
Vol.:(0123456789)

SN Computer Science (2023) 4:244
https://doi.org/10.1007/s42979-022-01661-5

SN Computer Science

ORIGINAL RESEARCH

Stabilizing and Simplifying Sharpened Dimensionality Reduction
Using Deep Learning

Mateus Espadoto1  · Youngjoo Kim2 · Scott C. Trager3 · Jos B. T. M. Roerdink1 · Alexandru C. Telea4

Received: 20 June 2022 / Accepted: 30 December 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
Dimensionality reduction (DR) methods create 2D scatterplots of high-dimensional data for visual exploration. As such
scatterplots are often used to reason about the cluster structure of the data, this requires DR methods with good cluster
preservation abilities. Recently, Sharpened DR (SDR) was proposed to enhance the ability of existing DR methods to create
scatterplots with good cluster structure. Following this, SDR-NNP was proposed to speed the computation of SDR by deep
learning. However, both SDR and SDR-NNP require careful tuning of four parameters to control the final projection quality.
In this work, we extend SDR-NNP to simplify its parameter settings. Our new method retains all the desirable properties
of SDR and SDR-NNP. In addition, our method is stable vs setting all its parameters, making it practically a parameter-free
method, and also increases the quality of the produced projections. We support our claims by extensive evaluations involving
multiple datasets, parameter values, and quality metrics.

Keywords  High-dimensional visualization · Dimensionality reduction · Mean shift · Neural networks

Introduction

The visual analysis of high-dimensional data is challenging
due to its many observations (also known as points or sam-
ples) and values recorded per sample (also known as dimen-
sions, features, or variables) [1–3]. Dimensionality reduc-
tion (DR), also known as projection, is particularly suited

for such data, since DR methods scale visually to thousands
of dimensions and hundreds of thousands of samples. DR
techniques such as the well-known t-SNE [4] and UMAP
[5] methods, can segregate data clusters into well-separated
visual clusters, which enables one to reason about the former
by seeing the latter, a property also known as preservation
of data structure [6].

A recent survey [3] noted that many DR techniques
score below t-SNE or UMAP in cluster segregation but
have other important assets—simple usage and imple-
mentation, computational scalability, and out-of-sample
behavior. Following this, [7] recently proposed Sharpened
DR (SDR) to generically improve the cluster segregation
ability of any DR technique by sharpening the input data

Mateus Espadoto, Youngjoo Kim, Scott C. Trager, Jos B. T. M.
Roerdink, and Alexandru C. Telea have contributed equally to this
work.

This article is part of the topical collection “Advances on Computer
Vision, Imaging and Computer Graphics Theory and Applications”
guest edited by Kadi Bouatouch, Augusto Sousa, Mounia Ziat, and
Helen Purchase.

 *	 Mateus Espadoto
	 mespadot@ime.usp.br

	 Youngjoo Kim
	 lyoungjookiml@gmail.com

	 Scott C. Trager
	 sctrager@astro.rug.nl

	 Jos B. T. M. Roerdink
	 j.b.t.m.roerdink@rug.nl

	 Alexandru C. Telea
	 a.c.telea@uu.nl

1	 Bernoulli Institute for Mathematics, Computer Science
and Artificial Intelligence, University of Groningen,
Nijenborgh 9, Groningen 9747, AG, The Netherlands

2	 Institute of Mathematics and Statistics, University of São
Paulo, Rua do Matão, 1010, São Paulo 05508‑090, Brazil

3	 Kapteyn Astronomical Institute, University of Groningen,
Landleven 12 (Kapteynborg, 5419), Groningen 9747, AD,
The Netherlands

4	 Department of Information and Computing Sciences,
Utrecht University, Princetonplein 5, Utrecht 3584, CC,
The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01661-5&domain=pdf
http://orcid.org/0000-0002-1922-4309

	 SN Computer Science (2023) 4:244 244   Page 2 of 22

SN Computer Science

by a variant of the Mean Shift (MS) algorithm [8]. How-
ever, SDR is impractical to use as MS is prohibitively
expensive in high dimensions.

In a recent paper [9], we reduced the computational
cost of SDR using deep learning. Our proposed method,
called SDR-NNP, leverages an earlier DR method, called
Neural Network Projection (NNP) [10], to learn the com-
bined steps of data sharpening and projection. SDR-NNP
has the following features—to our knowledge, not yet
jointly achieved by existing DR methods:

Quality (C1): Better cluster separation than existing
DR methods, as measured by well-known metrics in the
DR literature;

Scalability (C2): Linear in sample and dimension
counts, allowing the projection of datasets of up to a mil-
lion samples and hundreds of dimensions in a few seconds
on commodity GPU hardware;

Genericity (C3): Handles any real-valued (unlabeled)
high-dimensional data;

Stability and out-of-sample (OOS) support (C4):
Projects new samples for a learned projection without rec-
omputing it, in contrast to standard t-SNE and any other
non-parametric methods.

However, SDR-NNP depends on four parameters—the
number of nearest neighbors ks in the MS process, the
number of MS data-sharpening iterations I, the so-called
learning rate � (speed of MS), and the number of training
epochs E. While SDR-NNP proposes a good default for
E, it only suggests ranges from which users can pick I
and � and does not further explore how to set ks . Tuning
each single parameter can change the projection, and also
the projection quality measured by established metrics,
in subtle ways. In practice, users have to examine differ-
ent combinations of ks , I, and � by trial-and-error. This is
slow, since all these parameters affect the training data
that SDR-NNP uses, i.e., one has to retrain the method
after each parameter change. More importantly, if chang-
ing these parameters can lead to very different projections,
then the entire goal of stability—that is, having a method
that generates consistent results for a given input data-
set—would be compromised. Simply put: Sharpening the
data, as SDR-NNP does it, is useful and desired, but only
effective in practice if it can be done in a stable, ideally
parameter-free, manner.

In this paper, we address these issues by reducing SDR-
NNP’s four-parameter space to a single parameter. The
new parameter Km controls a K-means clustering process
done in the input high-dimensional data. We control SDR’s
data-sharpening process based on the local homogeneity
of neighborhoods in terms of the cluster labels they get
assigned by K-means. Our new method, which we call �
-SDR-NNP, keeps the quality (C1), scalability (C2), generic-
ity (C3), and stability and OOS (C4) features of SDR-NNP

listed above. Most importantly, however, the new method
covers the following.

Ease of use (C5): Our new method is far stabler than
SDR-NNP in terms of visual cluster separation and qual-
ity metrics of the computed projections for both changes
in the four parameters ks , I, � , and E it inherits from SDR-
NNP and the new parameter Km it adds. Practically put, our
new method can be seen as parameter-free, thus stable in its
application. Our method also increases the quality (C1) of
the produced projections vs SDR-NNP for the same param-
eter values.

We structure this paper as follows: “Background” dis-
cusses related work on dimensionality reduction. Sec-
tion “SDR-NNP and α-SDR-NNP Methods” details SDR-
NNP and �-SDR-NNP. Section “Results” presents the results
that support our above claims, including a detailed quantita-
tive and qualitative comparison of SDR-NNP and �-SDR-
NNP. Section “Discussion” discusses our two methods.
Finally, Section “Conclusion” concludes the paper.

Background

Let x = (x1,… , xn) , xi ∈ ℝ, 1 ≤ i ≤ n be an n-dimensional
(nD) real-valued sample, and let D = {xj} , 1 ≤ j ≤ N be a
dataset of N samples. A DR technique is a function

where q ≪ n , and typically q = 2 . The projection P(x) of a
sample x ∈ D is a point p ∈ ℝ

q . Projecting the whole set D
yields a qD scatterplot denoted next as P(D).

DR methods aim to satisfy multiple requirements. Table 1
outlines prominent ones present in several DR surveys [1–3,
11–16]. Besides these, DR techniques also require local-
ity, steerability, and multilevel computation [2]. We do
not focus on such additional requirements as these are less
mainstream.

The quality (Q) and cluster separation (CS) requirements
need additional explanations. Projection quality is assessed
by local metrics that measure how a small neighborhood of
points in D maps to a neighborhood in P(D) and conversely.
Local quality metrics include the following (see Table 2 for
the formal definitions):

Trustworthiness T [17]: Measures the fraction of close
points in D that are also close in P(D). T tells how much one
can trust that local patterns in a projection represent actual
data patterns. In the definition (Table 2), U(K)

i
 is the set of

points that are among the K nearest neighbors of point i in
the 2D space but not among the K nearest neighbors of point
i in ℝn ; and r(i, j) is the rank of the 2D point j in the ordered
set of nearest neighbors of i in P(D);

(1)P ∶ ℝ
n
→ ℝ

q,

SN Computer Science (2023) 4:244 	 Page 3 of 22  244

SN Computer Science

Continuity C [17]: Measures the fraction of close points
in P(D) that are also close in D. In the definition (Table 2),
V
(K)

i
 are the points in the K nearest neighbors of point i in

D but not among the K nearest neighbors in 2D; and r̂(i, j)
is the rank of the ℝn point j in the ordered set of nearest
neighbors of i in D;

Neighborhood Hit NH [18]: Measures how well a pro-
jection P(D) separates labeled data. NH is the number yl

k
 of

the k nearest neighbors of a point y ∈ P(D) , denoted by yk ,
that have the same label l as y , averaged over P(D). Put sim-
ply: consider a projection, i.e., a 2D scatterplot P(D), where
every point has a label equal to the label the correspond-
ing high-dimensional point projected there. If we assume a
well-separated dataset in the high-dimensional space, i.e., a
dataset where close points in this space have similar labels,
then a good projection should keep this structure—that is,
close points in the 2D scatterplot should also have similar
labels. The usage and practical intuition behind the NH met-
ric has been extensively explored in the DR literature; see
for example [19]. By construction, the NH metric requires
labeled datasets to be used.

Shepard diagram correlation R [20]: The Shepard
diagram is a scatterplot of the pairwise distances between
all points in P(D) vs the corresponding distances in D.
Points below, respectively above, the main diagonal show
distance ranges for which false neighbors, respectively
missing neighbors, occur. The closer the plot is to the main
diagonal, the better the overall distance preservation is.
The scatterplot’s Spearman rank correlation R measures
this—a value R = 1 indicates a perfect (positive) distance
correlation.

All above metrics are local, i.e., capture preservation of
data structure in D at the scale given by the neighborhood
size K. In practice, what a ‘good’ K value is for a given data-
set D is unknown. K can also vary locally within D as func-
tion of the point density. At a higher level, projections are
used to reason about the overall data structure in D by creat-
ing, ideally, visual clusters that are as well separated in P(D)
as data clusters are in D, a property called cluster separa-
tion (CS). High-CS projections show, e.g., how many point
clusters exist and how these correlate (or not) with labels
or specific attributes [2], or predict how easy it is to train a
classifier for D based on the CS in P(D) [19]. In general, it
is hard to design objective metrics for CS like one does for
local quality, because a ‘well separated data cluster’ in D
is not evident. Hence, CS is typically assessed on (labeled)
datasets D for which the ground-truth data-separation is well
known, e.g., MNIST [21].

We next discuss existing DR methods in the light of the
requirements in Table 1. We group these into unsupervised
and supervised methods, as follows.

