
Model-Based Analysis of Adoption Factors for

Software Visualization Tools in Corrective

Maintenance

Technical Report SVCG-RUG-10-2010

Scientific Visualization and Computer Graphics Group (SVCG)

Faculty of Mathematics and Natural Sciences, Institute Johann Bernoulli

University of Groningen, the Netherlands

Mariam Sensalire1 and Patrick Ogao1 and Alexandru Telea2

1 School of Computing and IT, University of Makerere, Kampala, Uganda
2 Institute Johann Bernoulli, University of Groningen, the Netherlands

Several classification models exist for software visualization (SoftVis) tools. Such models can
be used to compare the features provided by several tools to the requirements of a given use case,
in the process of selecting optimally fitting tools. However, it is not easy to predict how such
models will perform when used to predict the adoption of SoftVis tools at large, especially for
tools which were not considered during the model design.

Here, we consider an existing classification model that aims to provide generic guidelines for
comparing SoftVis tools for corrective maintenance (CM) based of their features perceived as
desirable by users. Although this model explicitly captures several such features, it is not evident

that tools that fit the model will be found effective by users in practice.
This paper tests the above hypothesis by presenting a comparative evaluation of four software

visualization (SoftVis) tools used in CM. The tools were selected to fit well the desirable criteria
captured by the model under evaluation. Four independent groups of professional software devel-
opers participated in the evaluation, each group using a different tool to solve the same CM task
on a real-world code base under typical industry conditions. The results show matches between
the features described by the model as highly desirable and and those observed in practice to be
essential for tool acceptance, e.g. IDE integration, extended search capabilities, multiple views,
scalability, and the need for both dynamic and static visualizations; weakly relevant features, e.g.

the commercial tool status; and features which do not influence acceptance, e.g. 3D and anima-
tion. Besides showing the correlation between the classification model and observed practice, our
study further refines the model’s criteria seen as important for industrial acceptance of software
visualization tools.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—Debugging aids;

I.6.9 [Computing Methodologies]: Simulation, Modeling, and Visualization—Visual programming and program

visualization

General Terms: Human Factors

Additional Key Words and Phrases: Software visualization, Software maintenance

1. INTRODUCTION

Corrective maintenance (CM) covers activities involved with correcting faults that occur

in software [Swanson 1976]. Software visualization (SoftVis) is advocated as one of the

important types of methods which assists typical CM activities by supporting the process

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010, Pages 1–27.

2 ·

of understanding the structure and behavior of large and complex software systems.

A variety of SoftVis tools that aid in CM have been developed. Despite this, an important

tool adoption problem still exists [Storey et al. 2008; Tilley and Huang 2002]. For a tool to

be adopted in the industry, it has to be effective and efficient in carrying out several specific

tasks [Sensalire and Ogao 2007b; Zayour and Lethbridge 2001; Sun and Wong 2004].

Additionally, it is desirable if the tool matches the way professional software engineers

(users) carry out their work [Storey et al. 2008]. This presents challenges for both users and

developers of SoftVis tools for CM: Users want to efficiently assess if a given SoftVis tool

fits a given set of desirable criteria in order to adopt (or reject) it, ideally without having

to use the tool for a long period of time. Tool developers want to know which features

they should concentrate on to maximize tool adoption chances so they do not waste effort

implementing irrelevant features.

Many studies have been conducted in the past to support the claims of usefulness of

specific SoftVis tools in industrial contexts [Storey 1998; Bassil and Keller 2001; Pacione

et al. 2003; de Alwis et al. 2007; Subrahmaniyan et al. 2008; Telea and Voinea 2008;

Hoogendorp et al. 2009]. Relatively fewer studies focus on making explicit the generic

criteria that make a SoftVis tool useful and/or adopted [Bassil 2000; Bassil and Keller

2001; Sun and Wong 2004]. Among these are observational studies, controlled experi-

ments, case studies, surveys, and empirical evaluations [Penta et al. 2007; Tonella et al.

2007]. Several such methods, notably controlled experiments and evaluations, have been

used in the past with varying results. Several difficulties are mentioned when evaluating

the effectiveness of SoftVis tools: the lack of a uniform professional user base of sufficient

size to validate the claims [Storey 1998]; the reluctance of industry professionals to invest

the necessary effort to learn the tools sufficiently and to invest time in the evaluation it-

self [Subrahmaniyan et al. 2008]; and the relative academic flavor or lack of maturity of

some SoftVis tools which makes them unsuitable for industrial evaluation [Storey 1998;

Bassil and Keller 2001].

Another difficulty in comparing and extrapolating the results of many evaluations is their

specificity to a task or tool. This is particularly visible when we look at CM. Several Soft-

Vis tools, and evaluations thereof, have been done for the more general tasks of program

comprehension, reverse engineering, reverse architecting and redocumentation, in the con-

text of adaptive and preventive maintenance. However, CM has its own specific goals,

ways of working, and challenges, so it is not self-evident which of the results of SoftVis

tool evaluations done for other maintenance areas are valid for CM.

There is very little work done in assessing the generic desirable features of SoftVis tools

used for CM in a way that addresses effective tool selection for users and effective develop-

ment focus on most relevant features for tool builders. In previous work, we gathered such

desirable features based on developer interviews and proposed a tool classification model

for matching tools with users and tool developers with user requirements [Sensalire et al.

2008; 2009]. In this paper, we take subsequent steps towards refining and validating this

model. First, we use the model to select several industry-strength SoftVis tools which, ac-

cording to the model, should be suitable for CM. Next, we measure the actual effectiveness

and acceptance of these tools in a concrete CM task in the industry. Each tool is used by a

separate group of professional software developers to solve the same CM task on the same

software code base. The results of this study show that the features outlined as desirable

by the model correlate well with those named as desirable during actual tool usage, and

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

· 3

thus support the model’s usefulness claims. Additionally, our study brings more insight in

the challenges of adopting SoftVis tools for CM in the software industry.

The structure of this paper is as follows. In Section 2, we overview the challenges

of evaluation and adoption of SoftVis tools, with a focus on CM. Section 3 details our

aim: gathering evidence for the validity of the chosen classification model, using concrete

tools and CM tasks. Section 5 presents the tools selected using the model, as well as

the code base on which CM was performed. Section 6 details the user group, tasks, and

evaluation procedure. Section 7 describes the results and discusses the various threats to

validity. Section 8 discusses additional points observed during our study. Finally, Section 9

concludes the paper and outlines directions for future work.

2. RELATED WORK

SoftVis tools aim to help engineers during the software lifecycle by visual representations

of the structure, behavior, and evolution of various types of software artifacts [Stasko et al.

1998; Zhang 2003; Diehl 2007]. Several challenges exist here. As early as 1993, it was

seen that a ”significant gap exists between program visualization research and its practi-

cal application to programming environments and design tools” [Roman and Cox 1993].

Identical statements appear in later studies, e.g. [Storey 1998; Bassil and Keller 2001; Pa-

cione et al. 2003; Telea et al.] This gap between SoftVis tool development and industrial

SoftVis tool acceptance has risen strong questions from researchers [Reiss 2005], some

even questioning an ”end of the line for Software Visualization” [Charters et al. 2003]. In

the wider context of data visualization, a similar concern was formulated as the ”death of

visualization” due to a lack of customers [Lorensen 2004].

These issues are well-known by many researchers. To better understand the factors

influencing tool acceptance, many studies have been conducted. These can be classified in

two groups:

(1) evaluations of desirable features for SoftVis tools, e.g. [Price et al. 1993; Bassil and

Keller 2001; Sensalire et al. 2008; Kienle and Müller 2007]. Evaluations are effective

in collecting general requirements that users find important, but do not measure how

(much) a given SoftVis tool matches these. For example, Kienle and Müller iden-

tify seven quality attributes (rendering scalability, information scalability, interoper-

ability, customizability, interactivity, usability, and adoptability) and seven functional

attributes (views, abstraction, search, filters, code proximity, automatic layouts, and

undo/history) [Kienle and Müller 2007]. Similarly, in our previous work, we pro-

posed a tool classification model which outlines several so-called desirable features,

i.e. rendering scalability, interoperability, interactivity, views, search, and filters [Sen-

salire et al. 2008]. In contrast to the more general work in [Kienle and Müller 2007],

the work in [Sensalire et al. 2008] focuses specifically on CM and focuses on widely

available tools rather than on research tools. More importantly, a model is proposed to

translate desirable features into scores for selecting ’good’ tools. The question in this

paper is whether this model, and its score mechanism, effectively helps doing such a

selection.

(2) evaluations of concrete SoftVis tools, e.g. [Pacione et al. 2003; Sun and Wong 2004;

Subrahmaniyan et al. 2008; Marcus et al. 2005]. Such studies work conversely from

desirable feature evaluations, i.e. decide upfront which features are desirable, imple-

ment them in a tool, and check the validity of the decision by testing the tool on a task.

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

4 ·

Yet, such studies often do not detail how the features were chosen, and are often done

in research settings which do not replicate all industrial challenges [Koschke 2003;

Pacione et al. 2003; Reiss 2005; Marcus et al. 2005].

