
4
CHAPTER

Unified part-patch
segmentation of mesh shapes
using surface skeletons

Joost Koehoorn∗, Cong Feng∗, Jacek Kustra†, Andrei Jalba‡, Alexandru Telea∗
Institute Johann Bernoulli, University of Groningen, Groningen, The Netherlands∗ Philips

Research, Eindhoven, The Netherlands† Department of Mathematics and Computer Science,

Technical University Eindhoven, The Netherlands‡

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 Skeletonization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2.2 Shape Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.2.1 Part-Based Segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2.2.2 Patch-Based Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.3 Summary of Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.2 Regularized Surface Skeleton Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.3 Cut-Space Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3.4 Cut-Space Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.4.1 Histogram Valley Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.4.2 Histogram-Based Cut Space Partitioning. . . . . . . . . . . . . . . . . . . . . 102

4.3.5 Partitioning the Full Surface Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.6 Partition Projection to Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3.7 Part-Based Partition Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.8 Unified (Part and Patch) Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.8.1 Patch-Type Segmentation Using Surface Skeletons . . . . . . . . . 108
4.3.8.2 Unification Desirable Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.8.3 Unification Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Skeletonization. DOI: 10.1016/B978-0-08-101291-8.00005-5
Copyright © 2017 Elsevier Ltd. All rights reserved.

89

http://dx.doi.org/10.1016/B978-0-08-101291-8.00005-5


90 CHAPTER 4 Unified part-patch segmentation of mesh shapes

4.1 INTRODUCTION
Shape segmentation is an important problem in many application domains such
as computer-aided design, computer graphics, scientific visualization, and medical
imaging. Informally put, shape segmentation aims at partitioning a given shape into
several components or segments that capture application-specific part–whole rela-
tions as well as possible. Segmentation enables several shape processing and shape
analysis tasks such as editing and content creation, identifying important features
that occur in a large dataset, and shape matching, retrieval, and registration [46,3].
Segmentation methods can be roughly classified into part-based methods, which aim
to split articulated shapes into the components that would be perceived as naturally
distinct by humans [40], and patch-based methods, which aim to find quasi-flat com-
ponents separated by edges on synthetic faceted models [41].

Shapes are typically encoded following a boundary representation or a volume
representation. Boundary (explicit) representations capture the surface that partitions
the shape interior from the surrounding exterior space, using various sampling and
reconstruction schemes, e.g. polygonal meshes or point clouds [7]. Volume (implicit)
representations, such as voxel models, store a densely sampled labeling of the space
in which shapes are embedded, marking points as interior vs exterior [5]. Both rep-
resentations have their advantages and limitations: Voxel volumes are easy to create
and manipulate, but can be very expensive when high resolution is needed; surface
meshes can efficiently model high-resolution shapes, but mainly support operations
focusing on the shape surface, rather than its volumetric structure.

Skeletal representations are a third way to represent shapes. Informally put, skele-
tons jointly capture the geometry, symmetry, and topology of a shape in compact
ways. 3D shapes admit two types of skeletons: Surface skeletons are the locus of
centers of maximally inscribed spheres in the shape and as such capture geometry,
symmetry, and topology. They generalize to 3D the well-known concept of a 2D
symmetry axis [6]. Curve skeletons are one-dimensional structures locally centered
in the shape that mainly capture a shape’s part–whole structure. Skeletons combine
the compactness of boundary representations with the ability to model and reason
about volumetric properties. Additionally, they provide explicit and efficient access
to a shape’s symmetry structure and part–whole properties. As such, skeletal repre-
sentations are a valuable tool to design shape segmentation methods [52].

Many skeleton-based segmentation methods have been proposed [52]. However,
most of these methods use only the topological information encoded by curve skele-
tons. As such, they target mostly part-based segmentation of organic articulated
shapes. Producing patch-based segmentations of faceted synthetic shapes or, more
generally, mixed part-patch segmentations of shapes that fall between the two cate-
gories (articulated, faceted) is rarely handled [41,9,26].

Recently, surface skeletons have been used to produce part-based segmentations
of 3D shapes [17,16]. A key to this idea is the construction of a so-called cut space
containing a large number of well-designed cuts that partition the shape in ways sim-
ilar to how a human would cut it. By analyzing this space a small number of cuts



4.2 Related Work 91

is retained to yield the final shape segmentation. Although the method was shown
to deliver good results, it has several limitations. First, it only produces part-based
segmentations although it uses the surface skeleton that fully describes any type of
shape (articulated or faceted). Secondly, it only handles voxel representations and as
such is very expensive, or even prohibitive to use, for high-resolution models.

In this chapter, we extend the skeleton cut-space segmentation proposal in [16]
with the following main contributions:

• We show how to compute part-based, patch-based, and mixed part-patch segmen-
tations that cover a wide range of 3D shapes using only surface skeletons; as such,
we show that surface skeletons are effective tools for handling complex 3D shape
segmentation problems;

• We propose a fully mesh-based implementation of our method that can efficiently
handle very large high-resolution mesh models with low computational and mem-
ory costs; as such, we show that surface skeletons are efficient tools for handling
complex 3D shape segmentation problems.

The goals of this chapter are twofold: On the practical side, we show how we can
improve on existing part- and patch-based segmentation methods. On the theoretical
side, we show that 3D surface skeletons, so far used only rarely in practice, can
effectively and efficiently be used to support such applications.

The remainder of this chapter is structured as follows. Section 4.2 reviews related
work in part-based and patch-based shape segmentation, with a focus on skeleton-
based methods. It also introduces the cut-space idea in [16]. Section 4.3 details our
method, explaining the changes and enhancements proposed to the original cut-space
segmentation. Section 4.4 presents several results of our method and compares these
with related skeleton-based segmentation methods. Section 4.5 discusses our pro-
posal. Section 4.6 concludes the chapter.

4.2 RELATED WORK
Given that our focus is skeleton-based segmentation methods, we proceed by intro-
ducing necessary background on skeletonization (Section 4.2.1). Next, we overview
several part- and patch-based skeleton-based segmentation methods, outlining their
advantages and limitations (Section 4.2.2).

4.2.1 SKELETONIZATION
To define skeletons, we first introduce the Euclidean distance transform DT∂� : �→
R+ that associates to every point in the shape the distance to the closest boundary
point

DT∂�(x ∈ �) = min
y∈∂�

‖x− y‖, (4.1)



92 CHAPTER 4 Unified part-patch segmentation of mesh shapes

where ‖ · ‖ denotes the Euclidean distance. The so-called medial skeleton, or surface
skeleton, S∂� ⊂ � is next defined as

S∂� = {x ∈ � | ∃f1 ∈ ∂�, f2 ∈ ∂�, f1 �= f2, ‖x− f1‖ = ‖x− f2‖ = DT∂�(x)}.
(4.2)

In the above, f1 and f2 are two of the contact points with ∂� of the maximally in-
scribed sphere in � centered at x and of radius DT (x). Such points are also known
as feature points [21,52], whereas the vectors fi − x are known as spoke vectors [49].
These definitions are captured by the so-called feature transform

FT∂�(x ∈ �) = arg min
y∈∂�

‖x− y‖, (4.3)

which associates to any point inside the shape all its feature points on the shape
boundary.

Surface skeletons of 3D shapes implied by the definition in Eq. (4.2) consist
of a set manifolds with boundaries, or skeletal sheets, that meet along so-called
Y-intersection curves [14]. The pair (S∂�,DT∂�|S∂�) is called the medial axis trans-
form (MAT) of � [49]. The MAT can be used to fully reconstruct a shape, e.g., by
computing the union of balls centered at points on S∂� and having as radii the values
of DT∂� at the respective points. As such, the MAT provides a third type of shape
representation, along boundary and volumetric ones.

Skeleton points can be classified by the order of tangency of their maximally
inscribed spheres with ∂� [19]. This classification enables several applications such
as robust edge detection on 3D surfaces [39,26], finding Y-intersection curves for
patch-based segmentation [30,41], and surface reconstruction from point clouds [9].
Until recently, surface skeletons have been hard to compute for large and complex
shapes [43,21]. Recent methods significantly alleviated such issues for both voxel [1,
24] and mesh [34,23] representations.

Besides surface skeletons, 3D shapes admit also curve skeletons. These are gener-
ically defined as one-dimensional (curve) structures that are locally centered within
the shape [12,52]. Their lower dimensionality implies a simpler structure (branches
meeting at junctions), which makes them easier to use for part-based segmenta-
tion [15,40,4,47]. Also, curve skeletons are easier to compute for large and complex
3D shapes as compared to surface skeletons, both for mesh representations [4,51] and
voxel representations [1,24]. However, in contrast to the MAT, curve skeletons do
not fully represent shapes, except when these have locally circular symmetry. In the
following, we will focus exclusively on surface skeletons since the use or curve skele-
tons in shape segmentation is well covered in the literature (see also Section 4.2.2.1).

Skeletons are well known to be unstable to small-scale noise on the input shape
surface ∂� [49,52]. As such, several so-called regularization methods have been pro-
posed. Local methods use information such as the angle between feature vectors [18,
21], distance transform values, or divergence of the distance transform gradient [48]
to prune skeletal points caused by noise. Global measures approximate the amount of



4.2 Related Work 93

boundary that “collapses” to or corresponds to a skeletal point. This approximation
can be done by computing the length of the geodesic path between the feature points
of a skeleton point (the so-called medial geodesic function or MGF [15,43,23]) or by
explicitly simulating the advection of mass from ∂� onto S along the gradient of the
distance transform [24]. Important skeleton points are next defined to correspond to
larger parts of the input boundary. Thresholding global importance measures can de-
liver a so-called multiscale skeleton, which reflects the input shape at a user-chosen
level of detail [52].

