE reached mean squared errors around 0.0052
in the training set after 500 epochs with a batch
size of 32. The trained model and preprocessed
data are available online for replication purposes
(https://github.com/hisamuka/IBIX-CAE).

4.1.1 Visual Explanation of CAE
We next used IBIX to explain the CAE MR-
T1 to MR-T2 autoencoder. In this case, both
inputs and outputs of the CAE function f are
grayscale images, both of m = n = 232 × 200
pixels. Hence, the masks M x and M f are binary
images of the same size. To view and manipu-
late such images, we designed the user interface
(Fig. 2)which is based on the napari image viewer
[57]. The tool allows users to select an input MR-
T1 image x , run it through the trained CAE f ,
display the output MR-T2 f (x ), and, most impor-
tantly, paint regions M x (in the input), respectively
M f (in the output), and next compute and visual-
ize the forward and backward mappings F and B
as heatmaps.

Figure 3 shows how IBIX works for the CAE
problem. Images (a1) and (a2) show an MR-T1
input x and its CAE-synthesized MR-T2 output
f (x ), respectively. In (b1), the user selected a sin-
gle pixel region M x in the input (marked red, see
also inset). Image (b2) shows the forward map-
ping F of this single pixel using a heat colormap:
Warm regions are output pixels which strongly
changeupon small changes of the (red) input pixel.

https://github.com/hisamuka/IBIX-CAE


148 M. Espadoto et al.

a)

b) c) d)

Fig. 1 a Architecture of the MR-T1 to MR-T2 convolutional autoencoder. The autoencoder is trained to generate the
target MR-T2 brain image (b) from the input MR-T1 brain image (a). Output generated MR-T2 image shown in (c). See
Sect. 4.1

Fig. 2 User interface for
the IBIX explainer with
user-marked region in red



Machine Learning—Basic Unsupervised Methods… 149

input x

output f(x)

input x

output f(x)

input x

output f(x)

output f(x)

input x

output f(x)

input x

forward F forward F backward B backward B

a1

a2

b1

b2

c1

c2

d1

d2

e1

e2

M x M x M f M f

Fig.3 Images (a1) and (a2) show an MR-T1 input and its CAE-synthesized MR-T2 output image, respectively. Images
(b–c) and (d–e) show next the CAE forward, respectively backward, mappings (Sect. 4.1.1)

We see that these are close to the location of
the red input—which is desired, since the MR-
T1 to MR-T2 mapping should be spatially coher-
ent. That is, a region x in the MR-T1 input is
supposed to influence only close regions in the
MR-T2 output. However, the forward mapping F
(image b2) shows a non-linear ‘response’ shape to
the single-selected input pixel in (b1) consisting
of roughly six closely-packed peaks. This indi-
cates some potential problems of the CAE train-
ing. Image (c1) shows amore complex input selec-
tion M x consisting of the left ventricle. Image (c2)
shows that this input region affects mostly left-
ventricle pixels in the output, albeit with a lim-
ited ‘leak’ to the right ventricle. This is definitely
desirable, since large-scale structures such as the
ventricle are not supposed to appear fundamen-
tally differently in MR-T1 and MR-T2 images.
For both forward mapping examples, we consid-
ered 100 zero-centered, uniformly-spaced, jitters
within [−100, 100]; that is, N = H = 100 for
multiscale perturbation (Sect. 3.2).

Image (d1) shows the backward mapping:
Here, we selected a single pixel (red, M f )
in the MR-T2 output. Image (d2) shows the
regions in the corresponding MR-T1 input, as
defined by superpixels, that strongly influenced
the selected output region. As desired, these
regions are located close to and around the

selected pixel. Image (e1) extends this test by
selecting a larger output region. In image (e2)
we see that the backward mapping highlights
input pixels close to and around the selected
structure, which is desirable. In both examples,
we used the popular SLIC algorithm [58] for
superpixel segmentation due to its robustness and
simplicity. We extracted K = 500 superpixels
for evaluation with compactness value of 0.1.
These numbers guarantee reasonable small-scale
superpixels—which are desirable for a fine-
grained understanding (Sect. 3.3)—but demands
considerable processing times. We considered the
same 100 jitters used for forwarding mapping.

Summarizing the use of IBIX for this exam-
ple: Ideally, we want both the forward (F) and
backward (B) mappings to be localized, i.e., when
selecting a region in one of the (input or output)
spaces, we see that a similar-location-and-shape
region is responsible for that. If not, the CAE
would have learned to ‘couple’ anatomically unre-
lated regions, which is clearly undesirable. Still,
images (b1-b2) show that the CAE exhibits a cer-
tain amount of diffusion—small-scale structures
can have a relatively strong effect at a certain dis-
tance from them in the output.