Unsupervised methods: Principal Component Analy-
sis [22] (PCA) is simple, fast, out-of-sample (OOS), and
easy-to-interpret, also used as pre-processing for other DR
techniques that require a moderate data dimensionality n
[2]. Being linear and global, PCA has low quality and CS,
especially for data of high intrinsic dimensionality.

MDS [23], Landmark MDS [24], Isomap [25], and
LLE [26] with its variations [27–29] detect and project the
(neighborhood of the) high-dimensional manifold on which
data are embedded, and can capture nonlinear data structure.
Such methods yield higher quality than PCA, but can be hard

Table 1   Summary of desirable requirements (characteristics) of DR methods

Requirement name Description of the requirement

Quality (Q) Captures local data structures well, as measured by the projection local-quality metrics in Table 2
Cluster separation (CS) Captures data structures present at larger scales than local structures, e.g., clusters, as visual clusters in the 2D scat-

terplot
Scalability (S) Can project datasets of hundreds of dimensions and millions of samples in a few seconds on commodity hardware
Ease of use (EoU) Has few (ideally: no) free parameters, which are intuitive and easy to tune to get the desired results
Genericity (G) Can project any (real-valued) dataset, with or without labels
Out-of-sample (OOS) Can fit new data in an existing projection. OOS projections are also stable—small input-data changes cause only small

projection changes

Table 2   Local-quality metrics
for projections. All metrics
range in [0, 1] with 0 being
lowest, and 1 being highest,
quality

Metric Definition

Trustworthiness (T) 1 −
2

NK(2n−3K−1)

∑N

i=1

∑
j∈U

(K)

i

(r(i, j) − K)

Continuity (C) 1 −
2

NK(2n−3K−1)

∑N

i=1

∑
j∈V

(K)

i

(r̂(i, j) − K)

Neighborhood hit (NH) 1

N

∑
y∈P(D) y

l
k
∕yk

Shepard diagram correlation (R) Spearman’s rank of
(‖xi − xj‖, ‖P(xi) − P(xj)‖), 1 ≤ i ≤ N, i ≠ j

	 SN Computer Science (2023) 4:244 244   Page 4 of 22

SN Computer Science

to tune, do not all support OOS, and do not work well for
high-intrinsic-dimensional data.

Force-directed methods, such as LAMP [20] and LSP
[18], yield good quality and good scalability, and are simple
to use. Yet, not all force-directed methods have OOS ability.
Clustering-based methods, such as PBC [30], share many
features with force-directed methods, such as good quality,
but also lack OOS.

Stochastic Neighborhood Embedding (SNE) methods,
like the well-known t-SNE [4], have high overall quality
and CS. Yet, t-SNE has a (high) complexity of O(N2) in
sample count, is very sensitive to small data changes, can
be hard to tune [31], and has no OOS. Tree-accelerated
t-SNE [32], hierarchical SNE [33], approximated t-SNE
[34], and various GPU variants of t-SNE [35, 36] improve
scalability, but are algorithmically quite complex, and still
have sensitivity, tuning, and OOS issues. Uniform Manifold
Approximation and Projection (UMAP) [5] has comparable
quality to t-SNE, is much faster, and has OOS. Still, UMAP
is also sensitive to parameter tuning.

Autoencoders (AE) [37, 38] aim to generate a com-
pressed, low-dimensional representation of the data in their
bottleneck layers by training to reproduce the data input at
the output. They have similar quality to PCA and are easy
to set up, train, and use, are fast, and have OOS abilities.
Self-organizing maps (SOM) [39] share with AE the ease of
use, training, and speed. Yet, both AE and SOM lag behind
t-SNE and UMAP in CS, which is, as explained, essential
for interpreting projections.

Supervised methods: ReNDA [40] uses two neu-
ral networks to implement (1) a nonlinear generalization
of Fisher’s Linear Discriminant Analysis [41] and (2) an
autoencoder, used for regularization. ReNDA scores well on
predictability and has OOS, but needs pre-training of each
individual network and has low scalability. Recently, Neural
Network Projections (NNP) [10] proposed to select a sub-
set Ds ⊂ D to project by any DR method to yield a training
projection P(Ds) ⊂ ℝ

2 . The pair (Ds,P(Ds)) is then used to
train a regression neural network. NNP is very fast, simple
to use, generic, and has OOS. NNP’s major limitation is a
lower CS than its training projection P(Ds).

SDR-NNP [9], our earlier method which we extend in
this paper, effectively runs NNP on a training set of high-
dimensional samples which is first sharpened by mean shift
(described further below). SDR-NNP keeps all desirable fea-
tures of NNP except ease of use: Sharpening requires care-
fully setting three parameters to get good final results. We
describe SDR-NNP in full detail in “SDR-NNP and α-SDR-
NNP Methods” as it forms the basis of our new technique
�-SDR-NNP which solves the parameter setting problem.

Semi-supervised methods: The SSNP method [42]
takes a mid-path between supervised methods (e.g., NNP)
and unsupervised ones (e.g., AE). Similar to NNP, SSNP

has an encoder–decoder architecture. Besides the standard
reconstruction loss in autoencoders (AEs), SSNP adds a
classification loss. This loss uses either ground-truth labels
from the dataset D or pseudolabels computed from D by
a clustering algorithm. That is, SSNP aims to jointly (a)
reconstruct an input dataset from a low-dimensional (more
precisely, 2D) representation and (b) classify the input
samples based on their (pseudo)labels. The combination
of both losses creates a projection which both preserves
the original dimensions of the data (a) and also the coarse-
scale similarity of the data points (b). SNP produces 2D
projections which look quite similar to those created by
our methods described in “SDR-NNP and α-SDR-NNP
Methods”. However, important differences exist:

•	 Our methods consists of two distinct operations: high-
dimensional data sharpening, followed by projection.
SSNP only performs the projection step;

•	 SSNP is a semi-supervised method that uses only label
information to learn how to project. Our methods, like
NNP, learn from a user-selected projection technique;

•	 SSNP and our methods use fundamentally different net-
work architectures. SSNP uses two different networks
for training and inference. We use a single architecture
for training and inference;

•	 A key goal for SDR-NNP is to enhance separation
between unlabeled data clusters, so that these can next
be labeled by users (see “Case Study: Astronomical
Datasets”). This is out of scope for SSNP.

Sharpening data: Finding clusters of similar data points
is a key task in data science, addressed by tens of cluster-
ing methods [43, 44]. Mean Shift (MS) [8, 45, 46] is
particularly relevant to our work. MS computes the kernel
density estimation of a dataset D and next shifts points in
D upstream along the density gradient. This effectively
clusters D, with applications in image segmentation [8]
and graph drawing [47]. Recently, Sharpened DR (SDR)
[7] used MS for the first time to assist DR: A dataset D
is sharpened by a few MS iterations, not to be confused
with the clustering goal of the original MS. The sharpened
dataset is next projected by a fast, easy-to-use, but poten-
tially low-CS DR method. Sharpening ‘preconditions’ the
used DR method to overcome its lack of CS. Yet, as MS
is very slow for high-dimensional data, this makes SDR
impractical.

Table 3 summarizes the DR techniques discussed above
showing how they fare with respect to the requirements
discussed earlier in this section. No reviewed method satis-
fies all the requirements optimally. We next describe our
earlier method SDR-NNP (Table 3 one but last row) and
our extension to it, �-SDR-NNP (Table 3 last row).

SN Computer Science (2023) 4:244 	 Page 5 of 22  244

SN Computer Science

SDR‑NNP and α‑SDR‑NNP Methods

As “Background” explained, SDR and NNP have comple-
mentary features: SDR yields good cluster separation (CS),
while NNP is fast, easy-to-use, and has OOS ability. Our
combined SDR-NNP technique joins these advantages and
works as follows (see also Fig. 1, parts marked in blue). We
use SDR to sharpen a small data subset to create an initial
2D projection (“Sharpened Dimensionality Reduction”).

Next, we train NNP on the sharpened data and its 2D pro-
jection (“SDR-NNP”) and use it to project the whole data-
set. Section “-α-SDR-NNP” introduces �-SDR-NNP and
outlines how this methods improves upon SDR-NNP.

Sharpened Dimensionality Reduction

SDR has two main components, as follows (for full details,
see [7]):

Data sharpening: Given a dataset D ∈ ℝ
n , SDR

computes its density using the kernel density estimator
�(x) ∶ ℝ

n
→ ℝ

+ defined as

where N(x) is the set of ks-nearest neighbors of x in D; L is
a parabolic kernel [48]; and h is the distance of x to its kth

s

(farthest) neighbor in N(x) . In other words, the ‘bandwidth’
of density estimation h, which further determines how data
sharpening finds clusters in the input dataset, is locally con-
trolled by the number of nearest neighbors ks . As we shall
see next in “-α-SDR-NNP”, our new method simplifies this
even further by removing the need to explicitly specify ks.

Next, SDR shifts points x ∈ D using the update rule

where � ∈ [0, 1] is a ‘learning rate’ parameter that con-
trols the shift speed (higher values yield higher speed) and
� = 10−5 is a regularization parameter. After every update
(Eqn. 3), the density � is computed again (Eqn. 2). This

(2)�(x) =
�

y∈N(x)

L

�
‖x − y‖

h

�
,

(3)x
next = x + �

∇�(x)

max (‖∇�(x)‖, �)
,

Table 3   Summary of DR techniques in “Background” and their fea-
tures from Table 1

Method Desirable characteristics of the method

Q S EoU G OOS

PCA Low High High High Yes
MDS Mid Low Low Low No
L-MDS Mid Mid Low Low No
Isomap Mid Low Low Low No
LLE Mid Low Low Low No
LAMP Mid Mid Mid High Yes
LSP Mid Mid Mid High No
PBC Mid Mid Mid High No
UMAP High High Low High Yes
t-SNE High Low Low High No
Autoencoders Low High High Low Yes
SOM Low High High Low No
ReNDA Mid Low Low Mid Yes
NNP High High High High Yes
SDR High Low Mid High No
SDR-NNP High High Low-mid High Yes
�-SDR-NNP High High High High Yes

Fig. 1   Architecture of the SDR-
NNP and �-SDR-NNP methods

LGC
data sharpening

learning rate α

iterations T
neighbors ks

baseline
DR method

projection P(Ds)

NNP training

3-layer
neural network

data
input

expected
output

training epochs E

trained
network

testing data D

NNP inference

projection P(D)

uniformity
estimation

K-means
clustering

training data

Preprocessing

common pipeline parts
new in α-SDR-NNP

Legend
parameters

cluster count Ks

Ds

	 SN Computer Science (2023) 4:244 244   Page 6 of 22

SN Computer Science

sharpening approach is called Local Gradient Clustering
(LGC) by analogy with Gradient Clustering (GC) [45].

SDR has three parameters: I (number of iterations); ks
(number of nearest neighbors); and � (learning rate), all
marked in brown in Fig. 1. The SDR-NNP method uses
ks ≥ 50 following [7], and setting � and I is discussed in
“Results”. The �-SDR-NNP method replaces the need to fid-
dle with these parameters (see “-α-SDR-NNP” and “Evalu-
ation of α-SDR-NNP”).

