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Abstract

When assessing the quality and maintainability of large C++ code bases, tools are needed for extracting
several facts from the source code, such as: architecture, structure, code smells, and quality metrics.
Moreover, these facts should be presented in such ways so that one can correlate them and find outliers
and anomalies. We present SolidFX, an integrated reverse-engineering environment (IRE) for C and
C++. SolidFX was specifically designed to support code parsing, fact extraction, metric computation, and
interactive visual analysis of the results in much the same way IDEs and design tools offer for the forward
engineering pipeline. In the design of SolidFX, we adapted and extended several existing code analysis
and data visualization techniques to render them scalable for handling code bases of millions of lines. In
this paper, we detail several design decisions taken to construct SolidFX. We also illustrate the application
of our tool and our lessons learnt in using it in several types of analyses of real-world industrial code
bases, including maintainability and modularity assessments, detection of coding patterns, and complexity
analyses.
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1 Introduction

In the last years, several tools have emerged to support program understanding,
software maintenance, reverse engineering, and reengineering activities. A large
part of such tools extract their information mainly from the source code via static
analysis. This includes a set of operations ranging from code parsing and fact
extraction, fact aggregation and querying, up to interactive presentation.
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Several requirements are to be met by static analysis tools to be accepted and
used by the software industry. First, the fact extractors should be able to deliver
detailed low-level information, e.g. complete syntax trees, from possibly incorrect
and incomplete code bases of millions of lines-of-code (LOC). Next, subsequent tools
are needed to query the subsets of facts of interest from the raw data, e.g. select all
code fragments which comply with a given quality or safety standard. Of particular
interest is the recovery of high-level design information, e.g. class diagrams, from
source code. Computing quality metrics and code smells are important instruments
in this process. Third, interactive presentation and exploration mechanisms should
be provided to drive the entire understanding process. Finally, all above tools should
be tightly integrated, scalable, and simple to use and learn.

For the C++ language, there are few static analysis and reverse engineering
toolsets which meet all above criteria. Robust static analysis of industry-size C++
code bases is particularly hard, given the language complexity, its several dialects,
the presence of mixed C and C++ code, and the use of a preprocessor. Moreover,
although several C and C++ static analyzers exist, few come integrated in a frame-
work with query, metrics, and interactive visualization tools which make them truly
scalable and easy to use by software engineers.

In this paper, we present our experience in the architecting of SolidFX, an
Integrated Reverse-Engineering environment for C and C++. SolidFX is a com-
mercial product which provides full analysis of industry-size C and C++ code bases,
customizable query and metric engines, and extraction of UML class diagrams from
source code [22]. All analysis operations supported by SolidFX are available via an
interactive user interface which uses several novel visualization techniques to achieve
scalability. SolidFX was designed to cover a wide range of analyses, ranging from
local variable level up to system architecture, and also as an open environment which
allows integration of third-party analyses via plug-ins. Overall, SolidFX offers to
reverse engineers the same look-and-feel that Integrated Development Environments
(IDEs) such as Visual C++ or Eclipse offer to software developers.

This paper is structured as follows. In Section 2, we present related work in
the context of interactive static analysis and reverse engineering, with a focus on
C++. Section 3 describes the tool architecture of SolidFX and details its main
components: the parser, the query and metric engine, and the data views which
SolidFX adds atop of fact extraction and analysis engines. Section 4 presents
several applications of our tool on three real-life code bases. Section 5 discusses
our experience with using SolidFX in practice and feedback obtained from actual
customers. Section 6 concludes the paper with future work directions.

2 Previous Work

Related work in the area of interactive reverse engineering can be grouped in two
categories: extraction and analysis of facts from source code, and visual presentation
of the results.