We tested the speed of IBIX on anAMDRyzen
7 3700X 8-Core PC with 16 GB RAM with an
NVIDIA Titan XP 12 GBGPU. Performing a for-



150 M. Espadoto et al.

d)

M f

output f(x)

a) b) c) e)

coarse
superpixels mask xc

fine
superpixels

mapping
B

Fig.4 Multiscale CAE optimization. From markers (M f ) drawn on the output (a), we first perform backward mapping
on a coarse scale using just a few superpixels (b). We next locate superpixels having high B values (c) and refine the
computation by segmenting only these on a finer-scale (d). Figure (e) shows the final backward mapping

wardmapping is fast, taking about 0.33 sec regard-
less the input selection size (i.e., the number of
painted pixels in M x ). Using K = 500 superpix-
els, performing a backward mapping takes about
174 seconds, roughly 500 timesmore than forward
mapping (see also Sect. 3.3). This high processing
timemakes an interactive user experience unfeasi-
ble. When parallelizing the backward mapping—
i.e., running its K forward mappings (500 in our
case) in parallel (see Sect. 3.3)—computing is
nearly halved: 97 s. Section 4.1.2 presents another
optimization strategy to further speed up back-
ward mapping.

4.1.2 Optimizing BackwardMapping
The standard superpixel segmentation method we
use [58] allows one to control the size of superpix-
els but typically produces similar-size superpixels
for an entire image. Hence, to get a high resolu-
tion of the backwardmapping,we need to segment
the input image x in a high number of superpix-
els, e.g., K = 500, each of which is next forward-
mapped, yielding an overall slowmethod, as men-
tioned in Sect. 4.1.1. We observe that several of
these superpixels are far from the markers M f

or even out of the brain. We also observe that, in
general, the backward mapping is localized, i.e.,
B has high values over x only over small image
extents, which are also typically close to M f .

We use the above observations to accelerate the
backwardmapping B computation by amultiscale
strategy, as follows. Consider Fig. 4, where image
(a) shows the region M f marked in the output.
We first compute the backward mapping B using
a coarse segmentation of the input x into a few
superpixels Kc ≪ K , where K is the number of

fine-scale superpixels deemed small enough by
the user for a good resolution. In our example, we
use Kc = 10 coarse-scale superpixels, shown in
Fig. 4b. We next compute B on these Ks super-
pixels as outlined in Sect. 3.3. Let x c be the subset
of the image x covered by coarse-scale superpixels
having a B value over a user-specified threshold
(Fig. 4c, red area). We next segment x c into K f
fine-scale superpixels (Fig. 4d) and use these to
compute the final backward mapping (Fig. 4e).

Several remarks are due, as follows. The
total processing time of this multiscale strategy
depends on the total superpixel count Kc + K f
used for the coarse, respective fine, scales. Note
that K f < K where K would be the number
of superpixels used by the single-scale strategy
(Sect. 3.3), since only a subset of the input x is
segmented on the fine scale—red area in Fig. 4. In
the example in Fig. 4, the fine-scale superpixels
are roughly of the same size as the K = 500
superpixels needed to cover the entire image with
the single-scale strategy. However, K f = 100
and Kc = 10, so we have only 110 superpixels to
treat instead of the 500 ones in the single-scale
strategy. Using parallelization of the forward
mapping (Sect. 3.3), the multiscale computation
scheme needs only 24 seconds instead of 174
seconds (single-scale, sequential) or 94 seconds
(single-scale, parallelized).

4.2 ExplainingMRI-to-CT Generators

Besides MR-to-MR image generators (Sect. 4.1),
medical imaging scientists have also been con-
cerned with generating synthetic CT images from



Machine Learning—Basic Unsupervised Methods… 151

MRI scans [59, 60]. This is useful e.g. in the con-
text of MR-guided radiotherapy where one needs
to examine the anatomy (typically best seen in a
CT scan) for online position verification and dose
planning of the radiotherapy [61]. Such applica-
tions are an important beneficiary of explainable
AI (XAI) methods such as ours [7].

For MRI-to-CT generation for pelvis scans,
Maspero et al. [62] have recently shown good
results using Generative Adversarial Networks
(GANs). GANs are a class of generative mod-
els that train by framing the problem as a super-
vised learning one with two sub-models: A gener-
ator model is trained to generate new examples;
a discriminator model tries to classify examples
as either real (from the domain) or fake (gener-
ated) ones. The two models are trained together
in a zero-sum (adversarial) game until the dis-
criminator model is fooled about half the time,
meaning that the generator model can create plau-
sible examples. For their task, Maspero et al. have
used the Pix2Pix model [63], which is a GAN
originally proposed for transferring image styles
between two different domains, e.g., real picture
to cartoons or satellite maps to blueprint maps.