Projection: SDR takes the LGC-sharpened dataset Ds
produced from the input dataset D and projects it by a pro-
jection method of choice P (typically fast but not necessarily
OOS), called the baseline DR method next, to obtain a 2D
projection P(Ds) . The data in Ds are better separated than in
D due to LGC, which helps P to yield better cluster separa-
tion in P(Ds) than in P(D).

SDR‑NNP

SDR-NNP uses SDR (“Sharpened Dimensionality Reduc-
tion”) on a small data subset to obtain P(Ds) . To project the
full dataset D, one next trains the NNP regressor [10] using
Ds as input and P(Ds) as output. The NNP network has three
fully connected hidden layers with ReLU activation [49],
initial weights set to He Uniform [50], and an initial bias
value set to 0.0001. The output layer has two units, one per
2D coordinate, and uses sigmoid activation to constrain out-
put values to [0, 1]. We used three different network sizes,
namely, x-small (75, 30, 75 units per layer), small (150, 60,
150 units per layer), and medium (300, 120, 300 units per
layer). We trained the network using the ADAM optimizer
[51], as described in the NNP paper. After training, SDR-
NNP has a regressor able to mimic the behavior of SDR for
unseen data, thus adding OOS capability, and computational
scalability to SDR.

α‑SDR‑NNP

A key challenge for the original SDR method [7] which is
also shared by SDR-NNP is the control of the sharpening
process. As outlined there, the projection results can be quite
sensitive to the exact combination of � , ks , and I param-
eters. To these, SDR-NNP introduces a fourth parameter,
the number of training epochs E. Earlier results from both
the original SDR and SDR-NNP, and as we also discuss next
in “Evaluation of SDR-NNP”, show that the hardest to con-
trol parameters are � and the number of nearest neighbors
ks . These two parameters influence most the visual cluster
separation which is the main added value behind the SDR
and SDR-NNP proposal. As Kim et al. [7] noted, these
parameters are not fully independent—when changing ks ,
one should also change the considered range for explora-
tion of good � values. The interdependency of the same two

parameters was observed when using LGC to bundle graph
and trail drawings [47, 52].

To alleviate this problem, we must understand its causes.
Consider a dataset D ∈ ℝ

n and its density estimation �
(Eqn. 2). For simplicity, we depict this for the 1D case in
Fig. 2a. For the example in the figure, the original dataset
had two quite well-separated clusters, shown by the red and
cyan bars denoting high sample density � (Fig. 2a). LGC
sharpens this density, practically separating the two high-
density clusters even further (Fig. 2c). This is the desired
outcome, since such well-separated data clusters will pro-
ject to well-separated visual clusters further by SDR or
SDR-NNP.

However, consider now a dataset D with the density � as
in Fig. 2b. There is far less clear separation between data
clusters here, shown by the fading-to-white bars below
the density plot in image (b). From this input, LGC will
create a sharpened dataset Ds looking as in Fig. 2b, i.e.,
very similar to the one where the density showed two very
clearly separated peaks. This is due to the normalization of
the gradient in the LGC update rule (Eq. 3) which means
that small density variations have similar sharpening effects
as large ones. This is clearly not desirable, since it separates
the two density peaks in Fig. 2b too strongly. The result
is oversegmentation of the projection P(Ds) , as observed
in [7, 9]. Rather, we would like to obtain the dataset Ds in
Fig. 2d which sharpens density only where it is clearly well
separated from neighbor peaks, and leaves the between-peak
region, where we cannot really identify two separated clus-
ters, unchanged.

To achieve this, we need supplementary information,
namely that indicated by the red and cyan bars in Fig. 2, i.e.,
where the high values of the dataset’s density are located.
This implies that we cannot use a single global parameter
setting for LGC, but rather need to modulate LGC by such
local information. We achieve this in our new �-NNP-SDR
method as follows (see also Fig. 1, parts marked in green).

Fig. 2   Comparison of SDR-NNP (blue) with �-SDR-NNP (green).
See “-α-SDR-NNP”

SN Computer Science (2023) 4:244 	 Page 7 of 22  244

SN Computer Science

First, we use a simple clustering algorithm, K-means, to
cluster NNP-SDR’s training data D, with a user-set clus-
ter-count parameter Km . Next, during each LGC iteration
(Eq. 3), we use the labels assigned by K-means to determine,
for each point x ∈ D , how homogeneous its neighborhood
is, i.e., how many points share the same clustering label as
x . For this, we compute the NH metric (Table 2) but now
using the pseudolabels assigned by K-means rather than
ground-truth labels. Finally, we modify the LGC sharpen-
ing (Eq. 3) to use a local learning rate ( �NH(x)) instead of
the global learning rate � . This decreases � in regions where
NH is small, i.e., K-means finds that two data clusters are
close to each other, such as the middle part of the density
plot in Fig. 2b. Points there move far less when applying
Eq. 3, yielding the desired LGC result in Fig. 2d. In areas
where the density is very low (around the middle of Fig. 2a),
NH is higher, so points there move fast, like in the original
LGC, yielding the desired result in Fig. 2b. We show next in
“Evaluation of α-SDR-NNP” that this allows us to control
only the cluster count Km of K-means to obtain more stable,
and higher quality results, than when controlling � , ks , and
I in SDR-NNP.

Results

We measured the performance of SDR-NNP and �-SDR-
NNP by the four metrics in Table 2 computed for K = 7 ,
in line with [3, 12, 53]. Note that K, the number of nearest
neighbors used to compute the metrics in Table 2, is smaller
than ks , the number of nearest neighbors used to evaluate �
(Eqn. 2). Indeed, ks needs to be relatively large to smooth out
local noise in the computation of the gradient ∇� ; in con-
trast, K is typically set small to capture more local-quality
aspects of a projection.

Evaluation used six publicly available real-world datasets
(Table 4), all being reasonably high-dimensional and large
(tens of dimensions, thousands of samples), and with a non-
trivial data structure. All dimensions were rescaled to the
[0, 1] range, to match NNP’s sigmoid activation function

in its output layer [10]. All experiments were run on a dual
16-core Intel Xeon Silver 4216 at 2.1 GHz with 256 GB
RAM and an NVidia GeForce GTX 1080 Ti GPU with 11
GB VRAM. SDR was implemented in C++ using Eigen
[61] for matrix computations, Nanoflann [62] for nearest-
neighbor search, and the implementations of t-SNE and
Landmark MDS from Tapkee [63]. NNP is implemented
using the Keras framework [64]. The ( �-)SDR-NNP code,
datasets, and all results discussed in this paper are publicly
available at [65].

Section “Evaluation of SDR-NNP” details the quality of
SDR-NNP. Section “Evaluation of α-SDR-NNP” presents
the evaluation of �-SDR-NNP as compared to SDR-NNP.
Section “Computational Scalability” studies the computa-
tional scalability of both methods. Finally, “Case Study:
Astronomical Datasets” presents an application of SDR-
NNP to the analysis of astronomical data.

Evaluation of SDR‑NNP

We first studied SDR-NNP’s quality with respect to its
parameters (number of iterations I, learning rate � , training
epochs E) using Landmark MDS (LMDS), t-SNE, and PCA
as baseline DR methods. A discussion on the selection of
DR methods for SDR can be found in “Conclusion” from
[7]. All results here and in “Evaluation of α-SDR-NNP”
use a medium size for the NNP network. Results computed
for other network sizes look very similar and are provided
in the supplementary material.

Number of iterations I: Figure 3 shows how I affects the
sharpening of clusters for LMDS and t-SNE (PCA results in
supplementary material). For all datasets, 4 to 8 iterations
suffice to have the clusters sharply defined in the projec-
tion. Table 5 shows quality metrics as functions of I for all
three baseline projections. Increasing I can increase quality
(Air Quality, Reuters with LMDS and PCA) but generally
slightly decreases quality for LMDS and PCA. For t-SNE,
this decrease is visible for all datasets, which is explain-
able by the fact that t-SNE already has a very high quality
which is hard to be learned by NNP (see [10]). However,

Table 4   Datasets used in the (�)-SDR-NNP evaluations

Dataset name and
provenance

Samples N Dimensions n Dataset description

Air Quality [54] 9358 13 Measurements from air sensors used to study and predict air quality
Concrete [55] 1030 8 Measurements of chemico-physical properties of concrete used to study concrete strength
Reuters [56] 5000 100 Attributes extracted from news report documents using TF-IDF [57], a standard method

in text processing. This is a subset of the full dataset which contains data for the six
most frequent classes only. Used to study how features can predict news’ types (classes)

Spambase [58] 4001 57 Text dataset used to train email spam classifiers
Wisconsin [59] 569 32 Features extracted from images of breast masses used to detect malignant cells
Wine [60] 6497 11 Samples of white and red Portuguese vinho verde used to describe perceived wine quality

	 SN Computer Science (2023) 4:244 244   Page 8 of 22

SN Computer Science

as already argued in [7], local-quality metrics will likely
decrease when using SDR to favor visual cluster separation.

Learning rate �: Figure 4 shows results for SDR-NNP
when varying � for LMDS and t-SNE (PCA results in
supplementary material). Too small or too large � values
tend to affect the projection adversely. Values in the range
� ∈ [0.05, 0.1] show the best results, i.e., a good separation
of the projection into distinct clusters. Table 6 shows quality
metrics as function of � for all three baseline projections.
The effect of � on quality is similar with that of I with some
combinations (Reuters with LMDS and PCA) showing an
overall slight decrease for small � values.

Training epochs E: Figure 5 shows how E affects pro-
jection quality. The early stopping strategy used by NNP
[10]—stopping training on convergence, defined as the
epoch where the validation loss stops decreasing (roughly
E = 60 in practice)—does not give good results for SDR-
NNP. The resulting projections (Fig. 5a, b leftmost columns)
show a fuzzy version of the training projections (Fig. 5a, b
rightmost columns). This is due to the fact that SDR-NNP
needs to learn both the LGC data sharpening and the pro-
jection P, which is more effort than learning just P, as NNP
did. For more training epochs, Fig. 5 shows that SDR-NNP
reproduces the training projection very faithfully. SDR-NNP

Fig. 3   Iteration parameter I
effect: SDR-NNP learned from
LMDS (a) and t-SNE (b) for
varying I values (columns) and
datasets (rows), fixed � = 0.1 ,
E = 1000 epochs

Fig. 4   Learning rate � effect:
SDR-NNP learned from LMDS
(a) and t-SNE (b) for varying �
values (columns) and datasets
(rows), fixed I = 10 iterations,
E = 1000 epochs

SN Computer Science (2023) 4:244 	 Page 9 of 22  244

SN Computer Science

produces good results with as little as E = 300 epochs,
except for the Air Quality dataset, where E = 3000 epochs
were needed for best results. On average, E = 1000 epochs
led to good results for all datasets and other parameter set-
tings, so we choose this as a preset value for E. We keep this
preset also for our new method �-SDR-NNP in the latter’s
evaluation (“Evaluation of α-SDR-NNP”).

