
Vol.:(0123456789)

SN Computer Science (2024) 5:279
https://doi.org/10.1007/s42979-024-02604-y

SN Computer Science

ORIGINAL RESEARCH

Seeing is Learning in High Dimensions: The Synergy Between
Dimensionality Reduction and Machine Learning

Alexandru Telea1 · Alister Machado1 · Yu Wang1

Received: 4 September 2023 / Accepted: 30 December 2023
© The Author(s) 2024

Abstract
High-dimensional data are a key study object for both machine learning (ML) and information visualization. On the visu-
alization side, dimensionality reduction (DR) methods, also called projections, are the most suited techniques for visual
exploration of large and high-dimensional datasets. On the ML side, high-dimensional data are generated and processed by
classifiers and regressors, and these techniques increasingly require visualization for explanation and exploration. In this
paper, we explore how both fields can help each other in achieving their respective aims. In more detail, we present both
examples that show how DR can be used to understand and engineer better ML models (seeing helps learning) and also
applications of DL for improving the computation of direct and inverse projections (learning helps seeing). We also identify
existing limitations of DR methods used to assist ML and of ML techniques applied to improve DR. Based on the above, we
propose several high-impact directions for future work that exploit the analyzed ML-DR synergy.

Keywords Multidimensional projections · Visual quality metrics · Explainable AI

Introduction

Machine learning (ML) has become one of the indispen-
sable instruments in data-driven science and virtually any
data-intensive application domain in our society. Recent
advances in the field have made it possible to create models
that predict or generate, with high accuracy, an increasing
range of phenomena stemming from fields as diverse as
image analysis and generation, natural language processing,

medical diagnosis, and economical and societal trends. In
parallel, developments in deep learning (DL), supported by
the massive increase of power of modern GPU computing,
have made the construction and deployment of powerful ML
models increasingly scalable and affordable.

At a high level, and without loss of generality, ML models
can be described as engines which process high-dimensional
data—that is, collections of observations (samples) con-
sisting of tens up to millions of individual measurements
(dimensions) of a given phenomenon. Such data occur
throughout the ML pipeline—it is present in the input of
the models (e.g., images consisting of millions of pixels);
in the internal working of such models (e.g., the so-called
activations of neural units in the many intermediate lay-
ers of a DL model), and also in the models’ output (e.g.,
the image created by generative AI techniques from given
inputs). As such, it is not surprising that understanding high-
dimensional data, and how it is transformed by ML models,
is a key goal and challenge in ML.

In a separate field, exploring and understanding high-
dimensional data are one of the top goals of information
visualization (infovis) [1–3]. During the last decades, many
techniques have been proposed to this end, including scat-
terplots and scatterplot matrices [4, 5], parallel coordinate
plots [6], table lenses [7, 8], and glyphs [9]. However, most

A. Machado and Y. Wang contributed equally to this work.

This article is part of the topical collection “Recent Trends on
Computer Vision, Imaging and Computer Graphics Theory and
Applications” guest edited by Kadi Bouatouch, A. Augusto Sousa,
Thomas Bashford-Rogers, Mounia Ziat and Helen Purchase.

 * Alexandru Telea
 a.c.telea@uu.nl

 Alister Machado
 a.machadodosreis@uu.nl

 Yu Wang
 y.wang6@uu.nl

1 Department of Information and Computing Science,
Utrecht University, Princetonplein 5, Utrecht 3584CC,
The Netherlands

http://orcid.org/0000-0003-0750-0502
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02604-y&domain=pdf

 SN Computer Science (2024) 5:279 279 Page 2 of 25

SN Computer Science

such techniques are fundamentally limited in the size of the
datasets they can depict: They can show either datasets hav-
ing many samples with few dimensions, few samples having
many dimensions, but not both.

Dimensionality reduction (DR) techniques, also called
multidimensional projections (MPs), are a family of visuali-
zation techniques that aim to solve the aforementioned visu-
alization scalability issue in both the sample and dimension
count. Simply put, given a high-dimensional dataset consist-
ing of several samples, DR techniques create a low-dimen-
sional (typically 2D or 3D) scatterplot in which close points
correspond to similar samples in the input dataset. This
allows users of DR visualizations to identify salient pat-
terns in the dataset in the form of clusters of closely packed
scatterplot points, clusters of points with different shapes or
densities, or outlier points [10–12]. Tens, if not hundreds,
of DR techniques have been designed to cater for the vari-
ous functional and non-functional requirements inherent to
the DR process, such as computational scalability, ability of
treating data of various types and dimensionality, handling
time-dependent data or data with missing values, ability of
depicting new samples along existing ones (out-of-sample
property), stability in the presence of noise, ability of cap-
turing specific aspects present in the input dataset, and ease
of use [12–14].

At a first glance, ML and DR are separate fields with
different goals. ML is chiefly concerned with learning a
model to predict the behavior of some phenomenon from
existing samples thereof. In a more general setting, this has
been extended to additional tasks such as data representa-
tion (autoencoders) or generative AI. For the purpose of our
discussion next, we will mainly focus on prediction tasks,
either in a classification or regression setting. DR aims at
depicting, or seeing, the samples of such a phenomenon. We
argue that these two goals are, however, strongly related, and
actually advances in one field directly support requirements
of the other field in both directions. Simply put, we argue
that seeing is learning, in both directions of the implication,
as outlined below:

• Learning Needs Seeing The ML field generates com-
plex models, whose ‘black-box’ behavior is increasingly
hard-to-understand by both their developers and users.
Understanding such models is increasingly important
for fine-tuning their behavior but also gaining trust in
their deployment. Such understanding can be massively
aided by seeing (visualizing) their structure and opera-
tion. Since ML models revolve around high-dimensional
data, and DR techniques are ideally suited for depicting
such data, DR techniques are a candidate of choice for
visualizing them;

• Seeing Needs Learning Existing DR techniques are
increasingly challenged by the already-mentioned sum of

requirements they have to cope with. Few, if any, of such
existing techniques can cope with all these requirements.
In contrast, many ML techniques are designed upfront
to handle such requirements, especially computational
scalability, accuracy, stability, and out-of-sample ability.
Given these, it makes sense to use ML techniques to learn
the high-to-low-dimensional mapping and thereby assist
the DR task.

In this paper, we extend our previous work [15] that explores
the commonalities of ML and DR techniques to bring more
evidence of existing, emerging, and potentially new interac-
tions between these two fields, but also highlight important
limitations of current ML-DR solutions. We proceed by
introducing our two fields of interest—ML and DR—with
an emphasis on their commonalities (“Background”). We
next explore in “Seeing for Learning: DR Assists ML” how
learning (ML) is supported by seeing (DR), especially in
the creation of visual analytics (VA) solutions for explain-
able artificial intelligence (XAI). Subsequently, we study in
“Learning for Seeing: ML Assists DR” the converse connec-
tion, that is, how seeing (DR) is supported by leaning (ML).
We further outline in “Future Exploitations of the ML-DR
Connection” new, emerging, connections between the two
fields that point to promising future research directions in
which the DR and ML fields can benefit from each other.
Finally, “Conclusions” concludes the paper.

Background

In this section, we aim to provide a general introduction to
ML and DR concepts, notations, and principles, with a focus
on highlighting the commonalities between the two fields,
which will be further explored in the remainder of the paper.

Notations Let D = {xi} be a dataset of n-dimensional sam-
ples, also called observations or data points xi , 1 ≤ i ≤ N . A
sample xi = (x1

i
,… , xn

i
) is a tuple of n components xj

i
 , also

called feature, variable, attribute, or dimension values. For
exposition simplicity, we next consider that xj

i
∈ ℝ (other

data domains are treated similarly for the purpose of our
discussion). We denote by Z ⊂ ℝ

n the spatial subset where
samples of a given phenomenon are found. For instance,
considering image data, only positive values (possibly bound
by a maximum) can denote pixel intensities. Following this
notation, D can be depicted as a table with N rows (one per
sample) and n columns (one per dimension). Typically, these
dimensions are considered to be independent variables, i.e.,
whose values are measured from the behavior of a given
phenomenon over Z. Atop of these, D can have one or more
dimensions (columns) of so-called dependent variables,
also called labels or annotations. We next consider a sin-
gle such dependent variable yi ∈ A , where A is the domain

SN Computer Science (2024) 5:279 Page 3 of 25 279

SN Computer Science

of definition of the labels, unless specified otherwise. We
denote the annotated dataset D by Da = [D|y].

Machine Learning Basics Given a so-called test set
DT ⊂ Da , machine learning (ML) techniques aim to create
a function (also called a model) f ∶ ℝ

n
→ A which predicts

the label values for most (ideally, all) samples in Da , i.e.,
f (xi) = yi , for (x1

i
,… , xn

i
, yi) ∈ DT . Models f are built using

a so-called training set Dt ⊂ Da , Dt ∩ DT = ∅ so as to maxi-
mize the aforementioned results on the test set. ML models
can be further split into classifiers, for which A is typically a
categorical dataset; and regressors, for which A is typically a
subset of ℝ . For regressors, f typically strives that f (xi) is as
close as possible to yi , whereas for classifiers exact equality
is aimed at.

Many methods exist to measure the performance of ML
models. The most widespread such methods measure sev-
eral so-called quality metrics on the training set (training
performance) and, separately, on the unseen test set (test-
ing performance). Common metrics include accuracy,
precision, recall, F-score, and Cohen’s kappa score. More
advanced methods take into account hyperparameters that
allow optimizing between precision and recall, e.g., the
Receiver Operator Characteristic (ROC) curve and area
underneath [16–18].

Dimensionality Reduction Basics A dimensionality
reduction technique, or multidimensional projection P, is a
function that maps every xi ∈ D to a point P(xi) ∈ ℝ

q . For
convenience, we next denote by P(D) = {P(xi)|xi ∈ D} the
projection of an entire dataset D. For visualization purposes,
q ∈ {2, 3} , i.e., P(D) is a 2D, respectively, 3D, scatterplot. At
a high level, all projection techniques P aim to preserve the
so-called structure of the dataset D, so that users can infer
this structure by visualizing P(D), following a well-known
inverse mapping principle in data visualization [2]. Forms
of such structure include, but are not limited to, clusters of
similar samples; clusters having different sample densities;
similarities between different samples; and outlier samples.
Structure-preserving projections map (some) of these data
properties to the corresponding properties of their generated
scatterplots. Usually, projections do not use data annotations
(even when these are available), but only independent vari-
ables—more on this aspect to be discussed further in “Deep
Learning Projections”.

Since data structure preservation entails several aspects,
as outlined above, different so-called quality metrics have
been devised to capture the abilities of a given P. A quality
metric is a function M(D,P(D)) → ℝ

+ that tells how well
the scatterplot P(D) captures a given aspect present in the
dataset D. At a high level, such metrics can be grouped into
(1) measuring distance preservation between pairs of sam-
ples, respectively, pairs of projection points, in ℝn and ℝq ,
respectively, such as normalized stress and the Shepard dia-
gram correlation [19]; and (2) measuring if neighborhoods

(groups of close points) in D are mapped to neighborhoods
in P(D), such as trustworthiness and continuity [20], false
and missing neighbors [21], and the Kullback–Leibler diver-
gence [22]. The latter class is extended for projections of
labeled data P(Da) by metrics such as neighborhood hit and
class consistency [23, 24]. Detailed surveys of projection
quality metrics are given in Refs. [10, 12, 14, 25].

Interaction Between ML and DR

As mentioned in “Introduction”, our central statement is that
learning (accomplished using ML) and seeing (visualiza-
tion accomplished using DR) are intimately related to each
other. This assertion, illustrated by Fig. 1, is explored next
in detail.

