
Vol.:(0123456789)

SN Computer Science (2023) 4:230
https://doi.org/10.1007/s42979-022-01664-2

SN Computer Science

ORIGINAL RESEARCH

Visualizing High‑Dimensional Functions with Dense Maps

Mateus Espadoto1 · Francisco C. M. Rodrigues1 · Nina S. T. Hirata1 · Alexandru C. Telea2

Received: 3 July 2022 / Accepted: 30 December 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
Multivariate functions have a central place in the development of techniques present many domains, such as machine learning
and optimization research. However, only a few visual techniques exist to help users understand such multivariate problems,
especially in the case of functions that depend on complex algorithms and variable constraints. In this paper, we propose a
technique that enables the visualization of high-dimensional surfaces defined by such multivariate functions using a two-
dimensional pixel map. We demonstrate two variants of it, OptMap, focused on optimization problems, and RegSurf, focused
on regression problems in machine learning. Both our techniques are simple to implement, computationally efficient, and
generic with respect to the nature of the high-dimensional data they address. We show how the two techniques can be used
to visually explore a wide variety of optimization and regression problems.

Keywords Machine learning · Operations research · Optimization · Regression · Dimensionality reduction · Visualization ·
Dense maps

Mateus Espadoto, Francisco C. M. Rodrigues, Nina S. T. Hirata, and
Alexandru C. Telea have contributed equally to this work.

This article is part of the topical collection “Computer Vision,
Imaging and Computer Graphics Theory and Applications” guest
edited by Jose Braz, A. Augusto Sousa, Alexis Paljic, Christophe
Hurter, and Giovanni Maria Farinella.

 * Mateus Espadoto
 mespadot@ime.usp.br

 Francisco C. M. Rodrigues
 caiomr@ime.usp.br

 Nina S. T. Hirata
 nina@ime.usp.br

 Alexandru C. Telea
 a.c.telea@uu.nl

1 Institute of Mathematics and Statistics, University of São
Paulo, Rua do Matão, 1010, São Paulo 05508-090, Brazil

2 Department of Information and Computing Sciences,
Utrecht University, Princetonplein 5, 3584 CC Utrecht,
The Netherlands

Introduction

Machine Learning (ML) and Operations Research (OR)
methods are key ingredients in the data scientist’s tool-
set. Machine Learning has reached high popularity in
the last decade, growing from a field initially of interest

to mathematicians and statisticians to the point of being
a generic technology for many fields [1, 2]. Operations
Research also plays a crucial role in many industries, from
logistics to finance. Since its inception in the 1950s, it has
delivered many tools for practitioners to improve their pro-
ductivity, such as algebraic modeling languages like GAMS
[3], AMPL [4], and JuMP [5], which enable the use of
notation very close to the mathematical definition of opti-
mization problems.

However, while being different approaches to solve prob-
lems with data, both ML and OR deal with functions having
high-dimensional input spaces and sophisticated algorithms
whose inner workings can be hard to understand. Visualiza-
tion techniques help understanding such complex data pipe-
lines by allowing users to explore the large, high-dimen-
sional, and complex spaces they deal with. However, while
many visualization techniques exist for high-dimensional
data [6], only a few such techniques target the visualization
of high-dimensional functions. To the best of our knowledge,
we are not aware of any work that allows for the visualiza-
tion of high-dimensional continuous functions by consider-
ing all their dimensions at once, rather than only a few sets
of dimensions at a time.

Recently, we proposed OptMap [7], a technique for the
visualization of surfaces generated by high-dimensional
explicit functions of the form f ∶ ℝ

n
→ ℝ that model OR

problems, whose input variables have known domains. In

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01664-2&domain=pdf
http://orcid.org/0000-0002-1922-4309

 SN Computer Science (2023) 4:230 230 Page 2 of 18

SN Computer Science

this paper, we complement OptMap with RegSurf, a visu-
alization technique for high-dimensional implicit functions
f which are inferred from data, as in ML regression prob-
lems. We show how OptMap and RegSurf are instances of
a more general visualization framework for high-dimen-
sional functions. This commonality allows us to propose
efficient, easy-to-implement, and generic implementations
for both our visualization techniques.

We next outline the joint contributions and specifics
of OptMap and RegSurf. OptMap enables the OR practi-
tioner to literally see the decision variables and constraint
spaces using a two-dimensional dense map, regardless of
the number of variables and constraints of the problem.
RegSurf uses a similar 2D dense map to enable the ML
practitioner to visualize the surface generated by a single-
output regressor. In both cases, the map enables the user to
visually explore the high-dimensional surface, regardless
of the dimensionality (number of variables) of the input
space.

OptMap can be used in several ways, such as a debug-
ging aid to help diagnose errors in constraint definition; to
provide insight in an optimizer’s inner workings by plotting
the path taken from a starting point to a solution; and to
visually explore the high-dimensional space of the decision
variables in terms of objective function value and constraint
feasibility. In parallel, RegSurf enables the user to assess
the goodness of fit of a regressor with respect to the training
data, thereby complementing the existing methods that use
a single-valued metric such as mean squared error or the
R2 score. RegSurf can be used to find regions of the input
space where the data are underrepresented, which may cause
the regressor’s results to be biased, and to visually gauge if
and where a regressor is under- or overfitting the data. Both
OptMap and RegSurf can also be used to compare the per-
formance of different regressors and solvers over the same
data, and to gain insight over their inner workings.

The joint visualization framework that enables OptMap
and RegSurf has the following features, which, to our knowl-
edge, are not achieved by existing visualization techniques
for regression and/or optimization:

Quality (C1) Our visualizations create images that encode
information at every pixel, using a combination of dense
maps, direct, and inverse projection techniques;

Genericity (C2) We can handle many kinds of high-
dimensional, single-valued functions, such as the ones
common in optimization or regression problems. The only
requirements we have are that the user provides implementa-
tions of the objective function, constraints (if any), and, for
OptMap, the range for each variable;

Simplicity (C3) Our framework is based on existing pro-
jection techniques which have a straightforward implementa-
tion, allowing easy replication and deployment;

Ease of use (C4) Our framework has few hyperparam-
eters, all with given presets. In most cases, users do not have
to adjust these to obtain good results;

Scalability (C5) Using a fast projection technique and
caching results when possible, our framework is fast enough
to allow its use during the rapid development-test cycle of
optimization and ML models.

We structure our paper as follows. “Background” presents
the used notations and discusses related work in visualiza-
tion for multivariate functions, optimization, and ML regres-
sion. “Method” details our framework. “Results” presents
applications and results of both OptMap and RegSurf on a
number of non-trivial problems. “Discussion” discusses our
proposal. “Conclusion” concludes the paper.

Background

Related work concerns optimization techniques (“Optimiza-
tion”), regression problems in machine learning (“Regres-
sion in Machine Learning”), and visualization of high-
dimensional objects (“Visualization of High-Dimensional
Objects”).

Optimization

Let f ∶ ℝ
n
→ ℝ be a function to be minimized. Let

x = (x1,… , xn) be an n-dimensional vector of n of the so-
called decision variables xi , 1 ≤ i ≤ n , i.e., the input vari-
ables of the function f. An optimization problem O involving
the function f can be described as

In other words, solving the problem O means finding specific
points x ∈ ℝ

n where f has a minimal value and which also
obey the constraints defined by the set S. This set is also
called the feasible set of all points that can be considered
as valid for O. When such a set is provided, it constraints
the range of inputs of f over which one searches for a mini-
mum—that is, one should not search for minimum points for
f outside the set S (see more details below).

Optimization problems come in many forms with respect
to the kind of function to be optimized, type of decision vari-
ables, and presence of constraints:

• Function type Functions f are typically grouped into lin-
ear, convex, and non-convex. Linear functions are of the
form f (x) = ax + b , which defines a hyperplane. Convex
functions have many forms, and can be defined as those
where the points above their graph form a convex set.

(1)
minimize f (x)

subject to x ∈ S.

SN Computer Science (2023) 4:230 Page 3 of 18 230

SN Computer Science

Non-convex functions are neither convex nor linear (lin-
ear functions are also convex).

• Decision variables: These can be discrete (xi ∈ ℤ) or
continuous (xi ∈ ℝ). Problems with only discrete vari-
ables are called Integer Programs (IP) [8]. Problems with
both discrete and continuous variables are called Mixed
Integer Programs (MIP).

• Constraints For unconstrained problems, the feasible set
S is ℝn . Constrained problems have a set of K constraint
functions ck(x) ∈ {0, 1}, 1 ≤ k ≤ K , where 0 means
that the point x is infeasible with respect to constraint
ck . For constrained problems, the feasible set is defined
as S = {x ∶

∏
ck(x) = 1, 1 ≤ k ≤ K . Constraints can be

characterized just as functions (linear, convex, and non-
convex). Additionally, we have box constraints, which are
simple restrictions on the variables’ domains. Problems
with continuous variables, linear objective functions, and
linear constraints are called Linear Programs (LP). Other
problems are solved by Non-linear Programming (NLP)
techniques.

