
Vol.:(0123456789)

SN Computer Science           (2023) 4:226  
https://doi.org/10.1007/s42979-022-01662-4

SN Computer Science

ORIGINAL RESEARCH

Stability Analysis of Supervised Decision Boundary Maps

Artur A. A. M. Oliveira1 · Mateus Espadoto1  · Roberto Hirata Jr.1 · Alexandru C. Telea2

Received: 20 June 2022 / Accepted: 30 December 2022 
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
Understanding how a machine learning classifier works is an important task in machine learning engineering. However, doing 
this is for any classifier in general difficult. We propose to leverage visualization methods for this task. For this, we extend a 
recent technique called Decision Boundary Map (DBM) which graphically depicts how a classifier partitions its input data 
space into decision zones separated by decision boundaries. We use a supervised, GPU-accelerated technique that computes 
bidirectional mappings between the data and projection spaces to solve several shortcomings of DBM, such as accuracy and 
speed. We present several experiments that show that SDBM generates results which are easier to interpret, far less prone 
to noise, and compute significantly faster than DBM, while maintaining the genericity and ease of use of DBM for any type 
of single-output classifier. We also show, in addition to earlier work, that SDBM is stable with respect to various types and 
amounts of changes of the training set used to construct the visualized classifiers. This property was, to our knowledge, not 
investigated for any comparable method for visualizing classifier decision maps, and is essential for the deployment of such 
visualization methods in analyzing real-world classification models.

Keywords Machine learning · Dimensionality reduction · Dense maps

Introduction

As machine learning (ML) techniques develop and address 
increasingly many application domains, so does their com-
plexity and difficulty of understanding their working. This 
poses problems for their adoption in contexts where trans-
parency and accountability of inference is required  [1]. 
Such issues are especially important for deep learning (DL) 
models which handle very high dimensional datasets and 
operate essentially as black boxes having millions of hidden 
parameters [2].

To explain ML classifier models, several approaches have 
been proposed, using variable importance [3], locally inter-
pretable models [1], and surrogate models [4]. Visualiza-
tion techniques complement such approaches by mapping 
the model’s predictions or internal states to various visual 
representations [5, 6]. A recent survey of visualization tech-
niques for the explanation of DL models was proposed by 
Garcia et al. [2].

In the above family, Decision Boundary Maps (DBMs) [7] 
are a particular visualization technique for ML classifiers. 
Given a multidimensional projection [8] that shows how a 
classifier handles some input dataset, DBMs literally fill the 
whitespace with classification results (colormapped labels) 
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for data points that would project at those locations. The 
result is a dense image that shows how the visual projection 
space is partitioned in per-class decision zones. Decision 
zone boundaries—where two or more label colors adjoin—
depict locations where the classifier changes its output. 
DBMs offer a simple to interpret and visually scalable way 
to depict the working of any classification model.

In recent work  [9], we proposed Supervised Deci-
sion Boundary Maps (SDBM), which extends the DBM 
method [7] to address several of the latter method’s short-
comings, as follows:

Quality (C1) SDBM produces decision maps that create 
a clearer, and far less noise-prone, visual separation of a 
higher number of decision zones from real-world, complex, 
datasets, than DBM;

Scalability (C2) SDBM has a complexity linear in the 
number of samples and dimensions and runs on the GPU; 
this allows creating megapixel maps in a few seconds on 
commodity hardware in contrast to the minutes needed by 
DBM;

Ease of use (C3) SDBM produces good results with mini-
mal or no parameter tuning;

Genericity (C4) Like DBM, SDBM can construct deci-
sion boundaries for any single-value classifier.

Despite these attractive points, the interpretation of the 
maps produced by both DBM and SDBM relies funda-
mentally on a stability assumption: Indeed, users examine 
such maps to determine, for instance, the size and adja-
cency of decision zones, to e.g. decide whether a classi-
fier is well trained and/or where to add more training sam-
ples to improve it [7]. If the maps—and in particular, the 
borders where decision zones meet—are unstable to small 
changes in the training data, their interpretation can easily 
go wrong. Such effects were already found in earlier work 
on DBMs [10, 11] in terms of noise-like ‘islands’ that appear 
in DBMs constructed for complex classifier models. SDBM 
successfully removes such small-scale artifacts. Yet, it is still 
unknown how stable, thus trustworthy, are the large scale 
patterns (decision zones, decision boundaries) that SDBM 
creates. If these patterns are not stable, then the overall inter-
pretation of the SDBM maps is of limited value.

In this work, we address the above open question by per-
forming a multi-faceted stability analysis on SDBM. For 
this, we train three classifiers on several perturbed versions 
of three real-world datasets, and compute and visualize the 
resulting decision maps as well as their changes. We also 
propose two novel visualizations to summarize the stabil-
ity of SDBMs in presence of several training-set changes. 
Our analysis shows that SDBM has an additional desirable 
property, namely

Stability (C5) SDBM constructs decision maps which 
are stable with respect to change. The amount of visual 
change—in terms of positions and sizes of the decision 

zones—is following the amount of change present in the 
input data. In particular, small data changes only yield small 
visual changes which do not adversely affect the interpreta-
tion of the computed decision maps.

We structure this paper as follows: “Background” section 
discusses related work on visual explanation of classifica-
tion models. “Methods” section details the SDBM method. 
“Results” section  presents results that support our contri-
butions C1-C4 outlined above, as well as our new stability 
analysis and novel visualizations designed to explore it (C5). 
“Discussion” section discusses SDBM. Finally, “Conclu-
sion” section concludes the paper.

Background

We next introduce the notations used in further this paper. 
Let x = (x1,… , xn) , xi ∈ ℝ, 1 ≤ i ≤ n be an n-dimensional 
(nD) real-valued sample. Let D = {xj} , 1 ≤ j ≤ N  be a 
dataset of N such samples, e.g., a table with N rows (sam-
ples) and n columns (dimensions). As we focus on classi-
fication models, we assume D is labeled by K label values 
in C = {ck} , 1 ≤ k ≤ K  . Specifically, let y = {yj|yj ∈ C} , 
1 ≤ j ≤ N be the labels of D where sample xj has label yj . A 
classification model is a function

that maps between data samples and label values. The model 
f is typically obtained using a training algorithm over the 
dataset D, such as Logistic Regression [12], SVM [13], Ran-
dom Forests [14], or Neural Networks, to name a few.

A Dimensionality Reduction (DR), or projection, tech-
nique is a function

that maps a sample x ∈ ℝ
n to a point p = P(x), p ∈ ℝ

q (typi-
cally, q = 2 ). Projecting a dataset D yields a qD scatterplot 
denoted next as P(D). The inverse of P, denoted P−1(p) , 
maps, or backprojects, a qD point p to the high-dimensional 
space ℝn.

Decision Boundary Maps A Decision Boundary Map 
(DBM) is an image that depicts how a given model f parti-
tions the projection space ℝ2 into decision zones. A deci-
sion zone is a set of points p ∈ ℝ

2 for which f (P−1(p)) = ck , 
i.e., back-project to data points classified by f to the same 
label ck , and is colored by the label ck . Decision zones are 
separated by decision boundaries, which are pixels p whose 
labels (colors) differ from those of at least one 8-neighbor 
pixel. A DBM shows, among other things, how f parti-
tions the high-dimensional space into decision zones, how 
large these zones are, how they are adjacent to each other, 
and how smooth the decision boundaries between classes 

(1)f ∶ ℝ
n
→ C

(2)P ∶ ℝ
n
→ ℝ

q
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are [10]. This gives insights on whether the model f has 
overfitted the training data, and how well separated the data 
is, i.e., how difficult is the classification task. DBMs are a 
step forward from the key observation of Rauber et al. [5] 
who showed how projections aid deciding whether a high-
dimensional dataset is easily classifiable or not. Simply put, 
DBMs support the same tasks but provide more information 
by ‘filling in’ the white gaps between the points of a 2D scat-
terplot P(D) by extrapolating the classifier f.