How DR Helps ML and Conversely

Machine Learning Pipeline The central box (Fig. 1 blue)
shows a technical view on the typical ML pipeline which
maps an input real-valued dataset D into class labels or
another real-valued signal by means of a classifier, respec-
tively, regressor. Such ML pipelines can be next deployed
to assist a wide variety of tasks. In our work here, we do not
further detail these, but rather focus on how DR techniques
can be used to assist the technical aspects of a typical, task-
generic, ML pipeline; and conversely, how ML techniques
can generically assist constructing better DR methods. As
explained earlier in “Introduction”, ML models operate on
high-dimensional data. The green arrows atop this pipeline
point to various visualization methods that use DR to depict
such data. Using such visualizations, one can literally ‘see’
how the model learns. We further exemplify the use of such
visualizations for ML tasks such as semi-automatic labe-
ling (“Pseudolabeling for ML Training”), assessing classi-
fication difficulty (“Assessing and Improving Classifiers”),
and assessing training of DL models (“Understanding DL
Models”).

Dimensionality Reduction Pipeline The bottom box
(Fig. 1 yellow) shows how ML regressors can be used
to create better DR projections of any high-dimensional
data. Examples of this process include (self-)supervised
projections and sensitivity analyses (“Deep Learning Pro-
jections”), inverse projections (“Deep Learning Inverse
Projections”), and quality analysis for inverse projections
(“Prospects of ML Assisting DR: Learning to See Better”).
Once such DR methods have been created, they can be used
for assisting ML engineering tasks, as shown by the red
arrow in Fig. 1.

 SN Computer Science (2024) 5:279 279 Page 4 of 25

SN Computer Science

Common Aspects of DR and ML

“How DR Helps ML and Conversely” and Fig. 1 have out-
lined how DR can help ML and conversely. As such, it is not
surprising that DL and ML share many common aspects.
We detail next such commonalities, grouped in functional
and non-functional ones, following a systems engineering
perspective [26].

Functional Commonalities

Functional aspects describe how a system should operate.
As already outlined, both ML models f and DR projection
methods P are specialized cases of inference involving
high-dimensional data. More specifically, P can be seen as
a particular type of regressor from ℝn to ℝ2 . Given this, we
next use the notation X to jointly denote an ML model or
DR algorithm, when distinguishing between the two is not
important.

Non‑functional Commonalities

Non-functional aspects describe how a system should behave
in practice. Without claiming full coverage, we identify the

following key aspects that both ML and DR techniques X
strive to achieve in their operation. We also outline cases
where these two classes of techniques achieve the respec-
tive requirements up to different degrees, thereby pointing
to potential synergies where one technique family can be
used to assist the other.

Genericity X should be readily applicable to any dataset
D—that is, of any dimensionality, attribute types, and prov-
enance application domain.

Accuracy X should deliver highly accurate results (infer-
ences for ML; projection scatterplots for DR) as gauged by
specific quality metrics in the two fields.

Scalability X should scale well computationally with the
number of samples N and dimensions n—ideally, X should
be linear in both N and n. In practice, X should be able to
handle datasets with millions of samples and hundreds of
dimensions on commodity hardware at interactive rates.
This further on enables the use of X in visual analytics (VA)
scenarios where the iterative and interactive exploration of
complex hypotheses via data visualization is essential. We
discuss this aspect further in “Seeing for Learning: DR
Assists ML” and “Learning for Seeing: ML Assists DR”.

Understandability For a technique to be useful and usable
in practice, its operation should be easily understandable by

Fig. 1 Two-way interaction between machine learning (ML) and dimensionality reduction (DR) workflows. ML algorithms can be used to con-
struct DR techniques. In turn, these can be used to construct explanatory visualizations for ML. See “Interaction Between ML and DR”

SN Computer Science (2024) 5:279 Page 5 of 25 279

SN Computer Science

its intended users. This requirement takes different forms
for ML and DR techniques. In general, ML techniques have
an easy-to-understand output—they are designed to infer
features having a clear meaning, e.g., the classes present in
a dataset. However, due to their often black-box nature, the
way in which they operate to do this is far less understand-
able, leading to challenges for their design, deployment, and
acceptance (see “Understanding DL Models”). In contrast,
most DR methods have a relatively clear way of operation.
However, their output—a raw scatterplot, in the minimal
case—is hard to interpret and requires additional explana-
tory mechanisms [21, 27–31].

Understandability is subtly related, but not identical, to
the concept of interpretability. As mentioned above, we
refer to understandability as the ‘low level’ ability of the
intended users of a technique or tool to grasp how the tool
works, at a basic level, so they are able to deploy it in prac-
tice. Interpretability operates at a higher conceptual level
and refers to the ability of the users to reason about how
the tool operates internally when executing its work. For
ML models, for instance, linear regression is arguably more
interpretable than deep neural networks due to its inherent
linear model. Similarly, PCA’s operation based on a global
and linear data transformation is easier to understand than
local and/or non-linear DR techniques such as t-SNE. In
our further discussion, we mainly focus on the lower level
of understandability.

Out of Sample (OOS) An operator X is said to be OOS
if it can extrapolate its behavior beyond the data from
which it was constructed. In ML, this usually means
that the model f extrapolates from a training set Dt to an
unseen test set DT and beyond. By analogy, a projection
P is OOS if, when extending some dataset D with addi-
tional samples D′ ⊈ D , the projection P(D ∪ D�) ideally
keeps the samples of D at the locations they had in P(D),
i.e., P(D ∪ D�) = P(D) ∪ P(D�) . If P is OOS, this helps users
to maintain their ‘mental map’ obtained by studying P(D)
when they further study P(D ∪ D�) . As most ML methods
are OOS by design, they can be potentially used to design
OOS projections (see next “Learning for Seeing: ML Assists
DR”).

Stability Small changes in the input dataset D should only
lead to small changes in the output dataset X(D). If not, spu-
rious perturbations in D can massively affect the resulting
inference X(D) thereby rendering such results potentially

unusable and/or misleading. Similarly, large-scale changes
in D should arguably lead to correspondingly large changes
in X(D). Stability is related but not the same as OOS: An
OOS algorithm is stable by definition but not all stable algo-
rithms are OOS [14, 32]. Most ML methods are OOS by
design, a property which is not shared by many projection
techniques—therefore, opening up an interesting case for
using ML for DR. We discuss stability and OOS in more
detail in “Deep Learning Projections” and “Prospects of ML
Assisting DR: Learning to See Better”.

Ease of Use Visualization methods aim, by construction,
to be easily usable by a wide range of users and with mini-
mal or no programming effort. In contrast, building—and
especially debugging and fine-tuning—an ML pipeline can
be challenging for practitioners with limited training in ML.
As such, this offers opportunities for using visualization (and
DR in particular) to ease the task of ML practitioners.

Availability X should be readily available to practitioners
in terms of documented open-source code. While sometimes
neglected, this is a key requirement for ML and DR algo-
rithms to become adopted and impactful in practice.

Table 1 compares how ML and DL techniques satisfy
in general the above requirements. Scores are given on a
5-point Likert scale (++: best; −− : worst), according to our
own experience. Besides genericity, where both ML and DR
algorithms score equally well, all other requirements are met
complementarity by the two algorithm families. This sup-
ports our earlier point that the two technique classes can
support each other, if combined properly.

We next explore these commonalities and contrasts by
first discussing how DR is used to help ML (“Seeing for
Learning: DR Assists ML”) and next how ML is used to cre-
ate better DR algorithms (“Learning for Seeing: ML Assists
DR”).

Seeing for Learning: DR Assists ML

Many examples of visualization applications that assist ML
workflows exist, most often coming in the form of com-
plex multiple-view visual analytics systems [33–36]. An
exhaustive presentation thereof is out of the scope of this
paper. Rather, we focus in the following on selected use-
cases where DR techniques have been used (with minimal

Table 1 Comparison of how ML and DR methods satisfy desirable requirements (Genericity, Accuracy, Scalability, UnderOut (understandabil-
ity of output), UnderAlg (understandability of algorithm), OOS, Stability, Ease of use, Availability)

Methods Gen Acc Scal UnderOut UnderAlg OOS Stab Ease Avail

ML ++ ++ ++ ++ −− ++ ++ 0 ++
DR ++ 0/+ 0 −− + −− − ++ ++

 SN Computer Science (2024) 5:279 279 Page 6 of 25

SN Computer Science

additions) to assist ML workflows: assessing and improving
classifiers (“Assessing and Improving Classifiers”), pseudo-
labeling for enriching training sets (“Pseudolabeling for ML
Training”), exploring deep learning models (“Understanding
DL Models”), and exploring classifier outputs via decision
boundary maps (“Decision Boundary Maps”).

Assessing and Improving Classifiers

One of the simplest, and still most frequently used, applica-
tion of DR in ML is to project a labeled training or test set
Da with points xi colored by their ground-truth labels yi or
labels f (xi) inferred by some classifier f. The rationale for
this use-case is straightforward: A projection places similar
samples close to each other; a classifier labels similar sam-
ples similarly; hence, the visual structure of the projection
helps several tasks:

• see how (and where) are misclassified samples distributed
over the extent of a test set DT (to next elicit what makes
them hard to classify);

• see how well a training set Dt covers the data space (to,
e.g., determine where extra training samples are needed);

• see how well a training set Dt is separated into different
same-label sample groups (to next predict the classifica-
tion ease).

The two first tasks are quite straightforward. In contrast,
the last task is particularly interesting. The intuition that a
projection P(D) which is well separated into compact same-
label groups indicates that D is easy to classify is quite old.
Yet, a formal study of this correlation was only relatively
recently presented [37]. In the respective work, the authors
show that, given a range of classifiers, a dataset D whose
projection P(D) has well-separated classes (as measured by
the neighborhood hit metric [23]) is far easier classifiable
than a dataset whose projection shows intermixed points of
different labels (low neighborhood hit). The projection P(D)
becomes a ‘predictor’ for the ease of classifying D, helping
one to assess classification difficulty before actually embark-
ing on the expensive cycle of classifier design-train-test.

Figure 2 illustrates the above usage of projections.
Images (a) and (b) show the two-class Madelon dataset [38]
(n = 500 dimensions, |A| = 2 classes) classified by KNN and
Random Forests (RFC), respectively, with samples projected
by t-SNE [22] and colored by class labels. The two projec-
tions show a very poor separation of the two classes, in line
with the obtained low accuracies AC = 54% and AC = 66%
(also visible by the misclassified samples, marked as tri-
angles). Images (c) and (d) show the same dataset where
extremely randomized trees [39] was used to select n = 20
dimensions. The projections show a much higher visual

separation of the two classes, in line with the higher accura-
cies AC = 88% and AC = 89% obtained. Many other exam-
ples in [37] show that projections can predict classification
accuracy quite well.

Pseudolabeling for ML Training

If projections are good predictors of classification accuracy,
it means that their low-dimensional (2D) space captures well
the similarity of the high-dimensional samples. This leads
to the idea of using projections to create, rather than just
explain, ML models. A first attempt was shown by Bernard
et al. [40] in the context of an user evaluation that compared
classical active learning with a user-supported procedure
they dubbed Visual Interactive Labeling (VIL). Next after
that, Benato et al. [41] proposed a very similar approach to
VIL, called visual pseudolabeling, aimed to assist building
a classifier from a training set having only very few labeled
points: The entire training set, including unlabeled points, is
projected and the user explores the projection to find unla-
beled points tightly packed around labeled ones. Next, the
user employs a tooltip to study the attributes of these points
to confirm that they have the same class as the surrounded
labeled one. If so, the user simply assigns that label to the
unlabeled points. This workflow minimizes the user’s labe-
ling effort to quickly lead to sufficiently-large labeled sets
for training the desired model. Interestingly, automatic label
propagation in the embedded space using state-of-the-art
methods [42, 43] leads to poorer results than user-driven
labeling, which confirms the added value of the human-in-
the-loop, and thus of the projections.

