
Visualization of Areas of Interest in Software Architecture Diagrams

H. Byelas∗

Technische Universiteit Eindhoven
A. Telea†

Technische Universiteit Eindhoven

Abstract

Understanding complex software systems requires getting insight
in how system properties, such as performance, trust, reliability,
or structural attributes, correspond to the system architecture. Such
properties can be seen as defining several ’areas of interest’ over the
system architecture. We visualize areas of interest atop of system
architecture diagrams using a new technique that minimizes visual
clutter for multiple, overlapping areas for large diagrams, yet pre-
serves the diagram layout familiar to designers. We illustrate our
proposed techniques on several UML diagrams of complex, real-
world systems.

CR Categories: I.3.4 [Graphics Utilities]: Graphics editors—
Paint systems; D.2.2 [Design Tools and Techniques]: Modules and
interfaces—Computer-aided software engineering

Keywords: UML diagrams, metrics, areas of interest, architecture
visualization

1 Introduction

UML (or similar) diagrams are among the methods of choice for
system architects and developers to describe and understand soft-
ware architectures and designs, e.g. the structural and functional
relations between the various interfaces, components, objects or
roles in a system [IBM 2005; Borland 2005]. Complementing
diagrams, software metrics effectively describe various aspects of
complex systems, e.g. system stability, resource usage, design com-
plexity, or performance [Dunke and Schmietendorf 2000; Gill and
Grover 2003; Goulao and Abreu 2004]. Metrics can help answer-
ing targeted questions, e.g. ”which components are unstable or
non-conforming to specific guidelines and requirements?” or ”what
happens if I change this component?” [Möller et al. 2004] Soft-
ware elements that share a common property are of particular in-
terest in system analysis, e.g. ”all high-reliability components”,
”all components using over 1 MB of memory”, ”all components
introduced in the system version 2.3”, or ”all components in the
same thread” [Voinea and Telea 2004]. We call such a set of ele-
ments an area of interest (AOI). AOIs can be defined using soft-
ware metrics [Fenton and Pfleeger 1998; Gill and Grover 2003;
Goulao and Abreu 2004] which can be computed by existing analy-
sis tools [Wust 2005; Bondarev et al. 2006, to appear]. Such AOIs,
and their underlying metrics, are usually shown to users in a tab-
ular format. We argue it is better to visually combine AOIs and
UML (architecture) diagrams, to let users correlate concerns (de-
scribed by AOIs) with system structure (diagrams). We present an

∗e-mail:h.byelas@tue.nl
†e-mail:alext@win.tue.nl

approach that visualizes AOIs on UML-like diagrams in a simple to
follow, scalable, and non-intrusive way. Users can easily navigate
between views of classical diagrams and AOIs, yet preserve the fa-
miliar diagram layout. Our technique scales well when visualizing
multiple, overlapping, AOIs on large diagrams, and works for any
UML-like diagrams. This paper is structured as follows. Section 2
reviews related work in visualizing AOIs and diagram data. Sec-
tion 3 presents our new techniques that render AOIs on diagrams
effectively and efficiently. Section 4 presents several applications of
our AOI drawing on real-life diagrams from the industry. Section 5
discusses our findings and the lessons learnt. Section 6 concludes
the paper with directions of future work.

2 Related Work

We describe our AOI visualization on (UML) diagrams with the
5-dimensional model of Marcus et al. [Marcus et al. 2003]: task,
audience, target, medium, representation. Our task is to under-
stand how various (non)functional system aspects (the AOIs) map
on some system description (the UML-like diagrams). Our audi-
ence includes mainly software architects. Our visualization target
is a set of UML-like diagrams, together with AOIs specified as al-
ready computed software metrics for the diagram elements [Fen-
ton and Pfleeger 1998]. The visualization medium is a modified
UML diagram viewer [Termeer et al. 2005] that combines render-
ing diagrams and AOIs. Finally, the representation enriches clas-
sical box-and-line diagram drawings with AOIs drawn as smooth,
soft-textured, shapes with a new technique.

Modeling tools, e.g. Rational Rose [IBM 2005] or Together [Bor-
land 2005], are accepted ways to visualize UML diagrams, but
have little support for metric data, and still less for drawing metric-
defined AOIs. Drawing AOIs as boxes AOI yields high visual clut-
ter, as illustrated by the 12 AOIs drawn on the diagram in Fig. 16.
Other tools, e.g. Rigi [Tilley et al. 1994] or MetricView [Termeer
et al. 2005], can show an AOI by marking its elements with with
icons scaled, colored, and shaped to show metric values. Yet, in-
ferring AOIs from such markers is very hard for large diagrams
having more than a few, overlapping, AOIs. One could also move
all diagram elements in an AOI close to each other and draw a sur-
rounding frame [Gansner and North 2000]. However, diagrams are
often laid out manually with great care. Changing the layout every
time one changes the AOIs destroys the user’s ’mental map’, a well
known fact in information visualization. Methods such as meta-
balls [Rilling and Mudur 2002], H-BLOB [Sprenger et al. 2000],
and 2D implicit surfaces [Balzer and Deussen 2005] draw AOIs
as smooth shapes around their respective elements. Such shapes
are computed as isosurfaces of some potential function, or distance
field, based on the elements’ locations. However, it is hard to con-
trol both the smoothness and tightness of isosurfaces. The isosur-
face shapes and, worse, connectivity, highly depend on a correct
isovalue, which cannot be easily chosen automatically [Sprenger
et al. 2000]. Finally, distance fields and isosurfaces are computa-
tionally expensive. Recently, a method based on texture splatting
has been proposed that efficiently draws smooth AOIs of controlled
shape with minimal user intervention [Byelas and Telea 2006], us-
ing a technique called texture splatting. However, this method is
limited in handling complex, overlapping AOIs on large diagrams.

