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Abstract
Multivariate functions have a central place in the development of techniques present many domains, such as machine learning 
and optimization research. However, only a few visual techniques exist to help users understand such multivariate problems, 
especially in the case of functions that depend on complex algorithms and variable constraints. In this paper, we propose a 
technique that enables the visualization of high-dimensional surfaces defined by such multivariate functions using a two-
dimensional pixel map. We demonstrate two variants of it, OptMap, focused on optimization problems, and RegSurf, focused 
on regression problems in machine learning. Both our techniques are simple to implement, computationally efficient, and 
generic with respect to the nature of the high-dimensional data they address. We show how the two techniques can be used 
to visually explore a wide variety of optimization and regression problems.
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Introduction

Machine Learning (ML) and Operations Research (OR) 
methods are key ingredients in the data scientist’s tool-
set. Machine Learning has reached high popularity in 
the last decade, growing from a field initially of interest 

to mathematicians and statisticians to the point of being 
a generic technology for many fields  [1, 2]. Operations 
Research also plays a crucial role in many industries, from 
logistics to finance. Since its inception in the 1950s, it has 
delivered many tools for practitioners to improve their pro-
ductivity, such as algebraic modeling languages like GAMS  
[3], AMPL  [4], and JuMP  [5], which enable the use of 
notation very close to the mathematical definition of opti-
mization problems.

However, while being different approaches to solve prob-
lems with data, both ML and OR deal with functions having 
high-dimensional input spaces and sophisticated algorithms 
whose inner workings can be hard to understand. Visualiza-
tion techniques help understanding such complex data pipe-
lines by allowing users to explore the large, high-dimen-
sional, and complex spaces they deal with. However, while 
many visualization techniques exist for high-dimensional 
data  [6], only a few such techniques target the visualization 
of high-dimensional functions. To the best of our knowledge, 
we are not aware of any work that allows for the visualiza-
tion of high-dimensional continuous functions by consider-
ing all their dimensions at once, rather than only a few sets 
of dimensions at a time.

Recently, we proposed OptMap  [7], a technique for the 
visualization of surfaces generated by high-dimensional 
explicit functions of the form f ∶ ℝ

n
→ ℝ that model OR 

problems, whose input variables have known domains. In 
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this paper, we complement OptMap with RegSurf, a visu-
alization technique for high-dimensional implicit functions 
f which are inferred from data, as in ML regression prob-
lems. We show how OptMap and RegSurf are instances of 
a more general visualization framework for high-dimen-
sional functions. This commonality allows us to propose 
efficient, easy-to-implement, and generic implementations 
for both our visualization techniques.

We next outline the joint contributions and specifics 
of OptMap and RegSurf. OptMap enables the OR practi-
tioner to literally see the decision variables and constraint 
spaces using a two-dimensional dense map, regardless of 
the number of variables and constraints of the problem. 
RegSurf uses a similar 2D dense map to enable the ML 
practitioner to visualize the surface generated by a single-
output regressor. In both cases, the map enables the user to 
visually explore the high-dimensional surface, regardless 
of the dimensionality (number of variables) of the input 
space.

OptMap can be used in several ways, such as a debug-
ging aid to help diagnose errors in constraint definition; to 
provide insight in an optimizer’s inner workings by plotting 
the path taken from a starting point to a solution; and to 
visually explore the high-dimensional space of the decision 
variables in terms of objective function value and constraint 
feasibility. In parallel, RegSurf enables the user to assess 
the goodness of fit of a regressor with respect to the training 
data, thereby complementing the existing methods that use 
a single-valued metric such as mean squared error or the 
R2 score. RegSurf can be used to find regions of the input 
space where the data are underrepresented, which may cause 
the regressor’s results to be biased, and to visually gauge if 
and where a regressor is under- or overfitting the data. Both 
OptMap and RegSurf can also be used to compare the per-
formance of different regressors and solvers over the same 
data, and to gain insight over their inner workings.

The joint visualization framework that enables OptMap 
and RegSurf has the following features, which, to our knowl-
edge, are not achieved by existing visualization techniques 
for regression and/or optimization:

Quality (C1) Our visualizations create images that encode 
information at every pixel, using a combination of dense 
maps, direct, and inverse projection techniques;

Genericity (C2) We can handle many kinds of high-
dimensional, single-valued functions, such as the ones 
common in optimization or regression problems. The only 
requirements we have are that the user provides implementa-
tions of the objective function, constraints (if any), and, for 
OptMap, the range for each variable;

Simplicity (C3) Our framework is based on existing pro-
jection techniques which have a straightforward implementa-
tion, allowing easy replication and deployment;

Ease of use (C4) Our framework has few hyperparam-
eters, all with given presets. In most cases, users do not have 
to adjust these to obtain good results;

Scalability (C5) Using a fast projection technique and 
caching results when possible, our framework is fast enough 
to allow its use during the rapid development-test cycle of 
optimization and ML models.

We structure our paper as follows. “Background” presents 
the used notations and discusses related work in visualiza-
tion for multivariate functions, optimization, and ML regres-
sion. “Method” details our framework. “Results” presents 
applications and results of both OptMap and RegSurf on a 
number of non-trivial problems. “Discussion” discusses our 
proposal. “Conclusion” concludes the paper.

Background

Related work concerns optimization techniques (“Optimiza-
tion”), regression problems in machine learning (“Regres-
sion in Machine Learning”), and visualization of high-
dimensional objects (“Visualization of High-Dimensional 
Objects”).

Optimization

Let f ∶ ℝ
n
→ ℝ be a function to be minimized. Let 

x = (x1,… , xn) be an n-dimensional vector of n of the so-
called decision variables xi , 1 ≤ i ≤ n , i.e., the input vari-
ables of the function f. An optimization problem O involving 
the function f can be described as

In other words, solving the problem O means finding specific 
points x ∈ ℝ

n where f has a minimal value and which also 
obey the constraints defined by the set S. This set is also 
called the feasible set of all points that can be considered 
as valid for O. When such a set is provided, it constraints 
the range of inputs of f over which one searches for a mini-
mum—that is, one should not search for minimum points for 
f outside the set S (see more details below).

Optimization problems come in many forms with respect 
to the kind of function to be optimized, type of decision vari-
ables, and presence of constraints:

• Function type Functions f are typically grouped into lin-
ear, convex, and non-convex. Linear functions are of the 
form f (x) = ax + b , which defines a hyperplane. Convex 
functions have many forms, and can be defined as those 
where the points above their graph form a convex set. 

(1)
minimize f (x)

subject to x ∈ S.
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Non-convex functions are neither convex nor linear (lin-
ear functions are also convex).

• Decision variables: These can be discrete ( xi ∈ ℤ ) or 
continuous ( xi ∈ ℝ ). Problems with only discrete vari-
ables are called Integer Programs (IP)  [8]. Problems with 
both discrete and continuous variables are called Mixed 
Integer Programs (MIP).