Maletic et al. classify SoftVis tools along five axes: task (why is visualization needed),

audience (who uses the visualization), target (what is the data source), representation (how

is data represented), and medium (where is data depicted) [Maletic et al. 2002]. This model

is, however, not directly intended as a means to select tools to optimally match a given task

or user group, but more as a general tool-and-task taxonomy. Our work here fits this model

as follows (see also Sections 3 and 5):

—task: Program comprehension during code-level corrective maintenance;

—audience: Software developers involved in debugging a given code base;

—target: The code base maintained by the developers;

—representation: Implicitly given by the visual metaphors supported by the SoftVis tools

selected by our classification model [Sensalire et al. 2008].

—medium: We focus solely on tools that use a typical PC setting (color monitor, keyboard,

and mouse), as IT developers at large usually have no access to richer media such as

stereo displays, tabletops, immersive virtual reality, or haptic devices.

Marcus et al. identify three types of SoftVis tool evaluations: interviews with users,

case studies done in small groups (typically the tool builders), and usability studies with

subjects that solve a concrete task [Marcus et al. 2005]. Our study here combines the first

and third aspects: Twenty-one professional developers use four SoftVis tools to solve a

concrete CM task. We measure the tools’ usability implicitly and explicitly by checking

the success of the CM activity and measuring the perceived usefulness of various tool

features by questionnaires and interviews. However, in contrast to [Marcus et al. 2005],

our ultimate aim is to assess the suitability of a tool classification model in selecting good

tools rather than the suitability of specific tools.

Only few specific studies exist on the effectiveness of SoftVis tools in CM. Baecker et

al. present early results in using animation, dense pixel displays, and auralization for de-

bugging [Baecker et al. 1997]. Ko et al. observed expert programmers doing corrective

and preventive maintenance using IDEs [Ko et al. 2005], aiming to elicit design require-

ments for future IDEs. They stressed the need for dependency visualization in IDEs to

increase programmer effectiveness. Our work implicitly tests their hypothesis as we an-

alyze how user performance is enhanced by several types of dependency visualizations.

Alwis et al. compared three SoftVis tools supporting program modification tasks [de Al-

wis et al. 2007]. They interviewed professional developers and found that the studied tools

had no significant impact on their efficiency. Reiss et al. analyzed two SoftVis tools for

understanding the behavior of Java buggy code [Reiss and Renieris 2005]. They felt that

the studied, and many other, tools did not address the reality of program understanding

and made recommendations for improving SoftVis tools, e.g. the need for scalability and

making the offered benefits explicit [Reiss 2005]. Sensalire et al. discussed the factors that

influence case studies on SoftVis tools for CM [Sensalire et al. 2009].

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

· 5

3. CONTEXT AND AIM OF CURRENT WORK

3.1 Classification Model

In earlier work, we proposed a classification model for desirable features of SoftVis tools

for CM [Sensalire et al. 2008]. The model emerged from a three-part formative longitu-

dinal study carried out over a period of two years (see Fig. 1). In the first study, expert

developers were given three SoftVis tools and asked to carry out several comprehension

and maintenance tasks [Sensalire and Ogao 2007a]. Their feedback produced a prelim-

inary model of tool desirable features. In the second study, this model was compared

against ten SoftVis tools to validate and refine the initially elicited desirable features in a

larger context [Sensalire and Ogao 2007b]. In the third study, 16 programmers used 15

SoftVis tools for several CM tasks: analyze source code for errors, find classes and class

interactions involved in a given error, generate and analyze traces, and debug. The sub-

jects expressed the features seen as desirable for the given CM tasks and graded the tools

according to how they provided these features [Sensalire et al. 2008]. This delivered a

SoftVis tool classification model focused on CM tasks which organizes desirable features

in a two-level hierarchy. This model is shown in Table 3.1 (for full details, see [Sensalire

et al. 2008]).

Initial

features

Re ned

features

CM-speci c

features
4 SoftVis

CM tools

Tool usage in

concrete CM task

User

feedback
Model-based

tool selection

Model checking

and re nement
Final CM-

speci c model

Study 1

Study 2

Study 3

Focus of this paper

General model

creation
3 SoftVis

tools

General model

re nement
10 SoftVis

tools

Model re nement

for CM
16 SoftVis

CM tools

Selection of

concrete CM task

and user group

Fig. 1. Context of current study in refining the SoftVis tool classification model

3.2 Aims

Following the case study design theory of Yin [Yin 1994], our three formative studies

above lead to the formation of a hypothesis: If a SoftVis tool for CM scores high on most

of the model’s desirable features, it is likely to be effective in addressing the targeted CM

tasks. Yet, this hypothesis must be tested from various angles. In this paper, we consider

two such angles:

—correctness: Is a SoftVis tool that scores high on the model’s desirable features indeed

useful for actual users in a CM task?

—completeness: Do other desirable features, beyond those covered by the model, exist in

practice?

In the remainder of this paper, we study the proposed model’s correctness and complete-

ness. We proceed as follows (see also Fig. 1):

(1) use the model to select four SoftVis tools for CM that fit well, but up to different

degrees, the model’s description of a ’good’ tool;

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

6 ·

Category Subcategory What it describes:

Scalability The size of the software code bases the tool can handle efficiently

Integration How the tool interacts data- and control-wise with other tools in a workflow

Effectiveness Query support Genericity, flexibility, and customizability of provided queries on software

Code smells detection Ability to detect a set of potentially hazardous coding constructs

Trace analysis Ability to visualize program execution information (traces)

Tasks Debugging support Ability to visualize information generated during debugging

supported Refactoring Provision of semi-automatic visual code refactoring functions

Languages supported Set of programming languages understood by the tool

Licensing model Requirements on tool usage (fee-based, shareware, open source)

Availability Platform Requirements the tool places on its running environment (platform)

2D/3D metaphors Usage of two- and three-dimensional visual representations

Animation Usage of animation to depict the operation of algorithms

Color usage Usage of colors to depict data attributes

User interaction Type of direct interaction (selection, visual manipulation, navigation)

Multiple views Presence of linked multiple views for showing cross-correlations

Techniques Information density Amount of software artifacts shown simultaneously on a screen

used Dynamic visualization Ability to visualize dynamic (execution) information

Table I. Tool classification model consisting of four main categories with several sub-categories

(2) select a specific CM task and expert user group;

(3) ask the users to perform the CM task using the selected tools;

(4) gather actual quantitative and qualitative data on the tools’ effectiveness in solving the

task;

(5) interpret the data to reason about the model’s completeness and correctness.

For the correctness analysis (step 4 above), we first assess the tools’ effectiveness by

measuring the ability to complete the tasks successfully, the task completion duration, and

also gather detailed user feedback on the tool’s usefulness (Section 6.2). Next, we test how

these data correlate with the classification model. Specifically, we check if the developers

who were able to solve the given task (or not) perceived that the tool helped them in doing

so (or not). For the completeness analysis (step 4 above), we analyze the written and

oral qualitative feedback from users in a post-study phase and check if the users required

additional tool features which were not captured by the model (Sections 6.3 and 7)

4. STUDY STRUCTURE

Our study follows the single explanatory case study design, following Yin [Yin 2003;

1994]. Case studies are the method of choice when the phenomenon under study (in our

case: the effectiveness of SoftVis tools for CM) is not readily distinguishable from its

context (in our case: the CM process itself); the research question is of the type ”why” or

”how” (in our case: ”why and how is a SoftVis tool effective for CM?”); the investigator

has little or no possibility to control the studied phenomenon (in our case: how developers

use SoftVis tools for CM); and when the study object is a contemporary phenomenon

in a real-life context. Our case study is of the explanatory (causal) type, as wetest the

hypothesis ”if a SoftVis tool fits the model’s requirements, then it is highly likely to useful

for CM”.

The used methods involve both quantitative (measured) variables, e.g. developer expe-

rience, ability to complete task, task duration, accuracy, and correctness; and qualitative

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

· 7

variables, e.g. the answers to the questions in the post-study phase (Sec. 6.3).

Following [Yin 1994] again, our study is of a single-case design, the case being the usage

of SoftVis tools in CM. The units of analysis are the individual experiments in which devel-

opers solve a CM task using one of the SoftVis tools selected to fit the model (Sec. 6). The

theoretical proposition is that a SoftVis tool which fits the classification model is highly

likely to effectively support CM. The logic linking data to propositions states that, if a tool

fits the model (by experiment construction), and it is effective in CM (as measured by the

experiment data), then it likely supports our proposition. The criteria for interpreting the

findings use qualitative textual and oral user feedback to interpret the hard measurements

(task completion time and accuracy), and thereby elicit the reasons of why a SoftVis tool,

or tool feature, was useful (or not) for a certain CM task.

Our study can be classified as an expert review study. In contrast to user studies which

require tens of participants, expert reviews involve a relatively small number of expert

participants (software professionals with significant industrial experience, in our case) and

do not require sophisticated test software or strict performance measures [Tory and Möller

2005]. Expert reviews are increasingly advocated as an effective evaluation instrument for

visualization applications [Preece et al. 2002; Freitas et al. 2002; Gabbard et al. 1999].

