
Eurographics Symposium on Point-Based Graphics (2004)
M. Alexa, S. Rusinkiewicz, (Editors)

Finite Elements on Point Based Surfaces

U. Clarenz1, M. Rumpf1, A. Telea2

1 Institut für Mathematik, Duisburg University, Germany
{clarenz|rumpf}@math-uni-duisburg.de

2 Department of Mathematics and Computer Science, Eindhoven University of Technology, the Netherlands
alext@win.tue.nl

Abstract
We present a framework for processing point-based surfaces via partial differential equations (PDEs). Our frame-
work efficiently and effectively brings well-known PDE-based processing techniques to the field of point-based
surfaces. Our method is based on the construction of local tangent planes and a local Delaunay triangulation of
adjacent points projected onto this plane. The definition of tangent spaces relies on moment-based computation
with proven scaling and stability properties. Once local couplings are obtained, we are able to easily assemble
PDE-specific mass and stiffness matrices and solve corresponding linear systems by standard iterative solvers.
We demonstrate our framework by different classes of PDE-based surface processing applications, such as texture
synthesis and processing, geometric fairing, and segmentation.

1. Introduction

Surface processing tools and techniques are widespread in
computer graphics, animation, medical imaging, computer
aided modeling, and computer vision. Many surface process-
ing operations can be described via partial differential equa-
tions (PDEs). Using PDEs to implement surface processing
has a long history and several advantages, as compared to
other more algorithmic surface processing techniques. First,
PDEs describe concisely and naturally a large spectrum of
transformations, such as deformations, smoothing, or de-
noising. Secondly, PDE-based approaches come with a solid
mathematical basis that provides quantitative and qualita-
tive results about the way they alter a given surface. Finally,
many efficient and exact methods for PDE discretization and
solving are readily available. Among the latter, the by far
most used approach is the combination of finite element (FE)
discretization and iterative numerical methods, which natu-
rally matches the triangular mesh models ubiquitous in com-
puter graphics.

Recently, point based representations have been proposed
as an alternative to triangles for 3D surfaces, with a number
of advantages. No ’mesh’, or connectivity information has
to be stored explicitly. This allows a simple and compact
representation, ideal for fast rendering and editing. When
combined with advanced rendering techniques such as splat-

ting [ZPvBG01, Pau03], point based surfaces outperform tri-
angle meshes in terms of rendering quality and data storage
flexibility.

Processing point-based surfaces via PDEs should add the
modeling power of PDE representation to the flexibility of
the point based model. However, defining and solving PDEs
using finite elements on point based surfaces is not straight-
forward. The main problem here is that point-based surfaces
are mesh-less, so there is no direct way to define the fi-
nite elements underlying the PDE space. We shall not con-
sider the option of building a global mesh from the point
set [HDD∗92, LP01] here, as it undermines the fundamen-
tal philosophy and advantages of point based models. More-
over, global point cloud triangulations and PDEs on triangle
meshes respectively have been already extensively treated.

Instead, we propose an alternative approach for finite el-
ement based PDEs on point surfaces. We proceed by con-
structing a number of local FE matrices that represent the
surface properties over small point neighborhoods. These
matrices are next assembled in a single matrix which allows
PDE discretization and solving on the complete surface.
We illustrate our approach by a number of well-known sur-
face processing PDEs including anisotropic diffusion, tex-
ture synthesis, and surface fairing.

We first review the basics of point based representations

c© The Eurographics Association 2004.

U. Clarenz & M. Rumpf & A. Telea / Finite Elements on Point Surfaces

and point cloud triangulations (Sec. 2), some basic PDE
problems on surfaces (Sec. 3), and the general finite ele-
ment approach on triangular surfaces (Sec. 4). Next, we de-
tail the difficulties of treating PDEs on point clouds (Sec. 5).
Section 6 presents our construction of tangent spaces and
local meshes. We use this basis to build finite elements on
point surfaces, by assembling local and global FE matrices
(Section 7). Using such matrices, we solve several PDEs on
point surfaces, leading to segmentation and texture process-
ing (Sec. 8.1), texture synthesis (Sec. 8.2), and surface fair-
ing (Sec. 8.4). Section 10 concludes the paper.

2. Related Work

In the last years, a large number of papers related to point-
based surfaces has emerged. We briefly outline those related
to our work, without attempting a complete overview.

Point set methods have two main components: approx-
imating a usually smooth surface from the point set, fol-
lowed by rendering the approximation. Approximating sur-
faces from points can be done by many techniques. These
mainly differ in the assumptions laid on the point set and
the smoothness model. A quite simple approximation re-
places the point set with a triangulated surface model,
or triangle mesh. Several efficient triangulation methods
for point clouds exist [HDD∗92, GKS00, Boi84, LP01]. In
many cases, such techniques can be seen as producing
piecewise C1 approximations of the point cloud. Although
efficient and reasonably simple to implement, such tech-
niques may produce surfaces lacking the desired smooth-
ness, as described in [ABCO∗01, AA03]. To alleviate this,
smoothing operations can be applied to the obtained trian-
gle mesh, such as iterative Laplacian smoothing [Tau95],
curvature flow fairing [DMSB99], or discrete variational
fairing [Kob97]. Alternatively, increased smoothness can
be obtained by using higher local approximations, such
as piecewise polynomials [XWH∗03] or radial basis func-
tions [Pau03, ZPvBG01].

Rendering point surfaces follows the surface approx-
imation assumptions. Different rendering primitives may
be used, ranging from simple flat shaded planar discs,
such as used by the QSplat system [RL00], up to ellipti-
cally weighted Gaussian splats [ZPvBG01] and differential
points [VK01]. More complex primitives encode more in-
formation on the vicinity of a rendered point, such as surface
geometry, at additional rendering expense. Simple primitives
render faster but may have limited quality, especially for
nonuniformly sampled surfaces.