In the first category, we focus specifically on C++ static code analysis, since
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this is our target domain. C++ static analyzers can be roughly grouped into two
classes: lightweight analyzers do only partial parsing and type-checking of the input
code, and thus produce only a fraction of the entire static information. Lightweight
analyzers include SrcML [6], Sniff+, GCCXML, MCC [18], and several custom
analyzers constructed using the ANTLR parser-generator [20]. Typically, such
analyzers use a limited C++ grammar and do not perform preprocessing and scoping
and type resolution. This makes them quite fast and relatively simple to implement
and maintain. However, such analyzers cannot deliver the detailed information
that we need for our (visual) analyses, as we shall see later. Moreover, lightweight
analyzers cannot guarantee the correctness of all the produced facts, as they do not
perform full parsing. In contrast to these, heavyweight analyzers perform (nearly) all
the steps of a typical compiler, such as preprocessing, full parsing and type checking,
and hence are able to deliver highly accurate and complete static information. Well-
known heavyweight analyzers with C++ support include DMS [2], Columbus [9],
ASF+SDF [28], Elsa [17], and CPPX [15]. However more powerful, heavyweight
analyzers are also significantly (typically over one order of magnitude) slower, and
considerably more complex to implement.

Heavyweight analyzers can be further classified into strict ones, typically based
on a compiler parser which will halt on lexical or syntax errors (e.g. CPPX); and
tolerant ones, typically based on fuzzy parsing or Generalized Left-Reduce (GLR)
grammars, (e.g. COLUMBUS). Our early work to design an IRE for C++ used
a strict gcc-based analyzer [16]. We quickly noticed the limitations of using strict
analyzers. Typical users do not have a fully compilable code base, e.g. because of
missing includes or unsupported dialects, but still want to be able to analyze it.

The output of static analyzers, mostly produced by runnign batches, can be
fed to a range of visualization tools. Many such tools exist, ranging from line-
level, detail visualizations such as SeeSoft [8] up to architecture visualizations which
combine structure and attribute presentation, e.g. Rigi [23], CodeCrawler [13],
or SoftVision [24]. An extensive overview of software visualization techniques is
provided by Diehl in [7].

3 IRE Architecture

3.1 Environment Requirements

Our quest to design an Integrated Reverse-engineering Environment (IRE) that
offers a similar flexibility and ease-of-use to the reverse-engineering process as IDEs
do to the forward engineering started with an early toolset version, called the Visual
Code Navigator (VCN) [16]. Initial results obtained with the VCN during several
projects involving commercial, open-source, and academic C++ code, as well as
our own experience in using Columbus for in-house fact extraction, led us to the
following main design considerations and requirements:

• a tolerant extractor is strongly preferred to an incomplete one. In both early
and late reverse-engineering and analysis phases, users would want to be able to
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analyze code that does not compile for a variety of reasons, and would not accept
a strict extractor that fails on preprocessor, syntax or type errors.

• a heavyweight extractor is preferred to a lightweight one for several reasons. First,
users need to design custom, project or task-specific, queries and code metrics that
uses a wide range of fact types, so we need to be able to produce these. Second,
in order to pose queries on-the-fly on source code and also present the analysis
results in code-level visualizations, we need fine-grained information such as the
location, scoping, and types of each identifier in the source code. Such a level of
detail requires a heavyweighr extractor.

• a tight integration of the extraction, analysis, and visualization tools in a single,
coherent, easy-to-use environment is essential for acceptance. Many users would
not accept a steep learning curve for a complex tool, while they are ready to
experiment with a point-and-click, error-tolerant interface.

Constructing a scalable solution that complies with all these requirements is
quite difficult. Although several heavyweight C++ extractors exist (see Section 2),
such tools typically work in batch mode and do not expose a fine-grained API that
allows their integration into the complex control structure required by an interactive
environment. Also, implementing an open set of custom queries on the extracted
facts in an efficient way is quite difficult. Finally, most such extractors are closed
source, making their modification impossible.

For these reasons, we decided to base our IRE design on a heavyweight C++ fact
extractor of our own construction. The entire IRE consists of this fact extractor, a
query and metric computation engine, and several data views. All these components
communicate via a central fact database (Figure 1). In the following sections, we
describe each of these components.

3.2 Fact Database

The fact database contains both the raw facts, produced by the extractor directly
from the source code, as well as several derived facts, produced by the query and
metric engines during the analysis and reverse engineering process (Sec. 3.4). The
database acts as a central repository, read and written by the various components
in the IRE (Fig. 1).