Solvers are algorithms that find one of several (approximate)
solutions to a problem O. To do this efficiently, solvers use
the type of decision variables, objective function, and con-
straints to pick adequate heuristics that avoid exploring all
possible x ∈ S , which is impractical in most cases. A very
popular solver algorithm for linear problems is Simplex [9,
10], implemented by software such as Clp [11], Cbc [12],
and GLPK [13]. For non-linear problems, there are other
algorithms, such as Gradient Descent, Nelder–Mead [14],
and L-BFGS [15], to name a few. Many solvers work itera-
tively, i.e., start from a given point x0 and evolve this point
until sufficiently close to the solution of O.

A solution is an n-dimensional point xsol found by the
solver which is both feasible (xsol ∈ S) and optimal. The
definition of optimality depends on the type of problem and
solver used: For linear functions with linear constraints,
solvers are guaranteed to find a global optimum solution
xsol , which means that no other n-dimensional point x ≠ xsol
yields a lower value for the objective function f, given those
constraints. For non-linear functions, solvers may return dif-
ferent local optima, depending on the starting point x0 used
and the shape of the objective function.

Finally, solvers may provide a trace, or path to solution,
which is the set T = (x0,… , xk) of all k n-dimensional points
where they evaluated the objective f, starting from x0 and
ending with the solution xk = xsol , if one was found, else
ending with the last point xk evaluated by the solver.

Real-world optimization problems have many variables
and constraints. Users typically rely on numerical analysis
to understand if a problem is modeled correctly and if the
results make sense. Visualization greatly expands the possi-
bilities of model analysis and debugging, giving a quick way

to check, e.g., if constraints are correctly defined, i.e., not
under- or over-constraining by mistake; or, for NLP prob-
lems, to check how stable are the optima found, i.e., how
close they are to peaks or troughs in the data.

Regression in Machine Learning

Regression is one of the two most common problems in ML,
alongside classification. A regression model can be seen as
a function

used to predict a continuous response variable. In contrast, in
classification problems, the response variable is categorical.
That is, a classifier can be seen as a function

where C is a categorical dataset containing the values of the
class labels to be inferred from the data.

Regressors and classifiers share many similarities in ML.
Both functions � and � are typically created by a training
algorithm, based on a training dataset DT that samples sev-
eral independent variables and the response variable, the lat-
ter being the regressed value � or the inferred class label � .
Also, both functions are tested on a test set constructed much
in the same way as the training set. Ideally, both functions
should reach the response variables recorded by the test set.
Many of the standard ML algorithms used in classification,
e.g., Decision Trees [16], Random Forests [17], and Gradi-
ent Boosting [18], can be used for regression as well. This is
so since classifiers use internally a regressor to compute the
confidence of a sample being of a certain class and next out-
put the final class labels my maximizing this confidence over
all available classes. Examples of classifiers and regressors
abound in the ML literature, such as separating malignant
from benign images of various tissues in medical science
(classification) and image-to-image transformation and text
translation in natural language processing (regression).

However, similar regressors and classifiers also have dif-
ferences. From a goal perspective, a regressor seeks to inter-
polate the sampled values yi of the response variable between
points xi in its training set DT = {(xi ∈ ℝ

n, yi ∈ ℝ
p)} . In

contrast, a classifier seeks to separate points xi in its train-
ing set DT = (xi ∈ ℝ

n, yi ∈ C) according to their class yi .
From a practical perspective, understanding the operation of
a classifier typically focuses on showing which aspects of the
input data space determine the assignment of a given class.
This can be done in terms of highlighting the importance of
all the n input variables of the classifier [19]; using locally
interpretable models [20]; or visually, in terms of depicting
the decision zones that the classifier partitions its input space
ℝ

n into [21]. Recently, Garcia et al. [22] presented a survey

(2)� ∶ ℝ
n
→ ℝ

p

(3)� ∶ ℝ
n
→ C,

 SN Computer Science (2023) 4:230 230 Page 4 of 18

SN Computer Science

of visual techniques used for explaining deep learning clas-
sification models.

From a practical perspective, understanding a regressor
is more complicated than understanding a classifier. Even
if we consider regressors that output a single response vari-
able (p = 1), this response variable is continuous rather than
discrete as in the case of classifiers. As such, understanding
a regressor implies explaining how the output varies, e.g.,
in terms of variation speed, local minima and maxima, and
smoothness of variation, with respect to its input. In contrast,
explaining a classifier is easier, as it involves only telling
which ranges of the input variables determine the output of
one of the (few) class labels. In other words, the explanation
of a classifier consists of a small set of discrete objects (the
class labels), whereas the explanation of a regressor must
show the continuous mapping between the input and out-
put variables. As a consequence, many methods for visually
explaining classifiers exist (as outlined above); in contrast,
far fewer methods exist for explaining regressors.

Visualization of High‑Dimensional Objects

Visualization of high-dimensional datasets is an active topic
for several decades, with many types of methods being pro-
posed [6, 23] and analyzed via several quality metrics [24].
Our scope is narrower but, importantly, also broader—we
are interested in visualizing multidimensional functions. We
outline the differences between the two types of visualiza-
tion next.

Visualizing datasets Visualizing high-dimensional data
addresses, in the most general case, the task of depicting a
dataset D = (x1,… , xN) of N data points or samples where
each sample xi ∈ ℝ

n is an n-dimensional measurement. The
main challenge here is fitting a large number of samples
(size N of D) of many dimensions n in the limited, low-
dimensional, visualization space given by a 2D screen. Sev-
eral classes of methods offer various trade-offs for this, e.g.,
table lenses [25, 26], parallel coordinate plots [27], and
scatterplot matrices [28] (all three classes address large N,
small n), and dimensionality reduction (handle large N, large
n, discussed below in more detail). A particular case occurs
when the D comes from the sampling of a high-dimensional
function f ∶ ℝ

n
→ K , that is, D = {(xi, f (xi))} . In this case,

several of the dimensions of a point (xi, f (xi)) map to the
function’s variables x1,… , xn (also called independent
dimensions), whereas the remaining so-called dependent
dimensions f (xi) represent the function’s outputs. Further-
more, when the function’s co-domain K is discrete, we have
the typical case of visualizing the sampling of a classifier;
when K is continuous, we have the case of visualizing the
sampling of a regressor. In all cases, key tasks related to

visualizing high-dimensional datasets are finding groups of
similar samples and dependency patterns between the inde-
pendent and/or dependent variables.

Visualizing functions Visualizing high-dimensional func-
tions generalizes the above-mentioned visualizations of data-
sets. The key difference here is that the visualization’s input
is the entire space defined by the function’s variables, i.e.,
ℝ

n or a subset thereof, rather than the sampling of this space
that a dataset D captures. This is a far more challenging task,
since the visualization has to somehow depict the entire dense
hypercube in ℝn spanned by the respective variables rather
than the sparse point cloud consisting of samples in D. Also,
function visualization aims to address additional questions
not present for datasets, e.g., finding directions of maximal
(or minimal) change or points where the function is locally
maximal (or minimal).

The visualization of 2D functions f ∶ ℝ
2
→ ℝ is usu-

ally done by means of 3D height plots, contour plots, or
color (heatmap) plots. For functions f ∶ ℝ

n
→ ℝ with more

than two variables (n > 2), there are far fewer options, with
Hyperslice [29] being a notable one. Hyperslice presents a
multidimensional function as a matrix of orthogonal two-
dimensional slices, similar in design to scatterplot matrices
[28], each showing the restriction of f to one of the 2D sub-
spaces in ℝn , using the 2D function plotting outlined earlier
(contour plots, color plots, and 3D height plots). Hyperslice-
related approaches have also been used to visualize subspaces
of regression models in machine learning contexts [30].
Other methods for visualizing high-dimensional functions
aim to reduce the data dimensionality by techniques such as
isosurfacing [31] or projections [32]. All these techniques
essentially only visualize a subset of the entire space of the
function’s input variables.

Visualizing constrained optimization problems is similar to
the above, since not only the function has to be visualized but
constraint feasibility as well. Most techniques used for this are
based on overlaying contour plots with constraint information,
with one case where image-based techniques are used [33].
Still, such techniques cannot work with more than two dimen-
sions (n > 2). In our work, we remove all above limitations.
RegSurf, proposed in this paper, aims to visualize functions
for any n; OptMap does the same for optimization problems
and also integrates the visualization of constraints.