The DBM technique of Rodrigues et al. [10] relies heav-
ily on direct and inverse projections. The direct mapping is 
used to create a 2D scatterplot P(D) from a dataset D. The 
inverse mapping P−1 creates synthetic data points from all 
pixels p in the 2D bounding box of P(D). These data points 
P−1(p) are then classified by f, and colored by the assigned 
labels f (P−1(p)) . DBM has two main issues: (1) The inverse 
projection technique P−1 used, iLAMP [15], scales poorly 
to the hundreds of thousands of pixels a DBM has. This was 
addressed in [10] using low-resolution DBMs. To increase 
accuracy, several points were sampled over a pixel in these 
maps and the pixel class (color) was set by majority-vot-
ing on the labels assigned by f to the back-projections of 
these points. This scheme however creates artifacts visible 
as highly jagged decision boundaries. (2) Since DBM uses 
an unsupervised projection P, outliers in a dataset D can 
generate spurious ‘islands’ of pixels having a different label 
(color) than their neighbors, thus appearing as spurious deci-
sion zones that confuse the user.

Improved Decision Boundary Maps Several improve-
ments were proposed to address the above-mentioned 
issues of DBMs. Rodrigues et al. [11] examined the DBMs 
generated for four classifiers and using 28 projection tech-
niques P and found that suitably parameterized t-SNE [16] 
and UMAP [17] projections limit the spurious islands in 
the decision maps. Next, the same authors proposed a sim-
ple filtering technique to eliminate poorly projected points 
from P(D) and use only the remaining ones to construct the 
inverse mapping P−1 [7]. They also increased the accuracy 
and speed of computing the DBMs by using a deep learning 
technique [18] to construct P−1 from a given direct mapping 
P(D). Finally, they proposed ways to visualize the distance-
to-closest-boundary of all points inside a decision zone to 
highlight areas prone to misclassification.

Related Dense Maps Besides DBMs used to visualize the 
working of a classifier model, dense maps have been used 
to analyze high-dimensional data in other contexts. Closer 
to our application, OptMap [19] uses dense maps to explore 
the optimization process of generic regressors r ∶ ℝ

2
→ ℝ . 

StrategyAtlas [20] projects high-dimensional datasets to 2D 
using UMAP and creates dense maps showing the value of 
a user-selected dimension over the projection space using 
Shepard interpolation around the projected points [21]. Sim-
ilar interpolation is used to construct dense maps showing 

errors at the projected points [22, 23] or dimensions that 
explain how neighbor projection points are related [24]. 
Among these techniques, only OptMap actually uses an 
inverse projection to map from the image space to the data 
space—all other techniques only interpolate data values at 
the sample points in the image space. As explained in [7], 
such image-space interpolation can be misleading since dis-
tances in the projection space usually do not directly reflect 
distances in the data space.

Dimensionality Reduction in DBMs As explained above, 
DBMs rely heavily on Dimensionality Reduction (DR) or 
projection techniques. For the DBM context, such a tech-
nique should ideally 

1. Work generically for any type of high-dimensional data-
set D;

2. Be computationally fast, ideally linear in the number of 
samples and dimensions of D;

3. Provide both the direct (P) and inverse ( P−1 ) projection;
4. Be simple to parameterize (for an easy usage in prac-

tice);
5. Provide a high-accuracy projection;
6. Be stable and have out-of-sample (OOS) capability.

The first four requirements above are, we believe, evident. 
Requirement 5 (accuracy) means that P(D) can success-
fully preserve the structure of the data (clusters, neighbors, 
outliers) present in D. If this is not the case, any (visual) 
inference done on P(D)—such as reasoning about the sizes, 
shapes, and relative positions of decision zones—may be 
misleading. Accuracy is typically gauged by measuring sev-
eral so-called projection quality metrics [22, 25–27]. Such 
quality metrics have been used to filter poorly projected 
points to improve the DBM quality [7], as outlined earlier.

Requirement 6 also deserves separate explanation: A 
projection technique P is called stable if small changes in 
its input dataset D cause only small changes in the created 
scatterplot P(D). As a special case, a projection is called 
deterministic if it outputs the same P(D) for the same input 
D. Stable and deterministic projection techniques are pre-
ferred for many visualization applications as they simplify 
the user’s task—one e.g. can exactly reproduce the output 
of a projection for the same dataset D; and small-scale noise 
or inaccuracies in the input D do not massively affect the 
obtained visualization. Separately, a projection P is called 
to have out of sample (OOS) ability if it can project new, 
unseen, samples along those earlier provided in some dataset 
D, without modifying the projection P(D). OOS is desirable 
when one needs to project a sequence of related datasets [8, 
28, 29]. OOS projections are typically also stable, though the 
converse is not necessarily true. For DBM construction, we 
ideally want both P and P−1 to be stable and deterministic. If 
not, one could obtain radically different decision maps from 
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the same classifier, e.g. when trained with slightly different 
data D. In turn, this would make the visual interpretation of 
the respective classifier via the DBMs very challenging if 
not hardly possible.

Measuring projection stability is a relatively new and 
little explored topic, as most quantitative studies on DR 
focused so far on ensuring high projection quality (see the 
survey in [28]). Key difficulties for stability measurement are 
defining the ‘allowable’ change in the data D and in the pro-
jection P(D). Vernier et al. [29] present, to our knowledge, 
the first attempt to quantify stability for dynamic projection 
techniques by measuring the correlation of changes in the 
2D distances between points in P(D) and their nD distances 
in D. Data changes are implicitly given by the application 
domain as D is a time-dependent dataset. Bredius et al. [30] 
gauge the stability of a specific projection method [31] by 
explicitly synthesizing noise-like changes of D and depicting 
the changes in P(D). However, they perform no quantita-
tive stability measurements. Espadoto et al. [32] use similar 
noise-like changes to train a projection method to behave 
less sensitively (thus, be more stable) in their presence. 
However, they do not explicitly measure or reason about 
projection stability. For inverse projections P−1 or DBMs, 
we are not aware of any stability study. Our work here is, to 
our knowledge, the first study that explicitly measures the 
stability of a DBM pipeline involving both direct and inverse 
projections.

Many DR techniques have been proposed over the years, 
as reviewed in various surveys [8, 28, 33–39]. Below we 
describe a few representative ones from DBM computa-
tion perspective and outline how these fare with respect to 
requirements 1–5 mentioned above.

Principal Component Analysis [40] (PCA) is one of the 
most popular DR techniques for many decades, and complies 
well with all requirements except 5 (accuracy), especially for 
data of high intrinsic dimensionality. PCA was used to com-
pute both P and P−1 by the OptMap visualization method 
for regressor analysis [19]. However, the authors noted that 
higher quality results could be obtained using a more accu-
rate projection technique.

The Manifold Learning family of methods contains tech-
niques such as MDS [41], Isomap [42], and LLE [43], which 
aim to capture nonlinear data structure by mapping to 2D the 
high-dimensional manifold on which data is located. These 
methods generally yield better results than PCA (5), but 
do not scale well computationally (2), and also yield poor 
results when the intrinsic data dimensionality is higher than 
two. Also, many such methods require careful parameter 
tuning (4) to obtain suitable results.

The SNE (Stochastic Neighborhood Embedding) fam-
ily of methods, of which the most popular member is 
t-SNE [16], are best known for the high quality of the 
projections they produce (5). Yet, they can be hard to 

tune [44], and typically have no OOS capability and/or 
stability (6). Parametric t-SNE [45] adds OOS and stability 
at the expense of a significantly slower and more complex 
implementation. Several refinements of t-SNE improve 
speed (2), such as tree-accelerated t-SNE [46], hierarchi-
cal SNE [47], and approximated t-SNE [48], and various 
GPU accelerations of t-SNE [49, 50]. Uniform Manifold 
Approximation and Projection (UMAP) [17], while not 
part of the SNE family, generates projections with com-
parable quality to t-SNE (5), but much faster (2), and with 
OOS capability (6).