However, optimal results are obtained when humans and
machine cooperate, rather than aim to replace, each other.

Fig. 2 Classification difficulty assessment via projections [37]

SN Computer Science (2024) 5:279 Page 7 of 25 279

SN Computer Science

Benato et al. [44] refined the above workflow to (a) use auto-
matic label propagation [42, 43] for the projection points
where the propagation confidence is high; and (b) expose
only the remaining unlabeled points to manual labeling (see
Fig. 3). This way, many ‘easy to label’ points are handled
automatically and the user’s effort is channeled towards the
hard cases, further reducing the manual labeling effort. This
strategy also leads to increasing model accuracy and, again,
surpassed confidence-based label propagation into the high-
dimensional space.

Understanding DL Models

Deep learned (DL) models, with their millions of parame-
ters, are among the hardest artifacts in ML to understand [45,
46]. Visualization has been listed early on as the technique
of choice for explainable AI (XAI) for DL models [47]. A
recent survey [33] outlines a wide spectrum of visual analyt-
ics techniques and tools used for DL engineering, grouped
along how they support the tasks of training analysis (TA),
architecture understanding (AU), and feature understand-
ing (FU). Given the diversity of these tasks, the variety of
the proposed visualization solutions—e.g. matrix plots [48],
icicle plots [49], parallel coordinate plots [50], stacked

barcharts, annotated networks [51], activation maps [52]—
is not surprising.

Projections occupy a particular role among such visu-
alizations due to their ability to compactly capture high-
dimensional data—in the limit, a projection needs a single
pixel to represent an n-dimensional point, for any value of n.
As such, they are very suitable instruments to depict several
aspects of a DL model. For example, in Fig. 4a, every point
denotes a high-dimensional sample in D, in this case a digit
image from the SVHN dataset [37]. The points, colored by
their ground-truth classes, have as dimensions all activations
of the last hidden layer—also called learned features—of a
DL model trained to classify this dataset. We notice a good
separation of same-class images (the projection contains
compact same-color groups), which tells that the model’s
training went well. We also see, for each color (class), two
distinct such groups. This tells that the model has learned
to split images of the same digit into two subclasses. Upon
inspection, illustrated by the tooltips in the figure, we see
that the model has learned by itself to separate dark-on-
bright-background digits from bright-on-dark background
ones. Such findings would be hard to get without the projec-
tion-based visual exploration tool. Moreover, such findings
can help fine-tuning the model to increase performance—in

supervised

auto-labeled
candidates for manual

projection
P(D)

richly labeled dataset

standard ML training

user
interaction

sparsely
labeled

dataset D

few ground-truth labels from D

high-confidence
automatically labeled points

automatic label
propagation

manually
assigned

labels

Fig. 3 Semi-automatic label propagation for constructing training
sets. An algorithm propagates ground-truth labels from a small set of
supervised samples towards unlabeled neighbor samples in the pro-

jection. When this algorithm is uncertain, samples are left for manual
labeling [44]. See “Pseudolabeling for ML Training”

 SN Computer Science (2024) 5:279 279 Page 8 of 25

SN Computer Science

this case, eliminate the learning of the background-vs-fore-
ground artificial separation for same-class digits.

Figure 4b explores a different DL aspect, namely how the
model learns. For every epoch, a projection of all training-
set samples is made, using as dimensions the samples’ last
hidden layer activations, similar to image (a). To maintain
temporal coherence, i.e., have similar-value samples from
the same or different epochs project to close locations, a
dynamic projection algorithm, in this case dt-SNE [53], was
used (see further “Prospects of ML Assisting DR: Learning
to See Better”). Next, same-sample points from all epochs
are connected by a trail. As the last step, trails are bundled
in 2D [54] to reduce visual clutter. The resulting image (b)
shows how the projection literally ‘fans out’ from a dark
clump (in the middle of the image), which represents the
similar activations of all samples in the first epoch, to sepa-
rate clusters of same-label points (in the final epoch). This
effectively summarizes the training success—the model has
increasingly learned to separate the classes throughout its
training. We also see some challenges of this model: The
purple bundle (digit 4) is less well separated from the others,
which indicates difficulties in classifying this digit.

Figure 4c shows a similarly constructed visualization but
where the trails connect projections of test set image acti-
vations through all network’s hidden layers. Bundles start
fanned out but apart from each other, indicating that the
trained model successfully separates the classes even after
its first layer. Same-color trails in a bundle progressively
fan in and also stay separated from trails in other bundles,
indicating that, as we go down the model towards its further
layers, class separation only becomes better, i.e., that the
chosen network architecture is indeed good for the classifi-
cation task at hand.

Decision Boundary Maps

A key aspect of ML classification models are points in their
input data space Z ⊂ ℝ

n where f changes output, i.e., the
inferred class. Given the continuity assumption behind most
ML models, such points are located on hypersurfaces (mani-
folds) embedded in Z, also called decision surfaces (see the
light blue surfaces in Fig. 5a). These partition the Z space
into compact regions where the classifier has the same out-
put, also called decision zones.

As described so far, projections P(D) depict a discrete set
of samples D, optionally color-coded to show the behavior
of a ML model f. For the dataset D represented by the green
points in Fig. 5a, this would yield the red-points scatterplot
in Fig. 5b. Such images, however, do not explicitly show
where decision boundaries are—we know that they occur
somewhere between the red dots, but not where precisely.
Depicting such boundaries, along the color-coded training
and/or test sets of f, significantly improves the understand-
ing of how f actually behaves. This can help ML engineers
to find where in the input space more training samples are
needed to improve a classifier or, conversely, assess in which
such areas would samples be misclassified.

Basic Idea of Decision Boundary Maps

Decision boundary maps (DBMs) propose such a visual rep-
resentation for both decision zones and boundaries for any
classifier. Intuitively put, DBMs map the entire space Z (as
classified by f) to 2D rather than the discrete sample set D, as
follows. Given a training and/or test set D, a direct projection
P is used to create a 2D embedding thereof. After that, given
an image space I ⊂ ℝ

2 , a mapping P−1 ∶ I → ℝ
n is con-

structed to reverse the effects of P. The mapping P−1 is then
used to ‘backproject’ each pixel y ∈ I to a high-dimensional

Fig. 4 Projections for understanding DL models. Exploring (a) activations of similar instances, (b) evolution of activations over training epochs,
and (c) evolution of activations over network layers [55]. See “Understanding DL Models”

SN Computer Science (2024) 5:279 Page 9 of 25 279

SN Computer Science

point x = P−1(y) , x ∈ Z . Finally, each pixel y is colored by
the label f (x) assigned to it by the trained classifier to be
explored. Same-color areas emerging in I indicate f’s deci-
sion zones; pixels on the frontiers of these areas show f’s
decision boundaries. Figure 5d shows this for a KNN classi-
fier trained to produce the test set depicted by the projection
in Fig. 5 for a six-class problem.

The key to DBM construction is creating the mapping
P−1 for a given direct projection P. In principle, any com-
bination of P and P−1 can be used to construct a DBM
for any given classifier by directly following the per-pixel
procedure outlined above. However, earlier studies have

shown that, for certain classification problems where one
has ground-truth information about the expected out-
comes—for example, in the sense of the shapes, sizes,
and smoothness of the decision zones that a given classi-
fier should create for that dataset—certain direct projec-
tions P and P−1 combinations work better [56, 57]. We
discuss these aspects separately in “Deep Learning Inverse
Projections”.

Enhancements of Basic DBMs

DBMs can be further enhanced to encode, via brightness,
the classifier’s confidence at every 2D pixel (Fig. 6a, c) or

Fig. 5 Decision boundary maps.
a A high-dimensional dataset
with its decision boundary
hypersurfaces. b Projecting the
samples (green) and decision
boundaries (light blue) of this
dataset yields the red 2D points,
respectively, light blue 2D
curves. c Example of such a 2D
projection with samples colored
by the class inferred by a ML
model. d The decision zones
for this classifier are depicted
in the 2D projection space as
same-color areas. See “Decision
Boundary Maps”

 SN Computer Science (2024) 5:279 279 Page 10 of 25

SN Computer Science

Fig. 6 Decision boundary maps for classifier analysis with luminance encoding classifier confidence (a, c) [57, 58], respectively, distance-to-
decision-boundary (b) [56]. See “Decision Boundary Maps”

Fig. 7 Explanatory visualizations for interpreting DBMs. See “Decision Boundary Maps”

SN Computer Science (2024) 5:279 Page 11 of 25 279

SN Computer Science

the actual distance, in Z, to the closest decision boundary
(Fig. 6b). The appearing brightness gradients tell which
areas in the projection space are more prone to misclassi-
fications. Importantly, this does not require actual training
or test samples to exist in these areas—rather, such samples
are synthesized by P−1.

Interpreting confidence or distance-enhanced DBMs
is, however, not trivial, as illustrated next by the example
in Fig. 7. Image (a) shows the MNIST digit dataset [59]
(n = 782 dimensions, |A| = 10 classes) projected to 2D using
t-SNE and classified by a neural network. Image (b) shows
the DBMs for this problem. Image (c) enhances this by
encoding the classifier confidence encoded into brightness
(dark=lower confidence). For clarity, image (d) shows the
confidence information separately (green=low confidence;
yellow=high confidence). The images (c) and (d) convey
the impression that the visualized classifier is highly, and
equally, confident in all areas except very close to its deci-
sion boundaries.

Combining this information with the distance-to-clos-
est-decision boundary reveals a different story. Image (e)
shows this distance. In contrast to earlier techniques [56]
(Fig. 6b) which use expensive iterative-search in the high-
dimensional space to locate, for each pixel y , the distance
from x = P−1(y) to its closest decision boundary, we use
here a simpler, and much faster approach. For each such
point x , we synthesize its closest adversarial example a ∈ Z
and approximate the sought distance as ‖x−a‖ using Deep-
Fool [60]. This is orders of magnitude faster than iterative
search and allows generating the desired distances in sub-
second time on a commodity PC. Examining image (e), we
see that the distance-to-boundary evolves very differently
for the different decision zones and has complex patterns
even in a single such zone, indicating that certain points
are far closer to decision boundaries than others. For exam-
ple, the red decision zone, although appearing very close to
its neighbors in the raw projection (Fig. 7a, is quite bright,
telling that it is farther away from its surrounding decision
boundaries, than the other, darker, zones. Image (f) shows
the same information, but with inverse brightness mapping
than in (e). This highlights zones close to decision bounda-
ries, i.e., where the classifier may have trouble. We see, for
example, a small yellow decision zone (marked by a white
triangle). This zone, which is also disconnected from the
other, larger, yellow decision zone (thus, for the same class),
is very bright in image (e), indicating that it is very close to
decision boundaries. This likely indicates potential model
instabilities in this area.

To explore this hypothesis, we perform a simple experi-
ment, as follows. We select ten pixels in the above-men-
tioned small yellow region, synthesize their corresponding
data samples by P−1 , and add to them a wrong label—cor-
responding to the cyan color instead of the correct, yellow,

label (see Fig. 7g, with the selected pixels marked in red).
We next add these mislabeled points to the training set, re-
train the model, and visualize its DBM. The result (Fig. 7h),
shows how the small yellow region has become cyan, which
is potentially not surprising given our newly added labels.
More interesting, however, we see large changes in decision
zones of different classes adjacent to the yellow region: the
dark-blue zone grows significantly to cut away a portion of
the brown zone. This shows that few data changes in a small
decision zone, potentially flagged by our DBM visualization
as unstable, change indeed the overall behavior of the clas-
sifier even outside this zone.

