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2.1 INTRODUCTION
Medial descriptors, or skeletons, are used in many applications such as path plan-
ning, shape retrieval and matching, computer animation, medical visualization, and
shape processing [45,50]. In two dimensions, such descriptors are typically called
medial axes. Three-dimensional shapes admit two types of skeletons, surface skele-
tons, which are sets of manifolds with boundaries that meet along a set of so-called
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Y-intersection curves [12,30,6], and curve skeletons, which are 1D structures locally
centered in the shape [8].

A fundamental and well-known problem of skeleton computation is that skeletons
are inherently unstable to small perturbations of the input shape [50]. This leads to the
appearance of so-called spurious branches, which have little or no application value,
and considerably complicate the analysis and usage of skeletons. To alleviate this,
various simplification methods have been proposed to eliminate such branches. In this
context, multiscale methods are particularly interesting. They compute a so-called
importance metric for skeletal points, which encodes the scale of the shape details,
and next offer a continuous way for simplifying skeletons by simply thresholding that
metric.

Several robust, simple to implement, and efficient methods exist for computing
2D multiscale skeletons; see, e.g., [35,17,53]. For surface skeletons, the situation is
very different: Only a few such methods exist, and these are either computationally
expensive [14,38,39], complex [26], or sensitive to numerical discretization [27].

In this chapter, we address the joint problem of computing multiscale 2D me-
dial axes and 3D surface skeletons by a new method. For this, we cast the problem
of computing the importance metrics proposed in [35,17,53] (for 2D skeletons) and
in [39,26] (for 3D skeletons) as the search for an optimal path forest using the Im-
age Foresting Transform framework [19]. In 2D, the skeletons are one-pixel wide
and connected in all scales for genus-0 shapes. In 3D, the surface skeletons are one-
voxel wide and can be connected in all scales for genus-0 shapes if the curve skeleton
points are detected [39,26], which we do not address here. Next, we provide simple
and efficient algorithms to compute these metrics for both 2D and 3D binary im-
ages. Compared to 3D techniques that use the same multiscale importance metric, our
method is faster [14,38,39] or alternatively considerably simpler to implement [26].
Compared to other 3D multiscale techniques, our method is far less sensitive to nu-
merical noise [27]. Compared to all above techniques, our method yields the same
quality level in terms of centeredness, smoothness, thinness, and ease to simplify the
skeleton.

This chapter is structured as follows. In Section 2.2, we overview multiscale
skeletonization solutions and challenges. Section 2.3 introduces the Image Foresting
Transform and its adaptations required for multiscale skeletonization. Section 2.3.3
details our multiscale skeletonization algorithms for 2D and 3D shapes. Section 2.4
compares our method with its multiscale competitors on a wide set of 2D and 3D real-
world shapes. Section 2.5 concludes the chapter, summarizing our main contributions
and outlining directions for future work.

2.2 RELATED WORK
In this section, we provide the basic definitions related to skeletonization and discuss
skeleton regularization based on local and global measures.
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2.2.1 DEFINITIONS
Given a shape � ⊂ Rd , d ∈ {2, 3} with boundary ∂�, we first define its Euclidean
distance transform D : Rd → R+ as

D(x ∈ �) = min
y∈∂�

‖x− y‖. (2.1)

The Euclidean skeleton of � is next defined as

S = {x ∈ �|∃f1, f2 ∈ ∂�, f1 �= f2, ‖x− f1‖ = ‖x− f2‖ = D(x)}, (2.2)

where f1 and f2 are the contact points with ∂� of the maximally inscribed ball in �

centered at x [23,39], also called feature points of x [25], where the feature transform
F : Rd → P(∂�) is defined as

F(x ∈ �) = arg min
y∈∂�

‖x− y‖. (2.3)

The vectors f – x are called spoke vectors [47]. By definition (Eq. (2.2)), for any
x /∈ S , F(x) yields a single point, i.e., |F(x)| = 1, whereas for any x ∈ S ,
|F(x)| ≥ 2. In practice, computing F can be quite expensive and/or complicated
due to its multivalued nature. As such, many applications (see, e.g., [25,21,39]) use
the so-called single-value feature transform F : Rd → ∂�, defined as

F(x ∈ �) = y ∈ ∂� so that ‖x− y‖ = D(x). (2.4)

For d = 2, S is a set of curves that meet at the so-called skeleton junction
points [17]. For d = 3, S is a set of manifolds with boundaries that meet along
a set of so-called Y-intersection curves [12,30,6]. The pair MAT = (S,D) defines
the medial axis transform (MAT ) of �, which is a dual representation of �, i.e., al-
lows reconstructing the shape �S,D =

⋃
x∈S BD(x)(x) as the union of balls BD(x)(x)

centered at x ∈ S and with radii D(x).
Except when it is explicitly mentioned, we consider only the case where � \ ∂�

and ∂� have the same number of components.

2.2.2 SKELETON REGULARIZATION
In practice, skeletons are extracted from discretized (sampled) versions of �, using
either an implicit (boundary mesh) representation [35,51,32,26] or an explicit (volu-
metric) representation [17,53,14,39]. In this chapter, we focus on the latter case. Here,
the d-dimensional space is discretized in a uniform grid of so-called spels (space ele-
ments) having integer coordinates, i.e., pixels for d = 2 and voxels for d = 3. Due to
this discretization, solving Eq. (2.2) on Zd rather than on Rd yields skeletons that are
not perfectly centered, not necessarily one-spel thin, and not necessarily homotopic
to the input shape. Discretization also causes skeletons to have a large amount of spu-
rious manifolds (branches). Formally, this means that skeletonization is not a Cauchy
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FIGURE 2.1

Problems of local regularization. For the shown shape, all local regularization metrics yield
the same values for points p and q. However, p is globally more important for the shape
description than q.

or Lipschitz continuous operation with respect to the Hausdorff distance between
two shapes, but a semicontinuous operation [50]. Informally put, small variations of
a shape can cause arbitrarily large variations of its skeleton.

To achieve Cauchy or Lipschitz continuity, desirable for most practical applica-
tions (which should not be sensitive to discretization issues), a regularization process
is typically used. For this, we define the so-called importance metric ρ : � → R+,
whose upper thresholding by some desired value τ > 0 removes, or prunes, branches
caused by small-scale details or noise on ∂� [43,12]. The regularized skeleton is de-
fined as Sτ = {x ∈ S|ρ(x) ≥ τ }. We distinguish between local and global importance
measures, in line with [39,32,26,27], as follows.