• Constraints For unconstrained problems, the feasible set 
S is ℝn . Constrained problems have a set of K constraint 
functions ck(x) ∈ {0, 1}, 1 ≤ k ≤ K  , where 0 means 
that the point x is infeasible with respect to constraint 
ck . For constrained problems, the feasible set is defined 
as S = {x ∶

∏
ck(x) = 1, 1 ≤ k ≤ K . Constraints can be 

characterized just as functions (linear, convex, and non-
convex). Additionally, we have box constraints, which are 
simple restrictions on the variables’ domains. Problems 
with continuous variables, linear objective functions, and 
linear constraints are called Linear Programs (LP). Other 
problems are solved by Non-linear Programming (NLP) 
techniques.

Solvers are algorithms that find one of several (approximate) 
solutions to a problem O. To do this efficiently, solvers use 
the type of decision variables, objective function, and con-
straints to pick adequate heuristics that avoid exploring all 
possible x ∈ S , which is impractical in most cases. A very 
popular solver algorithm for linear problems is Simplex  [9, 
10], implemented by software such as Clp  [11], Cbc  [12], 
and GLPK  [13]. For non-linear problems, there are other 
algorithms, such as Gradient Descent, Nelder–Mead  [14], 
and L-BFGS  [15], to name a few. Many solvers work itera-
tively, i.e., start from a given point x0 and evolve this point 
until sufficiently close to the solution of O.

A solution is an n-dimensional point xsol found by the 
solver which is both feasible ( xsol ∈ S ) and optimal. The 
definition of optimality depends on the type of problem and 
solver used: For linear functions with linear constraints, 
solvers are guaranteed to find a global optimum solution 
xsol , which means that no other n-dimensional point x ≠ xsol 
yields a lower value for the objective function f, given those 
constraints. For non-linear functions, solvers may return dif-
ferent local optima, depending on the starting point x0 used 
and the shape of the objective function.

Finally, solvers may provide a trace, or path to solution, 
which is the set T = (x0,… , xk) of all k n-dimensional points 
where they evaluated the objective f, starting from x0 and 
ending with the solution xk = xsol , if one was found, else 
ending with the last point xk evaluated by the solver.

Real-world optimization problems have many variables 
and constraints. Users typically rely on numerical analysis 
to understand if a problem is modeled correctly and if the 
results make sense. Visualization greatly expands the possi-
bilities of model analysis and debugging, giving a quick way 

to check, e.g., if constraints are correctly defined, i.e., not 
under- or over-constraining by mistake; or, for NLP prob-
lems, to check how stable are the optima found, i.e., how 
close they are to peaks or troughs in the data.

Regression in Machine Learning

Regression is one of the two most common problems in ML, 
alongside classification. A regression model can be seen as 
a function

used to predict a continuous response variable. In contrast, in 
classification problems, the response variable is categorical. 
That is, a classifier can be seen as a function

where C is a categorical dataset containing the values of the 
class labels to be inferred from the data.

Regressors and classifiers share many similarities in ML. 
Both functions � and � are typically created by a training 
algorithm, based on a training dataset DT that samples sev-
eral independent variables and the response variable, the lat-
ter being the regressed value � or the inferred class label � . 
Also, both functions are tested on a test set constructed much 
in the same way as the training set. Ideally, both functions 
should reach the response variables recorded by the test set. 
Many of the standard ML algorithms used in classification, 
e.g., Decision Trees  [16], Random Forests  [17], and Gradi-
ent Boosting  [18], can be used for regression as well. This is 
so since classifiers use internally a regressor to compute the 
confidence of a sample being of a certain class and next out-
put the final class labels my maximizing this confidence over 
all available classes. Examples of classifiers and regressors 
abound in the ML literature, such as separating malignant 
from benign images of various tissues in medical science 
(classification) and image-to-image transformation and text 
translation in natural language processing (regression).

However, similar regressors and classifiers also have dif-
ferences. From a goal perspective, a regressor seeks to inter-
polate the sampled values yi of the response variable between 
points xi in its training set DT = {(xi ∈ ℝ

n, yi ∈ ℝ
p)} . In 

contrast, a classifier seeks to separate points xi in its train-
ing set DT = (xi ∈ ℝ

n, yi ∈ C) according to their class yi . 
From a practical perspective, understanding the operation of 
a classifier typically focuses on showing which aspects of the 
input data space determine the assignment of a given class. 
This can be done in terms of highlighting the importance of 
all the n input variables of the classifier  [19]; using locally 
interpretable models  [20]; or visually, in terms of depicting 
the decision zones that the classifier partitions its input space 
ℝ

n into  [21]. Recently, Garcia et al.  [22] presented a survey 

(2)� ∶ ℝ
n
→ ℝ

p

(3)� ∶ ℝ
n
→ C,
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of visual techniques used for explaining deep learning clas-
sification models.

From a practical perspective, understanding a regressor 
is more complicated than understanding a classifier. Even 
if we consider regressors that output a single response vari-
able ( p = 1 ), this response variable is continuous rather than 
discrete as in the case of classifiers. As such, understanding 
a regressor implies explaining how the output varies, e.g., 
in terms of variation speed, local minima and maxima, and 
smoothness of variation, with respect to its input. In contrast, 
explaining a classifier is easier, as it involves only telling 
which ranges of the input variables determine the output of 
one of the (few) class labels. In other words, the explanation 
of a classifier consists of a small set of discrete objects (the 
class labels), whereas the explanation of a regressor must 
show the continuous mapping between the input and out-
put variables. As a consequence, many methods for visually 
explaining classifiers exist (as outlined above); in contrast, 
far fewer methods exist for explaining regressors.

Visualization of High‑Dimensional Objects

Visualization of high-dimensional datasets is an active topic 
for several decades, with many types of methods being pro-
posed  [6, 23] and analyzed via several quality metrics  [24]. 
Our scope is narrower but, importantly, also broader—we 
are interested in visualizing multidimensional functions. We 
outline the differences between the two types of visualiza-
tion next.

Visualizing datasets Visualizing high-dimensional data 
addresses, in the most general case, the task of depicting a 
dataset D = (x1,… , xN) of N data points or samples where 
each sample xi ∈ ℝ

n is an n-dimensional measurement. The 
main challenge here is fitting a large number of samples 
(size N of D) of many dimensions n in the limited, low-
dimensional, visualization space given by a 2D screen. Sev-
eral classes of methods offer various trade-offs for this, e.g., 
table lenses  [25, 26], parallel coordinate plots  [27], and 
scatterplot matrices  [28] (all three classes address large N, 
small n), and dimensionality reduction (handle large N, large 
n, discussed below in more detail). A particular case occurs 
when the D comes from the sampling of a high-dimensional 
function f ∶ ℝ

n
→ K , that is, D = {(xi, f (xi))} . In this case, 

several of the dimensions of a point (xi, f (xi)) map to the 
function’s variables x1,… , xn (also called independent 
dimensions), whereas the remaining so-called dependent 
dimensions f (xi) represent the function’s outputs. Further-
more, when the function’s co-domain K is discrete, we have 
the typical case of visualizing the sampling of a classifier; 
when K is continuous, we have the case of visualizing the 
sampling of a regressor. In all cases, key tasks related to 

visualizing high-dimensional datasets are finding groups of 
similar samples and dependency patterns between the inde-
pendent and/or dependent variables.