3 New Proposal

We build on the texture splatting idea of [Byelas and Telea 2006],
keeping its main features (high speed and minimal user input). Ad-
ditionally, we add new techniques to solve the problems of the orig-
inal method, i.e. we can easily handle many complex-shaped, over-
lapping, AOIs, and offer a simple and intuitive AOI shape smooth-
ness and tightness control. Overall, the features of our method are
as follows:

1. AOIs do not change a given diagram layout

2. There is low visual clutter between (overlapping) AOIs and
diagrams, and AOIs themselves

3. AOIs drawing is real-time, even for large diagrams

Our AOI visual design tries to mimic the way humans draw them
with pencil on paper diagrams, as vague, sketchy, imperfect shapes
that surround the concerned elements. We construct such shapes in
two steps. First, we build an AOI skeleton from the elements’ size
and position (Sec. 3.1). Next, we draw the AOI using a graphics
technique called texture splatting (Sec. 3.2). These techniques are
described next.

3.1 Skeleton Construction

In Section 4, we shall compare, on real-world UML diagrams, the
quality of the AOIs drawn using the skeleton proposed here and the
skeleton proposed by the original AOI drawing method [Byelas and
Telea 2006] respectively. To distinguish the two, we call the skele-
ton proposed by [Byelas and Telea 2006] an inner skeleton (since
it is located at the center of the elements’ bounding box), and the
skeleton we propose here an outer skeleton (since it is located at the
periphery of the elements’ bounding box). We first briefly sketch
the inner skeleton method (see also Fig. 1). For a diagram with el-
ements ei having geometric centers ci, the inner skeleton is the line
set (ci,C), where C = ∑i Aici/∑i Ai is the area-weighted barycenter
of the elements (Ai is the area of element ci). Given element ei, with
bounding box of width wi and height hi, a radius Ri = max(wi,hi)
is computed for ei and a radius R = kR ∑i Aici/∑i Ai for the cen-
ter C as a fraction kR of the average radius. Setting the value for
kR is explained in Section 3.2. Next, every line segment (ci,C) is
sampled with several points pi j spaced with some small distance
δ = |pi − pi+1|, e.g. δ = 0.1R. For every pi j, we compute also a
radius ri j by linear interpolation between the radii R and Ri at the
end of the segment (ci,C). The inner skeleton is the set of points
and radius values {(pi j,ri j)}.

We now explain the outer skeleton construction. This has three
steps (see Fig. 2 b-d). We start with the 2D bounding boxes
(b1i,b2i,b3i,b4i) of the elements ei in the AOI (Fig. 2 a). We first
compute the convex hull C = {qi} of the corner points {bi j}, yield-
ing the result in Fig. 2 b. This is the tightest convex polygon that
encloses all our element bounding boxes, i.e. a possible approxima-
tion for an AOI shape. Still, we would like smoother, tighter fitting,
shapes. To obtain this, we first subsample C (Fig. 2 c) such that the
average distance δ between consecutive points |qi−qi+1| is a given,
small fraction of the convex hull perimeter |C| = ∑i |qi −qi+1|. In
practice, we set δ = 0.01|C|.

Next, we deform the subsampled contour qi so that it fits tighter the
elements inside and, at the same time, yields a smoother curve than
the convex hull (Fig. 2 d). We deform the contour by moving every
point qi to q′i:

q′i = qi + εn~n+ εs
qi−1 +qi+1

2
(1)

Figure 1: Construction of inner skeleton

Figure 2: Construction of outer skeleton

Here, ~n is the normal to the line segment (qi−1qi+1). Assuming
{qi} are specified in counterclockwise order, qi will be moved in-
wards inside C. This serves two purposes. First, qi moves perpen-
dicular to the contour with a distance εn which shrinks the contour,
making it tighter. Second, qi moves towards the center of the line
segment (qi−1qi+1) with distance εs. This is the well-known ge-
ometric Laplacian smoothing [Taubin 2000] with factor εs applied
to our contour, which guarantees to remove contour sharp corners.
We do the move in Equation 1 only if

d = min(min
| j−i|>1

|qi −q j|,min
j
|qi − p j|) > 2δ (2)

i.e. the contour point qi is farther from all element corners p j and
other contour points q j (except its immediate neighbors q j−1, q j+1)
than a distance 2δ . This test prevents the contour to self intersect
during deformation. We move all points until we reach a user-set
stop criterion or a maximum number of iterations Nmax. Different
stop criteria model different contour properties, as follows:

• Stopping when the deformed contour area A(C) reaches a
fraction fA < 1 of the initial contour area controls the tight-
ness of the AOI shape. Smaller fA values mean tighter areas.
Stopping after a given number of iterations N < Nmax does
roughly the same and is also cheaper to implement.