In our work, we used a similar model to
Maspero et al. to synthesize CT images from the
head-and-neck and pelvis regions, as follows.
The input image x is a set of 3 transaxial 2D
image slices (4802 pixels) obtained by taking
the water, fat and in-phase images from a T2
TSE mDixon MRI sequence. Similar to [62],
we did not use the fourth channel (out-phase)
in this study. From each slice, a 2562 pixel
sub-image was extracted at a random location,
clipped to the range between 0 and the 95%
percentile, and then normalized to [−1, 1]. These
images are further used for training our network.
Figure 5a, c show two examples of such images.
The scans are registered using Elastix [64, 65]
to the ground-truth (GT), which are CT scans of
the same patients. CT values are clipped to the
[−1024, 1250] HU range and then normalized
to [−1, 1]. Figure 5b, d show two examples
corresponding to the MRI scans in images
(a,c). Two separate models are trained for the
head-and-neck (60 scans) and pelvis (13 scans)

regions, respectively. The generator model uses
a U-NET architecture [66] using, for the encoder,
8 convolutional layers with 64, 128, 256, and 512
(last 5 layers) filters, each being a 4 × 4 filter
applied with stride 2, and downsampling factor
of 2; and for the decoder 8 convolutional layers
with 512 (first 5 layers), 256, 128, and 64 filters
and corresponding upsampling parameters to
the encoder. The model is trained with L1 loss.
The discriminator uses the Markov PatchGAN
[63] that only penalizes structure at the scale of
N × N pixel patches, with N = 70 pixels. As in
Pix2Pix, the discriminator is run convolutionally
across patches over the entire image, averaging
all local responses to provide the final output, i.e.,
whether the generator creates real or fake images.
Convolutions are 4 × 4 spatial filters applied with
a stride of 2 and downsample factor of 2.

The above GAN achieves good results—a
mean average error (MAE) between the pre-
dicted and ground-truth CT of 271.22 HU for
air (< −200 HU), 56.67 HU for soft tissue
(−200 . . .+ 200 HU) and 311.74 HU for bone
(> +200 HU) and a mean structural similarity
index (SSIM [67]) between the two images
of 0.89. However, subtle errors occur in the
prediction. Figure 5e, h show two ground-truth
CT scans of the head-and-neck region, with
corresponding predicted images in (f, i) and
ground-truth-vs-prediction errors color-coded
in images (g, j)—white indicates no difference;
blue indicates predicted value lower than GT
value; and red indicates predicted value higher
than GT value, respectively. Soft-tissue regions
are, overall, predicted well. Yet, we see some
‘bone loss’ (blue arrows). We also see some ‘fake
bone’ tissues being created by the prediction (red
arrow A, image (i)) as well as small-scale cavities
being filled up with tissue (other three red arrows,
image (i)). Apart from that, we see a more general
smoothing (or loss) of small-scale details.

Although we experimented with various ways
of tuning of the GAN to decrease such artifacts,
including hyperparameter grid search, we could
not consistently eliminate them. As such, obtain-
ing insights how the output (CT) structures depend
on the input ones and, more importantly, on the



152 M. Espadoto et al.

Fig. 5 Training data for
the MRI to CT generation.
a, c MRI 3-channel scans
(water, fat, in phase) coded
as RGB images; b, d CT
scans of the same patients.
e, h True CT scans with f, i
synthetic CT
reconstructions and g, j
differences between the
two (white = no difference;
blue = pseudo-CT lower
than true CT, see also blue
arrows in (e, h);
red = pseudo-CT higher
than true CT, see also red
arrows in (f, i). See
Sect. 4.2

a) b)

c) d)

e) f) g)

h) i) j)

A

actual underlying anatomical details, is an impor-
tant step to further tuning the prediction. For this,
we use IBIX (see next Fig. 6).

We proceed as follows. Since the prediction
errors are small-scale structures, we only select
a few pixels in M x , respectively M f . Also, we
repeat the selection for close spatial locations in
the input, respectively output, e.g., images (a–c)
and (d–f). By comparing the obtained mappings
F and B, we can better understand how the model
learned the inference for such structures. For the
forward mapping F , e.g., images (a–c), we show
the region in the MRI input around the selection
M x as a small inset top-right in the respective
images. The main image shows the output CT
scan, overlaid by F , color-codedbyaheatmap. For
clarity, we also show F in the top-left inset. For the
backward mapping, e.g., images (d–f), we use the

same selection as in the corresponding forward
mapping, i.e., M f = M x , so we do not need to
show this selection again. The main image shows
the input MRI scan, overlaid by B, color-coded
by a blue-to-yellow colormap. For clarity, we also
show B in the top-left inset.

We next examine four different situations
observed during the CT prediction, as follows.