Visualizing functions Visualizing high-dimensional func-
tions generalizes the above-mentioned visualizations of data-
sets. The key difference here is that the visualization’s input 
is the entire space defined by the function’s variables, i.e., 
ℝ

n or a subset thereof, rather than the sampling of this space 
that a dataset D captures. This is a far more challenging task, 
since the visualization has to somehow depict the entire dense 
hypercube in ℝn spanned by the respective variables rather 
than the sparse point cloud consisting of samples in D. Also, 
function visualization aims to address additional questions 
not present for datasets, e.g., finding directions of maximal 
(or minimal) change or points where the function is locally 
maximal (or minimal).

The visualization of 2D functions f ∶ ℝ
2
→ ℝ is usu-

ally done by means of 3D height plots, contour plots, or 
color (heatmap) plots. For functions f ∶ ℝ

n
→ ℝ with more 

than two variables ( n > 2 ), there are far fewer options, with 
Hyperslice  [29] being a notable one. Hyperslice presents a 
multidimensional function as a matrix of orthogonal two-
dimensional slices, similar in design to scatterplot matrices  
[28], each showing the restriction of f to one of the 2D sub-
spaces in ℝn , using the 2D function plotting outlined earlier 
(contour plots, color plots, and 3D height plots). Hyperslice-
related approaches have also been used to visualize subspaces 
of regression models in machine learning contexts   [30]. 
Other methods for visualizing high-dimensional functions 
aim to reduce the data dimensionality by techniques such as 
isosurfacing  [31] or projections  [32]. All these techniques 
essentially only visualize a subset of the entire space of the 
function’s input variables.

Visualizing constrained optimization problems is similar to 
the above, since not only the function has to be visualized but 
constraint feasibility as well. Most techniques used for this are 
based on overlaying contour plots with constraint information, 
with one case where image-based techniques are used  [33]. 
Still, such techniques cannot work with more than two dimen-
sions ( n > 2 ). In our work, we remove all above limitations. 
RegSurf, proposed in this paper, aims to visualize functions 
for any n; OptMap does the same for optimization problems 
and also integrates the visualization of constraints.

Dimensionality reduction (DR) is an area of research 
concerned with representation of high-dimensional data by 
a low number of dimensions, enabling different tasks to be 
performed on the data, such as visual exploration  [34]. For a 
dataset D = {xi} , 1 ≤ i ≤ N of N points xi with n dimensions 
each, a dimensionality reduction, or projection, technique is 
a function

P ∶ ℝ
n
→ ℝ

q,
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where q ≪ n , and typically q = 2 . The projection P(x) of a 
sample x ∈ D is a point p ∈ ℝ

q . Projecting a set D yields 
thus a qD scatter plot, denoted next as P(D). The inverse of 
P, denoted P−1(p) , maps a point in ℝq to a high-dimensional 
point x ∈ ℝ

n , aiming to satisfy that P−1(P(x)) = x.
Many types of DR methods exist, such as the well-known 

Principal Component Analysis  [35] (PCA) technique, Mani-
fold Learners, Spring Embedders, and Stochastic Neighbor-
hood Embedding (SNE) techniques, among others. Mani-
fold Learners, such as MDS  [36], Isomap  [37], LLE  [38], 
and more recently UMAP  [39], try to reproduce in 2D the 
high-dimensional manifold on which data are embedded, to 
capture non-linear structure in the data. Spring embedders, 
also called force-directed techniques, such as LAMP  [40] 
and LSP  [41], have a long history in visualization, with 
uses in dimensionality reduction but also in graph drawing. 
The SNE family of methods appeared in the 2000s, and has 
t-SNE  [42] as its most popular member. SNE-class meth-
ods produce visualizations with good cluster separation. For 
extensive reviews of DR methods, and their quality features, 
we refer to  [34, 43]. However, in most cases, DR methods 
are used to visualize high-dimensional datasets and not high-
dimensional functions.

The authors of iLAMP  [44] used direct and inverse pro-
jection techniques applied to non-linear optimization prob-
lems to help users interactively identify good starting points 
for optimization problems. Yet, iLAMP is computationally 
expensive, and has several free parameters the user needs to 
set. The NNInv method  [45] performs inverse projections 
two orders of magnitude faster than iLAMP by deep learning 
the inverse projection function P−1 . A similar deep learning 
idea was used to accelerate the direct projection P by Neural 
Network Projections (NNP)  [46]. Recently, NNInv was used 
by an image-based (dense map) technique to visualize the 
decision boundaries for Machine Learning classifiers  [21] 
for problems with arbitrary dimension n. This can be seen 

as visualizing a function f ∶ ℝ
n
→ C , where f is a classifier 

for nD data and C is a class (label) set. In our work, we also 
use a dense pixel map as visualization model. However, as 
explained earlier, our aim is to understand the behavior of 
optimizers (by OptMap) and regressors (by RegSurf), i.e., 
of continuous real-valued functions, rather than that of dis-
crete-valued classifiers.

Method

Recently, we proposed a technique called OptMap  [7] to 
visualize high-dimensional continuous functions in the con-
text of optimization problems. OptMap aims to visualize any 
type of multivariate, single-output function f ∶ ℝ

n
→ ℝ . Its 

input is a specification of the explicit definition of the func-
tion f plus the domain of all its input variables x1,… , xn . 
In our current work, we propose a new technique RegSurf, 
which extends OptMap to address ML regression. The key 
difference between RegSurf and OptMap is as follows: 
While OptMap requires the user to explicitly specify the 
expression of the function f to be visualized, RegSurf con-
structs this function f by training an ML regressor from a 
given set of sample points and next maps f’s n-dimensional 
input space, and the function’s continuous values, to a 2D 
visualization.

Figure 1 shows high-level pipelines of both OptMap and 
RegSurf. Both methods have the following main workflow 
(with method-specific steps indicated where present):

1. Define variable ranges (OptMap only) The user 
specifies the domain Xi = [xmin

i
, xmax

i
] of each variable xi of 

f (x1,… , xn) . When Xi is the entire real axis ℝ , we select a 
finite subset thereof to avoid too coarse sampling for xi in 
the next step.

(a) (b)

Fig. 1  Pipelines for visualization of optimization (a) and regression (b) problems
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2. Sample data (OptMap only) We uniformly sample 
the ranges Xi defined above, yielding a regular sample grid 
Gn ⊂ ℝ

n . We constrain the maximum number of sample 
points Nmax in Gn to avoid combinatorial explosion. In this 
paper, we used Nmax = 5 M for all experiments. We evaluate 
f on Gn and call the resulting dataset D = {(x, f (x))|x ∈ Gn}.

3. Create mappings We use PCA  [35] trained on D to 
create the mappings P and P−1 from ℝn to ℝq , and from ℝq 
to ℝn , respectively. For OptMap, the dataset D used in this 
process is generated as described in step 2 above. For Reg-
Surf, D is the dataset used for training and testing a desired 
regressor function � , as typically done in ML.

4. Create image We create a pixel image G2 ⊂ ℝ
2 of some fixed 

user-chosen resolution (set to 8002 for all experiments in this paper). Next, 
we use the trained P−1 to map each pixel p ∈ G2 to a high-dimensional 
point x = P−1(p) , x ∈ ℝ

n . Finally, we evaluate the target function to 
determine the color and luminance of the pixels p . For OptMap, this is 
the objective function f (x) and optional constraints. For RegSurf, this 
is the regressor �(x) we trained (see step 3 above). Let v(p) denote next 
the value of f (for OptMap), respectively, of � (for RegSurf) at point 
x = P−1(p) for pixel p.