• Stopping when the deformed contour length |C| reaches a
fraction fC > 1 of the initial contour length controls the
smoothness of the AOI shape. Larger fC values mean less
smooth contours.

Figure 8 shows several deformation steps for a simple AOI, start-
ing from the convex hull until a quite tight shape, reached after
20 iterations. The parameter setting εn = 0.005|C| = 0.5δ ,εs =
|qi−1 − qi+1|/4, N ∈ [5..20] and fC ∈ [1,2] give very good results
in practice for all configurations (shape, position, and number of
diagram elements). Besides preventing self-intersection, we must
also prevent the contour to become too sparsely sampled, due to the
contour length increase during deformation. We do this by check-
ing the distances |qi−qi+1| and |qi−qi−1| between the moved point
qi and its neighbors. If these exceed 2δ , we insert a new contour
point halfway between qi and the respective neighbor. Checking
for the contour becoming too densely sampled is not needed, as we
know from shape processing that motion of lines (the initial con-
vex hull edges) in (smoothed) normal direction always stretches the
contour [Costa and Cesar 2001].

Fast convex hull and deformation computations are crucial for an
efficient outer skeleton construction. We use the Triangle geomet-
ric library [Shewchuk 1996] which provides a state-of-the-art con-
vex hull implementation. For the deformation, the distance test-
ing in Equation 2 must be done very efficiently. A naive imple-
mentation would use O(NC(NC + E)) operations per deformation
step for NC contour points and E elements, which is too slow for
real-time performance. We solve this by using a fast spatial search
structure that locates the nearest point q j to the moving point qi
in O(log(NC + E)) operations, using kd-trees [Arya et al. 1998].
All in all, these choices let us deform complex contours containing
hundreds of elements (E) and hundreds of contour points (NC) in
sub-second time.

3.2 Drawing Areas by Skeleton Splatting

We now use the skeleton to draw the AOI, as follows. First, we
construct a so-called splat. This is a radial function T (x,y) =
f (

√
x2 + y2). T looks as shown by Fig. 3 a (dark=opaque,

light=transparent). Here, f is called the splat profile, or shape. We
shall use f (x) = xk, so T increases linearly with the distance for
k = 1, exponentially for k > 1 and logarithmically for k < 1 (see
Fig. 3 b). We implement T as a transparency (also called alpha)
texture with the OpenGL graphics library [Woo et al. 2001]. Hence,
T = 0 yields fully transparent pixels and T = 1 fully opaque pixels.

Figure 3: Splat texture(a) and texture profile (b)

The inner skeleton method [Byelas and Telea 2006] rendered the
AOI by drawing the texture T centered at every skeleton point pi j,
scaled by the radius ri j, and colored by a user specified AOI color.
Figure 5 a shows the result of this method for a simple diagram
containing five elements and two areas of interest.

Several properties of this method are visible here. First, the AOI
is visually quite different (i.e, soft and round) from the diagram

Figure 4: Tightness and smoothness control (inner skeleton)

(drawn with sharp, straight lines). This distinguishes the two vi-
sually. Splatting the inner AOI skeleton is a robust, simple and
fast way to draw a shape that contains all elements in an AOI and
has a simple, predictable ’look’. A first simple, but effective, im-
provement we propose with respect to the original method [Byelas
and Telea 2006] is the choice of the radius factor kR (introduced
in Sec. 3.1). The original method set kR to a small constant value
kR = 0.1. We let users vary kR to control the tightness and smooth-
ness of the AOI shape. Small (kR ∈ [0.1,0.5]) values yield the typi-
cal tight star-shaped AOIs shown by the original method (Fig. 4 a).
Large (kR ∈ [1,3]) values yield rounded, softer shapes (Fig. 4 d). In-
between kR values balance the trade-off between the shape smooth-
ness and tightness (Fig. 4 b,c).

(a) inner skeletons (b) outer skeletons

Figure 5: Areas of interest drawing styles

However useful, the inner skeleton AOI drawing has a major prob-
lem: It scales quite poorly for diagrams having overlapping AOIs
of complex shapes (see e.g. Fig. 15 (bottom). The main problem of
the inner skeletons is that they have a fixed, star-like, topology, i.e.
a center connected to the elements’ centers. Inner skeletons work
quite well for small-size AOIs (e.g. Fig. 5) or AOIs whose convex
hull is close to a regular n-sided polygon, but not that well for more
complex shapes (e.g. Fig. 16). Our outer skeletons solve this prob-
lem. Figure 5 b shows the same AOI as in Fig. 5 a, this time drawn
using the outer skeleton, as explained next.

