
Improving Self-Supervised Dimensionality Reduction:
Exploring Hyperparameters and Pseudo-labeling

Strategies

Artur André A. M. Oliveira1[0000−0002−3606−1687], Mateus
Espadoto1[0000−0002−1922−4309]

, Roberto Hirata Jr.1[0000−0003−3861−7260], Nina S. T. Hirata1[0000−0001−9722−5764], and
Alexandru C. Telea2[0000−0003−0750−0502]

1 Institute of Mathematics and Statistics, University of São Paulo, Brazil
2 Department of Information and Computing Sciences, Utrecht University, The Netherlands

arturao@ime.usp.br, mespadot@ime.usp.br, hirata@ime.usp.br, nina@ime.usp.br,
a.c.telea@uu.nl

Abstract. Dimensionality reduction (DR) is an essential tool for the visualization
of high-dimensional data. The recently proposed Self-Supervised Network Pro-
jection (SSNP) method addresses DR with a number of attractive features, such
as high computational scalability, genericity, stability and out-of-sample support,
computation of an inverse mapping, and the ability of data clustering. Yet, SSNP
has an involved computational pipeline using self-supervision based on labels
produced by clustering methods and two separate deep learning networks with
multiple hyperparameters. In this paper we explore the SSNP method in detail
by studying its hyperparameter space and pseudo-labeling strategies. We show
how these affect SSNP’s quality and how to set them to optimal values based on
extensive evaluations involving multiple datasets, DR methods, and clustering
algorithms.

Keywords: Dimensionality Reduction · Machine Learning · Deep Learning ·
Neural Networks · Autoencoders

1 INTRODUCTION

Visualization of high-dimensional data to find patterns, trends, and overall understand
the data structure has become an essential ingredient of the data scientist’s toolkit [24,29].
Within the palette of such visualization methods, dimensionality reduction (DR) tech-
niques, also called projections, have gained an established position due to their high
scalability both in the number of samples and number of dimensions thereof. In the last
decades, tens of DR techniques have emerged [38,12], with PCA [22], t-SNE [33], and
UMAP [36] having become particularly popular.

Neural-network-based techniques have been used to support DR, early examples
of such approaches being self-organizing maps [26] and autoencoders [19]. More re-
cently, the NNP technique [10] was proposed to mimic any DR technique. In parallel,
the ReNDA method [3] was proposed to improve the projection quality offered by
autoencoders.

2 A. A. A. M. Oliveira et al.

Deep learning based DR methods are very fast, simple to implement, generically
work for any type of quantitative high-dimensional data, are parametric, thus stable to
small-scale data variations and offering out-of-sample capability, and – in the case of
autoencoders – also provide the inverse mapping from the low-dimensional projection
space to the high-dimensional data space. However, such methods also have some
limitations. Such methods cannot typically offer the same projection quality, measured
e.g. in terms of neighborhood preservation or cluster delineation, as classical methods
like t-SNE and UMAP [10,37,9]. Inverse projection typically requires training a separate
network [13]. NNP-class methods offer a higher quality than autoencoders, but require
supervision in terms of using a classical DR method to project a subset of the data [10].

Recently, the Self-Supervised Neural Projection (SSNP [11]) method was proposed
to alleviate the above limitations of deep learned projections. SSNP uses a single neural
network trained with two objectives – reconstructing the projected data (as an autoen-
coder does) and classifying the same data (based on pseudo-labels created by a clustering
algorithm). In more detail, SSNP aims to provide the following characteristics:

Quality (C1): Better cluster separation than standard autoencoders, and close to state-
of-the-art DR methods, measured by well-known metrics in DR literature;

Scalability (C2): Linear complexity in the number of samples and dimensions, allowing
the projection of datasets of a million samples and hundreds of dimensions in a few
seconds on consumer-grade GPU platforms;

Ease of use (C3): Minimal or no hyperparameter tuning required;

Genericity (C4): Projects any dataset whose samples are real-valued vectors;

Stability and out-of-sample support (C5): The trained SSNP model can project new
samples along existing ones in a parametric fashion;

Inverse mapping (C6): Ability to infer the high-dimensional point corresponding to a
low-dimensional point in the projection space;

Clustering (C7): Ability to label (cluster) unseen data. This feature of SSNP also sup-
ports requirement C1: Intuitively, clustering aggregates low-level distance information
between sample points to a higher level, telling how groups of samples relate to each
other. Next, this information is used by SSNP to produce projections which preserve
such data clusters well in the low dimensional space.

In our original paper [11], we show how SSNP achieves the above requirements
by evaluating it on four synthetic and four real-world datasets, using two clustering
algorithms to produce pseudo-labels, and compare its results with four existing DR
techniques. However, this leaves the ‘design space’ of SSNP insufficiently explored.
Similarly to [9], where the authors explored in detail the design space of NNP [10],
in this paper we aim to provide more insights on how SSNP’s results depend on its
technical components and their hyperparameter settings. For this, we extend the eval-
uation in [11] by considering two additional projection techniques (MDS and Isomap)
and four additional clustering algorithms (affinity propagation, DBSCAN, Gaussian
mixture models, and spectral clustering). Separately, we study how SSNP’s performance
is influenced by the setting of the hyperparameters of both the clustering algorithms
and the underlying neural network. All in all, our extended evaluation proves that SSNP

Improving Self-Supervised Dimensionality Reduction 3

indeed complies well with requirements C1-C7, being a serious contender in the class of
deep-learning-based DR techniques.

We structure this chapter as follows: Section 2 introduces notations and discusses
related work. Section 3 details the SSNP method. Section 4 describes our experimental
setup. Section 5 presents the results of SSNP, including the additional experiments
outlined above. Section 6 discusses the obtained findings. Section 7 concludes the paper.

2 BACKGROUND

Notations: Let x = (x1, . . . ,xn), xi ∈ R,1≤ i≤ n be a n-dimensional (nD) sample (also
called a data point or observation). Let D = {xi}, 1 ≤ i ≤ N be a dataset of N such
samples, e.g., a table with N rows (samples) and n columns (dimensions). All datasets
D used in this paper have class labels. Let C be the number of classes (or labels) in a
dataset D. A DR, or projection, technique is a function

P : Rn→ Rq, (1)

where q� n, and typically q = 2. The projection p = P(x) of a sample x ∈ D is a point
p ∈ Rq. Projecting an entire dataset D yields a q-dimensional scatterplot, denoted next
as P(D). The inverse of P, denoted x = P−1(p), maps a q-dimensional point p to the
high-dimensional space Rn, so that, ideally, P(x) = p, or in practice, P(x) is close to p.

Dimensionality reduction: Many DR methods have been proposed in the last
decades [20,34,8,48,29,5,56,38,12]. We next outline how a few representative ones
comply with the requirements mentioned in Sec. 1, supporting our point that no DR
method fully covers all those requirements. For further evidence for this statement, we
refer to the above mentioned surveys.

Principal Component Analysis [22] (PCA) is very popular due to its simplicity,
speed (C2), stability and out-of-sample (OOS) support (C5), and ease of use (C3) and
interpretation. PCA is also used as pre-processing step for other DR techniques that
require not-too-high-dimensional data [38]. Yet, due to its linear and global nature, PCA
lacks on quality (C1), especially for data of high intrinsic dimensionality.

Methods of the Manifold Learning family (MDS [51], Isomap [49], and LLE [45] and
its variations [7,58,57]) aim to map to 2D the high-dimensional manifold on which data
lives. Such methods generally yield higher quality (C1) than PCA. Yet, such methods
can be hard to tune (C3), do not have OOS capability (C5), do not work well for data
that is not restricted to a 2D manifold, and generally scale poorly (C2) with dataset size.

Force-directed methods (LAMP [21] and LSP [40]) can yield reasonably high visual
quality (C1), good scalability (C2), and are simple to use (C3). However, they generally
cannot do OOS (C5). For LAMP, a related inverse projection (C6) technique iLAMP [1]
exists. Yet, LAMP and iLAMP are two different algorithms. Clustering-based methods,
such as PBC [39], share many characteristics of force-directed methods, such as good
quality (C1) and lack of OOS (C5).