3. PDEs on Surfaces

We start by defining basic notions of differential operators on
surfaces. To this aim, we will use the concept of tangential
gradients on embedded surfaces M in R

3. The tangential

gradient ∇Mu for a function u defined in a neighborhood of
M, is given by

∇Mu = ∇R3 u− (n ·∇R3 u)n ,

where n : M → S2 is the normal mapping. The gradient in
the ambient space is thus projected onto the surface’s tangen-
tial space. The result coincides with the classical geometric
gradient ∇Mu for embedded surfaces. In the following, we
denote the scalar product of two vectors a,b ∈ R

m by a · b.
The components of ∇Mu are denoted by ∇iu.

For a vector field v : M → R
3 of components v =

(v1,v2,v3), we define its divergence using the components
of the tangential gradient, i.e.,

divMv := ∇i vi

Here and in the following, we use the Einstein summation
convention. In this notation, the Laplace operator on surfaces
is given by:

∆Mu = ∇i∇iu.

For surfaces in R
3, curvature may be expressed by the shape

operator S which is – using tangential gradients – given by
the 3× 3-matrix S = DMn = ∇Mn. This matrix operates
as a symmetric endomorphism on the tangent spaces and
may be diagonalized by the principal curvatures κ1 and κ2.
The classical mean curvature is then given by h = tr ∇Mn =
κ1 + κ2 and we have the well known identity ∆Mx = −hn
where x is the position vector of the surface.

We can now formulate, on surfaces, the same type of prob-
lems as on Euclidean domains. A basic problem type is the
boundary value problem:

For a subset Ω ⊂ M, a diffusion tensor A, and a right
hand side f we ask for a function u : Ω̄ → R which solves

−divM(A∇Mu) = f (1)

on M and reaches values u = u∂ on the boundary ∂Ω of M.

An example application for such an elliptic problem is the
inpainting of a locally destroyed coloring of the surface. As
a second problem type we consider reaction diffusion prob-
lems on M:

Find a function u : R
+
0 ×M → R with u(0, ·) = u0 for

some function u0, such that

∂t u−divM(A∇Mu) = f , (2)

where A is the diffusion tensor and f the source term.

Here u can be a scalar or a vector valued quantity, and
A = A[u] and f = f [u] may depend nonlinearly on u. An
example of such a problem is segmentation via diffusion of
a “marker color” which stops at the surface’s feature lines.
Another example is the smoothing of a gray scale surface
texture, which leads to a scalar diffusion problem, where A
is the nonlinear anistropic diffusivity. In addition, we con-
sider reaction diffusion systems for texture synthesis, such

c© The Eurographics Association 2004.

U. Clarenz & M. Rumpf & A. Telea / Finite Elements on Point Surfaces

as introduced by Turk [Tur91]. Given several components,
or species, f encodes the coupling of the species’ concentra-
tions via a particular reaction. Reaction diffusion systems
are a simple and effective way for synthesizing repetitive
textures on surfaces. As the next application, if we consider
u = x, where x is the position vector of the surface itself,
we obtain a curvature motion problem. Indeed, if A = 1 and
f = 0, it is well-known that Eqn. 2 is equivalent to mean
curvature motion, i. e. ∂t x = −h(x)n(x). Using a nonlinear
diffusivity, we obtain a feature preserving fairing method.
Different PDEs can be modelled similarly, if desired.

4. Reviewing Finite Elements on Triangular Surfaces

Before we consider solving these PDEs on point based sur-
faces, we briefly discuss the by now classical finite ele-
ment discretization scheme, frequently used for the numer-
ical treatment of PDEs on discrete triangular surfaces. Let
Mh denote an approximating triangulation of M, where h
indicates the corresponding grid size. We define the space of
piecewise affine, discrete functions Vh and consider the fully
discrete weak formulation of the elliptic problem (1) in Vh.
We ask for a discrete function U ∈ Vh such that∫

Mh

A∇MhU ·∇Mh Φ =
∫
Mh

f Φ (3)

for all discrete test functions Φ ∈ Vh. Functions U in
Vh can be represented by nodal vectors Ū in R

n, where
Ū = (Uj) j=1,··· ,n is a vector with components Uj . Let
{Φi}i=1,··· ,n be the usual nodal basis of Vh with Φi(x j) = δi j
for all vertices x j of the grid Mh. We can express a discrete
function U in terms of its nodal values Uj = U(x j) and get
U =Uj Φ j . The discrete problem can be expressed in matrix
vector notation by

LŪ = MF̄ ,

where the mass matrix M and the stiffness matrix L are given
by

M =
(∫

Mh

ΦiΦ j

)
i, j

,

L =
(∫

Mh

A∇Φi ·∇Φ j

)
i, j

,

and F̄ = (f (xi))i is the vector of nodal values f (xi) at ver-
tices of the triangulation xi. Hence, the discrete elliptic op-
erator in matrix form turns out to be M−1L. In case of the
parabolic problem (2), we consider a time discretization with
time step τ and have to find a sequence {Uk}k=1,··· ⊂V h of

approximations to the continuous solution (Uk(·) ≈ u(τk, ·))
such that∫

Mh

Uk+1 −Uk

τ
Φ+ (4)

∫
Mh

A[Uk]∇MhU
k+1 ·∇Mh Φ− f [Uk]Φ = 0

for all Φ ∈ V h. Note that Mh = Mh(kτ) if the surface it-
self is evolving as e.g. in case of surface fairing applications.
We obtain, for each time step of our problem, the system of
linear equations

(M + τL[Uk])Ūk+1 = M(Ūk + τF̄[Uk]) ,

where the stiffness matrix depends on the discrete solution,
i.e. L[U] := (

∫
Mh

A[U]∇Φi ·∇Φ j)i, j.