Dimensionality reduction (DR) is an area of research
concerned with representation of high-dimensional data by
a low number of dimensions, enabling different tasks to be
performed on the data, such as visual exploration [34]. For a
dataset D = {xi} , 1 ≤ i ≤ N of N points xi with n dimensions
each, a dimensionality reduction, or projection, technique is
a function

P ∶ ℝ
n
→ ℝ

q,

SN Computer Science (2023) 4:230 Page 5 of 18 230

SN Computer Science

where q ≪ n , and typically q = 2 . The projection P(x) of a
sample x ∈ D is a point p ∈ ℝ

q . Projecting a set D yields
thus a qD scatter plot, denoted next as P(D). The inverse of
P, denoted P−1(p) , maps a point in ℝq to a high-dimensional
point x ∈ ℝ

n , aiming to satisfy that P−1(P(x)) = x.
Many types of DR methods exist, such as the well-known

Principal Component Analysis [35] (PCA) technique, Mani-
fold Learners, Spring Embedders, and Stochastic Neighbor-
hood Embedding (SNE) techniques, among others. Mani-
fold Learners, such as MDS [36], Isomap [37], LLE [38],
and more recently UMAP [39], try to reproduce in 2D the
high-dimensional manifold on which data are embedded, to
capture non-linear structure in the data. Spring embedders,
also called force-directed techniques, such as LAMP [40]
and LSP [41], have a long history in visualization, with
uses in dimensionality reduction but also in graph drawing.
The SNE family of methods appeared in the 2000s, and has
t-SNE [42] as its most popular member. SNE-class meth-
ods produce visualizations with good cluster separation. For
extensive reviews of DR methods, and their quality features,
we refer to [34, 43]. However, in most cases, DR methods
are used to visualize high-dimensional datasets and not high-
dimensional functions.

The authors of iLAMP [44] used direct and inverse pro-
jection techniques applied to non-linear optimization prob-
lems to help users interactively identify good starting points
for optimization problems. Yet, iLAMP is computationally
expensive, and has several free parameters the user needs to
set. The NNInv method [45] performs inverse projections
two orders of magnitude faster than iLAMP by deep learning
the inverse projection function P−1 . A similar deep learning
idea was used to accelerate the direct projection P by Neural
Network Projections (NNP) [46]. Recently, NNInv was used
by an image-based (dense map) technique to visualize the
decision boundaries for Machine Learning classifiers [21]
for problems with arbitrary dimension n. This can be seen

as visualizing a function f ∶ ℝ
n
→ C , where f is a classifier

for nD data and C is a class (label) set. In our work, we also
use a dense pixel map as visualization model. However, as
explained earlier, our aim is to understand the behavior of
optimizers (by OptMap) and regressors (by RegSurf), i.e.,
of continuous real-valued functions, rather than that of dis-
crete-valued classifiers.

Method

Recently, we proposed a technique called OptMap [7] to
visualize high-dimensional continuous functions in the con-
text of optimization problems. OptMap aims to visualize any
type of multivariate, single-output function f ∶ ℝ

n
→ ℝ . Its

input is a specification of the explicit definition of the func-
tion f plus the domain of all its input variables x1,… , xn .
In our current work, we propose a new technique RegSurf,
which extends OptMap to address ML regression. The key
difference between RegSurf and OptMap is as follows:
While OptMap requires the user to explicitly specify the
expression of the function f to be visualized, RegSurf con-
structs this function f by training an ML regressor from a
given set of sample points and next maps f’s n-dimensional
input space, and the function’s continuous values, to a 2D
visualization.

Figure 1 shows high-level pipelines of both OptMap and
RegSurf. Both methods have the following main workflow
(with method-specific steps indicated where present):

1. Define variable ranges (OptMap only) The user
specifies the domain Xi = [xmin

i
, xmax

i
] of each variable xi of

f (x1,… , xn) . When Xi is the entire real axis ℝ , we select a
finite subset thereof to avoid too coarse sampling for xi in
the next step.

(a) (b)

Fig. 1 Pipelines for visualization of optimization (a) and regression (b) problems

 SN Computer Science (2023) 4:230 230 Page 6 of 18

SN Computer Science

2. Sample data (OptMap only) We uniformly sample
the ranges Xi defined above, yielding a regular sample grid
Gn ⊂ ℝ

n . We constrain the maximum number of sample
points Nmax in Gn to avoid combinatorial explosion. In this
paper, we used Nmax = 5 M for all experiments. We evaluate
f on Gn and call the resulting dataset D = {(x, f (x))|x ∈ Gn}.

3. Create mappings We use PCA [35] trained on D to
create the mappings P and P−1 from ℝn to ℝq , and from ℝq
to ℝn , respectively. For OptMap, the dataset D used in this
process is generated as described in step 2 above. For Reg-
Surf, D is the dataset used for training and testing a desired
regressor function � , as typically done in ML.

4. Create image We create a pixel image G2 ⊂ ℝ
2 of some fixed

user-chosen resolution (set to 8002 for all experiments in this paper). Next,
we use the trained P−1 to map each pixel p ∈ G2 to a high-dimensional
point x = P−1(p) , x ∈ ℝ

n . Finally, we evaluate the target function to
determine the color and luminance of the pixels p . For OptMap, this is
the objective function f (x) and optional constraints. For RegSurf, this
is the regressor �(x) we trained (see step 3 above). Let v(p) denote next
the value of f (for OptMap), respectively, of � (for RegSurf) at point
x = P−1(p) for pixel p.

5. Color pixels We color all pixels p ∈ G2 by the values of
v(p) using a continuous color map. For OptMap, we also set
the luminance of p to reflect f (P−1(p)) ’s membership of the
constraint-set S, to indicate constraint feasibility. If the colormap
is not isoluminant, as for the Viridis colormap [47] we use in
this paper, the luminance of p actually encodes both f and the
constraints. If desired, one can easily use other—more (percep-
tually) isoluminant colormaps. We leave the question of what
the optimal colormap is open as part of future work.

6. Draw path to solution (OptMap only) If the solver
provides the trace T to a solution (see “Optimization”), we
draw it atop of the 2D image. In detail, we project all the
data points of the trace T = (x0,… , xk) and obtain the 2D
points (P(x0),… ,P(xk)) . Next, we connect these points by
line segments and draw the resulting polyline. As iterative
solvers typically take small steps, consecutive solver points
in T are very close to each other, so the same will be true for
their 2D projections. Hence, using linear interpolation (line
segments) to connect these points in the image plane is a
good approximation of the projection of the trace.

7. Draw ground truth (RegSurf only) We draw the train-
ing set DT = {(xi, yi)} used earlier to train our regressor �
(see step 3) over the 2D image. Each point xi is projected at
pixel P(xi) and colored by to the absolute error |yi − �(xi)| to
show the quality of the surface generated by the regressor �.

Results

We next present several experiments that show how our tech-
niques perform in different scenarios. First, we show how
OptMap can be used to visualize high-dimensional functions

that have a known shape (“OptMap: Test via High-Dimen-
sional Functions”). As we know the ground truth (i.e., func-
tion shape), we can easily tell whether OptMap is working
as intended. Next, we test OptMap on several unconstrained
and constrained optimization problems (“OptMap: Solvers
for Unconstrained Problems” and “OptMap: Constrained
Problems”, respectively) and show the added value Opt-
Map provides for these use cases. “OptMap Performance”
presents a performance evaluation of OptMap. Similarly,
we demonstrate RegSurf for the visualization of several
regression algorithms using real-world datasets (“Reg-
Surf: Real-World Datasets”). We also select a specific set
of datasets and regressors to show the usage of RegSurf to
visualize overfitting (“RegSurf: Visualizing Overfitting”).
Finally, “RegSurf Performance” explores the scalability of
RegSurf.

OptMap: Test via High‑Dimensional Functions

To test OptMap, we use the six functions f in Table 1. Fig-
ure 2 shows the corresponding six dense maps, computed as
explained in “Discussion”. In all cases, the domain used for
all variables was xi ∈ [−5, 5] . All these functions have a pre-
dictable shape and also generalize to many dimensions. We
created dense maps using increasing numbers of dimensions
n ∈ {2, 3, 5, 7, 10, 20} . The dense map for n = 2 was created
for reference only, without using OptMap. Indeed, for n = 2 ,
we can directly visualize f, e.g., by color coding, similar to
[29]. Showing these maps for n = 2 is, however, very use-
ful. Indeed, (1) for n = 2 , we can show f directly, without
any approximation implied by OptMap; and (2) given the
functions’ expressions (Table 1), we know that they behave
similarly regardless of n. Hence, if, for n > 2 , OptMap pro-
duces images similar to the ground-truth ones for n = 2 , we
know that OptMap works well. And indeed, Fig. 2 shows us
exactly this—the OptMap images for n > 2 are very similar
to the ground-truth ones for n = 2 . The differences imply
some distortion and rotations, which, we argue, are expected
and reasonably small, given the inherent information loss
when mapping a nD phenomenon to 2D.

