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Abstract
High-dimensional data are a key study object for both machine learning (ML) and information visualization. On the visu-
alization side, dimensionality reduction (DR) methods, also called projections, are the most suited techniques for visual 
exploration of large and high-dimensional datasets. On the ML side, high-dimensional data are generated and processed by 
classifiers and regressors, and these techniques increasingly require visualization for explanation and exploration. In this 
paper, we explore how both fields can help each other in achieving their respective aims. In more detail, we present both 
examples that show how DR can be used to understand and engineer better ML models (seeing helps learning) and also 
applications of DL for improving the computation of direct and inverse projections (learning helps seeing). We also identify 
existing limitations of DR methods used to assist ML and of ML techniques applied to improve DR. Based on the above, we 
propose several high-impact directions for future work that exploit the analyzed ML-DR synergy.

Keywords  Multidimensional projections · Visual quality metrics · Explainable AI

Introduction

Machine learning (ML) has become one of the indispen-
sable instruments in data-driven science and virtually any 
data-intensive application domain in our society. Recent 
advances in the field have made it possible to create models 
that predict or generate, with high accuracy, an increasing 
range of phenomena stemming from fields as diverse as 
image analysis and generation, natural language processing, 

medical diagnosis, and economical and societal trends. In 
parallel, developments in deep learning (DL), supported by 
the massive increase of power of modern GPU computing, 
have made the construction and deployment of powerful ML 
models increasingly scalable and affordable.

At a high level, and without loss of generality, ML models 
can be described as engines which process high-dimensional 
data—that is, collections of observations (samples) con-
sisting of tens up to millions of individual measurements 
(dimensions) of a given phenomenon. Such data occur 
throughout the ML pipeline—it is present in the input of 
the models (e.g., images consisting of millions of pixels); 
in the internal working of such models (e.g., the so-called 
activations of neural units in the many intermediate lay-
ers of a DL model), and also in the models’ output (e.g., 
the image created by generative AI techniques from given 
inputs). As such, it is not surprising that understanding high-
dimensional data, and how it is transformed by ML models, 
is a key goal and challenge in ML.

In a separate field, exploring and understanding high-
dimensional data are one of the top goals of information 
visualization (infovis) [1–3]. During the last decades, many 
techniques have been proposed to this end, including scat-
terplots and scatterplot matrices [4, 5], parallel coordinate 
plots [6], table lenses [7, 8], and glyphs [9]. However, most 
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such techniques are fundamentally limited in the size of the 
datasets they can depict: They can show either datasets hav-
ing many samples with few dimensions, few samples having 
many dimensions, but not both.

Dimensionality reduction (DR) techniques, also called 
multidimensional projections (MPs), are a family of visuali-
zation techniques that aim to solve the aforementioned visu-
alization scalability issue in both the sample and dimension 
count. Simply put, given a high-dimensional dataset consist-
ing of several samples, DR techniques create a low-dimen-
sional (typically 2D or 3D) scatterplot in which close points 
correspond to similar samples in the input dataset. This 
allows users of DR visualizations to identify salient pat-
terns in the dataset in the form of clusters of closely packed 
scatterplot points, clusters of points with different shapes or 
densities, or outlier points [10–12]. Tens, if not hundreds, 
of DR techniques have been designed to cater for the vari-
ous functional and non-functional requirements inherent to 
the DR process, such as computational scalability, ability of 
treating data of various types and dimensionality, handling 
time-dependent data or data with missing values, ability of 
depicting new samples along existing ones (out-of-sample 
property), stability in the presence of noise, ability of cap-
turing specific aspects present in the input dataset, and ease 
of use [12–14].

At a first glance, ML and DR are separate fields with 
different goals. ML is chiefly concerned with learning a 
model to predict the behavior of some phenomenon from 
existing samples thereof. In a more general setting, this has 
been extended to additional tasks such as data representa-
tion (autoencoders) or generative AI. For the purpose of our 
discussion next, we will mainly focus on prediction tasks, 
either in a classification or regression setting. DR aims at 
depicting, or seeing, the samples of such a phenomenon. We 
argue that these two goals are, however, strongly related, and 
actually advances in one field directly support requirements 
of the other field in both directions. Simply put, we argue 
that seeing is learning, in both directions of the implication, 
as outlined below:

•	 Learning Needs Seeing The ML field generates com-
plex models, whose ‘black-box’ behavior is increasingly 
hard-to-understand by both their developers and users. 
Understanding such models is increasingly important 
for fine-tuning their behavior but also gaining trust in 
their deployment. Such understanding can be massively 
aided by seeing (visualizing) their structure and opera-
tion. Since ML models revolve around high-dimensional 
data, and DR techniques are ideally suited for depicting 
such data, DR techniques are a candidate of choice for 
visualizing them;

•	 Seeing Needs Learning Existing DR techniques are 
increasingly challenged by the already-mentioned sum of 

requirements they have to cope with. Few, if any, of such 
existing techniques can cope with all these requirements. 
In contrast, many ML techniques are designed upfront 
to handle such requirements, especially computational 
scalability, accuracy, stability, and out-of-sample ability. 
Given these, it makes sense to use ML techniques to learn 
the high-to-low-dimensional mapping and thereby assist 
the DR task.

In this paper, we extend our previous work [15] that explores 
the commonalities of ML and DR techniques to bring more 
evidence of existing, emerging, and potentially new interac-
tions between these two fields, but also highlight important 
limitations of current ML-DR solutions. We proceed by 
introducing our two fields of interest—ML and DR—with 
an emphasis on their commonalities (“Background”). We 
next explore in “Seeing for Learning: DR Assists ML” how 
learning (ML) is supported by seeing (DR), especially in 
the creation of visual analytics (VA) solutions for explain-
able artificial intelligence (XAI). Subsequently, we study in 
“Learning for Seeing: ML Assists DR” the converse connec-
tion, that is, how seeing (DR) is supported by leaning (ML). 
We further outline in “Future Exploitations of the ML-DR 
Connection” new, emerging, connections between the two 
fields that point to promising future research directions in 
which the DR and ML fields can benefit from each other. 
Finally, “Conclusions” concludes the paper.

Background

In this section, we aim to provide a general introduction to 
ML and DR concepts, notations, and principles, with a focus 
on highlighting the commonalities between the two fields, 
which will be further explored in the remainder of the paper.

Notations Let D = {xi} be a dataset of n-dimensional sam-
ples, also called observations or data points xi , 1 ≤ i ≤ N . A 
sample xi = (x1

i
,… , xn

i
) is a tuple of n components xj

i
 , also 

called feature, variable, attribute, or dimension values. For 
exposition simplicity, we next consider that xj

i
∈ ℝ (other 

data domains are treated similarly for the purpose of our 
discussion). We denote by Z ⊂ ℝ

n the spatial subset where 
samples of a given phenomenon are found. For instance, 
considering image data, only positive values (possibly bound 
by a maximum) can denote pixel intensities. Following this 
notation, D can be depicted as a table with N rows (one per 
sample) and n columns (one per dimension). Typically, these 
dimensions are considered to be independent variables, i.e., 
whose values are measured from the behavior of a given 
phenomenon over Z. Atop of these, D can have one or more 
dimensions (columns) of so-called dependent variables, 
also called labels or annotations. We next consider a sin-
gle such dependent variable yi ∈ A , where A is the domain 
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of definition of the labels, unless specified otherwise. We 
denote the annotated dataset D by Da = [D|y].

Machine Learning Basics Given a so-called test set 
DT ⊂ Da , machine learning (ML) techniques aim to create 
a function (also called a model) f ∶ ℝ

n
→ A which predicts 

the label values for most (ideally, all) samples in Da , i.e., 
f (xi) = yi , for (x1

i
,… , xn

i
, yi) ∈ DT . Models f are built using 

a so-called training set Dt ⊂ Da , Dt ∩ DT = ∅ so as to maxi-
mize the aforementioned results on the test set. ML models 
can be further split into classifiers, for which A is typically a 
categorical dataset; and regressors, for which A is typically a 
subset of ℝ . For regressors, f typically strives that f (xi) is as 
close as possible to yi , whereas for classifiers exact equality 
is aimed at.

Many methods exist to measure the performance of ML 
models. The most widespread such methods measure sev-
eral so-called quality metrics on the training set (training 
performance) and, separately, on the unseen test set (test-
ing performance). Common metrics include accuracy, 
precision, recall, F-score, and Cohen’s kappa score. More 
advanced methods take into account hyperparameters that 
allow optimizing between precision and recall, e.g., the 
Receiver Operator Characteristic (ROC) curve and area 
underneath [16–18].

Dimensionality Reduction Basics A dimensionality 
reduction technique, or multidimensional projection P, is a 
function that maps every xi ∈ D to a point P(xi) ∈ ℝ

q . For 
convenience, we next denote by P(D) = {P(xi)|xi ∈ D} the 
projection of an entire dataset D. For visualization purposes, 
q ∈ {2, 3} , i.e., P(D) is a 2D, respectively, 3D, scatterplot. At 
a high level, all projection techniques P aim to preserve the 
so-called structure of the dataset D, so that users can infer 
this structure by visualizing P(D), following a well-known 
inverse mapping principle in data visualization [2]. Forms 
of such structure include, but are not limited to, clusters of 
similar samples; clusters having different sample densities; 
similarities between different samples; and outlier samples. 
Structure-preserving projections map (some) of these data 
properties to the corresponding properties of their generated 
scatterplots. Usually, projections do not use data annotations 
(even when these are available), but only independent vari-
ables—more on this aspect to be discussed further in “Deep 
Learning Projections”.