Algorithmically, the integral expressions in (4) are split
up into a a sum over local contributions on triangles. The
matrices and right hand side vector are computed as follows.
We initialize L = 0 and next do a traversal of all triangles
T ∈Mh. On each T with nodes P0,P1,P2, a corresponding
local matrix (li j(T))i j is computed first, corresponding to
all pairings of local nodal basis functions, and next added
to the matching locations in the global matrix L. For every
pair i, j we update Lα(i),α(j) = Lα(i),α(j) + li j(T). Here α(i)
is the global index of the node with local index i. We proceed
similarly with the mass matrix M.

5. Differences for Point Based Surfaces

One faces several difficulties when aiming to transfer the
PDE discretization approach outlined above to point cloud
surfaces. Conceptually, such surfaces are not described in
terms of a two dimensional set in R

3. In particular, there is
no global mesh available and, as outlined in Sec. 1, it would
conflict with the general paradigm of point based modeling
to replace the usually huge unstructured point set by a stan-
dard mesh. In particular, one would stop working on the ac-
tual, usually noisy, arbitrarily sampled data, along with their
statistical properties, and completely replace them by a mesh
having other properties. The standard method for handling
point surfaces is to extract a local approximate tangent space
on the point cloud [Pau03, ABCO∗01, XWH∗03, LP01].
This tangent space is generally used just for computing point
normals used e.g. in shading. We will use this idea to ob-
tain proper discrete counterparts of the differential operators
divM and ∇M and a metric for the discrete integration over
the surface. Hence, we proceed by constructing a local tan-
gent space and consider the local projection of the point set
onto this tangent space. We are then able to define stable
coupling quantities between neighbor points, using a strictly
local Delaunay meshing. The mentioned coupling quanti-
ties to be defined will turn out to be suitable discretizations
of the off-diagonal entries in the global stiffness matrix we
aim to recover. The local tangent spaces of different points
usually do not coincide, which induces a loss of symmetry
in our matrix. To remove this problem, we finalize the ma-
trix construction by applying a suitable symmetrization. Fi-
nally, the diagonal entries of the stiffness matrix can be de-
fined based on a requested invariance property. Indeed, the
continuous differential operator divM(A∇M·) applied to a
constant function u should vanish. Hence, we require that
LŪ = 0 for Ū = (1, · · · ,1). We proceed similarily for the

c© The Eurographics Association 2004.

U. Clarenz & M. Rumpf & A. Telea / Finite Elements on Point Surfaces

mass matrix and the right hand side of the considered PDE.
The complete approach is detailed in the following sections,
leading to a stable and consistent approximation scheme for
general PDEs.

6. Tangent Spaces and Local Meshes

We proceed by defining, for every point x in the considered
cloud, a tangent space. This space attempts to approximate
the points in a small neighborhood N of x. The size of N
should be chosen such that a) it contains enough points for
stable computation of a tangent space and b) the radius of N
is smaller than the feature size we want to be visible in the
approximation. For a), N can be efficiently computed using
the k nearest neighbors of x, for given k. For b), N can be
defined as the ball Bε(x) of given radius ε centered at x. In
practice, combinations of the two criteria give the best re-
sults. We prescribe a minimum number of neighbors kmin, to
enforce the first requirement. If the kth

min closest neighbor of x
is closer than the prescribed minimal feature size ε, we con-
sider all additional nearest neighbors in Bε(x). Next, we use
the zero and first order moments of N. Moments have sev-
eral proven properties that allow us to robustly compute the
tangent spaces as well as to distinguish between smooth and
non-smooth surface parts, both as a function of the ball size
ε. Robustness is clearly needed in the tangent plane compu-
tation. Distinguishing smooth from non-smooth surface ar-
eas is needed for our surface segmentation (Sec. 8.1) and
fairing (Sec. 8.4) applications. In this section, we give the
moment definitions and properties relevant for the tangent
plane computation. Next, we discuss the concrete moment-
based implementation of the tangent planes.

For a continuous surface M, the zero moment is given by
the local barycenter of M with respect to a Euclidean ball
Bε(x) centered at x:

M0
ε (x) = M0

ε :=
∫
−

Bε∩M
xdx . (5)

The first order moment is then defined as as:

M1
ε (x) :=

∫
−

Bε∩M
(x−M0

ε)⊗ (x−M0
ε)) dx

=
∫
−

Bε∩M
(x⊗ x −M0

ε ⊗M0
ε) dx (6)

where y⊗ z := (yiz j)i, j=1,...,3. It turns out that the first mo-
ment approximates the matrix ΠTxM corresponding to the
projection onto the tangent space TxM. Indeed, in smooth
surface regions we have:

M1
ε (x) = 2cε2ΠTxM +o(ε2) ,

where c is a constant that only depends on the dimension. For
a proof, we refer to [CRT04b]. This shows that the eigenvec-
tors of the first moment define an orthonormal basis of R

3,
where the surface normal belongs to the vanishing (small-
est) eigenvalue. For a discussion of the non smooth case we

refer to again [CRT04b]. Let λ0 > λ1 > λ2 be the eigen-
values of the 3 by 3 symmetric matrix M1