OptMap: Solvers for Unconstrained Problems

We next use OptMap to show how different solvers per-
form with different unconstrained problems (that is, vari-
ants of Eq. 1). For this, we select a subset of the functions
in Table 1, namely Styblinski–Tang, Rastrigin and Sphere
functions, with varying dimensionality n. We use the solv-
ers listed in Table 2, grouped there by solver type, namely
whether it is gradient-free or if it requires a gradient or a
Hessian. Figure 3 uses OptMap to show the trace provided
by each solver, i.e., all the points evaluated by the solver to
get to the solution (see “Optimization”). We see that, for the

SN Computer Science (2023) 4:230 Page 7 of 18 230

SN Computer Science

simple Sphere function with a global optimum, most solvers
find an optimal solution, except for the gradient-free meth-
ods, which seem to struggle with the high-dimensionality of
the problem (n = 20). For the Styblinski–Tang function, we
see different but close optima were found by most solvers.
We also see that both gradient-free methods evaluated many
more points than the other methods, but that Nelder–Mead
kept moving in the right direction. For the same problem,
Simulated Annealing had problems converging to an optimal
solution and eventually gave up. For the Rastrigin function,
which has many optima, we see that only Gradient Descent
and L-BFGS could find the solution in a straightforward
way; the other solvers converged to the wrong solution or
did not converge.

OptMap: Constrained Problems

We next show how our OptMap performs when dealing with
constrained optimization problems—that is, finding the min-
imum of some n-dimensional function f whose variables are
constrained as described in “Optimization”. Table 3 shows
the definition of constrained problems (objective functions

Fig. 2 Dense maps for functions
with known shape as defined in
Table 1, with increasing dimen-
sionality n > 2 . Compare these
with the ground-truth maps for
n = 2

Table 1 Definition of n-dimensional selected functions for ground-
truth testing

Function name Definition

Linear
f (x) =

n∑
i=1

xi

Sphere
f (x) =

n∑
i=1

x2
i

Rosenbrock [48]
f (x) =

n−1∑
i=1

�
100

�
xi+1 − x2

i

�2
+
�
1 − xi

�2�

Step

f (x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

0
n∑
i=1

xi < 0

2
n∑
i=1

xi < 2

4
n∑
i=1

xi < 4

5 otherwise

Rastrigin [49]
f (x) = An +

n∑
i=1

�
x2
i
− A cos(2�xi)

�

where: A = 10

Styblinski-Tang [50]
f (x) =

∑n

i=1
x4
i
−16x2

i
+5xi

2

 SN Computer Science (2023) 4:230 230 Page 8 of 18

SN Computer Science

and constraints) we used. The first three problems used are
very common in the optimization literature [8]. The last two
problems use the same Sphere and Styblinski–Tang func-
tions defined earlier, but with non-linear constraints added
to them. Figure 4 shows how OptMap visualizes the problem
space and solution for each problem. Unfortunately, the solv-
ers used in this experiment, namely, Clp [11], Cbc [12],
GLPK [13], and Ipopt [52], do not provide trace informa-
tion to be drawn through the algebraic modeling language

Fig. 3 OptMap dense maps for unconstrained problems (from
Table 1) using the solvers in Table 2. White circles indicate starting
points (random vectors in 5, 10, and 20 dimensions, respectively).
Red circles indicate optimal points found by the solver. The magenta

lines and points show the solver traces. The numbers below each
image indicate the value of the objective function at the solution; red
values indicate that the solver failed to find an optimal solution (con-
verge), so the value is the one the solver stopped at before aborting

Table 2 Solvers used for unconstrained problems

Solver type Solver

Gradient-free Nelder–Mead [14]
Simulated annealing

Gradient required Gradient descent
Conjugated gradient [51]
L-BFGS [15]

Hessian required Newton

Fig. 4 OptMap dense maps for the constrained problems in Table 3.
White circles indicate starting points (zero vector). Red circles indi-
cate optimal points found by the solver. Magenta lines show the

solver traces. Darker areas indicate unfeasible regions. Text below
each image tells the type of problem, direction (minimization or max-
imization), number of variables, and solver used

SN Computer Science (2023) 4:230 Page 9 of 18 230

SN Computer Science

we used, JuMP [5], so we only draw the straight-line path
from the (randomly chosen) starting point to solution.

In Fig. 4, we can see for all problems the relationship
between the objective function and the constraints of the
problem, which provides insight on how close to boundary
conditions the solutions are. For example, in the problems
Schedule, Sphere, and Styblinski–Tang, we see that the solu-
tion found is at the boundary of one or more constraints.
This is not the case for the Diet and Knapsack problem,
which indicates that some tuning to the solver’s settings may
be required to obtain better results, or even some adjust-
ments to the problem definition may be done, such as the
relaxation of some constraints.

OptMap Performance

OptMap’s effort can be divided into two phases (Fig. 1a):
In phase 1, most of the time is spent while running PCA
for the sample points in the grid Gn to define the mapping
between the nD and 2D spaces. This has to be done only
once for a given function f and can be reused, e.g., when one
changes the solver. In phase 2, most time is spent evaluating

the objective function f and its constraints. Since function
evaluation is usually very fast and the pixel grid G2 is of lim-
ited size (8002 in our experiments), phase 2 takes only a few
seconds to run on our platform. Table 4 shows the PCA time
in phase 1 for Nmax = 5 M points. Additional implementation
and evaluation details are given in Appendix 1. We see in
Table 4 that time increases quickly with dimensionality. Yet,
since phase 1 is required to be run only once, and since this
time is a few minutes only even for a high dimensionality
n, we argue that this is not a crucial limitation of OptMap.

Table 3 Definition of
constrained optimization
problems

Name Definition

Diet Minimize 0.14x1 + 0.4x2 + 0.3x3 + 0.75x4
Subject to 23x1 + 171x2 + 65x3 + x4≥ 2000.0

0.1x1 + 0.2x2 + 9.3x4≥ 30.0

0.6x1 + 3.7x2 + 2.2x3 + 7x4≥ 200.0

6x1 + 30x2 + 13x3 + 5x4≥ 250.0

x1, x2, x3, x4≥ 0.0

Schedule Maximize 300x1 + 260x2 + 220x3 + 180x4 − 8y1 − 6y2
Subject to 11x1 + 7x2 + 6x3 + 5x4≤ 700.0

4x1 + 6x2 + 5x3 + 4x4≤ 500.0

8x1 + 5x2 + 5x3 + 6x4 − y1≤ 0.0

7x1 + 8x2 + 7x3 + 4x4 − y2≤ 0.0

y1≤ 600.0

y2≤ 650.0

x1, x2, x3, x4, y1, y2≥ 0.0

Knapsack Maximize 60x1 + 70x2 + 40x3 + 70x4 + 20x5 + 90x6
Subject to x1 + x2 − 4y≥ 0.0

x5 + x6 + 4y≥ 4.0

30x1 + 20x2 + 30x3 + 90x4 + 30x5 + 70x6≤ 2000.0

x3 − 10x4≤ 0.0

x1, x2, x3, x4, x5, x6, y≥ 0.0

x1, x2, x3, x4, x5, x6≤ 10.0

y≤ 1.0

x1, x2, x3, x4, x5, x6, y∈ ℤ

Sphere
Minimize

10∑
i=1

x2
i

Subject to
10∑
i=1

x2
i
≥ 5.0

Styblinski–Tang
Minimize

∑10

i=1
x4
i
−16x2

i
+5xi

2

Subject to
10∑
i=1

x2
i
≥ 5.0

Table 4 Time to project
N
max

= 5 M points with different
dimensionalities n using PCA

Dimensions n Time (s)

3 1.19
5 0.85
7 1.45
10 2.38
20 6.62
50 32.74
100 108.71

 SN Computer Science (2023) 4:230 230 Page 10 of 18

SN Computer Science

RegSurf: Real‑World Datasets

We use RegSurf to visualize the behavior of several regres-
sion algorithms, namely, Linear Regression, Decision Trees,
Random Forests, Gradient Boosting, k-Nearest Neighbors
(kNN), Support Vector Machines (SVM with RBF kernel),
and Neural Networks. We selected these regression algo-
rithms based on popularity, availability, and replicability (in
terms of stable, documented, open-source implementations),
and also on the fact that they use very different approaches to
the regression problem, and thus generate different types of
surfaces. Also, since the behavior of these regression algo-
rithms is relatively well understood, we can check that the
RegSurf visualization works well.

Table 5 lists the datasets used in this evaluation. All these
datasets are well known in both classification and regres-
sion problems, come from different problems (thus, describe
phenomena of different complexity, patterns, data structure),
are publicly available (which favors replicability), and cover
a range of dimensionalities. All datasets were split 80/20%
into training and test sets for our experiments. As visible,
the dimensionality of the datasets in Table 5 is relatively low
when compared to datasets usually present in deep learn-
ing, e.g., MNIST or similar. Technically speaking, RegSurf
can handle far higher dimensional datasets directly (see the
algorithm steps in “Method”. However, as explained there,
we use PCA to map the n-dimensional space to the 2D one
(projection P) and conversely (inverse projection P−1 . PCA
can do this reasonably well for low-intrinsic-dimensional
datasets. However, high-dimensional datasets in general also
have a higher intrinsic dimensionality, which causes PCA to
produce poor mappings for P and/or P−1 . As such, we limit
our experiments to datasets having a lower dimensionality.
We detail this point further in “Discussion”. A second point
is the difficulty of finding high-dimensional regressor data-
sets, i.e., datasets which associate a real-value measurement
(ground truth) to every n-dimensional sample point. Many
high-dimensional datasets in deep learning, such as MNIST

and similar, provide only discrete class values, so they can-
not be used to test RegSurf.

