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Abstract
Dimensionality reduction (DR) methods create 2D scatterplots of high-dimensional data for visual exploration. As such 
scatterplots are often used to reason about the cluster structure of the data, this requires DR methods with good cluster 
preservation abilities. Recently, Sharpened DR (SDR) was proposed to enhance the ability of existing DR methods to create 
scatterplots with good cluster structure. Following this, SDR-NNP was proposed to speed the computation of SDR by deep 
learning. However, both SDR and SDR-NNP require careful tuning of four parameters to control the final projection quality. 
In this work, we extend SDR-NNP to simplify its parameter settings. Our new method retains all the desirable properties 
of SDR and SDR-NNP. In addition, our method is stable vs setting all its parameters, making it practically a parameter-free 
method, and also increases the quality of the produced projections. We support our claims by extensive evaluations involving 
multiple datasets, parameter values, and quality metrics.
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Introduction

The visual analysis of high-dimensional data is challenging 
due to its many observations (also known as points or sam-
ples) and values recorded per sample (also known as dimen-
sions, features, or variables)   [1–3]. Dimensionality reduc-
tion (DR), also known as projection, is particularly suited 

for such data, since DR methods scale visually to thousands 
of dimensions and hundreds of thousands of samples. DR 
techniques such as the well-known t-SNE  [4] and UMAP  
[5] methods, can segregate data clusters into well-separated 
visual clusters, which enables one to reason about the former 
by seeing the latter, a property also known as preservation 
of data structure  [6].

A recent survey  [3] noted that many DR techniques 
score below t-SNE or UMAP in cluster segregation but 
have other important assets—simple usage and imple-
mentation, computational scalability, and out-of-sample 
behavior. Following this, [7] recently proposed Sharpened 
DR (SDR) to generically improve the cluster segregation 
ability of any DR technique by sharpening the input data 
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by a variant of the Mean Shift (MS) algorithm  [8]. How-
ever, SDR is impractical to use as MS is prohibitively 
expensive in high dimensions.

In a recent paper  [9], we reduced the computational 
cost of SDR using deep learning. Our proposed method, 
called SDR-NNP, leverages an earlier DR method, called 
Neural Network Projection (NNP)  [10], to learn the com-
bined steps of data sharpening and projection. SDR-NNP 
has the following features—to our knowledge, not yet 
jointly achieved by existing DR methods:

Quality (C1): Better cluster separation than existing 
DR methods, as measured by well-known metrics in the 
DR literature;

Scalability (C2): Linear in sample and dimension 
counts, allowing the projection of datasets of up to a mil-
lion samples and hundreds of dimensions in a few seconds 
on commodity GPU hardware;

Genericity (C3): Handles any real-valued (unlabeled) 
high-dimensional data;

Stability and out-of-sample (OOS) support (C4): 
Projects new samples for a learned projection without rec-
omputing it, in contrast to standard t-SNE and any other 
non-parametric methods.

However, SDR-NNP depends on four parameters—the 
number of nearest neighbors ks in the MS process, the 
number of MS data-sharpening iterations I, the so-called 
learning rate � (speed of MS), and the number of training 
epochs E. While SDR-NNP proposes a good default for 
E, it only suggests ranges from which users can pick I 
and � and does not further explore how to set ks . Tuning 
each single parameter can change the projection, and also 
the projection quality measured by established metrics, 
in subtle ways. In practice, users have to examine differ-
ent combinations of ks , I, and � by trial-and-error. This is 
slow, since all these parameters affect the training data 
that SDR-NNP uses, i.e., one has to retrain the method 
after each parameter change. More importantly, if chang-
ing these parameters can lead to very different projections, 
then the entire goal of stability—that is, having a method 
that generates consistent results for a given input data-
set—would be compromised. Simply put: Sharpening the 
data, as SDR-NNP does it, is useful and desired, but only 
effective in practice if it can be done in a stable, ideally 
parameter-free, manner.

In this paper, we address these issues by reducing SDR-
NNP’s four-parameter space to a single parameter. The 
new parameter Km controls a K-means clustering process 
done in the input high-dimensional data. We control SDR’s 
data-sharpening process based on the local homogeneity 
of neighborhoods in terms of the cluster labels they get 
assigned by K-means. Our new method, which we call �
-SDR-NNP, keeps the quality (C1), scalability (C2), generic-
ity (C3), and stability and OOS (C4) features of SDR-NNP 

listed above. Most importantly, however, the new method 
covers the following.

Ease of use (C5): Our new method is far stabler than 
SDR-NNP in terms of visual cluster separation and qual-
ity metrics of the computed projections for both changes 
in the four parameters ks , I, � , and E it inherits from SDR-
NNP and the new parameter Km it adds. Practically put, our 
new method can be seen as parameter-free, thus stable in its 
application. Our method also increases the quality (C1) of 
the produced projections vs SDR-NNP for the same param-
eter values.

We structure this paper as follows: “Background” dis-
cusses related work on dimensionality reduction. Sec-
tion “SDR-NNP and α-SDR-NNP Methods” details SDR-
NNP and �-SDR-NNP. Section “Results” presents the results 
that support our above claims, including a detailed quantita-
tive and qualitative comparison of SDR-NNP and �-SDR-
NNP. Section “Discussion” discusses our two methods. 
Finally, Section “Conclusion” concludes the paper.

Background

Let x = (x1,… , xn) , xi ∈ ℝ, 1 ≤ i ≤ n be an n-dimensional 
(nD) real-valued sample, and let D = {xj} , 1 ≤ j ≤ N be a 
dataset of N samples. A DR technique is a function

where q ≪ n , and typically q = 2 . The projection P(x) of a 
sample x ∈ D is a point p ∈ ℝ

q . Projecting the whole set D 
yields a qD scatterplot denoted next as P(D).

DR methods aim to satisfy multiple requirements. Table 1 
outlines prominent ones present in several DR surveys  [1–3, 
11–16]. Besides these, DR techniques also require local-
ity, steerability, and multilevel computation  [2]. We do 
not focus on such additional requirements as these are less 
mainstream.

The quality (Q) and cluster separation (CS) requirements 
need additional explanations. Projection quality is assessed 
by local metrics that measure how a small neighborhood of 
points in D maps to a neighborhood in P(D) and conversely. 
Local quality metrics include the following (see Table 2 for 
the formal definitions):

Trustworthiness T  [17]: Measures the fraction of close 
points in D that are also close in P(D). T tells how much one 
can trust that local patterns in a projection represent actual 
data patterns. In the definition (Table 2), U(K)

i
 is the set of 

points that are among the K nearest neighbors of point i in 
the 2D space but not among the K nearest neighbors of point 
i in ℝn ; and r(i, j) is the rank of the 2D point j in the ordered 
set of nearest neighbors of i in P(D);

(1)P ∶ ℝ
n
→ ℝ

q,
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Continuity C  [17]: Measures the fraction of close points 
in P(D) that are also close in D. In the definition (Table 2), 
V
(K)

i
 are the points in the K nearest neighbors of point i in 

D but not among the K nearest neighbors in 2D; and r̂(i, j) 
is the rank of the ℝn point j in the ordered set of nearest 
neighbors of i in D;

Neighborhood Hit NH  [18]: Measures how well a pro-
jection P(D) separates labeled data. NH is the number yl

k
 of 

the k nearest neighbors of a point y ∈ P(D) , denoted by yk , 
that have the same label l as y , averaged over P(D). Put sim-
ply: consider a projection, i.e., a 2D scatterplot P(D), where 
every point has a label equal to the label the correspond-
ing high-dimensional point projected there. If we assume a 
well-separated dataset in the high-dimensional space, i.e., a 
dataset where close points in this space have similar labels, 
then a good projection should keep this structure—that is, 
close points in the 2D scatterplot should also have similar 
labels. The usage and practical intuition behind the NH met-
ric has been extensively explored in the DR literature; see 
for example  [19]. By construction, the NH metric requires 
labeled datasets to be used.

Shepard diagram correlation R   [20]: The Shepard 
diagram is a scatterplot of the pairwise distances between 
all points in P(D) vs the corresponding distances in D. 
Points below, respectively above, the main diagonal show 
distance ranges for which false neighbors, respectively 
missing neighbors, occur. The closer the plot is to the main 
diagonal, the better the overall distance preservation is. 
The scatterplot’s Spearman rank correlation R measures 
this—a value R = 1 indicates a perfect (positive) distance 
correlation.