Well-predicted bone: For this case, we want
to understand how the model proceeded when
achieving good prediction. Images (a-c) show
three closely located selected pixel areas (yellow
in the top-right insets) inside a vertebra structure,
the latter seen as dark blue in the MR images
in the insets. This structure is quite well pre-
dicted visible as the V-shaped light-gray area in
the predicted images. The first (a) and last (c)
selected areas are smaller than the middle one



Machine Learning—Basic Unsupervised Methods… 153

(b). We see that the forward mappings F match
very well the expected shape of the bone—the
hot-colored areas do not ‘leak’ out of the light-
gray area, meaning that the selected bone pix-
els are used, indeed, only to predict bone in the
same structure. Also, we see that the middle map-
ping F (image (b)) has a larger hot-spot than the
other two. This is expected, since its selection—
yellow in image (b)—is larger and more intense.
If we look at the inverse mappings B for the same
selections, we see a few bright-colored (yellow)
superpixels in images (d–f). These are also quite
closely located to the selected pixels. Hence, the
predicted bone pixels are caused mainly by bone
pixels in the same structure in the input MRI. In
other words, the prediction is localized and fol-
lows the expected bone anatomy.

Poorly-predicted bone: As shown in Fig. 5e, h,
some small-scale bone structures in the GT are
missed by the model. To explain why this is the
case, we select three pixel zones close to such a
bone structure, visible as the dark ring in the MRI
insets in Fig. 6g–i. Again, the middle selection (h)
is larger than the other two. The forwardmappings
in images (g–i) show heatmaps that are located
close to the ring structure, but do not closely fol-
low its shape, being rather blurry. In all threemaps,
the region inside the ring is also marked by the
heatmaps as being predicted by the small (yel-
low) selected areas which are on the bone proper.
Hence, the model ‘blurs out’ the small-scale bone
information. As a result, the bone itself is not vis-
ible in the output CTs. Again, the mapping for the
larger selection (h) is stronger than the other two.
This is an expected effect, since a larger selected
input zone will affect a larger zone in the output.
The backward mappings (images j–l) show a sim-
ilar effect—the selected output pixels are affected
by the entire area around the selected zone—that
is, both by the elements marked dark in the MRI
insets in (g–i) but also surrounding, brighter, pix-
els. Since the bone structure there is very thin,
blurring occurs, i.e., themodel ‘averages’ the bone
with the surrounding softer tissues in its predic-
tion. In other words, both the forward and back-
wardmappings show that the trainedmodel appar-
ently understands that the pixels inside the ring
pattern belong to the same structure, but it does not

apply the same intensity value as in the well pre-
dicted bone.We conclude that the network looks at
local structure, and could be improved if it would
be trained to use information from other similar
bones in a different and/or more distant location.

Well-predicted cavities: As shown in Fig. 5e–i,
air-filled cavities inside the tissue—black in those
images—are well predicted. It is interesting to
examine this further. Images (m–o) show such a
cavity in theMRI input (insets) inwhichwe, again,
selected three pixel areas with the middle one (n)
larger than the other two. The forward mappings
show heatmaps which are very high close to the
selected pixels (central pink dot in the respective
heatmaps) but also contain a ‘ring’ of high F val-
ues close to the air-tissue interface, i.e., where
the black hole touches the surrounding gray pix-
els. This means that the model used the selected
air pixels to predict both air pixels but also the
borders of the entire air cavity. Interestingly, the
heatmaps are black (zero) in the cavity outside
the selected pixels themselves. By definition of
F (Sect. 3.2), this means that small changes in
the air values in the input MRI will not affect the
prediction of air in the output CT. This is a desir-
able result as it shows that the model is resistant
to noise present in the input in low-HU areas. In
other words, if the network had been sensitive to
small-scale variations of the acquired intensity in
low-HU areas, it would have had a hard time pre-
dicting the air cavity as all being the same tissue
type—air, that is. However, our forward mapping
show that this was not the case since the perturba-
tions IBIX applies only affect a subset of the local
pixels inside the cavity and the homogeneous HU
value of air was apparently not due to deviating
noisy pixels being constrained by the prediction
of other pixels in the cavity. The backward map-
pings (p,r) show a similar insight: In the insets, we
see a value slightly higher than the surroundings
in for the cavity, visible as the whitish-light-blue
color surrounded by dark blue. This shows (1) that
predicted CT cavity correctly only depends on the
actual cavity recorded in theMRI data and (2) this
prediction is robust to noise. Indeed, by definition
of the backward mapping (Sect. 3.3), a low value
of B indicates that the outputwill not changemuch
when the input changes slightly.



154 M. Espadoto et al.

a) b) c)

d) e) f)

g) h) i)

Bo
ne

 (g
oo

d)
, f

or
w

ar
d

Bo
ne

 (g
oo

d)
, b

ac
kw

ar
d

Bo
ne

 (p
oo

r),
 fo

rw
ar

d
selection

input

F

B

Fig. 6 Explaining MRI-to-CT generation. Forward (a–c, g–i, m–o) and backward (d–f, j–l, p–r) mappings for a well-
predicted bone (a–f), poorly predicted bone (g–l), and well-predicted air cavity (m–r). Mappings are overlaid over the
respective input or output images. Top-right insets show the area in the input MRI with selected pixels in yellow. Top-left
insets show the mappings without overlay. See Sect. 4.2



Machine Learning—Basic Unsupervised Methods… 155

j) k) l)

m) n) o)

p) q) r)

Bo
ne

 (p
oo

r),
 b

ac
kw

ar
d

Ai
r (

go
od

), 
fo

rw
ar

d
Ai

r (
go

od
), 

ba
ck

w
ar

d

Fig. 6 (continued)

5 Discussion

We discuss next several aspects of our proposed
IBIX framework.