SNE (Stochastic Neighborhood Embedding) methods, of which t-SNE [33] is the
most popular, have the key ability to visually segregate similar samples, thus being
very good for cluster analysis. While having high visual quality (C1), t-SNE has a high

4 A. A. A. M. Oliveira et al.

complexity of O(N2) in sample count (C2), is very sensitive to small data changes (C5),
is hard to tune (C3) [54], and has no OOS capability (C5). Tree-accelerated t-SNE [32],
hierarchical SNE [42], approximated t-SNE [43], and various GPU accelerations of t-
SNE [44,4] improve computation time (C2). Yet, these methods require quite complex
algorithms, and still largely suffer from the aforementioned sensitivity, tuning, and
OOS issues. Uniform Manifold Approximation and Projection (UMAP) [36] generates
projections with comparable quality to t-SNE (C1) but is faster (C2) and has OOS (C5).
Yet, UMAP shares some disadvantages with t-SNE, namely the sensitivity to small data
changes (C5) and parameter tuning difficulty (C3).

Deep learning: Autoencoders (AE) [19,25] create a low-dimensional data representation
in their bottleneck layers by training a neural network to reproduce its high-dimensional
inputs on its outputs. They produce results of comparable quality (C1) to PCA. However,
they are easy to set up, train, and use (C3), are easily parallelizable (C2), and have OOS
(C5) and inverse mapping (C6) abilities.

ReNDA [3] is a deep learning approach that uses two neural networks, improving on
earlier work from the same authors. One network implements a nonlinear generalization
of Fisher’s Linear Discriminant Analysis [15]; the other network is an autoencoder used
as a regularizer. ReNDA scores well on quality (C1) and has OOS (C5). However, it
requires pre-training of each individual network and has low scalability (C2).

Neural Network Projections (NNP) [10] select a training subset Ds ⊂ D to project by
any user-chosen DR method to create a so-called training projection P(Ds)⊂R2. Next, a
neural network is trained to approximate P(Ds) having Ds as input. The trained network
then projects unseen data by means of 2-dimensional non-linear regression. NNP is
very fast (C2), simple to use (C3), and stable and with OOS ability (C5). However, the
projection quality (C1) is lower than the learned projection. The NNInv technique [13],
proposed by the same authors as NNP, adds inverse projection ability (C6). However,
this requires setting up, training, and using a separate network.

Table 1 summarizes how the above DR techniques fare with respect to each charac-
teristic of interest. The last row highlights SSNP which we describe separately in Sec. 3.

Table 1: Summary of DR techniques and their characteristics. Names in italic are
techniques we compare with SSNP.

Characteristic
Technique Quality Scalability Ease of use Genericity Out-of-sample Inverse mapping Clustering

PCA low high high high yes yes no
MDS mid low low low no no no

Isomap mid low low low no no no
LLE mid low low low no no no

LAMP mid mid mid high no no no
LSP mid mid mid high no no no

t-SNE high low low high no no no
UMAP high high low high yes no no

Autoencoder low high high low yes yes no
ReNDA mid low low mid yes no no

NNP high high high high yes no no
SSNP high high high high yes yes yes

Improving Self-Supervised Dimensionality Reduction 5

Clustering: As for DR, clustering is a field that goes back decades, with many techniques
proposed over the years. Despite using different approaches, all techniques use some
form of similarity measure to determine whether a sample belongs to a cluster or not.
Centroid-based techniques, such as K-means [30], compute cluster centers and assign
cluster membership based on closeness to a center. Connectivity-based techniques, such
as Agglomerative clustering [23], group samples based their relative distances rather than
distances to cluster centers. Distribution-based techniques, such as Gaussian Mixture
Models [6], fit Gaussian distributions to the dataset and then assign samples to each
distribution. Density-based techniques, such as DBSCAN [14], define clusters as dense
areas in the data space. More recent techniques use more specialized approaches, such
as Affinity Propagation [16], which uses message passing between samples, and Spectral
Clustering [47], which uses the eigenvalues of the data similarity matrix to reduce the
dimensionality of the data to be clustered.

3 SSNP TECHNIQUE

As stated in Sec. 2, autoencoders have desirable DR properties (simplicity, speed, OOS,
and inverse mapping abilities), but create projections of lower quality than, e.g., t-SNE
and UMAP. A likely cause for this is that autoencoders do not use neighborhood infor-
mation during training, while t-SNE and UMAP (obviously) do that. Hence, we propose
to create an autoencoder architecture with a dual optimization target that explicitly uses
neighborhood information. First, we have a reconstruction target, as in standard autoen-
coders; next, we use a classification target based on labels associated with the samples.
These can be “true” ground-truth labels if available for a given dataset. If not, these
are pseudo-labels created by running a clustering algorithm on the input dataset. The
key idea behind this is that (pseudo)labels are a compact and high-level way to encode
neighborhood information, i.e., same-label data are more similar than different-label
data. Since classifiers learn a representation that separates input data based on labels,
adding an extra classifier target to an autoencoder learns how to project data with better
cluster separation than standard autoencoders. We call our technique Self-Supervised
Neural Projection (SSNP).

SSNP first takes a training set Dtr ⊂ D and assigns to it pseudo-labels Ytr ∈ N by
using some clustering technique. We then take samples (x ∈Dtr,y ∈Ytr) to train a neural
network with a reconstruction and a classification function, added to form a joint loss.
This network (Fig. 1a) contains a two-unit bottleneck layer, same as an autoencoder,
used to generate the 2D projection when in inference mode. After training, we ‘split’ the
layers of the network to create three new networks for inference (Fig. 1b): a projector
NP(x), an inverse projector NI(p), and a classifier NC(x), which mimics the clustering
algorithm used to create Ytr. The entire training-and-inference way of working of SSNP
is summarized in Figure 2.

4 EXPERIMENTAL SETUP

In this section we detail the experimental setup we used to evaluate SSNP’s performance.
The obtained results are discussed next in Sec. 5.

6 A. A. A. M. Oliveira et al.

Encoder layers

Activation: ReLU
Init: Glorot Uniform
Bias: constant 0.0001

Embedding layer
Activation: Linear
Init: Glorot Uniform
Bias: constant 0.0001
L2: 0.5

Decoder layers

Activation: ReLU
Init: Glorot Uniform
Bias: constant 0.0001

Dense layer: 512 units

Input: n-dimensional

Dense layer: 128 units

Dense layer: 32 units

Dense layer: 2 units

Dense layer: 512 units

Dense layer: 128 units

Dense layer: 32 units

Classifier output:
k classes

Softmax activation
Categorical cross entropy loss

Reconstruction output:
n-dimensional

Sigmoid activation
Binary cross entropy loss

Direct
Projection

N
P

Inverse
Projection

N
I

Clustering
N

C

(a) Training

Dense layer: 512 units

Input: n-dimensional

Dense layer: 128 units

Dense layer: 32 units

Output: 2-dimensional

Projection
Network

N
P

Input: 2-dimensional

Dense layer: 512 units

Dense layer: 128 units

Dense layer: 32 units
Inverse

Mapping
Network

N
I

Output: n-dimensional

Dense layer: 512 units

Input: n-dimensional

Dense layer: 128 units

Dense layer: 32 units

Dense layer: 2 units

Dense layer: 512 units

Dense layer: 128 units

Dense layer: 32 units

Clustering
Network

N
C

Output: k classes

(b) Inference

Fig. 1: SSNP network architectures used during training (a) and inference (b).

training set Dtr

clustering algorithm

labels Ytr

trained

network N

training set Dtr

labels Ytr

trained

network N

projector NP

inverse projector NI

classifier NC

dataset D NP

NI

NC

scatterplot P(D)

dataset D

scatterplot P(D) dataset D

labels Y

Fig. 2: SSNP training-and-inference pipeline.

4.1 Datasets

We first evaluate SSNP on synthetic datasets consisting of blobs sampled from a Gaussian
distribution of different dimensionalities (100 and 700), number of clusters (5 and 10),
and standard deviation σ, yielding datasets with cluster separation varying from very
sharp to fuzzy clusters. All synthetic datasets have 5K samples. Next, we evaluate SSNP
on four public real-world datasets that are high-dimensional, reasonably large (thousands

Improving Self-Supervised Dimensionality Reduction 7

of samples), and have a non-trivial data structure (same datasets as used in the original
SSNP paper [11]):

MNIST [28]: 70K samples of handwritten digits from 0 to 9, rendered as 28x28-pixel
gray scale images, flattened to 784-element vectors;

Fashion MNIST [55]: 70K samples of 10 types of pieces of clothing, rendered as
28x28-pixel gray scale images, flattened to 784-element vectors;

Human Activity Recognition (HAR) [2]: 10299 samples from 30 subjects performing
activities of daily living used for human activity recognition grouped in 6 classes and
described with 561 dimensions.