Figures 5 and 6 show surface maps created using Reg-
Surf for the above-mentioned regression algorithms and
datasets. These visualizations can be intuitively interpreted
as follows: Consider the training-set DT ⊂ ℝ

n of each of
these regressors. For every point xi ∈ DT , we also have a
target value yi ∈ ℝ . A regression algorithm effectively con-
structs a function � ∶ ℝ

n
→ ℝ that aims to ideally reproduce

�(xi) = yi for all training-set points. Imagine now a 2D sur-
face, embedded in ℝn , that passes through all the points xi .
RegSurf effectively takes this surface, flattens it to the 2D
image plane, and colors it by the values of � at all surface
points. Table 6 shows the respective training and testing loss
for each dataset and regressor. Let us next interpret these
results step-by-step.

Regressor patterns The maps in Fig. 5 suggestively cap-
ture the different characteristics of each type of regressor.
Linear regressors produce hyperplanes in ℝn+1 , which are
shown by the smooth color gradients in the RegSurf maps.
Tree-based regressors, such as decision trees, random for-
ests, and gradient boosting, show different kinds of step
functions (polygon-like surfaces having near constant color
visible in the maps), which form very simple to very com-
plex. Nearest-neighbor regressors produce maps with Voro-
noi-style cells, which intuitively shows that these regressors,
indeed, construct n-dimensional Voronoi partitions of the
variable space to compute their output variable. Finally, both
SVM and Neural Networks produce smoother, continuous-
like, maps. This is in accordance with what we theoretically
know about the respective regressors. Hence, we conclude
that the RegSurf visualizations accurately capture the behav-
ior of these regressors.

Fit-to-data analysis An additional value of the RegSurf
maps is that they convey a global insight on how the studied
regressors work and on how good is their fitting to the data,
beyond simple aggregated error metrics. Consider the Air
Quality dataset. This dataset consists of three distinct sample

Table 5 Datasets used in the evaluation of RegSurf

Dataset Observations Dimensions Description
N n

Air quality [53] 9358 13 Measurements from air sensors used to study and predict air quality
MTCars [54] 32 10 Data from several aspects of automobile design, used to predict fuel consumption
Housing prices [55] 506 13 Housing data from the Boston, MA region, used to predict house prices
Concrete [56] 1030 8 Measurements of chemico-physical properties of concrete used to study concrete strength
Superconductors [57] 21,264 81 Measurements of different properties from superconductors used to predict critical tem-

perature
SP urban traffic [58] 135 18 Measurements of urban traffic information used to predict traffic flow
Wine quality [59] 6497 11 Samples of white and red Portuguese vinho verde used to describe perceived wine quality

SN Computer Science (2023) 4:230 Page 11 of 18 230

SN Computer Science

clusters, with one of them being far away from the other two
in the projected space (see markers A, B, C for dotted lines
in Fig. 5 top-left cell). We see that the regressors have more
complex surfaces in the areas that have a larger concentra-
tion of points. As one gets further away from these areas,
i.e., if we look at image pixels far away from the red or
white dots, the surfaces get simpler to the point of becoming
constant. This shows that regressors for this dataset prob-
ably will not be able to generalize well for new observations
that fall within such sparsely sampled, underrepresented,

regions. Second, when looking at the amount of red points
(highest approximation error of the regressor as compared
to the ground-truth value), we can quickly tell that XGBoost
seems to have the best fit to the training data, and that it
generated a very complex regression surface to do so. This
is confirmed by Table 6 that shows that XGBoost has the
lowest training loss for Air Quality from all seven evaluated
regressors. Conversely, we see that SVM, Neural Network,
and Linear regressors seem to be underfit, as shown by the
amount of red points (high errors) they generate and the

Fig. 5 Maps created with RegSurf for several datasets and regressors. Points represent the training set and are colored according to the absolute
error when compared to the generated surface, varying from white (low error) to red (high error)

 SN Computer Science (2023) 4:230 230 Page 12 of 18

SN Computer Science

seemingly simple surfaces they created. Without the help of
a technique like RegSurf, it is hard to tell how the dataset is
spread out in space, and how different regression algorithms
spread their errors along that space.

Selecting a good regressor Consider next the Urban
Traffic dataset. Table 6 shows that both XGBoost and Neu-
ral Network are the best-fit regressors, with a slight edge
for XGBoost. However, the RegSurf maps refine and actu-
ally nuance this insight. Looking at the XGBoost and Neu-
ral Network maps in Fig. 5, we see that Neural Network
spreads its errors more evenly, without a specific region

with high error. This is not the case for XGBoost, where
we can see two dark red dots in the bottom of the image
(markers P, Q in Fig. 5). Also, the checkered pattern in the
XGBoost map shows that this regressor is far less smooth
than Neural Networks. Hence, combining the measured
values of the training loss with the visual inspection of the
RegSurf maps allows the ML engineer to select the better
regressor based on more desirable properties (error spread,
smoothness) than if one would study only the aggregated
absolute errors.

Fig. 6 Maps created with RegSurf for selected datasets shown in Fig. 5. We omitted here plotting the training points to better show the regres-
sor’s surfaces

Table 6 Training and testing loss for each regressor/dataset in Fig. 5

Regressor dataset Decision tree Random forest SVM Linear XGBoost kNN Neural net-
work

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

Air quality 0.054 0.108 0.059 0.116 0.091 0.088 0.167 0.165 0.048 0.125 0.079 0.105 0.098 0.098
Concrete 0.036 0.066 0.028 0.057 0.050 0.060 0.104 0.104 0.005 0.035 0.068 0.095 0.020 0.040
Housing 0.034 0.063 0.029 0.056 0.038 0.046 0.069 0.077 0.001 0.048 0.058 0.074 0.017 0.049
MTCars 0.065 0.072 0.047 0.078 0.055 0.126 0.082 0.108 0.001 0.089 0.102 0.099 0.011 0.110
Urban traffic 0.082 0.105 0.060 0.095 0.082 0.140 0.101 0.109 0.017 0.096 0.096 0.137 0.025 0.116
Supercond 0.019 0.034 0.018 0.030 0.044 0.044 0.074 0.072 0.020 0.031 0.026 0.032 0.034 0.038
Wine 0.048 0.095 0.040 0.077 0.086 0.091 0.095 0.096 0.032 0.077 0.070 0.089 0.062 0.077

SN Computer Science (2023) 4:230 Page 13 of 18 230

SN Computer Science

RegSurf: Visualizing Overfitting

As already indicated in “RegSurf: Real-World Datasets”, a
practical use case of RegSurf is to visually assess the good-
ness of fit of a regressor to a dataset. This complements
information provided by metrics such as mean squared error
or mean absolute error. We next select two pairs of (dataset,
regressor) to further illustrate this use case. Figure 7 shows
a Neural Network regressor trained on the Urban Traffic
dataset for increasingly more training epochs. We see that,
as the network starts to overfit (700 epochs), the RegSurf
maps get increasingly complex, which corresponds to what
is intuitively expected of an overfit model. For the second
use-case, Fig. 8 shows Decision Tree regressors trained on
the MTCars dataset, with varied hyperparameters. The Reg-
Surf maps vary from very simple (small amount of space
partitions), indicating underfitting, to very complex (higher
amount of space partitions), indicating overfitting. Hence,
the visual complexity of the RegSurf maps can be used to
detect when overfitting occurs: Take a given problem where
one has (rough) knowledge of the smoothness and complex-
ity of the regressor one tries to learn. One can watch how
RegSurf’s maps change during training and assess, based
on how these match the expected nature of the modeled

phenomenon, whether, when, and where under- or overfit-
ting occurs.

RegSurf Performance

As for OptMap, RegSurf’s computation time can be divided
into two phases (Fig. 1b): In phase 1, most of the time is
spent while running PCA for the dataset D to construct the
mapping between the nD and 2D spaces. These computa-
tions are only dataset-dependent and can be reused when,
e.g., exploring different regressors. In phase 2, most of the
time is spent evaluating the regressor function � . As for Opt-
Map’s evaluation of the objective function f, this operation
is fast (see “OptMap Performance”).