4.2.2 SHAPE SEGMENTATION
Let � ∈ R3 be a three-dimensional shape with boundary ∂�. Segmenting � typi-
cally amounts to computing a so-called partition C of � into components Ci so that⋃

i Ci = � and Ci ∩ Cj = ∅, ∀i, j, i �= j . In other words, the set C = {Ci} con-
sists of disjoint components that fully cover �. We next denote the borders of these
segments by ∂Ci .

As mentioned in Section 4.1, segmentation methods can be classified into part-
based and patch-based. The difference between the two classes amounts to different
constraints put on the segments Ci . Regardless of the method type, however, seg-
mentation can be seen as a combination of two key decisions: (1) finding where to
cut a shape or where to place the segment borders ∂Ci ; and (2) finding how to cut,
or which properties the segment borders should respect. We next discuss part- and
patch-based segmentation methods using skeletons from this perspective. In the fol-
lowing, we denote by C

part
i segments resulting from a part-based segmentation Cpart

and by C
patch
i segments resulting from a patch-based segmentation Cpatch. The no-

tations C and Ci are used for the unified part-patch segmentation and respectively its
segments that we aim to compute.

4.2.2.1 Part-Based Segmentation
As already stated, most part-based segmentations focus on natural articulated shapes,
such as humanoids, animals, plants, or other objects showing a clear part–whole hi-
erarchical structure. Parts are typically defined as elongated regions of a shape that
significantly “stick out” of the shape rump. Such parts are separated from the rump by
a negative curvature region, a principle also known as the “minima rule” in cognitive
theory [22,8]. Such parts are easily detectable using curve skeletons since they cor-
respond roughly one-to-one to the curve skeleton terminal branches [13]. Separately
from the above heuristic that tells where to place cuts, part-based segmentation meth-
ods exploit other perceptual principles to constrain the cut shapes, such as the “short
cut rule,” which states that a cut should be as short (and wiggle free) as possible [50].
Lee et al. segment mesh models using the minima rule and optimizing for short cuts
using snake models [28]. Additionally, a “part salience rule,” which captures how
much a part sticks out of the shape rump, can be used to limit oversegmentation [29].

Several part-based segmentation methods use curve skeletons in their design. Li
et al. sweep the curve skeleton with a plane to cut the shape and keep those cuts



94 CHAPTER 4 Unified part-patch segmentation of mesh shapes

that have important geometric and topological changes indicating a part joining the
shape rump [31]. Au et al. compute curve skeletons by iteratively contracting 3D
meshes [4]. This enables them to backproject each skeletal point to one or several
surface points. Hence, segmenting the curve skeleton into separate branches and next
backprojecting each branch enable part-based segmentation. Along the same line,
Reniers et al. first define curve skeletons as those points in � having at least two
equal shortest-paths between their feature points [43] and then use closed loops (cuts)
formed by such shortest paths placed at the curve-skeleton junctions to segment a
shape [42]. Using shortest paths (geodesics) to construct cuts guarantees that these
obey the desirable short cut rule. The method was refined to discard cuts that are
far from planar, which reduces unneeded oversegmentation [40]. Serino et al. refine
this idea by detecting three kinds of skeletal parts (simple curves, complex sets, and
single points), which, by backprojection to the input shape, partition it in parts that
protrude from a rump (called simple regions and bumps) and the rump itself (called a
kernel) [45]. In comparison to [40], this method can yield better segment boundaries
and suffers less from oversegmentation. The method in [45] was subsequently refined
to use a computationally efficient and simple to implement curve-skeleton extraction
based on the selection of a small number of centers of maximally inscribed balls (so-
called anchor points) that guide an iterative voxel removal or thinning process. Apart
from shape segmentation, this method can be also used in other contexts where a 3D
curve skeleton is required. The problem of oversegmentation due to the potentially
large number of curve-skeleton junctions, which lead to skeleton branches that do not
map to salient shape parts, also discussed in [40], is elegantly addressed in [44] by
so-called “zones of influence,” which compare the local shape thickness at junctions
with interjunction distances.

Separately, part-based segmentation and skeletonization have been shown to be
related operations, which allow computing the latter from the former [32]. Con-
versely, Shapira et al. [47] note the same relationship but use it to segment a shape by
computing a shape-diameter function (SDF) based on the boundary-to-curve-skeleton
distance and finding cuts in places where the SDF has sharp variations. Finally, Tierny
et al. [55] analyze the Reeb graphs computed for scalar functions defined on the shape
surface to yield a hierarchical shape segmentation. Although Reeb graphs are not
identical to Euclidean (curve) skeletons, they share their ability to capture topology,
and thus such methods can be seen as skeleton-based segmentation techniques.

Overall, curve skeletons have established themselves as good descriptors for pro-
ducing part-based segmentations for articulated shapes whose parts have a (near)
tubular local geometry. Multiscale or hierarchical segmentations can also be easily
obtained by considering the curve skeleton hierarchical structure or by pruning less
important curve skeleton branches [42]. Since curve skeletons are locally centered in
a shape, they yield largely pose-invariant segmentations. Finally, curve skeletons are
easy and fast to compute for both voxel and mesh representations (Section 4.2.1).

Recently, surface skeletons of voxel models have also been used for part-based
segmentation [17]. The key idea is to construct a cut space CS = {ci} that contains a
large set of cuts that have suitable properties to act as segment boundaries. This solves



4.2 Related Work 95

the problem of how to cut. Next, a subset of these cuts is selected to become segment
borders, thereby solving the problem of where to cut. Cut spaces are constructed by
building closed loops formed by shortest paths on ∂� between the two feature points
of each surface skeleton point. Next, cuts that represent suitable segment boundaries
are found by analyzing a histogram of the cut lengths [17] or, alternatively, clustering
cuts in terms of length [16]. Related methods of analyzing cut spaces for segmenting
shapes have also been proposed, though not using skeletons to construct the cuts; see,
e.g., [25,20].

4.2.2.2 Patch-Based Segmentation
In contrast to part-based methods, patch-based segmentation methods focus mainly
on synthetic faceted objects such as those produced by CAD applications. A segment,
or patch, is here defined as a region of the shape surface that is relatively flat and is
separated from it surroundings by a high-curvature area, such as edges or creases.
Like for part-based segmentation, patch boundaries should usually be wiggle free;
however, they need not be tight.

Most patch-based methods work directly on the shape surface by unsupervised
clustering, or grouping, mesh facets found to be similar [35,38,33,10]. Although
such methods can produce very good results, they generally are parameter-sensitive.
Closer to our interest, surface skeletons have been used for patch-based segmentation.
The first such method we are aware of backprojects the (voxel-based) surface skele-
ton boundaries to the input surface, using the inverse feature transform (Eq. (4.3)) to
yield segment boundaries [41]. A different approach is to segment the surface skele-
ton manifolds using Giblin’s skeletal point classification [19] and backproject these
to the input surface [9]. All such methods produce good patch segmentations even
for shapes having soft edges. Such methods require high-throughput skeletonization
tools and a delicate analysis of the resulting surface skeletons to detect boundaries
and isolate manifolds.

A simpler patch-based segmentation method using surface skeletons was recently
presented in [26]. Briefly put, this method implements the same strategy as [41],
i.e., finding segment borders by backprojecting the boundary of the surface skeleton.
However, in contrast to [41], this method handles point-cloud skeletons and has a
much simpler implementation than [9]. We will use this method further in our uni-
fied segmentation pipeline (Section 4.3.8.1) and refer to it as the skeleton boundary
backprojection (SBB) method.

Other methods: Outside the class of skeleton-based methods, many other methods
exist for shape segmentation. Given our focus on using skeletons for this task, these
methods are of lesser interest. For a general survey on 3D shape segmentation, we
refer the interested reader to [46,3].

4.2.3 SUMMARY OF CHALLENGES
Summarizing the above discussion on skeleton-based segmentation methods, we
identify the following requirements and challenges. A good such method should



96 CHAPTER 4 Unified part-patch segmentation of mesh shapes

1. be able to efficiently and directly handle high-resolution mesh models since com-
puting skeletons of high-resolution voxel models is prohibitive in terms of mem-
ory and time;

2. guarantee smoothness of the resulting segment borders;
3. be able to produce patch-based, part-based, and mixed-type segmentations,

thereby handling all types of shapes.

No existing skeleton-based segmentation method complies with all the above. In
the remainder of this chapter, we present such a method based on a complete recasting
of the cut-space idea in [16] to use mesh models and to handle patch, part, and mixed
segmentations.

4.3 METHOD
4.3.1 PRELIMINARIES
To start with, we briefly outline the idea of the cut-space part-based segmentation
in [17,16], which we next refer to as the “voxel cut-space segmentation” (VCS) (see
also Fig. 4.1, top). Given a voxel shape � ⊂ Z3, its surface skeleton S is first com-
puted using the method in [24]. Next, a simplified skeleton Sτ is extracted from S

by removing voxels having an importance lower than a small predefined value τ .
These are essentially voxels close to the boundary ∂S that correspond to small-scale
details on the surface ∂� (Fig. 4.1B, top). This regularization makes sure that cuts
(to be computed next) are only created from stable important skeleton parts. In this
step, for each voxel x ∈ Sτ , a cut c(x) ∈ ∂� is computed by tracing three short-
est paths γ1, γ2, γ3 on ∂� between the feature points f1 and f2 of x (γ1), f1 and
m (γ2), and f2 and m (γ3), where m is the reflection on ∂� of the midpoint of γ1

with respect to x; see red curve in Fig. 4.1C, top. Cuts are piecewise-geodesic (thus,
smooth and tightly wrapping around �), closed, and locally orthogonal to the ob-
ject symmetry axis (see again Fig. 4.1C, top). These properties ensure that cuts form
good candidates for segment boundaries. The cut space CS = {c(x)|x ∈ Sτ } is next
partitioned into several cut-sets Ki containing similar-length cuts, using either an
analysis of the cut-length histogram [17] or hierarchical clustering [16] (Fig. 4.1D,
top). Next, the borders ∂C

part
i of the segments are computed by searching for cuts

that separate the cut-sets Ki (Fig. 4.1E, top). Finally, the actual segments C
part
i are

computed by searching for connected components on ∂� separated by the borders
∂C

part
i (Fig. 4.1F, top). For full implementation details, we refer to [17,16].
In the remainder of this section, we outline how we adapt the above voxel-based

pipeline to work on mesh-based shapes admitting a point-cloud skeleton and also
handle mixed part-patch segmentations. Sections 4.3.2–4.3.7 describe our part-based
pipeline (steps in Fig. 4.1B–G, bottom). Section 4.3.8 describes the patch-based
pipeline and how this is unified with the part-based one (Fig. 4.1H–L, bottom).