5. Color pixels We color all pixels p ∈ G2 by the values of 
v(p) using a continuous color map. For OptMap, we also set 
the luminance of p to reflect f (P−1(p)) ’s membership of the 
constraint-set S, to indicate constraint feasibility. If the colormap 
is not isoluminant, as for the Viridis colormap  [47] we use in 
this paper, the luminance of p actually encodes both f and the 
constraints. If desired, one can easily use other—more (percep-
tually) isoluminant colormaps. We leave the question of what 
the optimal colormap is open as part of future work.

6. Draw path to solution (OptMap only) If the solver 
provides the trace T to a solution (see “Optimization”), we 
draw it atop of the 2D image. In detail, we project all the 
data points of the trace T = (x0,… , xk) and obtain the 2D 
points (P(x0),… ,P(xk)) . Next, we connect these points by 
line segments and draw the resulting polyline. As iterative 
solvers typically take small steps, consecutive solver points 
in T are very close to each other, so the same will be true for 
their 2D projections. Hence, using linear interpolation (line 
segments) to connect these points in the image plane is a 
good approximation of the projection of the trace.

7. Draw ground truth (RegSurf only) We draw the train-
ing set DT = {(xi, yi)} used earlier to train our regressor � 
(see step 3) over the 2D image. Each point xi is projected at 
pixel P(xi) and colored by to the absolute error |yi − �(xi)| to 
show the quality of the surface generated by the regressor �.

Results

We next present several experiments that show how our tech-
niques perform in different scenarios. First, we show how 
OptMap can be used to visualize high-dimensional functions 

that have a known shape (“OptMap: Test via High-Dimen-
sional Functions”). As we know the ground truth (i.e., func-
tion shape), we can easily tell whether OptMap is working 
as intended. Next, we test OptMap on several unconstrained 
and constrained optimization problems (“OptMap: Solvers 
for Unconstrained Problems” and “OptMap: Constrained 
Problems”, respectively) and show the added value Opt-
Map provides for these use cases. “OptMap Performance” 
presents a performance evaluation of OptMap. Similarly, 
we demonstrate RegSurf for the visualization of several 
regression algorithms using real-world datasets (“Reg-
Surf: Real-World Datasets”). We also select a specific set 
of datasets and regressors to show the usage of RegSurf to 
visualize overfitting (“RegSurf: Visualizing Overfitting”). 
Finally,  “RegSurf Performance” explores the scalability of 
RegSurf.

OptMap: Test via High‑Dimensional Functions

To test OptMap, we use the six functions f in Table 1. Fig-
ure 2 shows the corresponding six dense maps, computed as 
explained in “Discussion”. In all cases, the domain used for 
all variables was xi ∈ [−5, 5] . All these functions have a pre-
dictable shape and also generalize to many dimensions. We 
created dense maps using increasing numbers of dimensions 
n ∈ {2, 3, 5, 7, 10, 20} . The dense map for n = 2 was created 
for reference only, without using OptMap. Indeed, for n = 2 , 
we can directly visualize f, e.g., by color coding, similar to  
[29]. Showing these maps for n = 2 is, however, very use-
ful. Indeed, (1) for n = 2 , we can show f directly, without 
any approximation implied by OptMap; and (2) given the 
functions’ expressions (Table 1), we know that they behave 
similarly regardless of n. Hence, if, for n > 2 , OptMap pro-
duces images similar to the ground-truth ones for n = 2 , we 
know that OptMap works well. And indeed, Fig. 2 shows us 
exactly this—the OptMap images for n > 2 are very similar 
to the ground-truth ones for n = 2 . The differences imply 
some distortion and rotations, which, we argue, are expected 
and reasonably small, given the inherent information loss 
when mapping a nD phenomenon to 2D.

OptMap: Solvers for Unconstrained Problems

We next use OptMap to show how different solvers per-
form with different unconstrained problems (that is, vari-
ants of Eq. 1). For this, we select a subset of the functions 
in Table 1, namely Styblinski–Tang, Rastrigin and Sphere 
functions, with varying dimensionality n. We use the solv-
ers listed in Table 2, grouped there by solver type, namely 
whether it is gradient-free or if it requires a gradient or a 
Hessian. Figure 3 uses OptMap to show the trace provided 
by each solver, i.e., all the points evaluated by the solver to 
get to the solution (see “Optimization”). We see that, for the 
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simple Sphere function with a global optimum, most solvers 
find an optimal solution, except for the gradient-free meth-
ods, which seem to struggle with the high-dimensionality of 
the problem ( n = 20 ). For the Styblinski–Tang function, we 
see different but close optima were found by most solvers. 
We also see that both gradient-free methods evaluated many 
more points than the other methods, but that Nelder–Mead 
kept moving in the right direction. For the same problem, 
Simulated Annealing had problems converging to an optimal 
solution and eventually gave up. For the Rastrigin function, 
which has many optima, we see that only Gradient Descent 
and L-BFGS could find the solution in a straightforward 
way; the other solvers converged to the wrong solution or 
did not converge.

OptMap: Constrained Problems

We next show how our OptMap performs when dealing with 
constrained optimization problems—that is, finding the min-
imum of some n-dimensional function f whose variables are 
constrained as described in “Optimization”. Table 3 shows 
the definition of constrained problems (objective functions 

Fig. 2  Dense maps for functions 
with known shape as defined in 
Table 1, with increasing dimen-
sionality n > 2 . Compare these 
with the ground-truth maps for 
n = 2

Table 1  Definition of n-dimensional selected functions for ground-
truth testing

Function name Definition

Linear
f (x) =

n∑
i=1

xi

Sphere
f (x) =

n∑
i=1

x2
i

Rosenbrock [48]
f (x) =

n−1∑
i=1

�
100

�
xi+1 − x2

i

�2
+
�
1 − xi

�2�

Step

f (x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

0
n∑
i=1

xi < 0

2
n∑
i=1

xi < 2

4
n∑
i=1

xi < 4

5 otherwise

Rastrigin [49]
f (x) = An +

n∑
i=1

�
x2
i
− A cos(2�xi)

�

where: A = 10

Styblinski-Tang [50]
f (x) =

∑n

i=1
x4
i
−16x2

i
+5xi

2
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and constraints) we used. The first three problems used are 
very common in the optimization literature  [8]. The last two 
problems use the same Sphere and Styblinski–Tang func-
tions defined earlier, but with non-linear constraints added 
to them. Figure 4 shows how OptMap visualizes the problem 
space and solution for each problem. Unfortunately, the solv-
ers used in this experiment, namely, Clp  [11], Cbc  [12], 
GLPK  [13], and Ipopt  [52], do not provide trace informa-
tion to be drawn through the algebraic modeling language 

Fig. 3  OptMap dense maps for unconstrained problems (from 
Table 1) using the solvers in Table 2. White circles indicate starting 
points (random vectors in 5, 10, and 20 dimensions, respectively). 
Red circles indicate optimal points found by the solver. The magenta 

lines and points show the solver traces. The numbers below each 
image indicate the value of the objective function at the solution; red 
values indicate that the solver failed to find an optimal solution (con-
verge), so the value is the one the solver stopped at before aborting

Table 2  Solvers used for unconstrained problems

Solver type Solver

Gradient-free Nelder–Mead  [14]
Simulated annealing

Gradient required Gradient descent
Conjugated gradient  [51]
L-BFGS   [15]

Hessian required Newton

Fig. 4  OptMap dense maps for the constrained problems in Table 3. 
White circles indicate starting points (zero vector). Red circles indi-
cate optimal points found by the solver. Magenta lines show the 

solver traces. Darker areas indicate unfeasible regions. Text below 
each image tells the type of problem, direction (minimization or max-
imization), number of variables, and solver used
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we used, JuMP  [5], so we only draw the straight-line path 
from the (randomly chosen) starting point to solution.