To assess RegSurf’s scalability, we generated synthetic
Gaussian data with varying number of samples and dimen-
sions, and a Decision Tree regressor trained on these dif-
ferent synthetic datasets. Table 7 shows separately the time
spent for the PCA mappings (phase 1) and for evaluating
the regressor (phase 2). Even for very high-dimensional
data, the whole process runs in tens of seconds, with
the regressor-evaluation time dominating the process.
Importantly, note that the regressor-evaluation time can-
not be reduced—unless someone provides a faster imple-
mentation of the function � . Figure 9 depicts the same

Fig. 7 RegSurf maps for Neural Network trained on the Urban Traffic dataset, increasing number of epochs. Numbers below the images show
train and test loss; the minimal loss value is in bold

Fig. 8 RegSurf maps for Decision Trees trained on the MTCars data-
set. Numbers above the images indicate the hyperparameters min
samples leaf, min samples split and max depth, respectively, with − 1

meaning unlimited max depth. Numbers below the images show train
and test loss, with the lower loss value shown in bold

 SN Computer Science (2023) 4:230 230 Page 14 of 18

SN Computer Science

information as in Table 7 using heatmaps, which shows
the above-mentioned trends more clearly. In this experi-
ment, PCA time grows with the number of observations
and dimensions, whereas dimensionality seems to be much
more important for the Decision Tree regressor used. In
the case of lazy regressors, such as k-Nearest Neighbors,
we expect this behavior to be even worse. Conversely, for
GPU-based Neural Network regressors, we expect this
behavior not to be an issue. Given these results, we state
that RegSurf is fast enough to be used during iterative
ML model development that involves datasets of tens of
thousands of observations and up to thousand dimensions.

Discussion

We discuss next how our joint OptMap-RegSurf tech-
nique performs with respect to the criteria laid out in
“Introduction”.

Quality (C1) Figs. 2, 3, and 4 show examples of the qual-
ity of the visualizations and the kind of insight they can

provide for optimization problems. The same is true for
regression problems with Figs. 5, 6, 7, and 8. Our dense
maps are pixel-accurate, in the sense that they show actual
information inferred from the nD function f or � under
investigation at each pixel, without interpolation. This is in
contrast with many other dimensionality reduction methods
which either show a sparse sampling of the nD space (by
means of a 2D scatterplot), leaving the user to guess what
happens between scatterplot points; or use interpolation in
the 2D image space to ‘fill’ such gaps [60–63], which cre-
ates smooth images that may communicate wrong insights,
since one does not know whether the used projection is
continuous.

Genericity (C2) We show how our technique performs
for optimization problems with varying nature, com-
plexity, and dimensionality, and for seven types of ML
regressors over several real-world datasets. We also show
that our method can be used simply for visualizing high-
dimensional, continuous, functions by a single 2D image,
in contrast to multiple images that have to be navigated

Fig. 9 Heatmap showing the order of growth of time to create surface maps using RegSurf for different dataset sizes

Table 7 Time to create RegSurf
maps for different dataset sizes

P is the time spent to create PCA mappings; � is the time spent by the regressor to color all pixels in the
image

Dims points 10 25 50 100 250 500 1000

P � P � P � P � P � P � P �

100 0.09 0.70 0.11 0.41 0.57 0.91 0.47 2.40 2.10 7.76 5.74 16.53 5.74 26.80
500 0.04 0.60 0.04 0.33 0.47 0.69 0.20 2.05 0.50 5.76 4.55 11.87 5.88 32.12
1000 0.02 0.62 0.04 0.33 0.47 0.73 0.21 2.11 0.53 5.82 4.75 14.48 6.89 34.49
2500 0.05 0.69 0.05 0.47 0.61 1.14 0.25 3.21 1.66 5.42 5.71 15.52 6.93 28.75
5000 0.04 0.62 0.09 0.36 0.53 0.91 0.32 2.16 1.83 5.14 5.06 12.81 7.24 30.40
10,000 0.05 0.63 0.12 0.48 0.70 1.02 0.50 3.01 2.24 7.44 5.90 17.88 10.46 37.33
20,000 0.06 0.69 0.13 0.40 0.37 1.17 0.56 2.93 2.66 7.94 6.45 13.82 10.94 28.78

SN Computer Science (2023) 4:230 Page 15 of 18 230

SN Computer Science

and correlated by interaction [29]. We also show that
our technique is independent of the optimization solv-
ers or regressors being used. For optimization, OptMap
only requires the definition of the problem O to solve,
range of the input variables to consider, and access to a
black-box optimization method. For regression, RegSurf
only requires access to a training set and to the black-box
regressor trained on it.

Simplicity (C3) We use PCA for direct and inverse pro-
jections, which is a very well-known, simple, fast, and
deterministic projection method. The complete imple-
mentation of each technique has about 250 lines of Julia
code. Note that we also experimented with other methods
for the direct projection—namely, t-SNE as learned by
NNP [46]—and inverse projection—namely, NNInv [45],
obtaining good results. However, for the optimization and
regression problems presented in this paper, PCA yielded
better results (based on ground truth comparison). Since
PCA is also simpler and faster than NNP and NNInv, we
preferred it in our work.

Ease of use (C4) For OptMap, where sampling is an
important step, we executed all experiments using the
same maximum number of sample points Nmax with good
results, which shows that the technique requires little-to-no
tuning to work properly. There are also a few options that
control visual settings, such as color map and point size,
which have sensible defaults and do not affect the quality
or performance of the method.

Scalability (C5) “OptMap Performance” and “RegSurf
Performance” show that our method is highly scalable
with the number of sample points N and dimensions n,
which enables its interactive usage during the development
cycle of optimization and regression models. For OptMap,
scalability is inherently limited by the resolution used to
create the dense grid Gn—see “Method”, algorithm step
2. If the number of dimensions n and the sampling rate
of each dimension become too high, the total number of
samples N in the grid Gn becomes prohibitive. To alleviate
this, one could (a) consider different sampling rates for the
n dimensions, based on prior knowledge on how f depends
on each of them; (b) use OptMap interactively by ‘zoom-
ing in and out’ of different variable ranges to explore the
high-dimensional space; or (c) use multiresolution tech-
niques, akin to those already present in various optimizers.
This is not an issue for RegSurf, which does not use the
grid Gn (“Discussion”, algorithm step 2) but rather the
training and test sets used to construct the regressor � to
be visualized. In typical ML problems, such training sets
have tens of thousands of samples—in any case, far fewer
than the size of Gn needed for OptMap. However, even
with these limitations, both OptMap and RegSurf create
dense maps of any optimizer and regressor, respectively,

in tens of seconds for datasets up to 1000 dimensions, on
a commodity PC, and both have a complexity linear in
the number of evaluated sample points. As such, we deem
both methods practical for visualization applications.

Limitations The projected data points, such as the start-
ing, trace, and solution points for OptMap, and training-
set points for RegSurf, are placed in the 2D image space at
approximate positions, due to the inherent discrete nature of
the pixel grid G2 . This can cause situations such as the one
in Fig. 4 (sphere problem), where the optimal point found by
the solver—which is obviously feasible—is placed slightly
inside the unfeasible region, which can be misleading. Sec-
ond, we noticed that due to the inherently imperfect map-
ping between nD and 2D spaces, equality constraints that
compare against constants might not be satisfied during the
evaluation, which will make the drawing of feasible regions
fail in OptMap.

A separate aspect relates to the fact that P can map multi-
ple different points x ∈ D to the same pixel p ∈ G2 . Hence,
the color assigned to p should ideally reflect the combina-
tion of values f (x) of all these points x . For categorical-
valued functions f, this can be done using voting schemes
that compute the confidence of the final coloring [21]. A
low-hanging fruit for future work is to (efficiently) extend
such schemes to our real-valued functions f using aggrega-
tion strategies such as average, min, or max.

Finally, it is known that PCA, used by both OptMap and
RegSurf to bidirectionally map between the high-dimen-
sional space and the 2D image, can create distortions when
mapping between these two spaces [34]. In turn, these can
influence the insights that our dense maps convey, e.g., in
terms of observing non-smooth regions that actually cor-
respond to projection errors and not optimizer or regressor
non-smoothness. Finding a replacement projection for PCA
(and its inverse) that is equally fast, easy to use, generic,
parametric, and yields less distortion, is an important direc-
tion to explore next.

Applications The aim of the current paper was to intro-
duce two new techniques, OptMap and RegSurf, for the
visualization of high-dimensional functions for optimiza-
tion and regression problems, respectively. To demonstrate
these techniques, we have chosen known optimizers, regres-
sors, and datasets. Indeed, this was needed, since we need
to have functions with known behavior as ground-truth to
check the correctness of our novel visualization techniques.
As our experiments shown good results for OptMap and
RegSurf for these problems, we deem both techniques to be
ready for applications on problems with more complex and/
or unknown behavior. Several such application areas exist.
Image analysis by deep learning methods is a particularly
interesting application area. The key reason hereof is that
images, represented by high-dimensional features extracted

 SN Computer Science (2023) 4:230 230 Page 16 of 18

SN Computer Science

by various methods, can be directly visualized, unlike other
more abstract high-dimensional data. As such, one can imag-
ine simple enhancements of RegSurf—trained for either an
image classification or image regression problem—which
allow the user to point at every location in the visualization
space and generate on-the-fly the image corresponding to the
respective high-dimensional point. This would assist users
in multiple scenarios, e.g., finding what types of images cor-
respond to low-confidence classification areas or generating
new images in such areas in a user-supervised data augmen-
tation process to improve classifier performance. Examples
of recent imaging applications which could be assisted by
such visualizations include transfer learning for image clas-
sification [64], finding relevant features for classification
of histopathology images [65], analysis of misclassifica-
tion results in cell image classification [66], microorganism
image segmentation [67], and data augmentation for can-
cer image classification [68]. Moreover, pipelines in such
applications which use image transformation modules can
be studied separately by RegSurf, given that such transfor-
mations are essentially regressors.

