
Visualisation and Simulation with
Object-Oriented Networks

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr. M. Rem, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op donderdag 26 oktober 2000 om 16.00 uur

door

Alexandru Cristian Telea

geboren te Boekarest, Roemeni¨e

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. R.M.M. Mattheij
en
prof.dr.dipl.ing. D.K. Hammer

Copromotor:
dr.ir. J.J. van Wijk

Contents

1 Introduction 7
1.1 Scientific Simulation and Visualisation . 7
1.2 Limitations of Current Environments . 9
1.3 Scope of This Thesis. 10
1.4 Thesis Outline 11

2 Context Overview 13
2.1 Definitions. 13
2.2 SimVis Architectural Models .. 14

2.2.1 Application Libraries and Development Environments 14
2.2.2 Turn-key Applications . 15
2.2.3 Dataflow Application Builders . .. 15

2.3 User Categories and Their Requirements 16
2.3.1 End users . .. 16
2.3.2 Application Designers 18
2.3.3 Component Developers . 18
2.3.4 Requirements Overview 19

2.4 Architecture Comparison 20
2.4.1 Applications Libraries and IDEs . 20
2.4.2 Turn-key Systems . 21
2.4.3 Application Builders 21
2.4.4 Conclusion . 23

2.5 Visual Application Builders .. 24
2.5.1 Requirements. 24
2.5.2 Single vs Dual Language Frameworks . 27
2.5.3 Existing Application Builders .. 28

2.6 Conclusion 32

3 Architecture of VISSION 35
3.1 Overview . 35
3.2 Combination of Dataflow and OO Modelling . 37

3.2.1 White-Box Interfacing 38
3.2.2 Metalanguage-Level Integration 42

3.3 The Metaclass 43
3.3.1 Metaclass Ports Overview . 43
3.3.2 Port Specification . 47

3

4 CONTENTS

3.3.3 Metaclass Update Operation 49
3.3.4 More About Metaclass Ports . 52
3.3.5 Metaclasses and Object-Orientation . 59

3.4 The Meta-Type . .. 61
3.4.1 Default Values . 62
3.4.2 Serialisation Operation . 62

3.5 The Meta-Group 64
3.5.1 Example . 65
3.5.2 Meta-group Advantages. 65

3.6 The Meta-Library .. 65
3.7 Conclusion 67

4 Application Design and Use in VISSION 69
4.1 Background 69
4.2 Application Design User Interface 70

4.2.1 Icons and Networks 70
4.2.2 The Network Manager 72
4.2.3 The MC++ Browser . 76

4.3 End User Interface. 77
4.3.1 The Component Interactors 77
4.3.2 Text Interface 78

4.4 Interactor Construction . 80
4.4.1 The Widget Database. 80
4.4.2 The Interactor Construction Algorithm . 81
4.4.3 Interface Preferences Specification . 83
4.4.4 Reference Ports 83

4.5 Conclusion 85

5 Design and Implementation of VISSION 87
5.1 The Kernel 87

5.1.1 The Kernel-Component Interface . 87
5.1.2 The C++ Virtual Machine . 89
5.1.3 Kernel Structure . 89
5.1.4 TheInterpreter Subsystem 90
5.1.5 TheMetaCPPManagerSubsystem . 91
5.1.6 TheLibraryManagerSubsystem . 93
5.1.7 TheDataflowManagerSubsystem . 96

5.2 The Views . 98
5.3 Conclusions. 103

6 Numerical Simulation Applications 105
6.1 Introduction 105
6.2 Electrochemical Drilling . 106

6.2.1 Physical Modelling 106
6.2.2 Mathematical Equations 107
6.2.3 Numerical Approach. 108
6.2.4 Computational Steering 110

CONTENTS 5

6.2.5 Conclusion . 111
6.3 The NUMLAB Numerical Laboratory . 111
6.4 The mathematical framework . 112

6.4.1 Non-linear systems and preconditioners . 113
6.4.2 Ordinary differential equations . .. 116
6.4.3 Partial differential equations and initial boundary value problems 117
6.4.4 Conclusions. 120

6.5 From the Mathematical to the Software Framework 120
6.5.1 TheGrid module . 120
6.5.2 TheSpace module 121
6.5.3 TheFunction module . 121
6.5.4 TheOperator module . 122
6.5.5 TheSolver module . 122

6.6 An object-oriented approach to the software framework 123
6.7 Transient Navier-Stokes equations . 124

6.7.1 The Navier-Stokes equations . 125
6.7.2 The time discretisation . 127

6.8 Application design and use . 128
6.8.1 The Navier-Stokes simulation .. 129
6.8.2 The computational domain . 129
6.8.3 Function spaces . 130
6.8.4 Operators and solvers 130
6.8.5 Functions .. 131
6.8.6 Output monitoring .. 131
6.8.7 Navier-Stokes simulation steering and monitoring 131

6.9 Conclusion 134

7 Scientific Visualisation Applications 135
7.1 Introduction 135
7.2 The Visualization Toolkit . 136

7.2.1 Blunt Fin Visualisation 137
7.2.2 Tensor Field Visualisation 138
7.2.3 Medical Visualisation 140
7.2.4 VTK Limitations . 141

7.3 Open Inventor . 143
7.3.1 Inventor visualisations . 144
7.3.2 Inventor direct manipulation 146
7.3.3 VTK and Inventor Combination . 146

7.4 Realistic rendering. 149
7.5 Discussion 151

8 Conclusions 155
8.1 Introduction 155
8.2 SimVis Application Construction and Use . 155
8.3 Directions for Future Work 157

A Plates 161

6 CONTENTS

B MC++ Syntax 163
B.1 Lexical Elements .. 163
B.2 The Meta-Library .. 165
B.3 The Meta-entity . 165

B.3.1 The Metaclass 166
B.3.2 The Meta-group 168
B.3.3 The Meta-type 169

Chapter 1

Introduction

1.1 Scientific Simulation and Visualisation

The past decades have seen a revolutionary increase in penetration of computer systems in the sci-
entific research domain. The ever decreasing price/performance ratio of computer systems has made
computer-based simulation a compelling alternative to real experimentation in application areas as di-
verse as hydro and aerodynamics, civil engineering, medical sciences, and architectural design.

Nowadays computer applications can accurately model complex phenomena involving large am-
ounts of time-dependent parameters and multidimensional variables. Weather forecast or computa-
tional fluid dynamics simulations may generate hundreds of datasets of gigabyte size during a single
run. The decrease of the computer price/performance ratio makes it possible to run simulation pro-
grams that produce large datasets on desktop computers, in close to real-time. Consequently, the prob-
lem of understanding the produced datasets has gained a large attention in the last ten years.

Scientific visualisation adds an important dimension to the process of acquiring insight in the sim-
ulated processes. Post-simulation analysis, the visual examination and interpretation of the results pro-
duced by a computer simulation after the simulation process has ended, is the most widespread form
of data visualisation. Online visualisation ortracking represents the next step towards more interac-
tion. The data produced at each simulation time step is directly sent to the visualisation pipeline for
inspection. The researcher can monitor the time evolution of the simulated process, stop the simula-
tion when the observed output is considered invalid, and restart the process with a different input. Still,
in the case of processes driven by many input parameters, tracking is not a sufficient option. In order
to explore the process evolution in another direction in the parameter space, the simulation must be
stopped, reconfigured, and restarted.

Interactive processsteering gives additional insight in the complex time-dependent behaviour of
simulated processes. Interactive steering allows controlling of both the visualisation and the simulation
parameters in time and offers immediate visual or numerical feedback on the parameter change.

The increase in sophistication of computer simulation and visualisation software has been naturally
parallelled by an increased complexity of the involved software systems. Early simulations consisted
mainly of monolithic software applications running on supercomputers which read and wrote their in-
put and output data as batch files. Usually such applications were dedicated to solving a small set of
specialised problems. With the growth and diversification of computer software, this application model
has become uneconomical and inflexible, leading to the advent of scientific computation and visuali-
sation libraries. The driving force behind the appearance of such libraries was the need to capture the
growing amount of application domain knowledge in an efficiently reusable form, and thus to minimise

7

8 CHAPTER 1. INTRODUCTION

the costs and complexity of producing new applications.
The academic research environment with its unique requirements poses a major challenge to the de-

velopment of simulation and visualisation software. Development of an interactive simulation requires
expertise in various domains such as simulation, visualisation, user interfaces, operating systems, net-
working, and so on. Research applications often have an experimental nature, as they are built to test
new concepts, algorithms, data structures, or simply to examine existing problems and datasets in a dif-
ferent manner. The very nature of the exploratory process means that there is often no fixed application
skeleton or pipeline. Instead, insight or new ideas acquired during experimentation with an application
can determine the need to change its structure by e.g. adding new visualisation functions or replacing
a data structure with a more efficient one.

An academic researcher is often a non programmer expert that needs to invest his time in under-
standing the problem domain, rather than building complex, fine tuned software architectures. The
high level of flexibility needed in research environments when building applications for a growing
range of problems determines a strong need for software reuse. In short, an easy to use, highly pro-
ductive way of programming scientific applications is needed.

However, contrary to the hardware advances, estimated to be a factor of��� (in arbitrary units)
in the last 30 years, programmer productivity increased only by a factor of 13 [29]. The difficulty to
reuse software is one of the main obstacles the scientific research community faces when new simu-
lation or visualisation applications are to be created. The problem is intrinsically hard, as there is no
common denominator in the software industry (and thus even less in research communities which are
not specialised in software engineering) in terms of software development, assembly, communication,
and evolution.

Interactive simulation and visualisation applications have an intrinsically complex structure, in-
volving issues such as event loops, synchronisation, data communication, and graphical user interfaces.
Producing such applications quickly and easily in research environments, by reusing existing software
elements, is still an unsolved challenge. The time spent to test an isolated new domain-specific al-
gorithm or method is often much smaller than the time needed to provide the software infrastructure
needed to test the algorithm interactively or to add visualisation capabilities to it. Consequently, the ex-
change of algorithms and data structures between scientists as ready to use, plug-and-play components
in interactive applications is limited, as compared to the exchange of datasets or pseudocode.

The difficulty of building custom scientific applications by reusing existing components has been
addressed in several ways. One of the most successful solutions comes in the form of visual program-
ming environments or application building frameworks, such as AVS [113] or Iris Explorer [44]. Such
environments followed the third generation (procedural) programming languages by providing an ap-
plication model different from the classical monolithic executable and new forms of packaging soft-
ware into reusable units, as follows [13, 89].

1. reusableprimitive units of computation out of which applications are easily created

2. acontrol mechanism that drives the assembled primitive units

3. adata model used for data representation and transfer between the primitive units

4. auser interface that offers the simulation and visualisation functionality to the end user, and also
a visual means of assembling components by using a point-and-click graphics interface.

The term ’visual’ in the definition of visual programming environments relates to the last point above,
i.e. the capability of building applications by using solely a graphics interface. Combined with a

1.2. LIMITATIONS OF CURRENT ENVIRONMENTS 9

powerful set of reusable domain-specific components, this allows building new applications easily
and quickly, without writing a single line of code.

However praised, the success of visual programming environments is limited to a small fraction of
researchers. An important problem is that the concrete implementations of the visual environment con-
cept are less flexible than what the general concept promised. The flexibility of an application building
environment can be seen as a function of the flexibility of its elements mentioned above and of their
interplay. These issues are the subject of the next section.

1.2 Limitations of Current Environments

As mentioned in the previous section, there exist many visual programming systems that address the
requirements of the research community in what custom application construction, visualisation, and
interactive control are concerned. However complying with the above requirements in principle, most
such environments have limitations which make their practical use difficult and time demanding. In
this section we shall attempt to relate the most important limitations to the structural elements of the
discussed environments. An exhaustive survey of visual programming environments and their limita-
tion is given by Hils in [46].

Theprimitive units are the building bricks for all applications involved in the system. The versa-
tility of such a system can be realized either by openness, i.e. the ability to add new primitive units
to the existing ones, or by completeness, i.e. the provision of virtually all needed units by the system
manufacturer. The latter path is taken by specialised environments that target a well defined applica-
tion area, such as Matlab [66] or Mathematica [118]. However, in our case this is not an option, as we
would like to have an environment able to cover the open field of computational simulation and visu-
alisation. Many components already exist in these fields, mostly in the form of numerical or graphics
libraries [4, 14, 116, 94]. Primitive units, called also components or modules, come in various forms,
ranging from procedures and functions to classes, script files, and full executables. The capability of
easily reusing such components is thus an essential requirement. However, most application building
environments provide quite limited freedom to integrate existing software components, as most come
with their own policies, languages, and rules for component construction. Object orientation [91], an
important well-proven mechanism for software reuse in classical programming environments, starts
being addressed only recently and incompletely by visual programming environments. Object oriented
techniques are very poorly supported by such environments, which makes it hard to profit from their
known advantages for software manipulation, development, and reuse.

Thecontrol mechanism ranges usually between control flow [3] and data flow [103]. The data flow
model maps well the primitive units and their relationships to a visual graph representation, or dataflow
network , that can be easily understood and edited. Constructing programs visually by assembling such
graphs is a major advantage for researchers who are not familiar with programming techniques, as it
enables them to rapidly construct working applications without writing a single line of code. However,
an automatic one to one mapping of third generation, control flow based code to dataflow programs
is not possible. In order to be effective, a visual programming environment should provide simple,
ideally automatic mechanisms to map code entities and relationships from existing application libraries
to the visual dataflow elements. The user should be able to choose the right granularity level when
mapping existing code fragments to visual elements, in order to produce expressive, concise visual
representations of the modelled problem. Operations such as iterative and conditional constructs and
dynamic entity creation and destruction should also be supported in the dataflow model [46].

The above point on relationships between primitive units raises the problem ofdata communica-

10 CHAPTER 1. INTRODUCTION

tion and representation. Virtually every research code or application library has a different manner
to represent its data in terms of structures and relationships between these. To be effective, a generic
application building environment should be able to support these different data representations and en-
able the user to easily define data conversion mechanisms. However, most existing environments do
not take this path but rather force all embedded components to adopt a system-specific data represen-
tation and data passing policy. This clearly limits their usefulness, as researchers are forced either to
abandon or massively recode their algorithms to import them in the respective systems.

Finally, theuser interfaces serve a dual purpose. On one hand, new applications can be easily built
by assembling visual component representations such as icons in a dataflow network. On the other
hand, end users can interactively monitor and steer running simulations by using various graphics con-
trols such as 3D cameras, sliders, dials, buttons, or direct manipulation elements. The user interface
probably makes up for the most prominent difference between several existing visual programming
environments. Besides the ease to integrate new or existing software components mentioned above,
the flexibility, genericity, and ease of use of user interfaces is the second key element for the success
of a scientific visual programming environment. In this respect, an important problem of visual pro-
gramming environments is the difficulty to build custom user interfaces for e.g. user defined data types.
This operation usually requires complex programming of interface code into the application compo-
nents. For this reason, many scientists prefer to simply abandon the task of integrating their research
code into otherwise powerful visual programming environments.

1.3 Scope of This Thesis

We have outlined above why component development, application construction, and interactive sim-
ulation and visualisation are all parts of the experimenting pipeline executed in a typical research
session. Among the existing systems, visual programming environments address best these issues.
However, producing interactive simulations and visualisations is still a difficult task. This defines the
main research objective of this thesis:

The development and implementation of concepts and techniques to combine visualisation, simu-
lation, and application construction in an interactive, easy to use, generic environment.

The aim is to produce an environment in which the above mentioned activities can be learnt and
carried out easily by a researcher. Working with such an environment should decrease the amount
of time usually spent in redesigning existing software elements such as graphics interfaces, existing
computational modules, and general infrastructure code. Writing new computational components or
importing existing ones should be simple and automatic enough to make using the envisaged system
an attractive option for a non programmer expert. Besides this, all proven successful elements of an
interactive simulation and visualisation environment should be provided, such as visual programming,
graphics user interfaces, direct manipulation, and so on. Finally, a large palette of existing scientific
computation, data processing, and visualisation components should be integrated in the proposed sys-
tem. On one hand, this should prove our claims of openness and easy code integration. On the other
hand, this should provide the concrete set of tools needed for building a range of scientific applications
and visualisations.

1.4. THESIS OUTLINE 11

1.4 Thesis Outline

This thesis is structured as follows. Chapter 2 defines the context of our work. The scientific research
environment is presented and partitioned into the three roles of end user, application designer, and com-
ponent developer. The interactions between these roles and their specific requirements are described
and lead to a more precise formulation of our problem statement. Chapter 3 presents the most used
architectures for simulation and visualisation systems: the monolithic system, the application library,
and the framework. The advantages and disadvantages of these architectural models are then discussed
in relation with our problem statement requirements. The main conclusion drawn is that no single ex-
isting architectural model suffices, and that what is needed is a combination of the features present in all
three models. Chapter 4 introduces the new architectural model we propose, based on the combination
of object-orientation in form of the C++ language and dataflow modelling in the new MC++ language.
Chapter 5 presentsVISSION, an interactive simulation and visualisation environment constructed on
the introduced new architectural model, and shows how the usual tasks of application construction,
steering, and visualisation are addressed. In chapter 6, the implementation ofVISSION’s architectural
model is described in terms of its component parts. Chapter 7 presents the applications ofVISSION to
numerical simulation, while chapter 8 focuses on its visualisation and graphics applications. Finally,
chapter 9 concludes the thesis and outlines possible direction for future research.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Context Overview

A large variety of scientific simulation and visualisation (SimVis) software is used in the scientific com-
munity. As outlined in the previous chapter, the typical requirements for a research SimVis application
cover the construction, extension, and use of scientific simulation and visualisation applications. These
operations have to be fairly simple for users with a limited programming expertise. Consequently, a
method proposed for SimVis application construction and use in research environments should offer
enough flexibility and versatility to cover a large class of applications in a simple and generic fashion.

Analysing the SimVis user requirements, we distinguish three user roles involved in the process
of construction, extension, and use of SimVis applications. The requirements specific to each role are
presented in Section 2.3.

The above requirements have been addressed in practice by many SimVis software systems. These
systems are built based on three main software architectural models. Each architecture focuses on cov-
ering a part of the above requirements by providing specialised software mechanisms. In section 2.2
these three architectural models are presented. In section 2.3 the presented architectures are compared
with the user roles to show that no single architecture can entirely satisfy the requirements of all three
roles. This chapter concludes by stating the need to design a new SimVis system architecture. This
design is the subject of Chapter 3.

2.1 Definitions

A software architecture defines the structure of a software application, or how its software components
are connected to each other to form the application [91, 37, 69]. An architecture contains two elements
(Fig. 2.1 a): severalcomponents and theskeleton. A component can have in its turn an architecture
involving a smaller skeleton and finer grained components. The skeleton provides the data and control
communication needed by the components to function as a whole. The components implement specific
services (e.g. numerical computations, data transmission, visualisation) which are executed on behalf
of the skeleton.

The choice of the architecture for a given software application is important for the success of the
final product. To enable an easy construction of applications, a SimVis system architecture should have
a generic, reusable, customisable skeletonand components. Most used SimVis system architectures
are however not complying with all these requirements. Highly generic and reusable architectures of-
ten lead to abstract, less easy to customise and use applications. Conversely, architectures favouring
customisability and ease of use for the end user tend to be less generic and reusable for different ap-
plication domains (Fig. 2.1 b). The following section presents the three most used architectures in

13

14 CHAPTER 2. CONTEXT OVERVIEW

components

C
1

C
2

C
3

C
4

C
5

Skeleton

data
communication
and control

a)

genericity
reusability

ease of use
customisability

Usual
architecture

Usual
architecture

Desired
architecture

b)

Figure 2.1: Software architecture elements

the SimVis world. The remaining sections detail the requirements of the SimVis user community and
present to which extent these are satisfied by the described architectures.

2.2 SimVis Architectural Models

2.2.1 Application Libraries and Development Environments

Software libraries are the most common architectural model for providing services in a reusable form.
Libraries consist of a set of related software elements that cooperate to provide functionality for a given
application domain. These software elements are accessed via an application programming interface
(API). The concrete form of the API depends strongly on the software techniques used to build the
library. In this respect, the two main API types employed by libraries are the procedural and the object-
oriented one.

Procedural libraries offer their services in terms of functions or procedures, complemented by a set
of structured data types, written in a third generation programming language (shortly 3GPL), such as
C, Pascal, or FORTRAN. Good examples of computational procedural libraries include the LAPACK
library for linear algebra [4, 48]. In the graphics and visualisation area, OpenGL [119] is a well known
library, providing an extensive C API to 3D graphics.

Object-oriented (OO) languages introduce more powerful modelling elements such as encapsula-
tion, abstract data types, polymorphism, inheritance, and generic types [91]. These elements allow
structuring the library’s interface and implementation in terms of the modelled application domain’s
concepts. This makes OO libraries easier to be understood and more concise in providing the desired
functionality. Secondly, object orientation allows decoupling a library’s interface from its implemen-
tation. This enables providing different (e.g. platform-dependent) implementations of the same in-
terface. Finally, object orientation promotes more flexible couplings between code components than
3GPL techniques. Consequently, OO software is easier reusable and extendable than 3GPL software.
Good examples of simulation OO libraries are the Diffpack system for solving partial differential equa-
tions [14] or the LAPACK++ library for linear algebra [4]. Visualisation OO libraries include VTK,
a visualisation toolkit for multidimensional data representation and visualisation [94], Open Inventor
[116] and its similar Java-based Java3D counterpart [104] which perform 3D graphics modelling and
rendering, and Vision, a library for realistic rendering implementing various illumination models [99].

Usually, a given library covers a single domain (e.g. only scientific computation or only visualisa-
tion). To produce a SimVis application, the user assembles the desired services offered by the involved
libraries into a complete program. This is done by writing the application specific skeleton code that
calls the libraries’ services. Integrated development environments (or IDEs) such as Microsoft’s Vi-
sual C++ [55] or the CaseVision development system [97] (Fig. 2.2 a,b) help developers in writing such

2.2. SIMVIS ARCHITECTURAL MODELS 15

applications by providing various visual browsing, code generation, and graphics user interface (GUI)
construction tools.

a) class browser b) object browser

Figure 2.2: CaseVision class browsers (a) and object browser (b)

2.2.2 Turn-key Applications

Turnkey applications [34] are single stand-alone programs that cover a given application domain such
as scientific visualisation, computational flow dynamics, or realistic rendering. Turn-key applications
perform their operations according to a fixed, hard-coded pipeline, and can be parametrised by differ-
ent input data sets or batch jobs coming as files. In most of the cases, the results are also delivered
by means of data files. Configuration and control mechanisms are provided in the form of a GUI tai-
lored to the specific application needs. For example, the IRIX Showcase [96] computer-aided design
application offers a complex GUI to edit and visualise 2D documents and drawings and 3D geometric
universes. Many numerical simulation systems come as turn-key applications, either for a dedicated
range of problems, such as computational mechanics, or computational fluid dynamics [61, 86]. Simi-
larly, there exist many turn-key visualisation systems, such as the well known applications Vis5D [45]
or PLOT3D [114].

The turn-key architecture provides no insight of the application internals to its end users besides
the input/output data interface and the eventual run-time control GUI. The operation of a turn-key ap-
plication is seen as a black box or monolith.

2.2.3 Dataflow Application Builders

Dataflow application builders consist of a set of small to medium sized softwarecomponents that en-
capsulate various functionality (e.g. graphics, computation), connected to a fixeddataflow kernel . The
application is actually a network of components that exchange data via a set of well-defined inputs and
outputs. When the data inputs of a component change, the dataflow kernel updates the component and
transfers the data generated via its outputs to the connected components, which update in their turn,
and so on. The components’ inputs can be controlled by the end user by means of various GUIs con-
structed in the application builder. Dataflow application construction is performed by selecting iconic
representations of the desired components out of a palette of available components and connecting
them by GUI-based point-and-click operations (Fig. 2.3). Existing applications can be easily edited

16 CHAPTER 2. CONTEXT OVERVIEW

by replacing, re-connecting, or inserting new components. Examples of dataflow application builders
are several visualisation systems such as AVS , AVS/Express [113], Khoros [53], IRIS Explorer [44],
and Oorange [41] , or simulation environments such as SimuLink [66], SCIRun [81], or VPE [89].

a b

c d

Figure 2.3: AVS visual builder and module library (a). Oorange visual builder and component GUIs
(b). SimuLink visual application (c) and component library (d)

2.3 User Categories and Their Requirements

In a generic scenario for SimVis research applications, we identify three categories of users. These
categories (Fig. 2.4 b) are presented in the following, together with their specific requirements.

2.3.1 End users

In a typical SimVis application scenario, end users set up the desired simulation parameters, monitor
its evolution in time (in the case of time-dependent processes), and visualise the results by selecting

2.3. USER CATEGORIES AND THEIR REQUIREMENTS 17

the desired visualisation method and tuning its parameters to obtain the desired insight.

Component Designer

Application Designer

End User

Legacy
 code

Legacy
 code

Legacy
 code

. . . .

Application

Results

 Text GUI−based

Graphics Text GUI−based

Simulation Task

Visualization Task

Computed dataSimulation Data

SimVis Application

a) b)

Figure 2.4: SimVis application model (a) and hierarchy of SimVis user roles (b)

In an attempt to unify the simulation and visualisation tasks, we do not make any distinction be-
tween simulation and visualisation end users . Both tasks can be treated uniformly as processes that
produce textual, numerical, visual, or other forms of outputs, and that are controlled by setting their
data inputs to the desired values. The two concepts are naturally unified in a single representation of a
functional input/output based unit (Fig. 2.4 a).

End users need several means to control and monitor the parameters of a SimVis task . SimVis ap-
plications are classically controlled by means of command-line based consoles, where commands can
be input as text fragments and specific queries can be issued. More user-friendly applications provide
graphical user interfaces (GUIs) that offer various metaphors for interaction such as sliders, rotary di-
als, buttons, or other interface elements. GUIs should be available both for data input as well as for
output monitoring, similarly to the control panels of hardware devices. Sometimes other interaction
paradigms are more convenient for the end user, such as 3D direct manipulation [93], virtual reality
techniques, sonification [6], or vision interfaces [18].

Command-line interfaces should coexist with GUIs and direct manipulation interfaces since certain
operations are better performed in a text-based dialog rather than by means of graphical controls, or
simply because some user categories prefer the former interface to the latter ones.