All above metrics are local, i.e., capture preservation of 
data structure in D at the scale given by the neighborhood 
size K. In practice, what a ‘good’ K value is for a given data-
set D is unknown. K can also vary locally within D as func-
tion of the point density. At a higher level, projections are 
used to reason about the overall data structure in D by creat-
ing, ideally, visual clusters that are as well separated in P(D) 
as data clusters are in D, a property called cluster separa-
tion (CS). High-CS projections show, e.g., how many point 
clusters exist and how these correlate (or not) with labels 
or specific attributes  [2], or predict how easy it is to train a 
classifier for D based on the CS in P(D)  [19]. In general, it 
is hard to design objective metrics for CS like one does for 
local quality, because a ‘well separated data cluster’ in D 
is not evident. Hence, CS is typically assessed on (labeled) 
datasets D for which the ground-truth data-separation is well 
known, e.g., MNIST  [21].

We next discuss existing DR methods in the light of the 
requirements in Table 1. We group these into unsupervised 
and supervised methods, as follows.

Unsupervised methods: Principal Component Analy-
sis  [22] (PCA) is simple, fast, out-of-sample (OOS), and 
easy-to-interpret, also used as pre-processing for other DR 
techniques that require a moderate data dimensionality n  
[2]. Being linear and global, PCA has low quality and CS, 
especially for data of high intrinsic dimensionality.

MDS  [23], Landmark MDS  [24], Isomap  [25], and 
LLE  [26] with its variations  [27–29] detect and project the 
(neighborhood of the) high-dimensional manifold on which 
data are embedded, and can capture nonlinear data structure. 
Such methods yield higher quality than PCA, but can be hard 

Table 1   Summary of desirable requirements (characteristics) of DR methods

Requirement name Description of the requirement

Quality (Q) Captures local data structures well, as measured by the projection local-quality metrics in Table 2
Cluster separation (CS) Captures data structures present at larger scales than local structures, e.g., clusters, as visual clusters in the 2D scat-

terplot
Scalability (S) Can project datasets of hundreds of dimensions and millions of samples in a few seconds on commodity hardware
Ease of use (EoU) Has few (ideally: no) free parameters, which are intuitive and easy to tune to get the desired results
Genericity (G) Can project any (real-valued) dataset, with or without labels
Out-of-sample (OOS) Can fit new data in an existing projection. OOS projections are also stable—small input-data changes cause only small 

projection changes

Table 2   Local-quality metrics 
for projections. All metrics 
range in [0, 1] with 0 being 
lowest, and 1 being highest, 
quality

Metric Definition

Trustworthiness (T) 1 −
2

NK(2n−3K−1)

∑N

i=1

∑
j∈U

(K)

i

(r(i, j) − K)

Continuity (C) 1 −
2

NK(2n−3K−1)

∑N

i=1

∑
j∈V

(K)

i

(r̂(i, j) − K)

Neighborhood hit (NH) 1

N

∑
y∈P(D) y

l
k
∕yk

Shepard diagram correlation (R) Spearman’s rank of 
(‖xi − xj‖, ‖P(xi) − P(xj)‖), 1 ≤ i ≤ N, i ≠ j
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to tune, do not all support OOS, and do not work well for 
high-intrinsic-dimensional data.

Force-directed methods, such as LAMP  [20] and LSP  
[18], yield good quality and good scalability, and are simple 
to use. Yet, not all force-directed methods have OOS ability. 
Clustering-based methods, such as PBC  [30], share many 
features with force-directed methods, such as good quality, 
but also lack OOS.

Stochastic Neighborhood Embedding (SNE) methods, 
like the well-known t-SNE  [4], have high overall quality 
and CS. Yet, t-SNE has a (high) complexity of O(N2) in 
sample count, is very sensitive to small data changes, can 
be hard to tune  [31], and has no OOS. Tree-accelerated 
t-SNE  [32], hierarchical SNE  [33], approximated t-SNE  
[34], and various GPU variants of t-SNE  [35, 36] improve 
scalability, but are algorithmically quite complex, and still 
have sensitivity, tuning, and OOS issues. Uniform Manifold 
Approximation and Projection (UMAP)  [5] has comparable 
quality to t-SNE, is much faster, and has OOS. Still, UMAP 
is also sensitive to parameter tuning.

Autoencoders (AE)   [37, 38] aim to generate a com-
pressed, low-dimensional representation of the data in their 
bottleneck layers by training to reproduce the data input at 
the output. They have similar quality to PCA and are easy 
to set up, train, and use, are fast, and have OOS abilities. 
Self-organizing maps (SOM)  [39] share with AE the ease of 
use, training, and speed. Yet, both AE and SOM lag behind 
t-SNE and UMAP in CS, which is, as explained, essential 
for interpreting projections.

Supervised methods: ReNDA   [40] uses two neu-
ral networks to implement (1) a nonlinear generalization 
of Fisher’s Linear Discriminant Analysis  [41] and (2) an 
autoencoder, used for regularization. ReNDA scores well on 
predictability and has OOS, but needs pre-training of each 
individual network and has low scalability. Recently, Neural 
Network Projections (NNP) [10] proposed to select a sub-
set Ds ⊂ D to project by any DR method to yield a training 
projection P(Ds) ⊂ ℝ

2 . The pair (Ds,P(Ds)) is then used to 
train a regression neural network. NNP is very fast, simple 
to use, generic, and has OOS. NNP’s major limitation is a 
lower CS than its training projection P(Ds).

SDR-NNP  [9], our earlier method which we extend in 
this paper, effectively runs NNP on a training set of high-
dimensional samples which is first sharpened by mean shift 
(described further below). SDR-NNP keeps all desirable fea-
tures of NNP except ease of use: Sharpening requires care-
fully setting three parameters to get good final results. We 
describe SDR-NNP in full detail in “SDR-NNP and α-SDR-
NNP Methods” as it forms the basis of our new technique 
�-SDR-NNP which solves the parameter setting problem.

Semi-supervised methods: The SSNP method  [42] 
takes a mid-path between supervised methods (e.g., NNP) 
and unsupervised ones (e.g., AE). Similar to NNP, SSNP 

has an encoder–decoder architecture. Besides the standard 
reconstruction loss in autoencoders (AEs), SSNP adds a 
classification loss. This loss uses either ground-truth labels 
from the dataset D or pseudolabels computed from D by 
a clustering algorithm. That is, SSNP aims to jointly (a) 
reconstruct an input dataset from a low-dimensional (more 
precisely, 2D) representation and (b) classify the input 
samples based on their (pseudo)labels. The combination 
of both losses creates a projection which both preserves 
the original dimensions of the data (a) and also the coarse-
scale similarity of the data points (b). SNP produces 2D 
projections which look quite similar to those created by 
our methods described in “SDR-NNP and α-SDR-NNP 
Methods”. However, important differences exist:

•	 Our methods consists of two distinct operations: high-
dimensional data sharpening, followed by projection. 
SSNP only performs the projection step;

•	 SSNP is a semi-supervised method that uses only label 
information to learn how to project. Our methods, like 
NNP, learn from a user-selected projection technique;

•	 SSNP and our methods use fundamentally different net-
work architectures. SSNP uses two different networks 
for training and inference. We use a single architecture 
for training and inference;

•	 A key goal for SDR-NNP is to enhance separation 
between unlabeled data clusters, so that these can next 
be labeled by users (see “Case Study: Astronomical 
Datasets”). This is out of scope for SSNP.

Sharpening data: Finding clusters of similar data points 
is a key task in data science, addressed by tens of cluster-
ing methods  [43, 44]. Mean Shift (MS)  [8, 45, 46] is 
particularly relevant to our work. MS computes the kernel 
density estimation of a dataset D and next shifts points in 
D upstream along the density gradient. This effectively 
clusters D, with applications in image segmentation  [8] 
and graph drawing  [47]. Recently, Sharpened DR (SDR)  
[7] used MS for the first time to assist DR: A dataset D 
is sharpened by a few MS iterations, not to be confused 
with the clustering goal of the original MS. The sharpened 
dataset is next projected by a fast, easy-to-use, but poten-
tially low-CS DR method. Sharpening ‘preconditions’ the 
used DR method to overcome its lack of CS. Yet, as MS 
is very slow for high-dimensional data, this makes SDR 
impractical.