We draw the AOIs using the outer skeleton in two steps. First, we
triangulate the deformed contour {qi} (Sec. 3.1) and render the re-

Figure 6: Contour splatting: (a) contour; details with (b) radial and
(c) band splatting

sulting triangles in the area’s color. This takes care of the area it-
self. Next, we would like to draw a soft, fuzzy contour, similar to
the effect in Fig. 5 a for the inner skeleton drawing. We first tried
the same idea of splatting the contour points with the radial tex-
ture. However, this requires a very high number of splats (roughly,
one every few contour pixels) to produce relatively smooth border,
which is quite inefficient. And the quality is still poor (see Fig. 6).
The contour in Fig. 6 a is rendered with splats. We can see on
the zoomed-in detail (Fig. 6 b) that, even though we are using a
high splat density, the border looks jagged. We solved this prob-
lem by designed a better rendering method for the outer skeleton,
as follows. We first offset the contour points qi outwards along the
contour normal~n:

q′i = qi + εn~n (3)

Here,~n and εn are the same as in Equation 1. This creates a narrow
band along the contour (Fig. 7 a). Next, we create a ’band’ texture
T (x,y) = f (x) (Fig. 7 b) where f is the same profile as for the
splat texture (Fig. 3) and use it to render the border quadrilaterals
(qiqi+1q′i+1q′i). This yields the soft border effect (Fig. 5 b) which
looks very much like the soft edges of the inner skeleton rendering
(Fig. 5 a). Compare also Fig. 6 c (drawn with the new method and
using about 80% less contour point samples) with Fig. 6 b (drawn
with radial splats).

Figure 7: Soft border splatting for outer skeletons

By controlling the various splatting parameters, we obtain visual ef-
fects useful for different user scenarios. If we want to draw ’hard’
AOIs with a sharp, precise, border, we set k < 1 for the texture pro-
file (e.g. k = 0.3, Fig. 9 a). This is useful e.g. to show important
system properties or metrics having a high confidence value. If we
want to draw ’soft’, fuzzy AOIs, we set k > 1 (e.g. k = 5, Fig. 9 b).
This is useful e.g. to show less important properties, which should
not distract the eye from the more important diagram drawing, or
metrics having a low confidence value. If we want to draw tight
areas, we use a low kR value (e.g. 0.1) in inner skeleton mode, or

more deformation iterations (e.g. 10..20) in outer skeleton mode.
Conversely, if we want looser, more rounded areas, we use a high
kR value (e.g. 2) in inner skeleton mode, or fewer deformation itera-
tions (e.g. 5) in outer skeleton mode. Clearly, many other scenarios
are possible too.

Figure 8: Controlling tightness and smoothness (outer skeletons)

A second variation our users found very intuitive and useful during
our case studies (Sec. 4) was to draw AOIs as contours instead of
filled shapes. For the inner skeletons, this is done in two passes.
First, we draw the filled AOI using the splat textures, as described
so far. Second, we draw the same AOI, using the same splat texture
centered at the skeleton points, but now scaled to a smaller radius
d ∗ ri j, and using the background color, e.g. white. d ∈ [0,1] con-
trols the contour width: d = 0 yields the filled shapes, and d ≈ 1
yields a very thin contour. As before, k controls the contour sharp-
ness. Figure 9 (c,d) shows two examples of areas of interest drawn
with contours with a contour width d = 0.8.

Figure 9: Filled and contoured areas (inner skeletons)

However, contour drawing using the inner skeletons has the un-

pleasant property that it erases the inside of the contour. This leads
to undesired effects when e.g. drawing multiple, overlapping AOIs,
as shown in Fig. 11 a. This problem is easily solved when draw-
ing AOI contours using the outer skeleton (Fig. 11 b,c). We do this
by simply skipping drawing the triangulation and drawing only the
soft contour band, this time using a mirrored band texture (Fig. 7 c)
to make the border look symmetric. As shown in Fig. 11 b, we can
now easily understand which elements are in which AOI, e.g. the
upper-right element is in both AOIs. After our users experimented
with this display mode one some large diagrams (see Sec. 4), they
required the same intuitive display of overlapping AOIs also in
filled area mode, not only contour mode. We solved this request
using outer skeletons by using a special blending mode, as follows.
First, we render the background black. Next, we render all AOIs
using 1−RGBi, where RGBi is the actual color of area i, in additive
OpenGL blending mode. After all areas are rendered, we negate
the image. The resulting color will be (see also Fig. 11)

RGB = 1− (max∑
i

(1−RGBi)) (4)

The above means that areas are rendered as before where they do

Figure 10: Eraser texture design

not overlap. Overlap regions have a color equal to the subtractive
blending of the overlapping areas’ colors, i.e. the darker they are,
the more areas overlap there (Figs. 5 b, 11 d).

(a) Contour-area overlap problem (b) Contour-area overlap solution

(c) Two overlapping contours (d) Two overlapping areas

Figure 11: Drawing overlapping areas of interest

3.3 Erasing Overlapping Components

Both inner and outer skeleton drawing methods described so far
guarantee that the drawn shape visually surrounds all elements in
the AOI. However, the drawn shape might surround, or overlap
with, elements which are not in the AOI, but close to it, e.g. the
marked one in Fig. 12. This is, of course, an undesired side effect.
As explained in Sec. 1, one of our hard constraints is to never mod-
ify the diagram layout. Hence, we must find some other solution to
visually show that the problem elements are actually not in the AOI
they visually interfer with. We solve this problem as follows. First,
we draw all AOIs as described so far. Next, for all elements not in
any AOI, we draw an eraser texture. This is a transparency texture,
like the splat texture (Fig. 3 a) used to draw the AOIs, except that
it has a rectangular (instead of radial) shape (see Fig. 10 a) and a
profile given by a slightly different function. Instead of f (x) = xk,
we use now the following profile f (see also Fig 10):

f (x) =

{
1, x < b(

x−b
b

)k
, x ≥ b

(5)

Using a fixed k = 4 and varying b in [0,1] yields an eraser ranging
from hard (b = 1) to very soft (b = 0.1), as shown in Fig. 12. The
value b = 0.8 is a good default.