18 CHAPTER 2. CONTEXT OVERVIEW

2.3.2 Application Designers

Chapter 1 stated that a SimVis software environment for the research community should provide a sim-
ple way to customise applications to match the end user’s needs. This task is done by a new user cat-
egory: the application designer. Application designers construct the SimVis application required by
end users by assembling software components. For example, a numerical simulation based on solving
a partial differential equation with the finite element method is constructed by assembling the appro-
priate mathematical components such as a geometric domain, a discretisation of the domain, a suitable
numerical solver and various other linear algebra components. A visualisation application such as the
data viewers used in computational fluid dynamics [79] can contain various dataset readers for the data
at hand, computational modules for calculating flow gradients or extracting vortices, particle advection
or isosurface calculation modules, followed by a 2D or 3D visualisation stage performed by means of
an interactive virtual camera.

Similarly to the end user case, we do not distinguish between the construction of a simulation and
that of a visualisation. The component assembly process and the definition of a component can take
various forms (see [105, 75, 36] for an extensive overview on component-oriented programming and
component off the shelf techniques for reusable software). At one extreme, components can be library
functions or objects which are joined together by a programmer to produce the desired application,
as outlined in section 2.2.1. At the other extreme, visual programming environments enable applica-
tion designers to build their applications by connecting visual representations of the components, as
discussed in section 2.2.3. In the latter case, the application designer may be a non-programmer. A
multitude of mechanisms exist between the two extremes that provide a higher level, more flexible
definition of a component interface than binary libraries. Well known ones are the Component Ob-
ject Model (COM) designed by Microsoft [70] and the Common Object Request Broker Architecture
(CORBA) [95].

Overall, application designers require an application development environment in which they can
construct the simulation, visualisation or a combination of both required by the end-user, and a set of
pre-defined components for the desired domains of interest. The ease of finding the right components
in the possibly large component repository and of assembling them to yield the desired functionality
are two important application designer requirements. A visual application building tool is often the
method of choice, as it frees the application designer from the difficult task of writing code, and it
provides a simple GUI-based way to browse and combine components.

2.3.3 Component Developers

Component developers are the last SimVis user category. They build the components used by the ap-
plication designers, either by writing these components in a programming language from scratch or
by reusing existing components by specialisation or extension. In our context, component developers
are researchers that need to implement custom algorithms or data structures, or modify existing ones.
Different component developers may work independently to design component libraries for separate
application domains. Component developers are mostly programmers, in contrast to the previous two
user categories which mostly focus on non-programming tasks.

Currently a vast amount of component libraries exists that cover various SimVis-related applica-
tion domains such as 3D graphics, realistic rendering and modelling, scientific visualisation, data and
image processing, linear algebra, finite elements and differences, etc. An important requirement of
component developers is the ability to easily (re)use these so-called legacy libraries, to produce com-
ponents for the application developers. This task is made difficult by a couple of factors. The most

2.3. USER CATEGORIES AND THEIR REQUIREMENTS 19

important one is the lack of a common denominator in the structure of legacy software. This makes
otherwise well structured and self-consistent libraries incompatible [106, 85].

2.3.4 Requirements Overview

Similar hierarchical user models to the one presented above are encountered in various fields of com-
puter science [69, 27, 6, 88, 85]. In our case it is better to speak about differentroles rather than differ-
entusers. Indeed, the same person can go through all three situations, e.g. a researcher who develops
his own code as a component developer, then builds test scenarios for his algorithms as an application
designer, and finally monitors and/or steers the final SimVis application as an end user. The process
can cycle, e.g. in the case that the end user’s insight leads to a redesign of the application, which may
trigger the need for new or modified components [69].

Easily switching between the three user roles is an often neglected requirement of SimVis soft-
ware environments. Such environments often focus on providing functionality for a single user role.
Neglecting the other two roles or providing insufficient support for an easy role transition is a seri-
ous problem for the scientific researcher, who must often perform all the tasks involved in a SimVis
application (coding algorithms, assembling the application, and running it) by himself.

A role in the hierarchy relies on the services provided by the lower role and provides services to the
next role in its turn. The usability requirement of a SimVis software can thus be translated to the fact
that the role coupling, seen as a data flow process between the roles, is highly (preferably completely)
automatic:

� the component developer should be enabled to easily reuse legacy code to create components,
and also to extend and specialise existing components to create new ones.

� the components created by the component developer should be immediately available to the ap-
plication designer who should easily be able to produce the VisSim application required by the
end user.

We can now summarise our SimVis user requirements. These consist of intra-role requirements, i.e.
the specific requirements of the three roles presented above (interaction facilities for end users, applica-
tion construction facilities for application designers, and component development facilities for compo-
nent developers), and the inter-role requirement, stating that the role transition should be a transparent,
highly automated procedure.

The problem statement introduced in chapter 1 is reformulated in terms of user requirements as
follows:

Design a software system for simulation and visualisation (SimVis) that:

� addressesall the intra-role requirements of the end user (Sec. 2.3.1), application designer
(Sec. 2.3.2), and component developer (Sec. 2.3.3) user categories;

� treats all requirements of all user roles withequal priority - that is, does not favour the satisfac-
tion of one role’s requirements in the detriment of another role’s requirements;

� provides a simple, ideally automatic role transition mechanism such that users caneasily change
roles at any time;

� offers powerful and generic softwaretools for every role. These tools should smoothly comple-
ment each other, such that the resulting SimVis system offers the union of their separate advan-
tages and minimises the union of their disadvantages.

20 CHAPTER 2. CONTEXT OVERVIEW

2.4 Architecture Comparison

The above sections have presented the three main architectural models used for SimVis systems: the
library and IDE model, the turnkey model, and the visual application builder model. Next, the specific
requirements of the three SimVis user categories (end users, application designers, component devel-
opers) have been presented. This section will discuss the extent up to which the discussed architectures
support the above requirements. The purpose of this comparison is to establish the limitations of the
presented architectures and to outline their strong aspects. Throughout the discussion, the labelsCD,
AD, EU mark whether the presented advantages and disadvantages affect thecomponent developer,
application designer, or end user respectively. Based on this analysis, we shall develop a new SimVis
architectural model which complies with the requirements presented in the previous section.

2.4.1 Applications Libraries and IDEs

Advantages

1. The component developer has total freedom to model any application domain in any manner, up
to the inherent limits of the underlying development programming language. The same is true for the
application designer (CD,AD).

2. Decoupling functionality from context when building libraries makes them highly reusable and
also portable in a variety of contexts. Libraries, especially in their OO variant, have been the most
effective form of software reuse and tailorability [26] (AD).

3. Libraries usually have a simple control structure, as this is part of the context in which they operate
and thus has to be provided by the skeleton of the application in which they are assembled. This makes
them rather simple to design and extend, as the component designer can focus strictly on modelling
the application domain at hand (CD).

4. A huge number of libraries exist that covers practically any desired application domain. It is
thus relatively easy to produce a custom library for a specific domain by specialising and/or extending
existing legacy code. This can reduce the component development and testing costs considerably as
compared to building a library from scratch (CD).

Disadvantages

1. The main disadvantage of the library architectural model is that the application designer must ex-
plicitly build from scratch the application skeleton code. Since libraries usually provide context-free
services, all the end application’s specific behaviour (e.g. control structure) has to be manually written
by the application developer. This requires usually extensive programming knowledge and develop-
ment time. A classical example is the construction of an application that has to combine numerical
computations, graphics, and user interfacing, all provided by different libraries. Producing an end-
application is thus not a simple, automatic task as our problem statement demanded (AD).

2. The APIs of many libraries are often collections of low-level programming language constructs
(e.g. functions and structured types for procedural libraries). The application designer needs exten-
sive skills and time to understand them. Moreover, every library has a different structure for its API
and many such APIs are not clearly and/or uniformly documented [85]. Understanding how to couple

2.4. ARCHITECTURE COMPARISON 21

components from several independently developed libraries requires usually an effort proportional
with the sum of the libraries’ sizes (AD).

3. Independently developed libraries often have incompatible interfaces and usage policies. If the
integration task becomes too hard or time-consuming at the application design level, component de-
velopers may have to restructure an existing library, adapt it by wrapping or delegation, or even rewrite
it from scratch (CD).

2.4.2 Turn-key Systems

Advantages

1. Turn-key systems are built with the goal of covering a specific application domain. Since the appli-
cation domain is precisely known and fixed, turn-key systems can offer the most convenient and easy
to use mechanisms for the end user. For example, the problem-specific graphics interfaces and dialog
scenarios of turn-key applications (e.g. CAD editors) are more convenient to use than the generic ones
of e.g. dataflow visual systems, which are sometimes too abstract. This is an essential advantage of
turn-key systems from the point of view of the end user. Consequently, the vast majority of software
applications, including the SimVis domain, are turn-key applications (EU).

2. Turn-key applications hide their implementation completely from the users, so their developers
are free to implement the provided features in the most convenient manner, both from the point of
view of the development cost and of the speed of the resulting product. For example, the turn-key
model has no imposed system modularity constraint as the library and application builder models
exhibit.

Disadvantages

1. The main disadvantage of the turn-key model is closely related to its main advantages. Since
turn-key systems offer highly specialised mechanisms for modelling a given application area, they
are strongly domain-dependent. This means that it is very hard, often impossible to extend a turn-key
system to cover another application domain than the one it has been designed for. Similarly, their
closed structure makes it often impossible to be extended even within the same application domain.
For example, it is relatively easy to extend a visualisation system such as AVS to perform also some
numerical computation tasks. In comparison with this, it is almost impossible to extend a turn-key
application such as the PovRay raytracing system [31] to perform radiosity computations without a
massive overhaul of its source code. This conflicts with our requirements, since, for example, a re-
searcher often needs to customise his experimental applications by changing the involved algorithms
or data structures or interconnecting them in different ways.

2.4.3 Application Builders

Advantages

1. Factoring the application into context-independent components and an application domain depen-
dent kernel means that the domain dependent code (the kernel) is constructed just once. The context
independence advantage offered by the library architectural model is preserved. The main disadvan-
tage of the library model, i.e. that the context has to be manually written every time a new application

22 CHAPTER 2. CONTEXT OVERVIEW

is designed, is largely removed (AD).

2. Building an application visually from existing components is relatively easy as compared to the
library model. Programming a new application is reduced to simple point-and-click operations. Such
systems come close to our initial requirement that the application designer should be able to easily
build an application by assembling already existing components (AD).

3. A dataflow kernel offers a component interface at a higher level than the one offered by the library
model in terms of the constructions of a programming language (functions, classes, etc). Since the
kernel is designed to model a certain application domain, it can expect domain-specific information in
the component interfaces. By using this information, the kernel can infer more about the components
and thus provide several features automatically to the application designer or even to the end user. For
example, if the component interface uses a special naming of component services, an automatic help,
documentation, or component service browsing facility can be implemented. This technique is used
by e.g. the ROOT data management system [15] to browse the services of its C++ components. The
Oorange and AVS visualisation systems use a similar mechanism to automatically construct the iconic
component representations from the components’ input and output specifications. The Visualisation
Studio [84] works similarly to offer a visual representation to its VTK-based components (AD,EU).

Disadvantages

1. The main disadvantage of the application builder architectural model is strongly correlated to its
main advantage. Assuming some knowledge about the component interfaces limits the freedom of
modelling applications outside that domain considerably as compared to libraries, which are by defini-
tion context-independent. This is especially unpleasant if we need to cross the borders of a traditional
application domain as we do when we address the integration of simulation and visualisation. In
this case, it is hard to use e.g. an existing visualisation framework to perform simulations, or con-
versely, since that means forcing a given system to cover an application area outside its original scope.
Although this can be done by choosing to model both application domains using the framework mech-
anisms best suiting one domain, this will force the component developers to recode or re-interface
large component libraries in an unnatural way (CD).

2. As explained above, the more specialised the component-kernel interface is, the easier it is for
the framework to provide higher-level component-related services. On the developer side however,
more specialised interfaces mean more design constraints one must comply with. This makes the
development of new components a difficult process. Moreover, this provides an undesired two-way
component-framework coupling: not only will the framework assume some knowledge on the com-
ponents, but the components will also assume some knowledge on the framework. Consequently,
components developed for a specific framework will loose their main advantage, i.e. the context inde-
pendence. Such components will be unusable in another context than the framework for which they
were designed. Similarly, independently developed components will need to be modified to comply
with the restrictive framework interface. We call thisintrusive component integration, since the design
of the framework intrudes explicitly in the design of the components [106, 85].

Intrusive component integration is the most severe problem of application building environments,
as pointed out by a number of authors [91, 69, 101]. Frameworks based on object-oriented inheritance
for component introduction (also called white box frameworks [35, 80, 101]) are a clear example,
as the developed components have to explicitly inherit from the framework’s base classes. Intrusive

2.4. ARCHITECTURE COMPARISON 23

integration is also present in other systems which do not require components to inherit from their
structures (also called black-box systems) . For example, some systems require a strict class or pro-
cedure naming or code annotation policy in order to perform the component integration [15, 14, 94].
Other systems require the insertion of specific system calls in the code of the developed components
[113, 117, 86, 50, 79] (CD).

2.4.4 Conclusion

The preceding comparison of the three SimVis architectures is summarised in Table 2.5. At this point,
it is obvious that the turnkey and library architectural models have fundamental limitations which pre-
clude us from using them for satisfying the targeted combination of user requirements. Both architec-
tures offer insufficient freedom for application design. Indeed, the turnkey model has practically no
application design process, as it models a single, immutable application structure. The library model
allows extensive freedom in designing applications, but requires a too large amount of manual pro-
gramming to be done.

Libraries and IDEs Application Builders Turnkey Systems

+ many libraries available

+ OO helps reuse,
 modularity, extensibili ty

+ context independence

+ freedom to write appli cation
− writing new appli cations
 requires programming skill s

− writing new appli cations is
 laborious
− learning libraries is complex

− hard to get custom−designed
 appli cations with GUIs,
 interactivity, visuali sation

− custom systems are less
 performant than turnkey
 commerical systems

+ system is open for extension
− intrusive integration is
 frequently only option

− hard to integrate/extend
 components, especiall y OO
− intrusive integration

+ dataflow model covers most
 appli cation scenarios
+ automatic documentation

+ visual programming is easy
 to use and learn

+ most SimVis appli cations
 can be easil y provided

+ GUIs, steering,command−
 li ne interfaces well supported

− hard to get new GUI widgets

+ visual li braries easy to learn

− no component development

− no appli cation design

− speciali sed GUIs and custom
 appli cations for all domains

+ easiest to use appli cations
+ optimised for memory and
 speed

effectivity

effectivity

effectivity

efficiency

efficiency

efficiency

CD

AD

EU

Figure 2.5: SimVis architectures vs user roles

In reality, there are no precise boundaries between the SimVis architectural models described in
this chapter. This can be visualised as a software continuum with application libraries at one extreme
and turn-key applications at the other extreme (Fig. 2.6). Libraries are less specialised and context-
dependent, therefore more easily reusable and customisable, while turn-key applications fall into the
other extreme. Consequently, component developers will prefer the library model, while end users will
be more comfortable with ready-to-use turn-key systems.

24 CHAPTER 2. CONTEXT OVERVIEW

Application
 libraries

 Application
 frameworks

 Turn−key
applications

specialization (context dependence)

customizability (context independence)

End
users

Application
 designers

Component
 designers

favour favourfavour

+

+

−

−

Figure 2.6: SimVis software continuum

Application builders are an interesting middlepoint which combine the advantages of both ex-
tremes, leading to the appearance of the separate user class of application designers. As this architec-
tural model is the only one addressing the easy (visual) application construction requirement, we shall
focus our analysis on this class of systems in the next section.

2.5 Visual Application Builders

Visual application builders seem an appropriate architectural model for our SimVis user requirements.
However, as discussed in section 2.4.3, these systems exhibit some limitations, mainly related to the
component developer role. In order to better analyse the cause of such limitations, the elements of the
application builder architecture are discussed in further detail.

As introduced in chapter 1, a visual application builder consists of reusable primitive units or com-
ponents, a control mechanism, a data model, and a user interface. In the following section, these four
elements are discussed in relation with the requirements of the three user categories introduced in sec-
tion 2.3.4.

2.5.1 Requirements

Primitive Units

The primitive units are the basic building bricks of any SimVis application. These units come mainly
in the form of components in 3GPL or OO libraries, such as procedures and classes. The requirements
with respect to the primitive units are:

� ability to easily integrate components from existing SimVis libraries in the application builder.
Many of these libraries, such as Diffpack, VTK, or Open Inventor come in an object-oriented
form. The application builder should be able to integrate these OO components.

� non intrusive integration. As explained in section 2.4.3, intrusive component integration is a
major problem of many application builders. In order for such an environment to be effective,
one should be able to integrate computational or visualisation components into it without having
to change their code.

� ability to easily develop, specialise, or modify in any way the existing components.

� components should execute efficiently in terms of speed. For optimal efficiency, components
should be compiled to executable binary code.

2.5. VISUAL APPLICATION BUILDERS 25

� hierarchical component creation should be supported, i.e. one should be able to easily build
coarse-grained components out of fine-grained components. Hierarchical component construc-
tion is necessary to allow arbitrarily complex applications to be easily constructed by manipu-
lating components on several levels of granularity.

Control Mechanism

The control mechanism of most SimVis application builders uses a dataflow mechanism. Such a
dataflow mechanism can be implemented in two ways:

1. Demand driven: Demand-driven implementations use a lazy evaluation procedure. Whenever
a component input changes, the component is marked as modified without updating its outputs.
When the end user requests to examine, visually or numerically, an output of a modified com-
ponent, the kernel recursively updates all modified components whose outputs are connected to
this component. This is done in a two-pass network traversal. The first pass starts from the com-
ponent interrogated by the end user (the ’demand’) backwards along the output-input links until
no more modified components are found. The second pass traverses the network back to the de-
mand origin, updating all components found modified in the first pass. Demand driven kernels
are efficient since they update only those components that produce the output demanded by the
end user. However, they execute synchronously and thus can not include asynchronous actors
such as external signal sources.

2. Event driven: Event-driven kernels update the whole dataflow network immediately after a
component’s inputs are changed, by traversing all components whose inputs depend on the
modified component and updating them. Event-driven kernels might be slower than demand
driven ones, but have two important advantages. First, the dataflow network is always up to date,
which is desirable when managing highly dynamic, interactively changing networks. Second,
the incorporation of asynchronous external event sources is immediate.

For the above reasons, we prefer an event-driven dataflow implementation.
Another important point is the support for cyclic dataflow networks. One can show that virtu-

ally any imperative control structure can be mapped to a dataflow network if cycles in the network
are allowed. Since iterative processes frequently occur in simulation applications, support for cyclic
dataflow networks is required.

Data Model

The data model encompasses the way data is represented and communicated in a system. Virtually
every application library or research code has its own data representation in terms of data types. The
same holds for various data passing mechanisms, such as by value, by reference, by counted reference,
by pointer, etc. The non intrusive integration requirement implies that component librariesand their
data representation and passing mechanisms between components should be integrated as such in the
application builder. In other words, the data types flowing in the dataflow network should be exactly
the ones created by the component developer, not a restricted set of ’system’ types. This is however a
rarely addressed requirement by most existing SimVis application builders, as discussed further.

26 CHAPTER 2. CONTEXT OVERVIEW

User interfaces

Visual programming application builders have two sorts of user interfaces. First, anetwork editor in-
terface is provided to the application designer to interactively assemble a dataflow network out of com-
ponent icons. The requirements for this interface are as follows:

� the components provided by the component developer should automatically be available in a vi-
sual (e.g. iconic) form in the network editor’s component browser. No extra work should be
performed to provide a software component with a graphical representation. It should be possi-
ble to dynamically load and unload component libraries in the system with the same ease as one
loads or unloads data files in some visualisation program.

� building a dataflow network should involve no programming knowledge regarding the internal
component structure. Application design should be done entirely in the visual conceptual space.
All required information for component finding, creating, destruction, and connection in a net-
work should be available visually.

Besides the application design interface, an end user interface should be available. Such an interface
should provide various methods of controlling the parameters of a SimVis application and monitoring
its results. In practice, four main types of end user interfaces occur:

1. Batch interaction: In this mode, the actions desired by the end users are listed in a batch or
script file which is input to the SimVis application that executes it. Batch interaction usually
does not allow the end user to intervene and steer the process further during the batch execution.
However, this interaction mode should be supported as it is very common in the computational
simulation world.

2. Command-line interaction: In this mode, users can type commands which are interpreted on
the fly, during the application execution. Such commands can be gathered into a file, in which
case one reverts to the batch technique. Command-line interaction should be provided for all user
categories. End users may need to set or query the inputs and outputs of dataflow components.
Application designers may want to build applications by typing in the construction commands
interactively. Component developers might adjust or even write components from scratch using
the scripting language.

3. Graphical user interfaces: By their very nature, SimVis applications use visualisation of 2D
or higher dimensional objects to convey insight in the data at hand. The data are transformed
into geometric objects, which are shown on the screen. Colour and texture are often used as
cues for data values. Simulation steering is done by GUIs providing sliders, buttons, dials, and
other controls to monitor and change the simulation parameters. Providing GUIs for the appli-
cation components should be simple, ideally automatic operation, similarly to the provision of
component icons for the application design. Moreover, such GUIs should be easily extensible
with new widget types, in order to cover custom application needs.

4. Direct manipulation: In order to overcome the expressivity problem of the classical GUIs,
one needs a simple way to design more specific, direct ways of manipulating and representing
graphic information [93]. In standard GUIs, the input is visually separated from the output. In
direct manipulation interfaces, these are integrated. The user can directly interact with the data,
presented as 2D or 3D objects. Direct manipulation is supported for instance by the Inventor
graphics library [116], which offers 3D interactive manipulators with predefined functionality,

2.5. VISUAL APPLICATION BUILDERS 27

and by the Computational Steering Environment (CSE) [117] which allows the user to construct
parametrisable geometric objects (PGOs) by assembling simple geometries.

Direct manipulation is indispensable for SimVis applications. However, there is still no consen-
sus about the best way in which to structure and provide multi-dimensional direct manipulation
services. The cause is that 2D, 3D or nD manipulation scenarios are too different to be easily
reduced to a closed set of operations. Consequently, a generic SimVis environment should pro-
vide a few of the most usual 2D and 3D manipulation tools and also a simple way to design new,
application specific ones.

In conclusion, there is no best interaction technique to be preferred above the others. Ideally, a SimVis
application should provide all of them, since they perform the best for different users or for different
phases of building and using a simulation or visualisation.

2.5.2 Single vs Dual Language Frameworks

The previous two sections mentioned intrusive code integration as one of the most severe limitations
of SimVis application builders. Since this issue is going to play a crucial role when analysing existing
SimVis systems, we shall elaborate more on the origins of this problem.

Two technical issues are of importance in the process of component integration in SimVis appli-
cation frameworks. These issues concern the component programming language, as follows:

� Execution model: is the implementation language compiled or interpreted?

� Uniformity: is there a unique implementation language or several languages?

The first issue is related to execution efficiency. In virtually all cases, SimVis components have to come
as compiled code for maximal efficiency. This is especially critical in applications such as computa-
tional steering where computations on large datasets have to be performed in real time. However, the
visual instantiation and assembly of components into a dataflow network has to be done dynamically,
at run-time. The above requirements are both satisfied by having two different languages for the com-
piled, respectively interpreted parts (Fig. 2.7). Components are implemented off-line, in a compiled
language, and can be dynamically loaded by the (already running) kernel. Applications are interpreted
by the kernel which calls back for services on the compiled components. All run-time actions issued
by the application designers to the kernel are expressed and executed in the dynamically interpreted
language. Sometimes the end user can also issue commands to be interpreted by the kernel, either by
typing statements in the interpreted language, or by performing GUI-based operations which are trans-
lated to interpreted statements.

The compiled and interpreted parts of such systems are usually done in different languages. The ra-
tionale of this is that components are best developed or already exist in a ’classical’ compiled language
(e.g. C,C++,FORTRAN), whereas it is either difficult or impractical to support the same language in
interpreted form for the usually simpler run-time actions. Moreover, the framework kernel encodes
domain-specific knowledge, for which a custom-designed interpreted language may be more suitable
than a general-purpose one.

However widespread, dual language frameworks have two fundamental drawbacks [110]. First, the
transition between the component developer and the application designer roles involves learning two
languages. Secondly, this transition is seldom automated, as mapping software abstractions between
two different languages is a complex task. Often the compiled language has more powerful concepts
than the interpreted one, which forces restriction or recoding of components. The most encountered
language incompatibilities that make dual language solutions hard to use are:

28 CHAPTER 2. CONTEXT OVERVIEW

interpreted
language
code

GUI

Text interfaceEnd user

Application
designer

Framework kernel

interpreter calls
compiled code

Compon ent

compiled
language
code

Compon ent

.

Figure 2.7: Dual language framework implementation

� Interpreted languages have often a simpler typing system than compiled one. The former support
often only a few basic types such as integer, float, boolean, pointer, and arrays of these [113, 66,
94], and are not extensible with user-defined types.

� By value and by reference data passing are rarely supported both by the interpreted languages,
although compiled ones do.

� To provide run-time conversion between data types, explicit conversion modules [113, 41] or
complicated run-time schemes to register conversion functions [116] are used. Compiled lan-
guages have more elegant schemes such as conversion operators or copy constructors in C++
[102].

� Most OO dual language frameworks do not support multiple and virtual inheritance in the in-
terpreted language, even though the compiled one (e.g. C++) does. Mapping interfaces of class
hierarchies between the two languages is often done by manually designing a class hierarchy in
the interpreted language which parallels or ’wraps’ the compiled one. Various design patterns
have been proven useful here, such as Bridge, Adapter, or Decorator [37]. Their manual coding,
however, is very difficult when mapping complex class hierarchies.

� Many dual (but also single) language frameworks force the components to inherit from some
common kernel base-class, therefore forbidding class libraries with multiple roots [82, 15]. This
form of white-box integration forces massive restructuring, wrapping, or even rewriting compo-
nents for integration. White box integration is a serious problem for commercial libraries whose
sources are not available or not permitted to be changed.

The structural limitations of dual language frameworks propagate often to the end user as well. Many
such frameworks offer GUIs to monitor and/or steer a SimVis application by inspecting or changing
various component parameters. Such GUIs can be visually constructed by assembling various widgets
offered by the system, such as sliders, buttons, text type-ins, and so on (Fig. 2.3 a,b). However, due
to limited support for user-defined types of the underlying interpreted language, it is very difficult to
build GUIs with custom widgets for user-defined types, e.g. a three-dimensional trackball widget to
edit a 3D vector data type. The end user has to content himself with GUIs that map the domain-specific
data types to the restrained set of system supported types (integer, float, string, etc).