Table 3 summarizes the DR techniques discussed above 
showing how they fare with respect to the requirements 
discussed earlier in this section. No reviewed method satis-
fies all the requirements optimally. We next describe our 
earlier method SDR-NNP (Table 3 one but last row) and 
our extension to it, �-SDR-NNP (Table 3 last row).
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SDR‑NNP and α‑SDR‑NNP Methods

As “Background” explained, SDR and NNP have comple-
mentary features: SDR yields good cluster separation (CS), 
while NNP is fast, easy-to-use, and has OOS ability. Our 
combined SDR-NNP technique joins these advantages and 
works as follows (see also Fig. 1, parts marked in blue). We 
use SDR to sharpen a small data subset to create an initial 
2D projection (“Sharpened Dimensionality Reduction”). 

Next, we train NNP on the sharpened data and its 2D pro-
jection (“SDR-NNP”) and use it to project the whole data-
set. Section “-α-SDR-NNP” introduces �-SDR-NNP and 
outlines how this methods improves upon SDR-NNP.

Sharpened Dimensionality Reduction

SDR has two main components, as follows (for full details, 
see  [7]):

Data sharpening: Given a dataset D ∈ ℝ
n , SDR 

computes its density using the kernel density estimator 
�(x) ∶ ℝ

n
→ ℝ

+ defined as

where N(x) is the set of ks-nearest neighbors of x in D; L is 
a parabolic kernel  [48]; and h is the distance of x to its kth

s
 

(farthest) neighbor in N(x) . In other words, the ‘bandwidth’ 
of density estimation h, which further determines how data 
sharpening finds clusters in the input dataset, is locally con-
trolled by the number of nearest neighbors ks . As we shall 
see next in “-α-SDR-NNP”, our new method simplifies this 
even further by removing the need to explicitly specify ks.

Next, SDR shifts points x ∈ D using the update rule

where � ∈ [0, 1] is a ‘learning rate’ parameter that con-
trols the shift speed (higher values yield higher speed) and 
� = 10−5 is a regularization parameter. After every update 
(Eqn. 3), the density � is computed again (Eqn. 2). This 

(2)�(x) =
�

y∈N(x)

L

�
‖x − y‖

h

�
,

(3)x
next = x + �

∇�(x)

max (‖∇�(x)‖, �)
,

Table 3   Summary of DR techniques in “Background” and their fea-
tures from Table 1

Method Desirable characteristics of the method

Q S EoU G OOS

PCA Low High High High Yes
MDS Mid Low Low Low No
L-MDS Mid Mid Low Low No
Isomap Mid Low Low Low No
LLE Mid Low Low Low No
LAMP Mid Mid Mid High Yes
LSP Mid Mid Mid High No
PBC Mid Mid Mid High No
UMAP High High Low High Yes
t-SNE High Low Low High No
Autoencoders Low High High Low Yes
SOM Low High High Low No
ReNDA Mid Low Low Mid Yes
NNP High High High High Yes
SDR High Low Mid High No
SDR-NNP High High Low-mid High Yes
�-SDR-NNP High High High High Yes

Fig. 1   Architecture of the SDR-
NNP and �-SDR-NNP methods

LGC
data sharpening

learning rate α

iterations T
neighbors ks

baseline
DR method

projection P(Ds)

NNP training

3-layer
neural network

data
input

expected
output

training epochs E

trained
network

testing data D

NNP inference

projection P(D)

uniformity
estimation

K-means
clustering

training data

Preprocessing

common pipeline parts
new in α-SDR-NNP

Legend
parameters

cluster count Ks

Ds
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sharpening approach is called Local Gradient Clustering 
(LGC) by analogy with Gradient Clustering (GC)  [45].

SDR has three parameters: I (number of iterations); ks 
(number of nearest neighbors); and � (learning rate), all 
marked in brown in Fig. 1. The SDR-NNP method uses 
ks ≥ 50 following  [7], and setting � and I is discussed in 
“Results”. The �-SDR-NNP method replaces the need to fid-
dle with these parameters (see “-α-SDR-NNP” and “Evalu-
ation of α-SDR-NNP”).

Projection: SDR takes the LGC-sharpened dataset Ds 
produced from the input dataset D and projects it by a pro-
jection method of choice P (typically fast but not necessarily 
OOS), called the baseline DR method next, to obtain a 2D 
projection P(Ds) . The data in Ds are better separated than in 
D due to LGC, which helps P to yield better cluster separa-
tion in P(Ds) than in P(D).

SDR‑NNP

SDR-NNP uses SDR (“Sharpened Dimensionality Reduc-
tion”) on a small data subset to obtain P(Ds) . To project the 
full dataset D, one next trains the NNP regressor  [10] using 
Ds as input and P(Ds) as output. The NNP network has three 
fully connected hidden layers with ReLU activation  [49], 
initial weights set to He Uniform  [50], and an initial bias 
value set to 0.0001. The output layer has two units, one per 
2D coordinate, and uses sigmoid activation to constrain out-
put values to [0, 1]. We used three different network sizes, 
namely, x-small (75, 30, 75 units per layer), small (150, 60, 
150 units per layer), and medium (300, 120, 300 units per 
layer). We trained the network using the ADAM optimizer  
[51], as described in the NNP paper. After training, SDR-
NNP has a regressor able to mimic the behavior of SDR for 
unseen data, thus adding OOS capability, and computational 
scalability to SDR.

α‑SDR‑NNP

A key challenge for the original SDR method  [7] which is 
also shared by SDR-NNP is the control of the sharpening 
process. As outlined there, the projection results can be quite 
sensitive to the exact combination of � , ks , and I param-
eters. To these, SDR-NNP introduces a fourth parameter, 
the number of training epochs E. Earlier results from both 
the original SDR and SDR-NNP, and as we also discuss next 
in “Evaluation of SDR-NNP”, show that the hardest to con-
trol parameters are � and the number of nearest neighbors 
ks . These two parameters influence most the visual cluster 
separation which is the main added value behind the SDR 
and SDR-NNP proposal. As Kim et al.   [7] noted, these 
parameters are not fully independent—when changing ks , 
one should also change the considered range for explora-
tion of good � values. The interdependency of the same two 

parameters was observed when using LGC to bundle graph 
and trail drawings  [47, 52].

To alleviate this problem, we must understand its causes. 
Consider a dataset D ∈ ℝ

n and its density estimation � 
(Eqn. 2). For simplicity, we depict this for the 1D case in 
Fig. 2a. For the example in the figure, the original dataset 
had two quite well-separated clusters, shown by the red and 
cyan bars denoting high sample density � (Fig. 2a). LGC 
sharpens this density, practically separating the two high-
density clusters even further (Fig. 2c). This is the desired 
outcome, since such well-separated data clusters will pro-
ject to well-separated visual clusters further by SDR or 
SDR-NNP.

However, consider now a dataset D with the density � as 
in Fig. 2b. There is far less clear separation between data 
clusters here, shown by the fading-to-white bars below 
the density plot in image (b). From this input, LGC will 
create a sharpened dataset Ds looking as in Fig. 2b, i.e., 
very similar to the one where the density showed two very 
clearly separated peaks. This is due to the normalization of 
the gradient in the LGC update rule (Eq. 3) which means 
that small density variations have similar sharpening effects 
as large ones. This is clearly not desirable, since it separates 
the two density peaks in Fig. 2b too strongly. The result 
is oversegmentation of the projection P(Ds) , as observed 
in  [7, 9]. Rather, we would like to obtain the dataset Ds in 
Fig. 2d which sharpens density only where it is clearly well 
separated from neighbor peaks, and leaves the between-peak 
region, where we cannot really identify two separated clus-
ters, unchanged.

To achieve this, we need supplementary information, 
namely that indicated by the red and cyan bars in Fig. 2, i.e., 
where the high values of the dataset’s density are located. 
This implies that we cannot use a single global parameter 
setting for LGC, but rather need to modulate LGC by such 
local information. We achieve this in our new �-NNP-SDR 
method as follows (see also Fig. 1, parts marked in green). 