Since data structure preservation entails several aspects, 
as outlined above, different so-called quality metrics have 
been devised to capture the abilities of a given P. A quality 
metric is a function M(D,P(D)) → ℝ

+ that tells how well 
the scatterplot P(D) captures a given aspect present in the 
dataset D. At a high level, such metrics can be grouped into 
(1) measuring distance preservation between pairs of sam-
ples, respectively, pairs of projection points, in ℝn and ℝq , 
respectively, such as normalized stress and the Shepard dia-
gram correlation [19]; and (2) measuring if neighborhoods 

(groups of close points) in D are mapped to neighborhoods 
in P(D), such as trustworthiness and continuity [20], false 
and missing neighbors [21], and the Kullback–Leibler diver-
gence [22]. The latter class is extended for projections of 
labeled data P(Da) by metrics such as neighborhood hit and 
class consistency [23, 24]. Detailed surveys of projection 
quality metrics are given in Refs. [10, 12, 14, 25].

Interaction Between ML and DR

As mentioned in “Introduction”, our central statement is that 
learning (accomplished using ML) and seeing (visualiza-
tion accomplished using DR) are intimately related to each 
other. This assertion, illustrated by Fig. 1, is explored next 
in detail.

How DR Helps ML and Conversely

Machine Learning Pipeline The central box (Fig. 1 blue) 
shows a technical view on the typical ML pipeline which 
maps an input real-valued dataset D into class labels or 
another real-valued signal by means of a classifier, respec-
tively, regressor. Such ML pipelines can be next deployed 
to assist a wide variety of tasks. In our work here, we do not 
further detail these, but rather focus on how DR techniques 
can be used to assist the technical aspects of a typical, task-
generic, ML pipeline; and conversely, how ML techniques 
can generically assist constructing better DR methods. As 
explained earlier in “Introduction”, ML models operate on 
high-dimensional data. The green arrows atop this pipeline 
point to various visualization methods that use DR to depict 
such data. Using such visualizations, one can literally ‘see’ 
how the model learns. We further exemplify the use of such 
visualizations for ML tasks such as semi-automatic labe-
ling (“Pseudolabeling for ML Training”), assessing classi-
fication difficulty (“Assessing and Improving Classifiers”), 
and assessing training of DL models (“Understanding DL 
Models”).

Dimensionality Reduction Pipeline The bottom box 
(Fig. 1 yellow) shows how ML regressors can be used 
to create better DR projections of any high-dimensional 
data. Examples of this process include (self-)supervised 
projections and sensitivity analyses (“Deep Learning Pro-
jections”), inverse projections (“Deep Learning Inverse 
Projections”), and quality analysis for inverse projections 
(“Prospects of ML Assisting DR: Learning to See Better”). 
Once such DR methods have been created, they can be used 
for assisting ML engineering tasks, as shown by the red 
arrow in Fig. 1.
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Common Aspects of DR and ML

“How DR Helps ML and Conversely” and Fig. 1 have out-
lined how DR can help ML and conversely. As such, it is not 
surprising that DL and ML share many common aspects. 
We detail next such commonalities, grouped in functional 
and non-functional ones, following a systems engineering 
perspective [26].

Functional Commonalities

Functional aspects describe how a system should operate. 
As already outlined, both ML models f and DR projection 
methods P are specialized cases of inference involving 
high-dimensional data. More specifically, P can be seen as 
a particular type of regressor from ℝn to ℝ2 . Given this, we 
next use the notation X to jointly denote an ML model or 
DR algorithm, when distinguishing between the two is not 
important.

Non‑functional Commonalities

Non-functional aspects describe how a system should behave 
in practice. Without claiming full coverage, we identify the 

following key aspects that both ML and DR techniques X 
strive to achieve in their operation. We also outline cases 
where these two classes of techniques achieve the respec-
tive requirements up to different degrees, thereby pointing 
to potential synergies where one technique family can be 
used to assist the other.

Genericity X should be readily applicable to any dataset 
D—that is, of any dimensionality, attribute types, and prov-
enance application domain.

Accuracy X should deliver highly accurate results (infer-
ences for ML; projection scatterplots for DR) as gauged by 
specific quality metrics in the two fields.

Scalability X should scale well computationally with the 
number of samples N and dimensions n—ideally, X should 
be linear in both N and n. In practice, X should be able to 
handle datasets with millions of samples and hundreds of 
dimensions on commodity hardware at interactive rates. 
This further on enables the use of X in visual analytics (VA) 
scenarios where the iterative and interactive exploration of 
complex hypotheses via data visualization is essential. We 
discuss this aspect further in “Seeing for Learning: DR 
Assists ML” and “Learning for Seeing: ML Assists DR”.

Understandability For a technique to be useful and usable 
in practice, its operation should be easily understandable by 

Fig. 1   Two-way interaction between machine learning (ML) and dimensionality reduction (DR) workflows. ML algorithms can be used to con-
struct DR techniques. In turn, these can be used to construct explanatory visualizations for ML. See “Interaction Between ML and DR”
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its intended users. This requirement takes different forms 
for ML and DR techniques. In general, ML techniques have 
an easy-to-understand output—they are designed to infer 
features having a clear meaning, e.g., the classes present in 
a dataset. However, due to their often black-box nature, the 
way in which they operate to do this is far less understand-
able, leading to challenges for their design, deployment, and 
acceptance (see “Understanding DL Models”). In contrast, 
most DR methods have a relatively clear way of operation. 
However, their output—a raw scatterplot, in the minimal 
case—is hard to interpret and requires additional explana-
tory mechanisms [21, 27–31].

Understandability is subtly related, but not identical, to 
the concept of interpretability. As mentioned above, we 
refer to understandability as the ‘low level’ ability of the 
intended users of a technique or tool to grasp how the tool 
works, at a basic level, so they are able to deploy it in prac-
tice. Interpretability operates at a higher conceptual level 
and refers to the ability of the users to reason about how 
the tool operates internally when executing its work. For 
ML models, for instance, linear regression is arguably more 
interpretable than deep neural networks due to its inherent 
linear model. Similarly, PCA’s operation based on a global 
and linear data transformation is easier to understand than 
local and/or non-linear DR techniques such as t-SNE. In 
our further discussion, we mainly focus on the lower level 
of understandability.

Out of Sample (OOS) An operator X is said to be OOS 
if it can extrapolate its behavior beyond the data from 
which it was constructed. In ML, this usually means 
that the model f extrapolates from a training set Dt to an 
unseen test set DT and beyond. By analogy, a projection 
P is OOS if, when extending some dataset D with addi-
tional samples D′ ⊈ D , the projection P(D ∪ D�) ideally 
keeps the samples of D at the locations they had in P(D), 
i.e., P(D ∪ D�) = P(D) ∪ P(D�) . If P is OOS, this helps users 
to maintain their ‘mental map’ obtained by studying P(D) 
when they further study P(D ∪ D�) . As most ML methods 
are OOS by design, they can be potentially used to design 
OOS projections (see next “Learning for Seeing: ML Assists 
DR”).

Stability Small changes in the input dataset D should only 
lead to small changes in the output dataset X(D). If not, spu-
rious perturbations in D can massively affect the resulting 
inference X(D) thereby rendering such results potentially 

unusable and/or misleading. Similarly, large-scale changes 
in D should arguably lead to correspondingly large changes 
in X(D). Stability is related but not the same as OOS: An 
OOS algorithm is stable by definition but not all stable algo-
rithms are OOS [14, 32]. Most ML methods are OOS by 
design, a property which is not shared by many projection 
techniques—therefore, opening up an interesting case for 
using ML for DR. We discuss stability and OOS in more 
detail in “Deep Learning Projections” and “Prospects of ML 
Assisting DR: Learning to See Better”.

Ease of Use Visualization methods aim, by construction, 
to be easily usable by a wide range of users and with mini-
mal or no programming effort. In contrast, building—and 
especially debugging and fine-tuning—an ML pipeline can 
be challenging for practitioners with limited training in ML. 
As such, this offers opportunities for using visualization (and 
DR in particular) to ease the task of ML practitioners.

Availability X should be readily available to practitioners 
in terms of documented open-source code. While sometimes 
neglected, this is a key requirement for ML and DR algo-
rithms to become adopted and impactful in practice.

Table 1 compares how ML and DL techniques satisfy 
in general the above requirements. Scores are given on a 
5-point Likert scale (++: best; −− : worst), according to our 
own experience. Besides genericity, where both ML and DR 
algorithms score equally well, all other requirements are met 
complementarity by the two algorithm families. This sup-
ports our earlier point that the two technique classes can 
support each other, if combined properly.

We next explore these commonalities and contrasts by 
first discussing how DR is used to help ML (“Seeing for 
Learning: DR Assists ML”) and next how ML is used to cre-
ate better DR algorithms (“Learning for Seeing: ML Assists 
DR”).