2.5.3 Existing Application Builders

Several dataflow application builders are available today. In this section, several such systems will be
reviewed and compared against the requirements set presented in the preceding sections.

2.5. VISUAL APPLICATION BUILDERS 29

AVS

The Advanced Visualization System (shortly AVS) [113] is probably the most known SimVis appli-
cation building environment. AVS evolved from its initial release to the AVS/Express system which
offers several enhancements in what code integration is regarded. Both AVS and AVS/Express focus
mainly on data processing and scientific visualisation, although they can be used to build and steer sim-
ulation applications as well. In the following both AVS and AVS/Express systems will be discussed,
as they both have separate advantages and disadvantages.

Primitive Units. The basic building blocks of AVS applications are calledmodules. An AVS mod-
ule is implemented as a compiled FORTRAN subroutine or C function. AVS/Express allows also using
a restricted subset of the C++ class language construct to create modules. Basic modules can be aggre-
gated into macro modules in order to describe more complex operations. Macro modules are described
in a proprietary interpreted language, calledcli for AVS andV for AVS/Express. Besides hierarchi-
cal module construction, these languages permit programming various control sequences such as iter-
ations, and conditional and selection statements.

AVS uses intrusive component integration. The application code must be modified in order to insert
AVS library calls for module initialisation, finalisation, port declaration, data passing, and so on. For
small and medium sized modules, the module code becomes usually a mix of 50% application code
and 50% AVS system code. First, this makes understanding and extending module code very difficult.
Secondly, integrating existing code in AVS means practically a complete rewrite of that code.

AVS and AVS/Express are dual language frameworks . However, theV interpreted language used
by AVS/Express is less powerful than compiled OO development languages such as C++. Conse-
quently, integrating a C++ class hierarchy into AVS/Express would require major restructuration of
the library, such as, for example, restricting it to single inheritance only.

Control mechanism. Both AVS and AVS/Express use an event-driven dataflow mechanism. These
systems make a distinction between downstream and upstream dataflows, i.e. dataflows going to, re-
spectively coming from the viewing component. The distinction reduces the freedom of building arbi-
trary networks such as networks containing loops. This distinction is purely artificial and is motivated
only by internal implementation limitations of the systems.

Data model. AVS supports a fixed set of system data types such as int, float, string, fields (n-
dimensional data arrays), and unstructured datasets. AVS/Express extends this by complicated mech-
anisms which allow the inclusion of some user defined data types, such as C structs or, up to some
extent, C++ classes. Since support of user data types is very limited and complicated to achieve, is is
almost never used in practice, especially in the case of object-oriented types. Data passing is basically
by value for AVS system types and by pointer for user defined types. Genuine OO by-value passing
is not supported, as it implies notions such as nested constructor and destructor calling [102].

User interfaces. AVS and AVS/Express offer a comprehensive network editing interface. Per-
module GUIs are constructed based on the component code annotations. Alternatively, these GUIs
can be built visually in a GUI editor by assembling various widgets provided by AVS, such as sliders,
lists, buttons, etc. However, extending the AVS widget set with user-defined widgets is not an option
provided by these systems.

Iris Explorer

The Iris Explorer system was originally built by Silicon Graphics, and was further extended by NAG
[44]. Iris Explorer is very similar with AVS/Express is most respects, as outlined next.

Primitive Units. The basic building blocks in Iris Explorer are called modules. Modules are as-

30 CHAPTER 2. CONTEXT OVERVIEW

sembled in a dataflow network, called a program map. Modules are implemented as C or FORTRAN
functions. In contrast with AVS/Express, no support is provided for object-orientation, so it is very dif-
ficult to build modules out of C++ code. As in AVS, modules can be aggregated to create compound
modules.

Iris Explorer uses a partially intrusive code integration strategy. User code doesn’t have to be man-
ually modified by inserting system calls to create modules. Instead, modules are built via a GUI-based
module builder tool. In this tool, the module ports are declared and associated to the computational
function’s arguments. The module builder generates automatically a wrapping code which adds Iris
Explorer API calls to interface the user code with the system kernel. However, several implicit limita-
tions are placed on the argument types of the computational function, as explained further.

Control mechanism. Iris Explorer uses an event-driven dataflow mechanism. Networks with loops
can be constructed. In this respect, Explorer offers more freedom than AVS.

Data model. Explorer offers a set of system types, such as int, float, string, and lattice (a n-
dimensional data array). The arguments of the user-written computation function are restricted to the
fundamental C types and to opaque pointers, which are mapped in the module builder to fields of the
lattice type. User defined types are supported in a restricted sense. These have to be declared in the
proprietary language ETL, which supports a limited version of C-like structure data type. Explorer
is thus a dual language framework, similarly to AVS. There is no support for passing data by value
between modules or for object-oriented (e.g. C++) types. Similarly to AVS, the complexity of defining
and using new types forces in practice component developers to restrict themselves to the fixed set of
system types. Consequently, integration of existing SimVis code in Explorer is a difficult task.

User interfaces. A comprehensive network editing interface and module GUI building tool are pro-
vided, similarly to AVS. However, introducing new GUI widgets is very complex as it requires intimate
knowledge of the Motif widget library [33].

Oorange

Oorange is a visual programming environment which focuses on experimental mathematics [41]. How-
ever, any simulation or visualisation application can be built in Oorange, provided that the desired
modules are created. Contrary to AVS and Explorer, Oorange has an open structure, as it is built on a
shareware software basis. This makes it more easily extendable in some respects, as discussed next.

Primitive units. An Oorange application is built from modules, just as in Express and AVS. An Oor-
ange module is an Objective C class, which contains a C data structure and several associated methods
[83]. Modules can extend or specialise other modules, by using Objective C’s single inheritance mech-
anism. This offers a flexible way to customise existing Oorange modules or create new ones from C
code. Modules are compiled into libraries which can be dynamically loaded by the system. However,
Objective C is not a fully interpreted language. In order to achieve more run-time freedom, Oorange
modules are wrapped into aTcl interface. Oorange is thus also a dual language framework. Writing
new Oorange modules involves advanced knowledge of the interplay betweenTcl and Objective C.

Control mechanism. Oorange uses an event-driven dataflow model. However, no loops are allowed
in the network. An useful feature of Oorange is the fact that the module computation function (written
in a mix ofTcl and Objective C) can be easily edited at run-time to customise the module behaviour.

Data model. There is actually no data flow between Oorange modules. Similarly, there are no
system data types, like in AVS or Explorer. The network modules are connected via references. These
are actually C pointers which refer to each others’ Objective C classes. It is the module’s responsibility
to extract data from the upstream modules and to write the results in the downstream modules’ data
structures. On one hand, this makes the module code more complex. On the other hand, this allows

2.5. VISUAL APPLICATION BUILDERS 31

any data passing protocol between modules, up to the limits of the Objective C language.

User interfaces. Oorange has a visual network editor and per-module GUIs similar to those of AVS
or Explorer. However, the underlyingTcl-Objective C language combination is present in the end-
user interface, as some operations are provided via GUIs, while others involve editingTcl scripts or
issuingTcl commands in a console window. Moreover, providing a GUI for a user-written module
involves manually writing it from scratch in aTcl-Tk language combination. Overall, using Oorange
involves knowledge of two languages: Objective C, and theTcl-Tk combination.

The Visualization Studio

The Visualization Studio [84] is a visual programming environment built atop of the Visualization
Toolkit , or shortly VTK [94]. VTK is a C++ class library for scientific visualisation and data pro-
cessing. VTK offers over 400 classes covering charting, graphing, 2D and 3D data presentation,
interactive data manipulation, flow visualisation, medical imaging and image processing, etc. The
provided functionality exceeds the one supplied by the standard AVS or Explorer modules.

Primitive units. VTK’s primitive units are C++ classes which inherit from some system classes
defining data passing, synchronisation, and other management mechanisms. The VTK class library
is well structured to cover concepts such as data readers, filters, viewers, mappers, actors, etc [91].
Developing a specialised component such as a new filter or mapper requires less coding than in AVS,
Explorer, or Oorange. This is done by subclassing the desired VTK component and overriding one or
more virtual functions. In this respect, VTK is a white-box, single language framework.

However powerful, extending VTK by subclassing is not a simple operation, as it requires deep
understanding of the VTK class hierarchy and of advanced OO modelling concepts such as design
patterns [37] . Writing a module with several inputs and outputs, for example, is a complex procedure,
involving the overriding of a variety of methods.

Control mechanism. VTK uses a demand driven dataflow mechanism, coded in the library’s base
classes. Combined with automatic multithreading support, this leads to a very efficient pipeline exe-
cution. However, the provided demand driven implementation makes it very difficult to incorporate
external data sensors, e.g. programs or modules which do not inherit from VTK’s base classes.

Data model. VTK provides a set of object-oriented data types such as regular, irregular, curvilinear,
and unstructured grids. User defined data types, OO or not, can be relatively easily incorporated by
subclassing the appropriate VTK data set class. Data passing is essentially by pointer, with a reference
counting scheme built in the base classes. By value passing of datasets is not supported.

User interfaces. The Visualization Studio provides a network editor interface to the VTK library, as
well as per-module GUIs. Since all VTK modules inherit their data inputs and outputs from a known,
fixed set of base classes, the Visualization Studio can easily construct module icons and GUIs automat-
ically from the C++ module declarations. The modules are compiled into C++ dynamic link libraries
and manipulated at run-time via aTcl-based interface. The tcl interface is automatically constructed
by parsing the modules’ C++ declarations. In this respect, the Visualization Studio-VTK combination
offers more automation in integrating user-written modules than all the other systems discussed before.
However, development of new modules must obey a complex set of rules, such as single inheritance
only, strict naming and module port typing conventions, method overriding requirements, and so on.
Moreover, the automatic GUI construction provided by the Visualization Studio is very basic. Only a
few widgets are supported, and it is not possible to introduce custom widgets at this moment.

32 CHAPTER 2. CONTEXT OVERVIEW

Matlab SimuLink

Matlab is probably the most popular programming environment in the numerical research world [66].
Matlab consists of a kernel interpretor engine for the proprietary languageM. TheM language is de-
signed with special provisions for mathematical computations, such as matrix algebra operations, an
extensive set of built-in operations and mathematical functions, etc. SimuLink is a graphical envi-
ronment built over the Matlab kernel in which simulations can be visually assembled, steered, and
monitored. In the following, we shall focus on the functionality of the visual programming builder
SimuLink.

Primitive units. The primitive units are procedures or functions written in Matlab’s proprietary
language. Compiled C or FORTRAN code can be imported into Matlab, subject to certain interface
limitations (functions must restrict their parameter types to a few system supported types, etc). In this
respect, Matlab is a dual language framework similar to Oorange. Matlab components are organised in
toolboxes that cover various application domains, such as signal processing, statistics, symbolic math-
ematics, optimisation, etc. Primitive units can be nested hierarchically to form more complex units,
similarly to the other systems previously described in this section. No support for object-orientation,
or OO code integration, is provided.

Control mechanism. SimuLink offers a simple event-driven dataflow mechanism, similar to Oor-
ange. Module input and output ports are created by declaringM global variables. Modules are con-
nected by specifying how these variables are shared between modules. Loops in networks are sup-
ported to build iterative processes.

Data model. Similarly to AVS and Explorer, Matlab offers a few ’system’ data types, such as string,
matrix, vector, etc. There is no support for user-defined C or C++ types outside this space. Data passing
is basically done only by reference, in a similar manner to the Oorange system.

User interfaces. Matlab offers a command-line interface where commands in theM language can
be issued. SimuLink offers a very primitive network editor. Per-module GUIs have to be built manu-
ally by writing M GUI scripts over the computational code. Module icons are also created manually,
by specifying the drawing commands to display the icon. Only a few widgets are available for GUI
construction. It is not possible to add custom widgets to this set. Overall, the SimuLink visual program-
ming environment is very restrained, as compared to all the other environments presented before. Both
in execution speed and application domain coverage, Matlab and SimuLink are designed for building
and testing small research programs, and not for complex, computational-demanding simulation or vi-
sualisation applications.

2.6 Conclusion

In this chapter, we have identified three user roles involved in the SimVis application domain: the end
user, the application designer, and the component developer. On the SimVis software system side,
three main architectural models were discussed: the application library, the turn-key system, and the
dataflow application builder model. From the presented architectures, dataflow application builders
satisfy the best our user requirements. A more detailed analysis of instances of this class of systems
reveals that no existing system satisfies our user requirements entirely.

We rephrase here our problem statement in design terms: Design a SimVis system that combines
the library, application builder, and turnkey architectural models in such a way that the result unites
their advantages and minimises their disadvantages. This statement implies that we should not prefer
a single architectural model, but try to merge all of them in a single new one. Since the application

2.6. CONCLUSION 33

builder model proved to satisfy the closest the initial requirements, the new architectural model will
resemble it the most.

We have seen that each user role answers the question ’what is a SimVis application?’ in a different
way. For component developers, an application is a set of code fragments and APIs. For application
designers, an application is a set of component instances communicating via a kernel that models a
specific domain. For end users, an application is the set of user interfaces with which they interact.
A SimVis environment may ensure a smooth role transition if it usesthe same application model, or
very similar models,for all user roles, rather than different ones. None of the reviewed architectural
models provides however such a cross-role application model.

The above observations lead to the conclusion that a new SimVis system must be designed to satisfy
our user requirements. This new system would offer the customisability and easy extensibility of ap-
plication libraries, dynamic application construction from visual components of application builders,
and the ease of use via command-line, GUIs, and direct manipulation of turn-key systems. Next, appli-
cations in this system should be represented by the same few concepts for all user categories, in order
to ensure an easy role transition. We shall achieve this structural unity by using the same object and
functional (dataflow) models to describe our application components, application, and end user inter-
faces. Applications in this new system should be as efficient as compiled applications, but as easy to
edit dynamically as interpreted applications. The new system should satisfy our initial problem state-
ment for real-size applications taken from various simulation and visualisation application domains.
The design and use of this system is covered in the rest of this thesis.

34 CHAPTER 2. CONTEXT OVERVIEW

Chapter 3

Architecture of VISSION

In chapter 2 we have presented the requirements of SimVis users, and outlined several existing SimVis
architectural models. We identified the need for a better SimVis system, based on a combination of the
existing architectural models and software techniques.

The main problem the designer of such a system faces is the combination of several existing ar-
chitectures in a single, coherent system. For this, several elements of the library, turn-key system, and
dataflow architectures have to be connected in a new architectural model. This chapter presents this
new model on which we have built the general-purpose visualisation and simulation environmentVIS-
SION. The architectural model presented here leads to a design, implementation, and use ofVISSION

that complies with the problem statement presented in chapter 1.

3.1 Overview

The acronymVISSION stands forVISualisation andSImulation withObject-orientedNetworks. VIS-
SION is a general-purpose SimVis environment that provides a consistent framework for the construc-
tion and use of simulation and visualisation applications.VISSION does not target a single, specific
SimVis domain such as medical imaging, flow visualisation, or finite element simulations. Instead,
VISSION is built to address the requirements of component development, application design and use
for a broad class of simulations and visualisations, including, but not limited to the ones mentioned
above. In conclusion,VISSION is built to address the problem statement presented in the beginning of
chapter 1.

We have shown in chapter 2 that most existing SimVis systems are built on architectural models
that do not satisfy entirely our user requirements. In order to remove these limitations,VISSION is built
on a different architectural model that combines many aspects of the library, framework, and turn-key
models. An overview of the main advantages and disadvantages of the abovementioned architectures
will help to deduce the main ingredients of the new architectural model (Fig. 3.1). Out of this overview
we shall extract a concrete specification for the new architecture we need to develop, as well as for the
software techniques needed to implement it.

As already mentioned, we aim to build a SimVis environment that offers a generic SimVis appli-
cation model. For this, we choose thedataflow model, which describes a simulation or visualisation
as a dataflow network of cooperating components. Any network topology, such as acyclic or cyclic,
should be supported. We shall use an event-driven kernel model, since this has several advantages over
the alternative demand-driven model, as shown in Section 2.5.1. Overall, the proposed SimVis archi-
tecture will resemble an application building framework with a dataflow kernel and application-specific

35

36 CHAPTER 3. ARCHITECTURE OFVISSION

Application Librarie s

Advantages To provide them, we need:
freedom for component development powerful development OO language(s),

 preferrably a single one
no concern about context of component use −

large SimVis library legacy must be able to reuse binary, not just source code

high performance compiled libraries

Disadvantages To remove them, we need:
need context to use libraries combine library and framework architectures

libraries’ APIs often low−level and/or higher−level component and component library
incompatible abstraction

Framework s
Advantages To provide them, we need:
provide context for components to operate implement such a context, e.g. by a dataflow

 model
mechanisms to build applications implement such a mechanism, e.g. a visual
by assembling components builder
provide component−related services reflection capability on the component interfaces
automatically and implement the services (GUIs, etc) upon it
Disadvantages To remove them, we need:
framework context may be too specific implement generic SimVis application model

two−way component−framework coupling decouple component interfaces from their
may cause intrusive integration implementations

Turn−Key Application s
Advantages To provide them, we need:
specialized functionality for a narrow domain ways to customize the generic application model

Disadvantages To remove them, we need:
closed for customization and extension combine turn−key and framework architectures

Figure 3.1: Advantages, disadvantages, and requirements of SimVis architectural models

components.

Components are grouped in domain-specific libraries. Component libraries are written in a single
object-oriented language. This language should be compilable to produce efficient executable code
and should also allow reuse of existing SimVis legacy code in source and binary form. Integration
of component libraries in the SimVis environment should be non-intrusive. Communication between
the SimVis framework and the components should be done via a high-level component interface. This
interface should be decoupled from the component implementation, to ensure a non-intrusive, easy
integration of components in the framework.

The targeted SimVis environment should provide several services for all user groups, such as trans-
parent integration of new components, easy assembly of components into a final application, and steer-
ing and monitoring of the final application. These services should be accessible via the most convenient
interfaces, such as visual programming tools and scripting for application design, GUIs and direct ma-
nipulation for application steering and monitoring, and command-line tools for all tasks.

Finally, it should be possible to provide the look-and-feel of a turn-key application to the general-
purpose SimVis application model implemented by the proposed system. This should enable the
production of specialised applications for well-defined, focused application domains and user groups.

3.2. COMBINATION OF DATAFLOW AND OO MODELLING 37

This requirement should not be achieved by modifying the general-purpose SimVis kernel, but by pro-
viding an open mechanism to customise its user interfaces to support various policies and interaction
modes.

The VISSION system was designed and implemented to follow the above specifications. The ar-
chitecture ofVISSION is based on two main elements:

1. the combination of object-orientation and dataflow modelling

2. the visual representation and manipulation of the above combination

This chapter covers the first element. The second element is the objective of chapter 4.

3.2 Combination of Dataflow and OO Modelling

TheVISSION architectural model outlined above contains two main elements:

1. the component libraries

2. the framework kernel

We have chosen forobject-oriented component libraries written in a compilable OO language. This
language should allow an easy reuse of legacy SimVis code in source or binary form. One language
that satisfies very well the above requirements is the C++ language [102]. Indeed, C++ offers better
language mechanisms for OO modelling than other object-oriented languages [21]. Among these, we
note:

� a type system supporting multiple and virtual inheritance

� method overloading

� extensive generic programming by use of templates

� a rich choice of data passing mechanisms, i.e. by reference, by value, and by pointer.

Second, numerous studies have shown that well-written C++ compiled code can be almost as fast as
e.g. C or FORTRANcompiled code[58, 14]. Third, C++ can easily integrate C and FORTRANcode by
means of its external linkage mechanism, and can support practically all the programming constructs
of these two languages. This strongly favours the reuse of SimVis legacy code, which comes mainly
as C++, C, or FORTRAN sources or binaries.

Secondly, we have chosen adataflow application model. This means that applications are de-
scribed as directed, possibly cyclic graphs in which the nodes represent processes, actors, and stores,
and the arcs are the data and event flows [91]. On one hand, all these elements are dataflow entities,
which means they should provide dataflow-related attributes, such as data inputs and outputs, and
an update operation. On the other hand, these elements model domain-specific notions, such as a
numerical integration process, a visualisation actor, or a 3D vector dataset store. Since theVISSION

framework kernel is open and domain independent, these abstractions can not be coded into the ker-
nel itself. Instead, they all have to be specified in the component libraries, i.e. programmed as C++
components that provide the desired simulation or visualisation services.

At this point we can see that the ’component’ notion used in the above has to provide two types of
services (Fig. 3.2). On one hand, components are dataflow entities, so they have to provide adataflow

38 CHAPTER 3. ARCHITECTURE OFVISSION

interface that supports services such as data inputs, outputs, and an update operation. On the other
hand, components model domain-specific concepts, viadomain-specific interfaces. These two inter-
faces have to be combined in a singlekernel-component (KC) interface that should support all inter-
actions between the kernel and the components.

Framework
 dataflow
 kernel

dataflow
interface

Compon ent

domain
specific
interface

 kernel
component
 interface

data inputs/outputs
update operation

domain specific
functionality

Figure 3.2: Kernel-component interface

The combination of the two above interfaces can be realised in practice in two ways. The first
method, white-box interfacing , is the most widespread and is described next. The second method,
based on meta-programming, is the one we have adopted in the architectureVISSION, and is presented
in Section 3.2.2.

3.2.1 White-Box Interfacing

The first possibility to merge the two interfaces is to do it at the development language level. In an
OO case, this is usually done by the creation of abstract base classes that declare and partially de-
fine the dataflow interface and some other infrastructural mechanisms, but implement no concrete ser-
vices. Next, concrete subclasses are derived from these base classes. These subclasses implement the
dataflow-related operations declared by their bases in specific ways. Subclasses can be refined in turn
to provide more specialised operations.

An example of the above is given in Fig. 3.3. A baseclassProcess implements a minimal
dataflow fundament that consists of the declarations of an input and output and the declaration of an
update operation. Both the input and output are of typeDataSet, which is an abstract baseclass
for all possible data stores. TheProcess interface consists thus of a methodsetInput() which
sets the given input to a given storeDataSet and of a methodgetOutput() which returns the
DataSet store into which the process computes its result. AllProcessmethods are abstract, since
we do not know the concrete store types accessed byProcess, nor its update operation at this level
(Fig. 3.3 a).

The dataflow kernel communicates with the components only via theProcess interface, as
follows. First, the kernel represents a dataflow network as a graph ofProcess objects which are
connected by their inputs and outputs. When the application designer desires to connect a compo-
nentc1 to the output of a componentc2, the kernel executes the equivalent of the C++ statement
c1.setInput(c2.getOutput()). Secondly, components can be created and destroyed by
calling the constructors, respectively the destructors ofProcess subclasses. Thirdly, theProcess
interface is used by the dataflow kernel during the traversal of a dataflow network to transfer data from
outputs to inputs and to call the update operations of the traversed components (Fig. 3.3 b).

Domain-specific components are derived from theProcess interface. For example, one could
create aVectorDataFilter component to model a process that reads a vector dataset, performs

3.2. COMBINATION OF DATAFLOW AND OO MODELLING 39

VectorDat a

VectorNorm

VectorDataFilte r

Proces s

virtual void update() =0
virtual void setInput(DataSet*) =0
virtual DataSet* getOutput() =0

void setInput(DataSet* arg)
 { input = (VectorData*)arg; }

DataSet* getOutput()
 { return output; }

VectorData *input,*output

void update()
 {

 read input;
 normalize;
 write output;
 }

DataSet
uses

uses

Dataflow Kerne l

kernel−component interface Component−related
 services:

 construct

 destroy

 connect

 disconnect

 update

Component s

 a) b)

Figure 3.3: White-box dataflow class hierarchy (a) and dataflow kernel (b)

an operation on it, and outputs the resulting dataset.VectorDataFilter provides an input and
output of the typeVectorData by implementing the inheritedsetInput() andgetOutput()
methods by using itsVectorDatamembersinput andoutput. VectorData is thus a concrete
subclass ofDataSetwhich models a vector dataset, e.g. as a discrete grid with vector values defined
in each of its cells. There is auses relationship betweenProcess andDataSet, as well as between
VectorDataFilter andVectorData.

Finally, a concreteVectorNorm could be derived fromVectorDataFilter to implement
the normalisation of a vector field.VectorDataFilter implements the inherited update opera-
tion as ’read theVectorData input, normalise the vector field read, and write the normalised field
to theVectorData output’. Both theVectorData input and output are defined at theVector-
DataFilter level, but effectively used at theVectorNorm level.

This inheritance-based approach is used by most SimVis frameworks, especially object-oriented
ones, such as Open Inventor [116], VTK [94], Diffpack [14], and GDP [82].

There are two fundamental problems with this approach: the intrusive component integration and
the restricted dataflow interface. These problems are presented next.

Intrusive Component Design

The main problem is that the above approach of attaching a dataflow interface to domain-specific com-
ponents actually represents a white-box framework solution. As outlined in Section 2.4.3, white-box
frameworks use a two-way, language-level coupling between the components and the framework ker-
nel. For example, in order to create a new component, one has to inherit from the abstract dataflow
interface known by the kernel. This technique is convenient when both the framework and its applica-

40 CHAPTER 3. ARCHITECTURE OFVISSION

tion libraries are designed from scratch.
However, if existing application libraries have to be integrated in an existing dataflow framework,

the components of these libraries must be forced to inherit from the framework’s dataflow interface.
If the libraries cannot be modified e.g. due to copyright issues or if they are not available in source
form, the above technique can not be applied. Moreover, even in the case one can and is willing to
modify existing components to integrate them in a given dataflow framework, this modification can
be impracticable. For example, to integrate a library that contains the class hierarchy in Fig. 3.4 a,
one should modify its roots to obtain the hierarchy in Fig. 3.4 b. This implies the modification of all
classes in the hierarchy to adapt them to the dataflow interface, as well as the appearance of virtual
inheritance at the top of the hierarchy. The above technique, known as the Class Adapter design pattern
[37], is appropriate only when adapting single classes or very simple class hierarchies. When adapting
large, multiple-inheritance based hierarchies, the Class Adapter generates extremely tightly coupled
inheritance lattices which soon become unmanageable [63].