Annotating a DBM with the classifier confidence and/
or distance to closest decision boundary does not, however,
reveal all information that characterizes different decision
zones. Indeed, one additional such information involves how
close the DBM points are to the actual training points that
the classifier was constructed from. We illustrate the added
value of this information next. Images (c–f) in Fig. 7 show
several large decision zones, e.g., the green and orange ones,
which look quite similar from the perspective of confidence
and distance to boundary—their inner pixels appear to be
quite confident and far away from the surrounding decision
boundaries. To gain more insight, we can visualize, for each
pixel y , the distance of its corresponding data sample to the
closest training-set point, i.e.

Figure 7i shows the distance dDt
 for our MNIST classifier,

with dark blue indicating small distances and yellow large
ones, respectively. We immediately see that all pixels of
the orange decision zone are very close to the training-set,
whereas pixels in all other zones appear much farther away.
This indicates non-linear behavior of the DBM construction
algorithm—the visible sizes of the decision zones in the
DBM do not indicate actual sizes in the data space. Differ-
ently put, the orange decision zone is much closer ‘wrapped
around’ training-set points than the other zones. This indi-
cates that, all other aspects being equal, one should have
more trust in the classifier behavior in the orange zone, as
its depicted points are much closer to the training set that the
classifier was built from.

Additionally, we see in image (i) a bright yellow band at
the bottom of the corresponding pink decision zone. This
tells that points around this decision boundary (between the
pink and green zone) are quite far away from any training-
set point. As such, even if the confidence of the classifier
appears quite high in this area, apart from points very close
to the decision boundary (see image (d)), the classifier
extrapolates much farther away from its training data here,
so, it is more prone to errors. Note that we would expect the
confidence to drop as the data points become further apart

(1)dDt
(y) = min

x∈Dt

‖P−1(y) − x‖.

 SN Computer Science (2024) 5:279 279 Page 12 of 25

SN Computer Science

from the training set (intuitively, what the classifier learned
from that training set is now ‘stretched’ to account for very
different data), but this is not the case for this classifier. Our
visualizations show that purely relying on classifier confi-
dence is not sufficient for users to gain enough understanding
of what the classifier does in specific situations and, hence,
whether they trust (or not) the classifier in those situations.

Besides the above, we see, within each decision zone, a
varying color pattern consisting of dark ‘cells’ separated by
slightly brighter bands. These indicate how the respective
sub-areas in a decision zone have been created by samples
in the training-set—much like the visualization of a Voronoi
diagram whose sites are the training-set samples.

Figure 7j shows a final variation of the explanatory visu-
alizations for DBMs. Here, instead of depicting the distance
of a map pixel to the closest training-set point, we show the
distance to the closest training-set point of the same class
as the pixel itself.

The distance dsameclass

Dt
 shows how far away samples that map

to a decision zone are from training-set samples that led to
the creation of that zone in the model f. We see that image
(j) is quite similar to image (i). This is a positive finding, as
it tells that pixels in a decision zone correspond to data
points which are close to the training samples for that zone,
which is indeed what a good DBM should show. In the same
time, we see that the contrast between the orange and green
zones, visible as dark blue, respectively, bright green in
image (j), has increased. This tells that the decision bound-
ary between the orange and green zones is far closer to the
orange training samples than to the green ones—an insight
which the basic confidence or distance-to-boundary maps
do not reveal.

Coverage Study of DBMs

As explained earlier in this section, and outlined in Fig. 5,
DBMs aim to project the decision zones of a classifier act-
ing upon high-dimensional data into two-dimensional color
patches. It is important to stress that this is a far more chal-
lenging problem than the one given to a ‘plain’ projection
that acts upon a typical dataset D. Indeed, in virtually all
cases, such datasets represent a carefully chosen sampling of
a high-dimensional phenomenon, e.g., in terms of a training
or test set. In contrast, a DBM aims, in theory, to project the
entire high-dimensional space into 2D. A second difference
regards how the data fed to projections, respectively, DBM
methods, is created. For projections, the aforementioned
sampling is typically carefully controlled by the creator of
the respective training or test sets. For DBMs, the sampling
of the high-dimensional space is, as explained earlier, done

(2)dsameclass

Dt
(y) = min

x∈Dt�f (x)=f (P−1(y))
‖P−1(y) − x‖.

automatically based on the inverse projection P−1 being
used. In summary, it is not evident which parts of the data
space a DBM truly represents. Knowing this is crucial to
further interpreting a DBM.

To gain more insight on this phenomenon, we executed a
simple experiment. We generate a three-dimensional dataset
having six concentrated blobs of samples, each blob having
a separate class, following a Gaussian distribution. We next
classify this dataset to obtain an 100% accuracy—which
is expected, given the clear class separation. The choice
of the used classifier is further not relevant given the sim-
ple nature of this dataset. Finally, we create DBMs for this
classifier using the three available DBM techniques that
we are aware of—the original decision map algorithm [56],
the supervised version thereof called SDBM [57], and the
DeepView technique [61] (more on these in “Deep Learn-
ing Inverse Projections”). Since the original dataset is
three-dimensional, we can directly visualize it, and also
the decision zones created by the three DBM techniques.
To visualize these decision zones, we simply take all pixels
corresponding to a decision zone in the 2D image, consider
the quad mesh they form in that image via pixel adjacen-
cies, backproject these pixels to 3D, and draw the respective
quad mesh.

Figure 8a–c shows the obtained decision zones for the
three aforementioned DBM techniques, color coded by
their corresponding classes. Surprisingly, in all cases, these
zones appear as residing on a surface, whereas, knowing
the structure of the underlying dataset, they should actu-
ally be volumetric zones that partition the 3D space into six
regions corresponding to the six class labels. In other words,
the existing DBM techniques only choose a very specific
two-dimensional surface-like subspace Z′ of the entire data
space to visualize. For clarity, note that this surface Z′ is not
the same as the actual decision boundaries of the studied
classifier. These boundaries cannot be directly shown by the
studied DBM visualizations. Rather, only their intersections
with the artificial surface Z′ are shown as the curves that
separate different-color patches in Z′.

Image (d) illustrates this for the DBM map shown in
image (a). Here, we sketch how the decision zones of three
classes (yellow, blue, and purple) would arguably look like
in 3D. As said, these are volumetric objects that enclose the
training samples of their three respective classes. The border
between the yellow and blue zones is the decision boundary
Byb between these classes, which is a surface. However, only
the curve-like intersection Byb ∩ Z� of this surface, indicated
by the black curve in the figure, is shown by the DBM. Simi-
larly, the border between the yellow and purple zones is the
decision boundary Byp between these two classes. However,
in this case, the DBM does not show anything, since the
surface Z′ it constructs does not reach to that area of the
3D space, i.e., since Byb ∩ Z� = ∅ (dotted black curve in the

SN Computer Science (2024) 5:279 Page 13 of 25 279

SN Computer Science

figure). This is due to the finite size of the 2D image that
these methods construct.

Figure 8e summarizes the above by a simpler, lower
dimensional, 2D sketch (all quantities in Fig. 8d thus become
one dimension lower). We see here the decision zones (2D
yellow and pink surfaces), actual decision boundary Byb
(1D curve), surface Z′ constructed by the DBM method (1D
curve), and the part of the decision boundary that a DBM
method can depict (Byb ∩ Z� , 0D point). As stated earlier,
DBM methods only visualize a subset (0D point in this
sketch) of the actual decision boundaries (1D curves in this
sketch).

Summarizing our findings: (1) the way that a DBM
method constructs the surface Z′ will strongly influence
which parts of the actual decision zones of a classifier will
be offered for visualization; (2) only a part of the actual
decision boundaries of a classifier are visualized by DBM

methods; and (3) different DBM methods will produce dif-
ferent decision map visualizations for the same dataset and
classifier—therefore, potentially leading to different inter-
pretations. To our knowledge, none of these three findings
have been outlined by earlier work on decision maps.

A final observation from Fig. 8 is that the above-men-
tioned surfaces Z′ appear to smoothly connect the samples
D used by the direct projection P that go into generating
the inverse projection P−1 . Intuitively put, they look like
minimal tension surfaces [62] that pass close to samples
in D. This further suggests that, if the data to classify Z
lives in high dimensions on a surface, and if D closely
samples this surface, DBM methods will work predictably
well and, also, deliver similar results—so, the choice of
the DBM method to use is less relevant. Conversely, if D
contains points that cannot be fit along such a surface—
in other words, the sampled phenomenon has intrinsic

a) b) c)

decision zone of
yellow class

decision zone of
purple class

decision boundary B
yp

∩ Z’
yellow-purple classes
(not shown by DBM)

decision zone of
blue class

decision boundary B
yb

∩ Z’
yellow-blue classes

(shown by DBM)

d)

surface Z’

e)

decision zone of
yellow class

decision zone of
purple class

decision boundary B
yb

yellow-blue classessurface Z’

B
yb

∩ Z’

Fig. 8 Decision map methods construct and visualize their classifiers
only over an implicitly constructed surface embedded in the high-
dimensional space. a DBM [56]. b SDBM [57]; c DeepView [61].

d Limitations of decision map visualizations. e 2D sketch of d. See
“Decision Boundary Maps”

 SN Computer Science (2024) 5:279 279 Page 14 of 25

SN Computer Science

dimensionality higher than two—DBM methods may gen-
erate very different results depending on the actual dataset
and DBM algorithm. This matches our earlier observation
concerning the challenge of DBM methods to ‘squeeze’ a
high-dimensional space into a 2D image. Designing more
refined DBM algorithms that offer users a way to control
which part of the high-dimensional space they sample to
construct their classifier explanations is, thus, an impor-
tant direction for future work (see next “Prospects of DR
Assisting ML: Seeing to Learn Better”).

Putting It All Together: Visual Analytics Workflow

At this point, we can further detail the general visual analyt-
ics workflow of ML assistance by DR techniques introduced
in Fig. 1 (green arrows). Figure 9 does this by refining the
workflow for using DR to assist ML proposed earlier by
Rauber et al. (Fig. 1 in [37]) to include the DR-based tech-
niques discussed above in this section—all which are novel
in comparison with [37]), apart from the classification ease
analysis (see next). This gives a practical guideline on how
to use the presented visualization techniques in practical ML
engineering. In the following, numbers in the text indicate
steps in the workflow Fig. 9.

• The process starts by acquiring a dataset that one wants
to further analyze, e.g., classify, using ML.
– If not enough labeled samples are available (1), pseu-

dolabeling (“Pseudolabeling for ML Training”) can
be used to create additional ones (2), else the process
continues with the available data (3).

• From these data, features are typically extracted by vari-
ous processing operations (4).

• Next, DR is used to construct a projection (5) from the
data.

• The projection is visually studied to assess whether the
data form sufficiently separated classes to suggest a fea-
sible classification problem (“Assessing and Improving
Classifiers”).
– If so (7), a ML architecture is chosen to design and

train a model. Else, the workflow reverts to extract-
ing better features (6).

• DR-enabled techniques are next used to assess whether
the training performed well (“Understanding DL Mod-
els”).

– If training is found unsatisfactory (9), the model is
further inspected (“Understanding DL Models”) to
find whether it has a poor design (10) or was fed by
poor features (11).

In the former case, the model goes to redesign
stage; in the latter, different features are extracted.