In the following sections, we detail the actual experiment: the selected SoftVis tools,

the source code to be maintained and actual tasks, the participants, and the post-study

questionnaire used to collect feedback.

5. TOOLS

We describe first the evaluated SoftVis tools. We restricted the selection to tools which

comply with the following:

—the tools are usable for supporting CM activities;

—the tools score medium to high on most features deemed desirable by the classification

model. These cover the most tool usability and effectiveness factors mentioned in the

literature (Section 2);

—the tools are widely available, well known, and mature. This was done to remove any

potential bias present in e.g. not fully operational, or research-grade, tools;

—the tools target the same programming language, run on the same platform, and inte-

grate with the same IDE (Eclipse). This was done to diminish further bias caused by

technical factors which are not relevant for our hypothesis testing. We specifically re-

strict selection to tools that work as IDE plugins, given the many studies that stress the

crucial impact of tool integration in adoption and effectiveness e.g. [Tilley and Huang

2002; Koschke 2003; Charters et al. 2003; Schafer and Menzini 2005; Telea and Voinea

2008].

Practical constraints on our access to professional programmers willing to invest time

in the study made us choose a Java code base (see Sec. 5.5). This further restricts the tool

selection to those which seamlessly support Java.

The final tool selection, as well as the scores of these tools against the classification

model is shown in Table II. We evaluated the tools’ fitness to the model by reading their

documentation and using them on several small-scale, example-like, programs. This repli-

cates the typical way in which users assess new SoftVis tools in practice [Tilley and Huang

2002; Subrahmaniyan et al. 2008; Koschke 2003]. All tool scores were obtained based on

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

8 ·

EFFECTIVENESS TASKS SUPPORTED AVAILABILITY

TOOLS Scalability Integration Query support Detect smells Trace analysis Debugging Languages Licensing Platform

CodePro High Medium High High Low Low Java Comm. Linux, Win

Ispace High Medium High High Low Low Java Free Linux, Win

SonarJ Medium Low Medium High Low Low Java Comm. Linux, Win

SolidSX High High Medium Medium Low Low Java, C++, .NET Comm. Win

VISUAL TECHNIQUES USED

TOOLS 2D 3D Animation Color usage User interaction Multi views Info. density Navigation Dynamic viz

CodePro Yes No No Medium Medium High Medium Yes No

Ispace Yes No No Medium Medium High High Yes No

SonarJ Yes No No Medium Low Medium Low Yes No

SolidSX Yes No Yes Medium High Medium High Yes No

Table II. Tools against desirable features of the classification model

the classification model solely, and with no prior discussion with the developer group from

this studyt or actual fitness testing for the chosen CM tasks (described further in Sec. 6.2).

CodePro, SonarJ, and SolidSX are commercial tools with fully functional trial licenses.

Ispace is an open-source tool. All tools show the same level of maturity, documentation

support, ease of installation, and overall ease of use. To remove further bias, all tools were

used on comparable PC machines running Windows XP and Eclipse. The four tools are

briefly presented next.

5.1 CodePro Analytix

This tool plugs into the Eclipse environment and adds several visual functionalities to the

Java IDE that can be used during CM [Instantiations, Inc. 2008]. Given a Java project

loaded within Eclipse, the plugin adds several menus to the folders and files in the project,

containing options for code auditing, computing code metrics, code coverage, and analyz-

ing dependencies. Visualizations include various types of force-directed and hierarchical

graph layouts for extracted containment and dependency relations, optionally annotated by

metrics, such as the example shown in Figure 2.

Fig. 2. CodePro Analytix visualization plugin (actual screen snapshot from the tested code base)

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

· 9

5.2 Ispace

Ispace is also an Eclipse plugin targeted at visualizing Java code [I. Aracic 2008]. The tool

enables drilling down from displayed dependency graphs to the code level, and also allows

code changes to be synchronized with the displayed views. The visualization options are

roughly analogous with the ones available in CodePro, but based on a different implemen-

tation of layouts, interaction and navigation options, and a slightly different look-and-feel.

Figure 3 shows a snapshot of an Ispace view showing containment and dependency rela-

tions between classes.

Fig. 3. Ispace visualization plugin (actual screen snapshot from the tested code base)

5.3 SonarJ

SonarJ is a program comprehension tool that provides functions for navigating the struc-

ture, dependencies, and source code of Java programs [hello2morrow 2008]. The tool pro-

vides multiple views on a system’s structure, including architectural views, code metrics,

hierarchical aggregation of dependencies, and selection of software entities and dependen-

cies that violate a set of user-specified architectural or design rules. SonarJ can be used as

a standalone tool or integrated with the Eclipse IDE. Figure 4 shows a visualization of de-

pendencies between the packages of a Java system produced by SonarJ, with dependencies

highlighted based on a user query.

5.4 SolidSX

SolidSX can work both as a standalone tool and as an Eclipse plug-in, similar to SonarJ.

It provides static source code analysis, dependency and structure extraction, metric com-

putation, and visualization [SolidSource 2009]. Several views are available: classical tree

views, treemaps [Shneiderman 2010], table lenses [Rao and Card 1994], and a new vi-

sualization for hierarchy-and-dependency graphs which uses the highly scalable, clutter-

reducing, hierarchically bundled edges layout [Holten 2006]. Static analysis covers Java

(using the Recoder framework [Ludwig 2009]), .NET (including C# and Visual Basic), C,

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

10 ·

Fig. 4. SonarJ visualization plugin (actual screen snapshot from the tested code base)

and C++, covering parsing, syntax and semantic analysis, structure and dependency ex-

traction, and quality metrics computation. All views can be correlated with text editors

in a target IDE (Visual Studio or Eclipse) by means of socket-based plug-ins. Navigation

mechanisms include selections, queries, and visual layout parameterization based on met-

rics. Figure 5 shows a snapshot of SolidSX displaying the structure, dependencies, and

code quality metrics of a Java system.

Fig. 5. SolidSX visualization plugin (actual screen snapshot from the tested code base)

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

· 11

5.5 Source Code

The code base used for the CM activities of this study is EpiHandyMobile [Kayiwa et al.

2008], an extension of EpiHandy, which is a mature Windows Mobile data collection tool.

EpiHandyMobile extends the base application, EpiHandy, to support Java-enabled phones

using Java Mobile Edition (J2ME). The code base is relatively large, containing 5886 meth-

ods in 207 classes, with an average of 8.59 lines of code per method, and a total of 12051

lines of source code (excepting system packages and libraries).

6. EVALUATION PROCEDURE

6.1 Participants

In total, twenty-three programmers participated in the SoftVis tools evaluation, distributed

in two roles. First, two developers who had advanced knowledge of the code base (Sec-

tion 5.5) were selected as control users. One of them was actually the main developer of

the code base. They assisted in evaluating the correctness of the CM task completion, i.e.

determined if the activities carried out by the other group members did solve the given

task or not. Next, twenty-three professional developers were assigned to the evaluation,

six for CodePro (CP), six for Ispace (IS), three for SonarJ (SJ), and six for SolidSX (SX),

as shown in Table III.

All participants were sought from software development companies. A pre-study ques-

tionnaire was used to ensure that they had all needed skills, i.e. very high fluency in Java,

competence in software development with emphasis on CM, knowledge of J2ME, and fa-

miliarity with Eclipse and other modern IDE’s. Familiarity with any SoftVis tool was also

queried, but not used in the selection.

In several tool evaluations, participants get only very limited time to learn the tool to

evaluate (under one hour). For example, in [Sensalire et al. 2008], users got a 15-minutes

training for the tools they had to evaluate; over half of those users, however, felt that a

developer needs a few days to really grasp the features of a new tool in practice, and

advised this for further studies. We followed this point and provided the subjects of our

current study with 3 days of tool study time and a compact user manual explaining the

tool’s main features. The subjects could call back on a ’trainer’ (one of the authors) several

times during this training phase, in order to receive additional help with the tools. To get

a clear feeling that the tools were well understood, we had the subjects use the SoftVis

tools on their own code during this training phase. Before starting the actual CM task, we

confirmed with the subjects that they did not have unanswered questions on the SoftVis

tools that they had to use.

The participants were clearly told that the study organizers were not related in any way

to the evaluated tools. Finally, following the recommendations in [Sjøberg et al. 2007]

on improving experiments that involve industrial developers, the participants were paid

nominal fees in order to increase both their dedication and lower the risk of drop-out.