Figure 12: Erasing incorrectly overlapping elements

Drawing the eraser texture mapped on background-colored (white)
rectangles slightly larger than the components effectively erases the
AOIs underneath, yielding the effect shown in Fig. 12. The ele-
ment that was erroneously overlapping with the AOI appears now
to be outside the AOI. As for the splat textures, we can control the
eraser strength by the k parameter, yielding results ranging from
hard to soft (Fig. 12 c,d). We had a good thought about whether
this erasing technique is sufficient and/or appropriate for visually
marking elements as being outside of an AOI. Another possibility
we investigated was to constrain the AOI shape to ’avoid’ including
such elements. After various experimentation, however, we found
this route to be too complex, since the layout configurations met
in practice on large diagrams with may AOIs are very difficult to
handle in a geometric fashion. However limited at the first sight,

our eraser technique always delivers controlled, visually expected
results, which are easy to interpret for the users.

4 Applications

We present below two case studies we did to assess the effective-
ness of our area of interest visualizations. In both situations, we
targeted a group of industrial users that had a set of UML diagrams
representing some system design. Areas of interest are defined us-
ing either metrics (Sec. 4.1) or reverse engineering analysis tools
(Sec. 4.2). These data are input into our AOI visualizer, which was
built atop of MetricView, an interactive UML and metric visualiza-
tion tool [Termeer et al. 2005]. The users employed this tool to
discuss various questions they had on the designs in their diagrams.
We monitored the users’ discussions and also analyzed their feed-
back, and used this to (iteratively) improve the design of our AOI
visualization methods.

4.1 Application 1: The Car Media Center

Within the ITEA Trust4All project [ITEA 2005], a Real-Time Inte-
gration Environment (RTIE) was built. RTIE provides design and
development of embedded real-time, component-based systems,
e.g. e.g. mobile phones, car navigators, or set-top boxes [Bon-
darev et al. 2006, to appear] using the ROBOCOP component
model [ITEA 2002]. RTIE provides a composer tool, for visual sys-
tem assembly from components, and a quality assessment and anal-
ysis (QAA) tool, for design-time analysis and prediction of system
attributes, e.g. reliability, hardware resource usage, and throughput.
Our visualization reads the composer tool output (a component di-
agram) and QAA tool output (attributes) and visualizes the compo-
sition and areas of interest determined by the predicted attributes.

With the RTIE toolset, our users have developed a Car Media Cen-
ter (CMC) real-time system with the following functionality: GPS-
based car navigation, radio and digital TV reception and display,
and CD/DVD playback. Figure 13 is a snapshot from the Eclipse-
based composer GUI, showing the CMC system design consisting
of 28 components and the connections between provided interfaces
(at the left of icons) and required interfaces (at the right of icons).
The CMC has a dataflow-like design. Let us briefly explain the
component functions in the CMC system. The Main UI compo-
nent (1) receives user input by polling the buttons on the car dash-
board. The TV UI (2) and DVD UI (3) components receive and
process TV and DVD-related user commands. TV UI sends the
currently selected TV channel to the TV Tuner (4) that does the
TV tuning. The transport bit stream of the chosen TV channel
is sent to the TS DMX (5) component, which de-multiplexes the
stream into video and audio. The video stream is next processed
by several video filters: VLDecoder (6, variable length decoder),
Inverse Quantizer (7), IZigzag Scanner (8, inverse zigzag scan),
IDCT row and IDCT column (9, 10, inverse row/column discrete
cosine transform). The decoded video stream is next sent to the
VideoController (11) component, which specifies on which display
to show the video. A second video stream comes to the Video-
Controller from the Graphics (12) component carrying the graphi-
cal data (UI and navigation) coming from the Main UI component.
The VideoController outputs two video streams to the Main Scaler
(13, scales images to display size) or the PiP Scaler (14, scales
images to picture-in-picture format). Two VideoRenderer (15, 16)
components perform the actual display rendering. The audio path
starts from the TS DMX (5) or DVDReader (17) and PS DMX (18)
components, goes to the AudioDecoder (19) and AudioController

(20), and ends up in the AudioOutput (21) component, which con-
trols the car loudspeakers. AudioController also accepts the audio
stream from the Radio (22) component and decides which of the
two streams to play. Finally, the car navigation is implemented as
follows. The user inputs an address via the Smart Typewriter (23)
component. The address is next sent to the SearchEngine (24) com-
ponent, which finds the desired location by querying the DataBase
(25) component, compares it with the current car location received
from the GPSReceiver (26) component, and computes the best driv-
ing path. The driving path and instructions are sent to the Graphics
component for video rendering and to the AudioController compo-
nent for voice messages. Finally, the Timer (27) and Logger (28)
components perform system-wide synchronization and logging.