Local measures essentially consider, for a skeletal point x ∈ S , only a small neigh-
borhood of x to compute ρ(x). The main advantage of these measures is that they are
simple to implement and fast to compute. Local measures include the angle between
the feature points and distance-to-boundary [1,22,49,25], divergence metrics [44,5],
first-order moments [42], and detecting the multivalued points of ∇D [47,48]. Local
measures are also, historically speaking, the first proposed skeleton regularization
techniques. Good surveys of local methods are given in [45,50]. However, local mea-
sures have a fundamental issue: They cannot discriminate between locally identical,
yet globally different, shape contexts. Fig. 2.1 illustrates this for a synthetic case: For
the 2D shape with boundary ∂�, the central skeletal point p is clearly more impor-
tant to the shape description than the peripheral point q that corresponds to the right
local protrusion. However, any local importance metric will rank p as important as
q since their surroundings, including the placement of their feature points (shown in
the figure), are identical. Similar situations can be easily found for 3D shapes.

Given the above, thresholding local measures can (and typically will) disconnect
skeletons. Reconnection needs extra work [44,37,31,49] and makes skeleton pruning
less intuitive and harder to implement [43]. Without this kind of work, no local mea-
sure can yield connected skeletons for all shapes. Note that this is a fundamental issue
related to the local nature of these metrics; see also the discussion in [27]. Secondly,
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local metrics do not support the notion of a multiscale skeleton: Such skeletons Sτ

should ensure a continuous simplification (in the Cauchy or Lipschitz sense men-
tioned before) of the input shape � in terms of its reconstruction �Sτ ,D as a function
of the simplification parameter τ [35,50]. As such, although local measures can be
“fixed” by reconnection work to yield connected skeletons, they still cannot provide
an intuitive and easy-to-use way to simplify skeletons according to a user-prescribed
threshold τ .

Global measures monotonically increase as one walks along S from the skeleton
boundary ∂S inwards, toward points increasingly further away from ∂S . For genus-0
shapes, such measures can be informally thought of as giving the removal order of
skeletal points in a homotopy-preserving erosion process that starts at ∂S and ends
when the entire skeleton has been eroded away. Given this property, thresholding
them always yields connected skeletons, which also capture shape details at a user-
given scale. For shapes with genus greater than 0, like having holes (in 2D) or cavities
(in 3D), simple suitable postprocessing of the importance metric guarantees the joint
connectivity and multiscale properties. For 2D shapes, a well-known global measure
is the so-called boundary-collapse metric used to extract multiscale 2D skeletons, and
proposed by various authors in different contexts [35,17,53,52]. For 3D shapes, the
union-of-balls (UoB) approximation uses morphological dilation and erosion to de-
fine the scale of shape details captured by the regularized skeleton [24,32]. Dey and
Sun propose as a regularization metric the medial geodesic function (MGF), equal
to the length of the shortest-path between feature points [14,38] and use this met-
ric to compute regularized 3D curve skeletons. Reniers et al. [39] extend the MGF
for both surface and curve skeletons using geodesic lengths and surface areas be-
tween geodesics, respectively. A fast GPU implementation of this extended MGF for
meshed shapes is given in [26].

The 3D MGF and its 2D boundary-collapse metric counterpart have an intu-
itive geometric meaning: They assign to a skeleton point x ∈ S the amount of
shape boundary that corresponds, or “collapses” to, x by some kind of advective
boundary-to-skeleton transport. As such, skeleton points x with low importance val-
ues correspond to small-scale shape details or noise; points x with large importance
values correspond to large-scale shape parts. Fig. 2.2 illustrates the boundary-collapse
principle for both 2D medial axes (A) and 3D medial surfaces (B). In both cases, for a
skeletal point x, the importance is equal to the length of the shortest path γx that goes
on ∂� between the feature points fx

1 and fx
2. This allows an intuitive and controllable

skeleton simplification: Thresholding the MGF by a value τ eliminates all skeleton
points that encode less than τ boundary length or area units. Since all the above-
mentioned collapse metrics monotonically increase from the skeleton boundary ∂S
to its center, thresholding them delivers a set of nested skeleton approximations,
also called a multiscale skeleton. Importantly, these progressively simplified skele-
tons correspond, via the MAT (Section 2.2.1), to progressively simplified versions
of �. More precisely, for all above collapse metrics, the reconstruction of a shape �

from its simplified skeleton Sτ yields a shape where all details of � of size smaller
than τ have been replaced by circle arcs (in 2D) or spherical caps (in 3D) [53,39,26].
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FIGURE 2.2

Multiscale collapse metric for 2D shapes (A) and 3D shapes (B).

The idea of a mass collapse process from ∂� to S was also used by other works to
define multiscale skeletons. Couprie [9] proposed a discrete framework for comput-
ing 2D skeletons and 3D curve skeletons by a guided thinning process, which, for the
2D case, yields very similar results to [53,17]. However, 3D surface skeletons are not
covered by this approach. Torsello et al. propose a conservative mass advection ∂�

onto S to define ρ in 2D [4], which was next extended to 3D [41]. However, the nu-
merical computation of this process is affected by serious stability issues. Recently,
Jalba et al. extended this advection model to compute multiscale 2D skeletons and
3D surface and curve skeletons in a unified formulation [27]. Although this method
delivers convincing results, it still suffers from numerical stability problems and is
also relatively complex to implement.

Summarizing the above, we argue that multiscale regularization metrics are net
superior, both in theory and practice, to local regularization metrics. However, as
outlined and discussed next in more detail in Section 2.3.1, multiscale regularization
is far from being simple and cheap. Our proposal, presented next, aims at solving
these problems.

2.3 PROPOSED METHOD
To compute multiscale 2D and 3D skeletons of binary shapes efficiently and robustly,
we propose to use the Image Foresting Transform (IFT) methodology [19]. We start,
in Section 2.3.1, by introducing our general idea, which details the strengths and
weaknesses of the MGF and advection-based regularization techniques introduced in
Section 2.2.2. Next, we detail the use of the IFT to compute skeletons that combine
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the identified strengths of these two approaches (Section 2.3.2). Our final proposed
skeletonization algorithms are detailed in Section 2.3.3.

2.3.1 MULTISCALE REGULARIZATION—STRENGTHS AND
WEAKNESSES

Analyzing all multiscale skeletonization methods surveyed in Section 2.2 [35,17,53,
52,39,4,41,26,27], we notice that their various importance-metric definitions can be
all explained, at a high level, by introducing a vector field v : � → Rd as follows:
If we imagine that the input shape surface ∂� is covered by uniformly distributed
mass with density ρ(x ∈ ∂�) = 1, then all above methods explain the importance
ρ(x ∈ �) of a spel x as the amount of mass transported, or advected, by v from ∂�

to x. Studying the properties of v brings several insights into multiscale regularization
as follows.