In Fig. 4, we can see for all problems the relationship 
between the objective function and the constraints of the 
problem, which provides insight on how close to boundary 
conditions the solutions are. For example, in the problems 
Schedule, Sphere, and Styblinski–Tang, we see that the solu-
tion found is at the boundary of one or more constraints. 
This is not the case for the Diet and Knapsack problem, 
which indicates that some tuning to the solver’s settings may 
be required to obtain better results, or even some adjust-
ments to the problem definition may be done, such as the 
relaxation of some constraints.

OptMap Performance

OptMap’s effort can be divided into two phases (Fig. 1a): 
In phase 1, most of the time is spent while running PCA 
for the sample points in the grid Gn to define the mapping 
between the nD and 2D spaces. This has to be done only 
once for a given function f and can be reused, e.g., when one 
changes the solver. In phase 2, most time is spent evaluating 

the objective function f and its constraints. Since function 
evaluation is usually very fast and the pixel grid G2 is of lim-
ited size ( 8002 in our experiments), phase 2 takes only a few 
seconds to run on our platform. Table 4 shows the PCA time 
in phase 1 for Nmax = 5 M points. Additional implementation 
and evaluation details are given in Appendix 1. We see in 
Table 4 that time increases quickly with dimensionality. Yet, 
since phase 1 is required to be run only once, and since this 
time is a few minutes only even for a high dimensionality 
n, we argue that this is not a crucial limitation of OptMap.

Table 3  Definition of 
constrained optimization 
problems

Name Definition

Diet Minimize 0.14x1 + 0.4x2 + 0.3x3 + 0.75x4
Subject to 23x1 + 171x2 + 65x3 + x4≥ 2000.0

0.1x1 + 0.2x2 + 9.3x4≥ 30.0

0.6x1 + 3.7x2 + 2.2x3 + 7x4≥ 200.0

6x1 + 30x2 + 13x3 + 5x4≥ 250.0

x1, x2, x3, x4≥ 0.0

Schedule Maximize 300x1 + 260x2 + 220x3 + 180x4 − 8y1 − 6y2
Subject to 11x1 + 7x2 + 6x3 + 5x4≤ 700.0

4x1 + 6x2 + 5x3 + 4x4≤ 500.0

8x1 + 5x2 + 5x3 + 6x4 − y1≤ 0.0

7x1 + 8x2 + 7x3 + 4x4 − y2≤ 0.0

y1≤ 600.0

y2≤ 650.0

x1, x2, x3, x4, y1, y2≥ 0.0

Knapsack Maximize 60x1 + 70x2 + 40x3 + 70x4 + 20x5 + 90x6
Subject to x1 + x2 − 4y≥ 0.0

x5 + x6 + 4y≥ 4.0

30x1 + 20x2 + 30x3 + 90x4 + 30x5 + 70x6≤ 2000.0

x3 − 10x4≤ 0.0

x1, x2, x3, x4, x5, x6, y≥ 0.0

x1, x2, x3, x4, x5, x6≤ 10.0

y≤ 1.0

x1, x2, x3, x4, x5, x6, y∈ ℤ

Sphere
Minimize

10∑
i=1

x2
i

Subject to
10∑
i=1

x2
i
≥ 5.0

Styblinski–Tang
Minimize

∑10

i=1
x4
i
−16x2

i
+5xi

2

Subject to
10∑
i=1

x2
i
≥ 5.0

Table 4  Time to project 
N
max

= 5 M points with different 
dimensionalities n using PCA

Dimensions n Time (s)

3 1.19
5 0.85
7 1.45
10 2.38
20 6.62
50 32.74
100 108.71
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RegSurf: Real‑World Datasets

We use RegSurf to visualize the behavior of several regres-
sion algorithms, namely, Linear Regression, Decision Trees, 
Random Forests, Gradient Boosting, k-Nearest Neighbors 
(kNN), Support Vector Machines (SVM with RBF kernel), 
and Neural Networks. We selected these regression algo-
rithms based on popularity, availability, and replicability (in 
terms of stable, documented, open-source implementations), 
and also on the fact that they use very different approaches to 
the regression problem, and thus generate different types of 
surfaces. Also, since the behavior of these regression algo-
rithms is relatively well understood, we can check that the 
RegSurf visualization works well.

Table 5 lists the datasets used in this evaluation. All these 
datasets are well known in both classification and regres-
sion problems, come from different problems (thus, describe 
phenomena of different complexity, patterns, data structure), 
are publicly available (which favors replicability), and cover 
a range of dimensionalities. All datasets were split 80/20% 
into training and test sets for our experiments. As visible, 
the dimensionality of the datasets in Table 5 is relatively low 
when compared to datasets usually present in deep learn-
ing, e.g., MNIST or similar. Technically speaking, RegSurf 
can handle far higher dimensional datasets directly (see the 
algorithm steps in “Method”. However, as explained there, 
we use PCA to map the n-dimensional space to the 2D one 
(projection P) and conversely (inverse projection P−1 . PCA 
can do this reasonably well for low-intrinsic-dimensional 
datasets. However, high-dimensional datasets in general also 
have a higher intrinsic dimensionality, which causes PCA to 
produce poor mappings for P and/or P−1 . As such, we limit 
our experiments to datasets having a lower dimensionality. 
We detail this point further in “Discussion”. A second point 
is the difficulty of finding high-dimensional regressor data-
sets, i.e., datasets which associate a real-value measurement 
(ground truth) to every n-dimensional sample point. Many 
high-dimensional datasets in deep learning, such as MNIST 

and similar, provide only discrete class values, so they can-
not be used to test RegSurf.

Figures 5 and 6 show surface maps created using Reg-
Surf for the above-mentioned regression algorithms and 
datasets. These visualizations can be intuitively interpreted 
as follows: Consider the training-set DT ⊂ ℝ

n of each of 
these regressors. For every point xi ∈ DT , we also have a 
target value yi ∈ ℝ . A regression algorithm effectively con-
structs a function � ∶ ℝ

n
→ ℝ that aims to ideally reproduce 

�(xi) = yi for all training-set points. Imagine now a 2D sur-
face, embedded in ℝn , that passes through all the points xi . 
RegSurf effectively takes this surface, flattens it to the 2D 
image plane, and colors it by the values of � at all surface 
points. Table 6 shows the respective training and testing loss 
for each dataset and regressor. Let us next interpret these 
results step-by-step.