Conclusion

In this paper, we presented an image-based visualization
technique that enables the visualization of multidimensional,
single-valued functions. Our technique represents the high-
dimensional domain of the function by means of sampling,
either on a provided grid, as in the case of ML training data-
sets, or computed dense-sampling grid, as in the case of
general-purpose functions with given variable domains. This
sampling is used to produce a bidirectional mapping from
the high-dimensional space to 2D image space. Finally, the
image pixels are colored to construct a dense representation
of the function of interest.

We proposed two variants of this technique, namely Opt-
Map, for optimization problems, and RegSurf, for regres-
sion problems. We show that both variants perform well in
varied, realistic scenarios, with several examples that dem-
onstrate the genericity, scalability, parameter-free nature,
and simplicity of the underlying technique. Additionally,
we showed how the produced maps can be interpreted to
gain insights into underlying problems in the two domains,
such as comparing solvers for optimization problems and
analyzing the smoothness and under-or-overfit properties of
ML regressors. Our entire framework is simple to imple-
ment and based on open-source components, which favors
replicability and ease of use.

Several future work directions exist. First and foremost,
it is interesting to consider using more accurate direct and
inverse projections for constructing the dense maps. Second,

we consider using both variants in concrete applications,
and gauging its added value in helping engineers designing
better optimization and regression models, as opposed to
the existing tools-of-the-trade for the same task. Addition-
ally, we plan to extend this idea to enable the visualization
of vector (multivalued) functions f ∶ ℝ

n
→ ℝ

m , which will
expand the range of possible applications for the technique.

Appendix 1: Implementation details

We implemented OptMap and RegSurf in Julia [69] using
the open-source software libraries in Table 8. The optimi-
zation examples (“OptMap: Test via High-Dimensional
Functions”, OptMap: Solvers for Unconstrained Problems
and “OptMap Performance”) were implemented using
Optim [70] for the unconstrained problems, and JuMP [5]
for the constrained problems, using the solvers Clp [11],
Cbc [12], GLPK [13], and Ipopt [52]. The regression
examples (“RegSurf: Real-World Datasets” and “RegSurf:
Visualizing Overfitting”) were implemented using the
MLJ library [71]. Our implementation, plus all code used
in our experiments, are publicly available at github.com/
mespadoto/optmap.

The scalability experiments discussed in “OptMap Per-
formance” and “RegSurf Performance” were executed,

Table 8 Software used for the OptMap and RegSurf implementation

Library Software publicly available at

Images github.com/JuliaImages/Images.jl
ColorTypes github.com/JuliaGraphics/ColorTypes.jl
ColorSchemes github.com/JuliaGraphics/Color-

Schemes.jl
Luxor github.com/JuliaGraphics/Luxor.jl
CSV github.com/JuliaData/CSV.jl
DataFrames github.com/JuliaData/DataFrames.jl
MultivariateStats github.com/JuliaStats/MultivariateStats.jl
Optim github.com/JuliaNLSolvers/Optim.jl
Clp github.com/jump-dev/Clp.jl
Cbc github.com/jump-dev/Cbc.jl
GLPK github.com/jump-dev/GLPK.jl
Ipopt github.com/jump-dev/Ipopt.jl
MLJ github.com/alan-turing-institute/MLJ.jl
DecisionTree github.com/bensadeghi/DecisionTree.jl
XGBoost github.com/dmlc/XGBoost.jl
LIBSVM github.com/JuliaML/LIBSVM.jl
NearestNeighborModels github.com/JuliaAI/NearestNeighbor-

Models.jl
NeuralNetworkRegressor github.com/FluxML/MLJFlux.jl

SN Computer Science (2023) 4:230 Page 17 of 18 230

SN Computer Science

respectively, on a 4-core Intel Xeon E3-1240 v6 at 3.7 GHz
with 64 GB RAM, and on a dual 16-core Intel Xeon Silver
4216 at 2.1 GHz with 256 GB RAM.

Author Contributions Not applicable.

Funding This study was financed in part by FAPESP under Grant Nos.
2015/22308-2, 2017/25835-9, and 2020/13275-1, and the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—
Finance Code 001.

Availability of Data and Materials Not applicable.

Code Availability Our implementation, plus all codes used in our
experiments, are publicly available at github.com/mespadoto/optmap.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

References

 1. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion
B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,
Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M,
Duchesnay E. Scikit-learn: machine learning in python. JMLR.
2011;12:2825–30.

 2. Krizhevsky A, Sutskever I, Hinton G. Imagenet classification
with deep convolutional neural networks. In: Advances in neural
information processing systems (NIPS). 2012. p. 1097–1105.

 3. Brooke A, Kendrick D, Meeraus A, Raman R, America U. The
general algebraic modeling system. GAMS Development Cor-
poration. 1998. p. 1050.

 4. Fourer R, Gay DM, Kernighan BW. A modeling language for
mathematical programming. Thomson: AMPL; 2003.

 5. Dunning I, Huchette J, Lubin M. JuMP: a modeling language for
mathematical optimization. SIAM Rev. 2017;59(2):295–320.

 6. Liu S, Maljovec D, Wang B, Bremer P-T, Pascucci V. Visual-
izing high-dimensional data: advances in the past decade. IEEE
TVCG. 2015;23(3):1249–68.

 7. Espadoto M, Rodrigues FCM, Hirata NS, Telea AC. OptMap:
using dense maps for visualizing multidimensional optimization
problems. In: VISIGRAPP (3: IVAPP). 2021. p. 123–132.

 8. Guenin B, Könemann J, Tuncel L. A gentle introduction to opti-
mization. UK: Cambridge University Press; 2014.

 9. Dantzig GB. Origins of the simplex method. In: A history of
scientific computing. 1990. p. 141–151.

 10. Kantorovich LV. Mathematical methods of organizing and plan-
ning production. Manage Sci. 1960;6(4):366–422.

 11. Forrest J, Vigerske S, Ralphs T, Hafer L, jpfasano Santos HG,
Saltzman M, h-i-gassmann Kristjansson B, King A. coin-or/Clp
2020.

 12. Forrest J, Vigerske S, Santos HG, Ralphs T, Hafer L, Krist-
jansson B, jpfasano Straver E, Lubin M, rlougee jpgoncal1 h-i-
gassmann, Saltzman M. coin-or/Cbc 2020.

 13. Makhorin A. GLPK: GNU Linear Programming Kit. 2008.
https:// www. gnu. org/ softw are/ glpk/ glpk. html.

 14. Nelder JA, Mead R. A simplex method for function minimiza-
tion. Comput J. 1965;7(4):308–13.

 15. Liu DC, Nocedal J. On the limited memory BFGS method for
large scale optimization. Math Program. 1989;45(1–3):503–28.

 16. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification
and regression trees. USA: Routledge; 2017.

 17. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
 18. Friedman JH. Greedy function approximation: a gradient boost-

ing machine. Ann Stat. 2001;1189–1232.
 19. Lundberg SM, Lee S-I. A unified approach to interpreting model

predictions. In: Proceedings of the 31st international conference
on neural information processing systems. 2017. p. 4768–4777.

 20. Ribeiro MT, Singh S, Guestrin C. Why should I trust you?:
explaining the predictions of any classifier. In: Proc. ACM SIG-
MOD KDD. 2016. p. 1135–1144.

 21. Rodrigues F, Espadoto M, Hirata R, Telea AC. Constructing
and visualizing high-quality classifier decision boundary maps.
Information. 2019;10(9):280.

 22. Garcia R, Telea A, da Silva B, Torresen J, Comba J. A task-and-
technique centered survey on visual analytics for deep learning
model engineering. Comput Gr. 2018;77:30–49.

 23. Buja A, Cook D, Swayne DF. Interactive high-dimensional data
visualization. J Comput Gr Stat. 1996;5(1):78–99.

 24. Bertini E, Tatu A, Keim D. Quality metrics in high-dimensional
data visualization: an overview and systematization. IEEE
TVCG. 2011;17(12):2203–12.

 25. Rao R, Card SK. The table lens: merging graphical and sym-
bolic representations in an interactive focus+context visualiza-
tion for tabular information. In: Proc. ACM SIGCHI. 1994. p.
318–322.

 26. Telea AC. Combining extended table lens and treemap tech-
niques for visualizing tabular data. In: Proc. EuroVis. 2006. p.
120–127.

 27. Inselberg A, Dimsdale B. Parallel coordinates: a tool for visual-
izing multi-dimensional geometry. In: Proc. IEEE visualization.
1990. p. 361–378.