Seeing for Learning: DR Assists ML

Many examples of visualization applications that assist ML 
workflows exist, most often coming in the form of com-
plex multiple-view visual analytics systems [33–36]. An 
exhaustive presentation thereof is out of the scope of this 
paper. Rather, we focus in the following on selected use-
cases where DR techniques have been used (with minimal 

Table 1   Comparison of how ML and DR methods satisfy desirable requirements (Genericity, Accuracy, Scalability, UnderOut (understandabil-
ity of output), UnderAlg (understandability of algorithm), OOS, Stability, Ease of use, Availability)

Methods Gen Acc Scal UnderOut UnderAlg OOS Stab Ease Avail

ML ++ ++ ++ ++ −− ++ ++ 0 ++
DR ++ 0/+ 0 −− + −− − ++ ++
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additions) to assist ML workflows: assessing and improving 
classifiers (“Assessing and Improving Classifiers”), pseudo-
labeling for enriching training sets (“Pseudolabeling for ML 
Training”), exploring deep learning models (“Understanding 
DL Models”), and exploring classifier outputs via decision 
boundary maps (“Decision Boundary Maps”).

Assessing and Improving Classifiers

One of the simplest, and still most frequently used, applica-
tion of DR in ML is to project a labeled training or test set 
Da with points xi colored by their ground-truth labels yi or 
labels f (xi) inferred by some classifier f. The rationale for 
this use-case is straightforward: A projection places similar 
samples close to each other; a classifier labels similar sam-
ples similarly; hence, the visual structure of the projection 
helps several tasks:

•	 see how (and where) are misclassified samples distributed 
over the extent of a test set DT (to next elicit what makes 
them hard to classify);

•	 see how well a training set Dt covers the data space (to, 
e.g., determine where extra training samples are needed);

•	 see how well a training set Dt is separated into different 
same-label sample groups (to next predict the classifica-
tion ease).

The two first tasks are quite straightforward. In contrast, 
the last task is particularly interesting. The intuition that a 
projection P(D) which is well separated into compact same-
label groups indicates that D is easy to classify is quite old. 
Yet, a formal study of this correlation was only relatively 
recently presented [37]. In the respective work, the authors 
show that, given a range of classifiers, a dataset D whose 
projection P(D) has well-separated classes (as measured by 
the neighborhood hit metric [23]) is far easier classifiable 
than a dataset whose projection shows intermixed points of 
different labels (low neighborhood hit). The projection P(D) 
becomes a ‘predictor’ for the ease of classifying D, helping 
one to assess classification difficulty before actually embark-
ing on the expensive cycle of classifier design-train-test.

Figure  2 illustrates the above usage of projections. 
Images (a) and (b) show the two-class Madelon dataset [38] 
( n = 500 dimensions, |A| = 2 classes) classified by KNN and 
Random Forests (RFC), respectively, with samples projected 
by t-SNE [22] and colored by class labels. The two projec-
tions show a very poor separation of the two classes, in line 
with the obtained low accuracies AC = 54% and AC = 66% 
(also visible by the misclassified samples, marked as tri-
angles). Images (c) and (d) show the same dataset where 
extremely randomized trees [39] was used to select n = 20 
dimensions. The projections show a much higher visual 

separation of the two classes, in line with the higher accura-
cies AC = 88% and AC = 89% obtained. Many other exam-
ples in [37] show that projections can predict classification 
accuracy quite well.

Pseudolabeling for ML Training

If projections are good predictors of classification accuracy, 
it means that their low-dimensional (2D) space captures well 
the similarity of the high-dimensional samples. This leads 
to the idea of using projections to create, rather than just 
explain, ML models. A first attempt was shown by Bernard 
et al. [40] in the context of an user evaluation that compared 
classical active learning with a user-supported procedure 
they dubbed Visual Interactive Labeling (VIL). Next after 
that, Benato et al. [41] proposed a very similar approach to 
VIL, called visual pseudolabeling, aimed to assist building 
a classifier from a training set having only very few labeled 
points: The entire training set, including unlabeled points, is 
projected and the user explores the projection to find unla-
beled points tightly packed around labeled ones. Next, the 
user employs a tooltip to study the attributes of these points 
to confirm that they have the same class as the surrounded 
labeled one. If so, the user simply assigns that label to the 
unlabeled points. This workflow minimizes the user’s labe-
ling effort to quickly lead to sufficiently-large labeled sets 
for training the desired model. Interestingly, automatic label 
propagation in the embedded space using state-of-the-art 
methods [42, 43] leads to poorer results than user-driven 
labeling, which confirms the added value of the human-in-
the-loop, and thus of the projections.

However, optimal results are obtained when humans and 
machine cooperate, rather than aim to replace, each other. 

Fig. 2   Classification difficulty assessment via projections [37]
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Benato et al. [44] refined the above workflow to (a) use auto-
matic label propagation [42, 43] for the projection points 
where the propagation confidence is high; and (b) expose 
only the remaining unlabeled points to manual labeling (see 
Fig. 3). This way, many ‘easy to label’ points are handled 
automatically and the user’s effort is channeled towards the 
hard cases, further reducing the manual labeling effort. This 
strategy also leads to increasing model accuracy and, again, 
surpassed confidence-based label propagation into the high-
dimensional space.

Understanding DL Models

Deep learned (DL) models, with their millions of parame-
ters, are among the hardest artifacts in ML to understand [45, 
46]. Visualization has been listed early on as the technique 
of choice for explainable AI (XAI) for DL models [47]. A 
recent survey [33] outlines a wide spectrum of visual analyt-
ics techniques and tools used for DL engineering, grouped 
along how they support the tasks of training analysis (TA), 
architecture understanding (AU), and feature understand-
ing (FU). Given the diversity of these tasks, the variety of 
the proposed visualization solutions—e.g. matrix plots [48], 
icicle plots  [49], parallel coordinate plots  [50], stacked 

barcharts, annotated networks [51], activation maps [52]—
is not surprising.

Projections occupy a particular role among such visu-
alizations due to their ability to compactly capture high-
dimensional data—in the limit, a projection needs a single 
pixel to represent an n-dimensional point, for any value of n. 
As such, they are very suitable instruments to depict several 
aspects of a DL model. For example, in Fig. 4a, every point 
denotes a high-dimensional sample in D, in this case a digit 
image from the SVHN dataset [37]. The points, colored by 
their ground-truth classes, have as dimensions all activations 
of the last hidden layer—also called learned features—of a 
DL model trained to classify this dataset. We notice a good 
separation of same-class images (the projection contains 
compact same-color groups), which tells that the model’s 
training went well. We also see, for each color (class), two 
distinct such groups. This tells that the model has learned 
to split images of the same digit into two subclasses. Upon 
inspection, illustrated by the tooltips in the figure, we see 
that the model has learned by itself to separate dark-on-
bright-background digits from bright-on-dark background 
ones. Such findings would be hard to get without the projec-
tion-based visual exploration tool. Moreover, such findings 
can help fine-tuning the model to increase performance—in 

supervised

auto-labeled
candidates for manual

projection
P(D)

richly labeled dataset

standard ML training

user
interaction

sparsely
labeled 

dataset D

few ground-truth labels from D

high-confidence
automatically labeled points

automatic label
propagation

manually
assigned

labels

Fig. 3   Semi-automatic label propagation for constructing training 
sets. An algorithm propagates ground-truth labels from a small set of 
supervised samples towards unlabeled neighbor samples in the pro-

jection. When this algorithm is uncertain, samples are left for manual 
labeling [44]. See “Pseudolabeling for ML Training”



	 SN Computer Science           (2024) 5:279   279   Page 8 of 25

SN Computer Science

this case, eliminate the learning of the background-vs-fore-
ground artificial separation for same-class digits.

Figure 4b explores a different DL aspect, namely how the 
model learns. For every epoch, a projection of all training-
set samples is made, using as dimensions the samples’ last 
hidden layer activations, similar to image (a). To maintain 
temporal coherence, i.e., have similar-value samples from 
the same or different epochs project to close locations, a 
dynamic projection algorithm, in this case dt-SNE [53], was 
used (see further “Prospects of ML Assisting DR: Learning 
to See Better”). Next, same-sample points from all epochs 
are connected by a trail. As the last step, trails are bundled 
in 2D [54] to reduce visual clutter. The resulting image (b) 
shows how the projection literally ‘fans out’ from a dark 
clump (in the middle of the image), which represents the 
similar activations of all samples in the first epoch, to sepa-
rate clusters of same-label points (in the final epoch). This 
effectively summarizes the training success—the model has 
increasingly learned to separate the classes throughout its 
training. We also see some challenges of this model: The 
purple bundle (digit 4) is less well separated from the others, 
which indicates difficulties in classifying this digit.

Figure 4c shows a similarly constructed visualization but 
where the trails connect projections of test set image acti-
vations through all network’s hidden layers. Bundles start 
fanned out but apart from each other, indicating that the 
trained model successfully separates the classes even after 
its first layer. Same-color trails in a bundle progressively 
fan in and also stay separated from trails in other bundles, 
indicating that, as we go down the model towards its further 
layers, class separation only becomes better, i.e., that the 
chosen network architecture is indeed good for the classifi-
cation task at hand.

Decision Boundary Maps

A key aspect of ML classification models are points in their 
input data space Z ⊂ ℝ

n where f changes output, i.e., the 
inferred class. Given the continuity assumption behind most 
ML models, such points are located on hypersurfaces (mani-
folds) embedded in Z, also called decision surfaces (see the 
light blue surfaces in Fig. 5a). These partition the Z space 
into compact regions where the classifier has the same out-
put, also called decision zones.