Reuters Newswire Dataset [50]: 8432 samples of news report documents, from which
5000 attributes are extracted using TF-IDF [46], a standard method in text processing.

All datasets had their attributes rescaled to the range [0,1], to conform with the
sigmoid activation function used by the reconstruction layer (see Fig. 1a).

4.2 Projection Quality Metrics

We measure projection quality by four metrics widely used in the projection literature
(see Tab. 2 for their definitions). All metrics range in [0,1] with 0 indicating poorest, and
1 indicating best, values:

Table 2: Projection quality metrics used in evaluating SSNP
Metric Definition
Trustworthiness (T) 1− 2

NK(2n−3K−1) ∑
N
i=1 ∑ j∈U (K)

i
(r(i, j)−K)

Continuity (C) 1− 2
NK(2n−3K−1) ∑

N
i=1 ∑ j∈V (K)

i
(r̂(i, j)−K)

Neighborhood hit (NH) 1
N ∑y∈P(D)

yl
k

yk

Shepard diagram correlation (R) Spearman’s ρ of (‖xi−x j‖,‖P(xi)−P(x j)‖),1≤ i≤ N, i 6= j

Trustworthiness T [53] is the fraction of close points in D that are also close in P(D).
T tells how much one can trust that local patterns in a projection, e.g. clusters, represent
actual data patterns. In the definition (Tab. 2), U (K)

i is the set of points that are among
the K nearest neighbors of point i in the 2D space but not among the K nearest neighbors
of point i in Rn; and r(i, j) is the rank of the 2D point j in the ordered-set of nearest
neighbors of i in 2D. We choose K = 7 following [34,35];

Continuity C [53] is the fraction of close points in P(D) that are also close in D. In the
definition (Tab. 2), V (K)

i is the set of points that are among the K nearest neighbors of
point i in Rn but not among the K nearest neighbors in 2D; and r̂(i, j) is the rank of the
Rn point j in the ordered set of nearest neighbors of i in Rn. As for T , we use K = 7;

Neighborhood hit NH [40] measures how well-separable labeled data is in a projection
P(D), in a rotation-invariant fashion, from perfect separation (NH = 1) to no separation
(NH = 0). NH is the number yl

K of the K nearest neighbors of a point y ∈ P(D), denoted
by yK , that have the same label as y, averaged over P(D). In this paper, we use K = 3;

8 A. A. A. M. Oliveira et al.

Shepard diagram correlation R [21]: The Shepard diagram is a scatter plot of the
pairwise distances between all points in P(D) vs the corresponding distances in D. The
closer the plot is to the main diagonal, the better overall distance preservation is. Plot
areas below, respectively above, the diagonal show distance ranges for which false
neighbors, respectively missing neighbors, occur. We measure how close a Shepard
diagram is to the diagonal by computing its Spearman rank correlation R. A value of
R = 1 indicates a perfect (positive) correlation of distances.

4.3 Dimensionality Reduction Techniques Compared Against

We compared SSNP against six DR techniques, namely t-SNE, UMAP, MDS, Isomap,
autoencoders (AE), and NNP (see also Tab. 1). We selected these techniques based on
popularity (t-SNE, UMAP, MDS, Isomap) or on similar operation (AE and NNP are
also deep learning based, like SSNP) and also on having desirable properties to compare
against. For instance, t-SNE and UMAP are known to produce strong visual cluster
separation by evaluating local neighborhoods. MDS, on the other hand, tries to preserve
global distances between samples. Isomap can be seen as an extension of MDS that uses
local neighborhood information to infer geodesic distances. AE produce results similar
to PCA, which preserves global distances. Finally, NNP does not have specific built-in
heuristics but rather aims to mimic and accelerate other DR techniques. For all these DR
techniques, we used default values for their hyperparameters.

4.4 Clustering Techniques for Pseudo-labeling

In addition to using ground-truth labels in SSNP, we also used six clustering algorithms
to generate the pseudo-labels for using during SSNP training (Sec. 3). Table 3 lists
all clustering algorithms used, as well as the hyperparameters used in all experiments,
except when noted otherwise. Hyperparameters not listed in Tab. 3 used default values.
We used these algorithms since they employ quite different approaches to clustering,
which could produce different results for SSNP.

We selected two of these clustering algorithms alongside two datasets — K-means
and DBSCAN, HAR and MNIST — to further explore the effect of their main hyperpa-
rameters on the quality of the SSNP projection. For K-means, we studied the n clusters
parameter by choosing values well below and above the known number of clusters
C in the data — n clusters = {5,10,15,20,30} for MNIST (C = 10), n clusters =
{3,6,9,12,18} for HAR (C = 6). For DBSCAN, we explored the eps parameter, which
determines the maximum distance between samples for them to be considered as neigh-
bors. We used eps = {6.1,6.3, ...,6.9} for MNIST and eps = {1.9,2.1, ...,2.7} for HAR.

4.5 Neural Network Hyperparameter Settings

We further evaluated SSNP by using several hyperparameter settings for its neural
network. To avoid a huge hyperparameter space, for each parameter explored, we kept
the other parameters set to their defaults, similarly to the strategy used to explore NNP [9].
The explored hyperparameters are described next (see also Tab. 4).

Improving Self-Supervised Dimensionality Reduction 9

Table 3: Clustering algorithms used as for pseudo-label creation and their hyperparame-
ters used during testing. Ground-truth is listed here as another labeling strategy.

Algorithm Acronym Hyperparameters
Ground Truth Labels SSNP(GT) none
Affinity Propagation SSNP(AP) none
Agglomerative Clustering SSNP(Agg) n clusters = 2×C
DBSCAN SSNP(DB) eps = 5
Gaussian Mixture Model SSNP(GMM) n components = 2×C
K-means SSNP(Km) n clusters = 2×C
Spectral Clustering SSNP(SC) n clusters = 2×C

L2 regularization [27] decreases layer weights to small but non-null values, leading to
every weight only slightly contributing to the model. It works by adding a penalization
term λ‖w‖2 to the cost function, where w are the weights of a selected network layer.
The parameter λ ∈ [0,1] controls the amount of regularization;
Embedding layer activation: The embedding (bottleneck) layer creates the 2D pro-
jection after training (Fig. 1). Changing the activation function of this layer affects the
projection’s overall shape. We used four activation functions for this layer (see Tab. 4);
Weight initialization: A neural network has thousands of parameters whose initializa-
tion can affect the training outcome. We used three common initialization types: random
uniformly distributed in the range [−0.05,0.05], Glorot uniform [17] with the range
[−b,b] for b =

√
6/(lin + lout), where lin and lout are the number of input and output

units in the layer, and He uniform [18], which uses the range [−b,b] with b =
√

6/lin;
Training epochs: We explored SSNP’s performance for different numbers of epochs η

ranging from 1 to 20.

Table 4: SSNP neural network parameters explored with default values in bold.
Dimension Values
L2 regularization λ = {0,0.1,0.5,1.0}
Embedding layer activation α = { ReLU, sigmoid, tanh, Leaky RELU }
Weight initialization φ = {Glorot uniform, He uniform, Random uniform }
Training Epochs η = {1,2,3,5,10,20}

5 RESULTS

We next present the results for all experiments conducted to demonstrate SSNP’s quality
and robustness to hyperparameter selection.

5.1 Quality On Synthetic Datasets

Figure 3 shows the SSNP projection of the synthetic blob datasets with SSNP(Km)
with K-means set to use the correct (ground-truth) number of clusters alongside AE,
t-SNE, and UMAP. In most cases SSNP(Km) shows better visual cluster separation than

10 A. A. A. M. Oliveira et al.

autoencoders. The t-SNE and UMAP projections look almost the same regardless of the
standard deviation σ of the blobs, while SSNP(Km) shows more spread clusters for larger
σ, which is the desired effect. We omit the plots and measurements for NNP for space
reasons and since these are very close to the ones created by the learned technique [10].

Table 5 shows the quality metrics for this experiment for datasets using 5 and 10
clusters. For all configurations, SSNP performs very similarly quality-wise to AE, t-SNE,
and UMAP. Section 5.2, which studies more challenging, real-world, datasets will bring
more insight in this comparison.

Table 5: Quality metrics, synthetic blobs experiment with 100 and 700 dimensions, 5
and 10 clusters, and σ ∈ [1.3,11.2].