Regressor patterns The maps in Fig. 5 suggestively cap-
ture the different characteristics of each type of regressor. 
Linear regressors produce hyperplanes in ℝn+1 , which are 
shown by the smooth color gradients in the RegSurf maps. 
Tree-based regressors, such as decision trees, random for-
ests, and gradient boosting, show different kinds of step 
functions (polygon-like surfaces having near constant color 
visible in the maps), which form very simple to very com-
plex. Nearest-neighbor regressors produce maps with Voro-
noi-style cells, which intuitively shows that these regressors, 
indeed, construct n-dimensional Voronoi partitions of the 
variable space to compute their output variable. Finally, both 
SVM and Neural Networks produce smoother, continuous-
like, maps. This is in accordance with what we theoretically 
know about the respective regressors. Hence, we conclude 
that the RegSurf visualizations accurately capture the behav-
ior of these regressors.

Fit-to-data analysis An additional value of the RegSurf 
maps is that they convey a global insight on how the studied 
regressors work and on how good is their fitting to the data, 
beyond simple aggregated error metrics. Consider the Air 
Quality dataset. This dataset consists of three distinct sample 

Table 5  Datasets used in the evaluation of RegSurf

Dataset Observations Dimensions Description
N n

Air quality  [53] 9358 13 Measurements from air sensors used to study and predict air quality
MTCars  [54] 32 10 Data from several aspects of automobile design, used to predict fuel consumption
Housing prices  [55] 506 13 Housing data from the Boston, MA region, used to predict house prices
Concrete  [56] 1030 8 Measurements of chemico-physical properties of concrete used to study concrete strength
Superconductors  [57] 21,264 81 Measurements of different properties from superconductors used to predict critical tem-

perature
SP urban traffic  [58] 135 18 Measurements of urban traffic information used to predict traffic flow
Wine quality  [59] 6497 11 Samples of white and red Portuguese vinho verde used to describe perceived wine quality
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clusters, with one of them being far away from the other two 
in the projected space (see markers A, B, C for dotted lines 
in Fig. 5 top-left cell). We see that the regressors have more 
complex surfaces in the areas that have a larger concentra-
tion of points. As one gets further away from these areas, 
i.e., if we look at image pixels far away from the red or 
white dots, the surfaces get simpler to the point of becoming 
constant. This shows that regressors for this dataset prob-
ably will not be able to generalize well for new observations 
that fall within such sparsely sampled, underrepresented, 

regions. Second, when looking at the amount of red points 
(highest approximation error of the regressor as compared 
to the ground-truth value), we can quickly tell that XGBoost 
seems to have the best fit to the training data, and that it 
generated a very complex regression surface to do so. This 
is confirmed by Table 6 that shows that XGBoost has the 
lowest training loss for Air Quality from all seven evaluated 
regressors. Conversely, we see that SVM, Neural Network, 
and Linear regressors seem to be underfit, as shown by the 
amount of red points (high errors) they generate and the 

Fig. 5  Maps created with RegSurf for several datasets and regressors. Points represent the training set and are colored according to the absolute 
error when compared to the generated surface, varying from white (low error) to red (high error)
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seemingly simple surfaces they created. Without the help of 
a technique like RegSurf, it is hard to tell how the dataset is 
spread out in space, and how different regression algorithms 
spread their errors along that space.

Selecting a good regressor Consider next the Urban 
Traffic dataset. Table 6 shows that both XGBoost and Neu-
ral Network are the best-fit regressors, with a slight edge 
for XGBoost. However, the RegSurf maps refine and actu-
ally nuance this insight. Looking at the XGBoost and Neu-
ral Network maps in Fig. 5, we see that Neural Network 
spreads its errors more evenly, without a specific region 

with high error. This is not the case for XGBoost, where 
we can see two dark red dots in the bottom of the image 
(markers P, Q in Fig. 5). Also, the checkered pattern in the 
XGBoost map shows that this regressor is far less smooth 
than Neural Networks. Hence, combining the measured 
values of the training loss with the visual inspection of the 
RegSurf maps allows the ML engineer to select the better 
regressor based on more desirable properties (error spread, 
smoothness) than if one would study only the aggregated 
absolute errors.

Fig. 6  Maps created with RegSurf for selected datasets shown in Fig. 5. We omitted here plotting the training points to better show the regres-
sor’s surfaces

Table 6  Training and testing loss for each regressor/dataset in Fig. 5

Regressor dataset Decision tree Random forest SVM Linear XGBoost kNN Neural net-
work

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

Air quality 0.054 0.108 0.059 0.116 0.091 0.088 0.167 0.165 0.048 0.125 0.079 0.105 0.098 0.098
Concrete 0.036 0.066 0.028 0.057 0.050 0.060 0.104 0.104 0.005 0.035 0.068 0.095 0.020 0.040
Housing 0.034 0.063 0.029 0.056 0.038 0.046 0.069 0.077 0.001 0.048 0.058 0.074 0.017 0.049
MTCars 0.065 0.072 0.047 0.078 0.055 0.126 0.082 0.108 0.001 0.089 0.102 0.099 0.011 0.110
Urban traffic 0.082 0.105 0.060 0.095 0.082 0.140 0.101 0.109 0.017 0.096 0.096 0.137 0.025 0.116
Supercond 0.019 0.034 0.018 0.030 0.044 0.044 0.074 0.072 0.020 0.031 0.026 0.032 0.034 0.038
Wine 0.048 0.095 0.040 0.077 0.086 0.091 0.095 0.096 0.032 0.077 0.070 0.089 0.062 0.077
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RegSurf: Visualizing Overfitting

As already indicated in “RegSurf: Real-World Datasets”, a 
practical use case of RegSurf is to visually assess the good-
ness of fit of a regressor to a dataset. This complements 
information provided by metrics such as mean squared error 
or mean absolute error. We next select two pairs of (dataset, 
regressor) to further illustrate this use case. Figure 7 shows 
a Neural Network regressor trained on the Urban Traffic 
dataset for increasingly more training epochs. We see that, 
as the network starts to overfit (700 epochs), the RegSurf 
maps get increasingly complex, which corresponds to what 
is intuitively expected of an overfit model. For the second 
use-case, Fig. 8 shows Decision Tree regressors trained on 
the MTCars dataset, with varied hyperparameters. The Reg-
Surf maps vary from very simple (small amount of space 
partitions), indicating underfitting, to very complex (higher 
amount of space partitions), indicating overfitting. Hence, 
the visual complexity of the RegSurf maps can be used to 
detect when overfitting occurs: Take a given problem where 
one has (rough) knowledge of the smoothness and complex-
ity of the regressor one tries to learn. One can watch how 
RegSurf’s maps change during training and assess, based 
on how these match the expected nature of the modeled 

phenomenon, whether, when, and where under- or overfit-
ting occurs.