All above projection techniques work in an unsuper-
vised way—they use only distance information between 
points in D to compute P(D). Recently, Espadoto et al. [31] 
proposed Neural Network Projection (NNP) to learn the 
projection P(D), computed by any user-selected tech-
nique P, from a small subset D′

⊂ D , using a deep learn-
ing regressor. While slightly less accurate than the origi-
nal P (5), NNP is computationally linear in the size and 
dimensionality of D (2), has OOS ability (5) and it simple 
to implement and parameter-free (4). A recent study [30] 
showed that NNP is very stable to a wide range of pertur-
bations of its input data D. NNP was further refined [51] 
to use neighborhood information between samples in D 
and further increase the projection accuracy (5). A related 
idea to NNP was used by NNInv [18] to learn the inverse 
mapping P−1 . NNP and NNInv were next extended by Self-
Supervised Network Projection (SSNP) [52], which can 
be used either in a self-supervised fashion, by computing 
pseudo-labels by a generic clustering algorithm on D, or 
in a supervised fashion (similar to NNP), using ground-
truth labels y coming with D. We choose SSNP to create 
our proposed SDBM as it complies well with our earlier 
stated six requirements for a projection method in the 
DBM context: 

1. SSNP works generically for any high-dimensional data-
set;

2. SSNP is GPU-accelerated, which makes it one to two 
magnitude orders faster than DBM (see next “Compu-
tational Scalability” section);

3. SSNP provides both the direct and inverse mappings (P 
and P−1 ) needed by the DBM method;

4. SSNP is parameter-free (after its training phase has com-
pleted);

5. SSNP provides good cluster separation by partition-
ing the data space D as a classifier would do, which is 
closely related to the original goal of DBM;

6. SSNP is parametric, thus has OOS and, as we show next 
in “Stability Analysis” section, leads to a stable DBM 
computation with respect of changes in the input dataset 
D.
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Methods

We next describe our proposed SDBM technique and 
how it is different from its predecessor, DBM. Our tech-
nique has five steps as illustrated by the pipeline in Fig. 1. 
Below, we detail all these steps.

0. Input data SDBM needs only two inputs—a high-
dimensional dataset D and its label vector y . The defini-
tions of these are given in “Background” section. As stated 
earlier, no restrictions exist on the data dimensionality n, 
data nature, or number of labels K used in y . Simply put, 
any labeled dataset (D, y) that can be used to build a clas-
sification model for some problem is acceptable as input 
for SDBM. Therefore, SDBM is applicable to visualize the 
decision boundaries and zones of any classifier.

1. Create mappings We train SSNP to create the direct 
and inverse projections P and P−1 based on D and y . This 
step is fundamentally different from DBM. In detail: DBM 
requires the user to supply a projection technique P to 
map D to a 2D scatterplot P(D). Next, DBM uses P(D) to 
learn the inverse mapping, or inverse projection P−1 . For 
this, DBM uses various inverse projection techniques such 
as NNInv [18] or iLAMP [15] (see also “Background” 
section). The problem with this is that, depending on the 
direct projection P chosen by the user, these inverse pro-
jection techniques may have difficulties in computing an 
accurate inverse projection P−1 . That is, for several points 
x in the input domain of the classifier, P−1(P(x)) ≠ x , i.e., 
P−1 is not the exact inverse of P. In practice, this leads to 
jagged decision boundaries and noise-like small islands 
scattered all over the dense maps created by DBM (see 
examples in Fig. 5 later on). SDBM does not have this 
problem as it uses the SSNP method to jointly compute 
both P and P−1 , as mentioned in “Background” section. 
As shown by our results in “Results” section, this joint 

computation of P and P−1 used by SDBM significantly 
reduces the above-mentioned artifacts in the decision 
maps.

2. Create 2D grid: Create an image G ⊂ ℝ
2 with a reso-

lution of R pixels, where R is chosen by the user. Higher 
R values capture more details in the decision maps but 
take longer to compute—more precisely, the computation 
time is linear in the number of pixels of the map. This is 
different from DBM. In detail, DBM uses the full resolu-
tion of G to compute the direct projection P(D), but then 
evaluates P−1 on a subsampled version of G of a lower 
resolution than R to reduce computation time (see “Back-
ground” section). In contrast, SDBM uses the full user-
specified resolution R to compute both P and P−1 (for all 
experiments in this paper, we set this to R = 3002 pixels). 
SDBM does not need to use subsampling since its underly-
ing direct-and-inverse projection technique, SSNP, is fast 
enough to treat the full resolution specified by the user.

3. Create synthetic data points: Use the trained P−1 
(delivered by SSNP in step 1) to map each pixel p ∈ G to 
a high-dimensional data point x ∈ ℝ

n . This is similar to 
DBM, except the use of a dense pixel grid and the jointly-
trained P and P−1 mappings delivered by SSNP (see step 
1).

4. Train classifier: Train the classifier f to be visualized 
using the dataset D and its labels y , as in an usual machine 
learning setting. This step is identical to DBM. Any single-
class-output classifier f ∶ ℝ

n
→ C can be used generically, 

e.g., Logistic Regression (LR), Random Forests (RF), Sup-
port Vector Machines (SVM), or neural networks. Moreover, 
no restrictions are placed on the design or architecture of f. 
Also, note that the classifier training occurs after the con-
struction of the mappings P and P−1 in step 2. That is, these 
mappings have no knowledge of the class labels. Hence, 
we can reuse these mappings computed in step 2 to next 
construct decision maps to visualize any classifier to be 
trained on the given inputs (D, y) . Simply put, once step 2 
is executed, we can next quickly construct decision maps to 
compare how several classifiers perform on a given (D, y) . 
We illustrate this further in our results (“Results” section).

5. Create DBM: Color all pixels p ∈ G by the values of 
f (P−1(p)) , i.e., the inferred classes of their corresponding 
(synthetic) data points, using a categorical color map. In 
this paper we use the ‘tab20’ color map [53]. This is the 
same as DBM.

5b. Encode classifier confidence (optional part of step 
5): For classifiers f that provide the probability of a sam-
ple x belonging to a class ck , we encode this probability in 
the brightness of the pixel p that back-projects to x . The 
lower the confidence of the classifier is, the darker the pixel 
appears in the map. This informs the user of the confidence 
of the decision zone in that area—dark areas in the map, 
typically close to decision boundaries, indicate regions in Fig. 1  SDBM pipeline (see “Methods” section)
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the data space where the classifier is less confident. This is 
the same as DBM.

5c. Draw scatterplot (optional part of step 5): If desired, 
one can visualize the projection P(D) of the training set D 
by drawing it as a scatterplot atop of the DBM. Note that this 
is the only place where SDBM uses the projection P. The 
added value of showing this scatterplot is showing to users 
where, in the decision map, are the actual data points from 
which the decision map was extrapolated. If users do not 
wish to see this scatterplot, we only use the inverse projec-
tion P−1 computed in step 3 above. Since we use SSNP to 
jointly compute P and P−1 , we obtain P for free, so there is 
no additional cost to drawing this scatterplot.

Summarizing the above pipeline in simple words, SDBM 
creates an image G, takes every pixel of this image and back-
projects it to the data space ℝn to obtain a data point, com-
putes a label for this point using the classifier we wish to 
explore, and finally colors the pixel to show the class label 
and, optionally, the classifier’s confidence, at that location. 
The end result is a dense colored map where same-color 
regions indicate regions in the data space where the clas-
sifier yields the same output (label), and color boundaries 
between adjacent regions indicate decision boundaries of 
the classifier.