100 dimensions 700 dimensions
5 clusters 10 clusters 5 clusters 10 clusters

Projection σ T C R NH T C R NH σ T C R NH T C R NH
AE

1.3

0.923 0.938 0.547 1.000 0.958 0.963 0.692 1.000

1.6

0.909 0.914 0.739 1.000 0.953 0.955 0.254 1.000
t-SNE 0.937 0.955 0.818 1.000 0.967 0.977 0.192 1.000 0.917 0.951 0.362 1.000 0.960 0.976 0.346 1.000
UMAP 0.921 0.949 0.868 1.000 0.957 0.970 0.721 1.000 0.906 0.933 0.878 1.000 0.954 0.965 0.471 1.000

SSNP(Km) 0.910 0.919 0.687 1.000 0.956 0.959 0.602 1.000 0.904 0.908 0.568 1.000 0.953 0.955 0.399 1.000
AE

3.9

0.919 0.926 0.750 1.000 0.959 0.963 0.484 1.000

4.8

0.910 0.914 0.615 1.000 0.953 0.954 0.354 1.000
t-SNE 0.931 0.953 0.707 1.000 0.966 0.978 0.227 1.000 0.914 0.950 0.608 1.000 0.960 0.977 0.331 1.000
UMAP 0.911 0.940 0.741 1.000 0.956 0.969 0.537 1.000 0.906 0.931 0.697 1.000 0.954 0.965 0.390 1.000

SSNP(Km) 0.910 0.918 0.622 1.000 0.955 0.958 0.549 1.000 0.905 0.907 0.612 1.000 0.953 0.954 0.296 1.000
AE

9.1

0.905 0.901 0.569 1.000 0.938 0.945 0.328 0.999

11.2

0.911 0.906 0.600 1.000 0.955 0.954 0.382 1.000
t-SNE 0.913 0.951 0.533 1.000 0.948 0.974 0.254 1.000 0.914 0.950 0.492 1.000 0.959 0.977 0.296 1.000
UMAP 0.888 0.939 0.535 1.000 0.929 0.966 0.342 1.000 0.905 0.931 0.557 1.000 0.953 0.965 0.336 1.000

SSNP(Km) 0.888 0.917 0.595 0.998 0.927 0.952 0.437 0.995 0.904 0.906 0.557 1.000 0.950 0.945 0.314 0.998

5.2 Quality On Real-World Datasets

Figure 4 shows the projections of real-world datasets by SSNP with ground-truth labels
(SSNP(GT)), SSNP with pseudo-labels created by the six clustering algorithms in Tab. 3,
and projections created by AE, t-SNE, UMAP, MDS, and Isomap. We omit again the
results for NNP since they are very close to the ones created by t-SNE and UMAP. SSNP
and AE were trained for 10 epochs in all cases. SSNP used twice the number of classes
as the target number of clusters for the clustering algorithms used for pseudo-labeling.

SSNP with pseudo-labels shows better cluster separation than AE but slightly worse
than SSNP(GT). For the more challenging HAR and Reuters datasets, SSNP(GT) looks
better than t-SNE and UMAP. In almost all cases, SSNP yields a better visual cluster
separation than MDS and Isomap. We see also that, for almost all clustering algorithm-
dataset combinations, SSNP creates elongated clusters in a star-like pattern. We believe
this is so since one of the network’s targets is a classifier (Sec. 3) which is trained to
partition the space based on the data. This results in placing samples that are near a
decision boundary between classes closer to the center of the star; samples that are far
away from a decision boundary are placed near the tips of the star, according to its class.

Table 6 shows the four quality metrics (Sec. 4.2) for this experiment. SSNP with
pseudo-labels consistently shows better cluster separation (higher NH) than AE as well
as better distance preservation (higher R). For the harder HAR and Reuters datasets,
SSNP(GT) shows NH results that are similar to and even higher than those for t-SNE and
UMAP. Also, SSNP(GT) scores consistently higher than MDS and Isomap on all quality
metrics, which correlates with these two projection techniques having been found as of
moderate quality in earlier studies [12]. For the T and C metrics, SSNP(GT) outperforms
again AE in most cases; for FashionMNIST and HAR, SSNP yields T and C values close

Improving Self-Supervised Dimensionality Reduction 11

 700 dimensions, 5 clusters

 =

11
.2

=
4.

8

=

1.
6

SSNP (Km) Autoencoder t-SNE UMAP

 700 dimensions, 10 clusters

SSNP (Km) Autoencoder t-SNE UMAP

 100 dimensions, 5 clusters

=

9.
1

=
3.

9

 =
1.

3

SSNP (Km) Autoencoder t-SNE UMAP

 100 dimensions, 10 clusters

SSNP (Km) Autoencoder t-SNE UMAP

 =
9.

1

=

3.
9

 =

1.
3

 =

11
.2

=
4.

8

=

1.
6

Fig. 3: Projection of synthetic blobs datasets with SSNP(Km) and other techniques,
with different number of dimensions and clusters. In each quadrant, rows show datasets
having increasing standard deviation σ.

to the ones for NNP, t-SNE, and UMAP. Separately, we see that the clustering algorithm
choice influences the four quality metrics in several ways. DBSCAN (DB) yields in
nearly all cases the lowest quality values while K-means (Km) and Agglomerative (AG)
yield overall the best quality values. Spectral clustering (SC) is also a quite good option
if one is mainly interested in cluster separation (high NH values). Finally, Affinity
Propagation (AP) and Gaussian Mixture Models (GMM) score in between Km and AG
(best overall) and DB (worst overall). From the above, we conclude that Km and AG are
good default clustering methods that SSNP can use in practice.

5.3 Quality vs Clustering Hyperparameters

Figure 5 shows projections of the HAR and MNIST datasets created by SSNP with
pseudo-labels assigned by DBSCAN and K-means and using the various clustering
hyperparameter settings described in Sec. 4.4.

For DBSCAN, we see that as the value of eps increases, the SSNP projection seems
to vary between global- and local-distance preservation. This effect is more pronounced
for the HAR dataset, where we see the number of clusters in the data varying from two

12 A. A. A. M. Oliveira et al.

 SSNP (Km) SSNP (Agg) Autoencoder t-SNE UMAP SSNP (GT)

R
eu

te
rs

 H
A

R

F

a
sh

io
nM

N
IS

T

 M
N

IS
T

 SSNP (AP) SSNP (DB) SSNP(GMM) SSNP(SC) MDS Isomap

R
eu

te
rs

 H
A

R

F

a
sh

io
nM

N
IS

T

 M
N

IS
T

Fig. 4: Projection of real-world datasets with SSNP (ground-truth labels and pseudo-
labels computed by six clustering methods) compared to Autoencoders, t-SNE, UMAP,
MDS, and Isomap.

(eps = 1.9) and three (eps = 2.7). For the MNIST dataset, the increase in eps only makes
the entire projection take a sharper shape, with no improvement in cluster separation.
Overall, SSNP with DBSCAN having low eps values produces results similar to an
autoencoder, which defeats the purpose of using SSNP. This correlates to the earlier
findings in Sec. 5.2 that showed that DBSCAN is not a good clustering companion for

Improving Self-Supervised Dimensionality Reduction 13

Table 6: Quality measurements for the real-world datasets (Sec. 5.2).
Dataset Method T C R NH Method T C R NH

MNIST

SSNP(Km) 0.882 0.903 0.264 0.767 SSNP(AP) 0.827 0.940 0.094 0.729
SSNP(AG) 0.859 0.925 0.262 0.800 SSNP(DB) 0.689 0.802 0.032 0.588

AE 0.887 0.920 0.009 0.726 SSNP(GMM) 0.880 0.895 0.257 0.755
SSNP(GT) 0.774 0.920 0.398 0.986 SSNP(SC) 0.849 0.925 0.164 0.831

NNP 0.948 0.969 0.397 0.891 MDS 0.754 0.862 0.618 0.580
TSNE 0.985 0.972 0.412 0.944 Isomap 0.759 0.958 0.528 0.618
UMAP 0.958 0.974 0.389 0.913

FashionMNIST

SSNP(Km) 0.958 0.982 0.757 0.739 SSNP(AP) 0.947 0.986 0.750 0.728
SSNP(AG) 0.950 0.978 0.707 0.753 SSNP(DB) 0.890 0.921 0.431 0.665