Fig. 2   Comparison of SDR-NNP (blue) with �-SDR-NNP (green). 
See  “-α-SDR-NNP”
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First, we use a simple clustering algorithm, K-means, to 
cluster NNP-SDR’s training data D, with a user-set clus-
ter-count parameter Km . Next, during each LGC iteration 
(Eq. 3), we use the labels assigned by K-means to determine, 
for each point x ∈ D , how homogeneous its neighborhood 
is, i.e., how many points share the same clustering label as 
x . For this, we compute the NH metric (Table 2) but now 
using the pseudolabels assigned by K-means rather than 
ground-truth labels. Finally, we modify the LGC sharpen-
ing (Eq. 3) to use a local learning rate ( �NH(x)) instead of 
the global learning rate � . This decreases � in regions where 
NH is small, i.e., K-means finds that two data clusters are 
close to each other, such as the middle part of the density 
plot in Fig. 2b. Points there move far less when applying 
Eq. 3, yielding the desired LGC result in Fig. 2d. In areas 
where the density is very low (around the middle of Fig. 2a), 
NH is higher, so points there move fast, like in the original 
LGC, yielding the desired result in Fig. 2b. We show next in 
“Evaluation of α-SDR-NNP” that this allows us to control 
only the cluster count Km of K-means to obtain more stable, 
and higher quality results, than when controlling � , ks , and 
I in SDR-NNP.

Results

We measured the performance of SDR-NNP and �-SDR-
NNP by the four metrics in Table 2 computed for K = 7 , 
in line with  [3, 12, 53]. Note that K, the number of nearest 
neighbors used to compute the metrics in Table 2, is smaller 
than ks , the number of nearest neighbors used to evaluate � 
(Eqn. 2). Indeed, ks needs to be relatively large to smooth out 
local noise in the computation of the gradient ∇� ; in con-
trast, K is typically set small to capture more local-quality 
aspects of a projection.

Evaluation used six publicly available real-world datasets 
(Table 4), all being reasonably high-dimensional and large 
(tens of dimensions, thousands of samples), and with a non-
trivial data structure. All dimensions were rescaled to the 
[0, 1] range, to match NNP’s sigmoid activation function 

in its output layer  [10]. All experiments were run on a dual 
16-core Intel Xeon Silver 4216 at 2.1 GHz with 256 GB 
RAM and an NVidia GeForce GTX 1080 Ti GPU with 11 
GB VRAM. SDR was implemented in C++ using Eigen  
[61] for matrix computations, Nanoflann  [62] for nearest-
neighbor search, and the implementations of t-SNE and 
Landmark MDS from Tapkee  [63]. NNP is implemented 
using the Keras framework  [64]. The ( �-)SDR-NNP code, 
datasets, and all results discussed in this paper are publicly 
available at  [65].

Section “Evaluation of SDR-NNP” details the quality of 
SDR-NNP. Section “Evaluation of α-SDR-NNP” presents 
the evaluation of �-SDR-NNP as compared to SDR-NNP. 
Section “Computational Scalability” studies the computa-
tional scalability of both methods. Finally, “Case Study: 
Astronomical Datasets” presents an application of SDR-
NNP to the analysis of astronomical data.

Evaluation of SDR‑NNP

We first studied SDR-NNP’s quality with respect to its 
parameters (number of iterations I, learning rate � , training 
epochs E) using Landmark MDS (LMDS), t-SNE, and PCA 
as baseline DR methods. A discussion on the selection of 
DR methods for SDR can be found in “Conclusion” from 
[7]. All results here and in  “Evaluation of α-SDR-NNP” 
use a medium size for the NNP network. Results computed 
for other network sizes look very similar and are provided 
in the supplementary material.

Number of iterations I: Figure 3 shows how I affects the 
sharpening of clusters for LMDS and t-SNE (PCA results in 
supplementary material). For all datasets, 4 to 8 iterations 
suffice to have the clusters sharply defined in the projec-
tion. Table 5 shows quality metrics as functions of I for all 
three baseline projections. Increasing I can increase quality 
(Air Quality, Reuters with LMDS and PCA) but generally 
slightly decreases quality for LMDS and PCA. For t-SNE, 
this decrease is visible for all datasets, which is explain-
able by the fact that t-SNE already has a very high quality 
which is hard to be learned by NNP (see  [10]). However, 

Table 4   Datasets used in the (�)-SDR-NNP evaluations

Dataset name and 
provenance

Samples N Dimensions n Dataset description

Air Quality [54] 9358 13 Measurements from air sensors used to study and predict air quality
Concrete [55] 1030 8 Measurements of chemico-physical properties of concrete used to study concrete strength
Reuters [56] 5000 100 Attributes extracted from news report documents using TF-IDF  [57], a standard method 

in text processing. This is a subset of the full dataset which contains data for the six 
most frequent classes only. Used to study how features can predict news’ types (classes)

Spambase [58] 4001 57 Text dataset used to train email spam classifiers
Wisconsin [59] 569 32 Features extracted from images of breast masses used to detect malignant cells
Wine [60] 6497 11 Samples of white and red Portuguese vinho verde used to describe perceived wine quality
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as already argued in  [7], local-quality metrics will likely 
decrease when using SDR to favor visual cluster separation.

Learning rate �: Figure 4 shows results for SDR-NNP 
when varying � for LMDS and t-SNE (PCA results in 
supplementary material). Too small or too large � values 
tend to affect the projection adversely. Values in the range 
� ∈ [0.05, 0.1] show the best results, i.e., a good separation 
of the projection into distinct clusters. Table 6 shows quality 
metrics as function of � for all three baseline projections. 
The effect of � on quality is similar with that of I with some 
combinations (Reuters with LMDS and PCA) showing an 
overall slight decrease for small � values.

Training epochs E: Figure 5 shows how E affects pro-
jection quality. The early stopping strategy used by NNP  
[10]—stopping training on convergence, defined as the 
epoch where the validation loss stops decreasing (roughly 
E = 60 in practice)—does not give good results for SDR-
NNP. The resulting projections (Fig. 5a, b leftmost columns) 
show a fuzzy version of the training projections (Fig. 5a, b 
rightmost columns). This is due to the fact that SDR-NNP 
needs to learn both the LGC data sharpening and the pro-
jection P, which is more effort than learning just P, as NNP 
did. For more training epochs, Fig. 5 shows that SDR-NNP 
reproduces the training projection very faithfully. SDR-NNP 

Fig. 3   Iteration parameter I 
effect: SDR-NNP learned from 
LMDS (a) and t-SNE (b) for 
varying I values (columns) and 
datasets (rows), fixed � = 0.1 , 
E = 1000 epochs

Fig. 4   Learning rate � effect: 
SDR-NNP learned from LMDS 
(a) and t-SNE (b) for varying � 
values (columns) and datasets 
(rows), fixed I = 10 iterations, 
E = 1000 epochs
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produces good results with as little as E = 300 epochs, 
except for the Air Quality dataset, where E = 3000 epochs 
were needed for best results. On average, E = 1000 epochs 
led to good results for all datasets and other parameter set-
tings, so we choose this as a preset value for E. We keep this 
preset also for our new method �-SDR-NNP in the latter’s 
evaluation (“Evaluation of α-SDR-NNP”).

Cluster separation: The projections in Figs. 3, 4, 5 
deserve some comments. As visible there, varying the I and 
� parameters can create artificial oversegmentation—the 

appearance of many small clusters in the projection, which 
is an artificial cluster separation (CS), see, e.g., Fig. 4b, Reu-
ters, � ≥ 0.1 . This effect is strongest, and undesirable, for 
baseline projections which already do have a good CS, such 
as t-SNE. In contrast, for projections with a low CS, such as 
LMDS, artificial oversegmentation is far less present. Like 
SDR, SDR-NNP is best used when combined with baseline 
DR methods with a low CS capability. We show next in 
“Evaluation of α-SDR-NNP” how our new method, �-SDR-
NNP, largely removes all these parameter setting issues.