Results

We next evaluate SDBM against the desirable criteria C1-C5 
introduced in “Introduction” section. Specifically, we ana-
lyze quality (C1) by first using SDBM with synthetic data 
in a controlled setting, as we know what the ‘ground truth’ 
shapes of the decision zones are for a given synthetic dataset 
and given classifier (“Quality on Synthetic Datasets” sec-
tion). We next assess quality for more complex real-world 
datasets and additional classifiers (“Quality on Real-World 
Datasets” section) and also compare SDBM with DBM. This 
shows also that SDBM is generic (C4) and that it increases 
quality as compared to DBM. Next, and in addition to [9], 
we present several experiments that measure SDBM’s sta-
bility in the presence of different amounts and types of data 
change to support our stability claims (C5). Finally, we show 
how SDBM compares to DBM speed-wise and thereby jus-
tify our scalability claims (C2, “Computational Scalability” 
section). We end this section by providing full implementa-
tion details for SDBM (“Implementation Details” section).

Quality on Synthetic Datasets

To assess how SDBM performs in a controlled situation, we 
consider several synthetic Gaussian blobs with 5000 sam-
ples, with varied dimensionality (100 and 700), and varied 
number of classes (2 and 10). All points in a blob have the 

same class label. These are, thus, easily classifiable datasets, 
for which we expect the decision zones to ‘surround’ the 
respective blobs. We construct decision maps for four clas-
sifiers, namely Logistic Regression [12], SVM [13] (with 
a RBF kernel), Random Forests [14] (200 estimators), and 
a Neural Network (multi-layer perceptron with 3 layers of 
200 units each). All these classifiers are able to handle the 
synthetic datasets with 100% accuracy. Consequently, as said 
above, we expect to see clearly-separated decision zones sur-
rounding the data blobs in the projection.

Figure 2 shows the SDBM maps for all the dataset vs 
classifier combinations, with decision zones colored by class 
labels. Projected samples in P(D) are drawn colored by their 
class too, but slightly brighter than the maps so they are 
visible around their respective decision zones. We first see 
that the projections (bright ‘spots’ in the figure) indicate 
clearly well separated blobs, which confirms the easy struc-
ture of these datasets. We also see that all decision zones are 
compact and with smooth boundaries, as expected for such 
simple datasets, and enclose the Gaussian blobs with the 
same respective labels. For example, the red and blue zones 
for the 2-class, 100-dimensional dataset (Fig. 2, top row), 
contain two clusters of light red, respectively light blue, pro-
jected points. The maps for Logistic Regression show almost 

Fig. 2  Decision Boundary Maps (DBMs) created with SDBM for 
several classifiers (columns) and synthetic datasets (rows). Lighter 
pixels represent training samples from the datasets D. Insets show 
decision map details around the region where all decision zones meet 
for the 10-class, 700-dimensional dataset
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perfectly straight boundaries, which is a known fact for this 
classifier. In contrast, the more sophisticated classifiers, Ran-
dom Forests and Neural Networks, create boundaries that are 
slightly more complex than Logistic Regression and SVM 
for the most complex dataset. The differences are best vis-
ible for Random Forests and Neural Networks in the small 
wiggles of the decision zone shapes in the center of the maps 
in Fig. 2, bottom row (see also insets).

Quality on Real‑World Datasets

We next show how SDBM performs on three real-world 
datasets. To select such datasets, we look at candidates 
which are (a) challenging for classification problems; (b) 
quite diverse in terms of data provenance, dimensionality 
(hundreds of dimensions), and size (thousands of samples); 
(c) well known, and openly accessible, to the machine learn-
ing community, for comparison and replication purposes. 
This quickly leads us to selecting datasets used in many ML 
evaluation benchmarks. Additionally, we note that using 
such datasets makes sense in our context since we want to 
evaluate a technique (SDBM) which is designed to visualize 
the behavior of classifier models.

With the above requirements, we selected the following 
datasets for evaluating SDBM:

FashionMNIST  [54] 10K samples of K = 10 types 
of clothing images, rendered as 28 × 28-pixel gray scale 
images, flattened to 784-element vectors. We also use a 
subset of this dataset containing only two classes, namely 
Ankle Boot and T-Shirt, to show an example where classes 
are more easily separable.

Human Activity Recognition (HAR) [55] 10,299 samples 
from 30 subjects performing K = 6 daily activities, and 
used for human activity recognition. The samples have 561 
dimensions that encode in the time and frequency domains 
3-axial linear acceleration and 3-axial angular velocity 
measured on the subjects.

MNIST [56] 70K samples of K = 10 handwritten digits 
from 0 to 9, rendered as 28 × 28-pixel gray scale images, 
flattened to 784-element vectors. This dataset was downsam-
pled to 10K observations for all uses in this paper.

Reuters Newswire Dataset [57] 8432 samples of news 
report documents, from which 5000 attributes were extracted 
using the standard TF-IDF [58] text processing method. 
From the full dataset, we use only the K = 6 most frequent 
classes.

Figure 3 shows the SDBM maps for these datasets for 
the same classifiers used in “Quality on Synthetic Datasets” 
section. These datasets are considerably more complex 
than the synthetic ones (“Quality on Synthetic Datasets” 
section), also seen by the varying accuracies they achieve 
for the different classifiers. Still, for all combinations, the 
classifiers’ decision zones are clearly visible in Fig. 3. 

Also, we see—like for the synthetic datasets—how these 
decision zones surround the blobs of training-set samples, 
depicted as lighter-colored points in Fig. 3. As for the syn-
thetic datasets, simpler classifiers (Logistic Regression and 
SVM) show decision zones that are more contiguous and 
have smoother, simpler, boundaries. More complex clas-
sifiers (Random Forests and Neural Networks) show more 
complex shapes and topologies of the decision zones. The 
maps for the Random Forest classifiers show very jagged 
boundaries. This can be a result of having an ensemble of 
classifiers working together. An interesting insight can be 
obtained when comparing the maps for different classifiers 
trained on the same dataset. Consider, e.g., for the Reuters 
dataset (bottom row), the best classifier (Logistic Regression 
(LR), accuracy 0.893) and the poorest classifier (Random 
Forests (RF), accuracy 0.874). The projected points are the 
same for the two maps, since we use the same training set. 
Still, we see different shapes and sizes of the decision zones. 
Consider now a small area in the two maps (see insets at 
the bottom of Fig. 3). As described earlier, both training-
set points and decision zones are colored by label values. 
Hence, misclassified points will have different colors from 
their surrounding zones, while correctly classified points 
have the same (slightly lighter) colors as the surrounding 
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Fig. 3  Decision Boundary Maps (DBMs) created with SDBM for 
several classifiers (columns) and real-world datasets (rows). Numbers 
inside each map indicate test accuracy obtained by each classifier, 
bold indicating top performers. Lighter pixels represent training sam-
ples from the datasets D. Insets show details in the decision zones for 
Logistic Regression and Random Forests for the Reuters dataset
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zones. Comparing the map details for LR and RF, we see 
that the red decision zone (A) is smaller for RF than for LR, 
while the blue zone (B) is comparatively larger. In the RF 
inset, we see that several red points in the black circle fall in 
the blue (B) and pink (C) decision zones, indicating misclas-
sifications. These red points fall under the large red decision 
zone for the LR map. Hence, we conclude that the shapes of 
the LR decision zones, in this region, are more correctly fol-
lowing the training data than those of RF. Similar reasoning 
can be done to compare other decision map areas.