Genericity: By construction, IBIX can handle
any types of mappings f , as long as these input
and output real-valued quantities. While we
demonstrated IBIX only for regressors (which,
as explained in Sect. 2, are the more complex and
less covered case in the literature), our framework
can handle any mapping, provided that one
defines (1) ranges for the input perturbations and
(2) suitable visualizations for the induced output
changes. This is in stark contrast to most VA

methods for XAI which work only for specific
input and/or output data types [6, 48]. In the
same time, IBIX is fully black box-compatible,
needing only the ability to evaluate the model
f for some given input x , in stark contrast with
many XAI techniques that need more knowledge
over f [2, 48].

Ease of use: IBIX is fully automatic, requiring the
use only to select a region of interest in the input
(M x ) or output (M f ) to explain these. The actual
selection mechanism, of course, depends on the
kind of input (and/or output) data.

Speed: IBIX’s speed is fundamentally determined
by the speedof evaluating the underlyingmodel f .



156 M. Espadoto et al.

For the forwardmapping F , IBIX’s cost equals the
inference cost of f times the number H of jitters
(Sect. 3.2). For the backwardmapping B, this cost
increases by a factor of K , equal to the number of
blocks used to discretize the input domain. This
cost can be however spread over multiple scales
(Sect. 4.1.2) to generate high-resolutionmappings
in areas where the signal is high, thus, of interest
to the user. All in all, for typical DL pipelines,
F runs at interactive rates for inputs (and out-
puts) of dimensionality (n, respectively m) of up
to one million. Computing B takes over 20 sec-
onds for such input sizes using two scales. Using
multiple scales could further reduce such costs,
an investigation which is subject to future work.
Note also thatwe currently compute our two scales
using superpixels (Sect. 4.1.2), which only works
for image inputs. However, our multiscale idea
is generic—one can use any subdivision of the
input domain, e.g., quadtrees, octrees or any sim-
ilar multiresolution scheme.
Limitations: The arguably largest limitation of
IBIX is its parameterization. That is, one should
decide how many jitter levels N and jitter range
size H to use (Sect. 3.2). Too conservative bounds
hereof will inevitably only expose the working of
the regressor f for a small part of its dynamic
range. Setting N and H is, for now, applica-
tion dependent, based on the expected range and
dynamics of f . Separately, IBIX is designed, for
now, to explain single input samples x . This is on
purpose, since existing VA methods do not han-
dle this use-case well (Sect. 2). Extending IBIX
to aggregate its findings for entire datasets, while
maintaining its attractive speed, ease-of-use, and
genericity, is a key direction to explore next.

IBIX can explain how the input of a regres-
sor influences certain parts of its output, and
conversely. This is aimed to help model engi-
neers to spot problematic inference pertaining to
certain input and/or output structures, such as
demonstrated inSect. 4.2.However, IBIXdoes not
(aim to) solve such inference problems—it only
exposes their presence. It is, still, the task of the
model engineer to detect patterns in suchproblems
and, based on that, devise changes to the model’s
training data, hyperparameters, or architecture to
correct these.

6 Conclusion

We have presented Instance-Based Inference
Explainers (IBIX), a framework for building
visual explanations of the way multidimen-
sional regressors infer their results for particular
instances of interest. IBIX has a simple under-
lying operation, essentially measuring the rate
of change of dimensions of an output (inferred)
sample as function of change of the dimensions
of the corresponding input. By relating the two
changes, IBIX proposes a forward mapping
explanation that highlights the output dimensions
strongest affected by user-selected dimensions
in an input sample; and a backward mapping
explanation that, given user-selected dimen-
sions in an output sample, highlights the input
dimensions which strongest affect that selection.
IBIX is simple to implement, works generically
for any multidimensional regressor working on
quantitative data, needs no knowledge of the
regressor’s internals, and is easy to use.

Several extension directions are possible. We
envisage extending IBIX to explain groups of
samples rather than individual ones, thereby
lifting insights on the regressor’s operation to
a higher, more general, level. Alternatively,
we consider designing specialized classes
perturbations—generic but also application-
specific—that users can select to ‘probe’ a given
regressor’s response to obtain finer-grained
understanding of its functioning, similar to
impulse-response testing in dynamical systems
analysis. Separately, we aim to extend the bi-level
acceleration scheme for backward mapping
computation to a multilevel one, thereby bringing
its operation to (near) real time without resolution
trade-offs. Finally, as IBIX is fully generic in
terms of the explored model, we aim to apply it
to a larger class of multidimensional regressors
beyond image-to-image ones or deep-learning
models.