AE 0.961 0.977 0.538 0.725 SSNP(GMM) 0.952 0.982 0.689 0.737
SSNP(GT) 0.863 0.944 0.466 0.884 SSNP(SC) 0.957 0.981 0.706 0.756

NNP 0.963 0.986 0.679 0.765 MDS 0.923 0.957 0.903 0.652
TSNE 0.990 0.987 0.664 0.843 Isomap 0.920 0.976 0.749 0.685
UMAP 0.982 0.988 0.633 0.805

HAR

SSNP(Km) 0.932 0.969 0.761 0.811 SSNP(AP) 0.929 0.972 0.736 0.787
SSNP(AG) 0.926 0.964 0.724 0.846 SSNP(DB) 0.852 0.909 0.759 0.690

AE 0.937 0.970 0.805 0.786 SSNP(GMM) 0.924 0.966 0.768 0.796
SSNP(GT) 0.876 0.946 0.746 0.985 SSNP(SC) 0.893 0.952 0.811 0.805

NNP 0.961 0.984 0.592 0.903 MDS 0.911 0.890 0.941 0.765
TSNE 0.992 0.985 0.578 0.969 Isomap 0.925 0.971 0.896 0.861
UMAP 0.980 0.989 0.737 0.933

Reuters

SSNP(Km) 0.794 0.859 0.605 0.738 SSNP(AP) 0.631 0.768 0.039 0.742
SSNP(AG) 0.771 0.824 0.507 0.736 SSNP(DB) 0.574 0.650 0.360 0.705

AE 0.747 0.731 0.420 0.685 SSNP(GMM) 0.622 0.788 0.460 0.793
SSNP(GT) 0.720 0.810 0.426 0.977 SSNP(SC) 0.607 0.758 0.027 0.730

NNP 0.904 0.957 0.594 0.860 MDS 0.575 0.757 0.551 0.699
TSNE 0.955 0.959 0.588 0.887 Isomap 0.634 0.785 0.150 0.765
UMAP 0.930 0.963 0.674 0.884

Table 7: Quality measurements for the cluster hyperparameter experiment (Sec . 5.3).
Dataset Technique Parameter T C R NH

MNIST

DBSCAN

eps=6.1 0.685 0.821 0.097 0.555
eps=6.3 0.679 0.798 0.012 0.570
eps=6.5 0.722 0.812 0.044 0.614
eps=6.7 0.698 0.801 0.022 0.576
eps=6.9 0.729 0.825 0.011 0.605

K-means

n clusters=5 0.782 0.905 0.408 0.641
n clusters=10 0.834 0.916 0.379 0.697
n clusters=15 0.867 0.927 0.410 0.760
n clusters=20 0.880 0.909 0.047 0.755
n clusters=30 0.899 0.932 0.358 0.790

HAR

DBSCAN

eps=1.9 0.854 0.928 0.917 0.696
eps=2.1 0.848 0.920 0.841 0.650
eps=2.3 0.875 0.914 0.717 0.685
eps=2.5 0.896 0.924 0.844 0.725
eps=2.7 0.898 0.933 0.887 0.749

K-means

n clusters=3 0.887 0.939 0.932 0.693
n clusters=6 0.921 0.959 0.749 0.767
n clusters=9 0.920 0.965 0.877 0.812
n clusters=12 0.930 0.968 0.854 0.815
n clusters=18 0.937 0.972 0.840 0.812

SSNP. The quality metrics in Tab. 7 strengthen this hypothesis – we do not see any clear
trend of these metrics being improved by varying eps in a specific direction.

For K-means, we see that the value of n clusters has a great effect on the overall
shape of the SSNP projection. Particularly, when n clusters is higher than the true
number of classes in the data (10 for MNIST, 6 for HAR), we see that the cluster
separation gets sharper. This suggests that, when the true number of clusters is not
known, starting with a reasonably high number of clusters will produce better results

14 A. A. A. M. Oliveira et al.

for SSNP with K-means. This is confirmed by the quality metrics in Tab. 7 which show
higher values for higher n clusters settings.

DBSCAN

DBSCAN

K-means

K-means

eps=6.1 eps=6.3 eps=6.5 eps=6.7 eps=6.9

eps=1.9 eps=2.1 eps=2.3 eps=2.5 eps=2.7

n_clusters=5 n_clusters=10 n_ clusters=15 n_clusters=20 n_clusters=30

n_clusters=3 n_clusters=6 n_ clusters=9 n_clusters=12 n_clusters=18

H
A

R

M

N
IS

T

Fig. 5: Projections of MNIST and HAR datasets using different hyperparameters for the
DBSCAN and K-means clustering methods (see Sec. 5.3 and Tab. 7).

5.4 Quality vs Neural Network Settings

We next show how the different neural network hyperparameter settings affect the SSNP
results following the sampling of these parameters discussed in Sec. 4.5. We also use
this analysis to derive good default values for these parameters.

L2 regularization: Figure 6 shows projections created with different amounts of L2
regularization during SSNP’s training. We see that regularization has a detrimental
effect to the visual quality of the projection. For values of λ≥ 0.5, the projection points
collapse to a single point, marked by the red circles in the figure. Table 8 shows the
metric values for this experiment confirming that all quality values decrease with λ. We
conclude that SSNP obtains optimal results without regularization.

Activation functions: Figure 7 shows the effect of using different activation functions
α in the embedding layer. We see that the ReLU and LeakyReLU activations produce
similarly good results. Both produce visual cluster separation comparable to t-SNE and
UMAP (see Fig. 4), albeit with a distinct star or radial shape. The sigmoid activation
collapses all data points into a single diagonal, making it a poor choice for the embedding

Improving Self-Supervised Dimensionality Reduction 15

Table 8: Quality measurements for SSNP for different training hyperparameters. NA
indicates that the measurement failed for the respective experiment (Sec. 5.4).

Method Parameter Value T C R NH

SSNP(GT)

α

LeakyReLU 0.780 0.930 0.429 0.971
ReLU 0.789 0.921 0.402 0.983

sigmoid 0.703 0.891 0.088 0.746
tanh 0.784 0.929 0.190 0.983

η

2 0.781 0.924 0.428 0.903
3 0.787 0.926 0.428 0.940
5 0.786 0.925 0.419 0.966
10 0.789 0.921 0.402 0.983
20 0.797 0.920 0.391 0.989

φ

Glorot 0.789 0.921 0.402 0.983
He 0.789 0.928 0.328 0.982

Random 0.758 0.905 0.071 0.927

λ

0 0.789 0.921 0.402 0.983
0.1 0.757 0.909 0.360 0.870
0.5 0.538 0.502 NA 0.101
1 0.538 0.502 NA 0.101

SSNP(Km)

α

LeakyReLU 0.863 0.919 0.177 0.748
ReLU 0.888 0.916 0.119 0.768

sigmoid 0.678 0.872 0.196 0.568
tanh 0.884 0.928 0.265 0.774

η

2 0.847 0.927 0.267 0.726
3 0.827 0.926 0.244 0.714
5 0.854 0.915 0.323 0.775
10 0.881 0.908 0.188 0.770
20 0.886 0.911 0.128 0.766

φ

Glorot 0.884 0.915 0.333 0.784
He 0.874 0.903 0.267 0.753

Random 0.741 0.869 0.115 0.640

λ

0 0.888 0.924 0.351 0.763
0.1 0.872 0.910 0.352 0.753
0.5 0.538 0.502 NA 0.101
1 0.538 0.502 NA 0.101

S
S

N
P

(K
m

)

S
S

N
P

(G
T

)

λ=0.0 λ=0.1 λ=0.5 λ=1.0

Fig. 6: Projections created with SSNP(GT) and SSNP(Km) for the MNIST dataset
varying the amount of L2 regularization λ (Sec. 5.4).

layer. Finally, the tanh activation produced the best cluster separation of all, with results
that look very close to the ones by t-SNE and UMAP for this dataset (see again Fig. 4).
We conclude that the tanh activation function is the best option for SSNP.

Initialization: Figure 8 shows how weight initialization affects projection quality. We
see that both Glorot and He uniform initializations produce good and comparable results,

16 A. A. A. M. Oliveira et al.

S
S

N
P

(K
m

)

 S
S

N
P

(G
T

)

α=ReLU α=LeakyRELU α=sigmoid α=tanh

Fig. 7: Projections of the MNIST dataset using SSNP(GT) and SSNP(Km) varying the
activation function α (Sec. 5.4).

whereas random initialization yields very poor results. We opt for using He uniform
as the default initialization, which correlates with the same choice (obtained by an
independent investigation) for NNP [9].