Encoding Classifier Confidence Fig. 4 shows SDBM 
maps with classifier confidence encoded as brightness, as 
described in “Methods” section. We see the added value 
of depicting confidence if we compare the first-vs-second 
(HAR), respectively third-vs-fourth (Reuters), rows in 
Fig. 4. The confidence maps show a brightness gradient, 
dark close to the decision boundaries (where colors change 
in the maps) and bright deep in the decision zones. This 
shows that confidence increases as we go deeper into the 
decision zones, i.e., closer to the training samples. For the 
HAR dataset, these dark bands are quite thin for Logistic 
Regression and SVM, thicker for Random Forests, and 
extremely and uniformly thin for Neural Networks. This 
tells us that Neural Networks have an overall very high 
confidence everywhere (except very close to the decision 
boundaries); Logistic Regression and SVM are less con-
fident close to the boundaries; and Random Forests have 
a higher variation of confidence over the data space. Note 

how these findings match the classification accuracy val-
ues (Fig. 3). For Random Forests, the darkest region cov-
ers the central blue decision zone and the top-right of the 
left yellow zone. These are exactly the areas where the 
map for Random Forests significantly differs from those of 
all the other three classifiers. Hence, we can infer that the 
island-like blue decision zone that Random Forests cre-
ated is likely wrong, as it is low confidence and different 
from what the other three classifiers created in that area. 
For the Reuters dataset (Fig. 4 bottom row), all classifiers 
produced a beige region at the top left corner. Brightness 
shows us that all classifiers except SVM treat this region 
as a low confidence one. This can be explained by the total 
absence of training samples in that region. This also tells 
us that the behavior of SVM in this region is likely wrong.

Confidence visualization also helps to quickly assess the 
overall difficulty of classifying a dataset. Consider e.g. the 
Reuters dataset (Fig. 4 bottom row). Compared to HAR 
(Fig. 4, second row), the decision maps for this dataset are 
darker for all four classifiers. This shows that it is harder 
to extrapolate (during inference) from a model trained on 
Reuters than one trained on HAR. Note that this is not the 
same as the usual testing-after-training in ML. Indeed, for 
testing, one needs to ‘reserve’ a set of labeled samples which 
cannot be used during training. In contrast, SDBM does not 
need to do this as it synthesizes ‘testing’ samples on the fly 
via the inverse projection P−1 . Also, classical ML testing 
only gives a global or per-class accuracy. In contrast, SDBM 
gives a per-region-of-the-data-space confidence, encoded by 
brightness.

Comparison with DBM Fig. 5 shows the SDBM maps 
side-by-side with maps created by the original DBM tech-
nique for Logistic Regression, Random Forest, and k-NN 
classifiers and three real-world datasets. For DBM, we used 
UMAP [17] for the direct projection and iLAMP [15] for 
the inverse projection. Several observations can be made, 
as follows.

First, we see that the SDBM and DBM projections P(D) 
of the same datasets are not the same—compare the bright-
colored dots in the corresponding figures. This is expected, 
since DBM employs a user-chosen projection technique P 
(UMAP in our case) while SDBM learns P from the label-
based clustering of the data using the SSNP method (see 
“Methods” section). Since the DBM and SDBM projections 
P(D) differ, it is expected that the overall shapes of the ensu-
ing decision maps will also differ—see e.g. the nearly hori-
zontal decision boundary between the blue and red zones for 
Random Forests with DBM for FashionMNIST (2-class) vs 
the angled boundary between the same zones for the same 
classifier, same dataset, with SDBM (Fig. 5, middle row, 
two leftmost images). For the relatively simple classifica-
tion problem that FashionMNIST (2-class) is, this is not a 
problem. Both DBM and SDBM produce useful and usable 

Fig. 4  Decision Boundary Maps created with SDBM for several clas-
sifiers, HAR and Reuters datasets. Columns show different classifiers. 
Rows show different datasets, with and without confidence encoded 
into brightness
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renditions of the two resulting decision zones, showing that 
this classification problem succeeded with no issues.

For more difficult datasets (FashionMNIST 10-class or 
HAR), the situation is very different: DBM shows highly 
noisy pictures, in which it is very hard to say where and 
which are the actual decision zones. If these images were 
correct, this would mean that none of the three tested classi-
fiers could correctly handle these two datasets. Indeed, such 
noise-like rapid changes as the DBM images show would 
mean that the classifiers would change decisions extremely 
rapidly and randomly as points only slightly change over 
the data space. This is known not to be the case for these 
classifiers. In more detail: Logistic Regression has built-
in limitations of how quickly its decision boundaries can 
change [7]. k-NN essentially constructs a Voronoi diagram 
around the same-class samples in the nD space, partitioning 
that space into cells whose boundaries are smooth mani-
folds. DBM does not show any such behavior (Fig. 5, third 
and fifth columns). In contrast, SDBM shows a far lower 
noise level and far smoother, contiguous, decision zones and 
boundaries. Even though we do not have formal ground truth 
on how the zones and boundaries of these dataset-classifier 
combinations actually look, SDBM matches better the prior 
knowledge we have on these problems than DBM.

However, DBM’s results depend on the choice of the 
direct projection P and inverse projection P−1 it uses (see 
“Methods” section). To compare SDBM with DBM under 
these degrees of freedom, we ran DBM for the three classi-
fiers shown in Fig. 5 on the FashionMNIST 10-class data-
set, but used four different projection methods P (Metric 

MDS [59], PLMP [60], Projection by Clustering (PBC) [61], 
and t-SNE [16]), and used NNInv [18] instead of iLAMP for 
the inverse projection P−1 . Figure 6 shows the decision maps 
created by DBM for these configurations. We see that these 
are practically as noisy as the DBM results shown in Fig. 5 
(column 3). In contrast, the SDBM results (Fig. 5, column 4) 
show better separated, less noisy, smoother-boundary deci-
sion zones. This strengthens our claim that SDBM produces 
higher-quality maps than DBM.

Fig. 5  Comparison between SDBM and DBM using three different datasets and three classifiers

Metric MDS PLMP PBC t-SNE
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Fig. 6  DBM images using more direct and inverse projection meth-
ods, FashionMNIST (10 class). Compare these images with SDBM 
for the same classifiers and dataset in Fig. 5 (column 4)
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Stability Analysis

We now turn to the stability desirable criterion (C5, “Intro-
duction” section). As explained there and also in “Back-
ground” section, a stable decision map algorithm is one 
which shows only small changes in the output decision map 
when its input, i.e., the labeled dataset (D, y) it was con-
structed to show, change little. By extension, when this input 
does not change, the output map should also not change. If 
this is not the case, then the decision map may show patterns 
which are highly influenced by irrelevant (small) changes in 
the input data or algorithm parameters which, in turn, can 
be highly misleading.

Figures  5 and  6 show two reasons why the original 
DBM algorithm is unstable. First, we see that DBM cre-
ates very noisy, discontinuous, decision maps. However, as 
we explained in “Quality on Real-World Datasets” section, 
the visualized classifiers are known to change their decision 
slowly as their inputs change. The DBM images in Figs. 5 
and 6 show a different picture, suggesting that the classifiers 
rapidly change outputs as inputs only slightly change. Thus, 
DBM itself introduces instabilities in the computation of the 
decision maps which are not genuinely there in the visual-
ized classifiers. In contrast, SDBM shows far smoother, less 
noisy, decision maps, for the same classifiers and datasets. 
Secondly, Fig. 6 shows that DBM creates very different 
(and still noisy and discontinuous) decision maps when we 
change its two hyperparameters, namely the direct projection 
P and inverse projection P−1 , for the same dataset-classifier 
combination. This is by definition an unstable algorithm.