Acknowledgements We acknowledge the help of
Mathijs de Boer with the implementation and evaluation
of the MRI-to-pseudo-CT application. We also acknowl-
edge the advice of dr. Matteo Maspero in developing the
Pix2Pix generating network used for the same application
and prof. Nico van den Berg for stimulating discussions.



Machine Learning—Basic Unsupervised Methods… 157

References

1. DasA,RadP.Opportunities and challenges in explain-
able artificial intelligence (XAI): a survey. 2020.
arXiv:2006.11371

2. Ribeiro M, Singh S, Guestrin C. Why should I trust
you?: explaining the predictions of any classifier. In:
Proceedings of ACM SIGMODKDD; 2016, p. 1135–
44.

3. Adadi A, Berrada M, Bhateja V, Satapathy S, Satori
H. Explainable AI for healthcare: from black box
to interpretable models. Embedded Syst Artif Intell.
2020;1076:327–37.

4. Yang G, Ye O, Xia J. Unbox the black-box for the
medical explainable AI via multi-modal and multi-
centre data fusion: a mini-review, two showcases and
beyond. 2021. arXiv:2102.01998

5. Rodrigues F, Espadoto M, Hirata R, Telea AC. Con-
structing and visualizing high-quality classifier deci-
sion boundary maps. Information. 2019;10(9):280.

6. Garcia R, Telea A, da Silva B, Torresen J, Comba J.
A task-and-technique centered survey on visual ana-
lytics for deep learning model engineering. Comput
Graph. 2018;77:30–49.

7. van der Velden BH, Kuijf HJ, Gilhuijs KG, Viergever
MA. Explainable artificial intelligence (XAI) in
deep learning-based medical image analysis. 2021.
arXiv:2107.10912 [eess.IV]

8. Chen L-C, Papandreou G, Kokkinos I, Murphy K,
Yuille AL. Deeplab: semantic image segmentation
with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE Trans Pattern Anal Mach
Intell. 2017;40(4):834–48.

9. Ren S, He K, Girshick R, Sun J. Faster R-CNN:
towards real-time object detection with region pro-
posal networks. 2015. arXiv:1506.01497

10. AkkusZ,GalimzianovaA,HoogiA,RubinDL, Erick-
son BJ. Deep learning for brain MRI segmentation:
state of the art and future directions. J Digit Imaging.
2017;30(4):449–59.

11. Spinner T, Schlegel U, Schäfer H, El-Assady M.
explAiner: a visual analytics framework for interac-
tive and explainable machine learning. IEEE Trans
Vis Comput Graph. 2020;26(1):1064–74.

12. Hohman F, KahngM, Pienta R, Chau DH. Visual ana-
lytics in deep learning: an interrogative survey for
the next frontiers. IEEE Trans Vis Comput Graph.
2018;25(8):2674–93.

13. Rauber PE, Fadel SG, Falcão AX, Telea AC. Visual-
izing the hidden activity of artificial neural networks.
IEEE Trans Vis Comput Graph. 2016;23(1):101–10.

14. Seifert C, Aamir A, BalagopalanA, Jain D, SharmaA,
Grottel S, Gumhold S. Visualizations of deep neural
networks in computer vision: a survey. In: Transparent
data mining for big and small data. Springer; 2017, p.
123–44.

15. Ma Y, Fan A, He J, Nelakurthi AR, Maciejew-
ski R. A visual analytics framework for explain-
ing and diagnosing transfer learning processes. 2020.
arXiv:2009.06876

16. Maaten LVD,HintonG.Visualizing data using t-SNE.
J Mach Learn Res. 2008;9:2579–605.

17. Rauber PE, Falcão AX, Telea AC. Projections as
visual aids for classification system design. Inf Vis.
2018;17(4):282–305.

18. Benato BC, Telea AC, Falcão AX. Semi-supervised
learning with interactive label propagation guided by
feature space projections. In: Conference on graphics,
patterns and images (SIBGRAPI); 2018. p. 392–99.

19. Sedlmair M, Aupetit M. Data-driven evaluation of
visual quality measures. Comput Graph Forum.
2015;34(3):201–10.

20. Bernard J, Zeppelzauer M, Sedlmair M, Aigner W.
VIAL: a unified process for visual interactive labeling.
Vis Comput. 2018;34(9):1189–207.

21. Behrisch M, Korkmaz F, Shao L, Schreck T.
Feedback-driven interactive exploration of large mul-
tidimensional data supported by visual classifier. In:
IEEE conference on visual analytics science and tech-
nology (VAST); 2014. p. 43–52.

22. Tuia D, VolpiM, Copa L, KanevskiM,Munoz-Mari J.
A survey of active learning algorithms for supervised
remote sensing image classification. IEEE J Sel Top
Signal Process. 2011;5(3):606–17.