A

B

E

C

D

A

B

E

C

D

DF

inheritance-based
 integration

a) b)

Figure 3.4: Inheritance-based integration. ClassesA andE have to inherit from dataflow interfaceDF,
which causes virtual inheritance

A more flexible way of attaching a dataflow interface to a set of existing components is provided by
the Object Adapter design pattern [37]. This implies practically the creation of an ’adapter’ or ’wrap-
per’ class for every component to be adapted, or adaptee. The adapter-adaptee communication is done
via auses, and not via anis a relationship, as in the case of Class Adapters (Fig. 3.5). Adapters inherit
from the dataflow interface and delegate all the requests they receive to their adaptees. Adaptees are
created and destroyed by their adapters at their creation, respectively destruction time. Object Adapters
are better than Class Adapters since they do not impose the modification of the adaptee code. However,
the appearance of complex class lattices still remains. Moreover, writing Class Adapter hierarchies for
large component libraries is a time-consuming task for the component developer. For every adapted
component, an adapter class has to be written which calls back on the adapted component’s interface.

Restricted Dataflow Interface

While the first problem of inheritance-based component integration relates to component development,
the second problem regards the framework kernel itself. As described above, the inheritance-based
integration is based on a KC interface which is implemented by the components and required by the
kernel. This interface is hard-coded in the kernel and represents the gateway through which this one
communicates with the components. The main elements of this interface are the components’ data
inputs and outputs.

3.2. COMBINATION OF DATAFLOW AND OO MODELLING 41

a) b)

A’

B’

E’

C’

D’

DF

A

B

E

C

D

uses

A

B

E

C

D

adapter hierarchy adapted hierarchy

delegation−based
 integration

Figure 3.5: Delegation-based integration. Class hierarchy in (a) is adapted in (b) in order to conform
to the dataflow interfaceDF

In the vast majority of cases, dataflow interfaces use typed data inputs and outputs. This has several
advantages. First, the dataflow kernel can check whether compatible inputs and outputs are connected
by the application designer by checking their type compatibility and forbid incompatible connections.
This ensures that constructed applications are always correct from a typing point of view. This mech-
anism is similar to the type checking phase of a compiler, but is usually done at run-time, when the
application designer assembles the components together. For this, the KC interface should implement
some form of run-time type information (RTTI) [102, 21].

Since the KC interface is hard-coded in the kernel, the choice of input and output data types is
obviously limited to the types which are hard-coded in the kernel together with this interface. This
restricts the development to components that communicate via the fixed set of data types supported
by the kernel. This set usually contains fundamental types such as integer, float, double, boolean, and
character string. Usually SimVis systems based on the above architecture provide also some structured
data types such as vectors, matrices, and some data sets such as regular, irregular, and unstructured
grids, with several cell types. This is the case for systems such as AVS/Express, Iris Explorer, or VTK.

A possible option is to leave the dataflow kernel open for modification, such that component devel-
opers could extend the KC interface with new types. However, this is a dangerous option, as develop-
ers could modify the existing interface, besides extending it. This could render previously functional
components inoperational. Moreover, modifying an interface which is hard-coded in the kernel implies
modifying all kernel subsystems that use that interface. Overall, this option is not viable and actually
not used in any of the SimVis systems we know of. For an extensive overview of the negative implica-
tions of modifying a base interface, see the work of see Meyer [69] and Martin [64] on the Open-Closed
Principle, and Martin [65] and Liskov [59] on the Substitution Principle.

The development of new components and integration of existing ones has either to directly use the
data types supported by the kernel or to map the data inputs and outputs to and from these data types. In
both cases, this leads to a complex component development and integration path. The resulting code is
either system-dependent, as it contains explicit references to the kernel-specific structures, or heavily
adapted by massive adapters that perform the data translation. In the latter case, data has to be con-
verted by value between the component’s and the kernel’s representation, which may result in severe
performance loss. If the components communicate via encapsulated data types, such as C++ classes,
it might not be possible to directly access their internal representation in order to convert these to the
kernel data representation.

42 CHAPTER 3. ARCHITECTURE OFVISSION

3.2.2 Metalanguage-Level Integration

The second method of integrating the dataflow and domain-specific functionality is based on the ob-
servation that inheritance from an interface is too rigid to cover the communication with an open set
of components from an open set of application domains. Consequently, a more flexible KC interface
is needed.

The KC interface is the only mediator between the dataflow kernel and the object-oriented compo-
nents. This communication consists primarily of data typed inputs and outputs which should, on one
hand, map directly to the component data interface, and on the other hand, be directly accessible to the
kernel. Via this interface, the kernel should be able to read and write any input or output data value. In
order to accomplish this, the kernel should be able to:

1. have a direct representation of all possible value types supported by any component interface.

2. ask the component to update, or recompute its state, as a response to a change of its inputs. On the
component side, the update operation should be able to check which inputs have been modified,
then perform the desired actions on the component, and finally inform the kernel about which
outputs have been changed as a result of the update.

3. instantiate and destroy the components at any time. As components are C++ classes, this oper-
ation should cause the usual C++ construction and destruction actions on the component side.

4. load and unload several component libraries. By loading a library, the component types of
that library should become accessible to the kernel. Unloading represents the inverse operation
through which the kernel relinquishes the component types of a given library.

In order to accomplish all the above operations, the KC interface needs more freedom than a C++ class
interface hard-coded in the kernel. Services such as dynamic component type loading and unloading,
dynamic component instantiation , and reflection require mechanisms of a higher level than the ones
provided by the classical compiled model of the C++ language. Many of these mechanisms are pro-
vided by default for programming languages such as Java [23] or Smalltalk [40] by their run-time en-
vironments (sometimes also called virtual machines). However, even though similar systems exist for
C++ as well, they do not provide all the services needed to implement the KC interface.

The solution of choice is to provide these services at ameta-level, i.e. in a framework that is above
the C++ language. Such a framework can be implemented e.g. as a meta-language that extends the
semantics of C++ with the notions needed by the KC interface, such as dataflow features, dynamic
component type loading and component instantiation, reflection services, etc. The notion of a SimVis
component, so far only partially supported at the C++ language level, will be clearly defined at the
meta-language level, together with its interface to communicate with the kernel.

We have chosen the above solution in the architecture ofVISSION by creating a simple meta-
language called MC++ . MC++ is a language layer over C++ which adds dataflow semantics to object
orientation in a non intrusive manner. MC++ offers a few meta-constructs that allow component de-
velopers to ’enrich’ plain C++ constructs such as classes and types with dataflow functionality. There
are four meta-constructs in MC++:

1. Metaclasses: Metaclasses extend C++ classes to form the basic components for building SimVis
applications.

2. Meta-types: Meta-types extend C/C++ types to form the data passing interface between meta-
classes.

3.3. THE METACLASS 43

3. Meta-groups: Meta-groups model composition of metaclasses into nested hierarchies.

4. Meta-libraries: Meta-libraries package together the metaclasses, meta-types, and meta-groups
for a given SimVis application domain.

These constructs are presented in the following sections.

3.3 The Metaclass

The metaclass is the main construct in MC++. A metaclass models the type of a SimVis component.
The concrete components from which a simulation or visualisation is built can be seen as instances of
metaclasses, just like C++ objects are instances of C++ classes. Functionally, metaclasses extend the
C++ class concept with various dataflow related information. Structurally, metaclasses can be seen as
metalanguage-level wrappers around plain C++ classes that make these classes compatible with the KC
interface. Similarly to C++ classes that have an interface (thepublic part) and an implementation
(theprivate part), metaclasses are component interfaces whose implementations are the wrapped
C++ classes. In comparison with the white-box component-kernel integration illustrated in Fig. 3.3,
metaclasses allow a black-box component integration (Fig. 3.6) . The KC interface is now described
above the C++ component implementation level, that is at the metaclass level. This allows the decou-
pling of the component interface from its implementation demanded in the previous chapter.

Dataflow Kernel
Component−related
 services:

construct

destroy

connect

disconnect

update

A
C++ class
interface C++ class

Metaclass

C DB

Components

kernel−component interface

a) b)

Metaclass
features

Metaclass to
C++ class
interface

Figure 3.6: Metalanguage kernel-component interface

A metaclass is a collection offeatures , just as C++ classes are collections of members . The most
important metaclass features are the input and output ports and the update operation. These features
are described next. The other features will be discussed later.

3.3.1 Metaclass Ports Overview

A port is a metaclass feature through which a component can read or write data from, respectively
to other components. A dataflow application is thus represented as a directed graph whose nodes are
metaclass instances and arcs are port-to-port connections. The port-to-port connections are called links

44 CHAPTER 3. ARCHITECTURE OFVISSION

in MC++. A port has three main attributes: type, input/output, and read/write. These attributes deter-
mine whether two ports can be connected by a link, and, in the positive case, how data is transferred
across the link. Port attributes can vary independently, so one may have input read, output read, input
write, and output write ports, of different C++ types.

In most existing dataflow systems, ports have only the type and input/output attributes. However,
these systems have difficulties supporting the several data passing mechanisms provided by program-
ming languages, such as by-value, by-reference, by-pointer, and reference counted data passing. Small
datasets are usually passed by value. In the case of large datasets, the ownership of the data (i.e. which
modules create, respectively destroy the datasets) is usually provided by reference counted mechanisms
hard-coded in the system kernel. If one desires to support user-defined, kernel-independent data types,
this solution is however not possible. The addition of the read/write port attribute solves the above
problem, as it will be shown in section 3.3.4. In this section, an overview of the port attributes is given.

The type of a port represents the type of values that can be read or written from, respectively to
that port. Since metaclasses represent only component interfaces to C++ components, port types are
native C++ types, such as integer, float, pointer, or class types, passed by value or by reference. The
semantics of data passing is identical to the C++ one. For example, a port that has a reference C++
type such asint* or float& is going to read or write just a reference to a value, not the value itself.
A port that has a value C++ type such asdouble or DataSet (whereDataSet is some C++ class
type) will read or write a copy of the passed data value, not the passed value itself. If the port is of a
class type that has a copy constructor, this will be invoked at the data transfer just as it is done during
an usual C++ value transfer.

The input/output port attribute represents theconceptual direction in which data flows related to
the port’s metaclass. As previously mentioned, a dataflow application is adirected graph whose nodes
are the metaclasses and arcs are port-to-port connections, or links. The port input/output attribute de-
termines the direction of links that may end at that port. Links are thought to emerge from output ports
(shortly outputs) and enter into input ports (shortly inputs). The sense of the links determines thus the
direction in which the dataflow network is traversed and consequently the order in which its compo-
nents compute, or update. Figure 3.7 a shows the graphical representation of a metaclass. The upper
and lower rectangles represent the input and output ports respectively. This representation is similar
to the one used by most dataflow systems that depict components visually.

In most cases, the data transfer that actually takes places follows the links’ directions, i.e. data
is read from outputs and written to the inputs. However, as we shall soon see, this is not always the
desired situation.

Theread/write port attribute represents theactual direction in which data is transferred related to
the port’s metaclass. Aread port is thus a portfrom which data can be read. Awrite port is a port
into which data can be written. We distinguish two kinds of write ports: read-write or write-only. A
read-write port is a write port which can also be read. Conceptually, the value read from a read-write
port is the last value written into it. A write-only port is a port which can be only written, but not read.
Since read-write ports are used in most concrete cases, we shall call them shortly write ports and use
the read-write and write-only terminology only when the context requires this distinction. Ports are
usually output and read, respectively input and write. However, input read and output write ports may
exist as well, as mentioned above.

Two ports can be connected by a link if all the following hold:

� the port C++ types are compatible, in the sense of C++ type compatibility.

� one port isinput, the other one isoutput.

3.3. THE METACLASS 45

� one port isread, the other one iswrite.

Data is transferred across a link by being read from the link’s read port and written into the link’s write
port. This is why a read-write port pair is needed to make a link. After a metaclass updates, it will
transfer data across all the links connected to its outputs. The metaclasses whose inputs are connected
to these outputs will update as well, and so on. This is where the distinction between inputs and outputs
comes into play.

Figure 3.7 b shows two connected metaclassesA andB. Data read fromA’s outputout flows across
the link and is written intoB’s input inp. This is the most common situation, where data ’naturally’
flows along the link’s direction, from outputs to inputs. Most dataflow systems such as AVS, Inventor,
Oorange, VTK, Khoros, IRIS Explorer support only this case, where the sense of the traversal of the
dataflow network coincides with the sense of the data transfer. This is indeed natural for the case when
data is transferred by value.

However, suppose thatA wants to directly modify the contents ofB, e.g. by writingB’s data mem-
bers or calling its methods. In this case,Awill hold a reference or pointer toBwhich is set whenA and
B are connected. In order to do this, a reference toB should be written intoA. This is whyA’s out port
is of write type andB’s port inp is of read type. WhenA updates, itdirectly modifiesB via its stored
reference. This is whyA’s out port is of output type, andB’s port inp is of input type. Figure 3.7 c
shows the above example.

The separation of the input/output and read/write notions corresponds actually with two different
flows in the network, i.e. the data and control flow. Thedata flow represents the way data is read
and written between components, and corresponds to the read/write port attribute. Thecontrol flow
represents the order in which components are updated during network traversal, and corresponds to
the input/output attribute. The two senses coincide when data is transferred by value. However, as we
have seen, direct modification of components via references implies a data transfer sense opposite to
the network traversal sense. This issue is further detailed in section 3.3.4).

Metaclass A

Metaclass B

output read port out

input write port inp

data transfer across this link involves:

write to inp the data read from out

Metaclass A

Metaclass B

output write port out

input read port inp

data transfer across this link involves:

write to out the data read from inp

a) b) c)

Metaclass A

input ports

output ports

Figure 3.7: Metaclass representation (a). Data transfer from a read output to a write input (b) and from
a read input to a write output (c)

When a port is read or written, the actual operation of reading or writing data is delegated by the
metaclass ports to its C++ class implementation. To illustrate the above, an example follows showing
how a metaclass is created out of a C++ class.

46 CHAPTER 3. ARCHITECTURE OFVISSION

Metaclass Example

Suppose one wants to create a metaclass for a C++ classPolyArea (Fig. 3.8).PolyArea computes
the area of a regular n-sided polygon, being given the polygon’s edge length and the number of edges.
For this,PolyArea’s public interface has an integer data memberedges to specify the number of
edges, and a method-pairsetSize,getSize to set, respectively get the edge size as a float value.
The polygon’s area is computed by the methodcomputeArea() and stored in the private member
area. To query this computation, a methodgetArea is provided. The class provides also a con-
structor to initialise its state, i.e. the data memberssize,area, andedges to the zero default value.

class PolyArea
 {public:
 PolyArea(): edges(0),size(0),area(0) {}
 int edges;
 void setSize(float s) { size = s; }
 float getSize() { return size; }
 double getArea() { return area; }
 void computeArea() { compute area as function
 of size and edges }
 private:

 float size;
 double area;
 };

Figure 3.8: Simple C++ class to compute the area of a regular, n-sided polygon

C++ does not specify which of a class’ members are ’inputs’ and which are ’outputs’, as it does
not have the dataflow notion. However, in order to make a dataflow component out ofPolyArea, we
must identify which are the conceptual inputs and outputs through which this class communicates with
the outside world. In the above case, bothedges and thesetSize,getSizemethod pair control
the class’ data inputs, as they provide reading or writing of the parameters on which the polygon’s area
depends.PolyArea has only one output, namelygetArea which returns the area of the specified
polygon.

Figure 3.9 shows the MC++ code that declares aPolyAreametaclass with two write input ports
”number of edges” and ”edge size” and one read output port ”area”. The MC++ code forPolyArea

module PolyArea
 {input:

 WRPortMem "number of edges" "int" (edges)
 WRPortMeth "edge size" "float" (setSize,getSize)

 output:

 RDPortMeth "area" "double" (getArea)
 }

Figure 3.9: Metaclass declaration for the C++ classPolyArea

illustrates a couple of important MC++ constructs. First, a metaclass is a declaration similar to a C++
class or structure declaration. It starts with themodule keyword, followed by the name of its imple-
mentation C++ class, and the metaclass body between braces. The metaclass body contains the dec-
larations of the metaclass features. In the above example, two input ports and one output port were

3.3. THE METACLASS 47

declared. Port declarations fall into aninput or output access category, specified by the same
keywords. All port declarations following aninput specifier up to the metaclass body end or to a
subsequent access specifier are input ports. The same holds for theoutput access specifier. Port
declarations coming before any specifier are assumed by default to be input declarations.

3.3.2 Port Specification

To explain the completePolyArea metaclass declaration, we shall first present the port declaration
syntax. A port declaration has the following syntax (roughly similar to a C++ method declaration),
where:

<port_kind> "<port_name>" "<port_type>" (<C++ args>)

� port kind is a special identifier denoting thekind of the port whose description follows. The
port kind specified which actions are to be taken when data is read or written from that port, rela-
tively to the port’s metaclass C++ implementation. Several port kinds are implemented in MC++
to support the most frequently encountered data transfer situations. ThePolyArea metaclass
illustrates the three most frequently used port kinds:WRPortMem, RDPortMeth, andWR-
PortMeth. WRPortMem denotes a read-write port whose read and write actions correspond
to reading, respectively writing a C++ class member.RDPortMeth denotes a read port whose
read action corresponds to calling a C++ class method and using its return value.WRPortMeth
denotes a write-only or read-write port whose read and write actions correspond to calling two
methods of the formT get(), respectivelyset(T), whereT is the port C++ type. Other port
kinds will be presented later.

� port name is the name of the port in MC++, given as a string enclosed between double quotes.
The port name serves to identify a given port in the KC interface. The port name does not have
to be related with the names of the C++ class members that implement it, as noticeable from the
PolyAreaexample above. Input ports among themselves, respectively output ports, must have
different names, similarly to C++ class members. However, an input may have the same name
as an output, since inputs and outputs are two different name spaces in MC++. This is desirable
e.g. when both an input and output port refer to the same data element, such as the ”value” of
anIntegermodule. Another example is the ”this” port, discussed in section 3.3.4.

� port type is the port’s C++ type, i.e. the type of the data value the port reads or writes. The port
type is specified as a string and can be any valid C++ type specifier, such as ”int”, but also ”const
char*”, ”const MyClass&”, etc.

� C++ args is a list of C++ class members, separated by quotes and enclosed in brackets. These
are the names of the data members and/or methods used by the port to implement its read/write
functionality. The number of the arguments, as well as their meaning, depend on the specific port
kind. In the above example, the port ”number of edges” of kindWRPortMem needs just the
name of the C++ data member it reads and writes, namelyedges. Similarly, the port ”area”
of kind RDPortMeth needs the name of the C++ methodgetArea it calls to get its value.
The port ”edge size” of kindWRPortMeth needs two methodssetSize,getSize to set,
respectively get its value from the underlying C++ class.

48 CHAPTER 3. ARCHITECTURE OFVISSION

We have so far presented how the metaclass construct adds the dataflow notions of inputs and out-
puts to a plain C++ class. To understand how the dataflow mechanism actually works, an example is
presented where twoPolyAreametaclasses are coupled to form a simple dataflow network.

Network Example

A simple dataflow network is built by connecting twoPolyArea components that, for the sake of this
example, will be calledcomp1 andcomp2 (Fig 3.10). A link is established between the ”area” output
of comp1 and the ”edge size” input ofcomp2. The link is possible, since ”area” is a read output,
”edge size” is a write input, and ”area”’s double type is compatible with ”edge size”’s float type. Two
operations take place when data flows across the link between the ”area” and the ”edge size” ports.
First, the dataflow kernel reads the value of the ”area” output. This is done by calling the method
getArea oncomp1’s C++ object. Next, this value is converted to a float, and then copied into the

PolyArea
C++ method
"getValue()"

C++ object
"comp1"

output "area"

Data transfer
"comp2.setSize(comp1.getValue())"

PolyArea

input
"edge size"

C++ object
"comp2"

C++ method
"setSize()"

component
"comp1"

component
"comp1"

Figure 3.10: Data transfer between two metaclass components

”edge size” input. This is done by calling the methodsetSize on oncomp2’s C++ object with the
value read in the first step. Overall, the data transfer is conceptually equivalent to the execution of the
C++ statement:

comp2.setSize(comp1.getArea());

Similarly, if we connectedcomp1’s output ”area” tocomp2’s input ”number of edges”, the data
transfer across the emerging link would be conceptually equivalent to the C++ statement:

comp2.edges = comp1.getArea();

3.3. THE METACLASS 49

In the above examples, we assumed that there would exist two C++ objects calledcomp1 andcomp2
which would correspond to the metaclasses with the same names.

3.3.3 Metaclass Update Operation

We have presented so far how data is transferred between two components. Transferring data is how-
ever only half of the job done by the dataflow kernel when a component network gets traversed. The
other half consists of the components’ update operation. ThePolyArea component presented above
would not function correctly if, whenever an input is changed, itscomputeArea method were not
called to recompute the polygon area and thus bring its ”area” output up to date. Since we use an
event-driven kernel model, the above operation should happen automatically whenever a component
input changes (see Section 2.2).

MC++ provides exactly this functionality by its metaclassupdate operation, the second most im-
portant feature after the metaclass ports. The update operation specifies all actions to be done by the
kernel on a metaclass in order to update it when its inputs change. If a metaclass has no update opera-
tion, nothing is executed to bring its state up to date when its inputs change. The dataflow kernel will
assume thatall its outputs have changed (even though nothing was really done to change them) and
thus will continue the network traversal and component update from them on. This allows the inser-
tion of ’update-less’ components in a network, such as a data store between two processes, one writing
it and the other reading it. These components are transparently traversed by the dataflow mechanism
without the need for special mechanisms to treat them.

If, however, a metaclass needs to execute some action to recompute its outputs when its inputs
change, an update operation needs to be specified. The simplest way in which this can be done in MC++
is to delegate it to a method of the C++ implementation class, similarly to the delegation of the port read
and write actions. For example, to delegate the update of thePolyAreametaclass to the C++ method
computeArea, the name of the C++ method is added between braces after anupdate specifier in
the metaclass declaration. A metaclass may have a single update operation, or none. The above is
called theshort form of the update specification. Fig. 3.11 shows the newPolyAreametaclass with
the added text in bold. MC++ expects the update C++ method to conform to avoid ()() or int

module PolyArea
 {input:

 WRPortMem "number of edges" "int" (edges)
 WRPortMeth "edge size" "float" (setSize,getSize)

 output:

 RDPortMeth "area" "double" (getArea)

 update: { computeArea }
 }

Figure 3.11: Adding an update operation to a metaclass

()() signature. If the method has a void return type, it is assumed that the metaclass update always
succeeds and that all the outputs are modified after the update. If the method returns an integer, a non-
zero value specifies that the update operation succeeded, so all outputs are modified after the update. A
zero value specifies that the update failed, in which case no output is modified and the network traversal
stops at the respective metaclass. This offers component designers a very simple mechanism to steer the

50 CHAPTER 3. ARCHITECTURE OFVISSION

control flow from within the C++ components. Similar mechanisms are implemented by other dataflow
systems such as AVS, AVS/Express, and VTK.

The short update form was used for most (over 95%) of the MC++ metaclasses we designed for
various application domains. There are however cases when one a) must execute different update op-
erations that depend on which input ports have changed; or b) wishes to mark only specific output as
changed after the update operation, depending on what this does. These cases require a more detailed
specification of the update operation. Specifically, we need a way to determine which inputs are mod-
ified at the update call time, and a way to selectively mark the outputs as modified after the update call
completes.

For the above, MC++ allows the specification of the update operation directly as C++ source code
in the metaclasses. Within this source code, mechanisms are provided to:

� check which input ports have changed to cause the update call

� execute C++ code to perform the effective update computations

� selectively mark the outputs as changed or not changed

The above are best illustrated by an example. SupposePolyArea desires to implement a consis-
tency check, as follows. If the ”number of edges” input is smaller than three, then no polygon can be
formed, so the metaclass should fail to update and should not modify its ”area” output. In this case, no
downstream component should execute. If the ”number of edges” input is greater or equal to three,
PolyArea should update as usually, by callingcomputeArea and marking its ”area” output as
changed. The above update scenario is specified in MC++ by the code shown in bold in Fig. 3.12,
and is called theextended update form, in contrast with the short update form already presented.

module PolyArea
 {input:

 WRPortMem "number of edges" "int" (edges)
 WRPortMeth "edge size" "float" (setSize,getSize)

 output:

 RDPortMeth "area" "double" (getArea)

 update: int update(PolyArea& pa)
 {
 if (SYSTEM::isChanged("number of edges")
 && pa.edges < 3)
 {
 SYSTEM::unchange("area");
 return 0;
 }

 computeArea();
 return 1;
 }
 }

Figure 3.12: Extended form of update operation

The extended update form consists of theupdate specifier followed by a C++ function defini-
tion. This function should comply with the signatureint ()(T&), whereT is the name of the meta-
class and of its C++ implementation class as well. This function is called whenever a component of

3.3. THE METACLASS 51

typeT has to be updated. The argument of the function is a reference to the component’s C++ imple-
mentation object. In the example in Fig. 3.12, this is a reference to aPolyArea object. The update
function’s body may contain any valid C++ statements that may perform operations on the C++ im-
plementation object. The changed inputs can be retrieved by calling the methodisChanged of a
special classSYSTEM. The methodSYSTEM::isChanged gets an input port name and returns 1
if that input is changed, else 0. As described previously, MC++ assumes that all outputs of a com-
ponent are changed after this successfully updates. To mark some outputs as unchanged, theSYS-
TEM::unchangemethod can be used, with the output port name to mark as unchanged as argument.
Finally, the update function should return 1 in case the update succeeded, or 0 in the case it failed. The
extended update form allow component developers to easily write any kind of update operation for
their metaclasses. As noticeable from the previous example, no modification of the C++ implementa-
tion class is needed. All the code that couples this class with the KC interface resides in the metaclass
declaration.

Figure 3.13 completes the overview of the kernel-component interface based on the metaclass con-
struct that was sketched in Fig. 3.6 at the beginning of Section 3.3. The most important element to be

C++ class

method call return value (1/0)

method call /
member access C++ value

Input/Output Ports

Update Operation

SYSTEM::isChanged()
SYSTEM::unchange()

1/0 1/0 update component

port read/write
 request

C++ value
 returned

Kernel−Component Interface

Kernel−Component Interface

Dataflow Kernel

C
o
m
p
o
n
e
n
t

 construct/
 destroy
component

new
component

constructor/
destructor call

Component−related services:

 construct

 destroy

 connect

 disconnect

 update

 data transfer

Figure 3.13: Complete picture of the kernel-component interface

noticed is thetotal decoupling of the component’s actual code written in C++ and its dataflow func-
tionality provided as a metaclass shell. All the interaction between the two takes place strictly via the

52 CHAPTER 3. ARCHITECTURE OFVISSION

C++ class public interface. The C++ component development is thus in no way constrained. Provided
with an appropriate metaclass written in MC++, any C++ components can be integrated in the dataflow
framework. The presented framework is indeed a black-box one, as there is no direct connection be-
tween the framework kernel and the C++ components. It is clear now why this solution differs fun-
damentally from the usual white-box based SimVis architectures. Indeed, such architectures have no
meta-level that decouples the component design from the framework kernel. Consequently, compo-
nents must either inherit from a kernel interface (VTK, Open Inventor, Oorange, Diffpack) or contain
in their code special statements for data communication and synchronisation with the kernel (AVS,
CSE, VASE, SCIRun).