Cluster separation: The projections in Figs. 3, 4, 5
deserve some comments. As visible there, varying the I and
� parameters can create artificial oversegmentation—the

appearance of many small clusters in the projection, which
is an artificial cluster separation (CS), see, e.g., Fig. 4b, Reu-
ters, � ≥ 0.1 . This effect is strongest, and undesirable, for
baseline projections which already do have a good CS, such
as t-SNE. In contrast, for projections with a low CS, such as
LMDS, artificial oversegmentation is far less present. Like
SDR, SDR-NNP is best used when combined with baseline
DR methods with a low CS capability. We show next in
“Evaluation of α-SDR-NNP” how our new method, �-SDR-
NNP, largely removes all these parameter setting issues.

Table 5   Metrics for SDR-NNP learned from LMDS, PCA, and t-SNE, different numbers of iterations I, � = 0.1 , E = 1000 . NH values miss for
the Air Quality and Concrete datasets, since these are not labeled

Dataset Iterations I LMDS PCA t-SNE

T C R NH T C R NH T C R NH

Air quality 0 0.941 0.992 0.970 0.940 0.992 0.966 0.996 0.996 0.654
4 0.962 0.979 0.963 0.956 0.979 0.963 0.951 0.939 0.396
8 0.954 0.970 0.952 0.942 0.970 0.948 0.945 0.938 0.313
12 0.949 0.970 0.952 0.945 0.970 0.936 0.942 0.942 0.365
16 0.950 0.968 0.943 0.948 0.967 0.930 0.940 0.933 0.317
20 0.954 0.968 0.939 0.949 0.967 0.917 0.943 0.939 0.334

Concrete 0 0.940 0.979 0.744 0.934 0.977 0.736 0.996 0.992 0.479
4 0.938 0.958 0.631 0.934 0.957 0.627 0.952 0.929 0.145
8 0.912 0.944 0.560 0.906 0.943 0.564 0.927 0.918 0.140
12 0.895 0.941 0.556 0.865 0.932 0.558 0.912 0.913 0.167
16 0.884 0.938 0.554 0.872 0.932 0.555 0.904 0.914 0.118
20 0.876 0.935 0.560 0.874 0.934 0.569 0.890 0.910 0.109

Reuters 0 0.817 0.895 0.755 0.724 0.817 0.888 0.754 0.727 0.956 0.960 0.609 0.856
4 0.835 0.913 0.752 0.747 0.833 0.901 0.745 0.743 0.957 0.951 0.405 0.855
8 0.858 0.915 0.713 0.775 0.854 0.906 0.706 0.765 0.950 0.910 0.258 0.845
12 0.883 0.909 0.693 0.803 0.883 0.904 0.687 0.802 0.915 0.855 0.078 0.820
16 0.884 0.910 0.691 0.810 0.882 0.907 0.689 0.804 0.893 0.849 0.102 0.813
20 0.882 0.907 0.691 0.800 0.883 0.907 0.691 0.810 0.893 0.852 0.113 0.820

Spambase 0 0.740 0.909 0.529 0.852 0.747 0.912 0.513 0.849 0.954 0.958 0.408 0.914
4 0.737 0.881 0.463 0.843 0.743 0.877 0.471 0.841 0.873 0.899 0.294 0.882
8 0.723 0.855 0.403 0.838 0.712 0.848 0.383 0.834 0.793 0.845 0.312 0.866
12 0.711 0.845 0.379 0.829 0.704 0.838 0.348 0.830 0.754 0.841 0.324 0.850
16 0.701 0.837 0.370 0.828 0.701 0.837 0.322 0.830 0.744 0.834 0.332 0.845
20 0.710 0.840 0.351 0.833 0.709 0.838 0.311 0.836 0.739 0.828 0.283 0.848

Wisconsin 0 0.895 0.959 0.926 0.941 0.896 0.959 0.928 0.943 0.950 0.939 0.679 0.976
4 0.892 0.915 0.901 0.953 0.888 0.915 0.903 0.958 0.897 0.878 0.557 0.957
8 0.804 0.857 0.785 0.925 0.805 0.856 0.785 0.925 0.814 0.816 0.256 0.925
12 0.790 0.849 0.735 0.930 0.787 0.848 0.736 0.930 0.794 0.805 0.393 0.932
16 0.780 0.847 0.721 0.916 0.780 0.844 0.718 0.922 0.779 0.820 0.432 0.913
20 0.775 0.842 0.707 0.922 0.776 0.841 0.705 0.920 0.778 0.829 0.457 0.921

Wine 0 0.864 0.973 0.839 0.667 0.869 0.972 0.806 0.678 0.986 0.976 0.656 0.702
4 0.867 0.932 0.709 0.669 0.864 0.930 0.686 0.665 0.911 0.894 0.341 0.673
8 0.843 0.916 0.676 0.661 0.843 0.917 0.683 0.661 0.869 0.876 0.283 0.665
12 0.840 0.904 0.646 0.665 0.841 0.905 0.653 0.668 0.846 0.864 0.289 0.668
16 0.845 0.901 0.625 0.664 0.843 0.903 0.635 0.663 0.845 0.865 0.321 0.664
20 0.842 0.899 0.579 0.659 0.846 0.898 0.593 0.664 0.845 0.868 0.292 0.666

	 SN Computer Science (2023) 4:244 244   Page 10 of 22

SN Computer Science

Evaluation of α‑SDR‑NNP

Section “Evaluation of SDR-NNP” shows how SDR-NNP
improves cluster separation as compared to the baseline DR
projection it builds atop of. However, this evaluation also
showed that, to get good results, we still have to fine tune
the SDR parameters I and � . The effect of the parameter ks
was not explored. The only parameter which showed to have
a good preset is E = 1000 training epochs.

Our new method, �-SDR-NNP, has all these parameters
of SDR-NNP plus an additional one, the number of K-means
clusters Km (“-α-SDR-NNP”). Still, we argue that �-SDR-
NNP is easier to use than SDR-NNP, and support this point
by three evaluations on two labeled datasets (Reuters and
Wine), as follows.

Visual comparison: We first run �-SDR-NNP and SDR-
NNP for various combinations of their free parameters I, � ,
and ks , setting Km to the true number of clusters in the eval-
uated datasets (Reuters: Km = 6 ; Wine: Km = 7 ). For this,
we take the parameter ranges found to deliver good results
from SDR-NNP’s evaluation (“Evaluation of SDR-NNP”)
and sample each range with five values, leading to the val-
ues I ∈ {1, 5, 8, 12, 20} iterations, ks ∈ {15, 30, 50, 80, 100}
neighbors, and � ∈ {0.01, 0.05, 0.1, 0.2, 0.4} learning rates.
For each combination of parameter values, we compute the
projections of SDR-NNP and �-SDR-NNP for the Wine and
Reuters datasets.

Visually comparing all these 5 × 5 × 5 × 2 = 250 pro-
jection-pairs is not practical. Hence, we next set each of
the three parameters to its median value in its sample set
and visually compare the results for the 5 × 5 combina-
tions of the other two free parameters; see Figs. 6, 7, 8,
9, 10, 11. Since all these figures are structured similarly,
we only explain how to interpret the first one (the others
can be interpreted similarly): Figure 6 show the SDR-NNP
and �-SDR-NNP projections for varying ks and � for a fixed
value of I = 8 iterations for the Reuters dataset. We directly
see that the SDR-NNP projections (top) change consider-
ably more than the �-SDR-NNP projections (bottom). In
particular, SDR-NNP’s results become increasingly fuzzy
with dropping visual cluster separation for higher � values.
A very similar effect is visible when varying I and � (Fig. 7)
and I and ks , respectively (Fig. 8). In contrast, �-SDR-NNP
shows the same visual cluster separation for all parameter
combinations. For the Wine dataset (Figs. 9, 10, 11), this
fuzzy effect is less visible. Yet, the visual cluster separa-
tion of the SDR-NNP projections varies quite a lot, while
�-SDR-NNP generates more stable results for the different
parameter values. We conclude that, in practice, users can
ignore fine-tuning ks and � for �-SDR-NNP, and simply use
the median values in their respective sample sets as default
settings.

Quality metrics comparison: Table 7 compares the four
projection quality metrics (Table 2) of SDR-NNP vs �-SDR-
NNP for all the experiments shown earlier in Figs. 6, 7, 8,
9, 10, 11. Each table shows the effect of varying one of the
three parameters I, ks , and � . For such a parameter value,
the shown metrics are aggregates of the 25 combinations of
values of the other two parameters—for example, the first
row of Table 7, column T, shows the average value of trust-
worthiness computed for all 25 value combinations of ks and
� and for I = 1 . From this table, we see that �-SDR-NNP
achieves similar but often higher values of quality metrics,
the increase being as large as 9%. We also see that, in gen-
eral, the standard deviation values are smaller for �-SDR-
NNP than for SDR-NNP. This means that our new method
achieves its quality metrics more consistently—or, in other
words, that these values are less susceptible to change when
one varies the three parameters, which is desirable. We note
that an increase of several percentage points in projection
quality is significant. Recent surveys [3] showed that top-
quality projection methods in the entire DR literature of the
last decades differ by as few as 2 to 5 percentage points.
NNP, the method that we use to drive our own �-SDR-NNP
technique, had a quality of a few percentage points lower
than the state-of-the-art projection methods it tries to imi-
tate, most notably t-SNE [10]. Moreover, as also mentioned
in “Introduction”, our key goal with this work was not to
increase absolute quality of the obtained projection, but
increase the stability and ease of computing a good-quality
projection without having to fiddle with the four parame-
ters of its predecessor method, SDR-NNP. The fact we also
obtained higher quality, along with the desired ease-of-use,
is an extra bonus point for our method.

Effect of Km: The results so far show that �-SDR-NNP is
stable with respect to the original three parameters I, � , and
ks of SDR-NNP. However, �-SDR-NNP introduces one new
parameter, the number of clusters Km for K-means. To study
how stable our method is for this new parameter, we run it
for varying values of Km . Specifically, for the Reuters and
Wine datasets, we set Km to be half, equal to, and double the
true number of clusters known to exist in these datasets. Fig-
ure 12 shows that the resulting projections are very similar
in terms of visual clusters being produced. This means that
our method is not sensitive to setting Km , unlike SDR-NNP’s
sensitivity to setting I, � , and ks.

Putting it all together: Figure 13 shows a so-called ‘pro-
jection of projections’ [3] for the Reuters and Wine data-
set. Every point in such a scatterplot is a given projection
technique. Green points are SDR-NNP and purple points
are �-SDR-NNP. The different same-color points represent
instances of the respective technique for the different values
of I, ks , and � discussed in the above evaluations. Points are
projected to 2D using MDS based on the values of their
four quality metrics. Points in the projection which are close

SN Computer Science (2023) 4:244 	 Page 11 of 22  244

SN Computer Science

indicate methods which perform similarly quality-wise. For
both datasets, we see a high concentration of purple points
in a tail-like structure, while the green points are far more
spread around. This indicates that �-SDR-NNP generates
more consistent (similar) quality values than SDR-NNP,
thus, is less sensitive in this respect to parameter changes.
This strengthens our claim that �-SDR-NNP allows users
to generate good projections with less parameter tweaking
than SDR-NNP.