4.3 Method 97

FIGURE 4.1

Top: cut-space segmentation pipeline from [17,16]. Bottom: our proposed pipeline.

4.3.2 REGULARIZED SURFACE SKELETON COMPUTATION
Step 1 of our proposed method parallels step 1 of VCS: We compute a simplified
surface skeleton of the input shape. However, we have to skeletonize mesh shapes
rather than voxel volumes. For this, we use the technique in [23], which is, to our
knowledge, the fastest method to compute surface skeletons of mesh shapes to date.
This method outputs a point-cloud representation of the skeleton S. Also, per skeleton
point, the method computes two feature points, i.e., f1 and f2 in Eq. (4.2). In contrast,
the voxel skeletonization method in [24] used by VCS outputs a voxel-based skeleton.
As we shall see, point-cloud skeleton representations introduce several challenges to
be addressed.

Similarly to VCS, we want to regularize S to avoid creating cuts from unimportant
skeletal points that are caused by small-scale noise on ∂�. At first sight, we could
use for this the MGF importance metric delivered by the underlying skeletonization



98 CHAPTER 4 Unified part-patch segmentation of mesh shapes

method [23] (see also Section 4.2.1). The rationale for this would be that the MGF
metric is analogous to the collapse metric provided by [24] and used by VCS.

However, upon careful examination, we note several issues. If we compare the
MGF and collapse metrics for the same shape (Figs. 4.2A, B), then we see that they
are similar, except for points close to the shape curve skeleton, where the collapse
metric attains much higher values than over the surrounding surface skeleton (red
curves in Fig. 4.2B). Hence, thresholding the collapse metric, as done in VCS, elim-
inates noisy skeleton-points and also preserves the important curve-skeleton points,
which capture the shape part–whole structure (Section 4.2.2.1). In contrast, thresh-
olding the MGF metric eliminates noise, but also all skeleton points in thin shape
areas, which is undesired. Fig. 4.2C illustrates this: At the current threshold level, the
shown surface skeleton contains both important points (such as the one generating the
well-oriented red cut) and unimportant points (such as the one generating the green
cut). If we thresholded the MGF metric with values larger than the one corresponding
to the green cut, i.e., around the value τ shown in the color legend, then we would
loose about 70% of the entire skeleton, including the complete legs and ears of the
horse model. Even a very conservative setting of the threshold τ = 0.01 immediately
eliminates detail parts such as the ears (see Fig. 4.2E). Hence, we cannot use the
MGF metric to reliably keep skeletal points that correspond to small shape parts and
in the same time eliminate spurious skeleton points that generate badly oriented cuts.

To solve this problem, we note that surface-skeleton points close to the curve-
skeleton have large angles between their feature vectors [43]. Separately, skeleton
points created by small-scale noise on the input surface have low MGF values and
thus close feature vectors. Hence, we regularize the point-cloud skeleton using the
angle between the feature vectors f1 and f2 of a skeletal point, which is a well-known
local importance metric [18,21]. We define the simplified skeleton as

Sα = {x ∈ S|∠(f1, f2) > α} (4.4)

where α = 120◦ is a fixed preset that delivered good results for all our tested shapes.
Fig. 4.2D shows the result: The angle metric consistently gets high values close to
the curve-skeleton branches of all shape parts (rump, legs, muzzle, ears) and gets
low values close to the noisy boundary of the surface skeleton. Hence, if we thresh-
old the surface skeleton above the value α indicated in the figure, then we robustly
eliminate spurious cuts like the green one and keep cuts that wrap around the shape
local symmetry axis (curve skeleton) like the red one. The resulting simplified skele-
ton Sα is shown in Fig. 4.2F. Note that this skeleton is not connected, first because
it is just a point cloud, and next due to the removal of low-importance points. How-
ever, this does not pose any problem further on since we use it only to construct our
segmentation cuts.

The proposed angle-based regularization of the surface skeleton is simple to im-
plement (involves a dot product of the normalized feature vectors). Additionally, it
eliminates the need to compute the MGF metric for surface skeletons, which is the
most expensive part of the skeletonization method for mesh shapes in [23].



4.3 Method 99

FIGURE 4.2

(A, B) Comparison of MGF and collapse importance metrics. (C) Thresholding the MGF
metric keeps skeleton points that generate spurious cuts. (D) Thresholding the angle metric
allows robust separating good from spurious cuts. All models are color-coded by the
respective importance metrics.

4.3.3 CUT-SPACE COMPUTATION
Step 2 of our method computes the cut-space CSα = {c(x)|x ∈ Sα} from the regular-
ized skeleton Sα . To construct cuts, we cannot use the VCS approach, which employs



100 CHAPTER 4 Unified part-patch segmentation of mesh shapes

Dijkstra’s algorithm to connect the feature points f1 and f2 of a skeleton point x by
three shortest paths in the adjacency graph implied by the voxel surface ∂� (see again
Fig. 4.1C and related explanation). If we did so, e.g., by using the adjacency graph
implied by the surface mesh vertices and triangle edges, then we would obtain heavily
zig-zagging cuts, which would be useless for our task of inferring segment borders.
To create cuts, we propose here to use the geodesic-tracing technique introduced in
[23] for the different purpose of evaluating the MGF skeleton-importance metric (see
a discussion in Section 4.3.2).

In detail, we proceed as follows. A straightest geodesic (SG) γS : R+ → ∂� is
defined as the unique solution of the initial-value problem γS(0) = p, γ ′S(0) = v with
p ∈ ∂� being a point on the shape boundary having tangent vector v ∈ Tp, where
Tp is the plane tangent to ∂� at p. Jalba et al. [23] proposed an extension to define
shortest-and-straightest geodesics (SSGs) γse between two points s ∈ ∂� and e ∈ ∂�

to be an accurate approximation of the SG from s to e. SSGs are computed by tracing
multiple straightest geodesics over tangent vectors vi ∈ Ts and then selecting the one
with shortest length ‖γS,i‖, i.e.,

γS,i(0) = s, γ ′S,i(0) = vi ,

γS,i(‖γS,i‖) = e,

γse = arg min
i

∥∥γS,i

∥∥. (4.5)

For computing the MGF metric, Jalba et al. computed the SSG between feature points
f1 and f2 of each skeleton point x ∈ S. For our purpose of computing shortest cuts,
however, we require the geodesic to start and end in f1 and pass f2 somewhere in-
between. As such, we redefine γS,i as

γS,i(0) = f1, ∃t ∈ R+ : γS,i(t) = f2, γS,i(‖γS,i‖) = f1. (4.6)

To compute γse using Eqs. (4.5) and (4.6), we proceed similarly to [23]: For each
skeleton point x ∈ S, we trace M = 30 straightest geodesics γS,i , 1 ≤ i ≤ M ,
with starting directions vi uniformly distributed in Ts and retain finally the one with
minimal length. For each direction vi , we compute γS,i by intersecting the mesh ∂�

with the plane with normal ni = f1 × vi that passes through s. In contrast to [23],
we continue tracing until having found an intersection with both f2 and finally arrive
back at f1. Finally, we gather all such SSGs to construct the cut-space

CSα = {γf1f2 |(f1, f2) ∈ FT∂�|Sα }, (4.7)

i.e., all cuts generated by points of the simplified skeleton Sα .

4.3.4 CUT-SPACE PARTITIONING
In step 3, we identify how to partition the cut-space CSα into cut-sets that correspond
to the shape segments. We employ a similar approach to the VCS method, i.e., use



4.3 Method 101

FIGURE 4.3

Histogram of cut-lengths of a horse shape from which two thresholds have been detected.
The cuts in range [0, 0.06) represent the horse legs, the range [0.06, 0.1) corresponds with
the neck and longer cuts correspond with the torso.

a histogram of cut lengths, in which peaks indicate many cuts with similar lengths,
which likely belong to similar shape parts. With this assumption, we can find valleys
separating the histogram peaks (Section 4.3.4.1), which in turn provide us with length
thresholds to partition CSα (Section 4.3.4.2).

4.3.4.1 Histogram Valley Detection
To automatically and robustly detect histogram peaks and valleys, we need to ana-
lyze the histogram bins and their interrelationships. For this, VCS first searches for a
bin high enough to be considered as peak, then continues searching for the next bin
smaller than a certain quantity, which is considered a valley. Although this method
does give an indication of where peaks and valleys are located, it suffers from not
finding the smallest valley because of the greedy search for valleys. Moreover, what
one would consider a valley depends on the neighboring bins. Hence, we propose to
make the search for valleys taking into account their surroundings in the histogram.