A database instance contains facts extracted from the analysis of a given project.
A project is much like a makefile, i.e. contains a set of source files, include paths,
#defines, and language dialect settings. Project descriptions can be automatically
created by parsing either makefiles or Visual C++ XML project files, with a tech-
nique quite similar to the so-called compiler wrapping described for the Columbus

extractor [9]. A project is analyzed one source file (translation unit) at a time by
the fact extractor (Sec. 3.3), which saves information on four kinds of data elements
(lexical, syntax, type, and preprocessor) in the database. Each data element is
assigned a unique id. The database is structured as a set of binary files, one per
translation unit, and a set of has maps which allow referring to the elements by id
within each file.
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Fig. 1. Dataflow architecture of SolidFX

The IRE components communicate with each other by lightweight sets of fact ids,
called selections, which resemble the table views in SQL databases. The database
creation, done during parsing the source code, is by far the most consuming time of
the static analysis. After this process is completed, queries and visualizations only
modify selections, a process which can be done at interactive rates (Sections 3.4,3.5)

3.3 C++ Parsing

As outlined in Section 3.1, our SolidFX environment uses a C and C++ heavy-
weight analyzer of own construction. We based this analyzer on Elsa, an existing
C++ parser designed using a GLR grammar [17]. Atop the parser which produces
a parse forest of all possible input alternatives, ELSA adds the complex type-
checking, scoping, and symbol lookup rules that disambiguate the input to yield an
Annotated Syntax Graph (ASG). The ASG contains two types of nodes: abstract
syntax tree (AST) nodes, based on the GLR grammar; and type nodes, which en-
code the type-information created during disambiguation, and are attached to the
corresponding AST nodes.

Although powerful, Elsa lacks several features required by an analyzer used
in an interactive environment context (Section 3.1. Its most important limitations
are as follows. First, Elsa requires preprocessed input, so no preprocessor facts

A. Telea et al. / Electronic Notes in Theoretical Computer Science 233 (2009) 143–159 147



are extracted. Also, token-level information, such as exact (row,column) locations,
necessary for the code-level visualization (Section 3.5), are missing. Second, error
recovery lacks, so incorrect code causes parse errors. Third, the output cannot be
filtered or queried for specific facts.

We have extended Elsa to eliminate all these limitations [3]. Our fact extractor
works in five phases (see Figure 2).

First, the parser, preprocessor and preprocessor filter operate in parallel. The
preprocessor reads the input files and outputs a token stream enriched with
(row,column) location data. For this, we can use a standard C preprocessor, e.g. as
provided by the Boost or libcpp libraries), patched to output token locations along
with the tokens.

Fig. 2. Architecture of the SolidFX C++ parser (main components shown in bold)

The parser reads the token stream from the preprocessor as it performs reduc-
tions and builds the AST. We use here the Elsa parser, which we extended to handle
incorrect and incomplete input, as follows. When a parse error is encountered, we
switch the parser to a so-called error recovery rule, which matches all incoming to-
kens up to the corresponding closing brace (if the error occurs in a function body or
class declaration scope) or semicolon (if the error occurred in a method, namespace,
or global declaration scope). Besides skipping the erroneous code, we also remove
the corresponding parts from the parse tree. The effect is as if the declaration or
function body containing the error was not present in the input. This approach re-
quired adding only six extra grammar rules to the original C++ GLR grammar of
Elsa. Our approach, where error-handling grammar rules get activated on demand,
resembles the hybrid parsing strategy suggested by [12]. Compared to ANTLR,
our method lies between ANTLR’s basic error recovery (consuming tokens until a
given one is met) and its more flexible parser exception-handling (consuming tokens
until a state-based condition is met). All in all, we believe that our design balances
well implementation simplicity with a good granularity of error recovery.