– If the model’s training was positively assessed (12),
the flow continues with standard ML evaluation
(testing).

Upon measuring satisfactory performance (13),
the workflow ends with an operational model
ready for use.
If testing performance is found too low (14),
decision map techniques (“Decision Boundary

need different features

data
findings

Legend

training data

validation data

projection studyfeature extraction

projected
data

dimensionality
reduction

processed
data

ML operations

system is ready

too low testing performance (misclassifications)

model evaluation

DBM study

model design training assessmentinput data

too few
labeled
samples

pseudolabeling

enough labeled samples

need more/different training data

poor training
performance

poor features

trained
model

input data

extra
labeled
data

good
training
performance

model inspection

poor model
design

1 2

3

4 5 7

6

8

9

10

11

12

13

14

15

16 good testing
performance

VA operations

Fig. 9 Workflow of using DR techniques to assist ML (see Fig. 1, green arrows). Visual analytics (VA) operations enabled by DR are marked by
red-outlined boxes

SN Computer Science (2024) 5:279 Page 15 of 25 279

SN Computer Science

Maps”) can be used to find out whether different
features (15) or if more (or different) training data
is needed (16). In both such cases, the workflow
continues from the respective earlier steps, as
indicated in the figure.

Learning for Seeing: ML Assists DR

 Seeing for Learning: DR Assists ML has shown several
examples of how DR visualizations help in several use-cases
of ML engineering. In this section, we outline the opposite
path, i.e., how ML techniques can be used to create DR visu-
alizations so as to surpass limitations of existing DR algo-
rithms. We discuss two classes of such methods for creating
projections (“Deep Learning Projections”), respectively,
inverse projections (“Deep Learning Inverse Projections”).

Deep Learning Projections

Tens of DR techniques have been developed in the visuali-
zation community. However, choosing such a technique to
apply in practice, for instance for the ML use-cases outlined
in “Seeing for Learning: DR Assists ML”, is challenging,
as few comparisons of such techniques exist following all
desirable requirements listed in “Common Aspects of DR
and ML”. A recent survey [14] addressed this question at
scale for the first time by comparing 44 projection tech-
niques P over 19 datasets D from the perspective of 6 quality

metrics M, using grid-search to explore the hyperparameter
spaces of the projection techniques. Equally important, all
its results—datasets, projection techniques, quality metric
implementations, study protocol—are automated and freely
available, much like similar endeavors in the ML arena. Fol-
lowing the survey’s results, four projection methods consist-
ently scored high on quality for all datasets (UMAP [63],
t-SNE [22], IDMAP [64], and PBC [65]), with several others
close to them. However, none of the top-ranked surveyed
techniques also met the OOS, computational scalability, and
stability criteria. As such, we can conclude that better DR
techniques are needed.

Following the analogy with ML regressors and given
that such regressors meet the OOS, scalability, and stability
criteria (“Interaction Between ML and DR”), it becomes
interesting to consider ML for building better projection
algorithms. Autoencoders [66] do precisely that and meet all
requirements in “Interaction Between ML and DR” except
quality—the resulting projections have in general poorer
trustworthiness and continuity than state-of-the-art meth-
ods like UMAP and t-SNE. Figure 10 illustrates this: The
well-known MNIST dataset, which is well separable into
its 10 classes by many ML techniques, appears, wrongly,
poorly separated when projected by autoencoders. Follow-
ing [37] (see also “Assessing and Improving Classifiers”, we
can conclude that autoencoders are a poor solution for DR.

Fig. 10 Projection of MNIST dataset with (a) t-SNE [22] and with
deep learning methods: b NNP [68], c kNNP [70], d autoencod-
ers [66], e SSNP [71], f, g SHaRP [72] with elliptic, respectively, rec-

tangular, cluster shapes, and h–j HyperNP [73] imitating t-SNE for
three different perplexity values p

 SN Computer Science (2024) 5:279 279 Page 16 of 25

SN Computer Science

Basic Idea of Learning Projections

The idea of using deep learning to create an OOS projec-
tion is quite old. Pekalska et al. [67] proposed to do this
to approximate Sammon’s mapping in a way that could be
extended to approximate also other DR techniques. More
recently, Espadoto et al. [68] proposed Neural Network
Projections (NNP), a supervised approach to learning DR:
Given any dataset D and its projection P(D) computed by
the user’s technique of choice P, a simple three-layer fully
connected network is trained to learn to regress P(D) when
given D. Despite its simplicity, NNP can learn to imitate any
projection technique P for any dataset D surprisingly well.
While NNP’s quality is typically slightly lower than state-of-
the-art projections like t-SNE and UMAP, it is a parametric
method, stable as proven by sensitivity analysis studies [69],
OOS, linear in the sample count N and dimensionality n (in
practice, thousands of times faster than t-SNE), and very
simple to implement.

OOS and Sensitivity Analysis

As explained earlier, the OOS and sensitivity (stability to
small changes of the input) are related, but not identical,
desirable properties. We illustrate both properties for NNP
next, noting also that all other similar deep-learned projec-
tion algorithms (kNNP, SNNP, SHaRP, autoencoders) share
by construction the same properties, since they use very
similar neural network architectures.

Figure 11 (top two rows) illustrates NNP’s out-of-sample
ability. The top row shows t-SNE projections of the MNIST
dataset for an increasing number of samples (from 2K to
100K). As visible, the projection continuously changes,
making it hard for users to maintain their mental map of the
studied data. The row below shows NNP trained to mimic
t-SNE. We see that the shape of the projection and location
of its ten clusters (one per class) stays the same as more
samples are added. A drawback of this is that the cluster
separation is lower than for the t-SNE projection as more
samples are added. This is expected since NNP was trained

Fig. 11 Top two rows: NNP out-of-sample (OOS) analysis. The top
row shows projections of the MNIST dataset using t-SNE for increas-
ing numbers of samples in the test set D

T
 . The projection does not

maintain stability. The second row shows how NNP maintains stabil-
ity as new samples are added to the test set. Bottom row: NNP sensi-

tivity analysis when removing between 10% and 90% of the dataset’s
dimensions. NNP can robustly depict the data structure even when a
large part of the input information is missing. See “Deep Learning
Projections”

SN Computer Science (2024) 5:279 Page 17 of 25 279

SN Computer Science

only on the initial set of 2K samples, i.e., it did not have a
chance to see the additional ones.

Figure 11 (bottom row) illustrates NNP’s stability. An
NNP model is trained to project the MNIST dataset, after
which is asked to project MNIST images where an increas-
ingly larger number of dimensions (pixel values) have been
cancelled, i.e., set to zero. Surprisingly, NNP can capture
the cluster structure of the data (10 classes for the 10 dig-
its) up to 40% cancelled dimensions. The aggregated image
shows the ‘movement’ of the points in the NNP projection as
increasingly more dimensions get dropped. Similar insights
are obtained for other input dataset perturbations such as
sample jitter, translation, and scaling. At a higher level,
we see sensitivity analysis as a very powerful, yet under-
explored, technique—well known in the ML repertoire—to
assess the quality of DR projections.

Refinements of NNP

Subsequent refinements of NNP aim to keep the attractive
aspects of the method (speed, OOS, genericity, stability,
simplicity) while increasing its quality and controlling the
visual appearance of the resulting projections (see further
Fig. 10). kNNP [70] enhances the projection quality, meas-
ured following the metrics introduced in “Background”,
by learning to project sets of neighbor samples rather than
individual samples. SSNP [71] works in a self-supervised
way, similar to autoencoders, thus dispenses of the need
of a training projection. The self-supervised information
comes either in the form of ground-truth labels (when avail-
able) or pseudolabels computed by clustering the input data.
Since based on an autoencoder structure, SSNP can also
create inverse projections (see next “Deep Learning Inverse
Projections”). SDR-NNP [74] increases NNP’s ability to
separate clusters of different observations by pre-sharpening
the input training set Dt via mean shift [75]. SHaRP [72]
refines SSNP to allow one to control the shapes of clusters
of similar observations to match desired templates such as
ellipses, rectangles, or triangles. Finally, HyperNP [73]
extends NNP by learning the behavior of a projection tech-
nique P for all its hyperparameter values, thereby allowing
users to explore this parameter space at interactive rates.
All the above results prove that DL is a serious contender
for generating projections that comply with all requirements
set forth by practice.

Deep Learning Inverse Projections

Following the success of DL for constructing projections P
outlined above, it becomes immediately interesting to con-
sider their use for the complementary problem of computing

inverse projections P−1 . Introduced in “Decision Boundary
Maps” for constructing DBMs, inverse projections have
additional uses, e.g., generating synthetic samples for data
augmentation scenarios [76] and hypothesizing the unex-
plored regions of a sampled data space for, e.g., shape or
image morphing applications [77].

Definition Formally put, given a direct projection func-
tion P ∶ ℝ

n
→ ℝ

q , with q ≪ n typically, the inverse pro-
jection is just the inverse of that function, i.e., a function
P−1 ∶ ℝ

q
→ ℝ

n so that P−1(P(x)) = x for any x ∈ ℝ
n . Unfor-

tunately, computing such an exact inverse function is not
possible for virtually any of the existing projection algo-
rithms P for one or several of the following reasons:

• Non-injectivity Typical projection functions P are not
injective—that is, they can map different points in ℝn to
the same location in ℝq . This is a direct, and probably
unavoidable, consequence of the fact that q ≪ n;

• Non-parametric nature While we are talking about P
as being a function between two spaces (ℝn and ℝq),
many projection algorithms do not work in this fashion.
Rather, they map a given sampling, or dataset, D ⊂ ℝ

n to
another dataset P(D) ⊂ ℝ

q . When the dataset D changes,
the mapping can change as well—that is, the same point
x ∈ ℝ

n can be mapped to different locations in ℝq ,
depending on which other points it comes along with in
D. This is precisely the lack of OOS ability discussed in
“Deep Learning Projections” and illustrated, for t-SNE,
in Fig. 11. Only a (small) subset of projection techniques
are parametric, i.e., comply with the functional definition
given above;

• Inverse problem Even for cases when an algorithmic
functional definition of P is available and P is injective,
computing its inverse can be quite challenging since
inverse problems do not always have guaranteed unique
and/or stable solutions.

To address the above three problems, the practical approach
to computing P−1 is by various forms of approximation, as
follows:

• Non-injectivity This aspect is usually neglected by practi-
cal algorithms that compute P−1 . That is, if two (or more)
points xi ∈ ℝ

n map to the same location y ∈ ℝ
q , P−1(y)

will yield a single value in ℝn;
• Non-parametric Nature Since most projections P are

of this nature, inverse projections are usually defined
in terms of a given dataset D ⊂ ℝ

n . For such a dataset,
an inverse projection is a function that aims to yield
P−1(P(x)) ≈ x for all x ∈ D . However, inverse projec-
tions need to be parametric themselves, i.e., applicable
to any other values y ∈ Rq apart from P(D), otherwise
they would not be useful for the tasks mentioned at the

 SN Computer Science (2024) 5:279 279 Page 18 of 25

SN Computer Science

beginning of this section. For such ‘unseen’ points y ,
P−1 is usually defined to work in a smooth manner—the
closest y is to a known direct mapping P(x) , the closest
should P−1(y) be to x.

• Inverse Problem Computing P−1 is usually done by min-
imizing suitably-chosen (convex) error functions that
model the goal P−1(P(x)) ≈ x for all x ∈ D mentioned
above. This simplifies and accelerates the computation
problem using existing numerical optimization methods.