To do this, we proceed as follows (see also Fig. 4.3). First, we use the mean
shift algorithm [11] on the histogram bin heights to sharpen the differences between
peaks and valleys. Next, we start scanning the histogram bins, left to right, for a
peak that contains at least λp = Hpeak · ‖CSα‖ cuts. When found, we remember
its height hp and continue scanning and updating hp as long as higher peaks are
found. In the same time, we search also for valleys, i.e., for bins having fewer than
λv = Hdecrease · hp cuts. This way, detection of a valley depends on the height of
the peak (hp) it follows. Just as for peak detection, when a bin having fewer than λv

cuts is found, we remember its height hv and continue scanning and updating hv as
long as lower peaks are found. If, during this valley-scan, we find a bin taller than
λp, we have found a new peak. We have now two peaks and a valley of height hv



102 CHAPTER 4 Unified part-patch segmentation of mesh shapes

in-between. We store the valley height θ0 = hv and continue scanning the histogram
as above. After scanning the entire histogram this way, we obtain a set of valley
heights � = {θi}. These will deliver our thresholds used to partition the cut space, as
explained next in Section 4.3.4.2.

We established that good parameter choices are Hpeak = 0.01 and Hdecrease =
0.25, so that a peak should represent at least 1% of all cuts and a valley is smaller
than a quarter of its accompanying peak.

4.3.4.2 Histogram-Based Cut Space Partitioning
Using the set of valley thresholds �, we can now partition CSα . This can be done in
linear time in the cut-space size ‖CSα‖ by iterating over histogram bins left-to-right
and assigning all cuts between two consecutive thresholds θi, θi+1 to the cut-set Ki .

As for the VCS method, a cut-set Ki does not necessarily represent a compact
shape segment, but could contain several such segments; for example, the five fin-
gers of a hand have similar thickness, so they end in the same cut-set. To separate
segments from cut-sets, we partition each cut-set into connected components, based
on the connectivity of the skeleton points that generate the cuts. This was trivial to
accomplish for VCS, given the explicit connectivity of skeleton voxels. In our case,
the skeleton is an unorganized point-cloud lacking connectivity, as explained in Sec-
tion 4.3.2. To address this, we define connectivity of skeletal points in terms of the
neighborhood relation NS(x) of a skeleton point x ∈ S to other skeleton points within
a distance r from x as

NS(x) = { y ∈ S | y �= x ∧ ‖x− y‖ < r } , (4.8)

where setting r to 1% of the diameter of ∂� gives good results, following similar
approaches in, e.g., [23,26].

The result of the cut-space partitioning is a labeling Lα : Sα → N that associates
with each point in the simplified skeleton (or, alternatively, each cut in CSα) an in-
teger ID that tells the segment C

part
i ⊂ Cpart these are part of. Given the nature of

the neighborhood relation NS and the imprecise nature of determining the thresholds
in �, the labeling can be unstable for cuts whose skeleton points are very close to
each other. To eliminate such variations, we apply a mode filter over all label val-
ues for points in the same neighborhood NS(x), i.e., we assign to Lα(x) the most
frequently occurring label over NS(x).

4.3.5 PARTITIONING THE FULL SURFACE SKELETON
The labeling L computed as outcome of the cut-space partitioning (Section 4.3.4.2)
is not our final desired result, i.e., the segmentation Cpart of ∂�. Indeed, L only
assigns segment IDs to a subset Sα of the entire surface skeleton S. To obtain the final
part-based segmentation Cpart , we proceed in two steps. First, we extend the labeling
Lα from the simplified skeleton Sα to a labeling L of the full surface skeleton S. This
is described in this section. Next, we project the full labeling L from S to the shape
boundary ∂�. This is described in Section 4.3.6.



4.3 Method 103

FIGURE 4.4

Label interpolation over the full skeleton. (A) Input shape. (B, C) Problems caused by naive
nearest-neighbors interpolation. (D, E) Effective solution using the distance transform of the
skeleton points.

Naive solution: To interpolate Lα over the entire point-cloud skeleton S, one can use
several strategies. A simple (but naive) one is to use a nearest-neighbor scheme where
L(x ∈ S \Sα) = Lα(arg miny∈Sα

‖x−y‖). This approach has several problems. First,
using the R3 Euclidean distance metric to determine nearest neighbors will not work
for nonconvex shapes that have nonconvex surface skeletons. Fig. 4.4B illustrates this
for a dog model shown in Fig. 4.4A. Here, colored points are labeled points in Sα ,
and gray points are points to be labeled in S \ Sα . The marked (red) point x, which
is located on the neck skeleton, is closer to point x1 (on the dog’s ear) than to x2 (on
the neck skeleton), so it will wrongly get the label of x1, i.e., be assigned as part of
the ear. The second problem of this nearest-neighbor interpolation is that labels will
always meet halfway between labeled points in Sα . This causes problems at junctions
of parts having widely different thicknesses. Fig. 4.4C illustrates this. We see here a
detail of the dog model having two label values over Sα , dark blue for rump points
and cyan for points in the legs. The area where the two label values would meet, when
using the simple nearest-neighbor interpolation, is shown in red, and it is actually the
border of a generalized Voronoi diagram having all blue, respective cyan, points as



104 CHAPTER 4 Unified part-patch segmentation of mesh shapes

two sites. This partition is undesirable since it would assign a large part of the rump
skeleton to the segments corresponding to the legs. The desirable leg-rump partition
is shown by the blue line in Fig. 4.4C.

Effective solution: To correct the first problem, one way would be to consider the
geodesic distance along the S manifold rather than Euclidean distance in R3. Doing
so is however not possible for skeletons represented as point clouds, and reconstruct-
ing smooth manifolds from such skeletons is a highly complex and expensive pro-
cess [27]. Also, this would not correct the second problem. We next propose a much
simpler and faster solution that addresses both problems. A key to this idea is the ob-
servation that the local shape thickness around a skeletal point should determine how
far a label should be propagated. This local thickness is precisely represented by the
distance transform DT∂� values on S. Hence, for a labeled point x ∈ Sα , we search
all its neighbors y in a ball of radius DT∂�(x) and if DT∂�(y) < DT∂�(x), then as-
sign L(y) ← L(x). The last distance condition is required to have labels of skeleton
points in thick regions dominate those of nearby skeleton points in thin regions and
also to ensure that the labeling does not depend on the order of visiting of the skeleton
points. Finally, the (few) skeleton points that are still unlabeled after this operation
are assigned the label of their nearest neighbor. Figs. 4.4D, E show the results of our
proposal. As visible, both concave-part and part-rump problems mentioned earlier
are now solved as desired.

4.3.6 PARTITION PROJECTION TO SURFACE
Having now a part labeling defined on all skeleton points, we map, or project, this
labeling from S to ∂�. For this, the original VCS proposal proceeds as follows. All
cuts are tested for being borders of the final part segments C

part
i . A cut c(x) from

a cut-set Ki is deemed to be a border candidate if at least one of the 26 neighbors
of the skeleton voxel x has a cut that belongs to a different cut-set Kj , j �= i. Next,
a single border is picked from a set of border candidates that separates two cut-sets
Ki and Kj , based on heuristics involving the cut length.

In our context, there are several issues with using this method to project the label-
ing from the skeleton to the surface. First, our point-cloud skeleton does not admit a
direct equivalent of the 26-neighbors relationship used for voxel shapes. The nearest-
neighbor relation NS (Eq. (4.8)) is too coarse to capture such fine details. Much
more critically, though, is the fact that our cuts are planar SSGs, whereas the ones
used by VCS consist of three geodesic curves, not necessarily located in a plane (see
Section 4.3.3). As such, VCS cuts have a much larger freedom to model flexible seg-
ment boundaries than our cuts. However, despite their flexibility, the VCS cuts are
still constrained by their construction process to consist of three geodesic curves (see
Section 4.3.1). Although this appears to handle quite well part-based segmentation,
it is arguably too rigid for producing good patch-based and mixed segmentations,
which are our ultimate goal.

We propose a different way of projecting the segmentation information from the
skeleton to the shape surface, which addresses all above issues. For each skeleton



4.3 Method 105

point x ∈ S having label L(x), we assign the label to all closest surface points to x,
i.e., set L(y ∈ FT∂�(x) ← L(x). Note that this may not assign labels to boundary
points in convex surface regions since the skeletonization algorithm we use [23] only
computes two feature points per skeleton point, rather than the full feature transform
(Section 4.3.2). We compensate this by assigning labels to all yet unlabeled surface
points by simple nearest-neighbor interpolation. Finally, we derive the part segments
C

part
i ⊂ ∂� as the connected-components on ∂� that have the same label values.

4.3.7 PART-BASED PARTITION REFINEMENT
The previous step delivered a partition

⋃
i C

part
i = ∂� of the input surface into seg-

ments. The final step of our part-based segmentation pipeline takes this partition and
refines it to yield the final part-based segmentation. Three operations are performed
in this refinement as follows.

Segment validation: First, segments C
part
i are checked as to their validity, in terms

of what a human observer would qualify as being a “part” or not. Recalling the as-
sumptions of part-based segmentation [20,40,17,16], we see that actual parts in a
good part-based segmentation should be covered well by their associated cuts in the
cut-space. Intuitively put, if we cut through a part with tight cuts orthogonal to the
shape local symmetry axis, then the cuts should stay in the part. Conversely, seg-
ments whose cuts cover far more than the segment itself do not coincide with what
is typically perceived as a part. To measure this coverage, let K(C

part
i ) = {c ∈

CS|c∩C
part
i �= ∅} be the set of cuts in our cut-space that intersects segments C

part
i .