The parsing phase, augmented by error recovery, is followed by the original
AST dismbiguation and type-checking implemented by the Elsa parser. After this
step, we filter the extracted facts (preprocessor, AST nodes, and type nodes) and
keep only the facts which originate in, or are referred from, the project source files
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(Section 3.2). In other words, the filtering phase eliminates all AST nodes which
are present in the included headers but are not referred to by AST nodes contained
in the analyzed sources. This eliminates all declarations and preprocessor symbols
contained in the include headers which are not referred to in the sources. Filtering
the parsed output is essential for performance and scalability, as it reduces the
output with one up to two orders of magnitude 4 . Finally, the filtered output is
written to file using a custom binary format.

All in all, the several design choices made during the fact extractor implemen-
tation, i.e. using the Elsa parser which has a highly optimized core written in C;
providing lightweight error recovery at global declaration and function/class scope
levels; filtering unreferenced symbols from the parser output; and writing the output
in an optimized binary format, deliver an efficient heavyweight parser. SolidFX is
roughly three to six times, on the average, faster than Columbus, one of the fastest
heavyweight C++ parsers that we could test, and also scales well to analyze projects
of millions of lines of code [3]. For such projects, the fact databases saved on disk
can take hundreds of megabytes. However, as we shall see next, querying such
databases is still very fast.

3.4 Query and Metrics Engine

The second main component of the IRE is a customizable query and metrics engine.
A query implements the function

Sout = {x ∈ Sin|q(x, pi) = true}(1)

that is, finds those elements x from a selection Sin which satisfy a predicate q(x, pi),
where pi are query-specific parameters. The query engine is implemented as a C++
class library which implements several specializations of the above query interface
q, as follows. Each syntax-node T in the C++ GLR grammar of our parser has
several children c(T ) and several data attributes a(T ). For example, a method-
node has a signature, a function-body child, and a ’virtual’ boolean attribute. For
each such node T , we generate a query-node specialized to check for the values of
the attributes a(T ) and/or call the query-children of c(T ). For example, a function
query-node whose ’virtual’ attribute is set to ’true’ will only match AST nodes for
functions declared virtual. Query-nodes can be assembled in query-trees, yielding
composite queries. Query trees can be further composed using logical operators,
such as AND, OR, NOT . A given query tree q is applied on a given element x by
using the visitor pattern to find those elements y in the AST rooted at x matching
the type of q’s root, followed by an application of q(y) based on recursion over q’s
children-queries.

The above mechanism allows a flexible specification of a wide set of static queries,
ranging from ”find all variables called x” to ”find all classes inheriting from Base

and containing a method which throws exactly two exceptions of type E”. Query
trees can be serialized into an XML-based file format, thereby allowing users to

4 This is not surprising, considering that a typical ”Hello world” program including stdio.h or iostream
contains 100000 lines of code after preprocessing, of which only a tiny fraction is actually used
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design custom queries and query libraries simply by editing XML files, i.e. without
recompiling the query engine. Several examples of queries and their applications
are presented next in Section 4.

A careful query engine design makes applying queries on large fact databases is
very efficient. First, since the parsed AST nodes are indexed in the binary database
by their ids, visiting large query trees can be done very efficiently directly on disk,
by visiting their respective index offsets. The results of a query are selections, i.e.
lightweight index-sets. Combined with early query termination, this lets us query
fact databases of millions of AST nodes in subsecond time, once the code is parsed.

Several code metrics can be implemented directly using the query engine. For
example, the metrics of the type ”number of occurrences of code pattern P” can be
implemented directly as

m(x) = |q(x, pi)| ∈ R, ∀x ∈ Sin.(2)

This associates a numeric value m(x) to each element x of a selection Sin based on
the number of hits of a corresponding query q which searches pattern P . Several
metrics, such as McCabe’s cyclomatic complexity, class interface sizes, coupling met-
rics, and most of the object-oriented metrics discussed in [14] can be implemented
in this way.

Fig. 3. Overview of the SolidFX Integrated Reverse Environment

3.5 Data Views

The third and final component of the SolidFX IRE provides a set of interactive
data visualizations, or views. These views serve both as input and output to the
reverse engineering operations: Users can select elements in the views and pass them

A. Telea et al. / Electronic Notes in Theoretical Computer Science 233 (2009) 143–159150



as input to various operations, such as queries or metric engines, whose outputs can
further serve as inputs for the views.