First, we note that the importance values of nonskeletal spels x /∈ S should be low
and nearly locally constant, so that upper-thresholding ρ by this value allows us to
reliably separate S . All above-mentioned methods define ρ(x /∈ S) to be equal to the
importance of the single feature point of x, i.e., ρ(x /∈ S) = ρ(F(x)). This property
is realized if we define v = ∇D for all x /∈ S , as it is well known that gradient lines
of the distance transform only intersect at skeletal points [44,5].

To fully define the multiscale importance ρ over � in terms of an advection
process, it thus remains to define v on S . Studying the above-mentioned multiscale
methods and considering for now the case of connected genus-0 shapes, we see here
that all such methods aim to define a field ρ that monotonically increases from ∂S
to its center, or root r ∈ S . As explained earlier, this allows easy computing of
multiscale skeletons Sτ by simply upper-thresholding ρ with desired values τ . In
advection terms, this is equivalent to defining a field v that transports mass along S
from its boundary ∂S to r, along paths that finally meet at r. For d = 2, mass flows
from ∂� to the one-dimensional medial axis S and then along the branches of S to
its center r. For d = 3, mass flows from ∂� to the two-dimensional surface-skeleton
S , then along S toward its local center (which is the curve skeleton of �), and then
along the curve-skeleton branches toward the center r thereof.

The different multiscale importance listed above can be explained in terms of
different definitions of v over S as follows. In 2D, for genus-0 shapes, all surveyed
methods essentially reduce to defining v as being locally tangent to S and pointing
toward the root of the skeleton (which in this case is a tree) [35,17,53,52]. In 3D, ex-
plaining multiscale importance in terms of a field v defined on S is more complicated.
We distinguish here two classes of methods as follows.

MGF methods: For genus-0 shapes, MGF-based methods do not actually give a
formal definition of v, but compute ρ(x ∈ S) as the length of the longest shortest-path
on ∂� between any two feature points f and g of x, i.e.,

ρ(x ∈ S) = max
f∈F(x),g∈F(x)

GL(f, g), (2.5)
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where GL(x, y) is the length of the shortest path on ∂� between two points x ∈ ∂�

and y ∈ ∂�. This is based on the empirical observation that Eq. (2.5) defines a field ρ

that smoothly and monotonically increases from ∂S to its center [14,39]. This allows
us to compute regularized surface skeletons even for noisy and complex 3D shapes.
Another advantage of the MGF is that it makes simplification intuitive to understand:
thresholding ρ at a value τ eliminates all spels from S where the local thickness of
the shape is larger than τ . However, a formal justification of the MGF in terms of
an advection process on S has not yet been given. A second limitation of the MGF
model is that is becomes very expensive to compute for large 3D shapes, where we
need to trace (at least one) shortest path on ∂� for each point x ∈ S , and so its cost
is O(|S| · |∂�|log|∂�|). Using GPU techniques can accelerate this process [26], but
also massively complicates the implementation of the method.

Advection methods: Aiming to solve the above issues with the MGF, Jalba et al.
define v on S as the result of a mass-conserving advection model, with topological
constraints used to ensure skeleton homotopy with the input shape [27]. In contrast
to the MGF, computation of all types of skeletons (2D medial axes, 3D surface skele-
tons, and 3D curve skeletons) is now fully captured by a single unified advection
model. Also, the method in [27] is considerably faster than MGF techniques, its cost
being O(|�|), and is also simpler to implement. However, setting the simplification
threshold τ is now less intuitive than for MGF techniques since this value does not
have an immediate geometric interpretation. Also, all 3D advection methods we are
aware of [4,41,27] suffer various amounts of from numerical diffusion, which means
that the computed importance ρ will deliver regularized skeletons Sτ having jagged
boundaries.

The method that we propose in the next section aims to combine the strengths and
limit the disadvantages of the MGF and advection methods outlined above. In de-
tail, we use an incremental advection-like computation of the intuitive MGF metric,
which makes our method considerably faster than existing MGF methods. We pro-
vide an implementation that is simple and does not suffer from numerical diffusion
issues. Our proposal delivers smooth-boundary regularized, centered, one-spel-thin,
multiscale skeletons of the same overall quality as skeletons delivered by existing
state-of-the-art methods.

2.3.2 IMAGE FORESTING TRANSFORM
The Image Foresting Transform (IFT) interprets d-dimensional images as graphs and
reduces image operators to the computation of an optimum-path forest followed by
a local processing of its attributes. In essence, the IFT is Dijkstra’s shortest-path al-
gorithm modified to use multiple sources and more general connectivity (path-value)
functions. In our context, the IFT propagates, from ∂� to x ∈ � \ ∂�, both the fea-
ture points F(x) and the advection field v(x). Fig. 2.3 shows in yellow the spels s

with undefined ∇D(x). These are the leaves of the optimum-path forest whose paths
follow the direction of v.
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FIGURE 2.3

A polygon � with orange boundary ∂�, its distance transform D (gray values), a plausible
skeleton S (cyan), the root point r (red), the points with undefined ∇D(s) (yellow), and
magenta lines connecting a given spel s with its feature points in ∂�.

To design an image operator based on the IFT, we need to specify which image
elements (points, edges, regions) are the nodes of the graph, an adjacency relation
between them, and a connectivity function that assigns a value (e.g., strength, cost,
distance) to any path in the graph. This methodology has been successfully used
for boundary-based [20,18,33], region-based [16,13], and hybrid image segmenta-
tion [46,7]; connected filtering [15]; shape representation and description [17,11,10,
3]; and unsupervised [40], semisupervised [2], and supervised data classification [36].
In this section, we show how the IFT can be adapted to propagate the single-point fea-
ture transform F(x) ∈ ∂�,∀x ∈ � \ ∂� (Eq. (2.4)) and also to compute the length
GL(x, y) of the shortest path on ∂� between two feature points x, y ∈ ∂�.

Graph definition: In the discrete space, the shape � is provided as a binary image
I = (I, I ), where I ⊂ Zd is the image domain, and each spel x ∈ I has a value
I (x) ∈ {0, 1}. For instance, � ⊂ I may be the set of spels with value 1 and its
complement � = I \ � be defined by the spels with value 0. The image I can be
interpreted as a graph whose nodes are the spels in I and arcs are defined by the
adjacency relation

AI,δ = {(x, y) ∈ I × I | ‖x− y‖ ≤ δ} (2.6)

for a given value δ ∈ R+. Let also AI,δ(x) be the set of spels adjacent to a spel x.
The shape boundary ∂� is then defined by

∂� = {x ∈ �|� ∩AI,1(x) �= ∅}. (2.7)
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To compute the single-point feature transform F and the length GL(f, g) of shortest
paths between point-pairs (f, g) ∈ ∂�×∂�, we constrain the adjacency relation AI,δ

to it subsets A�,δ and A∂�,δ defined as

A�,δ = {(x, y) ∈ �×� | ‖x− y‖ ≤ δ}, (2.8)

A∂�,δ = {(x, y) ∈ ∂�× ∂� | ‖x− y‖ ≤ δ}, (2.9)

respectively. Given the above, we are next interested in the graphs (�,A�,δ) and
(∂�,A∂�,δ) that describe the shape’s interior and boundary, respectively.