3.3.4 More About Metaclass Ports

In this section, the picture of the metaclass ports is finalised by providing the remaining details on their
functionality.

By Value / By Reference Data Transfer

In thePolyArea network example presented previously, data was transferred between modules by
copying the values delivered by the read ports and writing them into the write ports. There are how-
ever cases when we need to pass data by reference between component ports, for example in order to
maximise performance by avoiding the overhead of copying large datasets. This can be only partially
done with the port mechanisms described so far.

Assume, for example, that we have a componentProducerwhich computes some datasetT, and
a componentConsumerwhich needs to read this dataset. TheProducer-Consumercoupling can
be modelled by aProducer output port of typeT and aConsumer input port of the same typeT.
Data flows along theProducer-Consumer link by passing aT object by value between the two
ports. This involves the call ofT’s copy constructor and destructor, ifT is a class type that provides
them. In any case, the transfer ofT involves a full copy ofT’s data values. If theConsumer does
only read the incoming data and theT data objects are large, it is faster to pass them by reference, i.e.
pass a reference or a pointer toT from Producer to Consumer instead of the whole objectT. The
simplest way to do this is to declare the involved ports of typeT* instead ofT. Figure 3.14 shows such
an example, whereProducer outputs a pointer to ahas member of itself of typeT, to be used by
Consumer. A Ru relationship exists betweenConsumer and theT member ofProducer.

The above implementation of by reference data transfer is however unsafe. For instance, if the
Producer component is destroyed after it has been connected to one or severalConsumer compo-
nents, these components will have dangling references to the destroyedProducer’sTmember. Since
components can be created and destroyed in any order, we need a mechanism to ensure the proper cre-
ation, operation, and destruction of referenceRu andWu relationships between components.

There are basically two ways to solve this problem. The first is to assume that the components
themselves manage the reference relationships between themselves. For example, theT objects could
be reference counted. TheProducer would then create dynamically aT with a reference count of
1 and manage it via a pointer instead of owning it as a class member. TheT object would be output
as aT* as before. When aProducer is destroyed, it will not destroy theT it created, but decrement
its reference count. When aConsumer connects to aT*, it will increment the reference count of
the connected objectT. When aConsumer disconnects from aT*, it will decrement the reference
count of the connected objectT. The objectT is destroyed when its reference count is set to zero, i.e.
when there is no component that read-uses or write-uses it any more. This mechanism is implemented

3.3. THE METACLASS 53

class Producer
{ public:

 T* getData() { return data; }

 private:

 T data;
};

module Producer
{ output:

 RDPortMeth "data" "T*" (getData)
}

Produ cer

T data

Consumer

 a T* flows
along this link Ru

a) b)

Figure 3.14: Simple by reference data transfer. C++ class and metaclass (a) and actual data transfer
scheme (b)

by Open Inventor and VTK, among others. Several problems occur when the components manage
the reference relationships. First, all components that plan to read or write-use aT have to be written
specially to use such a mechanism, or to be modified accordingly if they have been developed before
the mechanism existed. As explained in the previous chapter, this is difficult or even not feasible for
large or binary-form third party component libraries. Second, the above solution works as long as the
component developers remember to perform the dataset referencing and dereferencing in all their com-
ponents. This is tedious and error-prone when developing large component libraries. Third, managing
the reference relationships in the components code makes the latter less readable.

The second solution is to have the dataflow kernel provide support for the management of by refer-
ence data transfer. This is the alternative we have chosen by introducing the notion ofreference ports
in MC++. Reference ports behave similarly to the value ports we used so far, with the difference that,
when a reference write port gets disconnected, it is automatically set to thedefault value of its C++ data
type. Default C++ values are explained in detail in Section 3.4. For the time being it is enough to know
that the default value of any C++ pointer type is theNULL pointer. For the example in Fig. 3.14, this
means that when theProducer-Consumer link is broken, theConsumer’s input port is automat-
ically set toNULL. TheConsumer update code can then easily check the value of this port and pro-
hibit any update operations if it isNULL. Moreover, now theProducer can output a pointer to ahas
data member safely. Indeed, when theProducer is destroyed, all links between its output and other
Consumers are automatically destroyed by the dataflow kernel, which causes setting allConsumer
input ports toNULL. The component developer does not need to do anything in the C++Consumer
orProducer code. All he needs to do is to declare theConsumer’s input port and theProducer’s
output port as reference ports. This is done in MC++ by appending an asterisk after the port’s kind,
similarly to a C++ pointer declaration (Fig. 3.15).

The reference concept of MC++ and the usual ’pass by reference’ semantics of C++ are orthog-
onal concepts (Fig. 3.16). Data can be passed by value between two value ports, as in the network
example in Fig. 3.10, or by reference between two value ports, as in the example in Fig. 3.14. The
first is useful when the datasets to be passed are small or when they have to be locally modified. The
latter is useful when the receiver copies the data passed by reference and uses the copy locally, so it

54 CHAPTER 3. ARCHITECTURE OFVISSION

module Producer
{ output:

 RDPortMeth* "data" "T*" (getData)
}

Figure 3.15: Declaration of reference ports in MC++ for theProducermetaclass

becomes actually independent on the passed reference, or when the components implement some ref-
erence counting scheme. Further, data can be passed by reference between two reference ports, as the
example in Fig. 3.15. This is useful when data is to be shared and the component developer doesn’t
want to or can’t implement reference counting. Finally, data can be passed also by value between two

small datasets
(int, float, RGB 3−float struct)

locally copy dataset
or do reference counting

large datasets
(matrices, fields, grids)

like above, but reset port to
default value at disconnection

By value By reference

By value

By reference

C++MC++

Figure 3.16: By value and by reference semantics in C++ and MC++

reference ports. For example, if an integer were passed between theProducer andConsumer ref-
erence ports in the above example instead of aT*, the integer’s value would be copied. When the ports
get disconnected, the write port would be set to the default value of an integer, in this case zero.

To summarise, whatever the passed C++ type between two ports is,T or T*, by value or by ref-
erence, two scenarios can happen when these ports get disconnected. In the first case, the write-port
doesnot need to know that it has been disconnected, so nothing is done at disconnection. This is the
by-value semantics of MC++. If the passed C++ type is a pointer, then the component developer must
ensure that there are no dangling pointers or memory leaks, etc, by e.g. deep copying the pointed object
in the write-port’s write operation or using some form of reference counting on the pointed object.

In the second case, the write-portdoes need to know when it is disconnected. MC++ provides for
this the reference ports which get automatically set to the default value of their C++ type when they
get disconnected. This is useful to inform a component that there’s no longer a connection at that port.
This invariant ensures that the component developer will never suffer from dangling pointers.

Required Ports

MC++ supports the notion ofrequired ports . A required port must be connected before its compo-
nent can update. Required ports are useful for components that have reference ports. In many such
cases, the component’s update needs functionality offered by the components it read- or write-uses via
the reference ports. The component can thus operate correctly onlyafter all its reference ports have
been connected. To enforce this invariant, ports can be declared required in MC++, by the insertion of
the keywordrequired at the end of the port declaration. Reference ports are automatically consid-
ered required in MC++ even if they are not declared using therequired keyword, since they usually
have to be connected before their component can operate. If however a component may operate even

3.3. THE METACLASS 55

when one of its reference ports is not connected, since e.g. its implementation checks for theNULL
value of that port, the keywordnot required can be appended to the port declaration. This spec-
ifies that the respective port is not required, even though it is a reference port. Therequired and
not required keywords are seldom used in MC++, as the defaults of reference ports always re-
quired and value ports always optional usually suffice.

The ’This’ Port’

Sometimes a componentA directly uses another componentB, e.g. when the operations of the two com-
ponents are intimately related.A will read-useB if A keeps a reference toB and wheneverB changes,
A reads the new state ofB to update itself.A write-usesB if A keeps a reference toB and wheneverA
changes, it directly modifiesB by e.g. callingB’s methods.

Such relations between object-oriented components are very frequent in the architecture of com-
ponent libraries (see for example the Object Adapter, Mediator, or Decorator design patterns[37]). It is
thus important to be able to model these relations at the MC++ component level as well. This is indeed
possible as follows . The relationshipA read-uses B maps directly to a dataflow model in whichB has
a read output port of typeB* corresponding to its ownthis pointer andA has an input write port of
typeB* (Fig. 3.17 a). The relationA write uses B maps similarly to a dataflow model whereA has a
write output of typeB* andB a read input of typeB* that corresponds to itsthis pointer (Fig. 3.17 b).

B

B* this

A

 a T* flows
along this link Ru

a) b)

read
output
port

write
input
port

A

B* this

B

 a T* flows
along this link

Wu

write
output
port

read
input
port

direction
 of
dataflow

Figure 3.17: Implementation of read-use (a) and write-use (b) relationships between components

In the read-use case, the network update goes fromB to A, as well as theB* this pointer which
A receives. During its update,A ’pulls’ the desired data fromB via this pointer. In the write-use case,
the network update goes fromA to B, but theB* this pointer transferred along theA-B link goes
from B to A. During its update,A ’pushes’ the desired data intoB via this pointer.

Write-use relations occur far less frequently that read-use ones in OO libraries. However, they are
indispensable when using explicitdata-sink components, or data stores that act as plain data reposi-
tories [91]. These have no update operation, but are updated by upstream components that write-use
them. For example, aMatrix component is a data store with no update operation, which is write-used
by e.g. aMatrixReader or MatrixBuilder component. Data sinks are often read-used in their

56 CHAPTER 3. ARCHITECTURE OFVISSION

turn by other components, leading to the appearance of chains of alternatingRu andWu relations in a
network. For example, aMatrix can be read-used bySolver orPreconditioner components.

In most dataflow systems, output ports are always read ports and input ports are write ports re-
spectively. As explained in Section 3.3.1, this allows the implementation of read-uses relationships
but not of write-use ones. By making the read/write, respectively input/output port attributes indepen-
dent, MC++ can provide both uses relationships in a consistent framework.

To implement the above relations, an output read port and an input read port for thethis pointer
of a component’s C++ object are needed. For a component of C++ typeT, these could be declared as
follows:

input: RDPortMem "this" "T*" (this)
output: RDPortMem "this" "T*" (this)

This would be tedious since the ”this” port looks the same for any module. Therefore, MC++ provides
automatically an input and output ”this” read port for any component. The concept of ”this” ports is
analogous to the concept of the C++this or Smalltalkself class members, which are automatically
provided by the language to any class.

Signal Ports

Sometimes a componentA needs to be informed that some ’event’ has taken place in the dataflow net-
work, e.g. that an output port ”out” of another componentB has changed. This can be done with the
MC++ mechanisms introduced so far, by providingA with an input ”inp” and connecting it toB’s out-
put ”out”. This solution has however the disadvantage that onceA’s input ”inp” is built, it can be con-
nected only to outputs that have compatible C++ types. However, the request stated above is thatA
needs only to be informed when a port haschanged, and not of the port’s newvalue as well. For exam-
ple, two independent pipelines could be synchronised by making the start component of the first update
automatically when the start component of the second updates. All we need in this case is to monitor
when an output of the start component changes, its new value being irrelevant for the synchronisation
purpose. Although such control flows are captured in the dataflow diagrams of Yourdon [120] and the
UML notation [91], few actual dataflow systems implement them.

For the above, MC++ provides an untyped write port of theWRPortSignal kind . A WR-
PortSignal port can be connected to any other port regardless its type. Formally,WRPortSig-
nal has the C++ typevoid that MC++ considers, by convention, to be compatible with any other
C++ type, similar to the typeAny in Eiffel [69]. When a link ending with aWRSignalPort gets
activated, the port calls a provided methodmySignal() of its C++ class and ignores the data output
by the port at the other end of the link (Fig. 3.18 a). The port can be declared as follows:

input: WRPortSignal "inp" "void" (signal)

wheremySignal() is a C++ class method that must conform to thevoid ()() signature. If
no argument list is provided to the declaration, no action will be taken when theWRPortSignal is
activated, besides the usual triggering of its component’s update operation.

MC++ provides also a read signal port kind calledRDPortSignal. If WRPortSignal is seen
as a generic signal receiver,RDPortSignal is a generic signal sender. When a write port is con-
nected to aRDPortSignal that changes, the write port behaves as if it just received the data value
it already had before the signal reception moment.WRPortSignal output ports are useful to force

3.3. THE METACLASS 57

a) b)

A

T get()

read output
port "out"

signal input port
WRPortSignal

set(U)

B

Connector

write input
port "inp"

signal output port
RDPortSignal

incoming signal

mySignal()

B

module
executes
mySignal()

signal input port
WRPortSignal

Figure 3.18: Signal read port (a) andConnector component (b)

input ports of other components to ’refresh’ their current value and thus determine their components
to update.

TheRDPortSignal andWRPortSignal port kinds can be used to build a generic connector,
i.e. a component that can be used to connect two ports of any C++ types for signalling purposes. Fig-
ure 3.18 b presents an example where componentA’s read output ”out” of C++ typeT is connected to
componentB’s write input ”inp” of C++ typeU via aConnector component.The generic connector
has oneWRPortSignal input with no class method associated to it, and oneRDPortSignal out-
put. WhenA’s ”out” port changes, theConnector’s signal input port is activated. However, no data
is read via ”out”’sget() method, as the signal port does not need it. Next, the signal output port of
Connector is activated. Since this is aRDPortSignal, B’s ”inp” input behaves as if its current
value has just been written into it via itsset() method.

Connector components are very useful when closing loops in dataflow networks between ports of
incompatible C++ types. In many such cases, the only information to be passed between components is
the occurrence of achange event, regardless of the data values that have changed. The iteration of such
loops would usually be controlled by some module that conditionally updates its outputs on a threshold
value or a maximum iteration count. To prevent endless looping, several approaches are possible. In
the current implementation ofVISSION, the end user can interactively block the execution of a desired
module or the whole network execution (Sec. 4.2.2).

Multiple Ports

Only ports bearing a single link to other ports were discussed so far. It should be remarked here that
a read port can be connected to any number of write ports, as this is in accordance with the natural
idea that a data value can be read by an unlimited number of readers. The write ports presented so far,
however, can bear one connection. This is in accordance with the idea that one can write only a single

58 CHAPTER 3. ARCHITECTURE OFVISSION

value at a given time into a given location.
To model the number of links a port can bear, the concept ofport multiplicity is introduced . The

multiplicity of a port is the number of ports with which the port can be simultaneously connected. Read
ports have thus an infinite multiplicity. The write ports presented so far have a multiplicity of one. The
port multiplicity is an inherent attribute of every port kind implemented in MC++.

There are however cases when one needs to write alist of values into some location, e.g.
when building a summator whose output is the sum of all its inputs. Constructing a summator compo-
nent with several identical inputs is not a solution, since it does not allow the connection of a variable
and unlimited number of inputs to the summator. What is needed is a new kind of write port with
a multiplicity higher than one that can be connected to a variable number of read ports. The data
provided by this port should be the list of values read from all the ports connected to it. MC++ imple-
ments the above in the form of theWRPortDynArr (write port using a dynamic array) port kind. A
WRPortDynArr port ”inp” of C++ typeT is implemented by five methods of its component’s C++
class and is declared in MC++ as follows:

input: WRPortDynArr "name" "T" (get,set,num,insert,erase)

The methods calledget,set,num,insert anddelete in the above example manage an or-
dered, random access dynamic array of elements of typeT and have the signatures and semantics
presented in Fig 3.19. The implementation of the above methods needed by theWRPortDynArr

returns ith array element
sets ith array element to value t
returns the number of array elements
inserts value t at positi on i in the array
removes ith array elementvoid erase(int i)

WRPortDynArr methods Method semantics

void insert(int i,T t)
int num()
void set(int i,T t)
T get(int i)

Figure 3.19: Methods needed for aWRPortDynArr port kind

port kind is left as usual at the user’s freedom, e.g. using the C++ Standard Template Library contain-
ers. The dataflow network in Figure 3.20 illustrates the behaviour of theWRPortDynArr port kind
for a summator component connected to three components that model the terms to be summed up.
Fig 3.19. When aterm component is connected tosumm’s input, the methodinsert() is called to

term1 term2 term3

summ

WRPortDynArr
input port

Figure 3.20:WRPortDynArr example

insert the data output byterm in summ’s WRPortDynArr input port.The position in the list where
the newterm output is to be connected to thesumm input is provided by the kernel which calls the

3.3. THE METACLASS 59

connect operation. In some cases as in this example, the order of the connected inputs is irrelevant,
so newterm components can be simply appended at the end of thesumm’s input port array. When
a term component is disconnected from thesumm’s input, the methoderase() is called to erase
the value fromsumm’s input port array that corresponds to the disconnected component. The meth-
odsset() andget() are used to transfer the data across thefact-summ links during the normal
network traversal. Finally, the methodnum() is used by the dataflow kernel to determine how many
ports are still connected to aWRPortDynArr port.

3.3.5 Metaclasses and Object-Orientation

In the above discussion of the metaclass concept, there are three ways in which MC++ is related to
the object-oriented mechanisms provided by C++: metaclasses use C++ classes as their implementa-
tion, C++ types for their ports, and C++ source code for the extended form of their update operation.
However powerful, the above component specification mechanisms provided by MC++ permits only
to construct components out of unrelated classes. As presented in chapter 1, OO application libraries
come in practice asclass hierarchies and not as unrelated classes. In order to support the integration
of class hierarchies, MC++ enhances metaclasses with the concept of feature inheritance.

A metaclass can have several base metaclasses, or bases shortly. This concept is similar to the
public inheritance concept provided by C++. A metaclass inherits from its bases all their features, e.g.
ports and update operations. The inheritance construct syntax in MC++ is similar to the one offered
by C++. Figure 3.21 shows an example in which metaclassC inherits port ”inp” from its baseA and
port ”out” and the update operation from its other baseB.

module A { input: WRPortMem "foo" . . . }
module B { output: RDPortMem "bar" . . .

 update: { update }
 }

module C : A, B { }

A B

C

Figure 3.21: Metaclass inheritance example

Metaclass hierarchies created in the process of component library construction are usually home-
omorphic to the C++ implementation class hierarchies, in the sense that theis a anduses relation-
ships between metaclasses, respectively C++ classes are similar [91](Fig 3.22 a). The interface-
implementation relationships between metaclasses and their C++ counterparts can be seen as instances
of the Bridge design pattern [37]. However, the homeomorphism between metaclass and C++ class
hierarchies is not mandatory in MC++. One could have, for example, a metaclass hierarchy with less
elements than the corresponding C++ hierarchy, since it might be useless to expose the finer granu-
larity of the latter in the MC++ space (Fig. 3.22 b). In this example, the component developer has
skipped the mapping of the classD together with its ancestorB in the inheritance pathA-E. This is
dome by simply declaring that metaclassE inherits fromA, thus skippingB andD completely from
the MC++ hierarchy.

The decision of providing the inheritance concept in MC++ has a couple of important conse-
quences. First, it is possible to have metaclasses that correspond to abstract C++ classes, i.e. classes
which have pure virtual methods . This requires an extension of the concept of metaclass instantiabil-
ity. In the absence of inheritance in MC++, a metaclass would be considered instantiable if its C++
class provides a publicly accessible default constructor and a public destructor. At the instantiation of

60 CHAPTER 3. ARCHITECTURE OFVISSION

A B

DC

E

A B

DC

E

A

C

E

A B

DC

E

MC++ space C++ space MC++ space C++ space

Figure 3.22: Homomorphism between MC++ and C++ class hierarchies (a) Simplified MC++ hierar-
chy for C++ class hierarchy (b)

a metaclass, a C++ object would be automatically created and used to provide the services required by
the metaclass interface. When a metaclass instance is destroyed, its underlying C++ object would be
destroyed as well. In the presence of inheritance, a metaclass is instantiable if its C++ class provides
a publicly accessible default constructor, a public destructor,and is not abstract. The base-to-derived
construction process and the reverse derived-to-base destruction process semantics of metaclasses are
identical to the C++ one.

The second implication of inheritance regards the management of inheriting identical features from
different bases and the overriding of features. The way MC++ approaches this issue is discussed in the
following.

Inheritance and Feature Overriding

If a metaclass declares a feature with the same name as an inherited one, the new feature overrides (re-
places) the inherited one. Since MC++ supports multiple inheritance, a scheme is needed to resolve the
possible clashes between several inherited features with the same name. This scheme works differently
for different features, as follows.

A metaclass that inherits several features with the same name from its direct bases will actually in-
herit the feature from itslast base, as specified in the metaclass’ base list declaration. This resolution
scheme is used for all metaclass features except the update operation. If a unique update operation ex-
ists among all the direct bases, this will be inherited. If more direct bases provide an update operation,
none will be inherited. The rationale for the above is that if several bases provide update operations, a
metaclass that inherits from these bases should almost surelycombine the inherited updates in its up-
date operation. If more updates are provided, the safest is to inherit none. For the other features, the
chance of multiply inheriting the same feature from different bases, e.g. an input port with the same
name, is much smaller than for the update. In such a case, it was noticed from practice that a conve-
nient default would be to inherit the feature encountered the last in the base list. Note that the input
and output ports have different name spaces, so an input port could have the same name as an output
port, as it is actually the case for the ”this” ports presented in Section 3.3.4.

The issue of dealing with multiple inheritance and name resolution is still a subject of debate in the
OO languages community. For example, C++ accepts the inheritance of the same feature from different
bases, but requires its explicit qualification with the base name for use afterwards. Other languages
such as Eiffel [69] offer renaming mechanisms to rename the multiply inherited features to different

3.4. THE META-TYPE 61

names. MC++ chooses thus a middle way, as described above.

Feature Hiding

Feature hiding, also present in Eiffel and partially in C++, enables a metaclass to select which fea-
tures to inherit from its bases. Feature hiding is implemented only for ports, since in all the other cases
features can be redefined to take a default value, e.g. a void update operation. Figure 3.23 exempli-
fies feature hiding (similar in syntax to the analogous Eiffel language operation): metaclassB inherits
inputs ”inp1”, ”inp2”, and output ”out” from its baseA. All these ports are hidden by the presented con-
struct that follows the base list, which contains a comma-separated list of inputs to be hidden,followed
by a semicolon and a list of outputs to be hidden). In this example,B inherits actually none of the three
ports.

module A { input: WRPortMem "inp1" ...
 WRPortMem "inp2" ...
 output: RDPortMem "out" ...
 }

module B : A ("out","foo";"bar")
 { }

Figure 3.23: Hiding inherited features

3.4 The Meta-Type

Section 3.3.4 introduced the concept of default value for a C++ type. Default values have several uses
in an interactive SimVis system:

� initialisation: reference ports could be initialised automatically by the system to their default
values at component creation time. This would save the component developer the burden of re-
membering to set the corresponding data members to their default values.

� security: default values can be used to signal that a reference port has been disconnected, by
resetting it to the default value of its C++ type. This could easily avoid problems caused by e.g.
dangling pointers.

� customisation: the default value for a C++ type could be easily changed to a new value without
recompilation (useful, for example, as several end users might have different opinions on what
the default value of e.g. a RGB colour is).

Default values extend the C++ notion of data type in the same way metaclasses extend the C++ class
concept. We would like to provide default values to all fundamental or class C++ types in the same
non-intrusive manner we did for C++ classes by the metaclass construct. The best solution is thus to
introduce a new MC++ construct. This construct is called ameta-type .

A meta-type is a MC++ language construct that adds several dataflow-related features to a C++
type. Formally, the data values that flow between components in a dataflow network are meta-type
instances. The features provided by a meta-type are the default value and the serialisation operation.
These features are presented in the following.

62 CHAPTER 3. ARCHITECTURE OFVISSION

3.4.1 Default Values

To add a default value to a C++ type, a meta-type has to be created in MC++. The following example
illustrates how the default values of zero, for integers, and the null string, for character pointers, can
be added in MC++.

type "int" f default: "0" g
type "char*" f default: "NULL" g

The meta-type construct is similar to the metaclass one , i.e. it has a name, identical to the name
of the C++ type it extends, followed by a list of features between braces. The above presents the de-
fault value feature which is introduced by thedefault keyword, followed by a string which contains
a C++ expression that gives the default value of the C++ type. Any conforming C++ expressions can
be provided as default values. For example, consider the C++ classPoint that represents a two-
dimensional point, and provides a constructor of the formPoint(float,float). If one desires
to express the fact that the default value of aPoint is the point at coordinates (0,0), this can be done
by the following meta-type declaration:

type "Point" f default: "Point(0,0)" g

Meta-types are object-oriented entities. If, for example, one declares a C++ classPoint3D which
extends the abovePoint to model 3D points, and a default value is provided forPoint3Ds but not
for Points, then thePoint3D default value will be used also for thePoint type.

3.4.2 Serialisation Operation

There are many cases when the state of a component has to be copied to a different location, e.g. when
components are to be cloned, transferred to a different place over a network, or saved on external sup-
port for later use, in the case of persistent systems. All these operations require a genericserialisation
mechanism that can transform a component’s state into a system-independent representation which can
be transferred, cloned, or stored in a save file.

The state of a SimVis application is composed of the dataflow network topology and the states of
all the dataflow components. The state of a dataflow component is entirely described by the values of
its inputs and outputs. Since we model inter-component connections as links between ports, the state
of the entire system is given by the values of all the component ports. Operations such as saving the
state of a dataflow network, cloning networks, or transferring them over a machine’s boundary can be
thus easily implemented once we provide a mechanism to serialise the value of any component port.
Since ports in MC++ bear C++ values, we need a mechanism to serialise any C++ type. This implies
representing the value of an instance of that type in some generic way, e.g. as an ASCII string, and
constructing an instance of that type from the serialised representation. The above operations are triv-
ial for fundamental C++ types, whose serialisation is simply their value, e.g. ”12” for an integer, or
”abc” for a char*, etc. This is however less trivial for class types which have no default serialisation
mechanism, i.e. no standard way to encode their value to a string and restore it from the same string.