6.2 Tasks

All four developer groups received the following use case: A user would like to download

study lists from a server. For this, he opens the Phone Emulator, clicks the Run option,

starts the EpiHandy midlet, and logs on using the default username and password. Next,

using the wireless connection emulator, he selects a given connection type, goes back to

the main screen, and selects the Download Study List option. At this point, the application

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

12 ·

User Sex Languages Programming CM experience IDE used for Ever used Prior code
known experience (years) (years) daily work SoftVis tool exposure

CP1 M Java, C#, VB 5 . . . 10 < 5 No Yes

CP2 M Java, PHP, VB 5 . . . 10 < 5 NetBeans Yes No

CP3 M Java, Python, HTML 5 . . . 10 5 . . . 10 command line developer No No

CP4 M Java, VB, C# 5 . . . 10 < 5 VS Yes No

CP5 F Java < 5 < 5 Eclipse Yes No

CP6 M Java, C++, VB 5 . . . 10 5 . . . 10 Eclipse, VS No No

IS1 M Java, C#, VB, .NET < 5 < 5 VS, Eclipse No Yes

IS2 M Python, Java, C 5 . . . 10 5 . . . 10 VS, Eclipse No No

IS3 M C++, C#, Java 5 . . . 10 5 . . . 10 VS, Eclipse No No

IS4 M Java, C, HTML 5 . . . 10 5 . . . 10 Eclipse No No

IS5 M Java, VB < 5 < 5 NetBeans No No

IS6 M Java, C++ 5 . . . 10 >10 Eclipse No No

SJ1 M Java, C, C++, Python > 10 > 10 Eclipse, VS Yes No

SJ2 M Java, C++ 5 . . . 10 5 . . . 10 Eclipse, VS Yes No

SJ3 M Java, C++, Python < 5 < 5 Eclipse, VS Yes No

SX1 M Java, C, C++, VB 5 . . . 10 5 Eclipse, VS Yes No

SX2 M Java, Python, VB 5 . . . 10 5 . . . 10 Eclipse, VS Yes No

SX3 M C, C++, Java, C# > 10 5 . . . 10 Eclipse Yes No

SX4 M Java, C, C++ 5 5 Qt Creator, Eclipse No No

SX5 M C#, .NET, Java 5 5 Eclipse, VS No No

SX6 M C, C++, Java 5 < 5 Eclipse, KDevelop No No

Table III. Developers evaluating the CodePro Analytix (CP), Ispace (IS), SonarJ (SJ) and SolidSX (SX)

visualization tools

throws an exception. A screenshot of this situation is shown in Figure 6.

Fig. 6. Application use-case showing a user provoked error

Given this use case, we asked each developer to individually perform corrective main-

tenance on the code base, i.e. find the problems and repair the code to ensure that the

exception thrown is replaced by a user-friendly message telling what is happening and

what the user should do to correct the problem. For this, they could use the Eclipse IDE,

including the standard Java compiler and debugger, and one additional SoftVis tool (Sec-

tion 5). The set-up of this CM task is very similar, both in context and complexity, to

typical CM activities performed by mobile Java developers in their daily work.

The challenging part of the CM task is actually locating the code component (and its de-

pendencies) that had to be modified to correct the problem. Although only one component

had to be modified, finding it involved a thorough checking of the exception stack, after the

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

· 13

exception was thrown, as well as the code itself, to identify the precise code section that

needed to be changed in order to alter the displayed message. Considering the size of the

code, and the fact that the developers were not familiar with it, except for the two control

persons mentioned above in Sec. 6.1, the entire process is far from trivial.

6.3 Post-Study Questionnaire

After carrying out the CM task described in the previous section, which we also timed,

we collected feedback from each developer by means of a post-study questionnaire. The

questionnaire consisted in multiple choice and free-text answers, as shown below. The

questions were explained in detail to the participants, and we sought their confirmation to

be sure that they were understood fully and correctly.

a Was the SoftVis tool suitable/helpful for the required debugging tasks?

Answer: yes / no

b Would the tool have been more helpful if it was detached from the IDE

Answer: yes / no

c To what level did querying/ searching assist in fixing the problem

Answer: single choice:

—it did not assist at all

—it was a bit helpful but I wish it was more precise

—it was very helpful in its current form and would need no further improvements

d Which of the following factors would positively influence your decision to adopt this

or a similar visualization tool to assist you in doing CM?

Answer: multiple choices possible:

—the tool displays its results using 2D graphics

—the tool displays its results using 3D graphics

—the tool provides animation

—the tool has a high use of color to show data

—the tool allows users to interact with the visualization

—the tool supports multiple simultaneous views of the source code

—the tool displays as much information as possible on one screen

—the tool supports dynamic visualizations of the program as it runs

—the tool could automatically point where there are potential errors and offer sugges-

tions on how to overcome them

—the tool is free (alternative: I would not mind paying if it catered for my needs)

e What functionality did you miss in the visualization tool which would have helped in

completing the given CM tasks?

Answer: Free text

f Any other comments / suggestions

Answer: Free text

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

14 ·

Besides the questionnaire, we also engaged the participants in discussions to explain

their answers in detail and provide any additional feedback, and noted down the comments

made.

7. RESULTS

The results presented below are compiled from the two questionnaires filled in by the

participants, i.e. pre-study (Section 6.1) and post-study (Section 6.3), as well as the results

and timings of the CM tasks, which are presented in Table IV. We discuss these results

along several axes: Familiarity with SoftVis tools, task completion and duration, used tool

features, query facilities, IDE integration, and adoption factors.

7.1 Familiarity with SoftVis

The pre-study questionnaire (Table III) shows that most participants had never used a Soft-

Vis tool before despite the fact that most of them had been programming at professional

level as part of a software company for more than five years, a large part of which was

spent in CM. This further emphasizes the point that SoftVis tools are not yet well adopted

in the industry. Some of the reasons become more clear as we further analyze the other

results, as follows below.

7.2 Task completion and duration

All users of CodePro, Ispace, and SolidSX successfully completed the assigned task, as

measured by the two expert developers (see Section 6.1). All these users but one explicitly

stated that the SoftVis tool was helpful (Table IV). Ispace and SolidSX users had lower

completion times on the average (Figure 7), and Ispace was also perceived as more useful

than CodePro (Table IV). Since both user groups did not know any of the tools prior to

the study learn phase (Section 6.1), we may conclude that Ispace was easier to use than

CodePro. This point is detailed further in Sec. 7.3 below.

In contrast, none of the three SonarJ users was able to complete the CM task success-

fully. The times reported in Table IV and Figure 7 for these users indicate the time until

they gave up the task. The potential reasons for this outcome of Ispace are detailed sepa-

rately in Section 7.6.

Within the same tool group, there are not very large variations of the required time, and

we do not see a speed difference in favor of the two users having prior code exposure

(Figure 7). Note that completion times include a combination of using the IDE and vi-

sualization plug-in tool for combined code understanding and error correction. It is hard

to precisely quantify the amount of time spent in the ’visualization proper’ (SoftVis tool)

and the IDE itself, due to the tight integration and intertwining of the two. However, our

qualitative observation of the users’ behavior suggests that roughly a third up to half of the

total time was spent in the SoftVis tool. Given this, we argue that the usage of the SoftVis

tools had a relevant impact in the success, respectively failure, of the CM task.

The completion time within each tool group seems, further, to be correlated with the

developers’ experience (Table III vs Figure 7): The two users that have the highest com-

pletion times, IS1 and CP5, both within their group and globally, are also the only ones

having under 5 years of programming and CM experience.

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

· 15

User Completion Task Prior code SoftVis tool IDE
duration completed exposure was useful integration

(minutes) desirable

CP1 49 Correct Yes No No

CP2 55 Correct No Yes Yes

CP3 43 Correct No No Yes

CP4 65 Correct No Yes Yes

CP5 70 Correct No Yes Yes

CP6 54 Correct No Yes Yes

IS1 78 Correct Yes Yes Yes

IS2 42 Correct No Yes Yes

IS3 44 Correct No Yes Yes

IS4 47 Correct No Yes Yes

IS5 50 Correct No Yes Yes

IS6 45 Correct No Yes Yes

SJ1 40 Failed No No Yes

SJ2 45 Failed No No Yes

SJ3 60 Failed No No Yes

SX1 50 Correct No Yes Yes

SX2 40 Correct No Yes Yes

SX3 42 Correct No Yes Yes

SX4 55 Correct No Yes Yes

SX5 48 Correct No Yes Yes

SX6 52 Correct No Yes Yes

Table IV. Post-study results for the CodePro Analytix (CP), Ispace (IS), SonarJ (SJ) and SolidSX (SX) tools

7.3 Used visualization features

The Ispace plugin provides only one type of view to show package relationships in a

project, with drill-down functions enabling the user to move from packages to classes and

then to code, which can be edited. In comparison, CodePro offers more advanced features

like code auditing, metrics computation, generation of factory and test classes, analyzing

dependencies, and finding code clones. SonarJ offers structure and dependency visualiza-

tions and drill-down navigation which is roughly similar to Ispace. Besides these, SonarJ

offers a powerful set of architectural views and ways to check architectural rules. How-

ever, for our CM task, these latter features are less relevant. Finally, SolidSX offers several

types of views: hierarchy-and-dependency layouts, treemaps, and table lenses, all linked

with the code views. Its navigation features are roughly identical to SonarJ and Ispace,

though implemented in different ways in its user interface. Its code analysis options are,

however, much more limited than e.g. CodePro and SonarJ, being limited to simple code

quality metrics like complexity, code size, comment density, fan-in, and fan-out.

All four tools provide a set of standard visual navigation features: a folder explorer to

navigate the system hierarchy (see Figures 2 - 5), linked views, and source code views.

