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Abstract 
We demonstrate the use of the CVSgrab tool for assessing change 
propagation in the Open Source browser Firefox. 
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1 Introduction 
The Firefox browser, part of the Open Source project Mozilla, 
contains 659 files contributed by 108 authors over more than 4 
years. It contains fixes for 4497 bugs from the total number of 
bugs reported in this period. 
CVSgrab [Voinea and Telea 2006] is a tool for visualizing the 
evolution of large software projects. Each file is shown as a 
sequence of segments, one per version, aligned in time along the 
horizontal axis. Color shows version properties, e.g. author ID. 
Files are stacked vertically, ordered in user-specified ways. Atop 
of this layout, bug data acquired from the Bugzilla database can 
be shown using glyphs centered at the reported bug fix time and 
colored e.g. by bug severity. Files may be clustered based on 
evolution similarity [1] to highlight project file sets that evolve 
(change) together. 

2 Research Question 
We used CVSgrab to estimate the scope of change propagation in 
Firefox during debugging. The question we tried to answer was: 

How do bug removal changes propagate across files? 

To this end, we tried to see whether changes caused by bug 
removal are contained with in the folder of the file where the bug 
is first localized, or they ripple through the entire project.    

We used the integrated data acquisition module of CVSgrab to get 
the Firefox evolution data from the Mozilla CVS server. This took 
30 minutes. Separately from this, we used the Bugzilla web 
interface of the Mozilla project to acquire a report containing the 
up to date list of fixed bugs in the Firefox browser. Next, we 
included this report into the CVSgrab folder containing the 
Firefox evolution information. Then, we loaded the whole Firefox 
evolution data into CVSgrab and started the visual assessment. 

First we tried to identify the project folder with the highest 

density of fixed bugs. For this, we used the metric lists of 
CVSgrab (Fig. 1). These lists are used to display and select 
project entities based on a given metric. For each list element, a 
right-aligned horizontal bar can show a metric value. The metrics 
available for folders are: number of bugs and number of files. 
Metric lists can also be sorted by users according to one of the 
available metrics. We sorted the folders list according to the 
number of files metric (Fig. 1b). Then we visualized the number 
of bugs metric without changing the order of the elements (Fig. 
1a). One can see that the /base/content folder has the largest 
number of bugs, but also the largest number of files. In contrast 
with this, the /components/places/content folder (selected in Fig. 
1) has a small number of files and yet relatively many bugs. 
Another possible candidate is /components/places/src. However, 
the ratio number of bugs / number of files seems to be lower than 
in the previous case. Hence, we finally drew the conclusion that 
/components/places/content is the folder with the highest bug 
density in the Firefox browser.  

 

 
Figure 1: CVSgrab metric lists show Firefox folders sorted on 
number of files. Blue metric bars show the bug count (a) and 

file count (b) in each folder 
Next, we tried to assess how changes in this folder propagate in 
the system. For this, we used the main evolution visualization 
area of CVSgrab. We used color to encode the parent folder of 
each file.  In particular, we chose the red color for the target 
folder /components/places/content, and grey for the other folders. 

To see how files in the target folder evolved in time, we clustered 
all files in the project based on evolutionary coupling, i.e. 
similarity of the files’ commit moments. This method is described 
in detail in [Voinea and Telea 2006]. Only two clusters contained 
red, i.e. files from our target folder. These are clusters A and B, 
highlighted in Fig. 2. We tried next to identify the folders 
containing the other (not red) files contained in these two clusters. 
At a closer inspection (using the details-on-demand mechanism of 
CVSgrab) we discovered that some of these files belong to 
/installer/windows. We next color encoded this new folder with 
yellow. In the end, as depicted in Fig.2, we discovered that most 
of the remaining files in the two clusters belong to this folder.  
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Figure 2: Buggy folder /components/places/content (red) spans two clusters together with folder /installer/windows (yellow). 

Critical bugs are shown as blue squares, other bugs as grey squares. 

Therefore, we concluded that there is a high change-correlation 
between the folders /components/places/content and 
/installer/windows. This means that changes in one folder will 
likely propagate to the other one. 

3 Discussion 
Our CVSgrab visualization suggests that the folder with the 
highest bug density in Firefox, i.e. /components/places/content, is 
quite safe with respect to change propagation. Changes in this 
folder seem to propagate mainly to itself and to /installer/windows.  
Accordingly, changes as a result of a bug fix are likely to share 
the same propagation scope.  

This type of result can be used, for example, to assess the quality 
of the system architecture. Assuming a folder contains the 
implementation of a specific structural part of a system, one can 
look at the bug density and change propagation to assess the 
architecture of that system.  The most desirable situation is a 
system with low bug density folders, and change propagation 
limited to single folders (i.e. components). However, practice 
shows bugs can hardly be prevented. A pragmatic approach in this 
respect is to facilitate their removal by a highly decoupled system 
architecture. While this might not be affordable for the entire 
system, it could be worthwhile ensuring it at least for the most 
problematic parts. In this respect, according to our analysis, the 
most problematic part in the Firefox browser seems to be 
relatively decoupled from the rest of the system. 

Our analysis does not include all files in the two clusters that 
contain the target folder. There are a few remaining files that we 
did not consider (drawn grey in Fig.2).  Taking these files into 
account would improve the overall analysis results. However, the 
remaining files represent a relatively small percentage from the 
evolution clusters. Therefore, even if changes propagate to these 
files, the impact is less important, and propagation can still be 
considered as mainly localized in our two folders already found. 

The complete analysis took less than 20 minutes. CVSgrab scaled 
very well in this case. The color encoding of folder combined 
with the cushion encoding of clusters made it very easy to 
identify the change propagation. The slowest part was the 
calculation of the evolutionary coupled clusters. However, this 
was performed automatically and did not require user interaction. 

CVSgrab covers many other analysis scenarios as well. The latest 
CVSgrab tool, supporting CVS and Subversion repositories, is 
downloadable from the Visual Code Navigator home page at: 

www.win.tue.nl/~lvoinea/VCN.html 
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