Computational Scalability

We measured scalability by comparing the execution time
of the original SDR method with SDR-NNP using samples
from the GALAH dataset (described next in “Case Study:
Astronomical Datasets”) with increasing sizes, namely, 1K,
2K, 5K, 10K, 20K, 30K, and 40K samples. Using more sam-
ples was not needed, since SDR already took over 3 h at
40K samples. Figure 14 and Table 8 show these results. For
|Ds| = 10K training samples and E = 1000 epochs, SDR-
NNP takes about 373 s to train (Fig. 14, orange line). Still,
this is already faster than SDR for 15K samples. In infer-
ence mode (after training), SDR-NNP is orders of magnitude
faster than SDR, taking less than 1 s to project 40K samples
(Fig. 14, green curve). SDR takes over 3 h for the same
data size (Fig. 14, blue curve). For �-SDR-NNP, training
time is slightly higher than for SDR-NNP due to the cost
of K-means clustering and NH computation (Fig. 1, green
steps), but inference time is identical to SDR-NNP.

Case Study: Astronomical Datasets

We used SDR-NNP for a use-case using real-world astro-
nomical data—the same subset of 10K samples from the
GALactic Archaeology with HERMES survey (GALAH
DR2) [66] used by Kim et al. to show that SDR-NNP can
create similar projections to SDR. The GALAH DR2 dataset
consists of various stellar abundance attributes of 342,682
stars. Data cleaning followed [7]: (1) cross-match the star
ID of GALAH DR2 with Gaia data release 2 (Gaia DR2) to
gain extra information on stellar kinematics (i.e., 6D phase-
space coordinates—x, y, z, u, v, and w) [66–68]; (2) exclude
stars with implausible values (exceeding 25K parsec in x, y,
and z attributes), having unreliable stellar abundances, or
with missing values in any dimension. Pre-processing deliv-
ered 76,270 stars (samples) from which we took the same
randomly selected subset D of 10K stars as in [7] to run
SDR with the same � = 0.18 (“Sharpened Dimensionality
Reduction”). We trained SDR-NNP on these 10K stars and
used the trained SDR-NNP network to project the remaining
66,270 stars.

Figure 15 shows SDR-NNP applied to the 66K test data
with LMDS and t-SNE as baseline DR methods. Points are

colored based on the value of the attribute [Fe/H], which is
of interest to domain experts to explain possible data clusters.
The first four columns show SDR-NNP for varying training
epoch counts E. The red column shows the training projection
P(Ds) of 10K samples. We see that the structure of the train-
ing projection (four clusters) is well reflected by SDR-NNP
from E = 300 epochs onwards. The test projections are more
fuzzy. This is expected, as these contain 66K unseen samples
which, albeit drawn from the same dataset, cannot perfectly
match the four clusters determined by the 10K training sam-
ples. The rightmost column in Fig. 15 shows the result of
the ‘raw’ NNP method, i.e., trained to imitate LMDS, and
t-SNE, without the sharpening step of SDR, respectively.
These results show clearly far less cluster separation (CS)
than either the SDR-NNP training projection (red column) or
the inferred SDR-NNP projections (leftmost four columns).
This shows the added value of the sharpening step: Without
it, NNP, albeit fast and OOS-capable, cannot produce useful
projections. Table 9 shows quality metrics corresponding to
the images in Fig. 15 which support the above observations.

SDR-NNP’s good cluster separation allows astronomers
to easily label clusters for further analysis to infer the physi-
cal meaning of stars. To show this, we manually labeled
clusters from SDR-NNP learned from LMDS to reproduce
the same analyses made by Kim et al. (Fig. 10 in [7]) to
understand the origin and location of stars in each cluster.
Figure 16a shows the manually labeled clusters by one of the
authors (astronomy expert). Stars from class 5 are separately
labeled as outliers. Figure 16b,c shows the Tinsley diagram
[69] and the copper abundance of the stars—a tracer of
supernovae type 1a—as a function of their iron abundance,
respectively. From these plots, astronomers can identify
class-1 stars as thin-disk stars, class-2 stars as metal-rich
thick disk stars, class-3 and class-5 (outlier) stars as the
normal thick disk stars, and class-4 stars as Gaia Enceladus
(GES)—a group of stars that originated from a galaxy that
merged with the Milky Way several billions years ago. The
original SDR method could not do this analysis and find
class-4 stars, since it could run on the entire dataset due to
its prohibitively low speed.

Discussion

We discuss how SDR-NNP and our new extension, �
-SDR-NNP, perform with respect to the criteria laid out in
“Introduction”.

Quality (C1): SDR-NNP can create projections which
are very similar visually, but also in terms of quality metrics,
to those created by SDR. Importantly, the strong separation
of similar-valued samples, the key property that SDR pro-
moted, is retained by SDR-NNP. Combined with properties
C2–C4 (which SDR does not have), this makes SDR-NNP

	 SN Computer Science (2023) 4:244 244   Page 12 of 22

SN Computer Science

superior to SDR. Compared to NNP used on the unsharp-
ened data (Fig. 15), SDR-NNP shows significantly better
cluster separation, which makes it superior to NNP. Atop all
these, �-SDR-NNP shows, for most parameter values, higher
quality metrics—thus better projections—than SDR-NNP.

Scalability (C2): ( �-)SDR-NNP is faster than SDR alone
from roughly 15K samples onwards, even when considering
training time. In inference mode (after training), ( �-)SDR-
NNP is several orders of magnitude faster than SDR, being
able to project tens of thousands of observations in under
a second on a high-end PC. Importantly, ( �-)SDR-NNP’s
speed is linear in the number of dimensions and samples
(a property inherited from the NNP architecture), and can
handle samples in a streaming fashion, one at a time, i.e.,
does not need to hold the entire high-dimensional dataset in
memory. This makes ( �-)SDR-NNP scalable to large data-
sets of millions of samples. Compared to SDR-NNP, our
new method �-SDR-NNP is slightly slower for training but
has identical inference speed.

We evaluated our method on relatively small datasets—
up to 10K samples (see Table 4). Of course, larger high-
dimensional datasets exist. However, we preferred to use
these datasets, since they are well known in the visualiza-
tion and machine learning communities, as part of multiple
benchmarks and many papers. As such, readers can directly
compare our projection results for these datasets with other
results in the literature. Moreover, we note that using larger
datasets will only help our method. Computation speed of
our projections is linear in the sample count, as stated above,
which is the optimal result one can get. Using larger data-
sets implies having higher sample densities, so estimating
this density only increases in accuracy (Eqn. 2). As such,
using smaller datasets is actually a bigger challenge for our
method.

Genericity (C3): ( �-)SDR-NNP can project any data-
set having quantitative variables and any dimension count.
Tables 5, 6, 9, and 7 show that ( �-)SDR-NNP achieves high
quality on datasets of different nature and coming from a
wide range of application domains (air sensors, civil engi-
neering, text mining, imaging, and chemistry).

Stability and out-of-sample support (C4): ( �-)SDR-
NNP inherits the stability and OOS support of NNP, making
it possible to train on a small subset of a given dataset and
then stably project additional data drawn from the same dis-
tribution. Moreover, our new method, �-SDR-NNP, is stable
with respect to its single free parameter Km , which makes
it by construction a good method to sharpen-and-project
high-dimensional data. Simply put, �-SDR-NNP delivers

similar visual results for a given dataset and any settings of
Km , which means in practice that users can benefit from a
sharpened projection without worrying about how they set
the parameter controlling the computation of this projection.

Ease of use (C5): Once trained, ( �-)SDR-NNP is param-
eter-free. SDR-NNP has three relevant parameters affect-
ing its pre-processing LGC step—number of sharpening
iterations I, learning rate � , neighbors ks used in estimat-
ing the data density; and one affecting training—number
of training epochs E. We showed that E = 1000 is a good
preset for SDR-NNP, thus also for �-SDR-NNP. The other
three parameters affect the resulting learned projection in
several ways, such as changing the visual cluster separation
(undersegmentation, oversegmentation). Hence, SDR-NNP
is not easy-to-use, as it requires some amount of parameter
tuning experimentation. Moreover, every parameter change
implies retraining which takes minutes (see “Computational
Scalability”).

�-SDR-NNP largely solves this problem by adapting the
learning rate to the local cluster structure of the data, which
is estimated by K-means. This requires introducing a new
parameter, the number Km of K-means clusters used during
training (“-α-SDR-NNP”). We showed that �-SDR-NNP is
far less sensitive to changes of I, � , and ks , so these param-
eters can be simply set to default values; and is also insensi-
tive to setting Km , as shown in “Evaluation of α-SDR-NNP”.
Intuitively put, our new method allows the user to control
the desired final projection outcome at a higher and more
global level (that is, in terms of expected clusters Km ) than
the local controls that SDR-NNP required in terms of num-
ber of iterations I, learning rate � , and density-estimation
bandwidth ks . This is especially important, since such local
parameters can vary a lot over a given dataset, so there is
no way to determine good global defaults for them for the
entire dataset. In contrast, the expected number of clusters
Km is a much higher level parameter which does not depend
strongly on the local data structure, so, for a given dataset,
is a much easier-to-control setting. Given the above, our new
method can be seen as virtually parameter-free, thus easy
and effective to use.

Limitations: While inheriting the above-mentioned
desirable properties from NNP, ( �-)SDR-NNP also inherits
some of its limitations. Its OOS support cannot extend to
datasets of a completely different nature than those it was
trained on—arguably, a limitation that most machine learn-
ing methods have. Also, ( �-)SDR-NNP is only as good as the
baseline projection P that was used during training. Using a

SN Computer Science (2023) 4:244 	 Page 13 of 22  244

SN Computer Science

Table 6   Metrics for SDR-NNP learned from LMDS, PCA, and t-SNE, learning rates � , I = 10 iterations, E = 1000 epochs. NH values miss for
the Air Quality and Concrete datasets, since these are not labeled

Dataset Learning rate � LMDS PCA t-SNE

T C R NH T C R NH T C R NH

Air Quality 0.01 0.971 0.990 0.969 0.968 0.990 0.964 0.958 0.926 0.052
0.05 0.976 0.983 0.963 0.973 0.984 0.964 0.938 0.911 0.175
0.1 0.951 0.969 0.948 0.940 0.969 0.941 0.943 0.939 0.378
0.2 0.866 0.941 0.911 0.862 0.928 0.905 0.824 0.876 0.635

Concrete 0.01 0.959 0.983 0.731 0.950 0.979 0.721 0.994 0.988 0.486
0.05 0.932 0.957 0.601 0.929 0.953 0.601 0.947 0.929 0.219
0.1 0.870 0.933 0.578 0.889 0.935 0.583 0.913 0.918 0.057
0.2 0.858 0.920 0.540 0.859 0.921 0.542 0.857 0.900 0.223

Reuters 0.01 0.822 0.900 0.758 0.729 0.821 0.892 0.755 0.730 0.956 0.960 0.608 0.853
0.05 0.839 0.913 0.737 0.745 0.838 0.903 0.735 0.745 0.955 0.949 0.386 0.849
0.1 0.870 0.910 0.698 0.783 0.871 0.905 0.693 0.790 0.936 0.885 0.159 0.829
0.2 0.866 0.902 0.700 0.784 0.867 0.903 0.693 0.785 0.890 0.848 0.096 0.815