There are few implementation differences at this level.

Apart from these features, all four tools provide ways to visualize dependencies such as

calls, type uses, and inheritance relations. However, the tools use quite different techniques

for this. Ispace and CodePro use a nested layout for containment relations and a spring em-

bedder for dependencies, similar to the well-known SHriMP layout [Storey et al. 2002].

Navigation-wise, Ispace uses a drill-down method which enables both detail and overview:

one can see both parent and children nodes in the same view. In contrast, CodePro shows

only one hierarchy level while expanding or collapsing nodes. As such, the nested lay-

out implemented by Ispace was perceived as delivering a higher information density than

CodePro. Both CodePro and Ispace enable users to customize the dependency layout by

manually rearranging nodes. In contrast, SonarJ and SolidSX use predefined, fixed, lay-

outs: SonarJ lays out nodes along a fixed grid and draws dependencies as arcs, similarly to

the technique in [Neumann et al. 2007] (see Fig. 4). This layout is reasonably effective in

navigating hierarchically layered systems [Neumann et al. 2007], but is less effective, pro-

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

16 ·

duces more edge clutter, and has a lower visual scalability, than the force-directed layouts

used by CodePro and Ispace. Finally, SolidSX uses the novel hierarchical edge bundles

(HEB) layout: the node hierarchy is drawn as a radial icicle plot and dependencies are

drawn as splines bundled to match their end nodes’ hierarchical positions. In SolidSX,

node positions are determined by a user-chosen sort order and manual rearrangement is

not possible.

During our study, we noticed that all users of all four tools mainly relied on dependency

visualization and navigation to support their CM task, which is not surprising. Navigating

hierarchy-and-dependency software structures follows the well-known information visu-

alization principle of combining overviews with zooming and details-on-demand [Shnei-

derman 1996]. Given this, we argue that the above-mentioned technical differences in

implementing this functionality strongly contribute in explaining the difference in user

performance and completion success (Sec. 7.2). As one CodePro participant put it

Fig. 7. Comparison of tool utilization duration until task completion of failure (y axis) for users of different tools.

For each tool, users are sorted in decreasing completion time order (x axis) (Sec. 7.2)

“The tool [CodePro] cannot drill-down to the methods. The dependency view

provides just high-level information for classes and interfaces. This is of little

value to the developers as class dependencies can be anyway traced more easily

than methods. CodePro is good and its usefulness can not be ignored, but

another view of dependencies is needed, apart from the tree. Maybe it could

be a table enhanced with drill-down functions. This is important in case of

large volumes of dependencies”.

A similar comment, albeit in a stronger form, was made by the SonarJ users. In contrast,

Ispace allows users to drill down up to the level of individual methods, thereby providing

a quicker link and navigation to the source code itself.

All in all, there were several complaints of various degrees about all three dependency

visualization (scalability, flexibility, visual presentation, navigation). Just as one example,

one Ispace user required to hide/unhide the arrows (relations) between classes to reduce

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

· 17

clutter. This feedback actually maps to the scalability points made when determining the

desirable features: A scalable and clutter-free dependency visualization was, indeed, a

main factor for tool acceptance degree [Sensalire et al. 2008]. The concrete feedback

obtained in this study, both in the form of textual and timing results, proves the importance

of this desirable feature for the tool success.

7.4 Query facilities

Figure 8 shows responses on how important the tools’ query facilities were to the partic-

ipants. While most users found this facility to have been helpful, preciseness was found

to be lacking. Also, the tools’ inability to integrate with the finer-grained Eclipse query

functions was complained about, the weakest tool here being SonarJ. In particular, the fact

that the various SonarJ views are not tightly linked by queries and selection makes their

usage inefficient for our task of locating and following code elements (Section 6.2). One

Ispace user felt that it would have been helpful if the tool could show all classes imple-

menting an interface and including classes in other packages. This is a typical example of

a complex query, strengthening our claim, also reflected in the classification model, that

extensive query mechanisms are crucial to SoftVis tools in CM. Very similar limitations

were reported for SolidSX.

One single user found the query facilities not useful at all, this being the expert in the

CodePro group, who also had the highest code exposure (see Sec. 8.2 below). This user

actually also did not find the SoftVis tool useful at all, so he used the built-in text query

facilities of Eclipse.

Apart from limitations on the flexibility of specifying complex queries, over half of the

users complained about the presentation of the query results. SonarJ, Ispace and CodePro

do this by showing query hits as a list of hyperlinks to actual code fragments. It was found

that this makes it hard to actually understand where these hits appear in the overall context

of a software system. In contrast, SolidSX highlights hits directly on its radial HEB view,

which shows a complete overview of the software, so enables easier reasoning about the

hits’ contexts.

Fig. 8. Response to question 6.3c

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

18 ·

7.5 IDE integration

All participants strongly agreed that the SoftVis tools would work better attached to the

IDE than standalone (Table IV). Some users mentioned explicitly the need to have the vi-

sualizations integrated with the debugger so they could quickly locate classes or methods

throwing exceptions. If the buggy areas could be highlighted, at runtime, with a different

color for clearer identification, it would be better, one user suggested; another user sug-

gested the ability to auto-highlight the path of an exception in the code so as to make it

easier to troubleshoot. Such paths could be highlighted in sync in both the textual views as

well as the dependency views.

SonarJ was perceived to have by far the weakest IDE integration of the four studied

tools. Although SonarJ claims the capability of a smooth Eclipse integration, it appeared

that many of its functions, such as its query facilities, hierarchy browser, and even the

code views, are replicated functionalities rather than coordinated (linked) with the similar

Eclipse features.

This high need for IDE integration matches observations in a wide variety of SoftVis

tool evaluations and studies [Tilley and Huang 2002; Koschke 2003; Storey 1998; Char-

ters et al. 2003; Schafer and Menzini 2005; Telea and Voinea 2008]. However, none of the

previous references are actually from the context of SoftVis usage in CM. From our obser-

vations in the current study, compared with our own insight in earlier tool design [Telea

and Voinea 2008; Telea et al. 2002; Voinea and Telea 2006; Hoogendorp et al. 2009], the

IDE integration requirement is significantly stronger for SoftVis tools used in CM than for

SoftVis tools used in other activities, due to the inherent tight communication needs with

editors, debuggers, and compilers typical to CM.

7.6 SonarJ: Potential reasons for failure

If we summarize the apparent limitations of SonarJ, as indicated by its users, the following

points stand out (in decreasing order of importance):

—IDE integration: the tool replicates several functions of Eclipse, such as browsing, code

views, and queries, instead of (re)using the native functions. This makes users con-

stantly navigate between the Eclipse and SonarJ views, thereby creating considerable

usage overhead. This overhead was mentioned as the main element for not being able to

complete the task;

—Information density: the dependency views use a fixed grid-based layout and arc-like

dependencies, which do not scale to large systems, and create significant visual clutter;

—Query support: the limited amount of linkage between views upon selection and search-

ing made the multiple views less collaborative, thus less useful in actually solving the

given task;

The main issue here is that the above points are in line with the classification of SonarJ,

which was performed independently on the actual CM task, user group, and code base

(Section 5, Table II). That is, the classification model ranks SonarJ as ’weak’ on the same

desirable features which are mentioned by its actual users.

7.7 Adoption factors

Figure 9 shows the results to the question on which factors would positively influence an

adoption decision for a SoftVis tool for CM. We asked this question separately in order to

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

· 19

determine, first of all, whether the classification model dimensions are indeed seen as rel-

evant by the users (note the similarity between question 6.3 d and the model’s dimensions,

detailed in [Sensalire et al. 2008]). The following facts were observed:

—Dynamic visualization: Over three quarters of the participants felt that dynamic visual-

ization tools would be very helpful, which is also argued for in earlier studies [Baecker

et al. 1997; Storey 1998; Koschke 2003]. Note that none of the tools evaluated here

provided such features (Table II).

—Show suggestions: Two thirds of the participants also wanted tools to show suggestions

on how to overcome errors while enabling simultaneous views into the source code. This

was a less expected point, but nevertheless one that should be of interest to developers of

SoftVis tools for CM. Such bug finding tools exist (see e.g. [Rutar et al. 2004]. However,

we know of none which is integrated with a SoftVis front-end.

—3D rendering and animation: None of the participants felt that 3D rendering or anima-

tion would motivate adoption. In line with this, none of the evaluated tools provided such

features, and there was no complaint for the lack thereof. We acknowledge that there

is a certain split in the SoftVis research community between advocates and skeptics of

the effectiveness of 3D software visualizations (see e.g. [Maletic et al. 2003; Wettel

and Lanza 2008; Koschke 2003; Teyseyre and Campo 2009]). However, we suggest

adapting the proposed classification model to remove 3D visualization and animation

as ’desirable features’, as these did not appear, in this study or our previous ones [Sen-

salire et al. 2008; Sensalire and Ogao 2007b], as being required by users. Animation

needs a few clarifications. By animation, we mean here the use of tools that animate

given algorithms at a high abstraction level, like e.g. in [Baecker et al. 1997]. This is

in contrast to dynamic visualizations of executing code (mentioned earlier), where live

data is extracted from the runtime object and visualized. The distinction is potentially

important for tool success.