While SDBM shows far smoother, more continuous, 
decision maps than DBM, we would like more evidence to 
claim that SDBM is stable. In this section, we address this 
by explicitly measuring SDBM’s stability, as follows (see 
also Fig. 7; compare to Fig. 1 that shows the baseline SDBM 
method):

• let D ∈ ℝ
n be a training dataset with labels y (Fig. 7 step 

0);
• let f(D) be a classification model trained on D and y;
• let S(f) be the decision map computed by SDBM on f(D);
• let � ∶ ℝ

n × [0, 1] → ℝ
n be a change, or perturbation 

function. That is, �(D, �) is the dataset D changed by � 
with a change intensity � ∈ [0, 1] . Larger � values change 
D more, and �(D, 0) = D , i.e. a value � = 0 means no 
change. We record this change intensity � by a set of 
samples, or change amounts, �i (Fig. 7 step 1);

• compute Di = �(D, �i) , a set variations of the dataset 
D, changed by perturbation � , with change intensities �i 
(Fig. 7 step 2);

• train the models fi = f (Di) . Labels y of Di stay the same 
as those of D, only the sample values change (Fig. 7 step 
3). Note that we apply the changes on the training sets of 

the visualized classifiers, not the test sets, since changing 
a test set will not change the decision map of a trained 
classifier;

• construct the decision maps Si = S(fi) (Fig. 7 step 4);
• visualize the maps Si to interpret the stability of SDBM 

(Fig. 7 step 5).

The intuition of the above procedure is simple: Let S0 be 
the decision map computed by SDBM for a dataset D and 
some classifier f. Let Si be the decision maps computed by 
SDBM for the same classifier but for increasingly perturbed 
versions Di of the dataset. If SDBM is a stable method, then 
it should produce decision maps Si which are similar to 
S0 for low i values and increasingly different from S0 as i 
increases. Note that a similar definition of stability—small 
input data changes should lead to small output visualization 
changes—was used to assess other visualization techniques 
for high-dimensional data such as projections [29, 30] and 
treemaps [62, 63].

We apply this procedure to three types of data changes � 
defined as follows:

• Add constant: � adds a fixed bias value � to all dimen-
sions of D. For the image datasets (MNIST, FashionMN-
IST), we used �i ∈ {0.07, 0.15, 0.3} , which correspond 
to a ‘brightening’ of the images with up to 30%. For the 
Reuters text dataset, we used �i ∈ {0.05, 0.08, 0.2};

• Drop dimensions: � sets to zero a given number of ran-
domly chosen dimensions from the n ones of D. We used 
here �i ∈ {0.1n, 0.2n, 0.3n} , which means that � has an 
effect similar to removing up to 30% of D’s dimensions;

• Random noise: � adds to all D’s dimensions random 
noise sampled from a normal distribution with mean 0 
and standard deviation �i ∈ {0.01, 0.05, 0.1}.

These changes are related to the ones used in [30] to test 
the stability of the NNP projection—not the same as our 

Fig. 7  Pipeline for assessing SDBM stability
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classifier decision maps, but related in spirit. For additional 
rationale referring to the purposefulness of these changes, 
we refer to [30].

Visualizing Stability We next apply these three change 
types � , each sampled for three change intensities �i , for the 
SDBM maps constructed for Logistic Regression and Neu-
ral Networks trained with the MNIST, FashionMNIST, and 
Reuters datasets—thus, we compute and evaluate a total of 
3 × 3 × 2 × 3 = 54 decision map images. Figures 8, 9, and 10 
show these images for the three datasets with confidence 
encoded into brightness (see “Quality on Real-World Data-
sets” section). In each figure, the leftmost column (labeled 
‘without noise’) shows the decision map of the original, 
unperturbed, dataset. The rightmost three columns show, 
per row, the decision maps for the respective (classifier, 
dataset, noise-type) combination, for increasing amounts of 
noise amounts. As explained earlier, if the decision maps 
slowly and increasingly change with respect to the noise-free 

map as the noise level increases, this means that the SDBM 
method is stable.

Figures 8,  9, and 10 show indeed this stability. If we 
scan each row left-to-right, we see how the images become 
progressively more different from the leftmost image (deci-
sion map for the unchanged dataset). Different rows for a 
classifier show the effect of the three different change types. 
Interestingly, in terms of overall amount of visual change, 
these effects are quite similar. Take, for example, Logistic 
Regression trained with FashionMNIST (Fig. 8, top three 
rows): The nine images to the right are quite similar among 
themselves and also similar with the decision map of the 
unchanged dataset (shown in the left column). Also, we 
see that the changes of the maps do not seem to differ—
in terms of amount—for the three datasets. The fact that 
SDBM appears to be quite stable for different change types 
and for different datasets is a quite unexpected result, as the 
nature of the three change types and the three tested datasets 
is quite different. Related work [30] has shown that, when 

Fig. 8  SDBM decision maps for two classifiers trained with vary-
ing types and amounts of noise, FashionMNIST dataset. Confidence 
is encoded into brightness. Leftmost column shows the maps for the 
original, un-noised, datasets. As more noise is added (columns 2 to 
4, noise amounts marked inside images), the decision maps start pro-
gressively diverging from the original, leftmost, map

Fig. 9  SDBM decision maps for two classifiers trained with varying 
types and amounts of noise, MNIST dataset. Confidence is encoded 
into brightness. Leftmost column shows the maps for the original, 
un-noised, datasets. As more noise is added (columns 2 to 4, noise 
amounts marked inside images), the decision maps start progressively 
diverging from the original, leftmost, map



 SN Computer Science           (2023) 4:226   226  Page 12 of 18

SN Computer Science

testing the stability of the NNP deep-learned projection [31], 
different change types (similar to ours) have quite different 
effects and also that the effects differ strongly as a function 
of the dataset. In other words, SDBM appears to be a more 
stable method than NNP. There can be many factors that 
make SDBM and NNP different, including the supervised 
nature of NNP vs self-supervised one of SDBM and the fact 
that SDBM learns and next applies both a direct and inverse 
projection, whereas NNP only learns a direct projection.

Figures 8,  9, and 10 also outline two other important 
aspects of SDBM. First, we see that not just the shapes and 
sizes, but also the relative positions in the image of the var-
ious decision zones are quite stable over change. This is 
important for practical SDBM usage. Indeed, if the decision 
zones would maintain similar sizes and shapes but wildly 
change positions, interpreting the maps would be hard. 
Moreover, such position changes would confuse the user as 
they would imply instability of the underlying classification 
model. Secondly, we see that the confidence of the maps 

changes only very little as with the dataset changes. This is 
a desirable result that confirms indirectly SDBM’s stability, 
as follows: Small changes of the confidence indicate that the 
trained classifiers for the various changed datasets �(D, �i) 
behave similarly to the classifier trained on the unchanged 
dataset. Since these classifiers are similar, their decision 
maps also should be similar—and this is what we observe 
in the above-mentioned images.

Aggregated Change Maps Visualizing individual SDBM 
maps for increasing amounts of change can be difficult as 
each such image needs to be compared with the original 
map (for the unchanged dataset). This becomes even harder 
to do when one wants to consider more than a few samples 
values of the change amount—which is actually useful when 
one wants to discern a clearer trend in terms of visual (map) 
change vs data change. To address this, we propose two ways 
to aggregate multiple SDBM maps, as follows. Consider all 
maps Si computed multiple values �i , 1 ≤ i ≤ N , for a single 
change type � . We compute a single aggregated map by ana-
lyzing, at each pixel location p , the label values fi of the N 
images Si at location p , using a ‘hard voting’ procedure. The 
color assigned to the aggregated map at p will map the label 
appearing most frequently in the set {f1,… , fn} at that loca-
tion. We also set the luminance of the aggregated map at p 
to the fraction of the N maps that have ‘voted’ for this value.