ε , then we con-
sider the corresponding eigenvector e2 as the normal on the
approximate tangent plane, whereas e1 and e0 form a 2D
coordinate system in the plane itself. Figure 1 a illustrates
the above in two dimensions. Our tangent plane compu-
tation is similar to the principal component analysis used
in [ABCO∗01, Pau03, XWH∗03]. However, as explained al-
ready, we prefer our moment-based approach as it comes
with proven scaling properties with respect to the ball size
ε. Concisely, ε has the role of a filter size: The tangent plane
ignores features significantly smaller than ε. Once the tan-

projected neighbors
projected points NP 2D triangulation

2D triangle fan

neighbors

3D points N

3D triangle fan F

tangent plane

ball Bε(x)

ε2 ε0,ε1

x

a)

x
i
 in N

i
j

neighbors

of x
i
 in N

i
j

projection
P

b)

xp

x

Figure 1: Tangent plane (a) and local triangulation (b)

gent plane {x ∈ R
3 |e2 · (x− xi) = 0} is defined for a point

xi, we project all neighbors x j
i in the neighbor set Ni onto it,

yielding the projected point set Np
i = {X j

i } j=0,···k in the 2D

coordinate system (e0,e1) (Fig. 1 a). Here X j
i ∈ R

2 are the

projections of x j
i ∈ R

3 onto the above 2D coordinate system.
To simplify notation, we incorporate xi as x0

i in the set of
neighbors Np

i . Next, we compute the Delaunay triangulation
of the points Np

i . This yields a triangle mesh Ti in the tangent
plane. The triangulation is a strictly 2D process, confined to
the frame (e0,e1). From the triangulation, we select the tri-
angle fan F p

i = {T p
i }i of projected triangles T p

i arround the
projected seed point X0

i (Fig. 1 b). Finally, we define the
neighbor set N p

i of xi as being the points x whose projec-

tions X j
i are used by the triangles in the fan F p

i . By Ni we
denote the corresponding set of 3D points before projection
on the tangent plane. Note that the points Ni define a local
3D triangle fan Fi of the point set whose projection on the
tangent plane is exactly the triangle fan F p

i defined by the
point set N p

i .

However, the above scheme has a problem. The Delau-
nay triangulation may produce triangles with too small an-
gles which, when assembled in matrices discretizing PDEs,
can cause inaccuracy and instability problems when solv-
ing these PDEs (Sec. 7). These problems are well known
from discretizing PDEs on ill-conforming meshes. We pre-

c© The Eurographics Association 2004.

U. Clarenz & M. Rumpf & A. Telea / Finite Elements on Point Surfaces

k-closest points N

selected points

neighbors

selected
points

Figure 2: Point set (left). Three selected points with neigh-
bor sets Ni and Ni (right). Major eigenvectors along edges
(bottom)

vent this as follows. If an angle smaller than a user given
αmin, set in practice to around 25 degrees, appears in the
triangulation, we remove one of its points from Np and re-
triangulate the remainder. The process is repeated until no
ill-shaped triangles are created. In practice, this causes no
visible slow-down. We tested a large number of noisy point
sets of 30000 up to a million points. The worst case encoun-
tered contained a few tens of such triangles per point set,
which were successfully removed in three re-triangulation
passes. Even though these cases are rare, their removal is es-
sential to ensure robust convergence of PDE discretization
schemes.

Our tangent plane construction has several desirable prop-
erties. First, the moment-based computation is a noise-robust
way to define the tangent plane. Larger neighborhoods N act
as stronger noise filters. It is important to note that our ap-
proach is not the same as producing a smoothed mesh. In-
deed, the neighbors Ni of a point xi are defined to be only
the immediate neighbors of xi in the Delaunay triangulation
of the projected neighborhood Np

i . As Ni increases due to
increase of ε or kmin, the set Ni practically stays of constant
size. In practice, Ni contains the average number of points
in a conforming Delaunay triangulation, i.e. 4 up to 8..10
points, whereas the average size of Ni, for the point sets we
worked with, ranged between 30 and 100 points. Secondly,
the computation of (e0,e1,e2) does not need to be very accu-
rate. We use them just as a means of finding the neighbor set

Ni out of the points in the point set. Even reasonably large
orientation variations of e0,e1 cause no change in Ni, as the
Delaunay triangulation of X j

i j uses the same closest points.
We do not produce new points, but just couple the existing
ones. Finally, the removal of ill-shaped triangles ensures that
our stiffness matrices (Sec. 7 and further) are well condi-
tioned, a property which is not directly enforced by classical
finite elements on arbitrary triangle meshes.

Our method of triangulating tangent plane projections for
the k closest neighbors resembles the local triangulation pro-
posed by Linsen et al. [LP01]. However, we consider large
k values (30 up to 100). Linsen et al. use k = 6, which
should lead to considerably less stable tangent planes. Our
triangulation quality check enforces minimal angles αmin,
whereas [LP01] does not guarantee this.

Figure 2 (left) shows the bunny model in which we chose
three points on the left ear. The points, their neighbor-
hoods N for k = 60, and lines to their neighbors Ni are
shown in red, yellow, respectively green in the detail image
Fig. 2 (right). Note that, although each Ni is large (60 points),
the corresponding Ni has 6 neighbors. Moreover, the neigh-
bor set Ni stays the same for k ∈ [20..60], which outlines the
stability of our method.

7. Assembling the Finite Element Matrices

We have shown how to construct, for every xi in a point set,
the neighbor set Ni. In this section, we show how to build the
matrices needed for solving PDEs on point surfaces. Given
the local 3D triangle fan Fi = {Tl}l , we define the prelimi-
nary matrix entry L̃i j as

L̃i j = ∑
l

A∇Tl Φi ·∇Tl Φ j |Tl | (7)

where Φ j are the affine linear basis functions on the tri-

angles of F defined by Φk(x
j
i) = δk j for all k and j. A is

the application-dependent discrete diffusivity term. Here the
gradient ∇Tl is the gradient on the affine triangle Tl .