We then define the coverage of C
part
i by cuts as

ν(C
part
i ) = ‖{c ∈ K(C

part
i ) | c \ C

part
i = ∅}‖

‖K(C
part
i )‖ , (4.9)

i.e., the fraction of cuts passing through a part that are fully confined to that part.
High values of ν indicate segments that are well covered by their cuts and thus that
are plausible parts. We keep these in the final segmentation. Lower values of ν—
below an empirically determined threshold of 0.8—indicate poor part properties. We
remove such segments from the final result by merging them with one of their neigh-
bor segments on ∂�.

The coverage test effectively filters most, but not all, segments that are not part-
like. A salient exception are corners of faceted objects such as the box in Fig. 4.5A.
These segments are covered by cuts that nearly all stay inside them, as shown by
the cut-space of the shape colored by the labels of the respective cuts (Fig. 4.5B).
Hence, such segments will not be marked as invalid. A similar problem (without a
solution) was highlighted by the curve-skeleton-based part segmentation technique
in [40]. To discard such segments, we use a second heuristic: Parts should “stick out”
of the shape as much as possible [29], or, in other words, they should have as many
points with opposite normals. To test this, we compute angles between all surface



106 CHAPTER 4 Unified part-patch segmentation of mesh shapes

FIGURE 4.5

Part validation for a box shape. The produced segments (A) are validated by computing
their cut-coverages (B). This results in a trivial part-based segmentation (C), which finally
determines that a patch-based segmentation will handle this shape (D).

normals to points in a segment C
part
i and require that the median of these angles

be at least 90°. For the box shape, this invalidates the corner segments, yielding a
single segment for the entire shape in terms of part-based segmentation (Fig. 4.5C).
As such, the patch-based segmentation of the same shape, which we next discuss in
Section 4.3.8, gets full freedom to process the shape, leading to the expected result
(Fig. 4.5D).

For completeness, we should note that our part validation heuristic is not the only
possible one. For instance, Serino et al. propose a so-called “visibility criterion” [45],
which aims to detect whether a peripheral part, far from the object main rump, ac-
tively contributes to a meaningful segmentation. This heuristic uses only the curve
skeleton in its computation in a voxel-based setting. Since our pipeline only uses the
surface skeleton and since computing the curve skeleton of mesh-based shapes is
more complex when considering the technique in [23], which forms the backbone of
our approach, the possibility of integrating this criterion in our framework is a topic
of further investigation.

Segment border smoothing: Recall that segments C
part
i on ∂� are essentially

backprojections of skeleton fragments sharing the same label values via the feature
transform (Section 4.3.6). In the ideal continuous case, equivalent to an infinitely
dense sampling of a smooth ∂�, and a similar sampling of S, the segments would
have smooth continuous borders. However, real-world meshes have a limited and of-
ten highly nonuniform sampling resolution. The used skeletonization method [23]
essentially copies this sampling resolution to S. More critically, this method only
uses the mesh vertices of ∂� as feature points for estimating the feature transform
(Eq. (4.3)). As such, backprojecting labeled skeleton points to ∂� do not result in
smooth segment borders. Fig. 4.6A shows this for a densely and uniformly sampled
hand model of 197K vertices. As visible, segment borders exhibit problematic small-
scale fractal-like noise. We solve this issue by computing smooth segment borders
as follows. First, we create borders ∂C

part
i of the segments C

part
i by connecting the



4.3 Method 107

FIGURE 4.6

Computing part-segment borders. (A) Raw borders produced by skeleton-labeling
backprojection. (B) Borders after Laplacian smoothing. (C) Visually emphasized borders.

midpoints of surface triangle-cell edges whose vertices have different labels (thus
fall into different segments). Next, we apply classical Laplacian smoothing [54] to
remove small-scale wiggles along these boundaries. After each smoothing pass (10
in total), we reproject the smoothed boundary ∂C

part
i to ∂� since unconstrained 3D

smoothing makes the boundary curve leave the shape surface. The overall effect is
identical to performing Laplacian smoothing constrained on the surface ∂�. As the
smoothed segment border moves on ∂�, we update the labels of the vertices to ensure
consistency. Fig. 4.6B shows the result: The smoothed boundaries stay roughly in the
same position as the initial ones but are considerably tighter and smoother, thus sim-
ilar in terms of desirable requirements to the original piecewise-geodesic boundaries
of the VCS method. Finally, we draw these smooth boundaries as thick 3D tubes for
ease of perception (Fig. 4.6C).

Visual representation: Our segmentation Cpart describes parts on ∂� in terms of
vertices having the same label. For all practical purposes, such as visualization or
further geometric processing, we need a cell-based description. For this, we split the
triangle cells in ∂� in a Voronoi-like fashion to interpolate, in the nearest-neighbor
sense, the categorical vertex label values.

4.3.8 UNIFIED (PART AND PATCH) SEGMENTATION
So far, we described how to produce part-based segmentations Cpart of mesh shapes.
However, as outlined already in Section 4.1, our goal is to segment any shape and thus
to propose a way to combine part-based and patch-based segmentations in a flexible
way. We present here a way to combine the two segmentation types in a new seg-
mentation model, which we refer to as unified (part-and-patch) segmentation C. We
first introduce the patch-based segmentation method we use (Section 4.3.8.1). Next,



108 CHAPTER 4 Unified part-patch segmentation of mesh shapes

we discuss the desirable properties of a good unification method and possible strate-
gies to implement it (Section 4.3.8.2). Finally, the unification technique we propose
is presented in Section 4.3.8.3.

4.3.8.1 Patch-Type Segmentation Using Surface Skeletons
For patch-based segmentation, we use the skeleton boundary backprojection (SBB)
method of Kustra et al. [26], which has several desirable properties in our context.
First, this method treats high-resolution mesh shapes, which is our application target.
Secondly, the method is also based on surface skeletons, which matches our toplevel
goal of showing how such skeletons can effectively support shape segmentation.
Thirdly, the method uses the same skeletonization technique [23] as our part-based
segmentation, which makes easy the technical combination of part and patch segmen-
tation. We next briefly explain this method and also outline its limitations relevant to
our unified segmentation goal.

As all other patch segmentation methods, Kustra et al. define patches C
patch
i

implicitly by requiring that borders separating them should occur in high surface-
curvature areas. To do this, they proceed as follows. First, the point-cloud surface
skeleton S of the input shape � is computed using the technique in [23]. Next, points
on the boundary ∂S of the surface skeleton, or so-called A3 points [19], are detected
as those skeletal points whose images on ∂�, via the feature transform, contain a
single compact cluster. However, as noted earlier in this paper, the underlying skele-
tonization method [23] does not compute the full feature transform, but only two
feature points per skeleton point. Kustra et al. note that computing the exact (full)
feature transform is sensitive, so they propose instead the so-called extended feature
transform

FT τ
∂�(x ∈ S) = {f ∈ ∂�|‖x− f‖ ≤ DT∂�(x)+ τ }, (4.10)

which gathers, for each skeletal point x, all boundary points within a range
DT∂�(x) + τ , where τ is a small positive value. The extended feature transform
provides a conservative approximation of the actual feature transform (Eq. (4.3)),
and can be readily used to detect ∂S as outlined above. Similar conservative approx-
imations of the feature transform are also proposed by the VCS method for voxel
shapes [17,16].

After the skeleton boundary is detected, the method projects ∂S to the shape sur-
face via the extended feature transform, i.e., compute the set

� = {f ∈ FT τ
∂�(x) | x ∈ ∂S}, (4.11)

which conservatively captures convex edges on ∂�. Patches C
patch
i are now easily

found as the connected components of ∂� \ �. Finally, points in � get assigned
to the closest established patch, thereby completing the patch-based segmentation
Cpatch of ∂�.

Fig. 4.7 (top row) shows the results of the patch-based segmentation method
described above on two shapes (fandisk and horse). For fandisk, which has clear



4.3 Method 109

FIGURE 4.7

Two typical patch-type and part-type shapes, segmented by patch-based and part-based
segmentation.

and salient edges, a very good patch segmentation is produced (Fig. 4.7A). The
horse shape has much softer and fuzzier edges and as such yields a poor patch-
type segmentation (Fig. 4.7B). This can be explained as follows: Finding a reliable
set � that captures edges on the surface ∂� requires computing stable A3 points
to detect the skeleton boundary ∂S (Eq. (4.11)). However, the heuristic described
earlier of finding A3 points via the extended feature transform fails for cylinder-
like parts of a shape, as discussed in [26]. Although fine-tuning various parameters
of the method of Kustra et al. sometimes improve results, patch-type segmentation
does not work well for shape regions having too soft edges. In contrast, using our
part-based segmentation method described in Sections 4.3.2–4.3.7 yields very good
results for tubular soft-edged shapes like horse (Fig. 4.7D). Conversely, part-based
segmentation produces a poor result for the faceted shapes like fandisk (Fig. 4.7C).
In this case, no part is identified, which is correct, given the part-validation crite-
ria outlined in Section 4.3.7. Hence, to obtain the best segmentation results for all
shape types, including those that have a mix of faceted and tubular parts, a unifi-
cation of part- and patch-based segmentation is needed. Such a method is proposed
next.



110 CHAPTER 4 Unified part-patch segmentation of mesh shapes

4.3.8.2 Unification Desirable Properties
Before designing a part-patch unification strategy, we must define its desirable prop-
erties. Based on our experience, we outline the following key properties:

1. hybrid: the strategy should handle shapes admitting a full part-based segmenta-
tion, shapes admitting a full patch-based segmentation, and also shapes admitting
a mix of the two segmentation types in various areas;

2. intuitive: the unified segmentation should make sense according to human percep-
tion, that is, the produced parts, respectively patches, should visually make sense
with respect to the part and patch properties established in Sections 4.2.2.1 and
4.2.2.2;

3. balanced: unified segmentations should not be oversegmented due to incorporat-
ing both segment types.