Figure 3 shows the main data views we developed for our IRE. The project view
lets users set up a fact extraction project, much like one sets up a build project
in Visual Studio or Eclipse. The fact database files created by the C++ parser
are shown in the output view. The selection view shows all selections available in
the fact database. The appearance of each selection can be customized here, i.e.
one can specify if it is visible, and if so, how to color its elements (as discussed
next) 5 . The query view shows all available queries in the XML-based query library
(Section 3.4). To perform a query, e.g. ”select all function definitions with n

parameters”, one selects the query in the query view, fills in the desired attributes,
e.g. the value for n in our example, in the query GUI, and clicks on the selection
on which to perform the query in the selection view. The query’s output gets
automatically added as a new selection to the selection view. A separate view,
called the selection monitor, shows all the code elements in the currently active
selection in the selection view, together with their computed metrics. The metrics
are displayed using a combination of text and colored bar graphs based on the so-
called ’table lens’ technique [25]. When zoomed in, the table lens behaves like a
usual Excel table. When zoomed out, each row is reduced to a pixel row colored
and scaled to show the data values, and thereby the entire table is reduced to a set
of vertical graphs.

The code views show the actual source code in the desired files. The code in the
visible selections is highlighted in the respective selections’ colors, thereby enabling
one to spot the occurrence of particular events. Constructing such highlights is easy,
since we have the exact (row,column) locations of every AST node and preprocessor
directive from the parsing phase (Sec. 3.3). Just as the selection monitor, code views
can be zoomed out by decreasing the font size, thereby allowing one to overview
larger amounts of code than using standard editors.

The UML view is a custom view showing UML class diagrams. The diagrams
themselves are extracted from the fact database using queries which search for
classes, inheritance relations, and associations. The latter can be defined e.g. as
function calls, variable uses, or type uses. The extracted diagrams can be laid
out by hand or automatically using the GraphViz library [1] or a custom graph
layout library developed by us. Moreover, class and method metrics can be drawn
atop of the laid out diagrams using icons scaled and colored to show the metric
values, following an extension of the technique described in [27]. The combination
of diagrams and metrics is a powerful instrument for performing various types of
code quality and modularity assessments (see Section 4).

Besides these built-in views, external visualization tools can be integrated within
our IRE by writing appropriate data exporters. The inset in Fig. 3 shows such
an external view which uses the SQL Lite database browser executable, with no
modification, to visualize the data in a selection, i.e. the code element ids, their
actual code, and the metrics computed on it, saved as a SQL database table by

5 We recommend viewing this document in full color
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a data exporter. This type of integration allows us to extend our IRE by reusing
several existing software analysis and visualization tools with a minimal amount of
effort. External views are preferred when the interaction between the fact database
and the view is rather loose, and when the amount of data to be passed to the view
is limited, as compared to the built-in views, which heavily access the fact database
at a fine-grained level.

4 Applications

We illustrate now the SolidFX IRE with several samples from its actual usage
within a number of industrial projects 6 . In all these cases, the analyzed C++ code
was developed by third parties, and we were not familiar with the code or its purpose
before the analysis 7 . The results of the analyses were discussed together with
the stakeholders, mainly using the data views. An typical analysis session would
take a few hours from the initial code hand-over until the results were available.
A complete code base assessment would typically take three to six such sessions,
where increasingly refined questions and hypotheses would be tested during the
later sessions by means of specific queries on narrowed-down parts of the code base.

4.1 Finding Complexity Hot-Spots

In the first application, we examine the complexity of the wxWidgets code base, a
popular C++ GUI library having over 500 classes and 500 KLOC [21]. After extrac-
tion, we query all function definitions and compute several metrics on them: lines of
code (LOC), comment lines (CLOC), McCabes cyclomatic complexity (CY CLO),
and number of C-style cast expressions (CAST ). Next, we group the functions
by file and sort the groups on descending value of the CY CLO metric, using the
selection monitor widget. Figure 4 bottom shows a zoomed-out snapshot of this
widget, focusing on two files A and B. Each pixel row shows the metrics of one
function. The long red bar at the top of file B indicates the most complex func-
tion in the system (denoted f1). We also see that f1 is also the best documented
(highest CLOC), largest (highest LOC), and, interestingly, in the top-two as num-
ber of C-casts (CAST ). Clearly, f1 is a highly complex and important function in
wxWidgets.