RegSurf Performance

As for OptMap, RegSurf’s computation time can be divided 
into two phases (Fig. 1b): In phase 1, most of the time is 
spent while running PCA for the dataset D to construct the 
mapping between the nD and 2D spaces. These computa-
tions are only dataset-dependent and can be reused when, 
e.g., exploring different regressors. In phase 2, most of the 
time is spent evaluating the regressor function � . As for Opt-
Map’s evaluation of the objective function f, this operation 
is fast (see “OptMap Performance”).

To assess RegSurf’s scalability, we generated synthetic 
Gaussian data with varying number of samples and dimen-
sions, and a Decision Tree regressor trained on these dif-
ferent synthetic datasets. Table 7 shows separately the time 
spent for the PCA mappings (phase 1) and for evaluating 
the regressor (phase 2). Even for very high-dimensional 
data, the whole process runs in tens of seconds, with 
the regressor-evaluation time dominating the process. 
Importantly, note that the regressor-evaluation time can-
not be reduced—unless someone provides a faster imple-
mentation of the function � . Figure 9 depicts the same 

Fig. 7  RegSurf maps for Neural Network trained on the Urban Traffic dataset, increasing number of epochs. Numbers below the images show 
train and test loss; the minimal loss value is in bold

Fig. 8  RegSurf maps for Decision Trees trained on the MTCars data-
set. Numbers above the images indicate the hyperparameters min 
samples leaf, min samples split and max depth, respectively, with − 1 

meaning unlimited max depth. Numbers below the images show train 
and test loss, with the lower loss value shown in bold
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information as in Table 7 using heatmaps, which shows 
the above-mentioned trends more clearly. In this experi-
ment, PCA time grows with the number of observations 
and dimensions, whereas dimensionality seems to be much 
more important for the Decision Tree regressor used. In 
the case of lazy regressors, such as k-Nearest Neighbors, 
we expect this behavior to be even worse. Conversely, for 
GPU-based Neural Network regressors, we expect this 
behavior not to be an issue. Given these results, we state 
that RegSurf is fast enough to be used during iterative 
ML model development that involves datasets of tens of 
thousands of observations and up to thousand dimensions.

Discussion

We discuss next how our joint OptMap-RegSurf tech-
nique performs with respect to the criteria laid out in 
“Introduction”.

Quality (C1) Figs. 2, 3, and 4 show examples of the qual-
ity of the visualizations and the kind of insight they can 

provide for optimization problems. The same is true for 
regression problems with Figs. 5, 6, 7, and 8. Our dense 
maps are pixel-accurate, in the sense that they show actual 
information inferred from the nD function f or � under 
investigation at each pixel, without interpolation. This is in 
contrast with many other dimensionality reduction methods 
which either show a sparse sampling of the nD space (by 
means of a 2D scatterplot), leaving the user to guess what 
happens between scatterplot points; or use interpolation in 
the 2D image space to ‘fill’ such gaps  [60–63], which cre-
ates smooth images that may communicate wrong insights, 
since one does not know whether the used projection is 
continuous.

Genericity (C2) We show how our technique performs 
for optimization problems with varying nature, com-
plexity, and dimensionality, and for seven types of ML 
regressors over several real-world datasets. We also show 
that our method can be used simply for visualizing high-
dimensional, continuous, functions by a single 2D image, 
in contrast to multiple images that have to be navigated 

Fig. 9  Heatmap showing the order of growth of time to create surface maps using RegSurf for different dataset sizes

Table 7  Time to create RegSurf 
maps for different dataset sizes

P is the time spent to create PCA mappings; � is the time spent by the regressor to color all pixels in the 
image

Dims points 10 25 50 100 250 500 1000

P � P � P � P � P � P � P �

100 0.09 0.70 0.11 0.41 0.57 0.91 0.47 2.40 2.10 7.76 5.74 16.53 5.74 26.80
500 0.04 0.60 0.04 0.33 0.47 0.69 0.20 2.05 0.50 5.76 4.55 11.87 5.88 32.12
1000 0.02 0.62 0.04 0.33 0.47 0.73 0.21 2.11 0.53 5.82 4.75 14.48 6.89 34.49
2500 0.05 0.69 0.05 0.47 0.61 1.14 0.25 3.21 1.66 5.42 5.71 15.52 6.93 28.75
5000 0.04 0.62 0.09 0.36 0.53 0.91 0.32 2.16 1.83 5.14 5.06 12.81 7.24 30.40
10,000 0.05 0.63 0.12 0.48 0.70 1.02 0.50 3.01 2.24 7.44 5.90 17.88 10.46 37.33
20,000 0.06 0.69 0.13 0.40 0.37 1.17 0.56 2.93 2.66 7.94 6.45 13.82 10.94 28.78
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and correlated by interaction   [29]. We also show that 
our technique is independent of the optimization solv-
ers or regressors being used. For optimization, OptMap 
only requires the definition of the problem O to solve, 
range of the input variables to consider, and access to a 
black-box optimization method. For regression, RegSurf 
only requires access to a training set and to the black-box 
regressor trained on it.

Simplicity (C3) We use PCA for direct and inverse pro-
jections, which is a very well-known, simple, fast, and 
deterministic projection method. The complete imple-
mentation of each technique has about 250 lines of Julia 
code. Note that we also experimented with other methods 
for the direct projection—namely, t-SNE as learned by 
NNP  [46]—and inverse projection—namely, NNInv  [45], 
obtaining good results. However, for the optimization and 
regression problems presented in this paper, PCA yielded 
better results (based on ground truth comparison). Since 
PCA is also simpler and faster than NNP and NNInv, we 
preferred it in our work.

Ease of use (C4) For OptMap, where sampling is an 
important step, we executed all experiments using the 
same maximum number of sample points Nmax with good 
results, which shows that the technique requires little-to-no 
tuning to work properly. There are also a few options that 
control visual settings, such as color map and point size, 
which have sensible defaults and do not affect the quality 
or performance of the method.

Scalability (C5) “OptMap Performance” and “RegSurf 
Performance” show that our method is highly scalable 
with the number of sample points N and dimensions n, 
which enables its interactive usage during the development 
cycle of optimization and regression models. For OptMap, 
scalability is inherently limited by the resolution used to 
create the dense grid Gn—see “Method”, algorithm step 
2. If the number of dimensions n and the sampling rate 
of each dimension become too high, the total number of 
samples N in the grid Gn becomes prohibitive. To alleviate 
this, one could (a) consider different sampling rates for the 
n dimensions, based on prior knowledge on how f depends 
on each of them; (b) use OptMap interactively by ‘zoom-
ing in and out’ of different variable ranges to explore the 
high-dimensional space; or (c) use multiresolution tech-
niques, akin to those already present in various optimizers. 
This is not an issue for RegSurf, which does not use the 
grid Gn (“Discussion”, algorithm step 2) but rather the 
training and test sets used to construct the regressor � to 
be visualized. In typical ML problems, such training sets 
have tens of thousands of samples—in any case, far fewer 
than the size of Gn needed for OptMap. However, even 
with these limitations, both OptMap and RegSurf create 
dense maps of any optimizer and regressor, respectively, 

in tens of seconds for datasets up to 1000 dimensions, on 
a commodity PC, and both have a complexity linear in 
the number of evaluated sample points. As such, we deem 
both methods practical for visualization applications.