The simplest unification approach would be to compute separate part-based and
patch-based segmentations and then choose the result that maximizes the respective
quality properties of the two segmentations. However, this solution cannot handle
shapes that require a hybrid segmentation. An alternative is to compute the two seg-
mentation types separately and then mix their results in terms of selecting the optimal
segments with respect to both local quality criteria (that decide which type of seg-
mentation best fits a region of the shape) and global criteria (the user’s preference for
part- or patch-based segmentations). This approach can satisfy all above-mentioned
requirements. As such, we next choose this way as follows. For part-based segmen-
tation Cpart , we use our pipeline presented in Sections 4.3.2–4.3.7. For patch-based
segmentation Cpatch, we use the method discussed in Section 4.3.8.1. Our unification
method is discussed next.

4.3.8.3 Unification Method
As outlined in Section 4.3.8.2, our approach to a unified segmentation is to compute
both part- and patch-based segmentations of the shape and next decide which of the
produced segments are valid in terms of specific part and patch requirements. Valid
segments are kept and finally merged to yield the unified segmentation. The process
is detailed next.

Part validation: For part-based segmentation, we use the segment validation pro-
cedure described in Section 4.3.7, which consists of the cut-coverage and angle-
coverage criteria. As such, part-based segmentation will only produce valid part-
segments C

part
i in areas where such segments can be computed. When and where

valid segments cannot be computed, the shape will be left unsegmented.

Patch validation: For patch-based segmentation, the method of Kustra et al. does not
provide patch validation. Hence, this method may oversegment the shape or produce
otherwise suboptimal patches, such as shown by the example in Fig. 4.7B. Merging
such suboptimal patches with otherwise good parts will yield an overall poor unified



4.3 Method 111

segmentation. We address this by proposing a patch validation scheme, similar in
spirit to the part validation discussed earlier.

As already outlined, a good (valid) patch C
patch
i should have its borders in high-

curvature regions of the input surface ∂�. Several methods exist for computing
curvature on mesh surfaces, such as using the curvature tensor [36,53], using moment
analysis [10], or estimating the shape thickness over the surface-skeleton bound-
ary [26]. The first two methods are quite sensitive in terms of setting the scale at
which edges are detected, as also noted in [26]. The last method, which is also used
to detect patch borders in the segmentation technique described in Section 4.3.8.1,
does not have this problem, but captures also soft edges, leading to issues such as the
oversegmentation in Fig. 4.7B.

For our patch-segmentation context, we need to compute segment borders that
follow as precisely as possible salient edges on ∂�. We propose a simple but effec-
tive edge detector for this, as follows. Let V = {(x, n(x))} be the vertices and their
normals of the surface mesh ∂�, and let E = {(x, y) | x ∈ V, y ∈ V } be the mesh
edges. For a mesh point x ∈ V , denote by

NV (x) = { y ∈ V | ‖x− y‖ < r } (4.12)

the nearest neighbors of x in the mesh within a radius r . Next, let

∂NV (x) = { y ∈ V \NV (x) | (x, y) ∈ E } (4.13)

be the boundary of the neighborhood NV (x). We approximate the curvature κ(x) of
the surface at point x by the mean-angle of all point combinations in ∂NV (x), i.e.,

κ(x) = mean {∠(n(y), n(z)) | (y, z �= y) ⊂ ∂NV (x)× ∂NV (x) } , (4.14)

where × denotes Cartesian product.
Fig. 4.8 shows our curvature estimator κ for two shapes. As visible, κ captures

all zones where salient edges exist, both for the fandisk model, which exhibits clear
edges, and for the frontal bone model, which has much noisier edges. Here, the neigh-
borhood size r (Eq. (4.12)) is set to roughly 2 to 5% of the diameter of ∂�. This
setting has given good results for all other tested shapes.

Using the curvature field κ , we can now find and remove invalid patches. For
this, we consider each border fragment Bij that separates patches C

patch
i and C

patch
j ,

which is defined as

Bij =
{

x ∈ C
patch
i

∣∣∣ ∃y ∈ C
patch
j , (x, y) ∈ E

}
∪
{

x ∈ C
patch
j

∣∣∣ ∃x ∈ C
patch
i , (x, y) ∈ E

}
. (4.15)

For each such border fragment, we compute the median curvature κ̂(Bij ) over all its
vertices x ∈ Bij . If κ̂(Bij ) is larger than a threshold β = π/4, determined empiri-
cally for our studied models, then Bij is a valid (good) boundary of our patch-based



112 CHAPTER 4 Unified part-patch segmentation of mesh shapes

FIGURE 4.8

Proposed curvature detector κ for two shapes.

segmentation, so we keep it. If not, then we erase Bij from the segmentation, i.e.,

merge patches C
patch
i and C

patch
j . To ensure a deterministic patch-validation result,

we process patch border segments Bij in increasing order of κ̂(Bij ).

Merging segmentations: After removing invalid patches, we have both a validated
part-based (Cpart ) and patch-based (Cpatch) segmentation. We now construct the uni-
fied segmentation C by merging Cpart and Cpatch as follows. We first initialize C
with Cpart , i.e., keep all part segments that have been already validated (see Sec-
tion 4.3.8.3). Next, we merge in C the patches C

patch
i . This essentially refines, or

subdivides, those parts that have been found to consist of several patches in Cpatch.
Let us explain how the unified segmentation yields the desirable results for the

shapes in Fig. 4.7. For the fandisk shape, Cpatch contains patches having very high
curvature along their borders (Fig. 4.7A). Hence, all borders shown in the figure
will be validated and kept as shown. In contrast, its Cpart contains a single part
(Fig. 4.7C). The merging process outlined above will split this single part into pre-
cisely the patches of Cpatch. Hence, the unified result will be identical to Cpatch, as
desired. For the horse shape, Cpatch contains patches having (very) low curvature
values along their borders (Fig. 4.7B). As such, all these patches will be invalidated,
yielding Cpatch = ∅. Hence, the merging process will keep Cpart unchanged. This is
the desired result since Cpart for this shape is of good quality (Fig. 4.7D).

4.4 RESULTS
We next present several segmentation results obtained with our unified method.

We start by comparing part-based segmentations. Fig. 4.9 compares our method
with the original voxel-based cut-space segmentation (VCS) in [16]. As visible, our



FIGURE 4.9

Comparison of segmentations between VCS (Feng et al. [16]) and our part-based method.



114 CHAPTER 4 Unified part-patch segmentation of mesh shapes

FIGURE 4.10

Soft-edged shapes segmented by part and unified techniques with our method.

results are very similar in terms of position, smoothness, and tightness of the deliv-
ered segments. We also see that our method succeeds in cases where VCS visibly
undersegments the shape (tool, mask). Small-scale details may differ between the
two segmentations, such as for the rhino model where VCS undersegments the toes,
whereas our method undersegments the horn and ears. In this particular case (rhino),
the VCS segmentation is likely better since separating the larger horns and ear de-
tails should be more important than separating the smaller toes. These variations are
explainable by the two different parameter settings of the two methods.

Fig. 4.10 shows the added-value of the unified segmentation for a set of shapes
having relatively soft (shallow) edges. We see how the unified segmentation (bottom
row) refines the already-discussed part-based segmentation (top row) by splitting seg-
ments along lines of high curvature, e.g., the edge of the bird wing or of the scapular
bone. This allows getting a mix of parts that capture the shape topology, and faces, or
patches, that capture the shape geometry. The unified segmentation can thus be seen
as a refinement of the part-based segmentation.

Fig. 4.11 compares our unified segmentation with the SBB method of Kustra et
al. [26], which is also using surface skeletons to produce patch-based segmentations
of 3D shapes. The figure contains the anatomic shapes used as benchmark in [26].
These are quite challenging to segment since they have complex geometries, a mix of
sharp and soft tortuous edges, and consist of both parts and patches. As visible, our
method is able to find all patch-like segments that the SBB method can. However,



4.5 Discussion 115

FIGURE 4.11

Anatomic shapes segmented by the SBB method of Kustra et al. [26] and our unified
method.

our method generates visibly smoother segment borders, which also better follow the
shape edges, even in the case of very complex geometries such as frontal bone and
gyrus. We also see that SBB places two segment borders in areas where no apparent
patch or part transition occurs (scapula and spleen, marked details). In contrast, our
unified method does not allow such borders to exist due to its part and patch validation
steps (Sections 4.3.7 and 4.3.8.3).

4.5 DISCUSSION
We next discuss several aspects of our unified segmentation method.



116 CHAPTER 4 Unified part-patch segmentation of mesh shapes

FIGURE 4.12

Comparison of eight part-based segmentation methods. (A) Liu and Zhang [33]; (B) Attene
et al. [2]; (C) Clarenz et al. [10]; (D) Tierny et al. [55]; (E) Lien et al. [32]; (F) Reniers et al.
[40]; (G) Feng et al. [16]; (H) our method.

Comparison: Section 4.4 has compared our method with the two main related meth-
ods, which use surface skeletons to segment shapes (VCS [16] and SBB [26]). It is
also interesting to compare our method with the larger class of shape segmentation
techniques out there. Although it is impossible to do so in the same detail as provided
in Section 4.4, Fig. 4.12 shows a qualitative comparison of our method with seven
well-known part-based segmentation methods. Images (A–D) correspond to methods
that do not use skeletons. Images (E–F) correspond to methods that use either curve
or surface skeletons. For an overview of these methods, we refer to Section 4.2.2.1.