The architects of the CMC system were interested in several as-
pects. Among others, these were:

• How are component functions related to vendors?

• Which components are on the video or audio paths?

• Which components have user interface functions?

• Is performance-sensitivity related to functionality?

• How is availability related to functionality?

Figure 14: AOIs for the Car Media Center system (icons)

All aspects (vendor, performance, availability, etc) were repre-
sented by metric values obtained from the RTIE toolset. Based on
the values of these metrics, our users created next several areas of
interest, as shown in Table 1.

Figure 13: Car Media Center component-based architecture (snapshot from the visual composition tool)

Area Meaning of components in the area
A1 Components produced by Vendor A
A2 Components produced by Vendor B
A3 Components on the video path
A4 Components on the audio path
A5 Availability-sensitive components
A6 Performance-sensitive components
A7 Interaction-sensitive (GUI) components

Table 1: Areas of interest for the CMC architecture

Our users first tried to visualize these areas of interest (AOIs) using
the standard metric icons provided by MetricView [Termeer et al.
2005], by assigning different ’marker’ icon shapes and colors to ev-
ery AOI. Components in one AOI thus share the same marker shape
and color, which are chosen in some way so that they look differ-
ent for different area. Figure 14 shows the result. As expected,
this visualization is not very easy to follow. Next, the users tried
to visualize the same AOIs, this time using AOIs rendered with the
original inner-skeleton-based splatting method [Byelas and Telea
2006]. Figure 15 shows the result, which uses the same area colors
as for the markers in Fig. 14. The AOIs are now easier to follow.
Looking at the Vendors and Paths visualizations, we see now easily
that all video components (A3) come from vendor A (A1). Studying
the component functions, described earlier, we concluded that ven-
dor B (A2) provided all the navigation (GPS)-related components.

Still, this visualization has some problems. In the ’Paths’ view
(Fig. 15 middle) it is not quite clear whether the leftmost compo-
nent is in both the video (A3) and audio (A4) areas. Also, in the
’Sensitivity’ view (Fig. 15 bottom), it is not clear how the avail-
ability (A5) and performance (A6) areas overlap exactly. Moreover,
the star-shaped form of the AOIs is somehow visually distracting.
It suggested (at least to one user) there is something special about
the element(s) located at the star center, which is of course not the
case. We used next our new outer-skeleton based rendering method
(Fig. 15 b). In Fig. 15 b (middle), we see a dark area around compo-
nent 1 (leftmost). This says, as explained in Sec. 3.2, it is in two ar-
eas (i.e. video and audio). The advantage of the new visualization is

even clearer comparing Fig. 15 b (bottom) with Fig. 15 a (bottom).
The dark areas show now easily the overlap of A5 (availability) with
A6 (availability) and A7 (performance). Comparing the ’Sensitiv-
ity’ with the ’Vendors’ and ’Paths’ views answers further questions.
We see that only video components (A1) are performance-sensitive
(A6). The interaction-sensitive components (A7) are found only at
the beginning of both video and audio paths (A3,A4). Only compo-
nents from vendor B (A2) have availability-related problems (A5),
except video component ’11’ which is from vendor A. Finally, we
locate three interesting components (VideoController, MainScaler
and PiP Scaler, i.e. 11,13, and 14 in Fig. 15) which are both perfor-
mance and availability-sensitive.

Finally, we mention that we can show diagrams, metric icons, and
areas of interest together in a single view, if desired. Figure 16
illustrates this with a snapshot from the actual visualization tool.
Clearly, such images can become overcrowded. We solve this by
the original MetricView idea [Termeer et al. 2005], i.e. let users
adjust the transparencies of diagrams, metrics, and AOIs separately.
In typical scenarios, users would make the diagram fully opaque
(salient) and use a 50% transparency for either metrics or AOIs.

Figure 16: Combining diagrams, metrics and AOIs

(a) inner skeleton rendering (b) outer skeleton rendering

Figure 15: AOIs for the Car Media Center system. Compared to Fig. 14, areas are easily visible

4.2 Application 2: Reverse Engineered UML

The users for our second application work in a laboratory for qual-
ity of software [LaQuSo 2006]. They extracted UML from indus-
trial C++ code, using the Columbus tool [Ferenc et al. 2002], and
identified several high-level design elements in terms of groups of
classes. They used our AOI visualizations as a medium to see and
discuss their results during this reverse engineering process. First,
they tried to show AOIs by icon marking (similar to Fig. 14). The
results were poor, since their diagrams are quite large. Next, they
tried to display AOIs using rectangular frames (Fig. 17 a). Again,
the result is hard to understand, since there is a lot of visual clut-
tering. They tried our improved outer skeleton method (Fig. 17 c).
Finally, they settled for a mixed rendering (Fig. 17 d), containing in-
ner skeletons (e.g. upper-left), outer skeletons (vast majority), and
even rectangular frames (lower-left). Clearly, the three rendering
techniques can nicely co-exist in the same visualization. Although
this use case has 12 areas of interest on a quite complex diagram,
the users could construct a ’meaningful and useful’ (in their own
words) visualization in under a few minutes, using basically the de-
fault parameter settings. The only settings they actually wished to
change were the hues for each area, and whether an area is to be
drawn as full or contour. One aspect the users were interested in
was finding out whether certain design principles, such as nesting
of subsystems, were violated or not. This can be easily checked in

our visualization, as subsystem nesting corresponds one-to-one to
visual AOI nesting.