Early Inverse‑Projection Methods

Likely one of the earliest methods for computing inverse
projections is by training an autoencoder to jointly perform
P and P−1 [66]. While this method is simple to implement
and fast to compute, it does not allow inverting any user-
chosen direct projection P. Moreover, projections created by
autoencoders are of lower quality than other state-of-the-art
techniques (see Fig. 10 and related text and also the evalu-
ation in [14].

Mamani et al. [78] presented a method that uses inverse
projections to transform the high-dimensional data space
based on manipulations of the two-dimensional, projection,
space. This allows users to execute several potentially com-
plex operations that affect the invisible high-dimensional
data based on a simple interface that allows direct manipula-
tion of 2D projection points. However, the proposed method
does not directly allow inversely projecting new points—that
is, 2D points which are not the direct projection of existing
data points.

Amorim et al. [77, 79] presented iLAMP, a method for
inverting the LAMP [19] projection technique using dis-
tance-based interpolation functions to mimic the relative
position of a point in 2D vs its neighbors in P(D) onto the
high-dimensional data space. iLAMP gives good results but
is relatively slow and can only handle the LAMP projection.

Schulz et al. [58, 61] proposed DeepView to compute
inverse projections using UMAP [63] as direct projection
P. In contrast to UMAP, however, similarities of points are
computed by combining their high-dimensional attributes
with the outcome of a classifier f (similar to SSNP). The
inverse projection is then computed also by UMAP from the
projection of the given dataset P(D) and then extrapolated
to the entire 2D space by minimizing the Kullback–Lei-
bler divergence (similar to t-SNE). DeepView yields quite
smooth results (see its application for DBM construction in
Fig. 6a) but is over an order of magnitude slower than the
other P−1 techniques described here.

Deep Learning Inverse Projections

Following the success of NNP for direct projections (“Deep
Learning Projections”), Espadoto et al. [80] computed

inverse projections by simply ‘switching’ the input and out-
put of NNP, i.e., given a dataset D that projects to a 2D
scatterplot by some technique P, train a regressor to output
D when given P(D). This technique, called NNInv inherits
all the desirable properties of NNP (“Deep Learning Pro-
jections”) and also produces higher-quality inverse projec-
tions than autoencoders and iLAMP. The usage of NNInv is
illustrated in the DBM construction in Fig. 6b. Further vari-
ations of this design include SSNP [71] (used to construct
the DBM in Fig. 6c and SHaRP [72]. Both techniques use
an autoencoder basis so produce both a direct and inverse
projection (see also “Deep Learning Projections”). However,
their quality is higher than plain autoencoders and also than
plain NNInv given their (self-)supervised operation based
on class (pseudo)labels. Figure 12 illustrates this by com-
paring NNinv (first row) with SHaRP (second and third
rows) for the construction of a decision map for a simple
k-nearest neighbors (KNN) classifier (k = 21) for four data-
sets of varying dimensionalities n. This is a novel insight as
SHaRP has, so far, not been gauged on its performance for
computing decision maps. We see that, similarly to SSNP
(shown in Fig. 6c), SHaRP produces decision zones with
smoother boundaries than NNInv, which are closer to the
known ground-truth smooth boundaries (hyperplanes) that
a KNN classifier should have.

Applications of Inverse Projections

NNInv was further explored in detail for visual analytics sce-
narios involving dynamic imputation and exploring ensem-
ble classifiers [81]. Figure 13 shows the latter use-case: In
the image, each pixel is backprojected and ran through a set
of nine classifiers, trained to separate classes 1 and 7 from
the MNIST dataset. The pixel is then colored to indicate the
classifiers’ agreement. Deep blue, respectively, red, zones
show areas where all classifiers agree with class 1, respec-
tively, 7. Brighter areas indicate regions of high classifier
disagreement—which are thus highly difficult to decide
upon and are prime candidates for ML engineering, regard-
less of the used classifier.

Future Exploitations of the ML‑DR
Connection

Reflecting upon the current achievements of using ML for
DR and conversely, we see a bright future ahead for research
where the two directions assist each other. We illustrate this
with a few selected, non-exhaustive, examples of such poten-
tial ML-DR synergies.

SN Computer Science (2024) 5:279 Page 19 of 25 279

SN Computer Science

Prospects of DR Assisting ML: Seeing to Learn Better

Better DBMs One recent, and unexpected, result of our anal-
ysis is that all DBM methods only visualize a surface-like
subset of the high-dimensional data space (see the coverage
discussion in “Decision Boundary Maps”). This tells us that
not only a small, surface-like, subset of a classifier’s behav-
ior is thus visualized, but also that how this subset is selected
is not under the user’s control, but automatically determined
by the inverse-projection method being used by the DBM
algorithm. As such, the insights users will get from DBM
methods applied to various classifiers and datasets will be
highly dependent on the DBM technique in use. Even more
critically, imagine a given, trained, classifier f whose input
space is sampled by different test datasets D, each being
used next to construct a decision map image. Such images
will likely be (very) different since they depend on inverse
projections constructed, in turn, from different datasets. This

can be highly misleading given that we are visualizing the
same, fixed, classifier f.

It is likely impossible to devise a DBM method that
densely samples an entire high-dimensional space to con-
struct a classifier image. As such, we see two ways forward
to improving DBMs:

1. construct an inverse projection with predictable, guaran-
teed, behavior for a given sampling D of the data space;

2. allow users to control the surface that is backprojected
by the inverse projection to sample the classifier.

Option 1 relates to how the aforementioned backpro-
jected surfaces are constructed by the function P−1 . All
designs of inverse projections essentially minimize a cost
which tells that points of a given projection P(x) have
to backproject, via P−1 , one to one, to those of a given
dataset D = {x} [58, 61, 71, 72, 77, 79, 80]. Hence, such

Fig. 12 Comparison of decision maps constructed by NNinv [80] (top
row) and SHaRP [72] (middle row: plain map; bottom row: map with
classifier confidence encoded into color saturation) inverse-projection

techniques, for a KNN classifier and four datasets (n indicates the
dataset dimensionalities). See “Deep Learning Inverse Projections”

 SN Computer Science (2024) 5:279 279 Page 20 of 25

SN Computer Science

backprojected surfaces can be thought of as level sets, or
isosurfaces, of low values of the cost function. Analyzing
them from this perspective can lead to important theoreti-
cal insights in their behavior.

Option 2 offers a more practical way forward. Simple
ways can be devised to allow users to, e.g., shift this sur-
face in given directions and/or by given amounts in the
data space by means of interactive controls applied to the
2D image space. Similar ideas have been since long used,
albeit in a different context, for the visualization of scalar
functions of many variables [82]. The difference, in our
case, is that we would start with a more complex surface,
and would have to design intuitive ways to shift this sur-
face in meaningful directions in the data space. This idea
could be further extended by allowing for sampling a thick
‘band’ close to this surface. The challenge, in this case,
would be to map this band to the 2D image space of a
decision map.

DBMs in Use DBMs are not a goal in themselves, but a
tool serving a goal. Apart from the scenarios depicted in
Refs. [77, 79, 81], DBMs could be readily used in a visual
analytics explorative scenario to drive a classifier’s train-
ing. If computable in real-time, users could visualize the
DBMs, find problematic areas with respect to how the deci-
sion boundaries wrap around samples, and next modify the

training set by, e.g., adding or deleting labels, adding new
augmented samples, or even moving samples. We envisage
a tool in which users could effectively ‘sculpt’ the shape of
decision boundaries by sample manipulation much as one
edits 2D shapes by manipulating spline control points. This
would offer unprecedented freedom and a wholly new way
of fine-tuning classifiers to extend the approaches pioneered
in Refs. [41, 44].

Visualizing Regressors All visualizations examples shown
in this paper have covered only the depiction of classifiers
that output a single categorical value. However, as “Back-
ground” mentions, ML also studies multi-valued classifiers
and, further, single-valued and multi-valued regressors. Con-
cerning decision maps, we are not aware of their extension
to multi-valued classifiers. This could be achieved using
multiple-view maps, one per classifier output, or categori-
cal color-coding of all multi-valued class combinations in a
single decision map. Concerning regressors, recent results
have shown how to extend the decision map metaphor to
visualize single-valued regressors [83, 84]. However, this
research only used a relatively low-quality projection (PCA),
so it could be readily explored how better direct and inverse
projections, like the ones described in “Deep Learning Pro-
jections” and “Deep Learning Inverse Projections” could
improve its results. Visualizing multi-valued regressors is a
harder problem as several continuous values would need to
be displayed at each pixel. To assist this, techniques devel-
oped earlier in scientific visualization (tensor visualiza-
tion [85]) could offer an outcome.

Prospects of ML Assisting DR: Learning to See Better

Inverse-Projection Quality While many metrics exist to
gauge the quality of direct projections (“Background”),
there are no established ways to measure the quality of an
inverse projection, apart from the simple mean-square-error
(MSE)

∑
x∈D ‖x − P(P−1(x))‖ [80]. This is not surprising

since, as explained in “Deep Learning Inverse Projections”,
inverse projections are mainly used to infer, or hypothesize,
what the data would be in locations where no ground-truth
is present—much like classical ML models are used in
regression. As such, defining what a good inverse projec-
tion should return in such areas is conceptually hard. Yet,
possibilities exist. One can, e.g., use a ML approach where
an unseen test set is kept apart from the construction of the
inverse projection and is used to assess the quality of such
a trained model using the aforementioned MSE. An equally
interesting question is how to design a scale, or hierarchy, of
errors. It is likely that differently inversely projected points
x� = P−1(P(x)) that deviate from its ground-truth location
x by the same distance ‖x� − x‖ are not equally good, or
equally bad, depending on the application perspective. As

Fig. 13 Classifier agreement map for 9 classifiers, two-class prob-
lem (MNIST datasets digits 1 and 7). Dark colors indicate more of
the 9 classifiers agreeing, at a pixel in the map, with their decisions
(red = 1, blue = 7). Brighter, desaturated, colors indicate fewer clas-
sifiers in agreement (white=four classifiers output 1, the other five
output 7, or conversely) [81]. See “Decision Boundary Maps”

SN Computer Science (2024) 5:279 Page 21 of 25 279

SN Computer Science

such, inverse-projection quality metrics may need to be
designed in an application-specific way.

Also, similarly to direct projections [14], the quality of
inverse projections can be measured not only globally (by
a single aggregate metric) but also locally, at every pixel.
The explanatory visualizations in Fig. 7 can be thought
as being such per-pixel quality maps (for classifiers). For
inverse projections, we are aware of a single such per-pixel
quality visualization—gradient maps [81]. Figure 14a
shows this gradient map, which depicts the gradient mag-
nitude of the P−1 function (in this case constructed with
NNInv) at every pixel. Hot, respectively, dark, regions in
the map indicate nearby 2D points which backproject far
away from, respectively, close to, each other. Points in the

hot regions thus indicate areas where the inverse projec-
tion may be unstable, and as such, potentially create mis-
leading data. However, we cannot directly say that this is
an error of the inverse projection P−1 . Such regions may
correspond to areas where the direct projection P squeezed
faraway data points to fit them in the 2D space—thus areas
of low continuity [20]. Hence, analyzing inverse projection
errors should go hand-in-hand with analyzing the errors
of the direct projection it was computed for. For the latter,
many per-pixel techniques are readily usable [10, 21, 25].