Table 5   Metrics for SDR-NNP learned from LMDS, PCA, and t-SNE, different numbers of iterations I, � = 0.1 , E = 1000 . NH values miss for 
the Air Quality and Concrete datasets, since these are not labeled

Dataset Iterations I LMDS PCA t-SNE

T C R NH T C R NH T C R NH

Air quality 0 0.941 0.992 0.970 0.940 0.992 0.966 0.996 0.996 0.654
4 0.962 0.979 0.963 0.956 0.979 0.963 0.951 0.939 0.396
8 0.954 0.970 0.952 0.942 0.970 0.948 0.945 0.938 0.313
12 0.949 0.970 0.952 0.945 0.970 0.936 0.942 0.942 0.365
16 0.950 0.968 0.943 0.948 0.967 0.930 0.940 0.933 0.317
20 0.954 0.968 0.939 0.949 0.967 0.917 0.943 0.939 0.334

Concrete 0 0.940 0.979 0.744 0.934 0.977 0.736 0.996 0.992 0.479
4 0.938 0.958 0.631 0.934 0.957 0.627 0.952 0.929 0.145
8 0.912 0.944 0.560 0.906 0.943 0.564 0.927 0.918 0.140
12 0.895 0.941 0.556 0.865 0.932 0.558 0.912 0.913 0.167
16 0.884 0.938 0.554 0.872 0.932 0.555 0.904 0.914 0.118
20 0.876 0.935 0.560 0.874 0.934 0.569 0.890 0.910 0.109

Reuters 0 0.817 0.895 0.755 0.724 0.817 0.888 0.754 0.727 0.956 0.960 0.609 0.856
4 0.835 0.913 0.752 0.747 0.833 0.901 0.745 0.743 0.957 0.951 0.405 0.855
8 0.858 0.915 0.713 0.775 0.854 0.906 0.706 0.765 0.950 0.910 0.258 0.845
12 0.883 0.909 0.693 0.803 0.883 0.904 0.687 0.802 0.915 0.855 0.078 0.820
16 0.884 0.910 0.691 0.810 0.882 0.907 0.689 0.804 0.893 0.849 0.102 0.813
20 0.882 0.907 0.691 0.800 0.883 0.907 0.691 0.810 0.893 0.852 0.113 0.820

Spambase 0 0.740 0.909 0.529 0.852 0.747 0.912 0.513 0.849 0.954 0.958 0.408 0.914
4 0.737 0.881 0.463 0.843 0.743 0.877 0.471 0.841 0.873 0.899 0.294 0.882
8 0.723 0.855 0.403 0.838 0.712 0.848 0.383 0.834 0.793 0.845 0.312 0.866
12 0.711 0.845 0.379 0.829 0.704 0.838 0.348 0.830 0.754 0.841 0.324 0.850
16 0.701 0.837 0.370 0.828 0.701 0.837 0.322 0.830 0.744 0.834 0.332 0.845
20 0.710 0.840 0.351 0.833 0.709 0.838 0.311 0.836 0.739 0.828 0.283 0.848

Wisconsin 0 0.895 0.959 0.926 0.941 0.896 0.959 0.928 0.943 0.950 0.939 0.679 0.976
4 0.892 0.915 0.901 0.953 0.888 0.915 0.903 0.958 0.897 0.878 0.557 0.957
8 0.804 0.857 0.785 0.925 0.805 0.856 0.785 0.925 0.814 0.816 0.256 0.925
12 0.790 0.849 0.735 0.930 0.787 0.848 0.736 0.930 0.794 0.805 0.393 0.932
16 0.780 0.847 0.721 0.916 0.780 0.844 0.718 0.922 0.779 0.820 0.432 0.913
20 0.775 0.842 0.707 0.922 0.776 0.841 0.705 0.920 0.778 0.829 0.457 0.921

Wine 0 0.864 0.973 0.839 0.667 0.869 0.972 0.806 0.678 0.986 0.976 0.656 0.702
4 0.867 0.932 0.709 0.669 0.864 0.930 0.686 0.665 0.911 0.894 0.341 0.673
8 0.843 0.916 0.676 0.661 0.843 0.917 0.683 0.661 0.869 0.876 0.283 0.665
12 0.840 0.904 0.646 0.665 0.841 0.905 0.653 0.668 0.846 0.864 0.289 0.668
16 0.845 0.901 0.625 0.664 0.843 0.903 0.635 0.663 0.845 0.865 0.321 0.664
20 0.842 0.899 0.579 0.659 0.846 0.898 0.593 0.664 0.845 0.868 0.292 0.666
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Evaluation of α‑SDR‑NNP

Section “Evaluation of SDR-NNP” shows how SDR-NNP 
improves cluster separation as compared to the baseline DR 
projection it builds atop of. However, this evaluation also 
showed that, to get good results, we still have to fine tune 
the SDR parameters I and � . The effect of the parameter ks 
was not explored. The only parameter which showed to have 
a good preset is E = 1000 training epochs.

Our new method, �-SDR-NNP, has all these parameters 
of SDR-NNP plus an additional one, the number of K-means 
clusters Km (“-α-SDR-NNP”). Still, we argue that �-SDR-
NNP is easier to use than SDR-NNP, and support this point 
by three evaluations on two labeled datasets (Reuters and 
Wine), as follows.

Visual comparison: We first run �-SDR-NNP and SDR-
NNP for various combinations of their free parameters I, � , 
and ks , setting Km to the true number of clusters in the eval-
uated datasets (Reuters: Km = 6 ; Wine: Km = 7 ). For this, 
we take the parameter ranges found to deliver good results 
from SDR-NNP’s evaluation (“Evaluation of SDR-NNP”) 
and sample each range with five values, leading to the val-
ues I ∈ {1, 5, 8, 12, 20} iterations, ks ∈ {15, 30, 50, 80, 100} 
neighbors, and � ∈ {0.01, 0.05, 0.1, 0.2, 0.4} learning rates. 
For each combination of parameter values, we compute the 
projections of SDR-NNP and �-SDR-NNP for the Wine and 
Reuters datasets.

Visually comparing all these 5 × 5 × 5 × 2 = 250 pro-
jection-pairs is not practical. Hence, we next set each of 
the three parameters to its median value in its sample set 
and visually compare the results for the 5 × 5 combina-
tions of the other two free parameters; see Figs. 6, 7, 8, 
9, 10, 11. Since all these figures are structured similarly, 
we only explain how to interpret the first one (the others 
can be interpreted similarly): Figure 6 show the SDR-NNP 
and �-SDR-NNP projections for varying ks and � for a fixed 
value of I = 8 iterations for the Reuters dataset. We directly 
see that the SDR-NNP projections (top) change consider-
ably more than the �-SDR-NNP projections (bottom). In 
particular, SDR-NNP’s results become increasingly fuzzy 
with dropping visual cluster separation for higher � values. 
A very similar effect is visible when varying I and � (Fig. 7) 
and I and ks , respectively (Fig. 8). In contrast, �-SDR-NNP 
shows the same visual cluster separation for all parameter 
combinations. For the Wine dataset (Figs. 9, 10, 11), this 
fuzzy effect is less visible. Yet, the visual cluster separa-
tion of the SDR-NNP projections varies quite a lot, while 
�-SDR-NNP generates more stable results for the different 
parameter values. We conclude that, in practice, users can 
ignore fine-tuning ks and � for �-SDR-NNP, and simply use 
the median values in their respective sample sets as default 
settings.

Quality metrics comparison: Table 7 compares the four 
projection quality metrics (Table 2) of SDR-NNP vs �-SDR-
NNP for all the experiments shown earlier in Figs. 6, 7, 8, 
9, 10, 11. Each table shows the effect of varying one of the 
three parameters I, ks , and � . For such a parameter value, 
the shown metrics are aggregates of the 25 combinations of 
values of the other two parameters—for example, the first 
row of Table 7, column T, shows the average value of trust-
worthiness computed for all 25 value combinations of ks and 
� and for I = 1 . From this table, we see that �-SDR-NNP 
achieves similar but often higher values of quality metrics, 
the increase being as large as 9%. We also see that, in gen-
eral, the standard deviation values are smaller for �-SDR-
NNP than for SDR-NNP. This means that our new method 
achieves its quality metrics more consistently—or, in other 
words, that these values are less susceptible to change when 
one varies the three parameters, which is desirable. We note 
that an increase of several percentage points in projection 
quality is significant. Recent surveys  [3] showed that top-
quality projection methods in the entire DR literature of the 
last decades differ by as few as 2 to 5 percentage points. 
NNP, the method that we use to drive our own �-SDR-NNP 
technique, had a quality of a few percentage points lower 
than the state-of-the-art projection methods it tries to imi-
tate, most notably t-SNE  [10]. Moreover, as also mentioned 
in “Introduction”, our key goal with this work was not to 
increase absolute quality of the obtained projection, but 
increase the stability and ease of computing a good-quality 
projection without having to fiddle with the four parame-
ters of its predecessor method, SDR-NNP. The fact we also 
obtained higher quality, along with the desired ease-of-use, 
is an extra bonus point for our method.

Effect of Km: The results so far show that �-SDR-NNP is 
stable with respect to the original three parameters I, � , and 
ks of SDR-NNP. However, �-SDR-NNP introduces one new 
parameter, the number of clusters Km for K-means. To study 
how stable our method is for this new parameter, we run it 
for varying values of Km . Specifically, for the Reuters and 
Wine datasets, we set Km to be half, equal to, and double the 
true number of clusters known to exist in these datasets. Fig-
ure 12 shows that the resulting projections are very similar 
in terms of visual clusters being produced. This means that 
our method is not sensitive to setting Km , unlike SDR-NNP’s 
sensitivity to setting I, � , and ks.