As described so far, projections P(D) depict a discrete set 
of samples D, optionally color-coded to show the behavior 
of a ML model f. For the dataset D represented by the green 
points in Fig. 5a, this would yield the red-points scatterplot 
in Fig. 5b. Such images, however, do not explicitly show 
where decision boundaries are—we know that they occur 
somewhere between the red dots, but not where precisely. 
Depicting such boundaries, along the color-coded training 
and/or test sets of f, significantly improves the understand-
ing of how f actually behaves. This can help ML engineers 
to find where in the input space more training samples are 
needed to improve a classifier or, conversely, assess in which 
such areas would samples be misclassified.

Basic Idea of Decision Boundary Maps

Decision boundary maps (DBMs) propose such a visual rep-
resentation for both decision zones and boundaries for any 
classifier. Intuitively put, DBMs map the entire space Z (as 
classified by f) to 2D rather than the discrete sample set D, as 
follows. Given a training and/or test set D, a direct projection 
P is used to create a 2D embedding thereof. After that, given 
an image space I ⊂ ℝ

2 , a mapping P−1 ∶ I → ℝ
n is con-

structed to reverse the effects of P. The mapping P−1 is then 
used to ‘backproject’ each pixel y ∈ I to a high-dimensional 

Fig. 4   Projections for understanding DL models. Exploring (a) activations of similar instances, (b) evolution of activations over training epochs, 
and (c) evolution of activations over network layers [55]. See “Understanding DL Models”
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point x = P−1(y) , x ∈ Z . Finally, each pixel y is colored by 
the label f (x) assigned to it by the trained classifier to be 
explored. Same-color areas emerging in I indicate f’s deci-
sion zones; pixels on the frontiers of these areas show f’s 
decision boundaries. Figure 5d shows this for a KNN classi-
fier trained to produce the test set depicted by the projection 
in Fig. 5 for a six-class problem.

The key to DBM construction is creating the mapping 
P−1 for a given direct projection P. In principle, any com-
bination of P and P−1 can be used to construct a DBM 
for any given classifier by directly following the per-pixel 
procedure outlined above. However, earlier studies have 

shown that, for certain classification problems where one 
has ground-truth information about the expected out-
comes—for example, in the sense of the shapes, sizes, 
and smoothness of the decision zones that a given classi-
fier should create for that dataset—certain direct projec-
tions P and P−1 combinations work better [56, 57]. We 
discuss these aspects separately in “Deep Learning Inverse 
Projections”.

Enhancements of Basic DBMs

DBMs can be further enhanced to encode, via brightness, 
the classifier’s confidence at every 2D pixel (Fig. 6a, c) or 

Fig. 5   Decision boundary maps. 
a A high-dimensional dataset 
with its decision boundary 
hypersurfaces. b Projecting the 
samples (green) and decision 
boundaries (light blue) of this 
dataset yields the red 2D points, 
respectively, light blue 2D 
curves. c Example of such a 2D 
projection with samples colored 
by the class inferred by a ML 
model. d The decision zones 
for this classifier are depicted 
in the 2D projection space as 
same-color areas. See “Decision 
Boundary Maps”
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Fig. 6   Decision boundary maps for classifier analysis with luminance encoding classifier confidence (a, c)  [57, 58], respectively, distance-to-
decision-boundary (b) [56]. See “Decision Boundary Maps”

Fig. 7   Explanatory visualizations for interpreting DBMs. See “Decision Boundary Maps”
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the actual distance, in Z, to the closest decision boundary 
(Fig. 6b). The appearing brightness gradients tell which 
areas in the projection space are more prone to misclassi-
fications. Importantly, this does not require actual training 
or test samples to exist in these areas—rather, such samples 
are synthesized by P−1.

Interpreting confidence or distance-enhanced DBMs 
is, however, not trivial, as illustrated next by the example 
in Fig. 7. Image (a) shows the MNIST digit dataset [59] 
( n = 782 dimensions, |A| = 10 classes) projected to 2D using 
t-SNE and classified by a neural network. Image (b) shows 
the DBMs for this problem. Image (c) enhances this by 
encoding the classifier confidence encoded into brightness 
(dark=lower confidence). For clarity, image (d) shows the 
confidence information separately (green=low confidence; 
yellow=high confidence). The images (c) and (d) convey 
the impression that the visualized classifier is highly, and 
equally, confident in all areas except very close to its deci-
sion boundaries.

Combining this information with the distance-to-clos-
est-decision boundary reveals a different story. Image (e) 
shows this distance. In contrast to earlier techniques [56] 
(Fig. 6b) which use expensive iterative-search in the high-
dimensional space to locate, for each pixel y , the distance 
from x = P−1(y) to its closest decision boundary, we use 
here a simpler, and much faster approach. For each such 
point x , we synthesize its closest adversarial example a ∈ Z 
and approximate the sought distance as ‖x−a‖ using Deep-
Fool [60]. This is orders of magnitude faster than iterative 
search and allows generating the desired distances in sub-
second time on a commodity PC. Examining image (e), we 
see that the distance-to-boundary evolves very differently 
for the different decision zones and has complex patterns 
even in a single such zone, indicating that certain points 
are far closer to decision boundaries than others. For exam-
ple, the red decision zone, although appearing very close to 
its neighbors in the raw projection (Fig. 7a, is quite bright, 
telling that it is farther away from its surrounding decision 
boundaries, than the other, darker, zones. Image (f) shows 
the same information, but with inverse brightness mapping 
than in (e). This highlights zones close to decision bounda-
ries, i.e., where the classifier may have trouble. We see, for 
example, a small yellow decision zone (marked by a white 
triangle). This zone, which is also disconnected from the 
other, larger, yellow decision zone (thus, for the same class), 
is very bright in image (e), indicating that it is very close to 
decision boundaries. This likely indicates potential model 
instabilities in this area.

To explore this hypothesis, we perform a simple experi-
ment, as follows. We select ten pixels in the above-men-
tioned small yellow region, synthesize their corresponding 
data samples by P−1 , and add to them a wrong label—cor-
responding to the cyan color instead of the correct, yellow, 

label (see Fig. 7g, with the selected pixels marked in red). 
We next add these mislabeled points to the training set, re-
train the model, and visualize its DBM. The result (Fig. 7h), 
shows how the small yellow region has become cyan, which 
is potentially not surprising given our newly added labels. 
More interesting, however, we see large changes in decision 
zones of different classes adjacent to the yellow region: the 
dark-blue zone grows significantly to cut away a portion of 
the brown zone. This shows that few data changes in a small 
decision zone, potentially flagged by our DBM visualization 
as unstable, change indeed the overall behavior of the clas-
sifier even outside this zone.

Annotating a DBM with the classifier confidence and/
or distance to closest decision boundary does not, however, 
reveal all information that characterizes different decision 
zones. Indeed, one additional such information involves how 
close the DBM points are to the actual training points that 
the classifier was constructed from. We illustrate the added 
value of this information next. Images (c–f) in Fig. 7 show 
several large decision zones, e.g., the green and orange ones, 
which look quite similar from the perspective of confidence 
and distance to boundary—their inner pixels appear to be 
quite confident and far away from the surrounding decision 
boundaries. To gain more insight, we can visualize, for each 
pixel y , the distance of its corresponding data sample to the 
closest training-set point, i.e.

Figure 7i shows the distance dDt
 for our MNIST classifier, 

with dark blue indicating small distances and yellow large 
ones, respectively. We immediately see that all pixels of 
the orange decision zone are very close to the training-set, 
whereas pixels in all other zones appear much farther away. 
This indicates non-linear behavior of the DBM construction 
algorithm—the visible sizes of the decision zones in the 
DBM do not indicate actual sizes in the data space. Differ-
ently put, the orange decision zone is much closer ‘wrapped 
around’ training-set points than the other zones. This indi-
cates that, all other aspects being equal, one should have 
more trust in the classifier behavior in the orange zone, as 
its depicted points are much closer to the training set that the 
classifier was built from.

Additionally, we see in image (i) a bright yellow band at 
the bottom of the corresponding pink decision zone. This 
tells that points around this decision boundary (between the 
pink and green zone) are quite far away from any training-
set point. As such, even if the confidence of the classifier 
appears quite high in this area, apart from points very close 
to the decision boundary (see image (d)), the classifier 
extrapolates much farther away from its training data here, 
so, it is more prone to errors. Note that we would expect the 
confidence to drop as the data points become further apart 

(1)dDt
(y) = min

x∈Dt

‖P−1(y) − x‖.
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from the training set (intuitively, what the classifier learned 
from that training set is now ‘stretched’ to account for very 
different data), but this is not the case for this classifier. Our 
visualizations show that purely relying on classifier confi-
dence is not sufficient for users to gain enough understanding 
of what the classifier does in specific situations and, hence, 
whether they trust (or not) the classifier in those situations.

Besides the above, we see, within each decision zone, a 
varying color pattern consisting of dark ‘cells’ separated by 
slightly brighter bands. These indicate how the respective 
sub-areas in a decision zone have been created by samples 
in the training-set—much like the visualization of a Voronoi 
diagram whose sites are the training-set samples.

Figure 7j shows a final variation of the explanatory visu-
alizations for DBMs. Here, instead of depicting the distance 
of a map pixel to the closest training-set point, we show the 
distance to the closest training-set point of the same class 
as the pixel itself.