The above serialisation functionality can be provided however at the meta-type level in MC++, by
thestore meta-type feature. Similar to the extended form of the metaclassupdate operation, the
meta-typestore feature specifies a C++ function in source form. For a C++ typeT, thestore func-
tion expects achar* buffer and an object of typeT, and should serialiseT in the provided buffer. The

3.4. THE META-TYPE 63

function signature is thusvoid ()(char*,T&, whereT is the type to be serialised (Fig. 3.24). The

port "T" {
 store: void store(char* buf,T& obj)
 { ... serialize obj into buf ... }
 }

Figure 3.24: Thestore meta-type feature

question still to be answered is how to implement the serialisation of any typeT via the above inter-
face. RenderingT’s internals into some string format is not an option, since then a special procedure
to restoreT from that format should be devised as well. This involves a complex, hard to generalise
and use mechanism. Moreover, this would break the C++ encapsulation principle by allowing code
external to the C++ class to directly set the class internals. We can avoid this by noticing that any
C++ type has a natural way to be created from other data, namely its constructor that uses that data as
parameters. Consequently, thestore operation should simply write in the provided string buffer a
C++ expression denoting the constructor call which, if evaluated, would produce an object identical to
the one being serialised. For example, consider the classPoint discussed above (Fig. 3.25 a). The

port "Point"
{
store:

void store(char* buf,Point& obj)
 {
 sprintf(buf,"Point(%f,%f)",
 obj.getX(),

obj.getY());
 }

class Point
{
public:

 Point(float x_,float y_)
 :x(x_),y(y_) { }
float getX() { return x; }
float getY() { return y; }

private:
 float x,y;
};

a) b)

Figure 3.25: C++ typePoint (a) and its meta-type serialisation operation (b)

Point constructor offers a perfect way to serialise aPoint value, as shown in thePointmeta-type
(Fig. 3.25 b).

Reference ports represent a special case, since their value is not only a C++ data value but repre-
sents also a reference to another port. Representing the value of a reference port as its C+ data value
would be incorrect. Reference ports carrying C++ pointers, for example, would be serialised incor-
rectly if one would e.g. simply copy their pointer values across machine boundaries. Consequently,
reference port values are defined in a different way.

A reference port value is defined by a string with the following structure:

<objname:portname.index>

whereportname is the referred (target) port,objname is the name of the component that owns
the referred port, andindex is an integer that indicates the position of the connection inportname,
as explained in Section 3.3.4. For example, a reference port connected at position 1 to the ”info” port
of the objectdata will have the value<obj1:info.1>. The value of an unconnected reference
port is the empty string. The use of the above reference port value encoding scheme is demonstrated

64 CHAPTER 3. ARCHITECTURE OFVISSION

in Sections 4.4.4.

3.5 The Meta-Group

An important problem applications designers face is that applications built as dataflow networks give
raise to very large component networks. Managing large graph-like diagrams in e.g. a visual program-
ming environment can be difficult, since all dataflow components would be displayed on the same ab-
straction level. What one needs is a way to representstructure in such a graph. For example, a dataflow
network like the one in Fig. 3.26 (a) could be divided into several sub-networks by grouping compo-
nents related by their functionality into three groups (Fig. 3.26). Finally, application designers could
use the simplified network containing just one componentD and the three component groups .

A

D

E

F

G

H

CB

H

Group 1

Group 2 Group 3
D

Group 1

Group 2 Group 3

A

D

E

F

G

H

CB

H

a) b) c)

Figure 3.26: Dataflow network: unstructured version (a), introduction of groups (b), and simplified
version (c)

The idea of aggregating dataflow components into larger groups implements actually the third soft-
ware modelling relationship that missed from our dataflow-based analogy. If the OO metaclass con-
cept models encapsulation and theis a inheritance relationship, the port-to-port links model theuses
relationship, then component aggregation int groups model thehas a relationship.

Component groups address two important application designer requirements. First, they help
managing complexity by breaking down a network into a few component groups. Second, component
groups could represent higher units of software reuse than components. For example, an application
designer might want to reuse a whole sub-network with a specific functionality in different contexts.
For this, we need a mechanism to manipulate the sub-network as a dataflow component in itself, which
has a well-defined structure, interface, and functionality. This mechanism was implemented in MC++
by themeta-group concept.

A meta-group has a similar dataflow interface with a metaclass, i.e. it offers input and output ports,
and an update operation. Meta-groups are built as recursive aggregations of other meta-groups or meta-
classes. They offer to the component developer a simple mechanism to describe complex functionality
by recursive aggregation ofchildren components into aparent meta-group.

3.6. THE META-LIBRARY 65

3.5.1 Example

We shall illustrate the meta-group construct by an example. Suppose one has the dataflow network in
Fig. 3.27 a, composed of two componentsA andB. The MC++ code in Fig. 3.27 b declares a meta-
group which is equivalent to this network. Similar to other MC++ meta-construct declarations, the
meta-group declaration starts with the name of the meta-groupG, followed by the group’s features
between braces. The group has two children, i.e. the metaclassesA andB declared inG’s chil-
dren section. These are given the namesobj1, respectivelyobj2 inside the meta-group scope. The
children section is practically identical to the data member declarations of other OO languages.
Next, G declares thatobj1’s input ”inp1” will become a group port by the name of ”input 1”, and
similarly for obj1’s input ”inp2” andobj2’s output ”out”. To identify a child port inside a group
declaration, MC++ provides the<child name>.<port name> syntax, similar to the aggregate
member referencing syntax of most OO languages. The exported ports have the same properties and
type as the ports to which they delegate.

Children ports such asobj2."inp4" that are not exported at the group level remain hidden
inside the group and are not accessible by the group’s clients. Finally, theconnect section ofG’s
declaration specifies the internal connections between the group’s children, such as the link between
obj1."out1" andobj2."inp3".

3.5.2 Meta-group Advantages

After its declaration, a meta-group can be used either as a part of another meta-group’s declaration by
the component developer, or directly by the application designer in the construction of networks. When
a meta-group is instantiated, all its children are recursively instantiated and connected as the group’s
declaration specified. Next, the group component is accessible exactly as a meta-class component, via
its ports. When a group updates, its internal sub-network of components is traversed from the group
inputs to the outputs and every child is updated. Consequently, the meta-group behaves identically
as if its internal component sub-network were manually built by the application developer instead of
the group. Meta-groups provide a metalanguage-level mechanism to encapsulation, aggregation, and
reuse for the dataflow model, much in the same manner that it is done by OO languages for compo-
nent design. The advantage of using meta-groups to build newer components instead of coding their
aggregation in C++ is that MC++ offers a much simpler and safer programming manner. Furthermore,
as it will be presented in chapter 4, meta-groups built at the MC++ level are available for interactive
exploration in a visual programming environment, which could not happen if they were designed as
C++ level code aggregates.

The idea of language-level aggregations is not unique to MC++. Open Inventor, for example, of-
fers the similar concept ofnode kits which are assemblies of C++ components, calledparts. Node kits
model 3D objects having a fixed structure, given by the parts’ assembly, but customisable attributes,
given by the input ports of the node kit. Due to the statically compiled nature of Open Inventor, node
kits have however a rather complex implementation and are difficult to be built by the component de-
veloper. Besides Open Inventor, only few other SimVis systems raise component aggregation to the
level of a type.

3.6 The Meta-Library

Themeta-library is the largest code unit for dataflow modelling. A meta-library is a collection of meta-
constructs such as metaclasses, meta-types, and meta-groups, which is created by the component de-

66 CHAPTER 3. ARCHITECTURE OFVISSION

group G
{
 children: A obj1
 B obj2

 input: obj1."inp1" as "input 1"
 obj1."inp2" as "input 2"
 output: obj2."out" as "output"

 connect: obj1."out1" to obj2."inp3"
}

G

input 1 input 2

output

a) b) c)

A obj 1

B obj 2

input 1 input 2

output

inp1 inp2

out

out1

inp3 inp4

Figure 3.27: Meta-group example: initial network (a), MC++ code (b), and final meta-group (c)

veloper and used by the application designer to build dataflow networks. Usually a meta-library con-
tains all components needed to model a given application domain, such as 3D graphics, scientific data
representation, data visualisation, or numerical computations. The second role of the meta-library is
to provide the mechanisms that connect the MC++ declarations to their compiled C++ implementa-
tion. The structure of a meta-library file is illustrated by means of an example (Fig. 3.28). Two meta-

Meta−library "Library 2 "

module A module B

C++ library "lib2.so "

class A class B

implementation

Meta−library "Library 1 "

module C

C++ library "lib1.so "

implementation

implementation
inclusion

module D

class Cimplementation class D

Figure 3.28: Meta-library example:Library 2 includesLibrary 1 and is implemented bylib2.so

librariesLibrary 1 andLibrary 2 are declared, which offer the metaclassesC,D, respectively
A,B. These metaclasses are implemented by the C++ classes with the same names located in the binary
librarieslib1.so andlib2.so, respectively. Finally, there is a dependency betweenLibrary 1
andLibrary 2, in the form that metaclassB inherits from metaclassC. Other similar dependen-
cies could exist, such as a meta-group fromLibrary 1 having a child declared inLibrary 2,
etc. The meta-libraries and their implementation counterparts exhibit a homeomorphic architectural
pattern similar to the one exhibited, at a finer level, by the metaclasses and their C++ implementa-
tions (Section 3.3.5). The two librariesLibrary 1 andLibrary 2 are actually two MC++ files
lib1.mh andlib2.mh whose structure is presented in Fig. 3.29 a,b. The structure of a MC++ file

3.7. CONCLUSION 67

library: "Library 1"
implementation: "lib1.so"
initialization: { printf("Library 1 loaded\n"); }
finalization: { printf("Library 1 unloaded\n"); }

module C { }
module D { }

library: "Library 2"
include: "lib1.mh"
implementation: "lib2.so"

module B : C { }
module A { }

a) b)

Figure 3.29: Meta-library MC++ code examples

is similar to the one of a Java package or a C++ header. The library declaration starts with the library
name, followed by optionalinclude statements that specify the meta-libraries on which the current
library depends. Libraries depend on each other in much the same way the application domains they
model depend on each other. Next, the C++ implementation of the meta-library is given. In our actual
implementation, this is a compiled C++ shared object library. Next, aninitialization section
can provide optional C++ source code to be executed just after the library is loaded. For example,
Library 1 in Fig. 3.28 a) prints a message when it is loaded by the dataflow kernel. Initialisation
sections are useful, for example, for X11/OpenGL [77, 119] rendering libraries that have to initialise
their rendering contexts before they perform any other rendering action. Initialisation code can call
e.g. global library functions or static class methods. Similar to this section, afinalizationsection
may optionally provide actions to be executed just before the library is unloaded. Finally, the MC++
declarations of the library’s components follow.

Meta-libraries are similar to e.g. Java packages or C++ class libraries. The dataflow kernel is able
to dynamically load and unload such libraries and their provided functionality. Loading a meta-library
triggers the loading of all libraries on which it depends that are not already loaded. Similarly, unloading
a meta-library triggers the unloading of all libraries on which it depends that are not used by any other
loaded library. Although MC++ does not specify the above operational semantics, this is (and should
be) part of the OO dataflow model, in the same way that the C++ object model that specifies the C+
run-time semantics is part of the C++ language standard [30, 58].

3.7 Conclusion

This chapter has presented a new SimVis system architectural model. The new model combines the
advantages of the library, framework, and turn-key application architectures and eliminates their ma-
jor disadvantages. The main feature of the new model is a high-level framework-application compo-
nent interface that combines object-oriented and dataflow modelling in a non-intrusive manner. The
interface is implemented at a meta-language level, as the MC++ component specification language.
MC++ provides several constructs that allow classical C++ components to be smoothly merged into a
dataflow environment without requiring their modification or interface adaptation. On the other hand,
the powerful features of the C++ object model remain available to be used by the dataflow kernel. The
strict separation of the MC++ dataflow and C++ OO modelling helps further in the transparent integra-
tion and intercommunication of existing SimVis libraries. Keeping the two modelling worlds separate
simplifies the component development path and makes understanding and extending component code
easier. Finally, the C++ application code is truly system-independent, and it can be easily used in any
other context or system, since all its dependencies onVISSION are confined to the MC++ ’adapter’
structures.

The OO-dataflow combination represents the foundation on whichVISSION, a flexible general-

68 CHAPTER 3. ARCHITECTURE OFVISSION

purpose SimVis environment has been built. This chapter has explained the advantages of the new
architectural model based on MC++ from the perspective of the component developer. The next chapter
will presentVISSION from the perspective of the application designer and end user, and illustrate the
advantages of the architectural model presented here from these two perspectives. The implementation
of VISSION’s architecture presented here is the subject of chapter 5.

Chapter 4

Application Design and Use in VISSION

In the previous chapter we presented the architectural basis on which theVISSION SimVis environment
is built. The advantages of the new OO-dataflow combination based on the MC++ meta-language were
presented from the component developer perspective. However, unlike in similar SimVis application
builders, the architectural model is not opaque to the application designers and end users that work with
VISSION. An important feature ofVISSION is that it uses the same application model for all its user
groups. This chapter shows how the OO-dataflow application model presented in the previous chapter
is reflected in the application designer and end user interaction withVISSION. Throughout this chapter,
several advantages of using a single application model for all user groups will become apparent.

4.1 Background

Existing SimVis systems offer a large variety of user interfaces to their different classes of users. For
application designers, such interfaces range from simple script-based application specification to com-
plex visual programming and steering GUIs, as the ones shown in Figs. 2.2 , 2.3. For end users, inter-
faces also range from simple text-based input-output scenarios to interactive GUI-based visualisation
and steering tools.

Many SimVis systems exhibit no visible structural correspondence between the application inter-
nal representation and the user interface. The user interface is often conceived as a back end that is
loosely coupled with the SimVis kernel. This fact is not problematic for turn-key systems in which
the application internal structure is anyway hard-coded and not of interest to the end user. Environ-
ments that support the application designer role must however offer a user interface to the application
structure, in order to edit it by e.g. adding or deleting components. Moreover, systems that support
the component developer role must also offer a way to represent new components in their application
designer and end user interfaces.

Most SimVis systems based on the dataflow application model approach the above tasks by three
different user interfaces:

1. First, a text-based interface provides commands to construct an application by instantiating com-
ponents, connecting them together, and setting their inputs to the desired values. This interface
can serve the end user as well. Commands are provided to change the value of the components’
inputs, re-execute the application, and query component output values.

2. Secondly, application design is provided also graphically by editing an icon-based visual repre-
sentation of the dataflow network.

69

70 CHAPTER 4. APPLICATION DESIGN AND USE INVISSION

3. Finally, end users can inspect or steer the components by using GUI dialog panels. These panels
show the components’ input and output values by means of various widgets such as text fields,
dials, sliders, or even 3D renderings. Examples of the above interfaces are shown in Fig. 2.3 for
several SimVis systems.

The user interfaces of most component-based SimVis frameworks have a couple of limitations:

1. GUI Construction: Constructing a new interface for a new component added to the system, or
for a whole application, is usually complicated. This implies modifying the component code to
insert GUI code (AVS or Matlab), manual construction of the component’s GUI in a text-based or
visual GUI editor (AVS/Express), or manual coding a GUI interface in a separate programming
language (e.g. the Tcl/Tk languages for VTK and Oorange). In all cases the integration of new
components in the system is far from automatic. Moreover, the end user requirement for a com-
ponent GUI propagates back to the component developer. Component code is either not system
independent any longer or a separate GUI component must be written in some special program-
ming language. These clearly contradict our requirements presented in the previous chapters.
However, the option of visually building a GUI for an entire application or a component is an
important feature that we would like to have inVISSION as well.

2. Extensibility: As shown in the previous chapter, components may have various input and output
types, ranging from integers and strings to complex user-defined types. Most SimVis systems
provide however only a few, hard-coded (thus fixed) GUI widgets that can edit only a few basic
types. It is usually impossible to construct a custom GUI for a user-defined type such as a three-
float vector or a RGB colour, especially if this is an object-oriented type. The only solution left
requires elaborate manual mapping of that type to the supported types.

3. Completeness: Text interface or scripting languages are usually less powerful than the compo-
nent development language. Consequently not all the component facilities are accessible to the
end user scripts or text interface, as detailed in Section 2.5.2.

Conceptually, the above limitations of user interfaces stem from the fact that existing SimVis systems
do not have an adequate representation of the component notion. This chapter shows how the com-
ponent notion based on the OO-dataflow model presented in the previous chapter addresses the above
problems in a generic manner.

4.2 Application Design User Interface

First we address the user interfaces offered to the application designer. As discussed in the previous
chapters, application designers require tools to assemble an application, represented as a dataflow net-
work, from components provided by the component designer. InVISSION, components are represented
as constructs of the MC++ language (metaclasses, meta-groups, and meta-types) gathered in meta-
libraries. It is hence easy and convenient to construct the application design user interface directly
based on the MC++ concepts. The mapping of the various MC++ concepts to a visual representation
in the application design GUI is the subject of the next sections.

4.2.1 Icons and Networks

The first element provided by the application design GUI is theiconic representation of metaclasses
and meta-groups and of their instances . Every metaclass, meta-group, or instance thereof inVIS-

4.2. APPLICATION DESIGN USER INTERFACE 71

SION is visually represented by an icon. The icon displays graphically several features of the repre-
sented MC++ entity such as the input and output port types and kinds, the entity’s type, and the entity’s
instance name. We shall illustrate the above by an example. The metaclassVTKSphereSource
(Fig. 4.1 a) is an actor that generates a faceted approximation of a sphere sector. Its input parameters
are the sphere radius, the angles��,��,��, and��, that delimit the start and end of the spherical sector
to be approximated, in the polar coordinates� and�, and the resolution of the polygonal discretisa-
tion in both polar directions. These parameters are modelled by the float input ”radius”, theVec2f
inputs ”theta” and ”phi” (whereVec2fmodels a 2-float vector), and the integer inputs ”theta res” and
”phi res” respectively. The metaclass outputs a dataset of C++ typeVTKPolyData that carries the
sphere’s tessellation as a list of polygons.

module VTKSphereSource
{
input: WRPortMeth "radius" "float" (...)
 WRPortMeth "theta" "Vec2f" (...)
 WRPortMeth "phi" "Vec2f" (...)
 WRPortMeth "theta res" "int" (...)
 WRPortMeth "phi res" "int" (...)

output: RDPortMeth* "output" "VTKPolyData" (...)
}

b) c)

a)

Figure 4.1: Icons for metaclassVTKSphereSource (b) and metaclass instancesphere (c)

The icons for the metaclassVTKSphereSourceand an instance of it, calledsphere, are shown in
Fig. 4.1 b,c respectively. The metaclass icon, shown in detail in Fig. 4.2, displays the input and output
ports of its underlying metaclass in the upper respectively lower part of the icon, the metaclass type.
If the icon represents an instance, the instance name is displayed as well. Every meta-entity instance
has a unique name inVISSION, much as a variable has a name in a program. The arrows on the small
rectangular port symbols depict the port read/write attribute: an arrow going into the icon denotes a
write port, while the opposite direction denotes a read port. The port symbols are framed with a black
line if the port is a reference port, as it is the case for the ”this” and ”output” ports. The colour of
the port, rendered as gray shades in Fig. 4.2, encodes the C++ port type. The mapping between types
and colours can be specified by the component developer when writing the MC++ meta-libraries. The

" this" "radius" " theta" "phi" " theta res" "phi res"

" this" "output"metaclass name instance name

Figure 4.2: Graphic details of metaclass icon

metaclass icon representation is very similar to the ones used by the GUIs of other SimVis systems,

72 CHAPTER 4. APPLICATION DESIGN AND USE INVISSION

such as AVS, Data Explorer [1], or Oorange. Metaclass icons are however visual displays of OO enti-
ties, which means that the icon of a derived metaclass will automatically contain all the ports it inherits
from its ancestors, besides the ports it declares itself. Hidden ports (see Section 3.3.5) are not displayed,
since they are actually not inherited.

A dataflow network is visually represented as a graph where the nodes are icons corresponding
to the dataflow objects and the arcs are the links between the connected inputs and outputs. For ex-
ample, let us consider a simple visualisation network for the tessellated sphere produced byVTK-
SphereSource (Fig. 4.3 a). The network starts with aVTKSphereSource sphere that generates
a polygonal dataset, followed by aVTKDataSetMapper instancemapper that maps the dataset to
drawable primitives. AVTKActor actor represents the viewable object which is finally rendered by
a 3D viewerVTKViewer. Figure 4.3 b shows the image produced by the pipeline for the input values
”theta”=(0,180), ”phi”=(0,270), and ”theta res”=”phi res”=20.

generates a tessellated sphere

maps sphere to graphics primitives

represents viewable object

renders object in 3D camera

a) b)

Figure 4.3: Simple visualisation pipeline (a) and resulting image (b)

The mapper-actor sub-pipeline is frequently met in the back-end of visualisation networks. In order
to simplify such networks, these two metaclasses can be grouped into a meta-group, whose MC++
declaration is given in Fig. 4.4 a. The simplified pipeline using theVTKActorSetmeta-group icon
is presented in Fig. 4.4 b. The meta-group icon is identical to the metaclass icon with the exception
that the meta-group name is displayed between angular brackets to indicate that the icon corresponds
to a meta-group and not to a metaclass.

4.2.2 The Network Manager

The icons presented above are the graphics building bricks for a dataflow network.VISSION provides
a GUI, called thenetwork manager, in which these icons can be manipulated to actually perform the
application design. The network manager consists of two visual components: the library browser and
the network editor. Overall, the network manager is built on the model offered by the AVS and Iris Ex-
plorer visualisation systems. Figure 4.5 shows the simple visualisation application used as an example
in the previous section in the network manager.

Thelibrary browser is an automatically constructed visual representation of the meta-libraries that
are loaded intoVISSION. The instantiable metaclasses and meta-groups present in these libraries are
displayed in several scrollable icon stacks, depending on the components’categories. Every compo-
nent in a meta-library belongs to a category. Categories allow grouping related components together,

4.2. APPLICATION DESIGN USER INTERFACE 73

group VTKActorSet
{
children: VTKDataSetMapper mapper

 VTKActor actor
input: mapper."input"
output: actor."this"

connect: mapper."this" to actor."mapper"
}

a) b)

Figure 4.4: Group icon used in visualisation pipeline

such as mappers, filters, data sources, data writers, or datasets. Inheritance or other OO relationship
is not mandatory between components in the same category. Indeed, inheritance reflects a commonal-
ity in interface and implementation. Categories, however, reflect different concerns such as a common
functionality as seen by application designers. Modules related by inheritance are thus often grouped in
different categories. An example are the VTK data filters which inherit from theVTKDataSetFil-
ter module which, in its turn, specialises theVTKDataSetSourcemodule. The VTK data read-
ers are also specialisations ofVTKDataSetSource. However, filters and readers are traditionally
seen as different categories by application designers, even though they share the sameVTKDataSet-
Source base in the VTK component library.

The category attribute is inherited by components exactly as the port attributes (Section 3.3.5). The
component category is thus just a label attached to a component for grouping functionally related com-
ponents together in the library browser. In this respect, categories are similar to the aspect concept used
in the field of aspect oriented programming [54].

A component’s category can be specified by the MC++category attribute, followed by the category
name, in the component’s declaration. Figure 4.6 shows the declaration of theVTKActorSetmeta-
group that falls into the ”mapper” category. Components in each category are displayed in a separate
stack in the library browser. For example, Fig. 4.5 shows component stacks for the ”filter”, ”mapper”,
and ”data” categories. Components with no explicitly specified category are displayed in a separate
stack labelled ”others”.

Thenetwork editor displays a visual representation of the dataflow network existent inVISSION.
Next, the network editor offers various network editing functions. The most important functions are
the following:

� Instantiation of components by dragging their icons from the library browser into the network
editor.

� Deletion of components by using a popup menu on the component icons. The deletion of a com-
ponent starts by destroying its links, followed by the destruction of the actual component.

� Cloning of components. When a component is cloned, a new component of the same type and
with the same input values is created. Cloning is thus the dataflow equivalent of the OO concept
of copy constructing [102].

� Renaming of components by means of a GUI dialog.

74 CHAPTER 4. APPLICATION DESIGN AND USE INVISSION

li brary
browser

network
editor

dataflow
network

li brary
compon ents

compon ent
path

conn ection
status area

port status areas

Figure 4.5: The network manager

� Interactive navigation into meta-groups. Every component has inVISSION a parent component,
as described in Section 3.5. The components that are not children of any group are regarded as
children of theroot group. The root group is the invisible root for the parent-child component
hierarchy. The network editor displays by default the contents of this root group. The application
designer can navigate into group components by double-clicking on their icons. When a group
is entered, the network editor displays the contents of that group, i.e. its children components.
The path from the currently displayed group to the root group is shown on thecomponent path
widget of the network editor (Fig. 4.5. This widget allows also an easy navigation upwards from
the current group. Alternatively, one can go one level up in the hierarchy by double-clicking on
the network editor’s canvas.

� Connecting components. Links between component ports can be established in the network ed-
itor by a click-drag-release procedure starting at one port and ending at another port. If the two
ports are compatible, as described in Section 3.3, they are connected and a link is displayed be-
tween them in the network editor. If the ports are not compatible, the incompatibility reason
is displayed in the network manager’s connection status area and the connection attempt is de-
clined. During the connection, information on the selected ports such as port and component

4.2. APPLICATION DESIGN USER INTERFACE 75

group VTKActorSet
{
children: VTKDataSetMapper mapper

 VTKActor actor
input: mapper."input"
output: actor."this"

connect: mapper."this" to actor."mapper"
category: "mapper"
}

Figure 4.6: Category declaration

names and types is displayed in the additional port status areas. In the case of a multiple port
(see Section 3.3.4), the link is created at the last port position, which is equivalent to appending
the link to the existing ones. Another method of connecting components which allows insertion
of the link in a different position into a multiple port is presented in Section 4.3.1.

� Disconnecting components. Links between component ports can be destroyed in the network
editor by a similar click-drag-release procedure used for connecting the ports.

� Locking and unlocking components. In order to block the execution of a given network branch,
one can lock a component icon by using a mouse-based popup menu. The network traversal will
stop when a locked component is reached. Unlocking the component will resume the network
update from that component. In this way, one can stop infinite loops or selectively control the
network execution.

In many visual programming systems the application designer can construct groups interactively
by adding components to an empty group. An example hereof is the ’macro module’ concept of AVS
and AVS/Express [113]. Such groups differ from the meta-group concept presented so far in two ways:

1. First, the former are built by the application designer on the fly, while the latter are types built
first by the component developer and then instantiated by the application designer.