S
S

N
P

(K
m

)

 S
S

N
P

(G
T

)

ϕ=Glorot ϕ=He ϕ=Random

Fig. 8: Projections of the MNIST dataset using SSNP(GT) and SSNP(Km) varying the
weight initialization strategy φ (Sec. 5.4).

Training epochs: Finally, Figure 9 shows projections created with SSNP trained for
different numbers η of epochs. With as little as η = 3 training epochs, SSNP already
produces good cluster separation. As η increases, the created visual clusters become
sharper. However, there seems to be little improvement when going from η = 10 to
η = 20. As such, we conclude that a good default is η = 10 training epochs. Interestingly,
this is significantly less than the 50 epochs needed by NNP to achieve good projection
quality [9], especially if we consider that SSNP has to train a more complex, dual-
objective, network.

Improving Self-Supervised Dimensionality Reduction 17

S
S

N
P

(K
m

)

S
S

N
P

(G
T

)

η=2 η=3 η=5 η=10 η=20

Fig. 9: Projections of MNIST dataset using SSNP(GT) and SSNP(Km) varying the
number of training epochs η (Sec. 5.4).

5.5 Computational Scalability

Using SSNP means (a) training the network and next (b) using the trained network in
inference mode (see also Fig. 1). We analyze these two times next.

Setup time: Table 9 shows the time needed to set up SSNP and three other projection
techniques. For SSNP, NP, and AE, this is the training time of the respective neural
networks using 10 training epochs. Note that we used 10K training samples, which is
largely sufficient to train SSNP to obtain good results. In practice, SSNP obtains good
results (quality-wise) with as few as 1K samples. For UMAP and t-SNE, this is the
time needed to actually project the data since these techniques do not have a training
phase. We see that the SSNP variants using clustering take about the same time as
t-SNE and UMAP and less than NNP. SSNP(GT), which does not need clustering, is far
faster than these competitors, with the exception of AE which is about twice faster. This
is explainable since SSNP uses a dual-objective network (Sec. 3), one of these being
essentially the same as AE.

Table 9: Setup time for different projection methods for 10K training samples, MNIST
dataset.

Method Setup time (s)
SSNP(GT) 6.029
SSNP(Km) 20.478
SSNP(Agg) 31.954

AE 3.734
UMAP 25.143
t-SNE 33.620

NNP(t-SNE) 51.181

Inference time: Figure 10 shows the time needed to project up to 1M samples using
SSNP and the other compared projection techniques. For SSNP, AE, and NNP, this is
the inference time using the respective trained networks. For t-SNE and UMAP, this is
the actual projection time, as described earlier in this section. Being GPU-accelerated
neural networks, SSNP, AE, and NNP perform very fast, all being able to project up

18 A. A. A. M. Oliveira et al.

Fig. 10: Inference time for SSNP and other techniques (log scale). Techniques using train-
ing use 10K samples from the MNIST dataset. Inference is done on MNIST upsampled
up to 1M samples.

to 1M samples in a few seconds – an order of magnitude faster than UMAP, and over
three orders of magnitude faster than t-SNE. We also see that SSNP, AE, and NNP
have practically the same speed. This is expected since they have comparably large and
similar-architecture neural networks which, after training, take the same time to execute
their inference.

5.6 Inverse Projection

Recalling from Sec. 2, an inverse projection P−1(p) aims to create a data point x so
that its projection P(x) is as close as possible to p. Hence, we can test how well a
method computes P−1 for a given direct projection function P by evaluating how close
P−1(P(x)) is to the data point x itself. To test this, we consider points x being images in
the MNIST dataset and P and P−1 being computed by SSNP as described in Sec. 3).

Figure 11 shows a set of digits from the MNIST dataset – both the actual images x and
the ones obtained by P−1(P(x)). We see that SSNP(Km) yields results very similar to AE,
both of these being visually quite close images to the actual images x, modulo a limited
amount of fuzziness. Hence, SSNP’s dual-optimization target succeeds in learning a
good inverse mapping based on the direct mapping given by the pseudo-labels (Sec. 3).
Table 10 strengthens this insight by showing the values of the Mean Squared Error
(MSE) between the original and inversely-projected images 1

|D| ∑x∈D ‖x−P−1(P(x))‖2

for SSNP(Km) and AE for both the training and test sets. These errors, again, are very
similar. Furthermore, the SSNP MSE errors are of the same order of magnitude – that
is, very small – as those obtained by the recent NNInv technique [13] and the older
iLAMP [1] technique that also compute inverse projections – compare Tab. 10 with
Fig. 2 in [13] (not included here for space reasons). Summarizing the above, we conclude
that SSNP achieves a quality of inverse projections on par with existing state-of-the-art
techniques.

Improving Self-Supervised Dimensionality Reduction 19

Table 10: Inverse projection Mean Square Error (MSE) for SSNP(Km) and AE, trained
with 5K samples and tested with 1K samples, different datasets.

SSNP(Km) Autoencoder
Dataset Train Test Train Test
MNIST 0.0474 0.0480 0.0424 0.0440

FashionMNIST 0.0309 0.0326 0.0291 0.0305
HAR 0.0072 0.0074 0.0066 0.0067

Reuters 0.0002 0.0002 0.0002 0.0002

Original

Autoencoder

SSNP(Km)

Original

Autoencoder

SSNP(Km)

Original

Autoencoder

SSNP(Km)

Fig. 11: Sample images from MNIST inversely projected by SSNP and AE, both trained
with 10 epochs and 5K samples, MNIST dataset. Bright images show the original images
that the inverse projection should be able to reproduce.

5.7 Data clustering

Table 11 shows how SSNP performs when doing classification or clustering, which
corresponds respectively to its usage of pseudo-labels or ground-truth labels. We see
that SSNP generates good results in both cases when compared to the ground-truth
(GT) labels and, respectively, the underlying clustering algorithm K-means (Km), which
emerged as one of the best clustering companions for SSNP (Sec. 5.2). However, we
should stress that classification or clustering is only a side result of SSNP, needed for
computing the dual-objective cost that the network uses (Sec. 3). While one gets this
by-product for free, SSNP only mimics the underlying clustering algorithm that it learns,
rather than doing data clustering from scratch. As such, we do not advocate using SSNP
as a potential replacement for clustering algorithms.

Table 11: Classification/clustering accuracy of SSNP when compared to ground truth
(GT) and clustering labels (Km), trained with 5K samples, tested with 1K samples.

SSNP(GT) SSNP(Km)
Dataset Train Test Train Test
MNIST 0.984 0.942 0.947 0.817

FashionMNIST 0.866 0.815 0.902 0.831
HAR 0.974 0.974 0.931 0.919

Reuters 0.974 0.837 0.998 0.948

20 A. A. A. M. Oliveira et al.

5.8 Implementation details

All experiments discussed in this section were run on a 4-core Intel Xeon E3-1240 v6 at
3.7 GHz with 64 GB RAM and an NVidia GeForce GTX 1070 GPU with 8 GB VRAM.
Table 12 lists all open-source software libraries used to build SSNP and the other tested
techniques. Our neural network implementations leverages the GPU power by using
the Tensorflow Keras framework. The t-SNE implementation used is a parallel version
of Barnes-Hut t-SNE [52,31], run on all four available CPU cores for all tests. The
UMAP reference implementation is not parallel, but is quite fast (compared to t-SNE)
and well-optimized. The implementation of MDS, Isomap, and all clustering techniques
comes from Scikit-Learn [41]. Our implementation, plus all code used in this experiment,
are publicly available at https://github.com/mespadoto/ssnp.

Table 12: Software used for the SSNP implementation and evaluation.
Technique Software used publicly available at

SSNP (our technique) keras.io (TensorFlow backend)
Autoencoders

t-SNE github.com/DmitryUlyanov/Multicore-t-SNE
UMAP github.com/lmcinnes/umap

Affinity Propagation scikit-learn.org
Agglomerative Clustering

DBSCAN
Gaussian Mixture Model

K-means
Spectral Clustering

6 DISCUSSION

We discuss next how the available hyperparameter settings influence the performance of
SSNP with respect to the seven criteria laid out in Sec. 1.