For the graph (�,A�,δ), let a path πt be a spel-sequence 〈x1, x2, . . . , xn = t〉
with terminal spel t such that (xi , xi+1) ∈ A�,δ , 1 ≤ i < n. Let �

(
�,A�,δ

)
be the

set of all paths in (�,A�,δ). A pair of spels is called connected in (�,A�,δ) if there
exists a path in �

(
�,A�,δ

)
between them. A connected component in (�,A�,δ) is

a subgraph, maximal for the inclusion, therein all pairs of spels are connected. The
same definitions apply to the graph (∂�,A∂�,δ).

We next assume, with no generality loss, that the interior � \ ∂� of � defines a
single connected component in (�,A�,1). When this is not the case, we simply treat
each such connected component separately to yield a separate skeleton. To eliminate
cases where � and �\∂� have different numbers of components, i.e., the removal of
∂� would disconnect the shape, we can preprocess � by, e.g., morphological dilation
with the distance of the size of one spel.

Objects with holes (in 2D) can be easily treated by merging the internal skeletons
derived from each component in (∂�,A∂�,

√
d) into a single one through the skeleton

by influence zones (SKIZ) [17]. We will illustrate that for the 2D case, but since our
examples of 3D objects do not present cavities, we assume for simplicity (in 3D) that
∂� has a single connected component in (∂�,A∂�,

√
d). Note also that the algorithm

we next propose to compute the so-called interior skeleton of � can be also used
to compute the so-called external skeleton of the complement �. For presentation
simplicity, we focus here on the interior skeleton.

Distance and feature transforms: Using the graph (�,A�,
√

d), we can propagate
from ∂� the distance value D(x) to every interior spel x ∈ � \ ∂� by using the
connectivity function

ψedt (〈t〉) =
{

0 if t ∈ ∂�, and
+∞ otherwise,

ψedt (πs · 〈s, t〉) = ‖s− F(s)‖, (2.10)

where F(s) ∈ ∂� is the single-point feature transform of s (Eq. (2.4)), and πs · 〈s, t〉
is the extension of the path πs by the arc (s, t) ∈ A�,

√
d . The Euclidean distance

transform D thus becomes

D(t ∈ �) = min
∀πt∈�(�,A

�,
√

d
)
{ψedt (πt)}. (2.11)
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Besides propagating the distance transform D, the IFT method also propagates the
closest point F(x) ∈ ∂� to any x ∈ �. This yields the single-point feature transform
F for all spels in �, which we will heavily use, as outlined next.

MGF importance: To compute ρ (Eq. (2.5)), we need the complete feature trans-
form F . As explained in Section 2.2.1, computing F is difficult, especially for
discrete-grid representations. In practice, this is often replaced by computing the so-
called extended single-point feature transform Fext [39,21] defined as

Fext (s) = {F(t) ∈ ∂� | t ∈ A�,1(s)}, (2.12)

which gathers the single-point feature transforms F(t) of all adjacent spels t ∈
A�,1(s). Having Fext , we can now immediately write a simpler version of Eq. (2.5)
as

ρ(s ∈ � \ ∂�) = max
f=F(s),g∈Fext (s)

{GL(f, g)}. (2.13)

This simplification applies to multiscale planar and surface skeletons, leading to less
shortest-path length computations, but Eq. (2.5) is still important if one desires to
merge 3D multiscale curve and surface skeletons because the union of geodesic paths
between all pairs of feature points of a spel s on the curve skeleton draws in ∂� a
closed contour, splitting ∂� into two parts such that the geodesic surface area be-
tween them can be used as importance ρ(s) [39].

To evaluate Eq. (2.13), we compute the shortest-path length GL from f = F(s) to
g ∈ Fext (s) on the boundary-graph (∂�,A∂�,

√
d) by using the connectivity function

ψgeo defined as

ψgeo(〈w〉) =
{

0 if w = f, and
+∞ otherwise,

ψgeo(πw · 〈w, h〉) = ψgeo(πw)+ ‖h− w‖ + ‖g− h‖, (2.14)

where the term ‖g − h‖ is the A∗ heuristic optimization [34] used to reach g faster.
Summarizing, we compute the shortest-path length GL(f, g) as

GL(f, g) = min
πg∈�(�,A

�,
√

d
)
{ψgeo(πg)}. (2.15)

It is important to note that the IFT propagation for ψedt can also output an optimum-
path forest P , i.e., a map that assigns a so-called predecessor s = P(t) ∈ � to every
spel t ∈ � \ ∂�, and a marker P(t) = nil �∈ � to spels t ∈ ∂�, respectively [19].
This defines a vector field v(t) = t − P(t) for every interior spel t ∈ � \ ∂�. The
forest P provides the direction of v for nonskeletal spels. The skeleton S is contained
in the set of P ’s leaves (yellow lines in Fig. 2.3). The vector field v describes how all
information computed by the IFT—that is, D, F , and ρ—is iteratively propagated,
or advected, from ∂� to all spels in the shape’s interior � \ ∂�. This fundamentally
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links the MGF importance model and the advection importance model. As explained
in Sections 2.2 and 2.3.1, these two importance models are typically used indepen-
dently in the literature. The only work that we are aware of where an MGF model
is linked with an advection model is [9]. However, our work here stands apart from
[9] in terms of algorithmic model, and also by the fact that, for the 3D case, we com-
pute multiscale surface skeletons (and not curve skeletons, whereas [9] approaches
precisely the opposite).

Summarizing the above: To compute ρ (Eq. (2.13)), we need to compute the
single-point distance transform F and the shortest-path length between feature points
in the extended feature transform Fext . The algorithms for both these operations are
described in Sections 2.3.2.1 and 2.3.3, respectively.

2.3.2.1 Single-Point Feature Transform
The single-point feature transform F is computed by the same algorithm used for
computing the Euclidean distance transform D, but returns F rather than D. The full
algorithm we use for computing F is listed below. It also returns ∂�, which we next
need to compute shortest-paths between feature points, and a component label map
Lc : s ∈ � → λ(s) ∈ {1, 2, . . . , c} that assigns a subsequent integer number to
each component of ∂� in (∂�,A∂�,

√
d) and its closest spels in �. The map Lc is

used for SKIZ computation in 2D. Indeed, the component label propagation to every
spel s ∈ � \ ∂� is not needed, but it helps to illustrate the location of the SKIZ
(Section 2.3.3).

Algorithm 1 (SINGLE-POINT FEATURE TRANSFORM).

INPUT: An object � in dimension d represented on a uniform Zd grid.