—Commercial aspect: Two thirds of the participants were willing to pay for the tool,

while one third preferred a free tool. It is important to mention that our industrial users

indicated preference for free tools, but this was not a strict requirement. Hence, non-

commercial tool status was not seen as a decisive acceptance factor. The situation may

be different for academic users.

8. DISCUSSION

In this section, we discuss additional points related to the organization and outcome of

the presented study. For a more general description of the factors affecting the set-up of

evaluations of SoftVis tools, we refer to [Sensalire et al. 2009].

8.1 Motivating participants

Although the participants were motivated using the fee payment, it was still highly chal-

lenging to get professional developers to invest enough time to do the complete round-trip

of tool learning, studying the code base, using the tool within the Eclipse IDE to success-

fully perform the CM task, and fill in the questionnaire. This was clearly a non-trivial task,

which required from the participants as much attention as they would invest when doing

their regular work. However, this makes us believe that the obtained results are indeed

valid in a real-world usage of SoftVis tools for CM. To increase the study’s success, we

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

20 ·

Fig. 9. Response to question 6.3d. For each subcategory of 6.3d, the number of respondents who responded

positively is listed

allowed negotiations for higher fees than initially planned and accepted to carry out the

study at the users’ workplace at a time that was convenient for them. Had there been no

payments, it would have been almost impossible to get this set of users to dedicate enough

time and attention to do the study. This point on compensations is relevant when planning

tool studies in industrial contexts, as also mentioned in [Sjøberg et al. 2007].

8.2 Adoption by experts

As mentioned earlier, there was a code expert in each of the CodePro and Ispace groups

(Section 6.1). Interestingly, the Ispace group expert found the tool helpful in carrying

out the task, while the CodePro expert, who had the highest code exposure, did not and

eventually fixed the bug using only the source code and a text editor. The experts’ detailed

comments show a correlation between the usefulness of a SoftVis CM tool and the tool’s

ease of learn and use and specificity. The tool usefulness and user’s familiarity with the

code appear to be uncorrelated, as also noted in Sec. 7.2. Despite the fact that programmers

are familiar with a given code base, they can still be assisted by a SoftVis tool, if the tool

does not take up a lot of time to learn and use. However, due to prior knowledge about

the code, such users are also very likely to be impatient with tools that do not quickly

achieve what they desire. As such, it is very important to allow expert users to incorporate

custom features into such SoftVis tools. Any wrong step with this group would lead to

major adoption hurdles.

8.3 Evaluation constraints

As a general observation, the quality and generality of the results of tool effectiveness

and acceptance studies are strongly dependent on the use of suitable study participants.

Tools aimed at novice users, e.g. in education contexts, would be best evaluated using

novices, whereas tools aimed at industry professional developers are best evaluated using

such users [Sjøberg et al. 2007]. This is essential, and is noted that the role of human sub-

jects in empirical evaluations is sometimes taken too lightly [Tonella et al. 2007; Storey

1998]. Similar observations are made by Koschke when distinguishing research and end-

user contexts when evaluating future directions of software visualization [Koschke 2003].

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

· 21

In addition to this, there is also a need to elaborate on the procedure and aim of the eval-

uation in order to aid in future replication of the studies as well as usefulness of the re-

sults [Briand 2006; Penta et al. 2007; Tonella et al. 2007]. Although the efforts of setting

up such evaluations are quite high, as described above, we do believe that the insight ob-

tained is worth the price.

8.4 Model validation and refinement

As detailed in Section 3, we aimed to check the predictive abilities and completeness of

a given tool classification model [Sensalire et al. 2008]. For the predictive aspect, we ob-

served that all participants but one found the two tools that scored high in the classification

model (CodePro and Ispace) as being suitable and useful for supporting the given CM task

(see question 6.3a and Table IV). All participants using these tools completed the given

task succesfully. We also noticed features explicitly named as desirable by users, and for

which the tested tools score low in the model, i.e. dynamic visualization and showing

debugging suggestions (Figure 9 vs the model’s dynamic viz. and debugging dimensions

(Table II). The participants using SonarJ, which scored lower on all three effectiveness

dimensions and three of the visual techniques used (Table II) was not effective in support-

ing the given CM task. Furthermore, the textual and verbal comments on SonarJ indicated

limitations mainly along these dimensions (Section 7.6).

Although not exhaustive, the information above suggests that the dimensions of the pro-

posed classification model are, indeed, relevant for selecting effective SoftVis tools for

CM. In other words, from the answers to questions 6.3b and 6.3d, as well as to the free-text

comments (6.3e and 6.3f, discussed above, we observed that the users found the evaluated

SoftVis tools useful (or not) because of the presence, or absence, of the features deemed

as desirable by the classification model.

However, we also noticed dimensions of the classification models which seem less rel-

evant, and as such, are possible candidates for elimination, i.e. the presence of animation

and 3D visualization. To fully decide on the relevance of these dimensions, further study is

needed e.g. by comparing SoftVis tools for CM that are equal along most other dimensions,

except animation and 3D views.

We should stress again that, during the entire study, the users were not aware of the ex-

istence of a classification model, or the existence of a predefined set of so-called ’desirable

features’. As such, we argue that the proposed classification model is indeed valid in the

sense that a SoftVis tool meeting the features deemed desirable by the model, has a high

chance of being useful in CM practice because of having these features. Beyond this point,

however, we cannot claim more predictive power for the proposed model. However, the

fact that a SoftVis tool would be perceived as useful without meeting most of the model’s

desirable features would be quite improbable, due to the fact that many other independent

studies outline similar features as our model, for a wide range of use-cases outside code-

level CM [Price et al. 1993; Kienle and Müller 2007; Sun and Wong 2004; Subrahmaniyan

et al. 2008; Marcus et al. 2005; Maletic et al. 2002].

8.5 Threats to validity

We acknowledge several threats to validity concerning our study. Following e.g. Huberman

and Miles [Huberman and Miles 2002] and Trochim and Donnely [Trochim and Donnelly

2007], we can classify these as follows:

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

22 ·

8.5.1 Internal validity. Internal validity would be threatened if one were to conclude

that a SoftVis tool under study was helpful in solving the given CM problem when the

problem was solved otherwise. In our case, however, we explicitly asked the users to say

whether, and how the tools were helpful or not (questions 6.3a, 6.3c and 6.3f). Moreover,

in the five cases when the tool was not helpful, this was explicitly reported and justified by

the users (see also Table IV). History, testing, and instrumentation threats were not present,

given the actual set-up of the study. Expectancy bias was arguably removed by explicitly

stating that the authors had no stakeholding in a positive or negative outcome (Sec. 6.1).

Differential subject selection is a possible threat, which we tried to minimize (though not

eliminate) by having a uniform mix of participants with various experience in each group

(Table III).

8.5.2 External validity. External validity would be threatened if the hypothesis that

the classification model can predict likelihood of (un)suitability of a SoftVis tool for CM

were not to hold for other SoftVis tools or CM tasks or users. The fact that a SoftVis tool

scoring very low on the model would be suitable for a wide range of CM tasks and users,

is, however, very unlikely, given that the model’s dimensions are in line with attributes

identified as desirable by many other researchers, as mentioned in Sec. 8.4. Moreover, the

type of CM task, selection of the SoftVis tools (widely used and mature), and developers

from the software industry, are quite typical, we believe, for what the usage of a SoftVis

tool in CM should be in the industry. Pretest effects are arguably small, as we did not notice

that the users had already formed opinions on the (un)suitability of the tested tools at the

end of the training period, except that they understood their operation and were willing to

test them further (Sec. 6.1). Reactive effects to experimental arrangements were minimized

by letting the users work individually in their own familiar environment.

8.5.3 Conclusion validity. Conclusion validity would be threatened if there were no

relationship between a tool fitting the model and its perceived usefulness in practice. We

tested three different tools with seventeen participants, where each participant worked in-

dependently. The feedback from the participants on the reasons why they (dis)like the tool

they studied was quite similar. Moreover, as already mentioned in Sec. 8.4, this feedback

relates directly to most model features, except for the animation and 3D views presence.

A strong threat to conclusion validity would have implied that the users perceived their

studied tool as (not) useful for other reasons than the ones accounted for the model’s di-

mensions. Such feedback, if present, would have been outlined by the answers to questions

refsec:poststudye and refsec:poststudyf.

8.5.4 Construct validity. There are several construct validity threats to mention. Mono-

operation bias is clearly an issue: we used only one code base, CM task, three tools, and

seventeen participants. Finding more participants that would qualify the pre-selection re-

quirements was, however, not possible. This is a recurring issue in SoftVis research, and

many SoftVis tool industrial evaluations actually use even fewer participants than we did,

and even wider tasks and more different tools to compare [Marcus et al. 2005; Storey 1998;

Tilley and Huang 2002; Koschke 2003; Subrahmaniyan et al. 2008; Sun and Wong 2004].