Quality (C1): As shown in Figures 3 and 4, SSNP provides better cluster separation
than Autoencoders, MDS, and Isomap, and comparable quality to t-SNE and UMAP,
as measured by the selected metrics (Tables 5 and 6). Interestingly, using ground-truth
labels (SSNP(GT)) does not always yield the highest quality metrics as compared to
using pseudo-labels produced by clustering. Related to the latter, K-means (Km) and
Agglomerative clustering (AG) yield, overall, higher quality metrics for most tested
datasets as compared to DBSCAN, Gaussian mixture models, Spectral clustering, and
Affinity propagation. When we consider the neighborhood hit (NH) metric, which models
the closest from all studied metrics the ability of a projection to segregate similar samples
into visually distinct clusters, SSNP(GT) performs better than all tested methods, t-SNE
and UMAP included. Importantly, note that SSNP uses labels only during training and
not during inference, so it can be fairly compared with such other projection methods.
Scalability (C2): SSNP(GT) is roughly half the speed of Autoencoders during training
which is expected given its dual-optimization target. Training SSNP with pseudo-labels

https://github.com/mespadoto/ssnp

Improving Self-Supervised Dimensionality Reduction 21

is slower, roughly the speed of t-SNE or UMAP, which is explained by the time taken
by the underlying clustering algorithm which dominates the actual training time. In our
experiments, K-means seems to be faster than Agglomerative clustering, being thus
more suitable when training SSNP with very large datasets. Inference time for SSNP
practically identical to Autoencoders and NNP, and one order of magnitude faster than
UMAP and three orders faster than t-SNE, being also linear in the sample and dimension
counts. This shows SSNP’s suitability to situations where one needs to project large
amounts of data, such as streaming applications;

Ease of use (C3): SSNP yielded good projection results with little training (10 epochs),
little training data (5K samples) and a simple heuristic of setting the number of clusters
for the clustering step to twice the number of expected clusters in the data. Furthermore,
we examined several hyperparameters of SSNP and found good default values (in terms
of obtaining high quality metrics) as follows: no L2 regularization, tanh activation
function for the embedding layer, and He uniform weight initialization. The clustering
algorithm default is K-means or Agglomerative, with K-means slightly preferred for
speed reasons. As such, SSNP can be used with no parameter tweaking efforts needed.

Genericity (C4): We show results for SSNP with different types of high-dimensional
data, namely tabular (HAR), images (MNIST, FashionMNIST), and text (Reuters). As
these datasets come from quite different sources and as the SSNP method itself makes
no assumption on the nature or structure of the data, we believe that SSNP is generically
applicable to any high-dimensional real-valued dataset.

Stability and out-of-sample support (C5): All measurements we show for SSNP are
based on inference, i.e., we pass the data through the trained network to compute them.
This is evidence of the out-of-sample capability, which allows one to project new data
without recomputing the projection, in contrast to t-SNE and other non-parametric
methods.

Inverse mapping (C6): SSNP shows inverse mapping results which are, quality-wise,
very close to results from Autoencoders, NNInv and iLAMP, these being state-of-the-art
methods for computing inverse projections. Additionally, SSNP computes the inverse
projection at no extra cost or need for a separate implementation, in contrast to NNInv
and iLAMP.

Clustering (C7): SSNP is able to mimic the behavior of the clustering algorithm used as
its input, as a byproduct of its training with labeled data. We show that SSNP produces
competitive results when compared to pseudo- or ground truth labels. Although SSNP is
not a clustering algorithm, it provides this for free (with no additional execution cost),
which can be useful in cases where one wants to do both clustering and DR. However, we
stress that SSNP should not be considered as a replacement for state-of-the-art clustering
algorithms, since it only learns to mimic the actual clustering. This is similar to the
distinction between a classifier and an actual clustering technique.

In addition to the good performance shown for the aforementioned criteria, a key
strength of SSNP is its ability to performing all its operations after a single training
phase. This saves effort and time in cases where all or a subset of those results (e.g.,
direct projection, inverse projection, clustering) are needed.

22 A. A. A. M. Oliveira et al.

Limitations: While scoring high on several criteria, SSNP also has several limitations.
Quality-wise, its operation in pseudo-labeling mode cannot reach the high quality values
for all metrics that are delivered by t-SNE or UMAP for challenging datasets (Tab. 6).
We believe that this is affected by the number of clusters used during training, which is
related to the neighborhood size that t-SNE and UMAP use. More involved strategies
in setting this number of clusters can be explored to further increase SSNP’s quality.
Visually, while we argue for the reason of the star-shaped cluster structures produced
by SSNP (Sec. 5.2), such patterns can be less suitable for visual exploration than the
blob-like patterns produced typically by t-SNE. Using a tanh activation function partially
alleviates this issue (Sec. 5.4). However, more studies are needed to explore other
activation functions that allow even better control of the visual cluster shapes. Most
importantly however, SSNP is a learning method. As with any such method, its quality
will decrease when inferring on (that is, projecting) datasets which are too far away
from the ones used during training, an issue also present for NNP and autoencoders.
In contrast, methods that do not use training can obtain similar quality for any input
dataset. Yet, the price to pay for such methods is that they cannot guarantee stability and
out-of-sample behavior, which come with SSNP by default.

7 CONCLUSION

We presented an in-depth analysis of a dimensionality reduction (DR) method called
Self-Supervised Neural Projection (SSNP) recently proposed by us. SSNP uses a neural
network with a dual objective – reconstruction of the high-dimensional input data and
classification of the data – to achieve several desirable characteristics of a general-purpose
DR method. SSNP is, to our knowledge, the only technique that jointly addresses all
characteristics listed in Section 1 of this paper, namely producing projections that exhibit
a good visual separation of similar samples, handling datasets of millions of elements in
seconds, being easy to use (no complex parameters to set), handling generically any type
of high-dimensional data, providing out-of-sample support, and providing an inverse
projection function.

Our evaluation added two additional dimensionality reduction methods, four clus-
tering algorithms, and also explored the hyperparameter space of both the clustering
algorithms and neural network training to gauge SSNP’s behavior. The evaluation results
led to establishing default values for all these hyperparameters which obtain high quality
values and also turn SSNP into a parameter-free method. Additionally, the obtained
results show that SSNP with ground-truth labels yields higher quality in terms of visual
cluster separation than all tested projections including the state-of-the-art t-SNE and
UMAP methods. When pseudo-labels are used due to the lack of true labels, SSNP
achieves lower but still competitive results with t-SNE and UMAP, slightly to signifi-
cantly higher quality than autoencoders, and significantly higher quality than MDS and
Isomap.

As future work, we consider studying better heuristics for controlling the clustering
process which we believe are a low hanging fruit towards improving SSNP’s quality.
Another interesting direction is to explore other activation function designs that can
offer control to the end users on the shape of the visual clusters that the projection

Improving Self-Supervised Dimensionality Reduction 23

creates, which would be, to our knowledge, an unique feature in the family of projection
techniques. A more ambitious, but realizable, goal is to have SSNP learn its pseudo-
labeling during training and therefore remove the need for using a separate clustering
algorithm.

ACKNOWLEDGMENTS

This study was financed in part by FAPESP grants 2015/22308-2, 2017/25835-9 and
2020/13275-1, and the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior -
Brasil (CAPES) - Finance Code 001.