We could alternatively define L̃i j by integrating in the tan-
gent plane only, i.e., on the triangles of F p

i , instead of Fi.
The right choice is application dependent. If we process (e.g.
denoise) the surface itself, it is incorrect to use projected
quantities, as they do not take into account the spatial ori-
entation of the points. Indeed, this would couple points in
flat regions as strongly as points in curved regions. As al-
ready outlined, if we compute on the 3D triangle fan, we
use the tangent planes just as a help for the triangulation
and obtaining the neighbor relations N p, and perform all
other computations in 3-space. When processing a fixed and
very noisy point cloud, the smoothing induced by the tan-
gent space construction may be desirable. In that case, one
would replace the 3D triangle fan Fi by its projection F p

i .

The quantity L̃i j describes the coupling of point i with all
its neighbors j, from the point of view of i. Clearly, L̃ ji is

c© The Eurographics Association 2004.

U. Clarenz & M. Rumpf & A. Telea / Finite Elements on Point Surfaces

not necessarily equal to L̃i j , as the neighbor computations of
i and j are strictly speaking independent (Sec. 6). Moreover,
we must still define a point’s self-coupling, i.e. the matrix’s
diagonal entries. To produce a complete, symmetric ’stiff-
ness’ matrix L, we now define

Li j =
1
2
(L̃i j + L̃ ji) (8)

for i �= j and for the diagonal entries

Lii = − ∑
x j∈N (xi)

Li j. (9)

The latter ensures - as already mentioned in Sec. 4 - the de-
sirable property that L(1, · · · ,1)T = 0. The matrix L has now
the same properties as the classical stiffness matrix on a tri-
angular mesh. However, L is not produced via a global trian-
gulation, but via our local, on-the-fly triangulation.

Finally, for the mass matrix M, we consider a diagonal,
lumped mass matrix, and set

Mii =
1
3 ∑

l

|Tl | . (10)

Here, as for the stiffness matrix, we can either consider tri-
angles in the 3D fan Fi or alternatively their 2D projections
in the projected fan F p

i .

8. Applications

8.1. Surface Segmentation

Nonlinear diffusion methods are well known in image pro-
cessing applications [Kim97, PR99]. In these applications,
one solves Equation 2, where u is the scalar gray value or
vector-valued image color. Time plays the role of a scal-
ing parameter: u(t = 0) is the initial image, and {u(t)}t>0
is a family of progressively smoothed images. Appropriate
choices for the diffusivity A and source term f yield differ-
ent diffusion types. For example, A = 1 and f = 0 gives the
well known heat equation with its isotropic smoothing ef-
fect. A better choice for image processing is to set A small in
areas where we want to keep image details and large in areas
where we desire strong smoothing. Finally, we can enforce
the diffusion direction to follow the feature lines.

As a more challenging application, we consider the seg-
mentation of regions on a surface M which are bounded by
sharp edges. For this, we use a diffusion process where we
limit diffusion across and close to edges and have it large in
smooth areas. For this, we can set A = Cε, where

Cε = G

(
||M0

ε (x)− x||λ2(M1
ε (x))

ελ0(M1
ε (x))

)
,

with G(s) = (α + βs2)−1 with suitably chosen α, β > 0.
This is the surface classifier presented in [CRT04b] which
is small in the vicinity of edges on the surface and almost
1 in smooth surface regions. However, the above choice for
A may not stop diffusion completely close to edges, which

a) b)

c) d)

Figure 3: Seed points (a), diffused signal u for yellow seed
after 5 iterations(b), and two views of the obtained segments
(c,d) for a surface having 75781 points

a cb

Figure 4: Seed points (a), diffused signal for a seed after
15 iterations (b), and obtained segments (c) for a surface
having 65500 points

is what we need for segmentation. To this end, we set A =
H(Cε) and f = K(u), where

H(u) =
{

0 ; u > γ
α(u− γ)q ; u ≤ γ ,

K(u) =
{

0 ; u > 1
α(1−u)q ; u ≤ 1

.

for suitably chosen 0 < q << 1, α > 0, and γ > 0. In prac-
tice, a good choice is q = 0.5, α = 1, and γ = 0.05. Given
that Cε ranges from very small close to edges to 1 in flat

c© The Eurographics Association 2004.

U. Clarenz & M. Rumpf & A. Telea / Finite Elements on Point Surfaces

areas (Sec. 6), our choice for γ, and subsequently for H,
ensures that diffusion is zero close to edges and strong in
smooth surface areas. We set the initial condition u0 = 0
over the whole surface M, except for a small hand-picked
seed area within the region to be segmented, where we set
u0 = 1. The diffusion process stops spreading the seed in-
tensity and stop at the surrounding edges, due to the choice
of A. Furthermore, the right hand side f serves as a con-
trast enhancement, which pushes u to the value 1 at any po-
sition which has a positive u value. Figures 3 and 4 illustrate
the segmentation process on two different point set surfaces,
where we used different colors for every region and corre-
sponding seed. The colors’ saturations correspond to the dif-
fused signal u. In Fig. 3 we show the use of A = Cε, which
causes a very small amount of diffusion to leak out of the
segmented regions. This is visible as the light red and green
tints on the model’s arms that come from the respective red
and green segmented regions. Exact segments can be eas-
ily obtained by e.g. upper thresholding the signal u. A better
choice is shown in Fig. 4 where we use the second option
A = H(Cε). Here, the obtained segments are clearly sepa-
rated by white areas. These areas correspond to high curva-
ture regions, where the the function H has zero values which
completely block diffusion.