Double-clicking the table row of f1 opens up a code view showing all the selected
function definitions and our clicked f1 flashing (Fig. 4 top, see also the video). The
functions in the code view are colored to show two metrics simultaneously, using
a blue-to-red colormap: the CY CLO metric (highlight fill color) and the CAST

metric (highlight frame color). We see that f1 stands out as having both the body
and frame in red, i.e. being both complex and having many casts. In the selection
monitor, we also see that the function having the most casts, f2 (located in file
A), is also highly complex (high CY CLO), but is barely commented (low CLOC).

6 A video showing SolidFX in use is also available at www.solidsource.nl/video/SolidFX/SolidFX.html
7 The only exception to this is the wxWidgets code base
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Fig. 4. Finding complexity hot-spots in the wxWidgets code base

This may point to a redocumentation need.

4.2 Modularity Assessment

In this second application, the stakeholders were interested to assess the overall
modularity of two given subsystems of a commercial database solution. The as-
sessment was needed as a first step in a subsequent porting process. For this, we
first extracted the static call graphs from the code, using a custom designed query
that would look for function definitions and function calls, and link calls to the
definitions using a technique which basically reproduces the working of a classi-
cal linker. Besides the call graphs, we also extract the system hierarchy, seen as
methods-classes-files-folders. The call graph and hierarchy trees are next exported
and visualized by Call-i-Grapher, a third-party tool designed to display large hier-
archical graphs [10]. The hierarchy is shown as a set of concentric rings, the sectors
of which indicate methods, classes, and files (from inside to the outside) (Fig. 5).
Call relations are drawn as splines, bundled to indicate relations emerging from, or
going to, the same hierarchy ancestor.

The subsystem shown in Fig. 5 left is quite modular. We can easily discern
the way its five subsystems call each other. Edge colors indicate the call direction:
callers are red, callees are blue. We immediately see, for example, that libraries is
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only called from database and that emphcore does not call libraries. In contrast,
the subsystem shown in Fig. 5 right, albeit of a similar size in terms of methods and
classes, is far less modular. Here, we see two files which call each other in a highly
complex way. There is little structure to see, so little hope that one can easily split
these files into smaller loosely coupled units to simplify understanding and, later,
porting. Here, we used the edge color to show the call type: green indicates static
calls, whereas blue shows virtual calls. The blue edges appear to be somewhat
bundled, so there is still some hope we can locate some interface classes (containing
mainly virtual functions) in this way.

Fig. 5. Call graph visualizations. Modular system (left) versus ’spaghetti code’ (right)

4.3 Maintainability Assessment

In the third application, we are interested to assess the maintainability of a C++
code base implementing an UML editor using OpenGL, wxWidgets, and the STL
library. The application was developed over a period of several years by four per-
sons [26]. The last developer, who worked for the second half of the period, did not
have in the end a clear idea of the entire code architecture, and was concerned about
the code maintainability. We started the analysis by extracting a number of class
diagrams from the source code. The classes were loosely grouped into diagrams
manually by the developer, based on his intuition and insight as to which belong
together. As association relations, we considered method calls and referring to class
types. Next, we computed three metrics on the methods: the lines-of-code (LOC),
lines-of-comment-code (CLOC), and McCabe’s cyclomatic complexity (CY CLO).