OUTPUT: The single-point feature transform F , object boundary ∂�, and component
label map Lc.

AUXILIARY: Priority queue Q, distance transform D, and variable tmp ∈ R.

1. Compute ∂� of � by Eq. (2.7).
2. For each s ∈ � \ ∂�, D(s)←+∞.
3. For each s ∈ ∂�, do
4. D(s)← 0; F(s)← s; Lc(s)← λ(s) ∈ {1, 2, . . . , c}, according to
5. its component in (∂�,A

∂�,
√

d
); and insert s in Q.

6. While Q �= ∅, do
7. Remove s from Q, where D(s) is minimal over Q.
8. For each t ∈ A

�,
√

d
(s) such that D(t) > D(s), do

9. tmp ← ‖t− F(s)‖2.
10. If tmp < D(t), then
11. D(t) ← tmp; F(t)← F(s); Lc(t)← Lc(s).
12. If D(t) �= +∞, then
13. Update position of t in Q.
14. Else
15. Insert t in Q.
16. Return (F, ∂�,Lc)
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Lines 1–5 essentially extract the object boundary ∂�, initialize the trivial-path
values of Eq. (2.10) in D(s) for all s ∈ �, set F(s) for s ∈ ∂�, assign a distinct integer
to each component of ∂� in (∂�,A∂�,

√
d), and insert s ∈ ∂� in the priority queue

Q. The main loop in Lines 6–15 propagates to every spel t ∈ � \ ∂� its single-point
feature F(t) ∈ ∂� in a nondecreasing order of distance values D(t) between t and
∂�. In Line 7, when a spel s is removed from Q, D(s) stores the closest squared
distance between s and ∂�, F(s) stores its single-point feature, and Lc(s) indicates
its closest component in (∂�,A∂�,

√
d). The loop in Lines 8–15 evaluates if s can

offer a lower squared distance value ‖t−F(s)‖2 (value of an extended path πs · 〈s, t〉
in Eq. (2.10)) to the current value assigned to an adjacent spel t in D(t) (Lines 9–10).
If this is the case, then Line 11 updates distance, single-point feature of t with respect
to ∂�, its closest component in (∂�,A∂�,

√
d), and Lines 12–15 update the status of

t in Q.
Note that the use of the squared Euclidean distance ‖t−F(s)‖2 in Line 9 allows us

to implement Q by bucket sorting [20] since all distances are integers on a pixel/voxel
grid representation. As such, Algorithm 1 has average complexity O(|�|).
2.3.2.2 Shortest-Path Length Computation
As mentioned earlier in Section 2.3.1, computing the multiscale regularization metric
ρ for d = 3 heavily depends, cost-wise, on the rapid computation of shortest-path
lengths on ∂� between single-point features. Accelerating these shortest-path com-
putations is key to accelerating multiscale 3D skeletonization. To achieve this, we
maintain, for each f ∈ ∂�, a set C(f) = {s ∈ � \ ∂�|F(s) = f}. We use C to
incrementally compute all shortest-path lengths between f and other single-point fea-
tures g �= f, g ∈ ∂� as follows: The IFT algorithm returns GL(f, g) whenever g is
reached; for any h ∈ ∂� for which GL(f, h) ≤ GL(f, g), we return immediately
the already computed path length GL(f, h) and thus only continue computation for
points h ∈ ∂� where GL(f, h) ≥ GL(f, g). To do the above, we store the computed
shortest-path lengths GL(f, g) (Eq. (2.15)) between a given feature point f ∈ ∂� and
all other spels g ∈ ∂� into a map Lf : ∂� → R+, Lf(g) = GL(f, g). The com-
putation of the shortest-path length between a given spel f ∈ ∂� and all other spels
g ∈ ∂� is presented in Algorithm 4, Section 2.3.3.

For d = 2, the problem is trivial since ∂� may consist of closed one-dimensional
contours: For an arbitrary spel f0 in each contour C ⊂ ∂�, we first compute in Lf(g)

the path length from f0 to each spel g ∈ C while circumscribing C from f0 in a
single orientation (clockwise or anticlockwise). Now, for any two spels f, g ∈ C, let
�(f, g) = |Lf(g) − Lf(f)|. The geodesic length GL(f, g) between f and g is then
given by

GL(f, g) = min{|C| −�(f, g),�(f, g)}, (2.16)

where |C| is the perimeter length of the contour C. However, for the purpose of
finding one-spel-wide skeletons by Eq. (2.13), we can drop the absolute difference
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and redefine �(f, g) = Lf(g)− Lf(f) for f = F(s) and g ∈ Fext (s) on the boundary
graph (∂�,A∂�,

√
d).

The next section presents the IFT-based multiscale skeletonization algorithms for
d = 2 and d = 3, respectively.

2.3.3 MULTISCALE SKELETONIZATION—PUTTING IT ALL TOGETHER
The complete 2D multiscale skeletonization algorithm is presented below.

Algorithm 2 (MULTISCALE SKELETON COMPUTATION IN 2D).

INPUT: An object � in dimension d = 2.

OUTPUT: Multiscale skeleton importance ρ.

AUXILIARY: Boundary ∂� with perimeter-length |∂�|; path length map Lf; single-point
feature transform F ; component label map Lc; variable tmp ∈ R.

1. (F, ∂�,Lc)← Algorithm 1(�).
2. For each component C ∈ (∂�,A

∂�,
√

d
), do

3. Select an arbitrary point f0 ∈ C.
4. For each g ∈ C found by circumscribing C from f0, do
5. Lf(g)← path length from f0 to g on C.
6. For each s ∈ � \ ∂�, do
7. ρ(s)← 0.
8. Compute Fext (s) by Eq. (2.12).
9. For each g ∈ Fext (s), do
10. If Lc(g) > Lc(F (s)), then set ρ(s)←+∞ and return to 6.
11. tmp ← Lf(g)− Lf(F (s)).
12. If tmp > |∂�| − tmp, then tmp ← |∂�| − tmp.
13. If tmp > ρ(s), then ρ(s) ← tmp.
14. Return ρ.

Line 1 finds the object boundary ∂�, the single-point feature transform F , and the
component label map Lc by Algorithm 1. The remaining lines follow the procedure
described in Section 2.3.2.2 for d = 2. Lines 2–5 compute in Lf(g) the path length
from an arbitrary spel f0 ∈ C, selected for each component C ∈ (∂�,A∂�,

√
d), to

every spel g ∈ C while circumscribing the contour C. The main loop in Lines 6–13
computes for each spel s ∈ � \ ∂� the shortest-path length by Eq. (2.16) between
point feature F(s) and each g ∈ Fext (s) (Lines 11–12), and use them to update
the MGF ρ(s) in Line 13, as proposed in Eq. (2.13). The SKIZ is detected when-
ever a point feature g ∈ Fext (s) comes from a distinct component than F(s). For
one-pixel-wide connected SKIZ, s is selected as belonging to the SKIZ whenever
Lc(g) > Lc(F (s)). In this case, ρ(s) is set to the maximum possible value, and the
algorithm returns to Line 6 (see example in Fig. 2.4). It should be clear that Algo-
rithm 2 has complexity O(|�|).