Spambase 0.01 0.755 0.911 0.527 0.860 0.756 0.915 0.523 0.852 0.958 0.942 0.383 0.905
0.05 0.775 0.893 0.415 0.840 0.787 0.894 0.426 0.858 0.851 0.874 0.261 0.874
0.1 0.712 0.843 0.380 0.832 0.704 0.839 0.367 0.828 0.769 0.848 0.341 0.863
0.2 0.604 0.667 0.265 0.760 0.606 0.671 0.263 0.764 0.635 0.676 0.317 0.802

Wisconsin 0.01 0.900 0.960 0.932 0.947 0.898 0.960 0.932 0.949 0.955 0.941 0.635 0.966
0.05 0.868 0.885 0.869 0.946 0.874 0.890 0.870 0.941 0.876 0.861 0.597 0.948
0.1 0.803 0.856 0.757 0.928 0.800 0.851 0.753 0.929 0.802 0.841 0.494 0.927
0.2 0.717 0.764 0.693 0.905 0.718 0.758 0.684 0.918 0.725 0.749 0.596 0.909

Wine 0.01 0.895 0.972 0.811 0.674 0.898 0.971 0.783 0.681 0.983 0.951 0.448 0.696
0.05 0.914 0.944 0.734 0.671 0.920 0.945 0.714 0.670 0.927 0.862 0.135 0.670
0.1 0.837 0.913 0.672 0.658 0.848 0.913 0.672 0.664 0.864 0.882 0.250 0.661
0.2 0.739 0.821 0.479 0.653 0.742 0.825 0.484 0.644 0.744 0.808 0.404 0.646

Fig. 5   Training epochs E effect:
SDR-NNP learned from LMDS
(a) and t-SNE (b) for varying E
values (columns) and datasets
(rows), fixed I = 10 , � = 0.1 .
Red column shows the training
projections P(D

s
)

	 SN Computer Science (2023) 4:244 244   Page 14 of 22

SN Computer Science

low-quality projection leads to ( �-)SDR-NNP learning, and
reproducing, that behavior.

Separately, SDR-NNP is prone to instability in the gen-
erated projection, which manifests itself as over- or under-
segmentation of the data into too many, respectively too
few, visual clusters, as a function of its parameter values.
As discussed above, our new method �-SDR-NNP largely
removes this problem. Still, �-SDR-NNP has its own limita-
tions. Its only parameter Km , the number of K-means clusters

(“-α-SDR-NNP”), can be set quite freely to values differing
as much as twice from the true number of clusters in the data
(see Fig. 12 and related text). Still, there can be datasets for
which the user has no idea, even within this error margin,
to what a good Km setting is. Exploring how �-SDR-NNP
behaves in those cases and, if necessary, refining it to be
even less sensitive on the Km setting, is for future work.

Applications: As our method is generic (C3), it can han-
dle high-dimensional datasets coming from any applica-
tion domain. A particular application domain where such

2.0=α
1.0=α

50.0=α
10.0=α

α=
0.
4

2.0=α
1.0=α

50.0=α
10.0=α

α=
0.
4

ks=15 ks=30 ks=50 ks=80 ks=100

P
N

N-
R

DS
α

P
N

N-
R

DS-

Fig. 6   SDR-NNP (top) vs �-SDR-NNP (bottom), Reuters dataset.
Fixed I = 8 iterations, varying number of neighbors k

s
 and learning

rate �

I=
1

I=
5

I=
8

I=
12

I=
20

α=0.01 α=0.05 α=0.1 α=0.2 α=0.4

SD
R
-N

N
P

α-
SD

R
-N

N
P

I=
1

I=
5

I=
8

I=
12

I=
20

Fig. 7   SDR-NNP (top) vs �-SDR-NNP (bottom), Reuters dataset.
Fixed k

s
= 50 neighbors, varying number of iterations I and learning

rate �

SN Computer Science (2023) 4:244 	 Page 15 of 22  244

SN Computer Science

projections are very useful is in engineering classification
models. More particularly, engineering classifiers for image
data is an attractive application area of �-SDR-NNP, since
the method can be easily enhanced to display the actual
images corresponding to the projected points. Thereby, users
can examine a projection, e.g., labeled by ground-truth or
inferred information, and get insights in why and where
misclassifications occur. Such scenarios involving using

projections have been presented in recent research on medi-
cal image classification [70–72] and cell imaging [72, 73].
�-SDR-NNP is especially attractive for such use-cases, since
these provide a known number of clusters Km in the data to
be detected, equal to the number of classes to be inferred. As
such, setting the single free parameter Km of our method is
simple. We are considering exploring how our method can
address such use-cases in future work.

I=
1

I=
5

I=
8

I=
12

I=
20

k
s
=15 k

s
=30 k

s
=50 k

s
=80 k

s
=100

SD
R
-N

N
P

α-
SD

R
-N

N
P

I=
1

I=
5

I=
8

I=
12

I=
20

Fig. 8   SDR-NNP (top) vs �-SDR-NNP (bottom), Reuters dataset.
Fixed � = 0.1 learning rate, varying number of iterations I and neigh-
bors k

s

2.0=α
1.0=α

50.0=α
10.0=α

α=
0.
4

2.0=α
1.0=α

50.0=α
10.0=α

α=
0.
4

ks=15 ks=30 ks=50 ks=80 ks=100

SD
R
-N

N
P

α-
SD

R
-N

N
P

Fig. 9   SDR-NNP (top) vs �-SDR-NNP (bottom), Wine dataset. Fixed
I = 8 iterations, varying number of neighbors k

s
 and learning rate �

	 SN Computer Science (2023) 4:244 244   Page 16 of 22

SN Computer Science

Conclusion

We have presented SDR-NNP and �-SDR-NNP, two new
methods for computing projections of high-dimensional
datasets for visual exploration. Our methods have several
desirable and complementary characteristics of two earlier
projection methods, namely NNP (speed, out-of-sample sup-
port, ability to accurately imitate a wide range of existing
projection techniques) and SDR (projecting complex data-
sets into visually well-separated clusters of similar samples).

SDR-NNP removes the main obstacle for practical usage
of SDR—its high computational time. �-SDR-NNP further
enhances SDR-NNP’s ease of use by removing the latter
method’s sensitivity to parameter setting—�-SDR-NNP
is essentially a parameter-free method. �-SDR-NNP also
increases the quality metrics of its resulting projections as
compared to SDR-NNP. We have demonstrated both meth-
ods on a range of datasets coming from different application
domains. In particular, we showed how SDR-NNP can bring

I=
1

I=
5

I=
8

I=
12

I=
20

α=0.01 α=0.05 α=0.1 α=0.2 α=0.4

SD
R
-N

N
P

α-
SD

R
-N

N
P

I=
1

I=
5

I=
8

I=
12

I=
20

Fig. 10   SDR-NNP (top) vs �-SDR-NNP (bottom), Wine dataset.
Fixed k

s
= 50 neighbors, varying number of iterations I and learning

rate �

I=
1

I=
5

I=
8

I=
12

I=
20

k
s
=15 k

s
=30 k

s
=50 k

s
=80 k

s
=100

SD
R
-N

N
P

α-
SD

R
-N

N
P

I=
1

I=
5

I=
8

I=
12

I=
20

Fig. 11   SDR-NNP (top) vs �-SDR-NNP (bottom), Wine dataset.
Fixed � = 0.1 learning rate, varying number of iterations I and neigh-
bors k

s

SN Computer Science (2023) 4:244 	 Page 17 of 22  244

SN Computer Science

Table 7   Quality metrics comparing SDR-NNP with �-SDR-NNP

Dataset Iterations I SDR-NNP �-SDR-NNP

T C R NH T C R NH

(a) Number of iterations I (average)
Wine 1 0.981 0.959 0.676 0.686 0.992 0.975 0.678 0.711
Wine 5 0.959 0.925 0.638 0.656 0.978 0.936 0.648 0.680
Wine 8 0.952 0.911 0.624 0.648 0.967 0.911 0.614 0.667
Wine 12 0.944 0.904 0.623 0.643 0.957 0.886 0.589 0.658
Wine 20 0.936 0.888 0.597 0.639 0.940 0.857 0.536 0.648
Reuters 1 0.967 0.963 0.614 0.855 0.967 0.963 0.619 0.856
Reuters 5 0.946 0.941 0.637 0.839 0.966 0.962 0.622 0.853
Reuters 8 0.927 0.921 0.637 0.823 0.964 0.960 0.625 0.851
Reuters 12 0.908 0.898 0.631 0.808 0.960 0.955 0.626 0.848
Reuters 20 0.881 0.864 0.617 0.788 0.952 0.943 0.635 0.841
(b) Number of iterations I (standard deviation)
Wine 1 0.021 0.030 0.018 0.040 0.003 0.007 0.015 0.014
Wine 5 0.035 0.051 0.071 0.039 0.019 0.052 0.057 0.031
Wine 8 0.037 0.055 0.086 0.037 0.027 0.069 0.079 0.034
Wine 12 0.038 0.054 0.072 0.035 0.035 0.079 0.103 0.036
Wine 20 0.039 0.060 0.098 0.029 0.043 0.083 0.118 0.036
Reuters 1 0.001 0.001 0.008 0.002 0.000 0.000 0.007 0.002
Reuters 5 0.034 0.036 0.027 0.026 0.002 0.002 0.015 0.003
Reuters 8 0.055 0.060 0.028 0.044 0.005 0.005 0.013 0.006
Reuters 12 0.066 0.075 0.027 0.054 0.010 0.012 0.017 0.009
Reuters 20 0.076 0.096 0.054 0.059 0.020 0.029 0.020 0.017
(c) Number of neighbors ks (average)
Wine 15 0.948 0.912 0.623 0.647 0.962 0.901 0.593 0.672
Wine 30 0.954 0.917 0.629 0.653 0.965 0.909 0.607 0.673
Wine 50 0.956 0.919 0.635 0.656 0.968 0.915 0.618 0.673
Wine 80 0.957 0.920 0.638 0.658 0.969 0.919 0.624 0.673
Wine 100 0.957 0.919 0.634 0.658 0.970 0.922 0.622 0.673
Reuters 15 0.923 0.913 0.623 0.820 0.962 0.956 0.626 0.850
Reuters 30 0.925 0.917 0.629 0.822 0.962 0.957 0.626 0.849
Reuters 50 0.926 0.917 0.625 0.823 0.962 0.956 0.623 0.850
Reuters 80 0.927 0.919 0.629 0.823 0.962 0.957 0.624 0.850
Reuters 100 0.928 0.922 0.630 0.824 0.962 0.957 0.628 0.850
(d) Number of neighbors ks (standard deviation)
Wine 15 0.044 0.060 0.091 0.043 0.040 0.086 0.122 0.038
Wine 30 0.038 0.057 0.079 0.040 0.036 0.080 0.098 0.038
Wine 50 0.036 0.056 0.077 0.040 0.032 0.074 0.087 0.039
Wine 80 0.035 0.053 0.071 0.038 0.030 0.071 0.086 0.039
Wine 100 0.035 0.055 0.073 0.038 0.030 0.069 0.080 0.039
Reuters 15 0.065 0.079 0.041 0.052 0.012 0.017 0.015 0.010
Reuters 30 0.062 0.072 0.035 0.049 0.011 0.016 0.016 0.010
Reuters 50 0.061 0.074 0.037 0.048 0.012 0.018 0.017 0.011
Reuters 80 0.060 0.069 0.025 0.048 0.011 0.015 0.015 0.011
Reuters 100 0.058 0.064 0.029 0.047 0.011 0.014 0.017 0.011