23. Saito PTM, Suzuki CTN, Gomes JF, Rezende PJ, Fal-
cão AX. Robust active learning for the diagnosis of
parasites. Pattern Recogn. 2015;48(11):3572–83.

24. Ren M, Zeng W, Yang B, Urtasun R. Learning to
reweight examples for robust deep learning. In: Inter-
national conference on machine learning; 2018, p.
4334–343.

25. Harley AW, An interactive node-link visualization of
convolutional neural networks. In: International sym-
posium on visual computing; 2015, p. 867–77.

26. Bernard J, Zeppelzauer M, Lehmann M, Müller M,
Sedlmair M. Towards user-centered active learning
algorithms. Comput Graph Forum. 2018;37(3):121–
32.

27. Zeiler MD Fergus R. Visualizing and understanding
convolutional networks. In: European conference on
computer vision; 2014. p. 818–33.

28. Pezzotti N, Höllt T, Van Gemert J, Lelieveldt BPF,
Eisemann E, Vilanova A. Deepeyes: progressive
visual analytics for designing deep neural networks.
IEEE Trans Vis Comput Graph. 2017;24(1):98–108.

29. Liu M, Shi J, Li Z, Li C, Zhu J, Liu S. Towards better
analysis of deep convolutional neural networks. IEEE
Trans Vis Comput Graph. 2016;23(1):91–100.

30. Wongsuphasawat K, Smilkov D, Wexler J, Wilson J,
Mane D, Fritz D, Krishnan D, Viégas FB, Watten-
berg M. Visualizing dataflow graphs of deep learning
models in tensorflow. IEEE Trans Vis Comput Graph
2017;24(1):1–12.

http://arxiv.org/abs/2006.11371
http://arxiv.org/abs/2102.01998
http://arxiv.org/abs/2107.10912
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/2009.06876


158 M. Espadoto et al.

31. AbadiM et al. TensorFlow: large-scalemachine learn-
ing on heterogeneous systems. 2015. Software avail-
able from tensorflow.org. https://www.tensorflow.org/

32. Choo J, Liu S. Visual analytics for explainable deep
learning. IEEE Comput Graph Appl. 2018;38(4):84–
92.

33. Yosinski J, Clune J, Nguyen A, Fuchs T, Lipson H.
Understanding neural networks through deep visu-
alization. In: Deep learning workshop, international
conference on machine learning (ICML); 2015.

34. Hohman F, Park H, Robinson C, Chau DH. SUMMIT:
scaling deep learning interpretability by visualizing
activation and attribution summarizations. IEEETrans
Vis Comput Graph. 2019;26(1):1096–106.

35. ZeilerMD,KrishnanD, Taylor GW, Fergus R. Decon-
volutional networks. In: IEEEconference on computer
vision and pattern recognition; 2010. p. 2528–35.

36. Kahng M, Andrews PY, Kalro A, Chau DH. ActiVis:
visual exploration of industry-scale deep neural
network models. IEEE Trans Vis Comput Graph.
2017;24(1):88–97.

37. Nguyen A, Yosinski J, Clune J. Multifaceted fea-
ture visualization: Uncovering the different types of
features learned by each neuron in deep neural net-
works. In: Visualization for deep learning workshop,
international conference in machine learning; 2016.
arXiv:1602.03616

38. Dosovitskiy A, Brox T. Inverting visual represen-
tations with convolutional networks. In: IEEE con-
ference on computer vision and pattern recognition;
2016, p. 4829–37.

39. Simonyan K, Vedaldi A, Zisserman A. Deep
inside convolutional networks: visualising image
classification models and saliency maps. 2013.
arXiv:1312.6034

40. Mahendran A, Vedaldi A. Visualizing deep convolu-
tional neural networks using natural pre-images. Int J
Comput Vis. 2016;120(3):233–55.

41. KahngM,ThoratN,ChauDH,Viégas FB,Wattenberg
M. Gan lab: understanding complex deep generative
models using interactive visual experimentation. IEEE
Trans Vis Comput Graph. 2018;25(1):310–20.

42. Liu M, Shi J, Cao K, Zhu J, Liu S. Analyzing the
training processes of deep generative models. IEEE
Trans Vis Comput Graph. 2017;24(1):77–87.

43. Wang J, Gou I, Yang H, Shen H-W. Ganviz: a visual
analytics approach to understand the adversarial game.
IEEE Trans Vis Comput Graph. 2018;24(6):1905–17.

44. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba
A. Learning deep features for discriminative localiza-
tion,. In: IEEE conference on computer vision and pat-
tern recognition; 2016, p. 2921–29.

45. Selvaraju RR, Cogswell M, Das A, Vedantam R,
Parikh D, Batra D. Grad-cam: visual explanations
from deep networks via gradient-based localization.
In: IEEE international conference on computer vision;
2017. p. 618–26.

46. Li H, Tian Y, Mueller K, Chen X. Beyond saliency:
understanding convolutional neural networks from

saliency prediction on layer-wise relevance propaga-
tion. Image Vis Comput. 2019;83:70–86.