Figure 14b shows an additional use-case for gradient
maps. The image depicts the gradient map of the NNInv
inverse-projection method used to construct the decision
map visualizations for the MNIST classifier explored in

Fig. 14 a Gradient map of NNInv inverse projection constructed from
a t-SNE projection of an uniformly sampled sphere. Hot, respectively,
dark, regions indicate nearby 2D points that inversely project to far-
apart, respectively, close, nD points (green line, top sphere; orange
line, bottom sphere, respectively). b Gradient map of NNInv inverse
projection used to construct the decision maps for the MNIST clas-

sification in Fig. 7, with distance-to-closest-boundary map at the top
(grayscale). c Two regions of large, respectively, low, gradients are
sampled by the red, respectively, green, points. The corresponding
images generated by NNInv are shown and confirm the large, respec-
tively, low, variations of the inverse projection in these areas. See
“Prospects of ML Assisting DR: Learning to See Better”

 SN Computer Science (2024) 5:279 279 Page 22 of 25

SN Computer Science

Fig. 7. Atop of this gradient map, we overlaid the classifier
confidence (Fig. 7d), so the dark bands in the image cor-
respond to the classifier’s decision boundaries. For clar-
ity of exposition, we show atop image (b) the distance-
to-closest-boundary (same information as encoded in the
luminance in Fig. 7e). Image (b) tells us several insights.
We see that large inverse-projection gradients occur both
along decision boundaries but also deep inside the deci-
sion zones. Also, these large gradients are not correlated
with areas of low, or high, distance-to-closest boundary.
Hence, the gradient map tells additional information not
present in earlier visualizations. This information helps
seeing where a classifier will be exposed to high data vari-
ability, thus, meet more challenges. We show this by tak-
ing five points (A…E) in a low-gradient, and five others
(F… J) in a high-gradient area, respectively. Figure 14c
shows the MNIST images corresponding to these points.
Indeed, we see how the respective digits vary significantly
more in high-gradient areas than in low-gradient ones.

Learning styles All projection methods aim to encode the
relative distance between data points in their resulting scat-
terplot. Atop of this, parametric projections aim to encode the
actual data values. SHaRP extends this to force data clusters
to specific shapes (“Deep Learning Projections”). Such strate-
gies could be extended to map other data attributes, such as
sample density or specific value ranges, to the size, shape, and/
or position of point clusters in a projection. For DL methods,
this could be done by refining their loss function. Addition-
ally, SHaRP could be extended to create a hierarchy aware
projection algorithm that would combine the advantages of
treemaps and classical projections, extending earlier ideas in
this class [86].

A second extension would be to design local cost func-
tions that attempt to construct the projection by combining
different criteria for different subsets of the input data—for
example, to achieve a globally better projection that locally
behaves like t-SNE in some areas and like UMAP in others.
ML techniques can help here by, e.g., extending the HyperNP
idea [73] to train from a set of projection techniques run on
the same input dataset. Further inspiration can be gotten from
recent ways in which DL is used for image synthesis and style
transfer, e.g., [87].

Dynamic projections “Understanding DL Models” has
briefly introduced dynamic projections. These are exten-
sions of the standard, static, projection techniques which aim
to handle a dataset consisting of high-dimensional points
which maintain their identity while changing their attribute
values through time. Dynamic projections have a wealth of
applications—simply put, anywhere one wants to study high-
dimensional data which changes over time. However, only a
handful of dynamic projection techniques exist [32, 53, 88,
89], and their quality—as gauged by established quality met-
rics—is good in data structure preservation or data dynamics

preservation but not both aspects. Designing a dynamic pro-
jection technique that accurately maps both data structure and
dynamics is a grand challenge for the infovis community. Fol-
lowing the good results of using ML for DR (“Learning for
Seeing: ML Assists DR”, it looks highly interesting to explore
ML (and in particular DL) to create dynamic projections. An
issue here is that, since good ground-truth dynamic projections
are relatively hard to construct, the supervised way (NNP-class
methods) may be less preferable than the self-supervised
(SSNP-like) direction.

Conclusions

In recent years, the research domains of dimensionality
reduction (DR) and machine learning (ML) have came
increasingly closer to each other, motivated by advances
in ML techniques that help building better visualization
algorithms, on the one hand, and by the need for visuali-
zation techniques to better explain the ‘black box’ behav-
ior of ML (and in particular deep learning) methods. The
two salient keywords that are often used to describe the
two fields—seeing (for DR) and learning (for ML) have
become increasingly connected.

In this paper, we have presented an overview of recent
connections between the two fields, with a focus on tech-
niques and methods in one field which assist tasks and use-
cases in the other, and also satisfy overall desirable criteria
as genericity, computational scalability, stability, and ease
of use. We have made the case that the two fields are com-
plementary, with key features being offered by methods in
one field being required by methods in the other, therefore
the potential for cross-fertilization. The first part of our
overview (“Seeing for Learning: DR Assists ML”) showed
how DR can assist ML tasks by examples in assessing
the behavior of general-purpose classifiers, pseudolabe-
ling for creating large training sets, exploring the training
and inference of deep learning models, and depicting the
high-dimensional decision zones and boundaries of clas-
sifiers. The second part (“Learning for Seeing: ML Assists
DR”) showed how ML can assist DR by examples covering
the deep learning of projections and inverse projections.
We concluded our presentation by outlining several high-
potential research directions at the crossroads of ML and
DR based on the techniques discussed in this paper: using
dense maps to explore and improve classifiers and regres-
sors; using ML to create highly customized, high-quality
projections for both static and dynamic data; and develop-
ing inverse projections to meet all the quality standards
that current direct projection techniques have.

We see this convergence trend which unites research
and researchers in DR and ML growing in the near future,
with both areas positively feeding each other in terms of

SN Computer Science (2024) 5:279 Page 23 of 25 279

SN Computer Science

research questions and tasks, and also solutions. A strong
common mathematical background unites researchers in
the two fields, making it easy to exchange research ques-
tions, ideas, and results. Also, tools and techniques in both
areas become increasingly more available which eases the
development of joint solutions. Such developments, jointly
enabled by DR and ML researchers, will have impact far
beyond these two fields.

Declarations

Conflict of interest On behalf of all the authors, the corresponding au-
thor states that there is no conflict of interest.

 Human and animals participants This article does not contain any
studies with human participants or animals performed by any of the
authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

 1. Munzner T. Visualization analysis and design: principles, tech-
niques, and practice. Boca Raton: CRC Press; 2014.

 2. Telea AC. Data visualization—principles and practice. 2nd ed.
Abingdon: CRC Press/Taylor and Francis; 2014.

 3. Liu S, Maljovec D, Wang B, Bremer P-T, Pascucci V. Visualizing
high-dimensional data: advances in the past decade. IEEE TVCG.
2015;23(3):1249–68.

 4. Yates A, Webb A, Sharpnack M, Chamberlin H, Huang K, Machi-
raju R. Visualizing multidimensional data with glyph SPLOMs.
CGF. 2014;33(3):301–10.

 5. Lehmann DJ, Albuquerque G, Eisemann M, Magnor M, Theisel
H. Selecting coherent and relevant plots in large scatterplot matri-
ces. Comput Graph Forum. 2012;31(6):1895–908.

 6. Inselberg A, Dimsdale B. Parallel coordinates: a tool for visual-
izing multi-dimensional geometry. In: Proc. IEEE VIS. 1990. p.
361–78.

 7. Rao R, Card SK. The table lens: merging graphical and symbolic
representations in an interactive focus+context visualization for
tabular information. In: Proc. ACM SIGCHI. 1994. p. 318–22.

 8. Telea AC. Combining extended table lens and treemap techniques
for visualizing tabular data. In: Proc. EuroVis. 2006. p. 120–7.

 9. Borgo R, Kehrer J, Chung DHS, Maguire E, Laramee RS, Hauser
H, Ward M, Chen M. Glyph-based visualization: foundations,
design guidelines, techniques and applications. 2013.

 10. Lespinats S, Aupetit M. CheckViz: sanity check and topological
clues for linear and nonlinear mappings. CGF. 2011;30(1):113–25.

 11. Sorzano C, Vargas J, Pascual-Montano A. A survey of dimension-
ality reduction techniques. arXiv: 1403. 2877 [stat.ML]. 2014.

 12. Nonato L, Aupetit M. Multidimensional projection for visual
analytics: linking techniques with distortions, tasks, and layout
enrichment. IEEE TVCG. 2018;25(8):2650–73.

 13. Cunningham J, Ghahramani Z. Linear dimensionality reduction:
survey, insights, and generalizations. JMLR. 2015;16:2859–900.

 14. Espadoto M, Martins R, Kerren A, Hirata N, Telea A. Toward
a quantitative survey of dimension reduction techniques. IEEE
TVCG. 2019;27(3):2153–73.

 15. Telea A. Beyond the third dimension: how multidimensional
projections and machine learning can help each other. In: Proc.
IVAPP. 2023.

 16. Botchkarev A. Performance metrics (error measures) in machine
learning regression, forecasting and prognostics: properties and
typology. Interdiscip J Inf Knowl Manag. 2019;14:45–79.

 17. Jiang T, Gradus J, Rosellini A. Supervised machine learning: a
brief primer. Behav Ther. 2020;51(5):675–87.

 18. Thiyagalingam J, Shankar M, Fox G, Hey T. Scientific machine
learning benchmarks. Nat Rev Phys. 2022;4:413–20.

 19. Joia P, Coimbra D, Cuminato JA, Paulovich FV, Nonato
LG. Local affine multidimensional projection. IEEE TVCG.
2011;17(12):2563–71.

 20. Venna J, Kaski S. Visualizing gene interaction graphs with local
multidimensional scaling. In: Proc. ESANN. 2006. p. 557–62.

 21. Martins R, Coimbra D, Minghim R, Telea AC. Visual analysis
of dimensionality reduction quality for parameterized projec-
tions. Comput Graph. 2014;41:26–42.

 22. van der Maaten L, Hinton GE. Visualizing data using t-SNE.
JMLR. 2008;9:2579–605.

 23. Paulovich FV, Nonato LG, Minghim R, Levkowitz H. Least
square projection: a fast high-precision multidimensional pro-
jection technique and its application to document mapping.
IEEE TVCG. 2008;14(3):564–75.

 24. Sips M, Neubert B, Lewis J, Hanrahan P. Selecting good
views of high-dimensional data using class consistency. CGF.
2009;28(3):831–8.

 25. Aupetit M. Visualizing distortions and recovering topol-
ogy in continuous projection techniques. Neurocomputing.
2007;10(7–9):1304–30.

 26. Sommerville I. Software engineering. Sebastopol: O’Reilly
Publishing; 2015.

 27. da Silva R, Rauber P, Martins R, Minghim R, Telea AC. Attrib-
ute-based visual explanation of multidimensional projections.
In: Proc. EuroVA. 2015.

 28. Coimbra D, Martins R, Neves T, Telea A, Paulovich F. Explain-
ing three-dimensional dimensionality reduction plots. Inf Vis.
2016;15(2):154–72.

 29. Marcilio WE, Eler DM. Explaining dimensionality reduction
results using Shapley values. arXiv: 2103. 05678 [cs.LG]. 2021.

 30. Tian Z, Zhai X, Driel D, Steenpaal G, Espadoto M, Telea A.
Using multiple attribute-based explanations of multidimen-
sional projections to explore high-dimensional data. Comput
Graph. 2021;98(C):93–104.

 31. Thijssen J, Tian Z, Telea A. Scaling up the explanation of mul-
tidimensional projections. In: Proc. EuroVA. 2023.

 32. Vernier E, Comba J, Telea A. Guided stable dynamic projec-
tions. Comput Graph Forum. 2021;40(3):87–98.

 33. Garcia R, Telea A, Silva B, Torresen J, Comba J. A task-and-
technique centered survey on visual analytics for deep learning
model engineering. Comput Graph. 2018;77:30–49.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1403.2877
http://arxiv.org/abs/2103.05678

 SN Computer Science (2024) 5:279 279 Page 24 of 25

SN Computer Science

 34. Hohman F, Kahng M, Pienta R, Chau DH. Visual analytics in
deep learning: an interrogative survey for the next frontiers.
IEEE TVCG. 2019;25(8):2674–93.