Figure 11 shows SDBM maps for the same classifiers 
and datasets as discussed above, aggregated using hard 
voting for each change type. We do not aggregate different 
change types together as we believe this would be confusing 
to interpret. For each change type, we use N = 10 different 
change values �i , sampled uniformly between the minimum 
and maximum values used earlier to generate Figs. 8,  9, 
and 10. We interpret the images in this figure as follows: 
Bright colored areas indicate stable decision zones which do 
not change as the classifier’s training set is perturbed. Darker 
areas indicate decision zones which change as the training 
set is perturbed—the darker the area, the more that decision 
zone changes during the applied data changes. The images 
exhibit a ‘color banded’ structure, which is due to the fact 
that there are maximally K = 10 possible brightness levels, 
where K is the number of classes of the problem. These 
range from fully bright, indicating 100% agreement of all 
decision zones for all N trained classifiers, to a luminance of 
1/K, which indicates that the N classifiers are uniformly split 
into K groups each voting for a different label value. The 
brightness inside a decision zone has a similar gradient with 
that shown earlier in Figs. 8,  9, and 10—that is, points close 
to a decision boundary appear darkest while points deep 
inside a decision zone are brightest. However, the meaning 
of the brightness is different: In the earlier image, brightness 
encoded confidence of classification at a given map location; 
in the aggregated map, brightness encodes stability of the 
decision maps at a given location. Confidence and stability 

Fig. 10  SDBM decision maps for two classifiers trained with varying 
types and amounts of noise, Reuters dataset. Confidence is encoded 
into brightness. Leftmost column shows the maps for the original, 
un-noised, datasets. As more noise is added (columns 2 to 4, noise 
amounts marked inside images), the decision maps start progressively 
diverging from the original, leftmost, map
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are positively correlated—a map changes the least in areas 
where a classifier is very confident of its inference and con-
versely. However, the two visualizations convey different 
types of insights, as explained above.

The above discussion suggests that it would be useful to 
create an aggregated map that visualizes both confidence and 
stability. We do this using, by analogy with the technique 
presented above, a ‘soft voting’ procedure, as follows. The 
color of each pixel in this soft-voting map is determined 
identically to the hard-voting map as the most frequent label 
in the set {f1,… , fn} at that location. However, we now set 
the brightness to depict the average value, at that location, of 
the confidences of the N classifiers whose SDBM maps we 
want to aggregate. This way, the soft-voting map depicts the 
overall confidence of the aggregated maps across all applied 
change levels �i.

Figure 12 shows the SDBMs for the same classifiers 
and datasets as in Fig. 11 aggregated with soft voting. The 

interpretation of the aggregated images in Fig. 12 is dif-
ferent from those in Fig. 11—darker regions indicate now 
areas where the aggregated decision maps have overall 
low confidence. We see that such areas follow the decision 
zone borders in the aggregated maps, just as in the origi-
nal, unperturbed, maps (shown in the leftmost column in 
Fig. 12). We also see that the dark areas in Fig. 12 correlate 
well with the dark areas in Fig. 11. This tells us that, for 
the studied classifiers and datasets, the decision maps are 
less stable in areas where the classifiers are low confidence, 
and conversely, decision maps are stable in areas of high 
classifier confidence. The latter answers our question from 
“Introduction” section positively.

Computational Scalability

We next study the scalability of SDBM and compare it to 
the original DBM method. For this, we created maps using 

Fig. 11  Aggregated decision maps computed by hard voting for 
two classifiers trained with three change types, ten change amounts, 
on three datasets. Leftmost column shows the decision maps of the 
unchanged datasets

Fig. 12  Aggregated decision maps computed by soft voting for two 
classifiers trained with three change types, ten change amounts, 
on three datasets. Leftmost column shows the decision maps of the 
unchanged datasets
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synthetic Gaussian blobs datasets with 5 clusters, varying 
the dimensionality from 10 to 500, and varying the map size 
from 252 to 3002 pixels. We did not use larger maps since 
the speed-trends were already clear from these sizes, with 
DBM getting considerably slower than SDBM. We used this 
synthetic data approach, rather than real-world datasets, as 
it allowed us to control the data dimensionality in a fine-
grained way, which is the key factor influencing computing 
speed for both methods. Note that the number of samples 
does not heavily influence DBM and DBM’s computing 
times. Both methods only need to project a dataset once 
after which they need to apply the inverse projection P−1 
for each map pixel. For typical situations, the pixel count 
is far larger than the sample count, which makes the former 
dominate the map computation cost.

Figure 13 shows the running times of both methods as a 
function of both the grid size (horizontal axis) and dataset 
dimensionality (different-color lines). We see that DBM’s 
runtime increases quickly with dimensionality, taking about 
5 min to create a 3002 map for the 500-dimensional dataset. 
In contrast, SDBM is over an order of magnitude faster, tak-
ing roughly 7 s to run for the same dataset. Also, we see that 
SDBM’s speed depends far less on the data dimensionality, 
whereas this is a major slowdown factor for DBM. All in all, 
this shows that SDBM is significantly more scalable than 
DBM. This can be explained by the fact that SSNP, which 
underlies SDBM, jointly trains both the direct and inverse 
projections by deep learning. SDBM is GPU-accelerated, 
linear in the sample and dimension counts both for train-
ing and inference, and does not need to use different reso-
lutions and sampling tricks for accelerating the 2D to nD 
mapping (see “Methods” section). In contrast, DBM uses 
UMAP and iLAMP for the direct, respectively, inverse pro-
jections (as mentioned earlier). None of these techniques is 
GPU-accelerated. Also, while UMAP is close to linear in 
the sample count and dimensionality, iLAMP is superlinear 

in dimensionality and sample count. Together, these aspects 
make DBM significantly slower than SDBM.

Implementation Details

All experiments presented above were run on a dual 8-core 
Intel Xeon Silver 4110 with 256 GB RAM and an NVidia 
GeForce RTX 2070 GPU with 8 GB VRAM. Table 1 lists all 
open-source software libraries used to build SDBM and the 
other tested techniques. Our implementation and all datasets 
used in this work are publicly available at [64].

Discussion

We discuss how our technique performs with respect to the 
criteria C1-C5 introduced in “Introduction” section.

Quality (C1) SDBM is able to create maps that show 
classifier decision boundaries very clearly, and, most 
importantly, much clearer than the maps created with the 
original DBM. For the same dataset-classifier combinations, 
SDBM’s maps show significantly less noise, more compact 
decision zones, and smoother decision boundaries, than 
DBM. These results are in line with what we expect for data-
set-classifier combinations for which we have ground-truth 
knowledge about their decision zones and boundaries (see 
Fig. 5 and related text). As such, we conclude that SDBM 
captures the actual decision zones better than DBM can do.

Fig. 13  Computation time to 
create decision maps of increas-
ing size by SDBM and DBM 
using synthetic datasets of vary-
ing dimensionality. Vertical axis 
is in logarithmic scale

Table 1  Software packages used in the evaluation

Technique Software used publicly available at References

SSNP http:// keras. io (TensorFlow backend) [65]
UMAP http:// github. com/ lmcin nes/ umap [17]

http://keras.io
http://github.com/lmcinnes/umap
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Scalability (C2) SDBM is an order of magnitude faster 
than DBM. Since SDBM scales linearly in the number of 
observations during inference/drawing, and it is end-to-end 
GPU-accelerated, it is able to generate maps having hun-
dreds of thousands of pixels in a few seconds, which makes 
it practical for handling large datasets and rendering highly 
detailed decision maps.

Ease of use (C3) SDBM produces good results with prac-
tically no need to for hyperparameter tuning. In more detail, 
there are only two such hyperparameters. First, there is the 
number of epochs used to train SSNP to construct the direct 
and inverse projections. Following [52], we set this to a 
default value of 10. Secondly, there is the resolution R of the 
output decision map. Note, however, that this parameter does 
not influence the stability of the method, but only the level-
of-detail of the produced decision maps. As Fig. 13 shows, 
the computation time is linear with the output resolution—
which is expected, since SDBM needs to execute an inverse 
projection and classifier model inference per output pixel, 
and both these operations have a constant cost. We also note 
that, compared to SDBM, the parameter-setting of DBM is 
far more complex. Briefly put, DBM is very slow and as 
such uses a low resolution. However, this implies a sparse 
sampling of the input data space. To counter this, DBM cre-
ates multiple randomly-distributed 2D sample points in each 
grid cell, backprojects these, classifies the backprojections, 
and aggregates the resulting labels to compute the final pixel 
color. To obtain good results, DBM requires a careful tuning 
of the number of such sample points inside every pixel (for 
more details, we refer to [7]). SDBM does not have any of 
these problems as it can directly construct high-resolution 
images.

