
How Do Changes in Buggy Mozilla Files Propagate?

Lucian Voinea∗
Technische Universiteit Eindhoven

Alexandru Telea†
Technische Universiteit Eindhoven

Abstract
We demonstrate the use of the CVSgrab tool for assessing change
propagation in the Open Source browser Firefox.

Keywords: Evolution visualization, Software visualization, CVS
CR Categories: D.2.7 [Software engineering]: Distribution,
Maintenance, and Enhancement – documentation, reengineering;

1 Introduction
The Firefox browser, part of the Open Source project Mozilla,
contains 659 files contributed by 108 authors over more than 4
years. It contains fixes for 4497 bugs from the total number of
bugs reported in this period.
CVSgrab [Voinea and Telea 2006] is a tool for visualizing the
evolution of large software projects. Each file is shown as a
sequence of segments, one per version, aligned in time along the
horizontal axis. Color shows version properties, e.g. author ID.
Files are stacked vertically, ordered in user-specified ways. Atop
of this layout, bug data acquired from the Bugzilla database can
be shown using glyphs centered at the reported bug fix time and
colored e.g. by bug severity. Files may be clustered based on
evolution similarity [1] to highlight project file sets that evolve
(change) together.

2 Research Question
We used CVSgrab to estimate the scope of change propagation in
Firefox during debugging. The question we tried to answer was:

How do bug removal changes propagate across files?

To this end, we tried to see whether changes caused by bug
removal are contained with in the folder of the file where the bug
is first localized, or they ripple through the entire project.

We used the integrated data acquisition module of CVSgrab to get
the Firefox evolution data from the Mozilla CVS server. This took
30 minutes. Separately from this, we used the Bugzilla web
interface of the Mozilla project to acquire a report containing the
up to date list of fixed bugs in the Firefox browser. Next, we
included this report into the CVSgrab folder containing the
Firefox evolution information. Then, we loaded the whole Firefox
evolution data into CVSgrab and started the visual assessment.

First we tried to identify the project folder with the highest

density of fixed bugs. For this, we used the metric lists of
CVSgrab (Fig. 1). These lists are used to display and select
project entities based on a given metric. For each list element, a
right-aligned horizontal bar can show a metric value. The metrics
available for folders are: number of bugs and number of files.
Metric lists can also be sorted by users according to one of the
available metrics. We sorted the folders list according to the
number of files metric (Fig. 1b). Then we visualized the number
of bugs metric without changing the order of the elements (Fig.
1a). One can see that the /base/content folder has the largest
number of bugs, but also the largest number of files. In contrast
with this, the /components/places/content folder (selected in Fig.
1) has a small number of files and yet relatively many bugs.
Another possible candidate is /components/places/src. However,
the ratio number of bugs / number of files seems to be lower than
in the previous case. Hence, we finally drew the conclusion that
/components/places/content is the folder with the highest bug
density in the Firefox browser.

Figure 1: CVSgrab metric lists show Firefox folders sorted on
number of files. Blue metric bars show the bug count (a) and

file count (b) in each folder
Next, we tried to assess how changes in this folder propagate in
the system. For this, we used the main evolution visualization
area of CVSgrab. We used color to encode the parent folder of
each file. In particular, we chose the red color for the target
folder /components/places/content, and grey for the other folders.

To see how files in the target folder evolved in time, we clustered
all files in the project based on evolutionary coupling, i.e.
similarity of the files’ commit moments. This method is described
in detail in [Voinea and Telea 2006]. Only two clusters contained
red, i.e. files from our target folder. These are clusters A and B,
highlighted in Fig. 2. We tried next to identify the folders
containing the other (not red) files contained in these two clusters.
At a closer inspection (using the details-on-demand mechanism of
CVSgrab) we discovered that some of these files belong to
/installer/windows. We next color encoded this new folder with
yellow. In the end, as depicted in Fig.2, we discovered that most
of the remaining files in the two clusters belong to this folder.

∗ email: l.voinea@tue.nl
† email: alext@win.tue.nl

A

B

Figure 2: Buggy folder /components/places/content (red) spans two clusters together with folder /installer/windows (yellow).

Critical bugs are shown as blue squares, other bugs as grey squares.

Therefore, we concluded that there is a high change-correlation
between the folders /components/places/content and
/installer/windows. This means that changes in one folder will
likely propagate to the other one.

3 Discussion
Our CVSgrab visualization suggests that the folder with the
highest bug density in Firefox, i.e. /components/places/content, is
quite safe with respect to change propagation. Changes in this
folder seem to propagate mainly to itself and to /installer/windows.
Accordingly, changes as a result of a bug fix are likely to share
the same propagation scope.

This type of result can be used, for example, to assess the quality
of the system architecture. Assuming a folder contains the
implementation of a specific structural part of a system, one can
look at the bug density and change propagation to assess the
architecture of that system. The most desirable situation is a
system with low bug density folders, and change propagation
limited to single folders (i.e. components). However, practice
shows bugs can hardly be prevented. A pragmatic approach in this
respect is to facilitate their removal by a highly decoupled system
architecture. While this might not be affordable for the entire
system, it could be worthwhile ensuring it at least for the most
problematic parts. In this respect, according to our analysis, the
most problematic part in the Firefox browser seems to be
relatively decoupled from the rest of the system.

Our analysis does not include all files in the two clusters that
contain the target folder. There are a few remaining files that we
did not consider (drawn grey in Fig.2). Taking these files into
account would improve the overall analysis results. However, the
remaining files represent a relatively small percentage from the
evolution clusters. Therefore, even if changes propagate to these
files, the impact is less important, and propagation can still be
considered as mainly localized in our two folders already found.

The complete analysis took less than 20 minutes. CVSgrab scaled
very well in this case. The color encoding of folder combined
with the cushion encoding of clusters made it very easy to
identify the change propagation. The slowest part was the
calculation of the evolutionary coupled clusters. However, this
was performed automatically and did not require user interaction.

CVSgrab covers many other analysis scenarios as well. The latest
CVSgrab tool, supporting CVS and Subversion repositories, is
downloadable from the Visual Code Navigator home page at:

www.win.tue.nl/~lvoinea/VCN.html

References
VOINEA, L., TELEA, A., 2006. An Open Framework for CVS

Repository Querying, Analysis and Visualization. Proc.
MSR’06, ACM Press, 2006, pp. 33 – 39