A comment regarding the multiscale skeleton homotopy with the input shape is
needed here. As visible from Fig. 2.4, the importance ρ has now a different varia-
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FIGURE 2.4

(A) A 2D object � with three holes. (B) The component label map Lc as computed by
Algorithm 1. (C) The color-coded multiscale skeleton ρ of �, using the rainbow color map.
The SKIZ is shown in red since its spels are assigned to the maximum importance in ρ.
(D) A connected one-pixel-wide skeleton for a given scale of ρ, with its terminal points
shown in blue.

tion across S than for genus-0 shapes (see, e.g., Fig. 2.5). Clearly, for sufficiently
high thresholds, the skeleton in Fig. 2.4 will get disconnected, i.e., the three loops
surrounding the holes in � will get separated from the central skeletal branch. Note
that this also happens when using all other definitions of the same importance metric
proposed by [35,17,53]. The root of the problem is that the collapsed-boundary im-
portance metric used in all above works (and ours too) makes sense, in a multiscale
way, only for genus-0 shapes whose skeleton is a tree. In other words, we know how
to gradually simplify a tree (by removing its leafs), but we do not know how to do the
same for a graph having loops. Issues here are how to assign an importance value to a
loop (based on which geometric and/or topological criterion); and should the simpli-
fication of a loop remove it all at once, or should it allow its gradual disconnection.
All these are (valid) questions that, however, go beyond our scope here.
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For completeness, we note that disconnection of 2D nongenus-0 figures during
simplification can be easily achieved, if this is a key issue. To do this, we can simply
postprocess the computed skeleton S: Trace all shortest paths in S linking each pair
of loop components in S and assign spels along a value +∞. This will only allow
next the multiscale simplification of the tree parts of S .

Essentially, Algorithm 2 is identical to the methods presented in [35,17,53]. As
such, its main added-value is of theoretical nature—showing that 2D multiscale skele-
tonization can be easily cast in the IFT framework.

The situation in 3D (d = 3) is however very different: Here, our proposed
multiscale skeletonization is both conceptually similar to the 2D case and very com-
putationally efficient. This is in stark contrast with existing methods that are either
similar in 2D and 3D but quite complex and do not provide an explicit definition of
the regularization metric [27], or with existing methods that provide strongly related
metrics in 2D [53,17,35] and 3D [14,39] but show a massive performance drop in the
3D case. The algorithm listed next shows our 3D multiscale skeletonization method.
In contrast to the 2D proposal (Algorithm 2), we now use the efficient incremental
shortest-path computation proposed in Algorithm 4.

Algorithm 3 (MULTISCALE SKELETON COMPUTATION IN 3D).

INPUT: An object � in dimension d = 3.

OUTPUT: Multiscale skeleton importance ρ.

AUXILIARY: Priority queue Q; list V of boundary points that have been inserted in Q;
A∗ path-cost map G; boundary ∂�; sets C(s),∀s ∈ ∂�; shortest-path length
map Lf; single-point feature transform F .

1. (F, ∂�)← Algorithm 1(�).
2. For each s ∈ � \ ∂�, do
3. Insert s in C(F (s)).
4. For each f ∈ ∂�, do
5. Lf(f)←+∞; G(f)←+∞.
6. Q← ∅; V ← ∅.
7. For each f ∈ ∂�, do
8. Lf(f)← 0; G(f) ← 0; insert f in Q; insert f in V .
9. While there exists s ∈ C(f), do
10. Remove s from C(f).
11. ρ(s)← 0; compute Fext (s) by Eq. (2.12).
12. For each g ∈ Fext (s), do
13. Lf(g)← Algorithm 4(∂�, g, Q,V, G, Lf).
14. If Lf(g) > ρ(s), then ρ(s)← Lf(g).
15. For each g ∈ V
16. Lf(g)←+∞; G(g) ←+∞.
17. Q← ∅; V ← ∅.
18. Return ρ.

Line 1 finds the object boundary ∂� and the single-point feature transform F by
Algorithm 1. We are not interested in Lc since Algorithm 3 assumes that ∂� is a
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single surface. Lines 2–3 compute the sets C(f) = {s ∈ � \ ∂�|F(s) = f} that speed
up shortest-path length computations, as described in Section 2.3.2.2 for d = 3.
Note that G stores the A∗ path costs, whereas Lf stores the desired path lengths, in
Algorithm 4. The shortest-path lengths from each boundary point f ∈ ∂� to other
boundary points g ∈ ∂� are incrementally computed in Algorithm 4 (Eq. (2.15)).
Therefore, the trivial-path value initialization of ψgeo (Eq. (2.14)) must be performed
outside Algorithm 4 (Lines 4–5 before the main loop of Lines 7–17, and Lines 15–16
and 8 to restart computation for every initial boundary point f ∈ ∂�). Lines 4–5
execute for the entire boundary ∂�, so the purpose of set V is to revisit only the
boundary points used in Algorithm 4, when reinitializing Lf and G. Line 8 initializes
the priority queue Q and sets V with one initial boundary point f for Algorithm 4.
The loop of Lines 9–14 computes the 3D MGF ρ(s) by Eq. (2.13) for each spel s
whose the single-point feature is the current point f ∈ ∂�. Line 10 removes a spel
s from C(f), Line 11 initializes ρ(s) and finds Fext (s) by Eq. (2.12). For each point
feature g ∈ Fext (s), Line 13 finds GL(f, g) (Eq. (2.15)) and stores it in Lf(g), and
Line 14 updates ρ(s) according to Eq. (2.13). Algorithm 4 is presented next.

Algorithm 4 (INCREMENTAL SHORTEST-PATH LENGTH COMPUTATION).

INPUT: Boundary ∂�; terminal node g ∈ ∂�; priority queue Q; boundary points V
that have been inserted in Q; A∗ cost map G; shortest-path-length map Lf.

OUTPUT: Shortest-path length Lf(g) at the terminal node with respect to the current
starting node f chosen in Algorithm 3.

AUXILIARY: Variable tmp ∈ R.

1. If Lf(g) �= +∞, then return Lf(g).
2. While Q �= ∅ do
3. Remove w from Q, where G(w) is minimal over Q.
4. If w = g, then return Lf(g).
5. For each h ∈ A

∂�,
√

d
(w) such that G(h) > G(w), do

6. tmp ← Lf(w)+ ‖h− w‖ + ‖g− h‖.
7. If tmp < G(h), then
8. G(h)← tmp; Lf(h)← Lf(w)+ ‖h− w‖.
9. If G(h) �= +∞, then
10. Update position of h in Q.
11. Else
12. Insert h in Q and in V .