2. Macro modules may be edited after they have been constructed. In contrast, meta-group in-
stances are basically type instances and thus have a fixed, immutable structure. This means no
children can be added to or deleted from a meta-group. The same is valid for links among group
children. Allowing meta-group instances to be edited would violate the principle that an instance
respects the invariants stated by its type and would effectively mutate the type at run-time.

Building groups on the fly is a powerful design tool needed in the case one wants to hide a sub-
network’s complexity for a single application. Since the group is used in a single application, creating
a meta-group in a meta-library would be too heavy-weight.

VISSION provides for the above the concept ofempty groups. An empty group is a special meta-
group with no children and no ports, which can be interactively edited by the application designer. The
empty group is not part of any meta-library, but is built intoVISSION. Its icon is displayed in the library
browser and has, by convention, the empty string as type name. In the editing process, children can
be added and connected into the empty group in the normal fashion presented above. Ports of these
children can be ’exported’ to the outside of the group to allow communication of the group children
with external components. This is done by double-clicking on the desired ports. The semantics of these

76 CHAPTER 4. APPLICATION DESIGN AND USE INVISSION

interactively editable groups is identical to a meta-group instance that has the same structure. The only
difference is that the structure of the latter can not be changed, while the one of the former can.

Another network editing operation is componentreparenting. A group child can be reparented, i.e.
moved into another group as its child. The network editor provides mouse-based functions to reparent
components between groups by dragging them into or outside of the desired group icon. Reparenting
is allowed only between editable groups for the reasons described above. Moreover, all links between
a component that undergoes reparenting and other components outside its parent are severed during
the reparenting operation. This prevents the coupling of components with different parents via links
that do not pass through the parents’ ports. This is forbidden since it is a violation of the principle that
a component, thus also a group, communicates with its outsideonly via its ports.

Besides the above operations, the network editor provides various visual layout tools, such as icon
dragging, aligning, link and icon drawing customisation, and so on.

4.2.3 The MC++ Browser

The network manager presented in the previous section provides a graphic interface to library brows-
ing, component instantiation and deletion, cloning, reparenting and renaming, group navigation, and
port-to-port connection editing. Application designers may sometimes however prefer a text interface
for the above operations which may be faster e.g. for experienced users familiar with the names of the
components present in application libraries.

The above and also the operation of loading and unloading component libraries are provided by the
MC++ browser interface. The MC++ browser is a GUI consisting of three panels: the library browser,
the metaclass browser, and the instance browser. Figure 4.7 a) shows the MC++ browser for the simple
visualisation example discussed in the previous section.

Thelibrary browser panel shows that names of the loaded libraries, as they appear on their MC++
library declaration. The sphere visualisation example uses the ”Visualization Toolkit” library,
which includes the ”Standard nodes” library. Both library names are shown in the library browser
in Fig. 4.7 a). This panel allows also loading MC++ libraries by using a file selector widget. Figure
4.7 b) shows such a widget displaying several meta-libraries we have created for various application
domains. Loading a library triggers the loading of all the included libraries, if these are not already
present in the system. Unloading a library will unload all included libraries if these are not used any
more, as described in section 3.6.

Themetaclass browser panel allows browsing the names of all the metaclasses and meta-groups
loaded in the system in several ways (alphabetically, by library, by category, etc). If desired, the non-
instantiable metaclasses can be browsed here as well, displayed between brackets, such asVTKMap-
per andVTKMapper2D in Fig. 4.7 a. This option proves to be useful for component designers that
need to check the correctness of the meta-libraries they design. A correctly written metaclass (instan-
tiable or not) loaded byVISSION will appear in the metaclass browser, while an incorrect one will not.
This panel allows also selecting metaclasses and metagroups and instantiating them, as well as creating
empty groups.

Theinstance browser panel allows browsing the names of all the metaclass and meta-group
instances present in the system. The browser in Fig. 4.7 a) shows the four metaclass instances of the
sphere visualisation example. Instances can be selected and inspected by creating component interac-
tors for them (see next section), or deleted, renamed, or cloned.

4.3. END USER INTERFACE 77

Library
browser

Metaclass
browser

Instance
browser

a) b)

Figure 4.7: The MC++ browser

4.3 End User Interface

The end user interface assists end users in the tasks of loading and starting existing simulations, con-
trolling the simulation execution, editing various parameters of these simulations, and monitoring their
results, in textual or graphical form. Similarly to the application design interface, the end user interface
consists of two main GUIs that are designed to closely reflect the application structure. Besides these
GUIs, a text-mode interface is provided for users more comfortable with the command-line interaction
paradigm. These interfaces are presented in the following.

4.3.1 The Component Interactors

A VISSION application consists of a network of components that communicate with the outside world
via their component interfaces, i.e. their ports and update operations. End users should be able to
access to thesecomponent interfaces via a simplecomponent user interface. Most component-based
SimVis systems provide this in the form of component-specific GUIs that allow monitoring and editing

78 CHAPTER 4. APPLICATION DESIGN AND USE INVISSION

the component interface by means of various widgets such as sliders, buttons, text fields, and so on.
The same idea is used inVISSION. Every metaclass or meta-group instance inVISSION is automati-
cally provided with a so calledinteractor . An interactor provides GUI widgets to inspect and edit all
input and output ports of its component. In contrast to other systems,VISSION’s component ports are
not restricted to a fixed number of basic types, but can be of any user-defined C++ type (Section 3.3).
VISSION’s interactors were consequently designed to directly support editing of an open set of types,
by an open set of custom GUI widgets.

Figure 4.8 illustrates the above for a metaclassExample (Fig. 4.8 a). The icon for an instance
object of this metaclass in the network manager is shown in Fig. 4.8 b, and its GUI interactor is shown
in Fig. 4.8 c. The structure of the GUI interactor follows the metaclass structure. The interactor has
a section for the input port widgets and one for the output port widgets. These widgets are a numeric
type-in, a slider, a file selection field, a 2-float field, a 3-float field, a toggle, a text display, and a nu-
meric display, from top to bottom. These correspond toExample’s port types integer, float, character
string,Vec2f (a 2-float vector),Color (a RGB colour triplet), boolean, character string, and double
respectively. The widgets are labelled by their port names ”port 1”,”port 2”, and so on. The output port
widgets are read-only, since the output ports can not be written to. Interactors let end users monitor
component ports values as they are automatically updated whenever the ports’ values change. Further,
end users can also directly modify the input port values by using their widgets.

4.3.2 Text Interface

As discussed in the previous chapters, GUIs should not be the single interaction method offered by a
SimVis system. Sometimes a ’classical’ text-based command-line interface is more effective. Expe-
rienced users may work faster by, or simply be more comfortable with, typing the desired commands
directly at a command-line prompt than by issuing them via several menu-driven GUIs. Many SimVis
systems do therefore provide their functionality both in terms of GUIs and text-based interfaces.

VISSION takes the same approach by providing a text-based command-line prompt at which all
application designer and end user tasks can be carried away in terms of simple commands. Such com-
mands can also be gathered in script files which can be loaded and executed byVISSION to perform
the same actions.

An aspect whereVISSION differs sensibly from other similar SimVis environments is the choice
of its scripting language. Following the rationale of having a single language framework discussed in
the previous chapter,VISSION’s scripting language was chosen to be C++, its component development
language. The commands the user can issue atVISSION’s prompt (or write in script files to be executed)
can thus be any valid C++ statements. These commands are executed dynamically (interpreted) by the
system. The choice for C++ as scripting language leads to the following important advantages for the
end user and application developer:

� generality: by using interpreted C++ as scripting language, one can describe arbitrarily complex
scenarios. These can range from simple end-user commands issued on the fly at the system’s
prompt, such as the evaluation of a variable or the call of a method, to script files containing
complex control structures or object manipulation. Such scripts are very useful when designing
’animation-like’ scenarios where a given set of carefully planned operations is played back e.g.
for presentation purposes. Infrequent users need thus only a basic knowledge of C++, similar
to the knowledge they would need to learn any scripting language. Advanced users however
are not confined to simple scripting commands, as it happens in many systems whose scripting
languages are less powerful than their development ones.

4.3. END USER INTERFACE 79

module Example
{
input:
 WRPortMeth "port 1" "int" (...)
 WRPortMeth "port 2" "float" (...)
 WRPortMeth "port 3" "char*" (...)
 WRPortMeth "port 4" "Vec2f" (...)
 WRPortMeth "port 5" "Color" (...)
 WRPortMeth "port 6" "BOOL" (...)
output:
 RDPortMeth "port 7" "char*" (...)
 RDPortMeth "port 8" "double" (...)
}

a)

b)

c)

 component
type and name

input ports
widgets

output ports
widgets

Figure 4.8: Interactor example: metaclass (a), icon (b), and GUI interactor (c)

� uniformity: all user roles need to know a single language to communicate (besides the com-
ponent developer who must use MC++ for writing the component meta-constructions). For ex-
ample, a researcher might develop a C++ class library (or get an existing one), then write a test
scenario C++ script, and then execute the script by loading it inVISSION. Next, the script can be
easily re-edited and re-executed, or query commands on its results can be issued atVISSION’s
prompt. This scenario is typical for e.g. Matlab or Mathematica users or C++ users that needed
to write and compile a main program to run a test. Such users can thus preserve their way of
work.

� ease of implementation: from VISSION’s design point of view, using C++ as a scripting lan-
guage instead of another language is convenient. Indeed,VISSION needs dynamic C++ code
loading and execution mechanisms for the implementation of its dataflow engine, as described
in detail in chapter 5. Using the same mechanisms for providing C++ scripting capabilities is
thus easier than implementing a new interpreter for a different scripting language.

80 CHAPTER 4. APPLICATION DESIGN AND USE INVISSION

4.4 Interactor Construction

As mentioned above, interactors are automatically constructed for anyVISSION component. The wid-
gets to be used in the interactor construction are inferred out of three factors (Fig. 4.9):

1. the port types from the component declaration

2. the available widgets stored in a widget database

3. the eventual user preferences

. These factors are described in the following.

Avail able Widgets Database User Preferences

Compon ent Declaration
 Interactor
Construction Compon ent Interactor

Figure 4.9: Interactor construction process

4.4.1 The Widget Database

SinceVISSION accepts an open set of port types that belong to components defined in various meta-
libraries, it has no built-in widgets. Instead, widgets are provided by the component developer as part
of the meta-libraries he creates. When the components of a meta-library are loaded inVISSION, the
associated widgets are loaded into a widget database maintained by the system and made available to
the interactor construction algorithm presented further in section 5.2. In this way, component libraries
can provide specific widgets for the specific port types of their components, and do not have to rely
upon the existence of a fixed set of widgets hard-coded in the system.

MC++ library files specify the widgets they provide toVISSION in a widget specification section
right after the implementation section (Section 3.6). This section is introduced by the MC++ keyword
gui followed by a body between curly braces, as in the example in Fig. 4.10.

Widgets can be implemented by subclassing the C++ classMOTIFWidgetwhich is hard-coded
in VISSION. MOTIFWidget declares the widget communication protocol of new widgets withVIS-
SION and offers to subclasses mechanisms to implement new widgets using the Xt [78] and Motif [33]
GUI toolkits. TheMOTIFWidget interface is detailed further in section 5.2. Widget development
and integration inVISSION uses thus the white-box framework approach, since component develop-
ers have to follow theMOTIFWidget class interface for the new widgets they write. We could have
implemented widget development based on a black box approach as well. However, the white-box ap-
proach based on inheritance was chosen for its simplicity of implementation and execution efficiency,
and has proven to be convenient in practice.

Thegui section starts with animplementation specifier that gives the name of the compiled
library that contains the implementation of the GUI widgets, i.e. ”widgets.so” in the above example.
This library has a similar structure to the libraries that contain the metaclass and meta-type implementa-
tions (Section 3.6). The main difference is that the widget classes have to inherit from theMOTIFWid-
get baseclass to comply withVISSION’s Motif-based GUI protocol.

4.4. INTERACTOR CONSTRUCTION 81

gui
{
 implementation: "widgets.so"

 widget MOTIFEdGeneric * { "*" }
 widget MOTIFEdSlider write { "int", "float", "double" }
 widget MOTIFEdThumbWheel write { "float", "double" }
 widget MOTIFEdDial * { "int", "float", "double" }
 widget MOTIFEdToggle * { "BOOL" }
 widget MOTIFEdFileName write { "char*" }
 widget MOTIFEdVec2f * { "Vec2f" }
 widget MOTIFEdVec3f * { "Vec3f" }
 widget MOTIFEdColor * { "Color" }
 widget MOTIFEdColWheel * { "Color" }
 widget MOTIFEdColSliders * { "Color" }
}

Figure 4.10: Widget specification section for meta-libraries

Next, thegui section contains the widget declarations. Each declaration starts with thewidget
keyword, followed by the namename of theMOTIFWidget subclass that implements the widget,
and two other argumentsarg� andarg�:

editor name arg� f arg� g

The first argumentarg� may take the valuesread,write, or *, and specifies if the widget is to
be used only for read ports, write ports, or both types of ports respectively (see section 3.3 for the port
read/write attribute presentation). This argument is useful since some widgets, such as a thumb-wheel,
have a meaningful utilisation only when they edit a read-only port, while others, such as a type-in, can
be used for both read and write ports. The second argumentarg� specifies the C++ types the widget
can edit between curly braces. If the widget can edit any C++ type, the list contains a single element
"*".

The GUI specification section example in Fig. 4.10 declares several widgets that can edit various
C++ types, such as:

� basic numerical types:MOTIFEdSlider andMOTIFEdDial

� browsers for character string file names:MOTIFEdFileName

� user defined types such as:Vec2f (2-float vector),Vec3f (3-float vector), andColor (a RGB
triplet)

� a generic widget for any C++ type (MOTIFEdGeneric)

The respective widgets, nearly identical to the ones provided by the interfaces of Open Inventor or AVS,
are displayed in Fig. 4.11. The above widgets have been actually implemented by a meta-library which
is included by most other application-specific meta-libraries developed forVISSION. Consequently,
the widgets are loaded intoVISSION’s widget database and used by most component interactors. The
mechanism that associates widgets with component ports is presented in the next section.

4.4.2 The Interactor Construction Algorithm

Interactors are automatically constructed byVISSION for any component. This is done by selecting
for every component port the widget from the widget database which best matches the port’s type.

82 CHAPTER 4. APPLICATION DESIGN AND USE INVISSION

MOTIFEdSlider

MOTIFEdFileName

MOTIFEdVec2f

MOTIFEdColor

MOTIFEdToggle

MOTIFEdThumbWheel

MOTIFEdGeneric

MOTIFEdColWheel

MOTIFEdColSliders

MOTIFEdVec3f

MOTIFEdDial

Figure 4.11: Widget examples

The widget-to-type matching algorithm has four steps, as follows:

� STEP 1: all the widgets that can edit a C++ typeT� compatible with the port’s C++ typeT�
are selected and ordered in decreasing order of the distance betweenT� andT�. The distance
between C++ types is based on the type space metric defined in the C++ reference standard [30].
For example, a widget that can edit a classA can be used for a port of typeB if B is a base of
A or there is a user-defined conversion fromA to B. If, however, a widget that editsB exists, it
will be preferred to the one that edits anA since theB-B type distance is zero, while theB-A
distance implies one derived-to-base conversion, so it is greater than zero.

� STEP 2: the widgets that match the port’s read/write type are selected from the ones obtained in
step 1.

� STEP 3: the widgets with the smallest distance in type space are selected from the ones obtained
in step 2.

� STEP 4: if step 3 yields several widgets, the one which was first loaded in the widget database,

4.4. INTERACTOR CONSTRUCTION 83

i.e. appeared first in thegui section, is used.

The algorithm executes steps 1-4 in order and stops as soon as the selection narrows down to a single
widget.

Among the open set of widgets, the widgetMOTIFEdGeneric is a special one. As mentioned in
the previous section, this widget can edit any C++ type.MOTIFEdGeneric is actually a text type-
in which edits any C++ port by reading and writing itsserialised value, as defined in section 3.4. For
example, theMOTIFEdGenericwidget in Fig. 4.11 edits the value of aColor port by displaying its
serialised value in the form of aColor class constructor expression.MOTIFEdGeneric is declared
to edit any C++ type for both read and write ports (Fig. 4.10). Consequently, this widget provides a
’fallback’ that makes the widget selection algorithm always succeed to produce a widget for any port
type. In most cases however, the algorithm’s type matching rules will yield more specific widgets.
The algorithm is applied dynamically whenever the end user requests a new component interactor (see
Section 4.4.4). This practically means that the end user interface construction is fully automated.

4.4.3 Interface Preferences Specification

VISSION offers four ways for customising the component interactor construction, as follows:

1. write a new C++ widget subclass ofMOTIFWidget

2. specify that a certain widget is to be used for a given port type, in thegui specification section

3. specify that a certain widget is to be used for a given metaclass or meta-group port, in the meta-
class or meta-group declaration

4. specify that a certain widget is to be used for a given metaclass or meta-group instance, at run-
time

The first two methods have been presented in the previous section. The other two are presented in the
following.

Interactors can be customised also on a per-component type basis. For this, two constructs are
added to MC++. First, the constructeditor name can be added at the end of a metaclass port decla-
ration in order to specify that the respective port should be edited by the widgetname. If no such widget
is found in the widget database or if the widget can’t edit the port’s C++ type, the interactor construc-
tion algorithm proceeds as described in the previous section. Secondly, the keywordoptional can
be added to the port declaration to specify that the respective port should not have any widget in its
interactor. This is useful e.g. for ports that should only be modified or accessed by components via
links but are of no interest to the end user. The same holds for ports which produce large, complex
datasets, e.g. a whole mesh.

Secondly, the end user can change the widget that edits a certain port in the interactor itself. Every
interactor widget has a popup menu in which all widgets able to edit that port, determined at step 2
in the widget selection algorithm, are displayed. End users can thus switch between several widgets
in interactors by a simple mouse click. Figure 4.12 shows an example in which a port of type float is
edited by four different widgets.

4.4.4 Reference Ports

Interactor construction treats reference ports specially since their values carry the additional semantics
of references to other component ports. Reference ports widgets display thus references to other ports

84 CHAPTER 4. APPLICATION DESIGN AND USE INVISSION

MOTIFEdGeneric MOTIFEdSlider MOTIFEdThu mbWheel MOTIFEdDial

Figure 4.12: Several ways to edit a port of typefloat

instead of port values, using the reference port value syntax presented in section 3.3.4. In the example
in Fig. 4.13 a,VTKDataSetMapper’s reference port ”input” is not connected, so its widget displays
the empty string. Figure 4.13 b shows the situation when this port is connected to componentobj0’s
portoutput, at position 0. The two ports can be connected or disconnected either by using the mouse-

a) b)
unconn ected conn ected

Figure 4.13: Reference port editor: unconnected (a) and connected (b) case

based network editor (Section 4.2.2) or alternatively by typing reference port values in the interactors.
Dataflow network construction can thus be performed using the keyboard-driven interactor interface,
besides the mouse operated network editor.

The Toplevel Interface

All GUI-based functions ofVISSION are accessible via itstoplevel interface . Using this interface,
meta-libraries can be loaded and unloaded from the system, applications can be loaded from saved
files, or the current state of the system can be saved to a file. Figure 4.14 illustrates a typicalVISSION

session for the visualisation example introduced in Section 4.2. The toplevel interface shown in the
lower-left window displays icons that allow the access to other system interfaces, such as the network
manager (shown in the background), the help manager, and the interactors for the four instantiated
components (VTKSphereSource, VTKDataSetMapper, VTKActor, andVTKViewer). The
interactors forVTKSphereSourceandVTKViewerare visible in the two right windows. The icons
are customised to display images that suggest the functionality of their components. Finally, the lower
part of the toplevel interface shows various system messages in a text widget.

4.5. CONCLUSION 85

4.5 Conclusion

This chapter has presented the user interfaces offered byVISSION to the application designer and end
user. The application representation concepts on whichVISSION is based (meta-classes, components,
dataflow networks, OO typing) are brought to a visual representation such that they can be interactively
manipulated by the application designer and end user.

The visual programming metaphors presented here are as easy to use as the ones promoted by sim-
ilar SimVis systems. The application designer and end user are not required to understand or even be
aware ofVISSION’s object-oriented fundaments. For example, complex OO type checking and data
conversions take place dynamically and automatically in the process of network construction. The
application designer does need to focus only on the visual process of icon dragging and port to port
connection.

A second advantage ofVISSION’s OO-dataflow foundation introduced in the previous chapter is the
fully automatic construction of the application design and end user interface elements, i.e. the com-
ponent icons and interactors. These interfaces directly reflect the structure of the component libraries,
which are in their turn derived from the domain analysis and modelling. Consequently, the user inter-
faces exhibit a certain consistency which makes them simple to understand and use. SinceVISSION’s
user interface is practically provided for free for new components, the developer-designer-end user role
transition is a simple, automatic process. This visibly contrasts with most SimVis systems in which
user interface creation is a major time consuming, usually very technical process.

Thirdly, the fact thatVISSION provides a generic and open user interface for any types of compo-
nents does not back propagate to extra requirements or restrictions for the component development.
The component developer can, but is not obliged to, design custom GUI widgets for his components.
These widgets exploit fullyVISSION’s OO structure and are maintained separately from the component
implementation code such that the latter continues to be system independent. Similarly to component
libraries, widget libraries can be developed and then directly plugged in the system to be used with
existing components without any need to recode or relink the two.

Finally, VISSION also provides the possibility to construct GUIs for whole applications. This is
simply done by enclosing the whole dataflow network in a group and exporting to the outside all ports
of the various modules that the end user desires to interact with. The dataflow structure is invisible to
the end user, who interacts with a single GUI instead of the per-component interactors. In this way,
one has the same look-and-feel as given by the customised GUI of a turn-key application.

The common denominator of the above features is the existence of the OO-dataflow combination
on whichVISSION is founded. The next question is how this combination is technically implemented
in VISSION. This is the subject of the next chapter.

86 CHAPTER 4. APPLICATION DESIGN AND USE INVISSION

Figure 4.14:VISSION session with toplevel, network manager, and component interfaces

Chapter 5

Design and Implementation of VISSION

Chapter 3 has describedVISSION’s new architectural model. The key element of this architecture is a
high-level framework-component interface, which combines object-oriented and dataflow modelling
in a non-intrusive manner. In chapter 4, we described the several user interfaces ofVISSION. These
interfaces mapVISSION’s modelling concepts (metaclasses, components, dataflow networks, OO typ-
ing) to the visual representations of component icons and GUI interactors.

This chapter describes the design and implementation ofVISSION. It is divided in two main parts.
Section 5.1 describes thekernel of VISSION which implements the framework-component interface in
terms of the MC++ and C++ languages. This explains how the functionality presented in Chapter 3 is
realized. Section 5.2 describes how the several user interfaces, presented in Chapter 4, are implemented
atop of the kernel.

5.1 The Kernel

VISSION is built on a variant of the client-server architecture known as the model-view-controller
(MVC)[56], or the Observer-Observable design pattern [37], similarly to many other SimVis environ-
ments [113, 117, 44]. This design contains two parts (Fig. 5.1): the systemkernel, described in this
section, and severalviews, which are the object of Section 5.2.

The kernel acts as a server which provides services in response to messages received from several
clients (or views), via thekernel-view (KV) interface. The views implement interaction interfaces for
the application developer or end user, such as the network manager, the GUI interactors, the text inter-
face, and the toplevel interface presented in chapter 4. New views could be created as an extension or
alternative to the existing ones, as long as they comply with the KV interface. The decoupled design
of the views and the kernel makes the implementation, maintenance, and extension of the two easier
than a monolithic structure. In this respect, both the application domain components written in MC++
and the views are softwarecomponents that connect to the kernelframework (via different interfaces,
however).

The kernel services offered via the KV interface are ultimately delegated to application specific
components, via thekernel-component (KC) interface introduced in Section 3.2.2. The remaining of
this section describes the kernel and its KC interface in detail.

5.1.1 The Kernel-Component Interface

As presented in Section 3.2.2 (see e.g. Fig 3.13), the role of the KC interface is to:

87

88 CHAPTER 5. DESIGN AND IMPLEMENTATION OFVISSION

ViewKernel

View

View

Component

Component

Component

Kernel−Component Interface Kernel−View Interface

Vission System

Figure 5.1:VISSION client-server architecture

1. directly represent all possible value types supported by component interfaces;

2. load and unload component libraries;

3. instantiate and destroy components;

4. read and write component port values;

5. connect and disconnect component ports;

6. ask components to update.

We have already explained in Section 3.3 how the above operations are modelled by the combination of
MC++ and C++ languages. Components are modelled by MC++ metaclasses and meta-groups, which
are ultimately implemented by C++ classes. Component inputs and outputs are implemented as C++
value types. Inter-component data transfer and component update map to C++ method calls or data
member evaluations. In implementation terms, the above operations of the KC interface are equivalent
to providing the following C++-related mechanisms:

1. support all possible C++ value types;

2. support C++ function call and data member evaluation;

3. support dynamic loading and unloading of C++ classes.

Another requirement is that arbitrary C++ can be executed dynamically, following from the text user
interface requirement (Section 4.3.2). Together, all these requirements strongly suggest to base the
kernel implementation on aC++ virtual machine (or C++ interpreter).

It is important at this point to find out if other implementation alternatives may exist for the kernel
of VISSION. Any chosen implementation must, in any case, provide the three C++-related features
mentioned above. Assuming one had not chosen to use a C++ interpreter, the following should have
been implemented:

1. a type table mechanism for the C++ type system (fundamental types, structures, classes, type
conformance, etc). This is a complex task once OO features such as derived classes, multiple
inheritance, etc, are to be represented.

5.1. THE KERNEL 89

2. a simple parser and interpreter for member evaluation and C++ function call. Implementing such
a parser is rather simple. Implementing the actual execution of the parsed actions is however
complex, as function evaluations could use by-reference or by-value data passing of class types
involving chains of constructor and destructor calls.

3. a dynamic C++ library loader and a parser for ’headers’ containing the declarations of the com-
piled code’s symbols. Implementing a dynamic loader is reasonably simple. Implementing a
declaration parser is however one of the most complex parts of C++ language analysis [100].

. Overall, it is clearly advantageous to reuse an existing C++ virtual machine for our purposes. The
integration of such a C++ virtual machine inVISSION’s kernel is presented in the following.