Putting it all together: Figure 13 shows a so-called ‘pro-
jection of projections’  [3] for the Reuters and Wine data-
set. Every point in such a scatterplot is a given projection 
technique. Green points are SDR-NNP and purple points 
are �-SDR-NNP. The different same-color points represent 
instances of the respective technique for the different values 
of I, ks , and � discussed in the above evaluations. Points are 
projected to 2D using MDS based on the values of their 
four quality metrics. Points in the projection which are close 
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indicate methods which perform similarly quality-wise. For 
both datasets, we see a high concentration of purple points 
in a tail-like structure, while the green points are far more 
spread around. This indicates that �-SDR-NNP generates 
more consistent (similar) quality values than SDR-NNP, 
thus, is less sensitive in this respect to parameter changes. 
This strengthens our claim that �-SDR-NNP allows users 
to generate good projections with less parameter tweaking 
than SDR-NNP.

Computational Scalability

We measured scalability by comparing the execution time 
of the original SDR method with SDR-NNP using samples 
from the GALAH dataset (described next in “Case Study: 
Astronomical Datasets”) with increasing sizes, namely, 1K, 
2K, 5K, 10K, 20K, 30K, and 40K samples. Using more sam-
ples was not needed, since SDR already took over 3 h at 
40K samples. Figure 14 and Table 8 show these results. For 
|Ds| = 10K training samples and E = 1000 epochs, SDR-
NNP takes about 373 s to train (Fig. 14, orange line). Still, 
this is already faster than SDR for 15K samples. In infer-
ence mode (after training), SDR-NNP is orders of magnitude 
faster than SDR, taking less than 1 s to project 40K samples 
(Fig. 14, green curve). SDR takes over 3 h for the same 
data size (Fig. 14, blue curve). For �-SDR-NNP, training 
time is slightly higher than for SDR-NNP due to the cost 
of K-means clustering and NH computation (Fig. 1, green 
steps), but inference time is identical to SDR-NNP.

Case Study: Astronomical Datasets

We used SDR-NNP for a use-case using real-world astro-
nomical data—the same subset of 10K samples from the 
GALactic Archaeology with HERMES survey (GALAH 
DR2)  [66] used by Kim et al. to show that SDR-NNP can 
create similar projections to SDR. The GALAH DR2 dataset 
consists of various stellar abundance attributes of 342,682 
stars. Data cleaning followed [7]: (1) cross-match the star 
ID of GALAH DR2 with Gaia data release 2 (Gaia DR2) to 
gain extra information on stellar kinematics (i.e., 6D phase-
space coordinates—x, y, z, u, v, and w)  [66–68]; (2) exclude 
stars with implausible values (exceeding 25K parsec in x, y, 
and z attributes), having unreliable stellar abundances, or 
with missing values in any dimension. Pre-processing deliv-
ered 76,270 stars (samples) from which we took the same 
randomly selected subset D of 10K stars as in [7] to run 
SDR with the same � = 0.18 (“Sharpened Dimensionality 
Reduction”). We trained SDR-NNP on these 10K stars and 
used the trained SDR-NNP network to project the remaining 
66,270 stars.

Figure 15 shows SDR-NNP applied to the 66K test data 
with LMDS and t-SNE as baseline DR methods. Points are 

colored based on the value of the attribute [Fe/H], which is 
of interest to domain experts to explain possible data clusters. 
The first four columns show SDR-NNP for varying training 
epoch counts E. The red column shows the training projection 
P(Ds) of 10K samples. We see that the structure of the train-
ing projection (four clusters) is well reflected by SDR-NNP 
from E = 300 epochs onwards. The test projections are more 
fuzzy. This is expected, as these contain 66K unseen samples 
which, albeit drawn from the same dataset, cannot perfectly 
match the four clusters determined by the 10K training sam-
ples. The rightmost column in Fig. 15 shows the result of 
the ‘raw’ NNP method, i.e., trained to imitate LMDS, and 
t-SNE, without the sharpening step of SDR, respectively. 
These results show clearly far less cluster separation (CS) 
than either the SDR-NNP training projection (red column) or 
the inferred SDR-NNP projections (leftmost four columns). 
This shows the added value of the sharpening step: Without 
it, NNP, albeit fast and OOS-capable, cannot produce useful 
projections. Table 9 shows quality metrics corresponding to 
the images in Fig. 15 which support the above observations.

SDR-NNP’s good cluster separation allows astronomers 
to easily label clusters for further analysis to infer the physi-
cal meaning of stars. To show this, we manually labeled 
clusters from SDR-NNP learned from LMDS to reproduce 
the same analyses made by Kim et al. (Fig. 10 in [7]) to 
understand the origin and location of stars in each cluster. 
Figure 16a shows the manually labeled clusters by one of the 
authors (astronomy expert). Stars from class 5 are separately 
labeled as outliers. Figure 16b,c shows the Tinsley diagram  
[69] and the copper abundance of the stars—a tracer of 
supernovae type 1a—as a function of their iron abundance, 
respectively. From these plots, astronomers can identify 
class-1 stars as thin-disk stars, class-2 stars as metal-rich 
thick disk stars, class-3 and class-5 (outlier) stars as the 
normal thick disk stars, and class-4 stars as Gaia Enceladus 
(GES)—a group of stars that originated from a galaxy that 
merged with the Milky Way several billions years ago. The 
original SDR method could not do this analysis and find 
class-4 stars, since it could run on the entire dataset due to 
its prohibitively low speed.

Discussion

We discuss how SDR-NNP and our new extension, �
-SDR-NNP, perform with respect to the criteria laid out in 
“Introduction”.

Quality (C1): SDR-NNP can create projections which 
are very similar visually, but also in terms of quality metrics, 
to those created by SDR. Importantly, the strong separation 
of similar-valued samples, the key property that SDR pro-
moted, is retained by SDR-NNP. Combined with properties 
C2–C4 (which SDR does not have), this makes SDR-NNP 
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superior to SDR. Compared to NNP used on the unsharp-
ened data (Fig. 15), SDR-NNP shows significantly better 
cluster separation, which makes it superior to NNP. Atop all 
these, �-SDR-NNP shows, for most parameter values, higher 
quality metrics—thus better projections—than SDR-NNP.

Scalability (C2): ( �-)SDR-NNP is faster than SDR alone 
from roughly 15K samples onwards, even when considering 
training time. In inference mode (after training), ( �-)SDR-
NNP is several orders of magnitude faster than SDR, being 
able to project tens of thousands of observations in under 
a second on a high-end PC. Importantly, ( �-)SDR-NNP’s 
speed is linear in the number of dimensions and samples 
(a property inherited from the NNP architecture), and can 
handle samples in a streaming fashion, one at a time, i.e., 
does not need to hold the entire high-dimensional dataset in 
memory. This makes ( �-)SDR-NNP scalable to large data-
sets of millions of samples. Compared to SDR-NNP, our 
new method �-SDR-NNP is slightly slower for training but 
has identical inference speed.

We evaluated our method on relatively small datasets—
up to 10K samples (see Table 4). Of course, larger high-
dimensional datasets exist. However, we preferred to use 
these datasets, since they are well known in the visualiza-
tion and machine learning communities, as part of multiple 
benchmarks and many papers. As such, readers can directly 
compare our projection results for these datasets with other 
results in the literature. Moreover, we note that using larger 
datasets will only help our method. Computation speed of 
our projections is linear in the sample count, as stated above, 
which is the optimal result one can get. Using larger data-
sets implies having higher sample densities, so estimating 
this density only increases in accuracy (Eqn. 2). As such, 
using smaller datasets is actually a bigger challenge for our 
method.

Genericity (C3): ( �-)SDR-NNP can project any data-
set having quantitative variables and any dimension count. 
Tables 5, 6,  9, and 7 show that ( �-)SDR-NNP achieves high 
quality on datasets of different nature and coming from a 
wide range of application domains (air sensors, civil engi-
neering, text mining, imaging, and chemistry).

Stability and out-of-sample support (C4): ( �-)SDR-
NNP inherits the stability and OOS support of NNP, making 
it possible to train on a small subset of a given dataset and 
then stably project additional data drawn from the same dis-
tribution. Moreover, our new method, �-SDR-NNP, is stable 
with respect to its single free parameter Km , which makes 
it by construction a good method to sharpen-and-project 
high-dimensional data. Simply put, �-SDR-NNP delivers 

similar visual results for a given dataset and any settings of 
Km , which means in practice that users can benefit from a 
sharpened projection without worrying about how they set 
the parameter controlling the computation of this projection.