Line 1 halts computation whenever the shortest-path length from f to g on ∂�

has already been computed in a previous execution of Algorithm 4. The main loop of
Lines 2–12 computes the shortest-path length to every boundary point w ∈ ∂� in a
nondecreasing order of the cost values in G until it finds the terminal point g in Line 4.
In Line 3, when a point w ∈ ∂� is removed from Q, G(w) stores the minimum A∗
path cost, and Lf(w) stores the shortest-path length from f to w on ∂�, which may
be used for early termination in Line 1 in a next execution of Algorithm 4. The loop
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in Lines 5–12 evaluates if w can offer a lower path cost Lf(w)+ ‖h−w‖ + ‖g− h‖
(value of an extended path πw · 〈w, h〉 in Eq. (2.14)) to the current value assigned
to an adjacent point h ∈ ∂� (Lines 6–7). If this is the case, then Lines 8–12 update
G(h), Lf (h), and the status of h in Q, accordingly.

The complexity of Algorithm 3 would be O(|� \ ∂�||∂�| log |∂�|) with a naive
implementation of shortest-path length computation. In practice, however, Algo-
rithm 4 finishes in Lines 1 or 4 much earlier than visiting all boundary points. This
makes a considerable reduction in the processing time of Algorithm 3, as we will see
next.

2.4 COMPARATIVE ANALYSIS
We next present and discuss our results as compared to other state-of-the-art multi-
scale skeletonization methods.

2.4.1 2D MEDIAL AXES
We first consider medial axes of 2D objects. Here, we compare our IFT method with
its two main competitors, the augmented fast-marching method (AFMM) [53] (ba-
sically identical to [35,17]) and the more recent advection-based method (AS) in
[27]. We compared the above three methods on a set of over 30 2D shapes, taken
from relevant papers in the field [44,5,35,53]. Fig. 2.5 shows three such shapes with
their progressively simplified skeletons. It is clearly visible that all three methods
yield nearly identical skeletons, both in terms of location and importance values. In
other words, our IFT-based method can compute multiscale 2D skeletons, which are
nearly identical to those computed by existing methods. As visible, our method han-
dles complex, noisy, and variable-scale shapes with the same ease as the other two
analyzed methods.

2.4.2 3D MEDIAL SURFACES
2.4.2.1 Global Comparison
For 3D shapes, we compared our IFT-based methods with two classes of competing
techniques. First, and most interesting, we considered all techniques that we are aware
of that produce multiscale skeletons, in the sense described in Section 2.2.2. These are
the multiscale MGF-based method in [39] (MS), the advection-based method in [27]
(AS), and the multiscale ball-shrinking method that implements the MGF metric in
[39] for mesh models [26] (MBS). Secondly, to illustrate the advantage of multiscale
regularization, we compare our method with three local regularization nonmultiscale
methods: Hamilton–Jacobi skeletons (HJ [44]), the Integer Medial Axis (IMA [25]),
and Iterative Thinning Process (ITP [28]). We have chosen these methods since they
are well known in the 3D skeletonization arena, are relatively efficient, produce good-
quality 3D surface skeletons, and have public implementations.
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FIGURE 2.5

Our multiscale 2D skeletons compared with AFMM and AS.
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FIGURE 2.6

Global comparison of our 3D skeletonization method (IFT) with three multiscale
skeletonization methods (MS, AS, MBS) and with three additional nonmultiscale methods
(HJ, IMA, ITP). See Section 2.4.2.1.

Fig. 2.6 shows the results of the above-mentioned comparisons for seven shapes,
processed by seven skeletonization methods. The multiscale skeletons computed by
MS and AS are color-coded to reflect the importance metric, using a rainbow col-
ormap, just as in Fig. 2.5. Multiscale skeletons computed by MBS are not importance
color-coded in Fig. 2.6; the MBS importance is discussed separately in more detail
in Section 2.4.2.2.

Quality-wise, our 3D surface skeletons are voxel-thin, centered within the shape
(within the margin allowed by the voxel resolution), and have the same number of
connected components and loops as the input shape by construction. These are key
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properties required by any skeletonization method [8]. For example, IMA yields cen-
tered and voxel-thin skeletons, but these can get disconnected when simplified too
much since this method essentially uses the local angle-and-distance-based simplifi-
cation criterion of the θ -SMA method of Foskey et al. [22]. Note that the disconnec-
tion implied above is not due to the existence of loops in the skeleton: IMA can easily
disconnect also skeletons of genus-0 shapes. This does not happen with our method.
Conversely, HJ yields connected skeletons, but for this, the method uses a thinning
process ordered by the divergence of the distance transform gradient, which must ex-
plicitly checked to preserve homotopy [44]. The ITP method computes skeletons that
are voxel-thin and homotopic to the input shape but not well centered in the shape, as
seen by the various zig-zag branches of the dragon model (Fig. 2.6, bottom row).

The sensitivity of the skeletons shown in Fig. 2.6 to noise or small-scale details
on the input shape surface varies quite a lot. As known, local regularization methods
such as HJ, IMA, and ITP are more noise-sensitive than global regularization methods
such as MS, AS, and MBS [50]. Our method (IFT) falls in the latter class of global
methods, so it is less sensitive to noise and produces smoother surface skeletons, as
visible in Fig. 2.6, fourth row from bottom.

2.4.2.2 Detailed Comparison
To gain more insight, we next compare our IFT method with several methods we
are aware of that compute multiscale 3D surface skeletons (AS, MS, and MBS).
The first two methods (AS, MS) are voxel-based, whereas the last one (MBS) is
mesh-based. Figs. 2.7 and 2.8 show results for a selected set of shapes. Since all
the above-mentioned methods produce multiscale skeletons, we regularized these by
removing very low importance (spurious) skeleton points to yield comparably sim-
plified skeletons. Several observations can be made when studying the compared
methods as follows.

Regularization: Figs. 2.7 and 2.8 show that IFT delivers 3D surface skeletons that
are, geometrically speaking, very similar to the ones produced by AS, MS, and MBS.
This, in itself, is a good indication of quality of IFT. Indeed, surface-skeletonization
methods should deliver similar results, given that they all aim to approximate the
same surface skeleton definition (Eq. (2.2)). Secondly, we see that the IFT delivers
the same degree of small-scale noise removal to create smooth and clean skeletal
manifolds as AS, MS, and MBS, so it can be used for robust skeleton regularization.
The IFT regularization is as easy to use as the one proposed by the other methods,
the setting of a single importance thresholding parameter τ . Note that this is far
simpler than the regularization proposed by local methods, e.g., HJ, IMA, or ITP,
which require the careful setting of one or several parameters to obtain comparable
results.