Computing the diffusion-based segmentation is efficient,
as the matrix A needs to be assembled just once. On a Pen-
tium IV 1.8 MHz machine, one diffusion iteration takes 0.3
seconds for the 75781 points model in Fig. 3 and 0.57 sec-
onds for the 121723 points model in Fig. 7.

8.2. Texture Synthesis

We describe now the use of PDEs to generate textures on
point surfaces, using the reaction diffusion method presented
by Turk in [Tur91]. This method uses two ’chemical species’
concentration functions a and b that diffuse and react, i.e.,
build up or annihilate each other, on a given surface. The
process is described by:

∂a
∂t

= Fa(a,b)+Da∆a (11)

∂b
∂t

= Fb(a,b)+Db∆b (12)

where Fa and Fb are the creation rates and Da and Db are
the diffusivities of the species a and b respectively. The sys-
tem is initialized with constant a and b values biased by a
small random perturbation. After several iterations, regular
patterns appear (cf. Fig. 5, top row). By using a five species
system, stripe-like patterns can be generated (cf. Fig. 5, bot-
tom row). We have used exactly the same PDEs and param-
eter settings as the original work by Turk [Tur91].

We discuss first the synthesis of spots and stripes textures.
Figure 5 shows these types after 100, 600, and 1700 iter-
ations for the spots (top row) and 100, 300, and 600 iter-
ations for the stripes (bottom row). Here, we visualize the

Figure 5: Top row: spot texture synthesis. Bottom row:
stripes texture synthesis

concentration (a or b) result of the reaction diffusion via a
blue-to-red colormap. The patterns and the number of itera-
tions needed are practically identical with the ones produced
by [Tur91]. Next, we synthesize a zebra-like pattern, by dis-
abling the initial random perturbation and setting the initial
concentration to a given value v. We extend Turk’s method
by forcing the zebra pattern to follow the surface edges by
relating v to the moment-based classifier value. For this, we
select all points where Cε is closer to its minimum value than
10 percent of its range. This delivers points on and close to
surface edges. We next set v to 1 on these points and 0 on
the remainder and proceed with the texture synthesis. The
species start diffusing from the surface edges (red regions in
Fig. 6 a) into the smooth areas (blue regions in Fig. 6 a). Fig-
ure 6 a-c shows three instants of the zebra pattern formation.
On a Pentium IV 1.8 GHz machine, for the bunny dataset,
the spot formation took around 30 seconds, the stripes 8 sec-
onds, and the zebra pattern 18 seconds.

a) b) c)

Figure 6: Aligned zebra patterns after 10 iterations (a), 100
iterations (b), and 1300 iterations (c)

8.3. Inpainting Textures

Inpainting, originally an artist’s work, is the process of re-
pairing local damages in an image, or texture, by using the

c© The Eurographics Association 2004.

U. Clarenz & M. Rumpf & A. Telea / Finite Elements on Point Surfaces

image colors ouside of, and close to, the damaged area to fill
in, or ’paint in’, the defect itself. Several inpainting methods
exist which essentially try to restore the damaged area so
that various properties (statistic data, gradient information)
of the valid image are extrapolated in the damaged area in a
natural way [CS00, BSCB00]. We demonstrate here a sim-
ple linear inpainting method which allows repairing the color
texture on a damaged region D of a point set surface M, by
extending the texture on the boundary ∂D of D into the inte-
rior of D. For this, we consider the boundary value problem
(1) with A = Cε. This diffusivity choice prefers rather inde-
pendent texture expansion on both sides of an edge. Hence,
we avoid texture smearing across edges. Figure 7 shows the
inpainting of a model of 121723 points. First, we created
several defects by painting on the model. Such defects are
shown in yellow in Fig 7 c,e. The texture was set to black
in the defects area. Using the anisotropic diffusivity A (low
close to creases, high in flat areas) for inpainting diminishes
texture smearing close to creases: The model’s black hair
color and facial color are kept separate (Fig. 7 c,d). The
same happens with the leg’s skin color and white shoe color
(Fig. 7 e,f). However, the black trouser color tends to dif-
fuse on the left leg (Fig. 7 b), as this region is flat. If desired,
this can be prevented by using an anisotropy tensor A that
incorporates color gradient information.

8.4. Fairing of Point Based Surfaces

The last application of our framework for PDEs on point
based sufaces is surface fairing using anisotropic geomet-
ric diffusion. Here, surface geometrical noise is smoothed
out, whereas features such as edges are preserved or pos-
sibly even enhanced [CDR00, DMSB99]. This is especially
useful for point surfaces acquired via noisy scanning. Given
an initial compact embedded manifold M0 in R

3, we com-
pute a family of faired manifolds {M(t)}t∈R

+
0

, with corre-
sponding coordinate mappings x(t). The time t describes the
fairing process and x(t) are given by solving the system of
anisotropic evolution equations:

∂t x−divM(A∇Mx) = 0 (13)

We start with the initial condition M(0) = M0. We define
the tensor A such that we have strong diffusion along surface
features and weak diffusion across them. As before, we use
a moment-based classifier. When computing it, we also ob-
tain a basis w1,w2 in the tangent plane TxM, defined by the
major and medium eigenvectors of the first order moment
(Sec. 6). In this basis, the tensor A is defined as

A =
(

1 0
0 Cε

)

Since Cε is high in smooth regions and low close to edges
and corners, Eqn. 13 smooths the surface by keeping the fea-
tures. Due to the anisotropy A, we enforce a signal enhance-
ment in the direction of the eigenvector w1. In the direction
of w2, the diffusion is proportional with the classifier Cε, i.e.,

a b

c d

e f

Figure 7: Texture inpainting after 1 step (a) and 30 steps (b).
Details: defects (yellow) (c,e) and their inpainting (d,f)

strong in smooth areas and weak close to edges, which is
exactly what we desire. We refer to [CRT04a], which de-
scribes this application, but without detailing the actual PDE
discretization we consider here. Figure 8 shows several re-
sults, all obtained with a few tens of diffusion iterations.
The important surface edges, such as the bunny’s ear edges,
body-hip contact line, the transversal femur cut, and the chis-
elled letters, are preserved. Small ’noise’ details, such as the
bunny’s skin ripples, bone irregularities, and stone graini-
ness, are removed.