We do not detail here the actual application-specific meanings of the
AOIs in this UML diagram (in this case, an industrial controller),
given the limited space. However, we believe the readers them-
selves can see the usefulness of visualizations such as Fig. 17(right)
for their own diagrams and scenarios.

5 Discussion

The technical description of the AOI rendering in Sec. 3.2 involves
many parameters, which may suggest that users must tune many
values in the actual tool to get useful visualizations. This is luck-
ily not the case. We mentioned all these parameters just to make
the explanation of our technique detailed and complete. In the ac-
tual tool GUI, users actually tune just a few parameters: AOI color,
drawing mode (filled or contour), and AOI transparency, and use
default values for the rest. Using AOIs is very simple and intuitive.
Making the pictures in Section 4 took just a few minutes for users
already familiar with UML editors.

The main contribution of this paper is the outer skeleton technique
for rendering AOIs. In practice, this technique minimizes unnec-

(a) Frames rendering (b) Inner skeletons rendering

(c) Outer skeletons rendering (d) Mixed rendering (frames, inner skeletons, outer skeletons)

Figure 17: Reverse-engineered UML diagram with 12 AOIs, various rendering modes. (c,d) are our favorites.

essary visual overlap of the AOIs as desired, in almost all cases,
even for complex diagram and area layouts. Hence, the question
arises whether the original inner skeleton technique is still use-
ful. Our answer is positive. We noticed that, for small or middle-
sized AOIs having a convex hull close to a regular n-sided polygon,
inner-skeleton AOI rendering produces more rounded, more ’natu-
ral’ shapes than the outer skeleton technique. Geometrically, there
is an interesting connection between the inner and outer skeletons.
For such diagrams and a very fine sampling rate δ and large number
of deformation iterations (see Sec. 3.1, the outer skeleton converges
to the inner skeleton. Since the contour points move inwards with
unit normal speed, until they get very close to points coming from
other locations of the contour, the outer skeleton converges to the
so-called medial axis of the convex hull [Telea and van Wijk 2002].
This result is interesting, since it predicts the kind of shapes our
method will produce.

The outer-skeleton AOI renderer was written in OpenGL in un-
der 500 lines of C++ and added to the MetricView tool [Termeer
et al. 2005]. Adding AOI rendering to other tools, e.g. Ratio-
nal Rose [IBM 2005] or Together [Borland 2005], should be very
easy, once one has access to the tool renderer code. Rendering an
AOI involves drawing a few hundred transparency textures, which
OpenGL can do in real-time. This enables users to interactively

edit component diagrams, e.g. by dragging element icons in the
tool GUI, while AOIs are re-rendered on-the-fly. Compared to
the significantly more complex implementation, delicate parame-
ter setting, and less robust visual behavior of algorithms like H-
BLOB [Sprenger et al. 2000], we can say our method is indeed an
effective and efficient way to visualize areas of interest.

A most recent version of our tool is downloadable from
http://www.win.tue.nl/∼alext/ARCHIVIEW

6 Conclusions

We have presented a technique that adds areas of interest (AOIs) to
the rendering of classical UML-like diagrams, based on splatting
hald-transparent textures on a geometric skeleton computed from
the diagram layout. We borrowed the texture splatting principle
from an existing work on AOI rendering [Byelas and Telea 2006].
Our contribution is as follows. We added a completely new ’outer
skeleton’ concept which visibly improves upon the original ’inner
skeleton’ from [Byelas and Telea 2006], by reducing visual clutter
and making regions of overlapping areas of interest better visible.
We proposed a new splatting scheme, using band textures, to com-
plement our new outer skeleton shapes, yielding the same type of

amooth results as the radial splat texture did in combination with
the inner skeletons. We designed a blending mode that combines
colors in regions where several areas of interest overlap, in order to
make such regions easily visible. Finally, we applied the complete
design to UML class diagrams, whereas [Byelas and Telea 2006]
targeted only component diagrams.

Throughout our visual design, users and their preferences stood
central: First, we use the UML-like diagrams and graphical layouts
familiar to architects and developers. Second, users can navigate
between classical UML-like diagram drawing and the AOIs by the
simple use of a transparency slider. Third, AOIs are defined easily
and flexibly using software metric values. Since metric and diagram
specification are separate, we can define and/or change any number
of AOIs per user scenario without touching the diagram data and/or
its XMI specification format. We conducted two experiments where
actual system architects and analysts used our AOI visualizations as
a means to explore and exchange ideas about the system represented
by the diagrams. In this sense, the soft-shaped, AOI images can be
seen as exploration-time annotations showing fuzzy concerns atop
of the crisply drawn, ground-truth UML diagrams.

As future work, we are investigating ways to parameterize the AOI
rendering (e.g. color, softness, and texture) by actual metric val-
ues, to display such metric values for whole diagram element sets.
Moreover, we are looking at ways to visualize the temporal dimen-
sion, i.e. changing areas of interest atop of changing diagrams.