Determining professional programmers to invest days (as in our case) to learn and evaluate

a tool, and actually use it to measurably solve a CM task on a non-trivial code base, is quite

challenging. Many SoftVis studies focus just on the tool builders or students, which has a

high risk of introducing external validity threats such as pretest effects, reactive effects, and

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

· 23

internal validity threats such as expectancy bias and history threats. Mono-method threats

are present in the sense that the number of measured variables (the questions) that quantify

tool usefulness are limited. We tried to reduce, though not eliminate, this by designing

questions that measure ’usefulness’ in different ways, e.g. question 6.3a (direct one), 6.3d

(willing to buy a tool is another usefulness measure), 6.3e (if a missing feature that helps

solving the problem were present, the tool were arguably more useful). Interaction of set-

ting and treatment threats are arguably low, in the sense that the users experimented in

their own environment (their own companies and workplaces), independently, using the

tools installed on their own computers. The main factors which would differ from a real

usage of the SoftVis tools for ’own work’ would be the usage of an externally imposed

code base and the presence of the silent observer monitoring the experiment. Concern-

ing the first point, however, our developers are used to work on commissioned tasks and

third-party code on a regular basis under relative delivery pressure, so this factor should

not differ markedly from their actual work patterns.

8.5.5 Questionnaire design. A separate potential threat to validity is related to the

design of the post-study questionnaire (Sec. 6.3). For instance, following the funneling

method described by Oppenheim [Oppenheim 1998], the order of the questions should

start with broader questions and then narrow down to more specific questions, one of

which is actually question 6.3a. A further recommendation is to follow the answers to

the general questions by requests for clarification. Although our paper questionnaire was

not designed in this way, the verbal clarifications sought to the participants after handing

in the questionnaires followed this funneling pattern and the probing mechanism. Further

design points that may pose as validity threats are the lack of ”not applicable” or ”don’t

know” categories to the questions, and the relative bias of question 6.3b towards answering

it negatively.

Following Yin [Yin 2003; 1994], our current study is a single-case, multiple units of

analysis (i.e. SoftVis tools) design. The study’s conclusions are based on analytic gen-

eralization (which is possible from one single case), rather than statistical generalization

(which would require, indeed, more sample points). Probably the most feasible way to

increase statistical generalization is to test more tools, as finding more programmers fitting

our preconditions proved too difficult. Yet, it is quite hard to find a large group of tools

that share preconditions that make them comparable, i.e. address the same CM task(s);

are mature and well-accepted by the developer community; and share the same target lan-

guage, IDE integration, and platform. For example, there are simply very few SoftVis tools

for CM that are integrated with the same IDE. Comparing tools that share less aspects is

possible, but would require (a) the refinement of the classification model with additional

dimensions, which was not our goal here; and (b) a larger user group or (c) increased pres-

sure on the user group up to levels where they become uncooperative or superficial, a factor

we tried to avoid at all costs (Section 8).

8.5.6 Tool selection. Interestingly, Ispace, which was found to be most useful by its

users, is an open-source tool, while CodePro, SonarJ, and SolidSX are commercial tools.

Mentioning this point is important, as there are many tool evaluations which suffer from

the bias of comparing a less-than-mature open-source tool with a professional commercial

tool. Given the evaluation outcome, and also the fact that no user pointed in the verbal or

written feedback to ’tool immaturity’ as a limiting factor, we believe that our measurement

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

24 ·

of tool usefulness is not biased by having selected immature tools.

9. CONCLUSION

In this paper, we have presented an evaluation of four representative software visualiza-

tion (SoftVis) tools in the context of corrective maintenance (CM). Our aim was to check

whether the potential usefulness of a SoftVis tool for CM, as determined by an existing

classification model, does match indeed the opinions of actual professional developers us-

ing the tool for a concrete CM task. We described the set-up and results of an evaluation

study that targets the above question. The study results are in line with the model pre-

dictions. This brings additional justification to the claim that this classification model is

helpful in determining the usefulness of a SoftVis tool for typical CM tasks such as debug-

ging. Specifically, the features identified by the model as desirable are indeed necessary

for a SoftVis tool to be useful in CM. However, due to the limited number of test points,

we cannot yet argue that the presence of these features is also sufficient for predicting a

tool’s usefulness.

During this evaluation, several desirable points named as crucial for acceptance were

observed: tight functional integration within a recognized IDE, multiple correlated views,

visualization-to-code navigation, advanced search capabilities, and scalable automated de-

pendency visualizations. These are in line with the main factors of SoftVis tool acceptance

in the industry, independently identified by other types of studies [Price et al. 1993; Bassil

and Keller 2001]. Additional points which we found are the important need of dynamic

visualizations, error-correction suggestions, and the observation that there is no significant

difference between a tool’s availability (free vs commercial) as long as it is highly effective

for the users’ needs.

To conclude, a well-chosen SoftVis tool can, thus, be of high value in typical debug-

ging activities in the software industry. However, the above-mentioned features required

for acceptance are not typically those that foster creative visualization research, but those

that require high implementation efforts. As a SoftVis survey also states: “Overcoming

the problem of high [implementation] investments with unclear benefits for visualization

researchers is the real challenge in integration and interoperability” [Koschke 2003]. We

believe that this is one of the key causes of the gap between SoftVis research and its indus-

trial acceptance.

Apart from this, there is still a group of programmers who believe in the traditional way

of doing CM. Apparently, no amount of functionality would entice them to use a SoftVis

tool. As one programmer in our study put it:

I do not work with tools/IDE’s because it is like spoon feeding. I can get by

with basic code editors like vi. I would therefore not be motivated to adopt a

Softvis tool, no matter how good the functionality. Debugging is fun; with all

these tools, the fun is taken away leaving no incentive to debug.

In the future, we consider performing similar studies for other specific sub-tasks of cor-

rective maintenance, as well as considering different SoftVis tools. Additionally, an inter-

esting direction would be the elaboration of a large-scale review of lessons and experiences

learnt in using SoftVis tools in CM, having as outcome a refined classification model which

could influence both users and researchers in their strategic tool choices over time.

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

· 25

REFERENCES

BAECKER, R., DIGIANO, C., AND MARCUS, A. 1997. Software visualization for debugging. Comm. of the

ACM 40, 4, 44–54.

BASSIL, S. 2000. Evaluation qualitative et quantitative des outils de visualisation logicielle. MSc Thesis, Univ.

of Montreal, Canada.

BASSIL, S. AND KELLER, R. K. 2001. Software visualization tools: Survey and analysis. In Proc. Intl. Workshop

on Program Comprehension (IWPC). IEEE, 7–17.

BRIAND, L. C. 2006. The experimental paradigm in reverse engineering: Role, challenges, and limitations. In

Proc. of the 13th Working Conference on Reverse Engineering (WCRE). IEEE, 3–8.

CHARTERS, S. M., THOMAS, N., AND MUNRO, M. 2003. The end of the line for Software Visualisation? In

Proc. of the 2nd Workshop on Visualizing Software for Analysis and Understanding (VISSOFT). IEEE, 27–35.

DE ALWIS, B., MURPHY, G. C., AND ROBILLARD, M. P. 2007. A Comparative Study of Three Program

Exploration Tools. In Proc. of the 15th Intl. Conf. on Program Comprehension (ICPC). IEEE, 103–112.

DIEHL, S. 2007. Software Visualization - Visualizing the Structure, Behaviour, and Evolution of Software.

Springer.

FREITAS, C., LUZZARDI, P., CAVA, R., WINCKLER, M., PIMENTA, M., AND NEDEL, L. 2002. Evaluating

usability of information visualization techniques. In Proc. ACM CHI. 36–45.

GABBARD, J., HIX, D., AND SWAN, J. 1999. User-centered design and evaluation of virtual environments.

IEEE Comp. Graphics & Applications 19, 6, 51–59.

HELLO2MORROW. 2008. SonarJ Visualization Plugin. website. www.hello2morrow.com/products/

sonarj.

HOLTEN, D. 2006. Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE

TVCG 12, 5, 741–748.

HOOGENDORP, H., ERSOY, O., RENIERS, D., AND TELEA, A. 2009. Extraction and Visualization of Call

Dependencies for Large C/C++ Code Bases: A Comparative Study. In Proc. VISSOFT. IEEE.

HUBERMAN, A. AND MILES, B. 2002. The Qualitative Researcher’s Handbook. Sage Publications.

I. ARACIC. 2008. Ispace Visualization Plugin. website. http://ispace.stribor.de.

INSTANTIATIONS, INC. 2008. CodePro Analytix. website. www.instantiations.com/codepro.

KAYIWA, D., TUMWEBAZE, C., AND NKUYAHAGA, F. 2008. EpiHandy Mobile Code Base. website. http:

//code.google.com/p/epihandymobile/.

KIENLE, H. M. AND MÜLLER, H. A. 2007. Requirements of software visualization tools: A literature survey.

In Proc. 4th Intl. Workshop on Visualizing Software for Understanding and Analysis (VISSOFT). IEEE, 2–9.