Limitations The projected data points, such as the start-
ing, trace, and solution points for OptMap, and training-
set points for RegSurf, are placed in the 2D image space at 
approximate positions, due to the inherent discrete nature of 
the pixel grid G2 . This can cause situations such as the one 
in Fig. 4 (sphere problem), where the optimal point found by 
the solver—which is obviously feasible—is placed slightly 
inside the unfeasible region, which can be misleading. Sec-
ond, we noticed that due to the inherently imperfect map-
ping between nD and 2D spaces, equality constraints that 
compare against constants might not be satisfied during the 
evaluation, which will make the drawing of feasible regions 
fail in OptMap.

A separate aspect relates to the fact that P can map multi-
ple different points x ∈ D to the same pixel p ∈ G2 . Hence, 
the color assigned to p should ideally reflect the combina-
tion of values f (x) of all these points x . For categorical-
valued functions f, this can be done using voting schemes 
that compute the confidence of the final coloring  [21]. A 
low-hanging fruit for future work is to (efficiently) extend 
such schemes to our real-valued functions f using aggrega-
tion strategies such as average, min, or max.

Finally, it is known that PCA, used by both OptMap and 
RegSurf to bidirectionally map between the high-dimen-
sional space and the 2D image, can create distortions when 
mapping between these two spaces  [34]. In turn, these can 
influence the insights that our dense maps convey, e.g., in 
terms of observing non-smooth regions that actually cor-
respond to projection errors and not optimizer or regressor 
non-smoothness. Finding a replacement projection for PCA 
(and its inverse) that is equally fast, easy to use, generic, 
parametric, and yields less distortion, is an important direc-
tion to explore next.

Applications The aim of the current paper was to intro-
duce two new techniques, OptMap and RegSurf, for the 
visualization of high-dimensional functions for optimiza-
tion and regression problems, respectively. To demonstrate 
these techniques, we have chosen known optimizers, regres-
sors, and datasets. Indeed, this was needed, since we need 
to have functions with known behavior as ground-truth to 
check the correctness of our novel visualization techniques. 
As our experiments shown good results for OptMap and 
RegSurf for these problems, we deem both techniques to be 
ready for applications on problems with more complex and/
or unknown behavior. Several such application areas exist. 
Image analysis by deep learning methods is a particularly 
interesting application area. The key reason hereof is that 
images, represented by high-dimensional features extracted 
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by various methods, can be directly visualized, unlike other 
more abstract high-dimensional data. As such, one can imag-
ine simple enhancements of RegSurf—trained for either an 
image classification or image regression problem—which 
allow the user to point at every location in the visualization 
space and generate on-the-fly the image corresponding to the 
respective high-dimensional point. This would assist users 
in multiple scenarios, e.g., finding what types of images cor-
respond to low-confidence classification areas or generating 
new images in such areas in a user-supervised data augmen-
tation process to improve classifier performance. Examples 
of recent imaging applications which could be assisted by 
such visualizations include transfer learning for image clas-
sification  [64], finding relevant features for classification 
of histopathology images  [65], analysis of misclassifica-
tion results in cell image classification  [66], microorganism 
image segmentation  [67], and data augmentation for can-
cer image classification  [68]. Moreover, pipelines in such 
applications which use image transformation modules can 
be studied separately by RegSurf, given that such transfor-
mations are essentially regressors.

Conclusion

In this paper, we presented an image-based visualization 
technique that enables the visualization of multidimensional, 
single-valued functions. Our technique represents the high-
dimensional domain of the function by means of sampling, 
either on a provided grid, as in the case of ML training data-
sets, or computed dense-sampling grid, as in the case of 
general-purpose functions with given variable domains. This 
sampling is used to produce a bidirectional mapping from 
the high-dimensional space to 2D image space. Finally, the 
image pixels are colored to construct a dense representation 
of the function of interest.

We proposed two variants of this technique, namely Opt-
Map, for optimization problems, and RegSurf, for regres-
sion problems. We show that both variants perform well in 
varied, realistic scenarios, with several examples that dem-
onstrate the genericity, scalability, parameter-free nature, 
and simplicity of the underlying technique. Additionally, 
we showed how the produced maps can be interpreted to 
gain insights into underlying problems in the two domains, 
such as comparing solvers for optimization problems and 
analyzing the smoothness and under-or-overfit properties of 
ML regressors. Our entire framework is simple to imple-
ment and based on open-source components, which favors 
replicability and ease of use.

Several future work directions exist. First and foremost, 
it is interesting to consider using more accurate direct and 
inverse projections for constructing the dense maps. Second, 

we consider using both variants in concrete applications, 
and gauging its added value in helping engineers designing 
better optimization and regression models, as opposed to 
the existing tools-of-the-trade for the same task. Addition-
ally, we plan to extend this idea to enable the visualization 
of vector (multivalued) functions f ∶ ℝ

n
→ ℝ

m , which will 
expand the range of possible applications for the technique.

Appendix 1: Implementation details

We implemented OptMap and RegSurf in Julia  [69] using 
the open-source software libraries in Table 8. The optimi-
zation examples (“OptMap: Test via High-Dimensional 
Functions”, OptMap: Solvers for Unconstrained Problems 
and  “OptMap Performance”) were implemented using 
Optim  [70] for the unconstrained problems, and JuMP  [5] 
for the constrained problems, using the solvers Clp  [11], 
Cbc  [12], GLPK  [13], and Ipopt   [52]. The regression 
examples (“RegSurf: Real-World Datasets” and “RegSurf: 
Visualizing Overfitting”) were implemented using the 
MLJ library  [71]. Our implementation, plus all code used 
in our experiments, are publicly available at github.com/
mespadoto/optmap.

The scalability experiments discussed in “OptMap Per-
formance” and  “RegSurf Performance” were executed, 

Table 8  Software used for the OptMap and RegSurf implementation

Library Software publicly available at

Images github.com/JuliaImages/Images.jl
ColorTypes github.com/JuliaGraphics/ColorTypes.jl
ColorSchemes github.com/JuliaGraphics/Color-

Schemes.jl
Luxor github.com/JuliaGraphics/Luxor.jl
CSV github.com/JuliaData/CSV.jl
DataFrames github.com/JuliaData/DataFrames.jl
MultivariateStats github.com/JuliaStats/MultivariateStats.jl
Optim github.com/JuliaNLSolvers/Optim.jl
Clp github.com/jump-dev/Clp.jl
Cbc github.com/jump-dev/Cbc.jl
GLPK github.com/jump-dev/GLPK.jl
Ipopt github.com/jump-dev/Ipopt.jl
MLJ github.com/alan-turing-institute/MLJ.jl
DecisionTree github.com/bensadeghi/DecisionTree.jl
XGBoost github.com/dmlc/XGBoost.jl
LIBSVM github.com/JuliaML/LIBSVM.jl
NearestNeighborModels github.com/JuliaAI/NearestNeighbor-

Models.jl
NeuralNetworkRegressor github.com/FluxML/MLJFlux.jl
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respectively, on a 4-core Intel Xeon E3-1240 v6 at 3.7 GHz 
with 64 GB RAM, and on a dual 16-core Intel Xeon Silver 
4216 at 2.1 GHz with 256 GB RAM.
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