Ease of use (C5): Once trained, ( �-)SDR-NNP is param-
eter-free. SDR-NNP has three relevant parameters affect-
ing its pre-processing LGC step—number of sharpening 
iterations I, learning rate � , neighbors ks used in estimat-
ing the data density; and one affecting training—number 
of training epochs E. We showed that E = 1000 is a good 
preset for SDR-NNP, thus also for �-SDR-NNP. The other 
three parameters affect the resulting learned projection in 
several ways, such as changing the visual cluster separation 
(undersegmentation, oversegmentation). Hence, SDR-NNP 
is not easy-to-use, as it requires some amount of parameter 
tuning experimentation. Moreover, every parameter change 
implies retraining which takes minutes (see “Computational 
Scalability”).

�-SDR-NNP largely solves this problem by adapting the 
learning rate to the local cluster structure of the data, which 
is estimated by K-means. This requires introducing a new 
parameter, the number Km of K-means clusters used during 
training (“-α-SDR-NNP”). We showed that �-SDR-NNP is 
far less sensitive to changes of I, � , and ks , so these param-
eters can be simply set to default values; and is also insensi-
tive to setting Km , as shown in “Evaluation of α-SDR-NNP”. 
Intuitively put, our new method allows the user to control 
the desired final projection outcome at a higher and more 
global level (that is, in terms of expected clusters Km ) than 
the local controls that SDR-NNP required in terms of num-
ber of iterations I, learning rate � , and density-estimation 
bandwidth ks . This is especially important, since such local 
parameters can vary a lot over a given dataset, so there is 
no way to determine good global defaults for them for the 
entire dataset. In contrast, the expected number of clusters 
Km is a much higher level parameter which does not depend 
strongly on the local data structure, so, for a given dataset, 
is a much easier-to-control setting. Given the above, our new 
method can be seen as virtually parameter-free, thus easy 
and effective to use.

Limitations: While inheriting the above-mentioned 
desirable properties from NNP, ( �-)SDR-NNP also inherits 
some of its limitations. Its OOS support cannot extend to 
datasets of a completely different nature than those it was 
trained on—arguably, a limitation that most machine learn-
ing methods have. Also, ( �-)SDR-NNP is only as good as the 
baseline projection P that was used during training. Using a 
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Table 6   Metrics for SDR-NNP learned from LMDS, PCA, and t-SNE, learning rates � , I = 10 iterations, E = 1000 epochs. NH values miss for 
the Air Quality and Concrete datasets, since these are not labeled

Dataset Learning rate � LMDS PCA t-SNE

T C R NH T C R NH T C R NH

Air Quality 0.01 0.971 0.990 0.969 0.968 0.990 0.964 0.958 0.926 0.052
0.05 0.976 0.983 0.963 0.973 0.984 0.964 0.938 0.911 0.175
0.1 0.951 0.969 0.948 0.940 0.969 0.941 0.943 0.939 0.378
0.2 0.866 0.941 0.911 0.862 0.928 0.905 0.824 0.876 0.635

Concrete 0.01 0.959 0.983 0.731 0.950 0.979 0.721 0.994 0.988 0.486
0.05 0.932 0.957 0.601 0.929 0.953 0.601 0.947 0.929 0.219
0.1 0.870 0.933 0.578 0.889 0.935 0.583 0.913 0.918 0.057
0.2 0.858 0.920 0.540 0.859 0.921 0.542 0.857 0.900 0.223

Reuters 0.01 0.822 0.900 0.758 0.729 0.821 0.892 0.755 0.730 0.956 0.960 0.608 0.853
0.05 0.839 0.913 0.737 0.745 0.838 0.903 0.735 0.745 0.955 0.949 0.386 0.849
0.1 0.870 0.910 0.698 0.783 0.871 0.905 0.693 0.790 0.936 0.885 0.159 0.829
0.2 0.866 0.902 0.700 0.784 0.867 0.903 0.693 0.785 0.890 0.848 0.096 0.815

Spambase 0.01 0.755 0.911 0.527 0.860 0.756 0.915 0.523 0.852 0.958 0.942 0.383 0.905
0.05 0.775 0.893 0.415 0.840 0.787 0.894 0.426 0.858 0.851 0.874 0.261 0.874
0.1 0.712 0.843 0.380 0.832 0.704 0.839 0.367 0.828 0.769 0.848 0.341 0.863
0.2 0.604 0.667 0.265 0.760 0.606 0.671 0.263 0.764 0.635 0.676 0.317 0.802

Wisconsin 0.01 0.900 0.960 0.932 0.947 0.898 0.960 0.932 0.949 0.955 0.941 0.635 0.966
0.05 0.868 0.885 0.869 0.946 0.874 0.890 0.870 0.941 0.876 0.861 0.597 0.948
0.1 0.803 0.856 0.757 0.928 0.800 0.851 0.753 0.929 0.802 0.841 0.494 0.927
0.2 0.717 0.764 0.693 0.905 0.718 0.758 0.684 0.918 0.725 0.749 0.596 0.909

Wine 0.01 0.895 0.972 0.811 0.674 0.898 0.971 0.783 0.681 0.983 0.951 0.448 0.696
0.05 0.914 0.944 0.734 0.671 0.920 0.945 0.714 0.670 0.927 0.862 0.135 0.670
0.1 0.837 0.913 0.672 0.658 0.848 0.913 0.672 0.664 0.864 0.882 0.250 0.661
0.2 0.739 0.821 0.479 0.653 0.742 0.825 0.484 0.644 0.744 0.808 0.404 0.646

Fig. 5   Training epochs E effect: 
SDR-NNP learned from LMDS 
(a) and t-SNE (b) for varying E 
values (columns) and datasets 
(rows), fixed I = 10 , � = 0.1 . 
Red column shows the training 
projections P(D

s
)
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low-quality projection leads to ( �-)SDR-NNP learning, and 
reproducing, that behavior.

Separately, SDR-NNP is prone to instability in the gen-
erated projection, which manifests itself as over- or under-
segmentation of the data into too many, respectively too 
few, visual clusters, as a function of its parameter values. 
As discussed above, our new method �-SDR-NNP largely 
removes this problem. Still, �-SDR-NNP has its own limita-
tions. Its only parameter Km , the number of K-means clusters 

(“-α-SDR-NNP”), can be set quite freely to values differing 
as much as twice from the true number of clusters in the data 
(see Fig. 12 and related text). Still, there can be datasets for 
which the user has no idea, even within this error margin, 
to what a good Km setting is. Exploring how �-SDR-NNP 
behaves in those cases and, if necessary, refining it to be 
even less sensitive on the Km setting, is for future work.

Applications: As our method is generic (C3), it can han-
dle high-dimensional datasets coming from any applica-
tion domain. A particular application domain where such 
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projections are very useful is in engineering classification 
models. More particularly, engineering classifiers for image 
data is an attractive application area of �-SDR-NNP, since 
the method can be easily enhanced to display the actual 
images corresponding to the projected points. Thereby, users 
can examine a projection, e.g., labeled by ground-truth or 
inferred information, and get insights in why and where 
misclassifications occur. Such scenarios involving using 

projections have been presented in recent research on medi-
cal image classification  [70–72] and cell imaging  [72, 73]. 
�-SDR-NNP is especially attractive for such use-cases, since 
these provide a known number of clusters Km in the data to 
be detected, equal to the number of classes to be inferred. As 
such, setting the single free parameter Km of our method is 
simple. We are considering exploring how our method can 
address such use-cases in future work.
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Conclusion

We have presented SDR-NNP and �-SDR-NNP, two new 
methods for computing projections of high-dimensional 
datasets for visual exploration. Our methods have several 
desirable and complementary characteristics of two earlier 
projection methods, namely NNP (speed, out-of-sample sup-
port, ability to accurately imitate a wide range of existing 
projection techniques) and SDR (projecting complex data-
sets into visually well-separated clusters of similar samples). 