 28. Yates A, Webb A, Sharpnack M, Chamberlin H, Huang K, Machi-
raju R. Visualizing multidimensional data with glyph SPLOMs.
Comput Gr Forum. 2014;33(3):301–10.

 29. van Wijk JJ, van Liere R. Hyperslice. In: Proc. visualization.
IEEE. 1993. p. 119–125.

 30. Piringer H, Berger W, Krasser J. HyperMoVal: interactive visual
validation of regression models for real-time simulation. Comput
Gr Forum. 2010;29(10):983–92.

 31. Crawfis PBRWR. Isosurfacing in higher dimensions. In: Proc.
IEEE visualization. 2010.

 32. Gerber S, Bremer P-T, Pascucci V, Whitaker R. Visual explo-
ration of high dimensional scalar functions. IEEE TVCG.
2010;16(6):1271–80.

 33. Wicklin R. Visualize the feasible region for a constrained optimi-
zation. SAS. 2018.

 34. Espadoto M, Martins RM, Kerren A, Hirata NS, Telea AC.
Towards a quantitative survey of dimension reduction techniques.
IEEE TVCG. 2019;27(3):2153–73.

 35. Jolliffe IT. Principal component analysis and factor analysis. In:
Principal component analysis. Berlin: Springer. 1986. p. 115–128.

 36. Torgerson WS. Theory and methods of scaling. Oxford: Wiley;
1958.

https://www.gnu.org/software/glpk/glpk.html

 SN Computer Science (2023) 4:230 230 Page 18 of 18

SN Computer Science

 37. Tenenbaum JB, Silva VD, Langford JC. A global geometric
framework for nonlinear dimensionality reduction. Science.
2000;290(5500):2319–23.

 38. Roweis ST, Saul LLK. Nonlinear dimensionality reduction by
locally linear embedding. Science. 2000;290(5500):2323–6.

 39. McInnes L, Healy J. UMAP: uniform manifold approximation and
projection for dimension reduction (2018). arXiv: 1802. 03426 v1
[stat.ML].

 40. Joia P, Coimbra D, Cuminato JA, Paulovich FV, Nonato
LG. Local affine multidimensional projection. IEEE TVCG.
2011;17(12):2563–71.

 41. Paulovich FV, Nonato LG, Minghim R, Levkowitz H. Least square
projection: a fast high-precision multidimensional projection tech-
nique and its application to document mapping. IEEE TVCG.
2008;14(3):564–75.

 42. Maaten LVD, Hinton G. Visualizing data using t-SNE. JMLR.
2008;9:2579–605.

 43. Nonato L, Aupetit M. Multidimensional projection for visual
analytics: linking techniques with distortions, tasks, and layout
enrichment. IEEE TVCG. 2018.

 44. Amorim E, Brazil EV, Daniels J, Joia P, Nonato LG, Sousa MC.
iLAMP: exploring high-dimensional spacing through backward
multidimensional projection. In: Proc. IEEE VAST. 2012. p.
53–62.

 45. Espadoto M, Rodrigues FCM, Hirata NST, Hirata Jr, R, Telea
AC. Deep learning inverse multidimensional projections. In: Proc.
EuroVA. 2019.

 46. Espadoto M, Hirata N, Telea A. Deep learning multidimensional
projections. Inf Vis. 2020.

 47. Hunter JD. Matplotlib: a 2d graphics environment. Comput Sci
Eng. 2007;9(3):90–5.

 48. Rosenbrock H. An automatic method for finding the greatest or
least value of a function. Comput J. 1960;3(3):175–84.

 49. Rastrigin LA. Systems of extremal control. Nauka. 1974.
 50. Styblinski M, Tang T-S. Experiments in nonconvex optimization:

stochastic approximation with function smoothing and simulated
annealing. Neural Netw. 1990;3(4):467–83.

 51. Hager WW, Zhang H. Algorithm 851: CG_DESCENT, a conju-
gate gradient method with guaranteed descent. ACM Trans Math
Softw. 2006;32(1):113–37.

 52. Wächter A, Biegler LT. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming.
Math Program. 2006;106(1):25–57.

 53. Vito SD, Massera E, Piga M, Martinotto L, Francia GD. On field
calibration of an electronic nose for benzene estimation in an
urban pollution monitoring scenario. Sens Actuators B Chem.
2008;129(2):750–757. https:// archi ve. ics. uci. edu/ ml/ datas ets/ Air+
Quali ty

 54. Henderson HV, Velleman PF. Building multiple regression models
interactively. Biometrics. 1981;391–411.

 55. Harrison D Jr, Rubinfeld DL. Hedonic housing prices and the
demand for clean air. J Environ Econ Manag. 1978;5(1):81–102.

 56. Yeh I-C. Modeling of strength of high-performance con-
crete using artificial neural networks. Cem Concr Res.
1998;28(12):1797–808.

 57. Hamidieh K. A data-driven statistical model for predicting the
critical temperature of a superconductor. Comput Mater Sci.
2018;154:346–54.

 58. Ferreira R, Affonso C, Sassi R. Combination of artificial intel-
ligence techniques for prediction the behavior of urban vehicular

traffic in the city of são paulo. In: 10th Brazilian congress on
computational intelligence (CBIC)-Fortaleza, Ceara, Brazil. 2011.
p. 1–7.

 59. Cortez P, Cerdeira A, Almeida F, Matos T, Reis J. Modeling wine
preferences by data mining from physicochemical properties.
Decis Support Syst. 2009;47(4):547–53.

 60. Martins R, Coimbra D, Minghim R, Telea A. Visual analysis of
dimensionality reduction quality for parameterized projections.
Comput Gr. 2014;41:26–42.

 61. Silva Rd, Rauber P, Martins R, Minghim R, Telea AC. Attribute-
based visual explanation of multidimensional projections. In:
Proc. EuroVA. 2015.

 62. van Driel D, Zhai X, Tian Z, Telea A. Enhanced attribute-based
explanations of multidimensional projections. In: Proc. EuroVA.
2020.

 63. Tian Z, Zhai X, van Driel D, van Steenpaal G, Espadoto M, Telea
A. Using multiple attribute-based explanations of multidimen-
sional projections to explore high-dimensional data. Comput Gr.
2021;98:93–104.

 64. Rahaman M, Li C, Yao Y, Kulwa F, Rahman MA, Wang Q,
Qi S, Kong F, Zhu X, Zhao X. Identification of COVID-19
samples from chest X-ray images using deep learning: a com-
parison of transfer learning approaches. J Xray Sci Technol.
2020;28(5):821–39.

 65. Chen H, Li C, Wang G, Li X, Rahaman M, Sun H, Hu W, Li Y,
Liu W, Sun C, Ai S, Grzegorzek M. GasHis-transformer: a multi-
scale visual transformer approach for gastric histopathological
image detection. Pattern Recogn. 2022;130:108827.

 66. Liu W, Li C, Xu N, Jiang T, Rahaman M, Sun H, Wu X, Hu W,
Chen H, Sun C, Yao Y, Grzegorzek M. CVM-Cervix: a hybrid
cervical Pap-smear image classification framework using CNN,
visual transformer and multilayer perceptron. Pattern Recogn.
2022;130:108829.

 67. Zhang J, Li C, Kosov S, Grzegorzek M, Shirahamad K, Jiang T,
Sun C, Li Z, Li H. LCU-Net: a novel low-cost U-Net for envi-
ronmental microorganism image segmentation. Pattern Recogn.
2021;115:107885.

 68. Rahaman M, Li C, Yao Y, Kulwa F, Wu X, Li X, Wang Q. Deep-
Cervix: a deep learning-based framework for the classification of
cervical cells using hybrid deep feature fusion techniques. Comput
Biol Med. 2021;136:104649.

 69. Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: a fresh
approach to numerical computing. SIAM Rev. 2017;59(1):65–98.

 70. Mogensen PK, Riseth AN. Optim: a mathematical optimization
package for Julia. J Open Sour Softw. 2018;3(24):615.

 71. Blaom AD, Kiraly F, Lienart T, Simillides Y, Arenas D, Vollmer
SJ. MLJ: a Julia package for composable machine learning. 2020.
arXiv preprint arXiv: 2007. 12285.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/abs/1802.03426v1
https://archive.ics.uci.edu/ml/datasets/Air+Quality
https://archive.ics.uci.edu/ml/datasets/Air+Quality
http://arxiv.org/abs/2007.12285

	Visualizing High-Dimensional Functions with Dense Maps
	Abstract
	Introduction
	Background
	Optimization
	Regression in Machine Learning
	Visualization of High-Dimensional Objects

	Method
	Results
	OptMap: Test via High-Dimensional Functions
	OptMap: Solvers for Unconstrained Problems
	OptMap: Constrained Problems
	OptMap Performance
	RegSurf: Real-World Datasets
	RegSurf: Visualizing Overfitting
	RegSurf Performance

	Discussion
	Conclusion
	References