 35. Yuan J, Chen C, Yang W, Liu M, Xia J, Liu S. A survey of
visual analytics techniques for machine learning. Comput Visual
Media. 2020;7:3–36.

 36. Alicioglu G, Sun B. A survey of visual analytics for
explainable artificial intelligence methods. Comput Graph.
2022;102(C):502–20.

 37. Rauber PE, Falcão AX, Telea AC. Projections as visual aids for
classification system design. Inf Vis. 2017;17(4):282–305.

 38. Guyon I, Gunn S, Ben-Hur A. Result analysis of the NIPS 2003
feature selection challenge. In: Advances in neural information
processing systems; 2004. p. 545–52

 39. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees.
Mach Learn. 2006;63(1):3–42.

 40. Bernard J, Hutter M, Zeppelzauer M, Fellner D, Sedlmair M.
Comparing visual-interactive labeling with active learning: an
experimental study. IEEE TVCG. 2018;24(1):298–308.

 41. Benato B, Telea A, Falcão A. Semi-supervised learning with
interactive label propagation guided by feature space projec-
tions. In: Proc. SIBGRAPI. 2018. p. 392–9.

 42. Belkin M, Niyogi P, Sindhwani V. Manifold regularization: a
geometric framework for learning from labeled and unlabeled
examples. J Mach Learn Res. 2006;7:2399–434.

 43. Amorim WP, Falcão AX, Papa JP, Carvalho MH. Improving
semi-supervised learning through optimum connectivity. Pattern
Recognit. 2016;60(C):72–85.

 44. Benato B, Gomes J, Telea A, Falcão A. Semi-automatic data
annotation guided by feature space projection. Pattern Recognit.
2020;109:107612.

 45. Shwartz-Ziv R, Tishby N. Opening the black box of deep neural
networks via information. arXiv: 1703. 00810 [cs.LG]. 2017.

 46. Azodi C, Tang J, Shiu S. Opening the black box: inter-
pretable machine learning for geneticists. Trends Genet.
2020;36(6):442–55.

 47. Tzeng FY, Ma K-L. Opening the black box—data driven visu-
alization of neural networks. In: Proc. IEEE visualization. 2005.

 48. Pezzotti N, Höllt T, Van Gemert J, Lelieveldt BPF, Eisemann E,
Vilanova A. Deepeyes: progressive visual analytics for design-
ing deep neural networks. IEEE TVCG. 2017;24(1):98–108.

 49. Alsallakh B, Jourabloo A, Ye M, Liu X, Ren L. Do convolu-
tional neural networks learn class hierarchy? IEEE Trans Vis
Comput Graph. 2018;24(1):152–62.

 50. Strobelt H, Gehrmann S, Pfister H, Rush AM. LSTMVis: a tool
for visual analysis of hidden state dynamics in recurrent neural
networks. IEEE TVCG. 2018;24(1):667–76.

 51. Liu M, Shi J, Li Z, Li C, Zhu J, Liu S. Towards better anal-
ysis of deep convolutional neural networks. IEEE TVCG.
2016;23(1):91–100.

 52. Chattopadhay A, Sarkar A, Howlader P, Balasubramanian V.
Grad-CAM++: generalized gradient-based visual explanations
for deep convolutional networks. In: Proc. IEEE WACV. 2018.

 53. Rauber P, Falcao A, Telea A. Visualizing time-dependent data
using dynamic t-SNE. In: Proc. EuroVis—short papers; 2016.
p. 43–9.

 54. Zwan M, Codreanu V, Telea A. CUBu: universal real-time bun-
dling for large graphs. IEEE TVCG. 2016;22(12):2550–63.

 55. Rauber P, Fadel SG, Falcão A, Telea A. Visualizing the hid-
den activity of artificial neural networks. IEEE TVCG.
2017;23(1):101–10.

 56. Rodrigues FCM, Espadoto M, Hirata R Jr, Telea A. Construct-
ing and visualizing high-quality classifier decision boundary
maps. Information. 2019;10(9):280–97.

 57. Oliveira AAM, Espadoto M, Hirata R, Telea A. SDBM: super-
vised decision boundary maps for machine learning classifiers.
In: Proc. IVAPP. 2022.

 58. Schulz A, Gisbrecht A, Hammer B. Using discriminative dimen-
sionality reduction to visualize classifiers. Neural Process Lett.
2015;42(1):27–54.

 59. LeCun Y, Cortes C, Burges C. MNIST handwritten digit data-
base. AT &T Labs. http:// yann. lecun. com/ exdb/ mnist. 2010.
Accessed 15 Sept 2023.

 60. Moosavi-Dezfooli S, Fawzi A, Frossard P. Deepfool: a simple
and accurate method to fool deep neural networks. In: Proc.
IEEE CVPR. 2016. p. 2574–82.

 61. Schulz A, Hinder F, Hammer B. DeepView: visualizing clas-
sification boundaries of deep neural networks as scatter plots
using discriminative dimensionality reduction. In: Bessiere C,
editor. Proc. IJCAI. 2020. p. 2305–11.

 62. Colding TH, Minicozzi WP. Shapes of embedded minimal sur-
faces. PNAS. 2006;103(30):11106–11.

 63. McInnes L, Healy J, Melville J. UMAP: uniform manifold
approximation and projection for dimension reduction. arXiv:
1802. 03426 v2 [stat.ML]. 2018.

 64. Minghim R, Paulovich FV, Lopes AA. Content-based text
mapping using multi-dimensional projections for exploration
of document collections. In: Proc. SPIE. 2006. Intl. Society for
Optics and Photonics.

 65. Paulovich FV, Minghim R. Text map explorer: a tool to cre-
ate and explore document maps. In: Proc. IEEE IV. 2006. p.
245–51.

 66. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of
data with neural networks. Science. 2006;313(5786):504–7.

 67. Pekalska E, Ridder D, Duin RPW, Kraaijveld MA. A new
method of generalizing Sammon mapping with application to
algorithm speed-up. Proc ASCI. 1999;99:221–8.

 68. Espadoto M, Hirata N, Telea A. Deep learning multidimensional
projections. Inf Vis. 2020;9(3):247–69.

 69. Bredius C, Tian Z, Telea A. Visual exploration of neural net-
work projection stability. In: Proc. MLVis. 2022.

 70. Modrakowski T, Espadoto M, Falcao A, Hirata N, Telea A.
Improving deep learning projections by neighborhood analysis.
In: Communication in computer and information. 2021.

 71. Espadoto M, Hirata N, Telea A. Self-supervised dimensionality
reduction with neural networks and pseudo-labeling. In: Proc.
IVAPP. 2021.

 72. Machado A, Behrisch M, Telea A. ShaRP: shape-regularized
multidimensional projections. In: Proc. EuroVA. 2023.

 73. Appleby G, Espadoto M, Chen R, Goree S, Telea A, Ander-
son E, Chang R. HyperNP: interactive visual exploration
of multidimensional projection hyperparameters. CGF.
2022;41(3):169–81.

 74. Kim Y, Espadoto M, Trager S, Roerdink J, Telea A. SDR-NNP:
sharpened dimensionality reduction with neural networks. In:
Proc. IVAPP. 2022.

 75. Comaniciu D, Meer P. Mean shift: a robust approach toward
feature space analysis. IEEE TPAMI. 2002;24(5):603–19.

 76. Rodrigues FCM, Jr, RH, Telea A. Image-based visualization of
classifier decision boundaries. In: Proc. SIBGRAPI. 2018.

 77. Amorim E, Brazil E, Daniels J, Joia P, Nonato L, Sousa M.
iLAMP: exploring high-dimensional spacing through backward
multidimensional projection. In: Proc. IEEE VAST. 2012.

 78. Mamani GMH, Fatore FM, Nonato LG, Paulovich FV. User-
driven feature space transformation. Comput Graph Forum.
2013;32(3):291–9.

http://arxiv.org/abs/1703.00810
http://yann.lecun.com/exdb/mnist
http://arxiv.org/abs/1802.03426v2
http://arxiv.org/abs/1802.03426v2

SN Computer Science (2024) 5:279 Page 25 of 25 279

SN Computer Science

 79. Amorim E, Brazil E, Mena-Chalco J, Velho L, Nonato LG,
Samavati F, Sousa M. Facing the high-dimensions: inverse
projection with radial basis functions. Comput Graph.
2015;48:35–47.

 80. Espadoto M, Rodrigues FCM, Hirata NST, Jr, RH, Telea A.
Deep learning inverse multidimensional projections. In: Proc.
EuroVA. 2019.

 81. Espadoto M, Appleby G, Suh A, Cashman D, Li M, Scheidegger
C, Anderson E, Chang R, Telea A. UnProjection: leveraging
inverse-projections for visual analytics of high-dimensional
data. IEEE TVCG. 2021;29(2):1559–72.

 82. Wijk JJ, Liere R. Hyperslice: Visualization of scalar func-
tions of many variables. In: Proc. IEEE visualization. 1993. p.
119–25.

 83. Espadoto M, Rodrigues FCM, Hirata N, Telea A. OptMap: using
dense maps for visualizing multidimensional optimization prob-
lems. In: Proc. IVAPP. 2021.

 84. Espadoto M, Rodrigues FCM, Hirata NST, Telea AC. Visual-
izing high-dimensional functions with dense maps. SN Comput
Sci. 2023. https:// doi. org/ 10. 1007/ s42979- 022- 01664-2.

 85. Weickert J, Hagen H. Visualization and processing of tensor
fields. Berlin: Springer; 2005.

 86. Duarte F, Sikanski F, Fatore F, Fadel S, Paulovich FV. Nmap: a
novel neighborhood preservation space-filling algorithm. IEEE
TVCG. 2014;20(12):2063–71.

 87. Luan F, Paris S, Shechtman E, Bala K. Deep photo style transfer.
In: Proc. IEEE CVPR. 2017.

 88. Vernier E, Garcia R, Silva I, Comba J, Telea A. Quantitative
evaluation of time-dependent multidimensional projection tech-
niques. Comput Graph Forum. 2020;39(3):241–52.

 89. Neves TTT, Martins RM, Coimbra DB, Kucher K, Kerren A,
Paulovich FV. Fast and reliable incremental dimensionality
reduction for streaming data. Comput Graph. 2022;102:233–44.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s42979-022-01664-2

	Seeing is Learning in High Dimensions: The Synergy Between Dimensionality Reduction and Machine Learning
	Abstract
	Introduction
	Background
	Interaction Between ML and DR
	How DR Helps ML and Conversely

	Common Aspects of DR and ML
	Functional Commonalities
	Non-functional Commonalities

	Seeing for Learning: DR Assists ML
	Assessing and Improving Classifiers
	Pseudolabeling for ML Training
	Understanding DL Models
	Decision Boundary Maps
	Basic Idea of Decision Boundary Maps
	Enhancements of Basic DBMs
	Coverage Study of DBMs

	Putting It All Together: Visual Analytics Workflow

	Learning for Seeing: ML Assists DR
	Deep Learning Projections
	Basic Idea of Learning Projections
	OOS and Sensitivity Analysis
	Refinements of NNP

	Deep Learning Inverse Projections
	Early Inverse-Projection Methods
	Deep Learning Inverse Projections
	Applications of Inverse Projections

	Future Exploitations of the ML-DR Connection
	Prospects of DR Assisting ML: Seeing to Learn Better
	Prospects of ML Assisting DR: Learning to See Better

	Conclusions
	References