The distance dsameclass

Dt
 shows how far away samples that map 

to a decision zone are from training-set samples that led to 
the creation of that zone in the model f. We see that image 
(j) is quite similar to image (i). This is a positive finding, as 
it tells that pixels in a decision zone correspond to data 
points which are close to the training samples for that zone, 
which is indeed what a good DBM should show. In the same 
time, we see that the contrast between the orange and green 
zones, visible as dark blue, respectively, bright green in 
image (j), has increased. This tells that the decision bound-
ary between the orange and green zones is far closer to the 
orange training samples than to the green ones—an insight 
which the basic confidence or distance-to-boundary maps 
do not reveal.

Coverage Study of DBMs

As explained earlier in this section, and outlined in Fig. 5, 
DBMs aim to project the decision zones of a classifier act-
ing upon high-dimensional data into two-dimensional color 
patches. It is important to stress that this is a far more chal-
lenging problem than the one given to a ‘plain’ projection 
that acts upon a typical dataset D. Indeed, in virtually all 
cases, such datasets represent a carefully chosen sampling of 
a high-dimensional phenomenon, e.g., in terms of a training 
or test set. In contrast, a DBM aims, in theory, to project the 
entire high-dimensional space into 2D. A second difference 
regards how the data fed to projections, respectively, DBM 
methods, is created. For projections, the aforementioned 
sampling is typically carefully controlled by the creator of 
the respective training or test sets. For DBMs, the sampling 
of the high-dimensional space is, as explained earlier, done 

(2)dsameclass

Dt
(y) = min

x∈Dt�f (x)=f (P−1(y))
‖P−1(y) − x‖.

automatically based on the inverse projection P−1 being 
used. In summary, it is not evident which parts of the data 
space a DBM truly represents. Knowing this is crucial to 
further interpreting a DBM.

To gain more insight on this phenomenon, we executed a 
simple experiment. We generate a three-dimensional dataset 
having six concentrated blobs of samples, each blob having 
a separate class, following a Gaussian distribution. We next 
classify this dataset to obtain an 100% accuracy—which 
is expected, given the clear class separation. The choice 
of the used classifier is further not relevant given the sim-
ple nature of this dataset. Finally, we create DBMs for this 
classifier using the three available DBM techniques that 
we are aware of—the original decision map algorithm [56], 
the supervised version thereof called SDBM [57], and the 
DeepView technique [61] (more on these in “Deep Learn-
ing Inverse Projections”). Since the original dataset is 
three-dimensional, we can directly visualize it, and also 
the decision zones created by the three DBM techniques. 
To visualize these decision zones, we simply take all pixels 
corresponding to a decision zone in the 2D image, consider 
the quad mesh they form in that image via pixel adjacen-
cies, backproject these pixels to 3D, and draw the respective 
quad mesh.

Figure 8a–c shows the obtained decision zones for the 
three aforementioned DBM techniques, color coded by 
their corresponding classes. Surprisingly, in all cases, these 
zones appear as residing on a surface, whereas, knowing 
the structure of the underlying dataset, they should actu-
ally be volumetric zones that partition the 3D space into six 
regions corresponding to the six class labels. In other words, 
the existing DBM techniques only choose a very specific 
two-dimensional surface-like subspace Z′ of the entire data 
space to visualize. For clarity, note that this surface Z′ is not 
the same as the actual decision boundaries of the studied 
classifier. These boundaries cannot be directly shown by the 
studied DBM visualizations. Rather, only their intersections 
with the artificial surface Z′ are shown as the curves that 
separate different-color patches in Z′.

Image (d) illustrates this for the DBM map shown in 
image (a). Here, we sketch how the decision zones of three 
classes (yellow, blue, and purple) would arguably look like 
in 3D. As said, these are volumetric objects that enclose the 
training samples of their three respective classes. The border 
between the yellow and blue zones is the decision boundary 
Byb between these classes, which is a surface. However, only 
the curve-like intersection Byb ∩ Z� of this surface, indicated 
by the black curve in the figure, is shown by the DBM. Simi-
larly, the border between the yellow and purple zones is the 
decision boundary Byp between these two classes. However, 
in this case, the DBM does not show anything, since the 
surface Z′ it constructs does not reach to that area of the 
3D space, i.e., since Byb ∩ Z� = ∅ (dotted black curve in the 
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figure). This is due to the finite size of the 2D image that 
these methods construct.

Figure 8e summarizes the above by a simpler, lower 
dimensional, 2D sketch (all quantities in Fig. 8d thus become 
one dimension lower). We see here the decision zones (2D 
yellow and pink surfaces), actual decision boundary Byb 
(1D curve), surface Z′ constructed by the DBM method (1D 
curve), and the part of the decision boundary that a DBM 
method can depict ( Byb ∩ Z� , 0D point). As stated earlier, 
DBM methods only visualize a subset (0D point in this 
sketch) of the actual decision boundaries (1D curves in this 
sketch).

Summarizing our findings: (1) the way that a DBM 
method constructs the surface Z′ will strongly influence 
which parts of the actual decision zones of a classifier will 
be offered for visualization; (2) only a part of the actual 
decision boundaries of a classifier are visualized by DBM 

methods; and (3) different DBM methods will produce dif-
ferent decision map visualizations for the same dataset and 
classifier—therefore, potentially leading to different inter-
pretations. To our knowledge, none of these three findings 
have been outlined by earlier work on decision maps.

A final observation from Fig. 8 is that the above-men-
tioned surfaces Z′ appear to smoothly connect the samples 
D used by the direct projection P that go into generating 
the inverse projection P−1 . Intuitively put, they look like 
minimal tension surfaces [62] that pass close to samples 
in D. This further suggests that, if the data to classify Z 
lives in high dimensions on a surface, and if D closely 
samples this surface, DBM methods will work predictably 
well and, also, deliver similar results—so, the choice of 
the DBM method to use is less relevant. Conversely, if D 
contains points that cannot be fit along such a surface—
in other words, the sampled phenomenon has intrinsic 
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Fig. 8   Decision map methods construct and visualize their classifiers 
only over an implicitly constructed surface embedded in the high-
dimensional space. a DBM  [56]. b SDBM  [57]; c DeepView  [61]. 
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dimensionality higher than two—DBM methods may gen-
erate very different results depending on the actual dataset 
and DBM algorithm. This matches our earlier observation 
concerning the challenge of DBM methods to ‘squeeze’ a 
high-dimensional space into a 2D image. Designing more 
refined DBM algorithms that offer users a way to control 
which part of the high-dimensional space they sample to 
construct their classifier explanations is, thus, an impor-
tant direction for future work (see next “Prospects of DR 
Assisting ML: Seeing to Learn Better”).

Putting It All Together: Visual Analytics Workflow

At this point, we can further detail the general visual analyt-
ics workflow of ML assistance by DR techniques introduced 
in Fig. 1 (green arrows). Figure 9 does this by refining the 
workflow for using DR to assist ML proposed earlier by 
Rauber et al. (Fig. 1 in [37]) to include the DR-based tech-
niques discussed above in this section—all which are novel 
in comparison with [37]), apart from the classification ease 
analysis (see next). This gives a practical guideline on how 
to use the presented visualization techniques in practical ML 
engineering. In the following, numbers in the text indicate 
steps in the workflow Fig. 9.

•	 The process starts by acquiring a dataset that one wants 
to further analyze, e.g., classify, using ML.
–	 If not enough labeled samples are available (1), pseu-

dolabeling (“Pseudolabeling for ML Training”) can 
be used to create additional ones (2), else the process 
continues with the available data (3).

•	 From these data, features are typically extracted by vari-
ous processing operations (4).

•	 Next, DR is used to construct a projection (5) from the 
data.

•	 The projection is visually studied to assess whether the 
data form sufficiently separated classes to suggest a fea-
sible classification problem (“Assessing and Improving 
Classifiers”).
–	 If so (7), a ML architecture is chosen to design and 

train a model. Else, the workflow reverts to extract-
ing better features (6).

•	 DR-enabled techniques are next used to assess whether 
the training performed well (“Understanding DL Mod-
els”).

–	 If training is found unsatisfactory (9), the model is 
further inspected (“Understanding DL Models”) to 
find whether it has a poor design (10) or was fed by 
poor features (11).

In the former case, the model goes to redesign 
stage; in the latter, different features are extracted.

–	 If the model’s training was positively assessed (12), 
the flow continues with standard ML evaluation 
(testing).

Upon measuring satisfactory performance (13), 
the workflow ends with an operational model 
ready for use.
If testing performance is found too low (14), 
decision map techniques (“Decision Boundary 

need different features

data
findings

Legend

training data

validation data

projection studyfeature extraction

projected
data

dimensionality
reduction

processed
data

ML operations

system is ready

too low testing performance (misclassifications)

model evaluation

DBM study

model design training assessmentinput data

too few
labeled
samples

pseudolabeling

enough labeled samples

need more/different training data

poor training
performance

poor features

trained
model

input data

extra
labeled
data

good
training
performance

model inspection

poor model
design

1 2

3

4 5 7

6

8

9

10

11

12

13

14

15

16 good testing
performance

VA operations

Fig. 9   Workflow of using DR techniques to assist ML (see Fig. 1, green arrows). Visual analytics (VA) operations enabled by DR are marked by 
red-outlined boxes
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Maps”) can be used to find out whether different 
features (15) or if more (or different) training data 
is needed (16). In both such cases, the workflow 
continues from the respective earlier steps, as 
indicated in the figure.