A more subtle insight regards the gradient of the importance metric ρ from the
skeleton boundary ∂S to its center, visible in Figs. 2.7 and 2.8 in terms of the blue-
to-red color change. All tested methods (IFT, AS, MS, MBF) yield a ρ that increases
monotonically from ∂S to the center of S . Separately, we see that ρ for IFT, MBS,
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FIGURE 2.7

Detail comparison of 3D surface skeletons computed by our method (IFT) and other
multiscale methods (MS, AS, and MBS). See Section 2.4.2.2.

and MS is not just increasing from ∂S to the center of S , but has a very similar
gradient. This implies that our method (IFT) delivers an importance metric ρ that is
very similar to the ones delivered by MS and MBS. Since MS and MBS compute
the medial geodesic function (MGF) metric, it follows that IFT also computes a very
similar metric. This is indeed the expected outcome given the IFT algorithm (see
Section 2.3.3). In contrast, the gradient of ρ delivered by AS is quite different. This
is explained by the fact that AS is the only multiscale skeletonization method in the
studied set that does not explicitly use the MGF metric.
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FIGURE 2.8

Additional examples of 3D multiscale skeletons computed by our method (IFT) and other
multiscale methods (MS, AS, and MBS). See Section 2.4.2.2.

Connectivity: IFT, AS, and MS deliver a compact surface skeleton, whereas MBS
delivers only a disconnected point cloud. This makes IFT (and AS and MS) more
interesting than MBS for practical applications where one requires a compact surface
skeleton. Indeed, point-cloud skeletons require complex post-processing methods for
reconstructing a compact representation [26,29]. Voxel skeletons do not have this
problem.
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Table 2.1 Timings (seconds) for the compared surface skeletonization meth-
ods

Dataset |�| MS [39] AS [27] IFT |∂�|mesh MBS [26]
Bird 445,690 64.21 13.86 8.64 46,866 18.69
Hand 776,869 62.94 2.07 4.36 49,374 15.5
Cow 6,343,478 177.80 39.86 17.73 181,823 96.54
Pig 5,496,145 181.95 34.84 23.89 225,282 142.02
Gargoyle 6,614,154 566.52 25.66 79.43 25,002 7.54
Scapula 2,394,694 1717.37 29.99 609.33 116,930 102.57
Dragon 7,017,452 322.81 39.3 32.86 100,250 49.01
Neptune 2,870,546 322.75 47.25 68.72 28,052 5.85
Armadillo 1,854,858 45.43 7.2 4.25 172,952 104.65
Fertility 1,264,132 99.62 6.15 8.46 24,994 6.15
Sacrum 12,637,931 2015.59 39.83 417.54 204,710 213.49

Scalability: We implemented all tested methods in C++ and ran them on an Intel 3.5
GHz 8-core 32 MB RAM PC. The methods MBS, AS, and MS use CPU multithread-
ing parallelization, as described in the respective papers. No GPU parallelization was
used for MBS. Our method (IFT) is purely serial. Table 2.1 shows the timings for the
compared methods for the shapes depicted in Figs. 2.7 and 2.8. Column |�| gives the
number of foreground voxels of the tested models with MS, AS, and IFT. For MBS,
the comparable metric, the number of sample points of the input mesh, is given in
column |∂�|mesh.

When testing scalability on large voxel volumes, we found that the MS implemen-
tation from [39] encountered problems: For the scapula shape (Fig. 2.7, bottom row),
MS could not handle the 5123-voxel resolution of our model, so we reduced the res-
olution to 3703. At this resolution, the shape shows visible holes due to the very thin
wall thickness (a few voxels). In contrast, IFT and AS (which are both voxel-based
methods) could handle 5123-voxel volumes without problems.

Performance-wise, Table 2.1 shows that IFT is roughly 3 to 10 times faster than
MS, which is the only voxel-based method that implements the same MGF impor-
tance metric. This is an important result, as it tells us that the IFT algorithm produces
significant speed-ups for the geodesic length evaluation, which was one of its main
goals. Compared to AS, IFT is faster on some models but considerably slower on
the sacrum and scapula models. This is explained by the fact that the complexity
of AS is roughly O(K|∂�| log |∂�|), where K is maxx∈� D(x), that is, the shape
thickness. In contrast, the complexity of MS is roughly O(L|∂�|), where K is the
average geodesic-path length between two feature points on ∂�. For large and locally
tubular shapes, such as cow or pig, IFT is thus faster. For relatively thin and large-
surface shapes, such as scapula and sacrum, the geodesic computation cost becomes
very high, so IFT is slower than AS. However, as outlined earlier, this extra price of
IFT delivers a higher-quality regularization in terms of smoothness of the importance
metric. We note a similar effect when comparing IFT with MBS: for locally tubular
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shapes, IFT is faster than MBS, especially when the latter considers high-resolution
mesh models. For locally thin and large-surface shapes, IFT becomes slower than
MBS. Again, this extra price of IFT is counterbalanced by the higher-quality regular-
ization metric it delivers and also by the fact that IFT delivers connected skeletons,
whereas MBS delivers only a skeletal point-cloud. All in all, we argue that the per-
formance of IFT compares favorably with methods using the same importance metric
(MS) but also with other multiscale skeletonization methods (AS, MBS). This is espe-
cially salient when considering that we implemented IFT as a purely serial algorithm,
whereas MS, AS, and MBS all use CPU-side 8-core multithreading parallelization.

2.5 CONCLUSION
In this chapter, we have presented a novel way of computing multiscale 2D medial
axes and 3D surface skeletons of image, respectively voxel datasets. For this, we cast
the problem of computing the medial geodesic function (MGF) regularization metric,
known for its ability to deliver high-quality multiscale skeletons in the computation of
optimal path forests with the Image Foresting Transform (IFT) framework. We show
that the delivered 2D and 3D skeletons compare very favorably from the perspective
of similarity and regularization with several other known multiscale skeletonization
methods. Our IFT-based implementation is very simple and delivers good perfor-
mance. To our knowledge, or method is the second one (aside [27]) that can compute
both 2D and 3D multiscale medial skeletons with a unified formulation.

Several extensions of this work are possible. Performance-wise, extending IFT
to use multithreaded parallelization has the potential to make this method the fastest
multiscale skeletonization technique for 2D skeletons and 3D surface skeletons on the
CPU in existence. Application-wise, the IFT framework allows one to easily change
the cost function, thereby enabling one to design a whole family of multiscale regular-
ization metrics beyond the MGF metric. Such metrics could, in turn, support various
types of applications, such as feature-sensitive regularization. Finally, an interesting
extension regards the computation of multiscale 3D curve skeletons.
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