Figure 6 shows one of the extracted class diagrams, laid out automatically using
GraphViz. Class heights are proportional to their methods’ counts. Inheritance
relations are drawn as black lines, while associations are drawn as light-gray lines
(in order to reduce the visual clutter). On this picture, the architect recognized
three main subsystems of the considered code base, along a Model-View-Controller
pattern: the data model, containing the main application data structures; the visu-
alization core, containing the control functions; and the visualization plug-in, con-
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taining rendering (viewing) functions. The subsystems themselves are visualized by
surrounding their contained classes by a fuzzy-shaped contour, using the so-called
areas of interest technique, described in detail in [4]. These areas of interest are
not overlapping, which shows that the considered subsystems are quite decoupled,
which indicates a good maintainability. Further, we see the heavy use of several STL
classes, mainly for the data model. This does not pose any maintenance problems,
as it was decided to use STL in the system implementation from the beginning, and
STL is stable and well-documented software.

Atop the class icons, the computed LOC and CY CLO metrics are visualized
using colored bar graphs. Long, red horizontal bars indicate high values. Thin, blue
bars indicate low values. Within each class, the bar graphs are sorted in decreasing
order of the CY CLO metric. Looking at Fig. 6 top, we quickly discover an outlier
class, marked X, in the visualization plug-in subsystem. This class has the highest
CY CLO and LOC values in the entire system, and has also many methods. All
other classes have relatively small CY CLO and LOC values, as indicated by the
thin bars. Figure 6 bottom shows a zoomed-in view of the visualization plug-in.
The sorted bar graphs, coupled with textual tooltips (not shown in the image),
allow us to quickly locate the most complex methods, found of the class X, of the
entire system. The most complex method has a McCabe value of 40, which is very
large. Looking in detail at the code of X, we could later see that it was indeed very
complex. However, the diagram shows us also that class X is not referred to directly
from outside the visualization plug-in. Moreover, the lead developer recognized
this class as containing his own code, which was indeed not yet cleaned up and
refactored. Hence, although maintaining this class is indeed hard, this problem will
not propagate to the entire system, but stays confined within the plug-in. Overall,
it was assessed that the entire system is quite maintainable.

4.4 Analysis of a Copy-and-Paster Pattern

The presented examples so far have shown the usage of our IRE in performing high-
level, global assessments of a code base. However, SolidFXcan also be used in more
fine-grained analyses, as illustrated by this fourth and last application. Here, we
study the same UML editor which was the subject of the maintainability analysis in
Sec. 4.3. We now zoom in on a subset of the graphics rendering subsystem’s classes,
using the UML view. The rendering subsystem is indicated by the orange contour
(Fig. 7) using the areas-of-interest visualization technique, which has already been
introduced in Sec. 4.3. We display the LOC and COM metrics, and sort methods
by LOC - hence, the top methods in the class icons are the largest, whereas the
bottom-most ones are the smallest. Within the rendering subsystem, we see a
smaller set of classes related by inheritance and which also have very similar metric
patterns, as indicated by the lengths of the metric bars. These are marked by the
dark filled area-of-interest in Fig. 7. Given the inheritance relations, these appear
to be a three-level class hierarchy rooted at a class R.

Why would these classes exhibit such similar metric patterns? This was intrigu-
ing at first sight, so we started to browse the class and method names, using the
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Fig. 6. Maintainability assessment. Model-View-Controller architecture view (top). Zoomed-in view on the
subsystem containing the most complex class (bottom)

tooltip facilities of the UML view, to get more insight. After a while, an expla-
nation emerged: these classes implement the different metric glyphs supported by
the studied UML editor (e.g. pie chart, flat-colored bar, rainbow-colored bar, 3D
bar, etc). Specically, these classes all implement the MetricGlyph interface (class
R in Fig. 7) which has only a few methods, e.g. draw(). The reason why all the
subclasses of R have such similar metrics became apparent once we looked at their
actual code in the Code view: They exhibited nearly identical code fragments with
the base class R. We discussed this finding with the developer responsible for these
classes (who was not involved in the assessment described here) and he informed
us that these classes were coded by copy-and-pasting the code from class R and
making some small local modifications, mainly in the draw() method.