The most salient observation on Fig. 4.12 is that skeleton-based methods tend,
in general, to provide more “natural” part-based segmentations than the other stud-
ied methods in terms of positioning and smoothness of the segment borders. This
is due to the inherent ability of skeletons to model a shape local axis of symmetry,
across which segment borders can be fit. In contrast, non-skeleton-based methods
cannot ensure this proper border orientation. Secondly, we see that the cut-space
based methods (Figs. 4.12G, H) do not oversegment. This observation is also con-
firmed by all other earlier examples showing our method (Figs. 4.9, 4.10, 4.11). This
is due to two design elements in our method: (1) the cut-space partitioning ensures
that similar-length cuts will never yield different parts (Section 4.3.4), and (2) the
part and patch validations ensure that superfluous parts and patches are automatically
removed (Sections 4.3.7 and 4.3.8.3). This is in contrast to several of the other meth-
ods depicted here (Figs. 4.12B–E). All in all, the above observations strongly plead
for the added-value of skeletons for shape segmentation.



4.5 Discussion 117

Table 4.1 Performance of the proposed unified segmentation
method
Shape ‖∂�‖ ‖CSα‖ tskel tcuts tpatch tunif Tunif ied

Horse 49,749 7453 5.6 63.2 5.2 6.4 5866
Hound 16,158 364 0.7 5.1 2.0 2.7 1153
Cow 137,862 16,447 23.0 242.3 10.9 63.0 9357
Bird 47,184 26,485 6.3 262.0 5.3 14.1 4769
Pig 4800 756 0.2 2.0 0.6 0.6 1814
Vertebra 22,789 7779 0.2 57.4 2.4 2.2 3088
Scapula 117,432 83,340 17.3 2325.7 11.0 26.6 4208
Heptoroid 79,056 63,876 5.0 539.1 6.3 5.8 9367
Kidney 30,389 9986 6.5 177.7 4.0 27.0 1707
Hand 49,546 2815 7.3 47.9 4.2 11.1 2911

The fact that there is quite some variation in the segmentations produced by differ-
ent methods and, implicitly, in their perceived quality, should however be interpreted
with care. The comparison presented here, as is far from exhaustive, cannot thus be
used to derive generalizing value judgments of one method vs another. For instance,
the examples in Fig. 4.12E, F show that curve-skeleton-based methods can some-
times oversegment (see horse legs, Fig. 4.12E) and sometimes undersegment (see
horse neck and rump, Fig. 4.12F). The fact that surface-skeleton-based methods do
not show such artifacts (Fig. 4.12G, H) should not be interpreted as pointing to a gen-
eral superiority of such methods as opposed to curve-skeleton-based methods. The
main conclusion from this comparison is limited to showing that segmentation meth-
ods using surface skeletons are an interesting and viable alternative for part-based
shape segmentation.

Unification: If we study the state-of-the-art in shape segmentation methods [46,3],
then we see that most such methods are, implicitly or explicitly, focused on handling
either part-based or patch-based segmentations, but rarely both. This is easy to ex-
plain since we have seen that the criteria defining (good) parts and patches are very
different, as the two have different natures. Indeed, parts are inherently volumetri-
cally described; whereas patches are best described on the shape surface [40,41]. As
such, one typically needs to know in practice what is the nature of shapes one wants
to segment in order to choose the best segmentation method for that task; or else,
one needs to manually run several such methods and hopes that one of them will be
optimal for the shapes at hand. Our unified segmentation proposed here shows that
one can use a single descriptor—surface skeletons—to automatically compute and
combine both segmentation types. This allows users to simply “drop” their shapes in
the tool and let it choose the optimal mix of parts and patches to segment with.

Performance: Table 4.1 shows the performance of our unified method, implemented
in single-threaded C++, on an Intel Core i7 3.8 GHz PC with 32 GB RAM. The tested



118 CHAPTER 4 Unified part-patch segmentation of mesh shapes

Table 4.2 Performance of the VCS part-based
segmentation method of Feng et al. [16]

Shape ‖∂�‖ ‖CS‖ tskel tcuts TV CS

Horse 109,555 884 1.24 9.58 10,109
Hound 245,759 1530 1.51 23.24 16,179
Cow 143,938 1009 0.96 8.15 17,820
Bird 45,638 476 0.18 2.28 9527
Pig 145,215 959 1.51 10.97 12,694
Vertebra 68,632 683 0.37 8.56 5472
Scapula 285,854 4329 30.0 301.3 4106
Heptoroid 651,478 4873 3.36 400.5 7926
Kidney 31,874 403 0.16 3.91 3278
Hand 58,071 584 0.22 2.15 15,773

shapes vary considerably in terms of mesh resolution (‖∂�‖) and mesh-sampling
uniformity, and also in terms of the number of cuts we compute (‖CSα‖). We next see
that the total cost is dominated by the cut-space computation. At first sight, the overall
cost appears to be quite high. To better assess this cost, we compute the throughput
of our method

Tunif ied = 1

1000

|∂�‖ · ‖CSα‖
tcuts

, (4.16)

i.e., the number of cuts, for a given resolution of the mesh (in thousands of ver-
tices) that the method can deliver per second. Using the mesh resolution in Eq. (4.16)
accounts for the fact that the cut computation cost is proportional with the mesh
resolution. Table 4.2 shows the throughput TV CS for the original voxel-based VCS
method. Here, ‖∂�‖ denotes the number of voxels on the shape surface. The ratio
of the average TV CS to the average Tunif ied is 2.32, i.e., the VCS method is 2.32
times faster than ours. However, the original VCS method does use CPU parallelism
(8 threads) to compute cuts, whereas our method is purely sequential. Parallelizing
our cut computation is very easy since cuts are traced completely independently.
This makes our method potentially over three times faster than the VCS method.
Further, using GPU parallelism to compute the cuts and following the technique
originally proposed by [23] for computing surface-skeleton importance would make
our method significantly faster than the VCS method, which lends itself far less to
GPU parallelization. Interestingly, we see that the relative throughput of our method
as compared to VCS increases significantly for shapes where many cuts are used,
e.g., scapula and heptoroid—for the second shape, our method has an even higher
throughput than VCS. Memory-wise, our method needs to store only the input mesh,
point-cloud skeleton, and two feature points per skeleton point, its memory cost be-
ing O(‖∂�‖). In contrast, VCS needs to store four full densely-sampled volumes,
yielding a memory cost of O(‖∂�‖3/2) (for details, see the underlying skeletoniza-



4.6 Conclusion 119

tion method [24]). All in all, we see that our method scales far better than VCS with
respect to shape size.

Implementation: Although at first sight complex, our unified method requires only a
few ingredients to be implemented: the point-cloud skeletonization method for mesh
models in [23], which delivers surface skeletons, distance transforms, and feature
transforms; and a way to find the nearest neighbors in a point cloud (Eqs. (4.8) and
(4.12)). The former is provided by the respective algorithm, and the latter is readily
available via the ANN package [37].

Limitations: Although delivering good-quality segmentations of complex shapes,
our unified method still has several limitations. First and foremost, its quality essen-
tially depends on the underlying qualities of the parts and patches delivered by its
two branches (Section 4.3). Although the part and patch validation steps we intro-
duce considerably help delivering good quality parts and patches, the overall result
still depends on the possibility of independently finding good parts and patches on a
shape. There are, obviously, cases where this assumption does not hold. In such cases,
designing a new “joint segment” model able to capture the full continuum between
parts and patches is desirable, and is a challenge for future work.

Secondly, our unified method is technically more complex than other part-based
and patch-based segmentation methods taken separately. Indeed, it comprises a full
part-based segmentation pipeline (7 steps, Sections 4.3.2–4.3.7), a full patch-based
segmentation pipeline (Section 4.3.8.1), and a unification pipeline (two steps, Sec-
tion 4.3.8.3). However, this is justified by the fact that our method is, to our knowl-
edge, the only existing one that can handle mixed part-patch-based segmentations
with good results.

The comparison of our method with related segmentation methods [17,16,40,26,
33,2,10,55,32] is, of course, not covering the entire spectrum of segmentation meth-
ods out there. This would be highly challenging, if not impossible, to do given the
available space and the availability of implementations of such methods. More effort
(from the entire shape segmentation community) is required here. Yet, we argue that
our main point, showing that our method can leverage surface skeletons to gener-
ate part-patch-based segmentations than other tools in the same class, has been well
defended by the presented results.

4.6 CONCLUSION
In this chapter, we have presented a novel method to create segmentations of 3D
mesh shapes. In contrast to most existing segmentation methods out there, we show
that it is possible to design a method that effectively handles tubular (articulated)
shapes, faceted shapes, and shapes containing a mix of the two. On a more funda-
mental level, we show that surface skeletons are an effective tool to support complex
segmentation tasks. Thereby, we strengthen the existing evidence that this type of



120 CHAPTER 4 Unified part-patch segmentation of mesh shapes

medial descriptors, so far sparsely used in actual applications, are effective tools with
practical added value. We support our claims by comparing our method with the most
relevant part-based and patch-based segmentation methods using 3D skeletons on a
collection of shapes ranging from purely faceted to purely tubular.

Future work can handle several directions. First and foremost, the current results
show that it is possible to create hybrid part-patch segmentations using a single de-
scriptor type (surface skeletons). As such, it is interesting to explore refinements
of the presented part and patch detection and merging heuristics to design methods
where users can control the resulting segmentation more easily and intuitively. Sec-
ondly, low-hanging fruits include the GPU acceleration of all steps of the proposed
pipeline to yield a single method able to compete speed-wise with current state-of-
the-art segmentation methods.