SDR-NNP removes the main obstacle for practical usage 
of SDR—its high computational time. �-SDR-NNP further 
enhances SDR-NNP’s ease of use by removing the latter 
method’s sensitivity to parameter setting—�-SDR-NNP 
is essentially a parameter-free method. �-SDR-NNP also 
increases the quality metrics of its resulting projections as 
compared to SDR-NNP. We have demonstrated both meth-
ods on a range of datasets coming from different application 
domains. In particular, we showed how SDR-NNP can bring 
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Table 7   Quality metrics comparing SDR-NNP with �-SDR-NNP

Dataset Iterations I SDR-NNP �-SDR-NNP

T C R NH T C R NH

(a) Number of iterations I (average)
Wine 1 0.981 0.959 0.676 0.686 0.992 0.975 0.678 0.711
Wine 5 0.959 0.925 0.638 0.656 0.978 0.936 0.648 0.680
Wine 8 0.952 0.911 0.624 0.648 0.967 0.911 0.614 0.667
Wine 12 0.944 0.904 0.623 0.643 0.957 0.886 0.589 0.658
Wine 20 0.936 0.888 0.597 0.639 0.940 0.857 0.536 0.648
Reuters 1 0.967 0.963 0.614 0.855 0.967 0.963 0.619 0.856
Reuters 5 0.946 0.941 0.637 0.839 0.966 0.962 0.622 0.853
Reuters 8 0.927 0.921 0.637 0.823 0.964 0.960 0.625 0.851
Reuters 12 0.908 0.898 0.631 0.808 0.960 0.955 0.626 0.848
Reuters 20 0.881 0.864 0.617 0.788 0.952 0.943 0.635 0.841
(b) Number of iterations I (standard deviation)
Wine 1 0.021 0.030 0.018 0.040 0.003 0.007 0.015 0.014
Wine 5 0.035 0.051 0.071 0.039 0.019 0.052 0.057 0.031
Wine 8 0.037 0.055 0.086 0.037 0.027 0.069 0.079 0.034
Wine 12 0.038 0.054 0.072 0.035 0.035 0.079 0.103 0.036
Wine 20 0.039 0.060 0.098 0.029 0.043 0.083 0.118 0.036
Reuters 1 0.001 0.001 0.008 0.002 0.000 0.000 0.007 0.002
Reuters 5 0.034 0.036 0.027 0.026 0.002 0.002 0.015 0.003
Reuters 8 0.055 0.060 0.028 0.044 0.005 0.005 0.013 0.006
Reuters 12 0.066 0.075 0.027 0.054 0.010 0.012 0.017 0.009
Reuters 20 0.076 0.096 0.054 0.059 0.020 0.029 0.020 0.017
(c) Number of neighbors ks (average)
Wine 15 0.948 0.912 0.623 0.647 0.962 0.901 0.593 0.672
Wine 30 0.954 0.917 0.629 0.653 0.965 0.909 0.607 0.673
Wine 50 0.956 0.919 0.635 0.656 0.968 0.915 0.618 0.673
Wine 80 0.957 0.920 0.638 0.658 0.969 0.919 0.624 0.673
Wine 100 0.957 0.919 0.634 0.658 0.970 0.922 0.622 0.673
Reuters 15 0.923 0.913 0.623 0.820 0.962 0.956 0.626 0.850
Reuters 30 0.925 0.917 0.629 0.822 0.962 0.957 0.626 0.849
Reuters 50 0.926 0.917 0.625 0.823 0.962 0.956 0.623 0.850
Reuters 80 0.927 0.919 0.629 0.823 0.962 0.957 0.624 0.850
Reuters 100 0.928 0.922 0.630 0.824 0.962 0.957 0.628 0.850
(d) Number of neighbors ks (standard deviation)
Wine 15 0.044 0.060 0.091 0.043 0.040 0.086 0.122 0.038
Wine 30 0.038 0.057 0.079 0.040 0.036 0.080 0.098 0.038
Wine 50 0.036 0.056 0.077 0.040 0.032 0.074 0.087 0.039
Wine 80 0.035 0.053 0.071 0.038 0.030 0.071 0.086 0.039
Wine 100 0.035 0.055 0.073 0.038 0.030 0.069 0.080 0.039
Reuters 15 0.065 0.079 0.041 0.052 0.012 0.017 0.015 0.010
Reuters 30 0.062 0.072 0.035 0.049 0.011 0.016 0.016 0.010
Reuters 50 0.061 0.074 0.037 0.048 0.012 0.018 0.017 0.011
Reuters 80 0.060 0.069 0.025 0.048 0.011 0.015 0.015 0.011
Reuters 100 0.058 0.064 0.029 0.047 0.011 0.014 0.017 0.011
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Table 7   (continued)

Dataset LR SDR-NNP �-SDR-NNP

T C R NH T C R NH

(e) Learning rate � (average)
Wine 1 0.981 0.959 0.676 0.686 0.992 0.975 0.678 0.711
Wine 5 0.959 0.925 0.638 0.656 0.978 0.936 0.648 0.680
Wine 8 0.952 0.911 0.624 0.648 0.967 0.911 0.614 0.667
Wine 12 0.944 0.904 0.623 0.643 0.957 0.886 0.589 0.658
Wine 20 0.936 0.888 0.597 0.639 0.940 0.857 0.536 0.648
Reuters 1 0.967 0.963 0.614 0.855 0.967 0.963 0.619 0.856
Reuters 5 0.946 0.941 0.637 0.839 0.966 0.962 0.622 0.853
Reuters 8 0.927 0.921 0.637 0.823 0.964 0.960 0.625 0.851
Reuters 12 0.908 0.898 0.631 0.808 0.960 0.955 0.626 0.848
Reuters 20 0.881 0.864 0.617 0.788 0.952 0.943 0.635 0.841
(f) Learning rate � (standard deviation)
Wine 0.01 0.001 0.004 0.012 0.010 0.000 0.001 0.013 0.004
Wine 0.05 0.011 0.019 0.009 0.031 0.008 0.024 0.021 0.023
Wine 0.1 0.020 0.029 0.018 0.031 0.017 0.051 0.064 0.028
Wine 0.2 0.026 0.038 0.058 0.018 0.029 0.070 0.092 0.031
Wine 0.4 0.023 0.036 0.078 0.008 0.039 0.075 0.115 0.028
Reuters 0.01 0.001 0.000 0.009 0.002 0.001 0.000 0.007 0.001
Reuters 0.05 0.006 0.005 0.017 0.004 0.001 0.001 0.008 0.002
Reuters 0.1 0.027 0.027 0.024 0.021 0.002 0.002 0.018 0.003
Reuters 0.2 0.054 0.062 0.026 0.043 0.007 0.008 0.018 0.007
Reuters 0.4 0.070 0.087 0.055 0.056 0.019 0.027 0.018 0.015

Fig. 12   �-SDR-NNP for differ-
ent numbers of K-means clus-
ters K

m
 . Columns show results 

when setting K
m
 to half, equal 

to, and double the true number 
of clusters (6 for Reuters and 7 
for Wine)
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Fig. 13   MDS projection of 
projections computed for all 
experiments colored by method 
(SDR-NNP: green; �-SDR-
NNP: purple), Reuters and 
Wine datasets

Table 8   Time measurements for SDR and ( �-)SDR-NNP in seconds, 
GALAH dataset. See also Fig. 14

Samples SDR (�-)SDR-
NNP infer-
ence

1000 0.220 0.108
2000 0.957 0.059
5000 14.799 0.092
10000 157.420 0.149
20000 1302.268 0.414
30000 4736.995 0.355
40000 11058.267 0.727
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Fig. 14   Performance of SDR vs SDR-NNP on the GALAH dataset 
(time in log scale), 1K to 40K samples. SDR-NNP trained with 10K 
samples for E = 1000 epochs. See also Table 14

Fig. 15   SDR-NNP of 66K samples learned from LMDS (top) and t-
SNE (bottom) for different numbers of training epochs E (four left-
most columns). SDR-NNP parameters are I = 10 iterations, and 

� = 0.18 . Red column: training projection (10K samples). Rightmost 
column: NNP trained with LMDS and t-SNE instead of SDR applied 
to the same test data
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added value in the exploration of a large and recent astro-
nomical dataset leading to findings which were not achiev-
able by SDR or NNP alone.

Future work can target several directions. Our work 
showed that it is possible to learn sharpening methods 
for high-dimensional data, so it is interesting to apply our 
techniques to other domains data sharpening is used, e.g., 
image segmentation, graph bundling, and data clustering and 
simplification. For the projection use-case, refining �-SDR-
NNP’s network architecture to speed its training is of high 

practical interest. Finally, deploying �-SDR-NNP as a main 
tool for astronomers to analyze their million-sample datasets 
is a goal we aim to pursue in the short term.
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