	 SN Computer Science (2023) 4:244 244   Page 18 of 22

SN Computer Science

Table 7   (continued)

Dataset LR SDR-NNP �-SDR-NNP

T C R NH T C R NH

(e) Learning rate � (average)
Wine 1 0.981 0.959 0.676 0.686 0.992 0.975 0.678 0.711
Wine 5 0.959 0.925 0.638 0.656 0.978 0.936 0.648 0.680
Wine 8 0.952 0.911 0.624 0.648 0.967 0.911 0.614 0.667
Wine 12 0.944 0.904 0.623 0.643 0.957 0.886 0.589 0.658
Wine 20 0.936 0.888 0.597 0.639 0.940 0.857 0.536 0.648
Reuters 1 0.967 0.963 0.614 0.855 0.967 0.963 0.619 0.856
Reuters 5 0.946 0.941 0.637 0.839 0.966 0.962 0.622 0.853
Reuters 8 0.927 0.921 0.637 0.823 0.964 0.960 0.625 0.851
Reuters 12 0.908 0.898 0.631 0.808 0.960 0.955 0.626 0.848
Reuters 20 0.881 0.864 0.617 0.788 0.952 0.943 0.635 0.841
(f) Learning rate � (standard deviation)
Wine 0.01 0.001 0.004 0.012 0.010 0.000 0.001 0.013 0.004
Wine 0.05 0.011 0.019 0.009 0.031 0.008 0.024 0.021 0.023
Wine 0.1 0.020 0.029 0.018 0.031 0.017 0.051 0.064 0.028
Wine 0.2 0.026 0.038 0.058 0.018 0.029 0.070 0.092 0.031
Wine 0.4 0.023 0.036 0.078 0.008 0.039 0.075 0.115 0.028
Reuters 0.01 0.001 0.000 0.009 0.002 0.001 0.000 0.007 0.001
Reuters 0.05 0.006 0.005 0.017 0.004 0.001 0.001 0.008 0.002
Reuters 0.1 0.027 0.027 0.024 0.021 0.002 0.002 0.018 0.003
Reuters 0.2 0.054 0.062 0.026 0.043 0.007 0.008 0.018 0.007
Reuters 0.4 0.070 0.087 0.055 0.056 0.019 0.027 0.018 0.015

Fig. 12   �-SDR-NNP for differ-
ent numbers of K-means clus-
ters K

m
 . Columns show results

when setting K
m
 to half, equal

to, and double the true number
of clusters (6 for Reuters and 7
for Wine)

Km = 6

Km = 7 Km = 14

Km = 12Km = 3

Km = 4

eni
W

sretue
R

SN Computer Science (2023) 4:244 	 Page 19 of 22  244

SN Computer Science

Fig. 13   MDS projection of
projections computed for all
experiments colored by method
(SDR-NNP: green; �-SDR-
NNP: purple), Reuters and
Wine datasets

Table 8   Time measurements for SDR and ( �-)SDR-NNP in seconds,
GALAH dataset. See also Fig. 14

Samples SDR (�-)SDR-
NNP infer-
ence

1000 0.220 0.108
2000 0.957 0.059
5000 14.799 0.092
10000 157.420 0.149
20000 1302.268 0.414
30000 4736.995 0.355
40000 11058.267 0.727

number of samples (x1000)
5 10 15 20 25 30 35 40

10-1

100

101

102

103

104

)elacs gol ,sdnoces(emit

SDR
SDR-NNP (train 10K + inference)
SDR-NNP (inference only)

Fig. 14   Performance of SDR vs SDR-NNP on the GALAH dataset
(time in log scale), 1K to 40K samples. SDR-NNP trained with 10K
samples for E = 1000 epochs. See also Table 14

Fig. 15   SDR-NNP of 66K samples learned from LMDS (top) and t-
SNE (bottom) for different numbers of training epochs E (four left-
most columns). SDR-NNP parameters are I = 10 iterations, and

� = 0.18 . Red column: training projection (10K samples). Rightmost
column: NNP trained with LMDS and t-SNE instead of SDR applied
to the same test data

	 SN Computer Science (2023) 4:244 244   Page 20 of 22

SN Computer Science

added value in the exploration of a large and recent astro-
nomical dataset leading to findings which were not achiev-
able by SDR or NNP alone.

Future work can target several directions. Our work
showed that it is possible to learn sharpening methods
for high-dimensional data, so it is interesting to apply our
techniques to other domains data sharpening is used, e.g.,
image segmentation, graph bundling, and data clustering and
simplification. For the projection use-case, refining �-SDR-
NNP’s network architecture to speed its training is of high

practical interest. Finally, deploying �-SDR-NNP as a main
tool for astronomers to analyze their million-sample datasets
is a goal we aim to pursue in the short term.

Author Contributions  Not applicable.

Funding  This work is supported by the DSSC Doctoral Training Pro-
gramme co-funded by the Marie Sklodowska-Curie COFUND project
(DSSC 754315), and FAPESP under Grant 2020/13275-1, Brazil. The
GALAH survey is based on observations made at the Australian Astro-
nomical Observatory, under programmes A/2013B/13, A/2014A/25,
A/2015A/19, A/2017A/18. We acknowledge the traditional owners of
the land on which the AAT stands, the Gamilaraay people, and pay
our respects to elders past and present. This work has made use of
data from the European Space Agency (ESA) mission Gaia (https://​
www.​cosmos.​esa.​int/​gaia), processed by the Gaia Data Processing
and Analysis Consortium (DPAC, https://​www.​cosmos.​esa.​int/​web/​
gaia/​dpac/​conso​rtium). Funding for the DPAC has been provided by
national institutions, in particular the institutions participating in the
Gaia Multilateral Agreement.

Declarations 

 Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

 Ethics approval  Not applicable.

 Consent to participate  Not applicable.

 Consent for publication  Not applicable.

 Availability of data and materials  Not applicable.

 Code availability  Our implementation, and all codes used in our exper-
iments, are publicly available at https://​github.​com/​young​jookim/​sdr.

References

	 1.	 Liu S, Maljovec D, Wang B, Bremer P-T, Pascucci V. Visualizing
high-dimensional data: advances in the past decade. IEEE TVCG.
2015;23(3):1249–68.

	 2.	 Nonato L, Aupetit M. Multidimensional projection for visual
analytics: Linking techniques with distortions, tasks, and layout

[M
g/
Fe

]

[Fe/H]

[C
u/
Fe

]

[Fe/H]

a)

c)b)

Fig. 16   Analysis of GALAH DR2 with SDR-NNP learned from
LMDS. (a) Labeling of clusters (classes 1–4) and outliers (class 5).
(b) Tinsley diagram and (c) copper abundance of stars vs their iron
abundance. Astronomers can infer from (b, c) that class 1 is mostly
thin-disk stars, class 2 is mostly metal-rich thick disk stars, classes 5
and 3 are normal thick disk stars, and class 4 is the Gaia Enceladus
(GES) in the Milky Way

Table 9   Metrics for SDR-NNP
learned from LMDS, PCA, and
t-SNE on the GALAH dataset
for train and test samples,
varying number of training
epochs E (‘early’ indicates the
early stopping heuristic)

Mode E LMDS PCA t-SNE

T C R T C R T C R

Train Early 0.802 0.877 0.676 0.787 0.853 0.668 0.789 0.870 0.638
300 0.703 0.790 0.629 0.697 0.778 0.617 0.694 0.770 0.496
1000 0.695 0.772 0.615 0.693 0.762 0.607 0.692 0.748 0.481
3000 0.692 0.756 0.600 0.693 0.756 0.601 0.691 0.734 0.447

Test Early 0.775 0.862 0.601 0.754 0.828 0.592 0.756 0.853 0.574
300 0.667 0.768 0.558 0.660 0.759 0.544 0.652 0.755 0.470
1000 0.661 0.749 0.547 0.658 0.746 0.539 0.642 0.734 0.449
3000 0.657 0.737 0.534 0.655 0.739 0.539 0.641 0.720 0.416

https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/web/gaia/dpac/consortium
https://www.cosmos.esa.int/web/gaia/dpac/consortium
https://github.com/youngjookim/sdr

SN Computer Science (2023) 4:244 	 Page 21 of 22  244

SN Computer Science

enrichment. IEEE TVCG. 2018. https://​doi.​org/​10.​1109/​TVCG.​
2018.​28467​35.

	 3.	 Espadoto M, Martins R, Kerren A, Hirata N, Telea A. Toward
a quantitative survey of dimension reduction techniques. IEEE
TVCG. 2019;27(3):2153–73.

	 4.	 Maaten L, Hinton G. Visualizing data using t-SNE. JMLR.
2008;9:2579–605.

	 5.	 McInnes L, Healy J. UMAP: uniform manifold approximation
and projection for dimension reduction. arXiv:​1802.​03426​v1
[stat.ML] 2018.

	 6.	 Behrisch M, Blumenschein M, Kim NW, Shao L, El-Assady M,
Fuchs J, Seebacher D, Diehl A, Brandes U, Pfister H, Schreck T,
Weiskopf D, Keim DA. Quality metrics for information visuali-
zation. Comp Graph Forum. 2018;37(3):625–62.

	 7.	 Kim Y, Telea A, Trager S, Roerdink JBTM. Visual cluster sepa-
ration using high-dimensional sharpened dimensionality reduc-
tion. Inf Vis. 2022;21(3):197–219.

	 8.	 Comaniciu D, Meer P. Mean shift: a robust approach toward fea-
ture space analysis. IEEE TPAMI. 2002;24(5):603–19.

	 9.	 Kim Y, Espadoto M, Trager S, Roerdink J, Telea A. SDR-NNP:
Sharpened dimensionality reduction with neural networks. In:
Proc. IVAPP 2022. SciTePress

	10.	 Espadoto M, Hirata N, Telea A. Deep learning multidimensional
projections. Inform Visual. 2020;9(3):247–69.

	11.	 Hoffman P, Grinstein G. A survey of visualizations for high-
dimensional data mining. Inform Vis Data Mining Knowl Discov.
2002;2:47–82.

	12.	 Maaten L, Postma E. Dimensionality reduction: a comparative
review. Technical report, Tilburg Univ. 2009

	13.	 Engel D, Hattenberger L, Hamann B. A survey of dimension
reduction methods for high-dimensional data analysis and visu-
alization. In: Proc. IRTG Workshop, 2012;vol. 27, pp. 135–149.
Schloss Dagstuhl

	14.	 Sorzano C, Vargas J, Pascual-Montano A. A survey of dimension-
ality reduction techniques. arXiv:​1403.​2877 [stat.ML] 2014.

	15.	 Cunningham J, Ghahramani Z. Linear dimensionality reduction:
survey, insights, and generalizations. JMLR. 2015;16:2859–900.