9. Implementation

Several aspects are essential for an efficient implementation.
One of the costliest computations in the whole process is
the nearest neighbor search used for the classifier and tan-
gent plane computation. (Sec. 6). We accelerate this search

c© The Eurographics Association 2004.

U. Clarenz & M. Rumpf & A. Telea / Finite Elements on Point Surfaces

Figure 8: Top row: initial surfaces. Bottom row: surfaces
faired via diffusion

using the Kd and/or Bd trees provided by the ANN pack-
age [Mou], also used by the PointShop point rendering sys-
tem [ZPKG02]. However, ANN’s standard Kd and Bd tree
implementations treat the (usually very numerous) points in
the point cloud independently: searching the neighbors of
every point implies, in a worst case, a full leaf-to-root search
tree traversal. In many point sets, the points are not com-
pletely randomly distributed. Points geometrically close to
each other come close to each other in the point vector too.
We use this to accelerate the neighbor search, as follows. We
do not try to return the exact k closest points, but k points
contained within a small given radius ε from a given point.
These points are kept in a cache. If the cache is empty, we
fill it by executing the standard k closest neighbor search. If
the cache is not empty, it contains search results for the pre-
vious point, so we retain those k′points closer than ε from
the current point. The cache miss, i.e. the remaining, usually
few, k − k′ points are found by the usual tree search. This
acceleration pays off as function of k. Indeed, as k increases,
neighborhoods of close points will largely overlap. For k
equal to 20, 50, and 100 closest points, we got a speedup fac-
tor of 2.62, 3.92, respectively 5.46 as compared to the stan-
dard tree search. This speedup was consistently observed for
point sets between 100000 and one milion points. On our
Pentium IV 1.8 GHz machine, for the point set and four k-
closest-points values in Fig. 2, we need 0.4, 0.6, 1.05, and
1.83 seconds respectively for the nearest neighbor search,
tangent plane, and classifier computations.

For the Delaunay triangulation (Sec. 6), we used the Tri-
angle software [She96] which provides efficient checking
and enforcing of various quality norms on the produced tri-
angles, such as minimal angles. This is important for the
conditioning of the assembled matrices (Sec. 7). We solve
the linear systems given by the matrices using standard iter-
ative techniques, such as conjugate gradient.

We built our system based on the QSplat rendering soft-
ware [RL00] which uses a bounding sphere hierarchy to
quickly and progressively render very large point sets. We
perform all our moment, tangent plane, and PDE solving

computations on the finest hierarchy level, i.e. the real points
themselves. If desired, the color, normal, and position re-
sults can be propagated upwards in the hierarchy, so that we
immediately benefit from QSplat’s efficient rendering. We
could also perform our PDE computations on coarser hier-
archy levels, e.g. to trade off accuracy for speed. Such an
approach is taken in the multiresolution point set renderer
described in [PKG03] to minimize the cost of local polyno-
mial fitting.

10. Conclusions

The main aim of the presented framework is to carry over the
surface processing capabilities of finite element PDE meth-
ods, well proven for mesh based surfaces, to point based sur-
faces. Our framework can be seen as a two-scale approach.
On the fine scale, we build local point couplings by using
Delaunay triangulations of point projections on local tan-
gent planes. The local couplings define fine-scale finite el-
ements. It is only on this scale that the actual interpretation
of the data as a function is clear and straightforward. On the
next scale, we consider the different tangent spaces of dif-
ferent points, and average the first-scale FE models of these
points to obtain the ’global’ stiffness matrix (Sec. 7). To in-
terpret data as a function on the second scale, one can aver-
age the function values on first-scale local triangles and in-
terpret them as function values on interpolated points, where
point interpolation is done by averaging point interpolations
from the fine scale. We use the local tangent planes solely
as a means of computing the point couplings. Thus, our
approach differs from other methods on point clouds, such
as [Pau03, XWH∗03, ABCO∗01, LP01, AA03].Let us note
that, given different surface approximations, like any pro-
duced by the afore cited methods, we could easily extend
our matrix assembly process to such surfaces, by reimple-
menting Eqns. (7) and (10) on this approximation.

Running our PDEs on the same surfaces represented as
triangle meshes and point sets respectively, with the same
parameter settings, produced virtually identical results. Let
us emphasize that we avoid building a global surface rep-
resentation. Our only global object is the stiffness matrix
describing the PDE to solve. Assembling this sparse global
matrix allows computing the point couplings only once. If
desired, however, we could completely avoid assembling this
matrix, e.g. by using iterative methods needing only one ma-
trix row at a time, which is computed on the fly. Such ap-
proaches are well known e.g. in the field of progressive ra-
diosity.

Our framework can be extended in several directions.
First, more types of PDEs could be solved by merely adapt-
ing the matrix assembly step. Secondly, one could use the lo-
cal couplings described here to build consistent global mesh
representations from point clouds. Finally, multiresolution
schemes on point surfaces can be built to accelerate the PDE
solving to target interactive applications.

c© The Eurographics Association 2004.