Learning for Seeing: ML Assists DR

 Seeing for Learning: DR Assists ML has shown several 
examples of how DR visualizations help in several use-cases 
of ML engineering. In this section, we outline the opposite 
path, i.e., how ML techniques can be used to create DR visu-
alizations so as to surpass limitations of existing DR algo-
rithms. We discuss two classes of such methods for creating 
projections (“Deep Learning Projections”), respectively, 
inverse projections (“Deep Learning Inverse Projections”).

Deep Learning Projections

Tens of DR techniques have been developed in the visuali-
zation community. However, choosing such a technique to 
apply in practice, for instance for the ML use-cases outlined 
in “Seeing for Learning: DR Assists ML”, is challenging, 
as few comparisons of such techniques exist following all 
desirable requirements listed in “Common Aspects of DR 
and ML”. A recent survey [14] addressed this question at 
scale for the first time by comparing 44 projection tech-
niques P over 19 datasets D from the perspective of 6 quality 

metrics M, using grid-search to explore the hyperparameter 
spaces of the projection techniques. Equally important, all 
its results—datasets, projection techniques, quality metric 
implementations, study protocol—are automated and freely 
available, much like similar endeavors in the ML arena. Fol-
lowing the survey’s results, four projection methods consist-
ently scored high on quality for all datasets (UMAP [63], 
t-SNE [22], IDMAP [64], and PBC [65]), with several others 
close to them. However, none of the top-ranked surveyed 
techniques also met the OOS, computational scalability, and 
stability criteria. As such, we can conclude that better DR 
techniques are needed.

Following the analogy with ML regressors and given 
that such regressors meet the OOS, scalability, and stability 
criteria (“Interaction Between ML and DR”), it becomes 
interesting to consider ML for building better projection 
algorithms. Autoencoders [66] do precisely that and meet all 
requirements in “Interaction Between ML and DR” except 
quality—the resulting projections have in general poorer 
trustworthiness and continuity than state-of-the-art meth-
ods like UMAP and t-SNE. Figure 10 illustrates this: The 
well-known MNIST dataset, which is well separable into 
its 10 classes by many ML techniques, appears, wrongly, 
poorly separated when projected by autoencoders. Follow-
ing [37] (see also “Assessing and Improving Classifiers”, we 
can conclude that autoencoders are a poor solution for DR.

Fig. 10   Projection of MNIST dataset with (a) t-SNE  [22] and with 
deep learning methods: b NNP  [68], c kNNP  [70], d autoencod-
ers [66], e SSNP [71], f, g SHaRP [72] with elliptic, respectively, rec-

tangular, cluster shapes, and h–j HyperNP  [73] imitating t-SNE for 
three different perplexity values p 
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Basic Idea of Learning Projections

The idea of using deep learning to create an OOS projec-
tion is quite old. Pekalska et al. [67] proposed to do this 
to approximate Sammon’s mapping in a way that could be 
extended to approximate also other DR techniques. More 
recently, Espadoto et al.  [68] proposed Neural Network 
Projections (NNP), a supervised approach to learning DR: 
Given any dataset D and its projection P(D) computed by 
the user’s technique of choice P, a simple three-layer fully 
connected network is trained to learn to regress P(D) when 
given D. Despite its simplicity, NNP can learn to imitate any 
projection technique P for any dataset D surprisingly well. 
While NNP’s quality is typically slightly lower than state-of-
the-art projections like t-SNE and UMAP, it is a parametric 
method, stable as proven by sensitivity analysis studies [69], 
OOS, linear in the sample count N and dimensionality n (in 
practice, thousands of times faster than t-SNE), and very 
simple to implement.

OOS and Sensitivity Analysis

As explained earlier, the OOS and sensitivity (stability to 
small changes of the input) are related, but not identical, 
desirable properties. We illustrate both properties for NNP 
next, noting also that all other similar deep-learned projec-
tion algorithms (kNNP, SNNP, SHaRP, autoencoders) share 
by construction the same properties, since they use very 
similar neural network architectures.

Figure 11 (top two rows) illustrates NNP’s out-of-sample 
ability. The top row shows t-SNE projections of the MNIST 
dataset for an increasing number of samples (from 2K to 
100K). As visible, the projection continuously changes, 
making it hard for users to maintain their mental map of the 
studied data. The row below shows NNP trained to mimic 
t-SNE. We see that the shape of the projection and location 
of its ten clusters (one per class) stays the same as more 
samples are added. A drawback of this is that the cluster 
separation is lower than for the t-SNE projection as more 
samples are added. This is expected since NNP was trained 

Fig. 11   Top two rows: NNP out-of-sample (OOS) analysis. The top 
row shows projections of the MNIST dataset using t-SNE for increas-
ing numbers of samples in the test set D

T
 . The projection does not 

maintain stability. The second row shows how NNP maintains stabil-
ity as new samples are added to the test set. Bottom row: NNP sensi-

tivity analysis when removing between 10% and 90% of the dataset’s 
dimensions. NNP can robustly depict the data structure even when a 
large part of the input information is missing. See “Deep Learning 
Projections”
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only on the initial set of 2K samples, i.e., it did not have a 
chance to see the additional ones.

Figure 11 (bottom row) illustrates NNP’s stability. An 
NNP model is trained to project the MNIST dataset, after 
which is asked to project MNIST images where an increas-
ingly larger number of dimensions (pixel values) have been 
cancelled, i.e., set to zero. Surprisingly, NNP can capture 
the cluster structure of the data (10 classes for the 10 dig-
its) up to 40% cancelled dimensions. The aggregated image 
shows the ‘movement’ of the points in the NNP projection as 
increasingly more dimensions get dropped. Similar insights 
are obtained for other input dataset perturbations such as 
sample jitter, translation, and scaling. At a higher level, 
we see sensitivity analysis as a very powerful, yet under-
explored, technique—well known in the ML repertoire—to 
assess the quality of DR projections.

Refinements of NNP

Subsequent refinements of NNP aim to keep the attractive 
aspects of the method (speed, OOS, genericity, stability, 
simplicity) while increasing its quality and controlling the 
visual appearance of the resulting projections (see further 
Fig. 10). kNNP [70] enhances the projection quality, meas-
ured following the metrics introduced in “Background”, 
by learning to project sets of neighbor samples rather than 
individual samples. SSNP [71] works in a self-supervised 
way, similar to autoencoders, thus dispenses of the need 
of a training projection. The self-supervised information 
comes either in the form of ground-truth labels (when avail-
able) or pseudolabels computed by clustering the input data. 
Since based on an autoencoder structure, SSNP can also 
create inverse projections (see next “Deep Learning Inverse 
Projections”). SDR-NNP [74] increases NNP’s ability to 
separate clusters of different observations by pre-sharpening 
the input training set Dt via mean shift [75]. SHaRP [72] 
refines SSNP to allow one to control the shapes of clusters 
of similar observations to match desired templates such as 
ellipses, rectangles, or triangles. Finally, HyperNP [73] 
extends NNP by learning the behavior of a projection tech-
nique P for all its hyperparameter values, thereby allowing 
users to explore this parameter space at interactive rates. 
All the above results prove that DL is a serious contender 
for generating projections that comply with all requirements 
set forth by practice.

Deep Learning Inverse Projections

Following the success of DL for constructing projections P 
outlined above, it becomes immediately interesting to con-
sider their use for the complementary problem of computing 

inverse projections P−1 . Introduced in “Decision Boundary 
Maps” for constructing DBMs, inverse projections have 
additional uses, e.g., generating synthetic samples for data 
augmentation scenarios [76] and hypothesizing the unex-
plored regions of a sampled data space for, e.g., shape or 
image morphing applications [77].

Definition Formally put, given a direct projection func-
tion P ∶ ℝ

n
→ ℝ

q , with q ≪ n typically, the inverse pro-
jection is just the inverse of that function, i.e., a function 
P−1 ∶ ℝ

q
→ ℝ

n so that P−1(P(x)) = x for any x ∈ ℝ
n . Unfor-

tunately, computing such an exact inverse function is not 
possible for virtually any of the existing projection algo-
rithms P for one or several of the following reasons:

•	 Non-injectivity Typical projection functions P are not 
injective—that is, they can map different points in ℝn to 
the same location in ℝq . This is a direct, and probably 
unavoidable, consequence of the fact that q ≪ n;

•	 Non-parametric nature While we are talking about P 
as being a function between two spaces ( ℝn and ℝq ), 
many projection algorithms do not work in this fashion. 
Rather, they map a given sampling, or dataset, D ⊂ ℝ

n to 
another dataset P(D) ⊂ ℝ

q . When the dataset D changes, 
the mapping can change as well—that is, the same point 
x ∈ ℝ

n can be mapped to different locations in ℝq , 
depending on which other points it comes along with in 
D. This is precisely the lack of OOS ability discussed in 
“Deep Learning Projections” and illustrated, for t-SNE, 
in Fig. 11. Only a (small) subset of projection techniques 
are parametric, i.e., comply with the functional definition 
given above;

•	 Inverse problem Even for cases when an algorithmic 
functional definition of P is available and P is injective, 
computing its inverse can be quite challenging since 
inverse problems do not always have guaranteed unique 
and/or stable solutions.