	16.	 Xie H, Li J, Xue H. A survey of dimensionality reduction tech-
niques based on random projection. arXiv:​1706.​04371 [cs.LG]
2017

	17.	 Venna J, Kaski S. Visualizing gene interaction graphs with local
multidimensional scaling. In: Proc. ESANN, 2006;pp. 557–562.

	18.	 Paulovich FV, Nonato LG, Minghim R, Levkowitz H. Least square
projection: a fast high-precision multidimensional projection tech-
nique and its application to document mapping. IEEE TVCG.
2008;14(3):564–75.

	19.	 Rauber PE, Falcão AX, Telea AC. Projections as visual aids for
classification system design. Inform Visual. 2017;17(4):282–305.

	20.	 Joia P, Coimbra D, Cuminato JA, Paulovich FV, Nonato
LG. Local affine multidimensional projection. IEEE TVCG.
2011;17(12):2563–71.

	21.	 LeCun Y, Cortes C. MNIST Handwritten Digits Dataset. http://​
yann.​lecun.​com/​exdb/​mnist 2010.

	22.	 Jolliffe IT. Principal component analysis and factor analysis. In:
Principal component analysis, 1986;pp. 115–128. Springer, Berlin

	23.	 Torgerson W. Theory and methods of scaling. Boca Raton: Wiley;
1958.

	24.	 De Silva V, Tenenbaum JB. Sparse multidimensional scaling using
landmark points. Technical report, Stanford University 2004.

	25.	 Tenenbaum JB, Silva VD, Langford JC. A global geometric
framework for nonlinear dimensionality reduction. Science.
2000;290(5500):2319–23.

	26.	 Roweis ST, Saul LLK. Nonlinear dimensionality reduction by
locally linear embedding. Science. 2000;290(5500):2323–6.

	27.	 Donoho DL, Grimes C. Hessian eigenmaps: locally linear
embedding techniques for high-dimensional data. PNAS.
2003;100(10):5591–6.

	28.	 Zhang Z, Zha H. Principal manifolds and nonlinear dimensional-
ity reduction via tangent space alignment. SIAM J Sci Comput.
2004;26(1):313–38.

	29.	 Zhang Z, Wang J. MLLE: Modified locally linear embedding
using multiple weights. In: Proc. NIPS, 2007;pp. 1593–1600.

	30.	 Paulovich FV, Minghim R. Text map explorer: a tool to create and
explore document maps. In: Proc. IEEE Information Visualisation,
2006;pp. 245–251.

	31.	 Wattenberg M. How to use t-SNE effectively. https://​disti​ll.​pub/​
2016/​misre​ad-​tsne 2016.

	32.	 Maaten L. Accelerating t-SNE using tree-based algorithms.
JMLR. 2014;15:3221–45.

	33.	 Pezzotti N, Höllt T, Lelieveldt B, Eisemann E, Vilanova A.
Hierarchical stochastic neighbor embedding. Comp Graph
Forum. 2016;35(3):21–30.

	34.	 Pezzotti N, Lelieveldt B, Maaten L.v.d, Höllt T, Eisemann E,
Vilanova A. Approximated and user steerable t-SNE for pro-
gressive visual analytics. IEEE TVCG 2017:23, 1739–1752.

	35.	 Pezzotti N, Thijssen J, Mordvintsev A, Hollt T, Lew B.v,
Lelieveldt B, Eisemann E, Vilanova A. GPGPU linear complex-
ity t-SNE optimization. IEEE TVCG 2020;26(1):1172–1181.

	36.	 Chan D, Rao R, Huang F, Canny J. T-SNE-CUDA: GPU-acceler-
ated t-SNE and its applications to modern data. In: Proc. SBAC-
PAD, 2018;pp. 330–338.

	37.	 Hinton GE, Salakhutdinov RR. Reducing the dimensionality of
data with neural networks. Science. 2006;313(5786):504–7.

	38.	 Kingma DP, Welling M. Auto-encoding variational bayes. CoRR
abs/1312.6114 2013. eprint: arXiv:​1312.​6114

	39.	 Kohonen T. Self-organizing maps. Berlin: Springer; 1997.
	40.	 Becker M, Lippel J, Stuhlsatz A, Zielke T. Robust dimensionality

reduction for data visualization with deep neural networks. Graph
Models. 2020;108: 101060.

	41.	 Fisher RA. The use of multiple measurements in taxonomic prob-
lems. Ann Eugen. 1936;7(2):179–88.

	42.	 Espadoto M, Hirata N, Telea A. Self-supervised dimensionality
reduction with neural networks and pseudo-labeling. In: Proc.
IVAPP 2021.

	43.	 Xu R, Wunsch D. Survey of clustering algorithms. IEEE Trans
Neural Networks. 2005;16(3):645–78.

	44.	 Berkhin P. A survey of clustering data mining techniques. In:
Grouping multidimensional data. Berlin: Springer; 2006. p.
25–71.

	45.	 Fukunaga K, Hostetler L. The estimation of the gradient of a den-
sity function, with applications in pattern recognition. IEEE Trans
Inf Theor. 1975;21(1):32–40.

	46.	 Cheng Y. Mean shift, mode seeking, and clustering. IEEE TPAMI.
1995;17(8):790–9.

	47.	 Hurter C, Ersoy O, Telea A. Graph bundling by kernel density
estimation. Comp Graph Forum 2012;31(3):865–874. Wiley
Online Library.

	48.	 Epanechnikov V. Non-parametric estimation of a multivariate
probability density. Theor Probab Appl+ 14 1969

	49.	 Agarap A.F. Deep Learning using Rectified Linear Units (ReLU).
arXiv:​1803.​08375 [cs.NE] 2018

	50.	 He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Sur-
passing human-level performance on ImageNet classification. In:
Proc. ICCV, 2015;pp. 1026–1034.

	51.	 Kingma D.P, Ba J. Adam: A method for stochastic optimization.
arXiv:​1412.​6980 2014.

	52.	 van der Zwan M, Codreanu V, Telea A. CUBu: Universal real-time
bundling for large graphs. IEEE TVCG. 2016;22(12):2550–63.

https://doi.org/10.1109/TVCG.2018.2846735
https://doi.org/10.1109/TVCG.2018.2846735
http://arxiv.org/abs/1802.03426v1
http://arxiv.org/abs/1403.2877
http://arxiv.org/abs/1706.04371
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
https://distill.pub/2016/misread-tsne
https://distill.pub/2016/misread-tsne
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1412.6980

	 SN Computer Science (2023) 4:244 244   Page 22 of 22

SN Computer Science

	53.	 Martins RM, Minghim R, Telea AC, et al. Explaining neighbor-
hood preservation for multidimensional projections. In: Proc.
CGVC, 2015;pp. 7–14.

	54.	 Vito S.D, Massera E, Piga M, Martinotto L, Francia GD. On field
calibration of an electronic nose for benzene estimation in an
urban pollution monitoring scenario. Sensors and Actuators B:
Chemical 2008;129(2), 750–757. https://​archi​ve.​ics.​uci.​edu/​ml/​
datas​ets/​Air+​Quali​ty.

	55.	 Yeh I-C. Modeling of strength of high-performance con-
crete using artificial neural networks. Cem Concr Res.
1998;28(12):1797–808.

	56.	 Thoma M. The Reuters Dataset. https://​martin-​thoma.​com/​nlp-​
reute​rs 2017.

	57.	 Salton G, McGill MJ. Introduction to Modern Information
Retrieval, 1986. McGraw-Hill.

	58.	 Hopkins M, Reeber E, Forman G, Suermondt J. Spambase dataset.
Hewlett-Packard Labs 1999.

	59.	 Street N, Wolberg W, Mangasarian O. Nuclear feature extraction
for breast tumor diagnosis. In: Biomedical Image Processing and
Biomedical Visualization, vol. 1905, 2014;pp. 861–870 1993.

	60.	 Cortez P, Cerdeira A, Almeida F, Matos T, Reis J. Modeling wine
preferences by data mining from physicochemical properties.
Decis Support Sys. 2009;47(4):547–53.

	61.	 Guennebaud G, Jacob B, et al. Eigen v3. http://​eigen.​tuxfa​mily.​
org 2010.

	62.	 Blanco J.L, Rai P.K. nanoflann: a C++ header-only fork of
FLANN, a library for Nearest Neighbor (NN) with KD-trees.
https://​github.​com/​jlbla​ncoc/​nanof​lann 2014.

	63.	 Lisitsyn S, Widmer C, Garcia FJI. Tapkee: An efficient dimension
reduction library. JMLR. 2013;14:2355–9.

	64.	 Chollet F, et al.: Keras. https://​keras.​io 2015.
	65.	 The Authors: �-SDR-NNP implementation and results. https://​

github.​com/​young​jookim/​sdr (2021).
	66.	 Buder et al. S. The GALAH Survey: Second data release. Mon R

R Astron Soc 2018478.

	67.	 Collaboration Gaia. The Gaia mission. Astron Astrophys.
2016;595:A1.

	68.	 Collaboration Gaia. Gaia Data Release 2-Summary of the contents
and survey properties. Astron Astrophys. 2018;616:A1.

	69.	 Tinsley B. Evolution of the stars and gas in galaxies. Fundam
Cosm Phys. 1980;5:287–388.

	70.	 Rahaman M, Li C, Yao Y, Kulwa F, Rahman MA, Wang Q, Qi
S, Kong F, Zhu X, Zhao X. Identification of COVID-19 sam-
ples from chest X-ray images using deep learning: A com-
parison of transfer learning approaches. J Xray Sci Technol.
2020;28(5):821–39.

	71.	 Chen H, Li C, Wang G, Li X, Rahaman M, Sun H, Hu W, Li Y,
Liu W, Sun C, Ai S, Grzegorzek M. GasHis-transformer: A multi-
scale visual transformer approach for gastric histopathological
image detection. Pattern Recogn. 2022;130: 108827.

	72.	 Liu W, Li C, Xu N, Jiang T, Rahaman M, Sun H, Wu X, Hu W,
Chen H, Sun C, Yao Y, Grzegorzek M. CVM-Cervix: A hybrid
cervical Pap-smear image classification framework using CNN,
visual transformer and multilayer perceptron. Pattern Recogn.
2022;130: 108829.

	73.	 Zhang J, Li C, Kosov S, Grzegorzek M, Shirahamad K, Jiang T,
Sun C, Li Z, Li H. LCU-Net: a novel low-cost U-Net for envi-
ronmental microorganism image segmentation. Pattern Recogn.
2021;115: 107885.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://archive.ics.uci.edu/ml/datasets/Air+Quality
https://archive.ics.uci.edu/ml/datasets/Air+Quality
https://martin-thoma.com/nlp-reuters
https://martin-thoma.com/nlp-reuters
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://github.com/jlblancoc/nanoflann
https://keras.io
https://github.com/youngjookim/sdr
https://github.com/youngjookim/sdr

	Stabilizing and Simplifying Sharpened Dimensionality Reduction Using Deep Learning
	Abstract
	Introduction
	Background
	SDR-NNP and α-SDR-NNP Methods
	Sharpened Dimensionality Reduction
	SDR-NNP
	α-SDR-NNP

	Results
	Evaluation of SDR-NNP
	Evaluation of α-SDR-NNP
	Computational Scalability
	Case Study: Astronomical Datasets

	Discussion
	Conclusion
	References