References

1. Amorim, E., Brazil, E.V., Daniels, J., Joia, P., Nonato, L.G., Sousa, M.C.: iLAMP: Exploring
high-dimensional spacing through backward multidimensional projection. In: Proc. IEEE
VAST. pp. 53–62 (2012)

2. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity recognition
on smartphones using a multiclass hardware-friendly support vector machine. In: Proc. Intl.
Workshop on Ambient Assisted Living. pp. 216–223. Springer (2012)

3. Becker, M., Lippel, J., Stuhlsatz, A., Zielke, T.: Robust dimensionality reduction for data
visualization with deep neural networks. Graphical Models 108, 101060 (2020)

4. Chan, D., Rao, R., Huang, F., Canny, J.: T-SNE-CUDA: GPU-accelerated t-SNE and its
applications to modern data. In: Proc. SBAC-PAD. pp. 330–338 (2018)

5. Cunningham, J., Ghahramani, Z.: Linear dimensionality reduction: Survey, insights, and
generalizations. JMLR 16, 2859–2900 (2015)

6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the
em algorithm. Journal of the Royal Statistical Society: Series B (Methodological) 39(1), 1–22
(1977)

7. Donoho, D.L., Grimes, C.: Hessian eigenmaps: Locally linear embedding techniques for
high-dimensional data. Proc Natl Acad Sci 100(10), 5591–5596 (2003)

8. Engel, D., Hattenberger, L., Hamann, B.: A survey of dimension reduction methods for high-
dimensional data analysis and visualization. In: Proc. IRTG Workshop. vol. 27, pp. 135–149.
Schloss Dagstuhl (2012)

9. Espadoto, M., Falcao, A., Hirata, N., Telea, A.: Improving neural network-based multidimen-
sional projections. In: Proc. IVAPP (2020)

10. Espadoto, M., Hirata, N., Telea, A.: Deep learning multidimensional projections. J. Informa-
tion Visualization (2020), doi.org/10.1177/1473871620909485

11. Espadoto, M., Hirata, N.S., Telea, A.C.: Self-supervised dimensionality reduction with neural
networks and pseudo-labeling. In: Proc. IVAPP. pp. 27–37. SCITEPRESS (2021)

12. Espadoto, M., Martins, R.M., Kerren, A., Hirata, N.S., Telea, A.C.: Towards a quantitative
survey of dimension reduction techniques. IEEE TVCG (2019), publisher: IEEE

13. Espadoto, M., Rodrigues, F.C.M., Hirata, N.S.T., Hirata Jr., R., Telea, A.C.: Deep learning
inverse multidimensional projections. In: Proc. EuroVA. Eurographics (2019)

14. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering
clusters in large spatial databases with noise. In: Proc. KDD. vol. 96, pp. 226–231 (1996)

15. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of eugenics
7(2), 179–188 (1936)

24 A. A. A. M. Oliveira et al.

16. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814),
972–976 (2007)

17. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural
networks. In: Proc. AISTATS. pp. 249–256 (2010)

18. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In: Proc. IEEE ICCV. pp. 1026–1034 (2015)

19. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks.
Science 313(5786), 504–507 (2006), publisher: AAAS

20. Hoffman, P., Grinstein, G.: A survey of visualizations for high-dimensional data mining.
Information Visualization in Data Mining and Knowledge Discovery 104, 47–82 (2002),
publisher: Morgan Kaufmann

21. Joia, P., Coimbra, D., Cuminato, J.A., Paulovich, F.V., Nonato, L.G.: Local affine multidimen-
sional projection. IEEE TVCG 17(12), 2563–2571 (2011)

22. Jolliffe, I.T.: Principal component analysis and factor analysis. In: Principal Component
Analysis, pp. 115–128. Springer (1986)

23. Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis.
Wiley (2005)

24. Kehrer, J., Hauser, H.: Visualization and visual analysis of multifaceted scientific data: A
survey. IEEE TVCG 19(3), 495–513 (2013)

25. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. CoRR abs/1312.6114 (2013),
eprint: 1312.6114

26. Kohonen, T.: Self-organizing Maps. Springer (1997)
27. Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In: Proc. NIPS.

pp. 950–957 (1992)
28. LeCun, Y., Cortes, C.: MNIST handwritten digits dataset (2010), http://yann.lecun.com/

exdb/mnist
29. Liu, S., Maljovec, D., Wang, B., Bremer, P.T., Pascucci, V.: Visualizing high-dimensional

data: Advances in the past decade. IEEE TVCG 23(3), 1249–1268 (2015)
30. Lloyd, S.: Least squares quantization in PCM. IEEE Trans Inf Theor 28(2), 129–137 (1982)
31. Maaten, L.v.d.: Barnes-hut-SNE. arXiv preprint arXiv:1301.3342 (2013)
32. Maaten, L.v.d.: Accelerating t-SNE using tree-based algorithms. JMLR 15, 3221–3245 (2014)
33. Maaten, L.v.d., Hinton, G.: Visualizing data using t-SNE. JMLR 9, 2579–2605 (2008)
34. Maaten, L.v.d., Postma, E.: Dimensionality reduction: A comparative review. Tech. rep.,

Tilburg University, Netherlands (2009)
35. Martins, R.M., Minghim, R., Telea, A.C., others: Explaining neighborhood preservation for

multidimensional projections. In: CGVC. pp. 7–14 (2015)
36. McInnes, L., Healy, J.: UMAP: Uniform manifold approximation and projection for dimension

reduction. arXiv:1802.03426v1 [stat.ML] (2018)
37. Modrakowski, T.S., Espadoto, M., Falcão, A.X., Hirata, N.S.T., Telea, A.: Improving deep

learning projections by neighborhood analysis. In: Communication in Computer and Informa-
tion Science. Springer (2020)

38. Nonato, L., Aupetit, M.: Multidimensional projection for visual analytics: Link-
ing techniques with distortions, tasks, and layout enrichment. IEEE TVCG (2018).
https://doi.org/10.1109/TVCG.2018.2846735

39. Paulovich, F.V., Minghim, R.: Text map explorer: a tool to create and explore document maps.
In: Proc. Intl. Conference on Information Visualisation (IV). pp. 245–251. IEEE (2006)

40. Paulovich, F.V., Nonato, L.G., Minghim, R., Levkowitz, H.: Least square projection: A
fast high-precision multidimensional projection technique and its application to document
mapping. IEEE TVCG 14(3), 564–575 (2008)

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
https://doi.org/10.1109/TVCG.2018.2846735

Improving Self-Supervised Dimensionality Reduction 25

41. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in python. Journal of Machine
Learning Research (JMLR) 12, 2825–2830 (2011)

42. Pezzotti, N., Höllt, T., Lelieveldt, B., Eisemann, E., Vilanova, A.: Hierarchical stochastic
neighbor embedding. Computer Graphics Forum 35(3), 21–30 (2016)

43. Pezzotti, N., Lelieveldt, B., Maaten, L.v.d., Höllt, T., Eisemann, E., Vilanova, A.: Approxi-
mated and user steerable t-SNE for progressive visual analytics. IEEE TVCG 23, 1739–1752
(2017)

44. Pezzotti, N., Thijssen, J., Mordvintsev, A., Hollt, T., Lew, B.v., Lelieveldt, B., Eisemann, E.,
Vilanova, A.: GPGPU linear complexity t-SNE optimization. IEEE TVCG 26(1), 1172–1181
(2020)

45. Roweis, S.T., Saul, L.L.K.: Nonlinear dimensionality reduction by locally linear embedding.
Science 290(5500), 2323–2326 (2000), publisher: American Association for the Advancement
of Science

46. Salton, G., McGill, M.J.: Introduction to modern information retrieval. McGraw-Hill (1986)
47. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE TPAMI 22(8), 888–905

(2000)
48. Sorzano, C., Vargas, J., Pascual-Montano, A.: A survey of dimensionality reduction techniques

(2014), arXiv:1403.2877 [stat.ML]
49. Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for nonlinear

dimensionality reduction. Science 290(5500), 2319–2323 (2000)
50. Thoma, M.: The Reuters dataset (Jul 2017), https://martin-thoma.com/nlp-reuters
51. Torgerson, W.S.: Theory and Methods of Scaling. Wiley (1958)
52. Ulyanov, D.: Multicore-TSNE (2016), https://github.com/DmitryUlyanov/

Multicore-TSNE
53. Venna, J., Kaski, S.: Visualizing gene interaction graphs with local multidimensional scaling.

In: Proc. ESANN. pp. 557–562 (2006)
54. Wattenberg, M.: How to use t-SNE effectively (2016), https://distill.pub/2016/

misread-tsne
55. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: A novel image dataset for benchmarking

machine learning algorithms (2017), arXiv:1708.07747
56. Xie, H., Li, J., Xue, H.: A survey of dimensionality reduction techniques based on random

projection (2017), arXiv:1706.04371 [cs.LG]
57. Zhang, Z., Wang, J.: MLLE: Modified locally linear embedding using multiple weights. In:

Advances in Neural Information Processing Systems (NIPS). pp. 1593–1600 (2007)
58. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimensionality reduction via tangent

space alignment. SIAM Journal on Scientific Computing 26(1), 313–338 (2004)

https://martin-thoma.com/nlp-reuters
https://github.com/DmitryUlyanov/Multicore-TSNE
https://github.com/DmitryUlyanov/Multicore-TSNE
https://distill.pub/2016/misread-tsne
https://distill.pub/2016/misread-tsne

	Improving Self-Supervised Dimensionality Reduction: Exploring Hyperparameters and Pseudo-labeling Strategies