KO, A. J., AUNG, H., AND MYERS, B. A. 2005. Eliciting design requirements for maintenance-oriented IDEs:

a detailed study of corrective and perfective maintenance tasks. In Proc. of the 27th Intl. Conf. on Software

Engineering (ICSE). IEEE, 126–135.

KOSCHKE, R. 2003. Software visualization in software maintenance, reverse engineering, and re-engineering:

a research survey. J. of Software Maintenance and Evolution 15, 87–109.

LORENSEN, B. 2004. On the death of visualization: Can it survive without customers? In Proc. of the NIH/NSF

Fall Workshop on Visualization Research Challenges.

LUDWIG, A. 2009. Recoder java analyzer. recoder.sourceforge.net.

MALETIC, J., MARCUS, A., AND COLLARD, M. 2002. A task oriented view of software visualization. In Proc.

2nd Intl. Workshop on Visualizing Software for Understanding and Analysis (VISSOFT). IEEE, 32–39.

MALETIC, J., MARCUS, A., AND FENG, L. 2003. sv3D: A framework for software visualization. In Proc. of

the 25th Intl. Conf. on Software Engineering (ICSE). IEEE, 812–818.

MARCUS, A., COMORSKI, D., AND SERGEYEV, A. 2005. Supporting the evolution of a software visualization

tool through usability studies. In Proc. Intl. Workshop on Program Comprehension (IWPC). IEEE, 307–316.

NEUMANN, P., SCHLECHTWEG, S., AND CARPENDALE, M. 2007. ArcTrees: Visualizing Relations in Hierar-

chical Data. In Proc. EuroVis. IEEE, 53–60.

OPPENHEIM, A. 1998. Questionnaire Design, Interviewing and Attitude Measurement. Continuum.

PACIONE, M., ROPER, M., AND WOOD, M. 2003. Comparative evaluation of dynamic visualisation tools. In

Proc. 10th Working Conf. on Reverse Engineering (WCRE). IEEE, 80–89.

PENTA, M. D., STIREWALT, R. K., AND KRAEMER, E. 2007. Designing your Next Empirical Study on Program

Comprehension. Proc. of the 15th Intl. Conf. on Program Comprehension (ICPC), 281–285.

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

26 ·

PREECE, J., ROGERS, Y., AND SHARP, H. 2002. Interaction Design: Beyond Human-Computer Interaction. J.

Wiley & Sons.

PRICE, B. A., BAECKER, R., AND SMALL, I. 1993. A principled taxonomy of software visualization. J. of

Visual Languages and Computing 4, 3, 211–266.

RAO, R. AND CARD, S. 1994. The table lens: merging graphical and symbolic representations in an interactive

focus + context visualization for tabular information. In Proc. ACM CHI. 318–322.

REISS, S. 2005. The paradox of software visualization. In Proc Intl. Workshop on Visualizing Software for

Understanding and Analysis (VISSOFT). IEEE, 59–63.

REISS, S. P. AND RENIERIS, E. M. 2005. Tool demonstration: JIVE and JOVE: Java as it happens. In Proc. of

the 25th Intl. Conf. on Software Engineering (ICSE’03). IEEE, 820–821.

ROMAN, G. C. AND COX, K. C. 1993. A taxonomy of program visualization systems. IEEE Computer 26,

11–24.

RUTAR, N., ALMAZAN, C., AND FOSTER, J. 2004. A comparison of bug finding tools for java. In Proc. Intl.

Symp. on Software Reliability Engineering (ACM ISSRE). 245–256.

SCHAFER, T. AND MENZINI, M. 2005. Towards more flexibility in software visualization tools. In Proc. Intl.

Workshop on Visualizing Software for Understanding and Analysis (VISSOFT). IEEE, 20–26.

SENSALIRE, M. AND OGAO, P. 2007a. Tool usrs requirements classification: How software visualization tools

measure up. In Proc. Intl. Conf. on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa

(Afrigraph). ACM, 119–124.

SENSALIRE, M. AND OGAO, P. 2007b. Visualizing Object Oriented Software: Towards a Point of Reference for

Developing Tools for Industry. In Proc. 4th Intl. Workshop on Visualizing Software for Understanding and

Analysis (VISSOFT). IEEE, 26–29.

SENSALIRE, M., OGAO, P., AND TELEA, A. 2008. Classifying desirable features of software visualization

tools for corrective maintenance. In Proc. of the 4th Symposium on Software Visualization (SOFTVIS). ACM,

87–90.

SENSALIRE, M., OGAO, P., AND TELEA, A. 2009. Evaluation of software visualization tools: Lessons learned.

In Proc. 5th Intl. Workshop on Visualizing Software for Understanding and Analysis (VISSOFT). IEEE, 156–

164.

SHNEIDERMAN, B. 1996. The eyes have it: A task by data type taxonomy for information visualizations. In

Proc. Symp. on Visual Languages. IEEE, 336–343.

SHNEIDERMAN, B. 2010. Treemaps for space-constrained visualization of hierarchies. Website. http://

www.cs.umd.edu/hcil/treemap-history.

SJØBERG, D., DYBÅ, T., AND JØRGENSEN, M. 2007. The future of empirical methods in software engineering

research. In Proc. Intl. Conf. on Software Engineering (ICSE). IEEE, 358–378.

SOLIDSOURCE. 2009. SolidSX software explorer. www.solidsourceit.com/products/

SolidSX-source-code-dependency-analysis.html.

STASKO, J. T., DOMINGUE, J. B., BROWN, M. H., AND PRICE, B. A. 1998. Software Visualization - Pro-

gramming as a Multimedia Experience. MIT Press.

STOREY, M. A. 1998. A cognitive framework for describing and evaluating software exploration tools. Ph.D.

thesis, Simon Fraser University, Canada.

STOREY, M. A., BENNETT, C., BULL, R. I., AND GERMAN, D. M. 2008. Remixing visualization to support

collaboration in software maintenance. Proc. Frontiers of Software Maintenance (FoSM), 139–148.

STOREY, M. A., BEST, C., MICHAUD, J., RAYSIDE, D., LITOIU, M., AND MUSEN, M. 2002. SHriMP views:

an interactive environment for information visualization and navigation. In Proc. ACM CHI. 520–521.

SUBRAHMANIYAN, N., BURNETT, M., AND BOGART, C. 2008. Software visualization for end-user program-

mers: trial period obstacles. In Proc. SoftVis. ACM, 135–144.

SUN, D. AND WONG, K. 2004. On understanding software tool adoption using perceptual theories. In Proc.

Intl. Workshop on Adoption-Centric Software Engineering (ACSE). IEEE, 51–55.

SWANSON, E. B. 1976. The dimensions of maintenance. In Proc. of the 2nd Intl. Conf. on Software Engineering

(ICSE). IEEE.

TELEA, A., ERSOY, O., AND VOINEA, L. Visual analytics in software maintenance: Challenges and opportuni-

ties. In Proc. 1st European Symposium on Visual Analytics (EuroVAST.

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

· 27

TELEA, A., MACCARI, A., AND RIVA, C. 2002. An open toolkit for prototyping reverse engineering visualiza-

tions. In Proc. VisSym. ACM, 241–249.

TELEA, A. AND VOINEA, L. 2008. An integrated reverse engineering environment for large-scale C++ code.

In Proc. SoftVis. ACM, 67–76.

TEYSEYRE, A. AND CAMPO, R. M. 2009. An overview of 3d software visualization. IEEE TVCG 15, 1,

87–105.

TILLEY, S. AND HUANG, S. 2002. On selecting software visualization tools for program understanding in an

industrial context. In Proc. Intl. Workshop on Program Comprehension (IWPC). IEEE, 285–288.

TONELLA, P., TORCHIANO, M., BOIS, B. D., AND SYSTÄ, T. 2007. Empirical studies in reverse engineering:

state of the art and future trends. Empirical Software Engineering 12, 5, 551–571.

TORY, M. AND MÖLLER, T. 2005. Evaluating visualizations: Do expert reviews work? IEEE Comp. Graphics

& Applications 5, 25, 8–11.

TROCHIM, W. AND DONNELLY, J. 2007. The Research Methods Knowledge Base (3rd ed.). Atomic Dog Publ.

http://www.socialresearchmethods.net/kb.

VOINEA, L. AND TELEA, A. 2006. CVSgrab: Mining the History of Large Software Projects. In Proc. EuroVis.

IEEE, 187–194.

WETTEL, R. AND LANZA, M. 2008. Visually localizing design problems with disharmony maps. In Proc.

SoftVis. ACM, 155–164.

YIN, R. K. 1994. Case study research: Design and methods. Sage Publications.

YIN, R. K. 2003. Applications of Case Study Research (2nd ed.). Sage Publications.

ZAYOUR, I. AND LETHBRIDGE, T. C. 2001. Adoption of Reverse Engineering Tools: A Cognitive Perspective

and Methodology. In Proc. Intl. Workshop on Program Comprehension (IWPC). IEEE, 245–258.

ZHANG, K. 2003. Software Visualization: From Theory to Practice. Kluwer.

Technical Report SVCG-RUG-10-2010 - Inst. J. Bernoulli, University of Groningen, the Netherlands, 2010