Genericity (C4) As for the original DBM method, SDBM 
is agnostic to the nature and dimensionality of the input data, 
and to the classifier being visualized. We show that SDBM 
achieves high quality on datasets of different natures and 
coming from a wide range of application domains, and with 
classifiers based on quite different algorithms. As such, 
SDBM does not trade any flexibility that DBM already 
offered, but increases quality, scalability, and ease of use, 
as explained above.

Stability (C5) We have described a range of experiments 
that show that SDBM is stable with respect to changes in 
the training dataset of the classifiers it visualizes. For quite 
significant changes amounting to additive bias up to 30% of 
the data range, dropping up to 30% dimensions, and add-
ing noise up to a 0.1 standard deviation, SDBM creates 
decision maps which differ visually little from the ones for 
the unperturbed datasets. Additionally, we showed that the 
type of perturbation does not significantly influence the 
amount of change in the produced decision maps. The maps 
are also stable in the sense that decision zones are plotted 
in (roughly) the same areas of the map regardless of the 

perturbation. Moreover, the overall visual appearance of the 
decision maps, e.g. in terms of decision boundary smooth-
ness and island-like small-scale disconnected regions, is not 
influenced by perturbing the training set. Interestingly, the 
stability of SDBM is far higher in the presence of similar 
input perturbations than that of a related NNP technique 
that also uses deep learning for projecting high-dimensional 
data [30]. Interpreting SDBM’s stability needs, potentially, a 
few extra words: What we showed, is that classifiers trained 
by changed training-data produce similar decision maps to 
classifiers trained by unperturbed data. We argue that this 
makes sense in the formal definition of stability of a func-
tion (SDBM in our case) since we change the input of that 
function which, in our case, is the trained classifier f (see 
“Background” section). In turn, f’s behavior depends solely 
on its training set. One could argue that a trained classifier 
also depends on the test set and that such a test set should 
be varied as well to assess the classifier. While this is true, 
changing a test set does not change the formal decision zones 
or boundaries of a trained classifier model, hence it does 
not change its SDBM visualization. As such, the main vari-
able we can change to assess SDBM’s stability is the classi-
fier’s training set. Importantly, we also showed that SDBM 
is more stable than its predecessor, DBM—which can be 
ascribed to the deterministic nature of the deep-learned 
direct and inverse projections in SSNP as opposed to the 
direct and inverse projections (UMAP, respectively iLAMP) 
used by DBM.

Limitations SDBM shares a few limitations with DBM. 
First and foremost, it is hard to formally assess the quality 
of the decision maps it produces for dataset-classifier com-
binations for which we do not have clear ground-truth on the 
shape and position of their decision zones and boundaries.
Our work showed that SDBM produces results fully in line 
with known ground truth for such simple situations. How-
ever, this does not formally guarantee that the same is true 
for more complex datasets and any classifiers. Finding ways 
to assess this is an open problem to be studied in future 
work. Secondly, the interpretation of the SDBM maps can 
be enhanced. Examples shown in this paper outlined how 
such maps can help finding out whether a trained classifier 
can generalize well, and how far, from its training set, and 
how different classifier-dataset combinations can be com-
pared by such maps. Yet, such evidence is qualitative. A 
more formal study showing how users actually interpret such 
maps to extract quantitative information on the visualized 
classification problems is needed. Finally, while our stabil-
ity study outlined that SDBM is surprisingly stable to sig-
nificant variations of a classifier’s training set, a full under-
standing of such a stability concept needs further work. For 
instance, one would like to test SDBM stability in presence 
of varying the classifier’s training hyperparameters. Also, in 
such a stability study, one would arguably want to use more 
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data-domain-dependent change types than the generic ones 
that we explored in “Stability Analysis” section.

Applications Decision maps are not and end by them-
selves but a tool that allows ML engineers to study a given 
classification model and, in the case the model performs 
poorly, obtain insights on how to improve it. The current 
paper has shown that SDBM can produce high-quality deci-
sion maps that have all the requirements needed for their 
application in practice (as discussed above). As such, SDBM 
is now ready to be actually deployed in concrete scenarios. 
In this respect, we believe that imaging applications are one 
of the domains where SDBM would best fit. Examples of 
ML applications in this domain include transfer learning for 
image classification [66], understanding important features 
for classification of histopathology images [67], analysis of 
misclassification results in cell image classification [68], 
microorganism image segmentation [69], and data augmen-
tation for cancer image classification [70].

What all these applications have in common—from a 
technical perspective—is the (a) usage of complex multi-
stage, deep learning, models to (b) analyze image data. As 
such, fine-tuning the respective models is a complex task, for 
which projections are typically used. We believe that using 
decision maps can significantly augment the insights shown 
by projections as one can effectively see how decision zones 
and decision boundaries relate to the training-set and test-set 
points. Moreover, since the targeted data are images, one can 
effectively display such images e.g. as users move a tooltip 
over the decision map image. This can show not only which 
existing images fall in specific decision zones (or close 
to decision boundaries), but also synthesize new images, 
via backprojection, that fall in the ‘empty’ spaces between 
existing samples. These synthesized images can next help 
understand and improve how the trained classification mod-
els work, e.g., by user-supervised data augmentation.

Conclusion

In this paper, we have presented and explored the behavior 
of SDBM, a new method for producing classifier Decision 
Boundary Maps. Compared to the only other similar technique 
we are aware of—DBM—our method has several desirable 
characteristics. First, it is able to create decision maps which 
are far smoother and less noisy than those created by DBM and 
also match the known ground-truth of the visualized classifica-
tion problems far better than DBM, therefore allowing users to 
interpret the studied classifiers with less confusion. Secondly, 
SDBM is about an order of magnitude faster than DBM due 
to its joint computation of direct and inverse projections on a 
fixed-resolution image by deep learning. Thirdly, SDBM has 
virtually no parameters to tune (apart from the resolution of the 
desired final image) which makes it easier to use than DBM. 

Finally, in addition to our earlier work [9], we have presented 
a comprehensive study of SDBM’s stability in presence of sev-
eral types and amounts of changes of the examined classifiers’ 
training sets. Our study shows that SDBM is quite stable for a 
wide range of such changes, irrespective of the classifier used 
or the nature of the training set. We have also presented new 
methods to compactly visualize SDBM’s stability by means 
of aggregated maps which summarize the changes in several 
SDBM maps.

Future work can target several directions. A very relevant 
direction is the generation of maps for multi-output classi-
fiers, i.e., classifiers that can output more than a single class 
for a sample. Secondly, we consider organizing more quanti-
tative studies to actually gauge which are the interpretation 
errors that SDBM maps generate when users consider them 
to assess and/or compare the behavior of different classifiers, 
which is the core use-case that decision maps have been pro-
posed for. Thirdly, proposing new methods to measure and 
visualize SDBM’s stability can not only help increasing trust 
in this method but also help understanding stability of other 
regressors for changing high-dimensional data [19, 29, 30]. In 
this sense, proposing formal metrics to characterize SDBM’s 
stability, akin to measuring directional derivatives of a multi-
variable function, or sensitivity analysis [71], is a key direction 
to follow. Last but not least, using SDBM to understand and 
improve existing complex classification models, especially for 
image data, is an important direction we aim to pursue.
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