47. MahendranA,Vedaldi A. Salient deconvolutional net-
works. In: European conference on computer vision;
2016. p. 120–35.

48. Guidotti R, Monreale A, Ruggieri S, Turini F, Gian-
notti F, Pedreschi D. A survey of methods for explain-
ingblackboxmodels.ACMComputSurveys (CSUR).
2018;51(5):1–42.

49. Bazzani L, Bergamo A, Anguelov D, Torresani L.
Self-taught object localizationwith deep networks. In:
IEEE winter conference on applications of computer
vision (WACV), 2016; p. 1–9.

50. Li D, Huang J-B, Li Y, Wang S, Yang M-H.
Weakly supervised object localization with progres-
sive domain adaptation. In: IEEE conference on com-
puter vision and pattern recognition; 2016. p. 3512–
520.

51. Zhang D, Han J, Cheng G, Yang M-H. Weakly super-
vised object localization and detection: a survey. IEEE
Trans Pattern Anal Mach Intell. 2021.

52. Masci J, Meier U, Cireşan D, Schmidhuber J. Stacked
convolutional auto-encoders for hierarchical feature
extraction. In: International conference on artificial
neural networks; 2011. p. 52–9.

53. Nair, V., Hinton GE. Rectified linear units improve
restricted Boltzmann machines. In: International con-
ference on machine learning (ICML); 2010. p. 807–
14.

54. Sutskever I, Martens J, Dahl G, Hinton G. On the
importance of initialization and momentum in deep
learning. In: International conference on machine
learning (ICML); 2013, p. 1139–147.

55. Taylor JR,Williams N, Cusack R, Auer T, ShaftoMA,
DixonM, Tyler LK, Henson RN, et al. The Cambridge
Centre for ageing and neuroscience (Cam-CAN) data
repository: structural and functional MRI, MEG, and
cognitive data from a cross-sectional adult lifespan
sample. Neuroimage. 2017;144:262–9.

56. Fonov VS, Evans AC, McKinstry RC, Almli
CR, Collins DL. Unbiased nonlinear average age-
appropriate brain templates from birth to adulthood.
Neuroimage. 2009;47:S102.

57. Sofroniew N et al.. napari/napari: 0.4.12rc2,’
Oct 2021. Available https://doi.org/10.5281/zenodo.
5587893

58. Achanta R, Shaji A, Smith K, Lucchi A, Fua P,
Süsstrunk S. SLIC superpixels compared to state-of-
the-art superpixel methods. In: IEEE Trans on Pattern
Anal Mach Intell. 2012;34(11):2274–282.

59. Owrangi A, Greer P, Glide-Hurst C. MRI-only treat-
ment planning: benefits and challenges. Phys Med
Biol. 2018;63(5).

60. Spadea MF, Maspero M, Zaffino P, Seco J. Deep
learning based synthetic-CT generation in radiother-
apy and PET: a review. Int J Med Phys Res Pract.
2021;48(11):6537–66.

61. Low D. MRI guided radiotherapy. In: Cancer treat-
ment and research. Springer; 2017. p. 41–67.

https://www.tensorflow.org/
http://arxiv.org/abs/1602.03616
http://arxiv.org/abs/1312.6034
https://doi.org/10.5281/zenodo.5587893
https://doi.org/10.5281/zenodo.5587893


Machine Learning—Basic Unsupervised Methods… 159

62. Maspero M, Savelije M, Dinkla A, Seevinck P, Intven
M, Jurgenliemk-Schulz I, Kerkmeijer L, van den
Berg C. Dose evaluation of fast synthetic-CT genera-
tion using a generative adversarial network for gen-
eral pelvis MR-only radiotherapy. Phys Med Biol.
2018;10(63).

63. Isola P, Zhu I-Y, Zhou T, Efros AA. Image-to-image
translation with conditional adversarial networks. In:
IEEE conference on computer vision and pattern
recognition; 2017, p. 1125–134.

64. Klein S, Staring M, Murphy K, Viergever MA,
Pluim JP. Elastix: a toolbox for intensity-based med-
ical image registration. IEEE Trans Med Imaging.
2009;29(1):196–205.

65. ShamoninDP, BronEE, Lelieveldt BP, SmitsM,Klein
S, Staring M. Fast parallel image registration on CPU
and GPU for diagnostic classification of Alzheimer’s
disease. Front Neuroinf. 2014;7:50.

66. Ronneberger O, Fischer P, Brox T. U-net: convolu-
tional networks for biomedical image segmentation.
In: Medical image computing and computer-assisted
intervention (MICCAI). Springer; 2015. p. 234–41.

67. Wang Z, Bovik A, Sheikh H, Simoncelli E. Image
quality assessment: from error visibility to structural
similarity. IEEETrans ImagProcess. 2004;13(4):600–
12.