U. Clarenz & M. Rumpf & A. Telea / Finite Elements on Point Surfaces

References

[AA03] ADAMSON A., ALEXA M.: Approximating
and intersecting surfaces from points. In Proc.
Eurographics Symposium on Geometry Pro-
cessing (2003), pp. 89–97.

[ABCO∗01] ALEXA M., BEHR J., COHEN-OR D.,
FLEISHMAN S., LEVIN D., SILVA C.: Point
set surfaces. In Proc. IEEE Visualization
(2001), pp. 21–28.

[Boi84] BOISSONNAT J. D.: Geometric structures for
three-dimensional shape representation. ACM
Trans. Graph. 3, 4 (1984), 266–286.

[BSCB00] BERTALMIO M., SAPIRO G., CASELLES V.,
BALLESTER C.: Image inpainting. In Proc.
ACM SIGGRAPH (2000), pp. 417–424.

[CDR00] CLARENZ U., DIEWALD U., RUMPF M.:
Nonlinear anisotropic diffusion in surface pro-
cessing. Proc. IEEE Visualization (2000),
397–405.

[CRT04a] CLARENZ U., RUMPF M., TELEA A.: Fair-
ing of point based surfaces. In Proc. Comp.
Graphics Intl. (CGI) (2004). to appear.

[CRT04b] CLARENZ U., RUMPF M., TELEA A.: Ro-
bust feature detection and local classification
for surfaces based on moment analysis. to ap-
pear in IEEE TVCG (2004).

[CS00] CHAN T., SHEN J.: Mathematical models for
local deterministic inpainting. In Tech. Report
CAM-00-11, Image Processing Group, UCLA
(2000).

[DMSB99] DESBRUN M., MEYER M., SCHROEDER P.,
BARR A.: Implicit fairing of irregular meshes
using diffusion and curvature flow. In Proc.
ACM SIGGRAPH (1999), pp. 317–324.

[GKS00] GOPI M., KRISHNAN S., SILVA C. T.: Sur-
face reconstruction based on lower dimen-
sional localized delaunay triangulation. In
Proc. Eurographics (2000), vol. 19(3).

[HDD∗92] HOPPE H., DEROSE T., DUCHAMP T., MC-
DONALD J., STUETZLE W.: Surface recon-
struction from unorganized points. In Proc.
ACM SIGGRAPH (1992), pp. 71–78.

[Kim97] KIMMEL R.: Intrinsic scale space for im-
ages on surfaces: The geodesic curvature
flow. Graphical Models and Image Process-
ing 59(5) (1997), 365–372.

[Kob97] KOBBELT L.: Discrete fairing. In Proceedings
of the 7th IMA Conference on the Mathematics
of Surfaces (1997), pp. 101–131.

[LP01] LINSEN L., PRAUTZSCH H.: Global versus
local triangulations. In Proc. Eurographics
(short presentations) (2001), pp. 71–78.

[Mou] MOUNT D. M.: Ann: A library for ap-
proximate nearest neighbor searching.
www.cs.umd.edu/∼mount/ANN.

[Pau03] PAULY M.: Point primitives for interactive
modeling and processing of 3D geometry. Dis-
sertation, Department of Computer Science,
ETH Zürich, 2003.

[PKG03] PAULY M., KEISER R., GROSS M.: Multi-
scale feature extraction on point-sampled sur-
faces. In Proc. Eurographics (2003), vol. 22
(3), pp. 121–130.

[PR99] PREUSSER T., RUMPF M.: Anisotropic non-
linear diffusion in flow visualization. In Proc.
IEEE Visualization (1999).

[RL00] RUSINKIEWICZ S., LEVOY M.: QSplat: A
Multiresolution Point Rendering System for
Large Meshes. In Proc. ACM SIGGRAPH
(2000), pp. 343–352.

[She96] SHEWCHUK J. R.: Triangle: Engineering a 2d
quality mesh generator and delaunay triangu-
lator. In 1st Workshop of Applied Computa-
tional Geometry (1996), ACM Press, pp. 124–
133.

[Tau95] TAUBIN G.: A signal processing approach to
fair surface design. In Proc. ACM SIGGRAPH
(1995), pp. 351–358.

[Tur91] TURK G.: Generating textures on arbitrary
surfaces using reaction-diffusion. Computer
Graphics (SIGGRAPH ’91 Proceedings) 25,
No. 4 (1991), 289–298.

[VK01] VARSHNEY A., KALAIAH A.: Differential
point rendering. In Proc. 12th Eurographics
Workshop on Rendering (2001), pp. 139–150.

[XWH∗03] XIE H., WANG J., HUA J., QIN H., KAUF-
MAN A.: Piecewise
1 continuous surface re-
construction of noisy point cloud via local im-
plicit quadric regression. In Proc. IEEE Visu-
alization (2003), pp. 198–206.

[ZPKG02] ZWICKER M., PAULY M., KNOLL O.,
GROSS M.: Pointshop 3d: an interactive sys-
tem for point-based surface editing. In Proc.
ACM SIGGRAPH (2002), pp. 322–329.

[ZPvBG01] ZWICKER M., PFISTER H., VAN BAAR J.,
GROSS M.: Surface splatting. In Proc. ACM
SIGGRAPH (2001), pp. 267–275.

c© The Eurographics Association 2004.

U. Clarenz & M. Rumpf & A. Telea / Finite Elements on Point Surfaces

a

b

c

d

e

f

g

h

i

Figure 9: Finite elements on point surfaces applications: Segmentation (a,b,f). Inpainting (c). Fairing (d,e). Texture synthesis
(g,h,i)

c© The Eurographics Association 2004.