To address the above three problems, the practical approach 
to computing P−1 is by various forms of approximation, as 
follows:

•	 Non-injectivity This aspect is usually neglected by practi-
cal algorithms that compute P−1 . That is, if two (or more) 
points xi ∈ ℝ

n map to the same location y ∈ ℝ
q , P−1(y) 

will yield a single value in ℝn;
•	 Non-parametric Nature Since most projections P are 

of this nature, inverse projections are usually defined 
in terms of a given dataset D ⊂ ℝ

n . For such a dataset, 
an inverse projection is a function that aims to yield 
P−1(P(x)) ≈ x for all x ∈ D . However, inverse projec-
tions need to be parametric themselves, i.e., applicable 
to any other values y ∈ Rq apart from P(D), otherwise 
they would not be useful for the tasks mentioned at the 
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beginning of this section. For such ‘unseen’ points y , 
P−1 is usually defined to work in a smooth manner—the 
closest y is to a known direct mapping P(x) , the closest 
should P−1(y) be to x.

•	 Inverse Problem Computing P−1 is usually done by min-
imizing suitably-chosen (convex) error functions that 
model the goal P−1(P(x)) ≈ x for all x ∈ D mentioned 
above. This simplifies and accelerates the computation 
problem using existing numerical optimization methods.

Early Inverse‑Projection Methods

Likely one of the earliest methods for computing inverse 
projections is by training an autoencoder to jointly perform 
P and P−1 [66]. While this method is simple to implement 
and fast to compute, it does not allow inverting any user-
chosen direct projection P. Moreover, projections created by 
autoencoders are of lower quality than other state-of-the-art 
techniques (see Fig. 10 and related text and also the evalu-
ation in [14].

Mamani et al. [78] presented a method that uses inverse 
projections to transform the high-dimensional data space 
based on manipulations of the two-dimensional, projection, 
space. This allows users to execute several potentially com-
plex operations that affect the invisible high-dimensional 
data based on a simple interface that allows direct manipula-
tion of 2D projection points. However, the proposed method 
does not directly allow inversely projecting new points—that 
is, 2D points which are not the direct projection of existing 
data points.

Amorim et al. [77, 79] presented iLAMP, a method for 
inverting the LAMP [19] projection technique using dis-
tance-based interpolation functions to mimic the relative 
position of a point in 2D vs its neighbors in P(D) onto the 
high-dimensional data space. iLAMP gives good results but 
is relatively slow and can only handle the LAMP projection.

Schulz et al. [58, 61] proposed DeepView to compute 
inverse projections using UMAP [63] as direct projection 
P. In contrast to UMAP, however, similarities of points are 
computed by combining their high-dimensional attributes 
with the outcome of a classifier f (similar to SSNP). The 
inverse projection is then computed also by UMAP from the 
projection of the given dataset P(D) and then extrapolated 
to the entire 2D space by minimizing the Kullback–Lei-
bler divergence (similar to t-SNE). DeepView yields quite 
smooth results (see its application for DBM construction in 
Fig. 6a) but is over an order of magnitude slower than the 
other P−1 techniques described here.

Deep Learning Inverse Projections

Following the success of NNP for direct projections (“Deep 
Learning Projections”), Espadoto et  al.  [80] computed 

inverse projections by simply ‘switching’ the input and out-
put of NNP, i.e., given a dataset D that projects to a 2D 
scatterplot by some technique P, train a regressor to output 
D when given P(D). This technique, called NNInv inherits 
all the desirable properties of NNP (“Deep Learning Pro-
jections”) and also produces higher-quality inverse projec-
tions than autoencoders and iLAMP. The usage of NNInv is 
illustrated in the DBM construction in Fig. 6b. Further vari-
ations of this design include SSNP [71] (used to construct 
the DBM in Fig. 6c and SHaRP [72]. Both techniques use 
an autoencoder basis so produce both a direct and inverse 
projection (see also “Deep Learning Projections”). However, 
their quality is higher than plain autoencoders and also than 
plain NNInv given their (self-)supervised operation based 
on class (pseudo)labels. Figure 12 illustrates this by com-
paring NNinv (first row) with SHaRP (second and third 
rows) for the construction of a decision map for a simple 
k-nearest neighbors (KNN) classifier ( k = 21 ) for four data-
sets of varying dimensionalities n. This is a novel insight as 
SHaRP has, so far, not been gauged on its performance for 
computing decision maps. We see that, similarly to SSNP 
(shown in Fig. 6c), SHaRP produces decision zones with 
smoother boundaries than NNInv, which are closer to the 
known ground-truth smooth boundaries (hyperplanes) that 
a KNN classifier should have.

Applications of Inverse Projections

NNInv was further explored in detail for visual analytics sce-
narios involving dynamic imputation and exploring ensem-
ble classifiers [81]. Figure 13 shows the latter use-case: In 
the image, each pixel is backprojected and ran through a set 
of nine classifiers, trained to separate classes 1 and 7 from 
the MNIST dataset. The pixel is then colored to indicate the 
classifiers’ agreement. Deep blue, respectively, red, zones 
show areas where all classifiers agree with class 1, respec-
tively, 7. Brighter areas indicate regions of high classifier 
disagreement—which are thus highly difficult to decide 
upon and are prime candidates for ML engineering, regard-
less of the used classifier.

Future Exploitations of the ML‑DR 
Connection

Reflecting upon the current achievements of using ML for 
DR and conversely, we see a bright future ahead for research 
where the two directions assist each other. We illustrate this 
with a few selected, non-exhaustive, examples of such poten-
tial ML-DR synergies.
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Prospects of DR Assisting ML: Seeing to Learn Better

Better DBMs One recent, and unexpected, result of our anal-
ysis is that all DBM methods only visualize a surface-like 
subset of the high-dimensional data space (see the coverage 
discussion in “Decision Boundary Maps”). This tells us that 
not only a small, surface-like, subset of a classifier’s behav-
ior is thus visualized, but also that how this subset is selected 
is not under the user’s control, but automatically determined 
by the inverse-projection method being used by the DBM 
algorithm. As such, the insights users will get from DBM 
methods applied to various classifiers and datasets will be 
highly dependent on the DBM technique in use. Even more 
critically, imagine a given, trained, classifier f whose input 
space is sampled by different test datasets D, each being 
used next to construct a decision map image. Such images 
will likely be (very) different since they depend on inverse 
projections constructed, in turn, from different datasets. This 

can be highly misleading given that we are visualizing the 
same, fixed, classifier f.

It is likely impossible to devise a DBM method that 
densely samples an entire high-dimensional space to con-
struct a classifier image. As such, we see two ways forward 
to improving DBMs: 

1.	 construct an inverse projection with predictable, guaran-
teed, behavior for a given sampling D of the data space;

2.	 allow users to control the surface that is backprojected 
by the inverse projection to sample the classifier.

Option 1 relates to how the aforementioned backpro-
jected surfaces are constructed by the function P−1 . All 
designs of inverse projections essentially minimize a cost 
which tells that points of a given projection P(x) have 
to backproject, via P−1 , one to one, to those of a given 
dataset D = {x} [58, 61, 71, 72, 77, 79, 80]. Hence, such 

Fig. 12   Comparison of decision maps constructed by NNinv [80] (top 
row) and SHaRP [72] (middle row: plain map; bottom row: map with 
classifier confidence encoded into color saturation) inverse-projection 

techniques, for a KNN classifier and four datasets (n indicates the 
dataset dimensionalities). See “Deep Learning Inverse Projections”
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backprojected surfaces can be thought of as level sets, or 
isosurfaces, of low values of the cost function. Analyzing 
them from this perspective can lead to important theoreti-
cal insights in their behavior.

Option 2 offers a more practical way forward. Simple 
ways can be devised to allow users to, e.g., shift this sur-
face in given directions and/or by given amounts in the 
data space by means of interactive controls applied to the 
2D image space. Similar ideas have been since long used, 
albeit in a different context, for the visualization of scalar 
functions of many variables [82]. The difference, in our 
case, is that we would start with a more complex surface, 
and would have to design intuitive ways to shift this sur-
face in meaningful directions in the data space. This idea 
could be further extended by allowing for sampling a thick 
‘band’ close to this surface. The challenge, in this case, 
would be to map this band to the 2D image space of a 
decision map.

DBMs in Use DBMs are not a goal in themselves, but a 
tool serving a goal. Apart from the scenarios depicted in 
Refs. [77, 79, 81], DBMs could be readily used in a visual 
analytics explorative scenario to drive a classifier’s train-
ing. If computable in real-time, users could visualize the 
DBMs, find problematic areas with respect to how the deci-
sion boundaries wrap around samples, and next modify the 

training set by, e.g., adding or deleting labels, adding new 
augmented samples, or even moving samples. We envisage 
a tool in which users could effectively ‘sculpt’ the shape of 
decision boundaries by sample manipulation much as one 
edits 2D shapes by manipulating spline control points. This 
would offer unprecedented freedom and a wholly new way 
of fine-tuning classifiers to extend the approaches pioneered 
in Refs. [41, 44].

Visualizing Regressors All visualizations examples shown 
in this paper have covered only the depiction of classifiers 
that output a single categorical value. However, as “Back-
ground” mentions, ML also studies multi-valued classifiers 
and, further, single-valued and multi-valued regressors. Con-
cerning decision maps, we are not aware of their extension 
to multi-valued classifiers. This could be achieved using 
multiple-view maps, one per classifier output, or categori-
cal color-coding of all multi-valued class combinations in a 
single decision map. Concerning regressors, recent results 
have shown how to extend the decision map metaphor to 
visualize single-valued regressors [83, 84]. However, this 
research only used a relatively low-quality projection (PCA), 
so it could be readily explored how better direct and inverse 
projections, like the ones described in “Deep Learning Pro-
jections” and “Deep Learning Inverse Projections” could 
improve its results. Visualizing multi-valued regressors is a 
harder problem as several continuous values would need to 
be displayed at each pixel. To assist this, techniques devel-
oped earlier in scientific visualization (tensor visualiza-
tion [85]) could offer an outcome.