REFERENCES
[1] C. Arcelli, G. Sanniti di Baja, L. Serino, Distance-driven skeletonization in voxel images,

IEEE Trans. Pattern Anal. Mach. Intell. 33 (4) (2011) 709–720.
[2] M. Attene, B. Falcidieno, M. Spagnuolo, Hierarchical mesh segmentation based on fitting

primitives, Vis. Comput. 22 (3) (2006).
[3] M. Attene, S. Katz, M. Mortara, G. Patané, M. Spagnuolo, A. Tal, Mesh segmentation –

a comparative study, in: Proc. IEEE SMI, 2006, pp. 134–141.
[4] O.K.C. Au, C. Tai, H. Chu, D. Cohen-Or, T. Lee, Skeleton extraction by mesh contraction,

in: Proc. ACM SIGGRAPH, 2008, pp. 441–449.
[5] J. Bloomenthal, C. Bajaj, J. Blinn, M.-P. Cani, A. Rockwood, B. Wyvill, G. Wyvill, In-

troduction to Implicit Surfaces, Morgan Kaufmann, 1997.
[6] H. Blum, A transformation for extracting new descriptors of shape, in: Models for the

Perception of Speech and Visual Form, MIT Press, 1967, pp. 362–380.
[7] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, B. Lévy, Polygon Mesh Processing, A K

Peters, 2010.
[8] M. Braunstein, D. Hoffman, A. Saidpour, Parts of visual objects: and experimental test of

the minima rule, Perception 18 (1989) 817–826.
[9] M. Chang, F. Leymarie, B. Kimia, Surface reconstruction from point clouds by transform-

ing the medial scaffold, Comput. Vis. Image Underst. 113 (11) (2009) 1130–1146.
[10] U. Clarenz, M. Griebel, M. Schewitzer, A. Telea, Feature sensitive multiscale editing on

surfaces, Vis. Comput. 20 (5) (2004) 329–343.
[11] D. Comaniciu, P. Meer, Mean shift: a robust approach toward feature space analysis, IEEE

Trans. Pattern Anal. Mach. Intell. 24 (5) (2002) 603–619.
[12] N. Cornea, D. Silver, P. Min, Curve-skeleton properties, applications, and algorithms,

IEEE Trans. Vis. Comput. Graph. 13 (3) (2007) 87–95.
[13] N. Cornea, D. Silver, X. Yuan, R. Balasubramanian, Computing hierarchical curve-

skeletons of 3D objects, Vis. Comput. 21 (11) (2005) 945–955.
[14] J. Damon, Global medial structure of regions in R3, Geom. Topol. 10 (2006) 2385–2429.
[15] T. Dey, J. Sun, Defining and computing curve skeletons with medial geodesic functions,

in: Proc. IEEE SGP, 2006, pp. 143–152.
[16] C. Feng, A.C. Jalba, A.C. Telea, Improved part-based segmentation of voxel shapes by

skeleton cut spaces, Math. Morphol. Theory Appl. 1 (1) (2015) 1–20.



References 121

[17] C. Feng, A.C. Jalba, A.C. Telea, Part-based segmentation by skeleton cut space analysis,
in: Proc. ISMM, Springer, Jan. 2015, pp. 1–12.

[18] M. Foskey, M. Lin, D. Manocha, Efficient computation of a simplified medial axis, in:
Proc. SMA, 2003, pp. 135–142.

[19] P. Giblin, B.B. Kimia, A formal classification of 3D medial axis points and their local
geometry, IEEE Trans. Pattern Anal. Mach. Intell. 26 (2) (2004) 238–251.

[20] A. Golovinskiy, T. Funkhouser, Randomized cuts for 3D mesh analysis, ACM Trans.
Graph. 27 (2008) 454–463.

[21] W. Hesselink, J. Roerdink, Euclidean skeletons of digital image and volume data in linear
time by the integer medial axis transform, IEEE Trans. Pattern Anal. Mach. Intell. 30 (12)
(2008) 2204–2217.

[22] D. Hoffman, W. Richards, Parts of recognition, Cognition 18 (1984) 65–96.
[23] A. Jalba, J. Kustra, A. Telea, Surface and curve skeletonization of large 3D models on the

GPU, IEEE Trans. Pattern Anal. Mach. Intell. 35 (6) (2013) 1495–1508.
[24] A.C. Jalba, A. Sobiecki, A.C. Telea, An unified multiscale framework for planar, surface,

and curve skeletonization, IEEE Trans. Vis. Comput. Graph. 38 (1) (2016) 30–45.
[25] S. Katz, A. Tal, Hierarchical mesh decomposition using fuzzy clustering and cuts, ACM

Trans. Graph. 22 (2003) 954–961.
[26] J. Kustra, A. Jalba, A. Telea, Computing refined skeletal features from medial point

clouds, Pattern Recognit. Lett. 76 (2014) 13–21.
[27] J. Kustra, A. Jalba, A. Telea, Robust segmentation of multiple intersecting manifolds from

unoriented noisy point clouds, Comput. Graph. Forum 33 (1) (2014) 73–87.
[28] Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, Intelligent mesh scissoring using 3D snakes, in:

Proc. IEEE Pacific Graphics, 2004, pp. 279–287.
[29] Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, H.P. Seidel, Mesh scissoring with minima rule

and part salience, Comput. Aided Geom. Des. 22 (2005) 444–465.
[30] F. Leymarie, B. Kimia, The medial scaffold of 3D unorganized point clouds, IEEE Trans.

Vis. Comput. Graph. 29 (2) (2007) 313–330.
[31] X. Li, T.W. Woon, T.S. Tan, Z. Huang, Decomposing polygon meshes for interactive

applications, in: Proc. ACM I3D, 2001, pp. 35–42.
[32] J. Lien, J. Keyser, N. Amato, Simultaneous shape decomposition and skeletonization, in:

Proc. ACM SPM, 2005, pp. 219–228.
[33] R. Liu, H. Zhang, Segmentation of 3D meshes through spectral clustering, in: Proc. Pa-

cific Graphics, 2004, pp. 298–305.
[34] J. Ma, S. Bae, S. Choi, 3D medial axis point approximation using nearest neighbors and

the normal field, Vis. Comput. 28 (1) (2012) 7–19.
[35] A. Mangan, R. Whitaker, Partitioning 3D surface meshes using watershed segmentation,

IEEE Trans. Vis. Comput. Graph. 5 (4) (1999) 308–321.
[36] H. Moreton, C. Séquin, Functional optimization for fair surface design, in: Proc. ACM

SIGGRAPH, 1992, pp. 167–176.
[37] D. Mount, S. Arya, Approximate nearest neighbor search software, www.cs.umd.

edu/~mount/ANN, 2016.
[38] D. Page, A. Koschan, M. Abidi, Perception-based 3D triangle mesh segmentation using

fast marching watersheds, in: Proc. IEEE CVPR, 2003, pp. 27–32.
[39] D. Reniers, A. Jalba, A. Telea, Robust classification and analysis of anatomical surfaces

using 3D skeletons, in: Proc. VCBM, Eurographics, 2008, pp. 61–68.
[40] D. Reniers, A. Telea, Part-type segmentation of articulated voxel-shapes using the junc-

tion rule, Comput. Graph. Forum 27 (7) (2008) 1837–1844.

http://www.cs.umd.edu/~mount/ANN
http://www.cs.umd.edu/~mount/ANN


122 CHAPTER 4 Unified part-patch segmentation of mesh shapes

[41] D. Reniers, A. Telea, Patch-type segmentation of voxel shapes using simplified surface
skeletons, Comput. Graph. Forum 27 (7) (2008) 1837–1844.

[42] D. Reniers, A.C. Telea, Skeleton-based hierarchical shape segmentation, in: Proc. IEEE
SMA, 2007, pp. 179–188.

[43] D. Reniers, J.J. van Wijk, A. Telea, Computing multiscale skeletons of genus 0 objects
using a global importance measure, IEEE Trans. Vis. Comput. Graph. 14 (2) (2008)
355–368.

[44] L. Serino, C. Arcelli, G.S. di Baja, From skeleton branches to object parts, Comput. Vis.
Image Underst. 129C (2014) 42–51.

[45] L. Serino, G.S. di Baja, C. Arcelli, Using the skeleton for 3D object decomposition, in:
Proc. SCIA, in: Lect. Notes Comput. Sci., Springer, 2011, pp. 447–456.

[46] A. Shamir, A survey on mesh segmentation techniques, Comput. Graph. Forum 27 (6)
(2008) 1539–1556.

[47] L. Shapira, A. Shamir, D. Cohen-Or, Consistent mesh partitioning and skeletonisation
using the shape diameter function, Vis. Comput. 24 (2008) 249–259.

[48] K. Siddiqi, S. Bouix, A. Tannenbaum, S. Zucker, Hamilton–Jacobi skeletons, Int. J. Com-
put. Vis. 48 (3) (2002) 215–231.

[49] K. Siddiqi, S. Pizer, Medial Representations: Mathematics, Algorithms and Applications,
Springer, 2009.

[50] M. Singh, G. Seyranian, D. Hoffman, Parsing silhouettes: the short-cut rule, Percept. Psy-
chophys. 61 (4) (1999) 636–660.

[51] A. Tagliasacchi, I. Alhashim, M. Olson, H. Zhang, Skeletonization by mean curvature
flow, in: Proc. Symp. Geom. Proc., 2012, pp. 342–350.

[52] A. Tagliasacchi, T. Delame, M. Spagnuolo, N. Amenta, A. Telea, 3D skeletons: a state-
of-the-art report, Comput. Graph. Forum (2016), http://dx.doi.org/10.1111/cgf.12865.

[53] G. Taubin, Estimating the tensor of curvature of a surface from a polyhedral approxima-
tion, in: Proc. ICCV, 1995, pp. 902–907.

[54] G. Taubin, Geometric signal processing on polygonal meshes, in: Proc. Eurographics –
STARs, Eurographics Association, 2000.

[55] J. Tierny, J. Vandeborre, M. Daoudi, Topology driven 3D mesh hierarchical segmentation,
in: Proc. SMI, 2007, pp. 215–220.

http://dx.doi.org/10.1111/cgf.12865