This analysis shows an interesting, collateral usage of the metric visualizations:
Together with relations (e.g. inheritance), metric visualizations can be used as a
first indicator of replicated code, attracting the user’s attention to potential copy-
and-paste events. Detecting such events is interesting in a number of maintenance
scenarios, e.g. debugging, refactoring, migration, porting, and documentation. The
usefulness of our integrated (IRE) solution becomes apparent, as the finding docu-
mented here could not have been possible withouth a tight integration of interactive
metrics-and-UML visualization, complemented by the detailed code views.
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Fig. 7. Identification of a copy-and-paste pattern in a class hierarchy

5 Discussion

SolidFX is a mature product, able to handle code bases of millions of LOC. During
numerous pilot projects, as early as [24], we noticed that the greatest obstacle in
the acceptance of the proposed visual analysis techniques was the high difficulty of
setting up an analysis project, the steep learning curve of a set of hybrid tools, and
the need to program (be it only scripting) in order to use a toolset. The relative
high success of SolidFX in several recent projects seems to be due to the high
integration of its functions, presented under a uniform interface, and the possibility
to execute complex analyses with minimal (or no) programming. Using the IRE was
not much more effective than using scripted command-line tools for the extraction
phase. However, for the exploration phase, the IRE and its tight tool integration
were more productive than using the same tools standalone, connected by little
scripts and data files. Reverse-engineering and code assessment scenarios are by
nature iterative and exploratory, so they map perfectly to repeated selection, query,
and interactive visualization operations.

It is tempting to consider the extension of our IRE solution to existing IDE
tools, such as Eclipse or Visual Studio. The main problem, in both cases, regards
the availability of an efficient heavyweight parser which offers also fine-grained ac-
cess to its fact database. A recent step in this direction is CDT, an open C/C++
development toolkit for Eclipse [5]. CDT resembles the goal, and loosely has the
same architecture as SolidFX, albeit in a much earlier consolidation phase. Vi-
sual Studio has the right type of parser infrastructure support built-in, so would
be an excellent candidate. However, at the present date, the parser API is not
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sufficiently open(ed) to offer the type of fine-grained access necessary to provide the
functionality discussed here.

6 Conclusions

We have presented the design of SolidFX, an Integrated Reverse Engineering en-
vironment for C and C++. SolidFX combines a heavyweight tolerant C++ parser
with a fact database offering fine-grained access, an open query and metric engine,
and several scalable visualizations that combine code, metrics, and diagrams. Due
to the high integration of these tools, SolidFX enables users to conduct reverse-
engineering sessions with the same ease as software development is traditionally
done in IDEs. Several typical applications of the IRE are presented.

We are currently working in extending SolidFX in several directions. Refined
static information can be extracted from the basic facts, such as control flow and
data dependency graphs, leading to more complex and useful safety analyses. Sec-
ondly, we are working to implement a number of predefined ready-to-use analysis
packages, such as checking for the MISRA C Standard [19], thereby making the use
of SolidFX even more productive and easy.

Acknowledgement

We are grateful to the anonymous reviewers which supported us with comments on
improving the selection of application scenarios. Part of the research presented here
has been funded by the ITEA Trust4All European research project on component-
oriented software architectures [11].

References

[1] AT & T. GraphViz. 2007. www.graphviz.org.
[2] I. Baxter, C. Pidgeon, and M. Mehlich. DMS: Program transformations for practical scalable software

evolution. In Proc. ICSE, pages 625–634, 2004.
[3] F. Boerboom and A. Janssen. Fact extraction, querying and visualization of large c++ code bases.

2006. MSc thesis, Eindhoven Univ. of Technology.
[4] H. Byelas and A. Telea. Visualization of areas of interest in software architecture diagrams. In Proc.

SoftVis, pages 20–28. ACM Press, 2006.
[5] CDT Team. C/C++ development toolkit. 2007. www.eclipse.org/cdt.
[6] M. L. Collard, H. H. Kagdi, and J. I. Maletic. An XML-based lightweight C++ fact extractor. In Proc.

IWPC, pages 134–143. IEEE Press, 2003.
[7] S. Diehl. Software Visualization - Visualizing the Structure, Behaviour, and Evolution of Software.

Springer, 2007.
[8] S. Eick, J. Steffen, and E. Sumner. Seesoft - a tool for visualizing line oriented software statistics. IEEE

Trans. Soft. Eng., 18(11):957–968, 1992.
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