Acknowledgments

This research is part of the ITEA project Trust4All, which devel-
ops methods to describe, evaluate, and assess trust and other non-
functional parameters in component-based frameworks used in the
middleware of high-volume embedded appliances [ITEA 2005]

References

ARYA, S., MOUNT, D., NETANYAHU, N., SILVERMAN, R., AND
WU, Y. 1998. An optimal algorithm for approximate nearest
neighbor searching. J. of the ACM 45, 891–923. www.cs.umd.
edu/mount/ANN.

BALZER, M., AND DEUSSEN, O. 2005. Exploring relations within
software systems using treemap enhanced hierarchical graphs. In
Proc. VISSOFT, IEEE Press, 89–94.

BONDAREV, E., CHAUDRON, M., AND DE WITH, P. 2006,
to appear. A process for resolving performance trade-offs in
component-based architectures. In Proc. 9th Intl. Symposium
of Component-Based Software Engineering, Springer LNCS.

BORLAND. 2005. Together. www.borland.com/together.

BYELAS, H., AND TELEA, A. 2006. Visualization of ar-
eas of interest in component-based architectures. In Proc.
EUROMICRO SEAA - Component-Based Software Engineer-
ing, IEEE Press. www.win.tue.nl/alext/ALEX/PAPERS/
EUROMICRO06/paper.pdf.

COSTA, L., AND CESAR, R. 2001. Shape Analysis and Classifica-
tion: Theory and Practice. CRC Press.

DUNKE, R., AND SCHMIETENDORF, A. 2000. Possibilities of
the description and evaluation of software components. Metrics
News 5.

FENTON, N., AND PFLEEGER, S. 1998. Software Metrics: A
Rigorous and Pracical Approach. Chapman & Hall.

FERENC, R., BESZÉDES, A., TARKIAINEN, M., AND
GYIMÓTHY, T. 2002. Columbus – reverse engineering tool and
schema for c++. In Proc. ICSM, IEEE Press, 172–181.

GANSNER, E., AND NORTH, S. 2000. An open graph visualization
system and its applications to software engineering. Software:
Practice & Experience 30, 11, 1203–1233.

GILL, N., AND GROVER, P. 2003. Component-based measure-
ment: A few useful guidelines. ACM SIGSOFT Software Engi-
neering Notes 28.

GOULAO, M., AND ABREU, F. 2004. Formalizing metrics for
COTS. In Proc. MPEC’04, Edimburgh.

IBM. 2005. Rational Rose. www.306.ibm.com/software/
rational.

ITEA. 2002. ROBOCOP: A robust open component-based
software architecture for configurable devices. Public docu-
ment, version 1.0. available at www.hitech-projects.com/
euprojects/robocop.

ITEA. 2005. Trust4All project. www.win.tue.nl/trust4all.

LAQUSO. 2006. Laboratory for quality of software. Eindhoven
University of Technology, the Netherlands. www.laquso.com.

MARCUS, A., FEND, L., AND MALETIC, J. I. 2003. 3d represen-
tations for software visualization. In Proc. ACM SoftVis, 27–36.

MÖLLER, A., AKERHOLM, M., FEDERIKSSON, J., AND NOLIN,
M. 2004. Evaluation of component technologies with respect to
industrial requirements. In Proc. EUROMICRO’04, IEEE Press,
56–63.

RILLING, J., AND MUDUR, S. P. 2002. On the use of metaballs to
visually map code structures and analysis results onto 3d space.
In Proc. WCRE, IEEE Press, 299–306.

SHEWCHUK, J. R. 1996. Triangle: Engineering a 2d quality mesh
generator and delaunay triangulator. In Proc. Applied Computa-
tional Geometry, ACM Press, 124–133.

SPRENGER, T., BRUNELLA, R., AND GROSS, M. 2000. H-
blob: A hierarchical clustering method using implicit surfaces.
In Proc. Visualization, IEEE Press, 61–68.

TAUBIN, G. 2000. Geometric signal processing on polygonal
meshes. In EUROGRAPHICS STAR Reports.

TELEA, A., AND VAN WIJK, J. J. 2002. An augmented fast march-
ing method for computing skeletons and centerlines. In Proc.
VisSym, IEEE Press, 151–158.

TERMEER, M., LANGE, C., TELEA, A., AND CHAUDRON, M.
2005. Visual exploration of combined architectural and metric
information. In Proc. VISSOFT, IEEE Press, 21–26.

TILLEY, S., WONG, K., STOREY, M., AND MÜLLER, H. 1994.
Programmable reverse engineering. Intl. J. Software Engineering
and Knowledge Engineering 4, 4, 501–520.

VOINEA, L., AND TELEA, A. 2004. A framework for interactive
visualization of component-based software. In Proc. EUROMI-
CRO SEAA - Component-Based Software Engineering, IEEE
Press, 567–574.

WOO, M., NEIDER, J., DAVIS, T., AND SHREINER, D. 2001.
OpenGL Programming Guide, 3rd edition. Addison-Wesley.

WUST, J. 2005. SDMetrics: The software design metrics tool for
UML. www.sdmetrics.com.