Prospects of ML Assisting DR: Learning to See Better

Inverse-Projection Quality While many metrics exist to 
gauge the quality of direct projections (“Background”), 
there are no established ways to measure the quality of an 
inverse projection, apart from the simple mean-square-error 
(MSE) 

∑
x∈D ‖x − P(P−1(x))‖ [80]. This is not surprising 

since, as explained in “Deep Learning Inverse Projections”, 
inverse projections are mainly used to infer, or hypothesize, 
what the data would be in locations where no ground-truth 
is present—much like classical ML models are used in 
regression. As such, defining what a good inverse projec-
tion should return in such areas is conceptually hard. Yet, 
possibilities exist. One can, e.g., use a ML approach where 
an unseen test set is kept apart from the construction of the 
inverse projection and is used to assess the quality of such 
a trained model using the aforementioned MSE. An equally 
interesting question is how to design a scale, or hierarchy, of 
errors. It is likely that differently inversely projected points 
x� = P−1(P(x)) that deviate from its ground-truth location 
x by the same distance ‖x� − x‖ are not equally good, or 
equally bad, depending on the application perspective. As 

Fig. 13   Classifier agreement map for 9 classifiers, two-class prob-
lem (MNIST datasets digits 1 and 7). Dark colors indicate more of 
the 9 classifiers agreeing, at a pixel in the map, with their decisions 
(red = 1, blue = 7). Brighter, desaturated, colors indicate fewer clas-
sifiers in agreement (white=four classifiers output 1, the other five 
output 7, or conversely) [81]. See “Decision Boundary Maps”
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such, inverse-projection quality metrics may need to be 
designed in an application-specific way.

Also, similarly to direct projections [14], the quality of 
inverse projections can be measured not only globally (by 
a single aggregate metric) but also locally, at every pixel. 
The explanatory visualizations in Fig. 7 can be thought 
as being such per-pixel quality maps (for classifiers). For 
inverse projections, we are aware of a single such per-pixel 
quality visualization—gradient maps  [81]. Figure 14a 
shows this gradient map, which depicts the gradient mag-
nitude of the P−1 function (in this case constructed with 
NNInv) at every pixel. Hot, respectively, dark, regions in 
the map indicate nearby 2D points which backproject far 
away from, respectively, close to, each other. Points in the 

hot regions thus indicate areas where the inverse projec-
tion may be unstable, and as such, potentially create mis-
leading data. However, we cannot directly say that this is 
an error of the inverse projection P−1 . Such regions may 
correspond to areas where the direct projection P squeezed 
faraway data points to fit them in the 2D space—thus areas 
of low continuity [20]. Hence, analyzing inverse projection 
errors should go hand-in-hand with analyzing the errors 
of the direct projection it was computed for. For the latter, 
many per-pixel techniques are readily usable [10, 21, 25].

Figure 14b shows an additional use-case for gradient 
maps. The image depicts the gradient map of the NNInv 
inverse-projection method used to construct the decision 
map visualizations for the MNIST classifier explored in 

Fig. 14   a Gradient map of NNInv inverse projection constructed from 
a t-SNE projection of an uniformly sampled sphere. Hot, respectively, 
dark, regions indicate nearby 2D points that inversely project to far-
apart, respectively, close, nD points (green line, top sphere; orange 
line, bottom sphere, respectively). b Gradient map of NNInv inverse 
projection used to construct the decision maps for the MNIST clas-

sification in Fig. 7, with distance-to-closest-boundary map at the top 
(grayscale). c Two regions of large, respectively, low, gradients are 
sampled by the red, respectively, green, points. The corresponding 
images generated by NNInv are shown and confirm the large, respec-
tively, low, variations of the inverse projection in these areas. See 
“Prospects of ML Assisting DR: Learning to See Better”
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Fig. 7. Atop of this gradient map, we overlaid the classifier 
confidence (Fig. 7d), so the dark bands in the image cor-
respond to the classifier’s decision boundaries. For clar-
ity of exposition, we show atop image (b) the distance-
to-closest-boundary (same information as encoded in the 
luminance in Fig. 7e). Image (b) tells us several insights. 
We see that large inverse-projection gradients occur both 
along decision boundaries but also deep inside the deci-
sion zones. Also, these large gradients are not correlated 
with areas of low, or high, distance-to-closest boundary. 
Hence, the gradient map tells additional information not 
present in earlier visualizations. This information helps 
seeing where a classifier will be exposed to high data vari-
ability, thus, meet more challenges. We show this by tak-
ing five points ( A…E ) in a low-gradient, and five others 
( F… J ) in a high-gradient area, respectively. Figure 14c 
shows the MNIST images corresponding to these points. 
Indeed, we see how the respective digits vary significantly 
more in high-gradient areas than in low-gradient ones.

Learning styles All projection methods aim to encode the 
relative distance between data points in their resulting scat-
terplot. Atop of this, parametric projections aim to encode the 
actual data values. SHaRP extends this to force data clusters 
to specific shapes (“Deep Learning Projections”). Such strate-
gies could be extended to map other data attributes, such as 
sample density or specific value ranges, to the size, shape, and/
or position of point clusters in a projection. For DL methods, 
this could be done by refining their loss function. Addition-
ally, SHaRP could be extended to create a hierarchy aware 
projection algorithm that would combine the advantages of 
treemaps and classical projections, extending earlier ideas in 
this class [86].

A second extension would be to design local cost func-
tions that attempt to construct the projection by combining 
different criteria for different subsets of the input data—for 
example, to achieve a globally better projection that locally 
behaves like t-SNE in some areas and like UMAP in others. 
ML techniques can help here by, e.g., extending the HyperNP 
idea [73] to train from a set of projection techniques run on 
the same input dataset. Further inspiration can be gotten from 
recent ways in which DL is used for image synthesis and style 
transfer, e.g., [87].

Dynamic projections “Understanding DL Models” has 
briefly introduced dynamic projections. These are exten-
sions of the standard, static, projection techniques which aim 
to handle a dataset consisting of high-dimensional points 
which maintain their identity while changing their attribute 
values through time. Dynamic projections have a wealth of 
applications—simply put, anywhere one wants to study high-
dimensional data which changes over time. However, only a 
handful of dynamic projection techniques exist [32, 53, 88, 
89], and their quality—as gauged by established quality met-
rics—is good in data structure preservation or data dynamics 

preservation but not both aspects. Designing a dynamic pro-
jection technique that accurately maps both data structure and 
dynamics is a grand challenge for the infovis community. Fol-
lowing the good results of using ML for DR (“Learning for 
Seeing: ML Assists DR”, it looks highly interesting to explore 
ML (and in particular DL) to create dynamic projections. An 
issue here is that, since good ground-truth dynamic projections 
are relatively hard to construct, the supervised way (NNP-class 
methods) may be less preferable than the self-supervised 
(SSNP-like) direction.

Conclusions

In recent years, the research domains of dimensionality 
reduction (DR) and machine learning (ML) have came 
increasingly closer to each other, motivated by advances 
in ML techniques that help building better visualization 
algorithms, on the one hand, and by the need for visuali-
zation techniques to better explain the ‘black box’ behav-
ior of ML (and in particular deep learning) methods. The 
two salient keywords that are often used to describe the 
two fields—seeing (for DR) and learning (for ML) have 
become increasingly connected.

In this paper, we have presented an overview of recent 
connections between the two fields, with a focus on tech-
niques and methods in one field which assist tasks and use-
cases in the other, and also satisfy overall desirable criteria 
as genericity, computational scalability, stability, and ease 
of use. We have made the case that the two fields are com-
plementary, with key features being offered by methods in 
one field being required by methods in the other, therefore 
the potential for cross-fertilization. The first part of our 
overview (“Seeing for Learning: DR Assists ML”) showed 
how DR can assist ML tasks by examples in assessing 
the behavior of general-purpose classifiers, pseudolabe-
ling for creating large training sets, exploring the training 
and inference of deep learning models, and depicting the 
high-dimensional decision zones and boundaries of clas-
sifiers. The second part (“Learning for Seeing: ML Assists 
DR”) showed how ML can assist DR by examples covering 
the deep learning of projections and inverse projections. 
We concluded our presentation by outlining several high-
potential research directions at the crossroads of ML and 
DR based on the techniques discussed in this paper: using 
dense maps to explore and improve classifiers and regres-
sors; using ML to create highly customized, high-quality 
projections for both static and dynamic data; and develop-
ing inverse projections to meet all the quality standards 
that current direct projection techniques have.

We see this convergence trend which unites research 
and researchers in DR and ML growing in the near future, 
with both areas positively feeding each other in terms of 
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research questions and tasks, and also solutions. A strong 
common mathematical background unites researchers in 
the two fields, making it easy to exchange research ques-
tions, ideas, and results. Also, tools and techniques in both 
areas become increasingly more available which eases the 
development of joint solutions. Such developments, jointly 
enabled by DR and ML researchers, will have impact far 
beyond these two fields.
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