5.1.2 The C++ Virtual Machine

VISSION’s kernel is built on the top of an existing C++ interpreter, calledCINT, originally developed
at Hewlett-Packard Japan [15].CINT is a C/C++ interpreter coming both as a C++ library callable for
client code and a standalone program that interprets source files, similar to most interpreters.CINT is
used by several large software systems. For example, the ROOT system [15] is a generic framework for
scientific data analysis, postprocessing, and visualisation which usesCINT to dynamically load, parse,
and interpret C and C++ code.

CINT offers the following services:

� dynamic loading and unloading of compiled or source-level C++ code. Loading code makes all
involved C++ symbols (functions, classes, variables, typedefs, types, macro definitions, and so
on) available toCINT, while unloading relinquishes the code and names of the loaded symbols.

� dynamic C++ code execution.CINT can load arbitrary C++ source code and execute it dynami-
cally.

� reflection API.CINT offers a reflection API by which all loaded symbols can be examined. For
example, one can find out which are the methods of a given class, what are their types, or which
are the bases of a class.

� C++ expression evaluation.CINT can evaluate any valid C++ expression and return its value.
The returned values can be examined further via the reflection API, whether they are basic data
types such asint or float, or complex structured types.

CINT is a complex piece of machinery of approximately 80,000 lines of C/C++ code, containing a C++
language parser, a dynamic library loader, the usual class and object tables present in most interpreters
and compilers, and a bytecode compiler for loop optimisation. Its reasonably simple API and its very
fast C++ code loading and execution render it ideal for the dynamic demands of theVISSION kernel.
SinceCINT comes as a client-callable library, it can be easily embedded intoVISSION’s kernel, the
latter maintaining the control. This is not the case with many interpreters or virtual machines, which
are stand alone, independently running programs.

5.1.3 Kernel Structure

VISSION’s kernel consists of four main components implemented in C++ (the names of the C++
implementation classes shown also in Fig. 5.2 are given between brackets): the C++ interpreter

90 CHAPTER 5. DESIGN AND IMPLEMENTATION OFVISSION

(Interpreter), the MC++ manager (MetaCPPManager), the library manager (Library-
Manager), and the dataflow manager (DataflowManager). The KC interface has eleven main op-
erations or commands, as follows:library load, library unload, new component, del component,
port read, port write, connect, disconnect, update, file load, and filesave. These operations are
implemented by theKernel class which manages theInterpreter, MetaCPPManager, Li-
braryManager, andDataflowManager classes. The first nine operations have been already

Kernel

DataflowManager

Interpreter

LibraryManager

MetaCPPManager

add_meta_cpp
del_meta_cpp

update reflection
update / port_read / port_write

eval_cpp
exec_cpp
reflection

 li brary_load
library_unload

 new_compon ent
del_compon ent

port_read
port_wr ite

conn ect
disconn ect

upd ate

KC Interface

f il e_load
fil e_save

exec_cpp
load_lib / unload_lib

Figure 5.2: Kernel structure

introduced in Section 5.1.1. The last operation (file save) saves the state of the kernel as a C++ script
file. This file can be loaded to restore the current state, via thefile load operation.

The KC interface operations are implemented by theInterpreter, MetaCPPManager,
LibraryManager, andDataflowManager subsystems. These are described next, in a bottom-
up fashion.

5.1.4 The Interpreter Subsystem

TheInterpreter subsystem is a C++ wrapper around theCINT virtual machine described earlier
in this chapter. Its presence serves three purposes:

� encapsulation: the Interpreter subsystem hides theCINT API from VISSION’s kernel
via a delegation layer. Given another (e.g. faster) C++ virtual machine that complies with the
Interpreter interface, it can be easily used instead ofCINT. Alternatively, if CINT’s API
changes, the changes to be done toVISSION’s kernel are localised to the implementation of the
Interpreter subsystem. The class Adapter design pattern proved useful here.

� enhancement: CINT’s API does not directly provide all functionality the kernel needs. For ex-
ample, it does not let one determine if two C++ types are compatible, which is needed to find
out if two metaclass ports are connectable or not (see Section 3.3). This functionality has been
implemented in theInterpreter class, by usingCINT’s reflection API, as described below.
The Decorator pattern proved useful here.

5.1. THE KERNEL 91

� simplicity: CINT’s API contains various complex constructions making it hard to use and un-
derstand, being what it is usually called afat interface [102]. By hiding it under the minimal
Interpreter interface (using the Facade pattern), it is much easier to understand and man-
age all its interactions with the rest of the kernel.

TheInterpreter’s API (Fig. 5.2) provides the five operations introduced in Section 5.1.2: loading
and unloading a C++ compiled library or source file (load lib,unload lib), executing and evaluating
C++ source code and expressions passed as a text buffer (exec cpp,eval cpp), and enhancingCINT’s
reflection API with a couple of operations (reflection).

The aboveInterpreter interface actually defines the virtual machine concept in the context of
VISSION. Given any languageL and a virtual machine forL that provides the above five operations,
one could base the wholeVISSION system on that language, simply by providing the appropriateIn-
terpreter interface which translatesVISSION’s generic operations in the specific syntax ofL. In
this way, we could implementVISSION based on Java or Objective-C, for example. The language-
independent design ofVISSION strongly differs from the design of other similar interactive visualisa-
tion systems or application builders, which are designed in strict relationship with a given programming
language.

As mentioned above,CINT does not offer a way to determine if two C++ types are compatible or
not. However, its reflection API lets one determine the kind of a type (fundamental or class), the base
classes, if any, and their methods, in terms of full signatures. Using this information,Interpreter
implements thereflection operation that determines whether two types are compatible by check-
ing all the complex C++ type conversion rules (direct, trivial, derived to base, constructor based, and
conversion operator based) [102]. A second important enhancement provided byInterpreter to
CINT’s API is to determine whether a given (class) type is instantiable or not, needed to determine the
instantiability of a metaclass (Section 3.3.5).

5.1.5 The MetaCPPManager Subsystem

TheMetaCPPManager subsystem manages the MC++ entities in the kernel, i.e. the metaclasses,
meta-groups, meta-types (collectively called meta-entities), and the instances of the first two.Meta-
CPPManager has two subcomponents (Fig. 5.3):

1. anentity table containing all meta-entities present in the kernel

2. aninstance table containing all metaclass and meta-group instances

This subsystem provides the following operations:

1. add meta cpp: add a new meta-entity to the entity table

2. del meta cpp: delete a meta-entity from the entity table and all its instances from the instance
table

3. new component: given a metaclass or meta-groupT and a name for the new component (e.g.
obj, see Fig. 5.4 a), create a component of typeT, if T instantiable, and add it to the instance
table (2). The constructor for the appropriate C++ class (i.e. classT) is called dynamically, by
sending the code fragment"new T" to theeval cpp operation ofInterpreter (3). The
returned pointerptr to a newT C++ object (4) is then stored in the metaclass instanceobj (5)
for later use (Fig. 5.4 b).

92 CHAPTER 5. DESIGN AND IMPLEMENTATION OFVISSION

MetaCPPManager

Interpreter

eval_cpp
exec_cpp
reflection

 new_compon ent
del_compon ent

port_read
port_wr ite

conn ect
disconn ect

upd ate

reflection

add_meta_cpp
del_meta_cpp

metaclass
instances

meta−group
instances

Instance Table

Entity Table

metaclasses meta−typesmeta−groups

Figure 5.3:MetaCPPManager structure

4. del component: deletes a component from the instance table, given the component name (e.g.
obj, see Fig. 5.5). The component’s C++ object*ptr is dynamically destroyed (2). After the
C++ object is deleted (3), the metaclass instance is removed from the instance table and deleted
as well (4).

5. update: calls a component’s update operation, if any. The update operation, whether delegated
to a C++ class method or given as source text (Section 3.3), is sent to theInterpreter.

6. port read,port write: reads, respectively writes data from, respectively to a given component
port

7. connect,disconnect: connects, respectively disconnects two given ports. Thereflection
services ofInterpreterpresented in the previous section are used here to determine the port
type compatibility.

8. reflection: offers services to browse the instance and object table, inquire about the features and
bases of a metaclass or meta-group, etc.

MetaCPPManager is very similar to an interpreter. In fact, it can be seen as an interpreter for the
MC++ language that consists of the metaclass, meta-group, and meta-type data structures, and the eight
operations presented above. These operations are specified either on the own instance and entity tables,
or delegated further to theInterpretersubsystem described previously. The structural relation be-
tweenMetaCPPManagerandInterpreter is in this sense similar to the relation between MC++
and C++.

Theread value andwrite value operations deserve special attention. The arguments of
these operations are string-encodedport values, as introduced in Section 3.4. In the case of by-value
ports,MetaCPPManager simply delegates the reading or writing to theInterpreter subsys-
tem’seval cpp operation, by sending for execution code fragments similar to the ones shown in the
network example in Section 3.3. These operations are called on the component’s C++ object*ptr
(Fig. 5.4 b). For by-reference ports,MetaCPPManager translates between the reference port value
string syntax and its internal representation. When a reference port value is written into a reference

5.1. THE KERNEL 93

metaclasses

MetaCPPManager

Interpreter

eval_cpp ("new T")

T

metaclass
instances

Instance Table

Entity Table

obj

obj

return T*

store T* in metaclass instance

create new
metaclass

instance

new_component
("T","obj") 1

2

3 4
5

obj

obj
C++ instance
of class T

instance of
metaclass T

T* ptr uses

C++ instance
of class T

a) b)

Figure 5.4: Implementation of thenew component operation

write port, the ports get connected as by aconnect operation. If the written reference port value is
’nil’ (i.e. the empty string), the write port gets disconnected from whatever it was connected to, as by
adisconnect operation. The above represents the implementation of the mechanism discussed in
Section 4.4.4.

In the above only the most importantMetaCPPManager operations were described. This sub-
system provides also other operations, such as adding and removing a child from a group, creating an
empty group, renaming a component instance. As these operations do not pose any complex issues,
they are not described here.

5.1.6 The LibraryManager Subsystem

TheLibraryManager subsystem manages the kernel’s interaction with themeta-libraries. As de-
scribed in Section 3.6, a meta-library consists of two parts: a C++ compiled dynamic loadable library
and a MC++ file with meta-entities implemented by the C++ library. TheLibraryManager has
three subcomponents (Fig. 5.6):

1. anMC++ parser that encodes the MC++ language grammar. The parser takes as input an MC++
source file and outputs the parsed MC++ language elements (metaclasses, meta-groups, meta-
types, include statements, initialisation code, etc).

2. a library dependency graph that maintains the dependencies between meta-libraries. The
graph nodes are the loaded meta-libraries, while its arcs represent the inclusion relationships
between libraries (iflib2 includes alib1, there is an arc fromlib2 tolib1). The usage of
this graph will be explained below.

3. awidget table that maintains the executable code of theMOTIFWidget subclasses loaded dy-
namically with the meta-library (see Section 4.4).

TheLibraryManager provides the following operations:

94 CHAPTER 5. DESIGN AND IMPLEMENTATION OFVISSION

MetaCPPManager

Interpreter

eval_cpp ("delete ptr")

metaclass
instances

Instance Table

obj

obj

delete T*

C++ instance
of class Tremove obj from table

delete obj

del_component
("obj") 1

2 34
T* ptr

Figure 5.5: Implementation of thedel component operation

1. library load: Given a meta-librarylib.mh to be loaded, all libraries included by it are fetched
from itsincludeMC++ statements. If these libraries are not present in the dependency graph,
they are loaded by issuing (possibly recursively)library load commands, and the graph is up-
dated correspondingly by theadd lib internal command. Next, theInterpreter loads the
library’s implementation (if any) via itsload lib command. All parsed meta-entities are added to
theMetaCPPManager’s entity table by issuingadd meta cpp commands. If the library con-
tains widget specification sections (see Section 4.4), the declared GUI widgets and their com-
piled implementations are loaded into theWidgetTable by theadd widget command. Fi-
nally, the library’s initialisation code (if any) is passed to theInterpreter’s exec cpp com-
mand.

2. library unload: unloads a loaded library. Given a meta-library to be unloaded, all meta-
entities it contains are unloaded from theMetaCPPManager via del meta cpp commands.
If the library declared any widgets, their declarations and executable code is unloaded via
del widgets command from the WidgetTable. Next, the library’s finalisation code
is passed toInterpreter’s exec cpp command. All libraries the current library included
are unloaded if they are used just by the library undergoing unloading. The dependency graph
is then updated via itsremove lib command.

The file load and file save Operations

As section 5.1.3 outlined, the KC interface provides thefile save andfile load commands to save the
system’s state to a file, respectively load a saved state. These commands are implemented together by
MetaCPPManager andLibraryManager (see Fig. 5.2), as discussed next.

Thestate of a dataflow system is the state of every component of the dataflow network plus the net-
work topology, i.e. the network components and the links that connect them. InVISSION, component
write ports serve both for modifying the state of the components and for connecting them (Section 3.3).

5.1. THE KERNEL 95

Library Manager

MetaCPPManager

Interpreter

MC++ Parser

add_meta_cpp

load_lib / exec_cpp

li brary_load
add_lib Dependency Graph

lib2

li b3

li b4li b1

li brary_unload

del_meta_cpp

remove_lib

unload_lib / exec_cpp

WidgetTable

add_widget

del_widget

Figure 5.6: Structure of theLibraryManager

The state of aVISSION application is thus given by the port values of all component write ports, plus
the existence of the component instances themselves. Saving the current state means thus saving:

1. the port values for allmodified write ports, i.e. ports which were at least once written to during
their lifetime. Saving port values for unmodified ports is redundant.

2. the existence of all component instances, i.e. their names and types

3. theminimal set of loaded meta-libraries, i.e. those libraries which (transitively) include all the
loaded libraries. For example, the minimal set of the meta-librarieslib1,lib2,lib3, and
lib4 shown in Fig. 5.6 is justlib4, sincelib1,lib2, andlib3 are included transitively
from lib4. Saving just the commands to load the minimal set of libraries eliminates redun-
dancy.

Given the above, loading a saved state means executing the above actions in opposite order:

1. all saved libraries are loaded vialibrary load commands

2. all saved components are instantiated with their saved names vianew component commands

3. all saved write port values are written back into their ports viaport write commands

We have chosen C++ to be the save file language. This complies once more with our single language
desiderate. To implement the load and save operations, we extend theSYSTEM C++ class with three
static methodsloadLibrary,newComponent,andportWritewhich simply delegate to the KC
interface. Thefile save operation generates a C++ source file containing the above commands. The
file load operation feeds the save file toInterpreter’s exec cpp operation. There is thus no dis-
tinction betweenVISSION save files andVISSION scripts (see Section 4.3.2). Both are plain C++ source

96 CHAPTER 5. DESIGN AND IMPLEMENTATION OFVISSION

files in whichSYSTEM class commands can be freely mixed with other C++ operations to produce the
desired effect, e.g. a playback scenario or an animation involving arbitrary sequences of component
creation, deletion, connection, or port value variations.

Example

We illustrate the above mechanism for the visualisation network discussed in Section 4.2.1 (see
Fig. 5.7 a). Its save file is shown in Fig. 5.7 b. The file starts with the meta-library ”vtk.mh”. The
four component instances follow. Finally, the modified write ports and their values are listed. Port
values are written in the port value syntax by using the meta-type serialisation operation (Section 3.4).
For instance, port ”actors” ofviewer in the above example has the value ”¡actor:this.0¿” represent-
ing a reference to the ”this” port ofactor. Port ”theta res” ofsphere has the C++ integer value
20, while port ”theta” of typeVec2f has the value ”Vec2f(0,180)” which denotes a 2-float vector by
calling classVec2f’s two-argument constructor.

SYSTEM::load("vtk.mh");

SYSTEM::newComponent("VTKSphereSource","sphere");
SYSTEM::newComponent("VTKDataSetMapper","mapper");
SYSTEM::newComponent("VTKActor","actor");
SYSTEM::newComponent("VTKViewer","viewer");

SYSTEM::portWrite("mapper.input","<sphere:output.0>");
SYSTEM::portWrite("actor.mapper","<mapper:output.0>");
SYSTEM::portWrite("viewer.actors","<actor:this.0>");
SYSTEM::portWrite("sphere.theta","Vec2f(0,180)");
SYSTEM::portWrite("sphere.theta res","20");

"output"
"input"

"output"

"mapper"

"this"
"actors"

"theta" "theta res"

a) b)

Figure 5.7: Simple visualisation network (a) and its save file (b)

5.1.7 The DataflowManager Subsystem

TheDataflowManager manages the updating of the dataflow network. The dataflow network is
implicitly represented by the directed acyclic graph formed by the component instances ofMetaCPP-
Manager’s instance table and their port-to-port connections established by theconnect command of
the latter.

TheDataflowManagerprovides a single operation:update. Given a metaclass or meta-group
instance,update performs two actions:

1. updates the component itself by callingMetaCPPManager’supdateoperation. As described
previously, this calls the component’s own update operation which, depending on its definition,
executes some actions on the component’s C++ object and marks some of the output ports as
changed (Section 3.3).

2. after the component is updated, data is transferred from its modified outputs to all connected
component inputs, viaMetaCPPManager’s port read and port write operations. Next, a
dataflow network traversal is performed to update all components which (recursively) depend
on the initially modified component.

5.1. THE KERNEL 97

TheDataflowManager implements thus the event-driven update model described in Section 2.2.
In order to preserve the invariant that the dataflow network is always up to date, theupdate operation
of DataflowManager is called automatically byMetaCPPManagerwhenever aport write oper-
ation occurred. Consequently, theDataflowManagerand theMetaCPPManager call each other
cyclically (Fig. 5.2) until all existing components are up to date.

Factoring the dataflow network traversal and update in the separateDataflowManager com-
ponent has the important advantage of separating theintrinsic (component) update mechanism (pro-
vided byMetaCPPManager) from theextrinsic (network) one (provided byDataflowManager).
Several network traversal mechanisms can thus be coded asDataflowManager subclasses without
having to change anything else in the kernel.

Traverse(NODE src)
{
 NODE new; QUEUE open;
 put src in open;
 mark all nodes as undiscovered;

 do
 {
 if (all nodes in open discovered)
 new = youngest node in open;
 else
 new = first node in open;

 remove new from open;
 make new oldest node and mark it discovered;

 if (new has at least one modified input)
 {
 update new;

 for_each(NODE s = successor of new)
 {
 if (s undiscovered)
 {
 if (s leads to no node in open)
 put s in open;
 else
 replace first node in open to whom s leads by s;
 }
 }
 }
 } while (open not empty)
}

a

b

c

d
a)

a

b

c

d

b)

f

a b

c

d

e

c) d)

Figure 5.8: Cyclic and acyclic dataflow networks (a,b,c). Cyclic network traversal algorithm (d)

Most graph traversal engines implemented by dataflow systems such as AVS [113], Inventor [116],
Java3D [104], or Explorer [44] use topological sorting of the graph nodes, as described by e.g. Cor-
men et al in [22]. Topological sorting has the advantage that a node is updated only when all nodes it
depends on have been updated. For example, the traversal of the network in Fig. 5.8 a) starting froma

would be done in the ordera�c�b�d. However, such an engine can not be used to manage dataflow
networks with loops, as they appear in the numerical iterative simulations or direct manipulation net-
works presented in Sections 6.2.4 , 6.8 , 7.4. For example, the traversal of the network in Fig. 5.8 b)
starting from nodea would not lead to the (possibly infinite) sequencea�c�b�d�a�c�b�d� ���

as one would expect in practice, but would fail producing any traversal, as cyclic graphs do not support

98 CHAPTER 5. DESIGN AND IMPLEMENTATION OFVISSION

topological ordering.
We have hence designed aDataflowManagerengine which can traverse any (cyclic or acyclic)

dataflow network to perform its update. This engine is based on the following rules:

1. graph nodes can be either discovered or undiscovered. At the beginning of the traversal, all nodes
are undiscovered.

2. every discovered node has an age, which may only increase during the traversal;

3. the ages of the of nodes encountered during the traversal form a strictly increasing sequence;

4. the algorithm attempts to maintain the topological order propertylocally, if possible. For exam-
ple, when traversing the two successorsb� c of nodea in the graph of Fig. 5.8 b),c should be
traversedbefore b sinceb can be reached fromc.

TheDataflowManager traversal algorithm pseudocode is shown in Fig. 5.8 d. In the pseudocode,
open is a queue of nodes supporting operations such as insertion, deletion, and iteration over its el-
ements. Practically, the algorithm combines a least-recently-used (LRU) policy [22] to iterate over
nodes (rules 2,3) with the attempt to keep topological order (rule 4). The LRU policy ensures that
loops are handled properly, while the topological sort ensures that nodes are not traversed uselessly.
For example, the traversal of the graph in Fig. 5.8 b) from nodea yields the infinite sequencea� c�
b � d � a � c � b � d � ���, wherec is traversed beforeb (topological order), andd is followed by
a (LRU closing the loop). Traversing the network in Fig. 5.8 c) from nodea would lead the sequence
a� c� b� d� e� f � a� c� b� d� e� f���, wherec is traversed befored (topological sort), and
d (and nota) follows b (LRU). The overall effect is the one ’naturally’ anticipated by the application
designer, i.e. of having two loops running ’in parallel’.

The aboveDataflowManager engine has proven very useful in practice, as cyclic networks
occur in many application domains, e.g. numerical iterative processes, animations, data presentation,
movie creation, etc.

5.2 The Views

As outlined at the beginning of this chapter,VISSION consists of a kernel that interacts with its various
users via severalviews . A view is a software subsystem that presents to its users a specialised interface
to the kernel functionality. For example, an application design view provides a GUI editor for build-
ing the dataflow network from iconic component representations. The views discussed in this section
areNetworkManager, which implements the GUI discussed in Section 4.2.2, theMC++Browser,
which implements the GUI discussed in Section 4.2.3, andInteractorManager, which imple-
ments the component interactors discussed in Section 4.3.1.

Views interact with the kernel in three ways: send commands to the kernel, read and write various
data from, respectively to the kernel, and listen for events sent by the kernel. The first two operations
are accomplished via the kernel-component interface already described in the previous sections and
accounts for the Controller aspect of the views and the Model aspect of the kernel. The last operation is
done via a separate kernel-view (KV) interface, which implements the View aspect of the MVC model.
The following presents the KV interface, as well as the most important views.

5.2. THE VIEWS 99

The Kernel-View Interface

VISSION’s kernel implements several services and data structures which are demanded (called), respec-
tively read (viewed) by the views. The execution of a kernel command changes however several of its
data structures which may be monitored by several views. To maintain consistency, the kernel informs
the views of the changes it has undergone, so they can update themselves, via an event mechanism.

The kernel declares a set of events which signal the various changes that can take place to the infor-
mation read by the views. For example, theNEW COMPONENT event signals that anew component
command has created a new component, hence theInstanceTable has changed. The other KC
interface commands that modify the kernel visible state generate similar events, such asDEL COM-
PONENT, CONNECT, PORT WRITE, and so on. An event can have a set ofarguments, which carry
additional information. For example, theNEW COMPONENT event carries two strings denoting the
metaclass or meta-group to instantiate and the new component’s name respectively.

A view can register for interest in several events. When an event is emitted, the kernel signals the
interested views by calling a notification callback they provide and passing the event as argument. The
views can update themselves by reading the kernel data structures whose change was signalled by the
event.

metaclass
instances

Instance Table

obj

Kernel

View 2

NetworkManager

View 3

MC++Browser

new_component("T","obj")

View 1

CommandTool
2

3
signal(NEW_COMPONENT("T","obj"))

view1 view2

View Table

view3

new_component("T","obj")

NEW_COMPONENT("T","obj")

NEW_COMPONENT("T","obj")

1

4

4

KV Interface

Figure 5.9: Kernel-view interface implementation

Figure 5.9 exemplifies the above. First, a a command to create an instanceobj of the componentT
is sent to the kernel (1) via theCommandTool text interface view presented in Section 4.3.2. After the
new instance is created, the kernel must signal all interested views about the creation event. The kernel
maintains a list of all views and of the events in which they are interested in theViewTable subsys-
tem. TheViewTable is asked to signal all the views interested in theNEW COMPONENT event (3).
The event and its parameters are broadcasted (4) to theNetworkManagerand theMC++Browser,
described in Sections 4.2.2 and 4.2.3. Finally, the views update themselves:NetworkManager dis-
plays a new component instance icon andMC++Browser displays a new lineT obj in its instance
list browser.

100 CHAPTER 5. DESIGN AND IMPLEMENTATION OFVISSION

The NetworkManagerView

TheNetworkManagerview implements the network manager GUI presented in Section 4.2.2. This
view consists of a collection of GUI widgets implemented in C++ atop of the Motif toolkit [33] grouped
in two subsystems (Fig. 5.10).

The LibraryBrowser subsystem implements the meta-library browser described in Section
4.2.2. TheLibraryBrowser displays an icon for every instantiable component in theMetaCPP-
Manager’s entity table (Section 5.1.5). Whenever libraries are loaded or unloaded, entities in this
table change, so theLibraryBrowser rebuilds its icons from the new table contents.Library-
Browser monitors thus theLIBRARY LOAD andLIBRARY UNLOAD events.

TheNetworkEditorsubsystem implements the network editor described in Section 4.2.2. The
NetworkEditorhas two roles. First, it acts as a view onMetaCPPManager’sentity table (Section
5.1.5) by displaying the dataflow network as icons connected by graphic links. Second, it offers a GUI
to instantiate, delete, rename, clone, reparent, connect, and disconnect components. All these opera-
tions are delegated toMetaCPPManager. NetworkEditormonitors thus theNEW COMPONENT,
DEL COMPONENT,CONNECT,DISCONNECT, andUPDATE events. Monitoring the last event allows
flashing the icons to indicate component updates, as in the AVS or Oorange systems. By monitoring
the above events,NetworkEditoralways offers a GUI which reflects the actual state of the instance
table. The events can be caused either byNetworkEditor itself or by other views (see for instance
the example in Fig. 5.9).

Kernel

LibraryBrowser

NetworkEditor

LIBRARY_LOAD
LIBRARY_UNLOAD

NEW_COMPONENT
DEL_COMPONENT
UPDATE
CONNECT
DISCONNECT

metaclass instances meta−group instances

Instance Table

metaclasses meta−typesmeta−groups

MetaCPPManager NetworkManager

Entity Table

Figure 5.10: TheNetworkManager view

The MC++BrowserView

TheMC++Browser view implements the MC++ browser GUI presented in Section 4.2.3. The view
contains three Motif GUI panels for the library browser, metaclass browser, and instance browser,
and observe the events indicated respectively in Fig. 5.11. TheMC++Browser is thus a view on the
MetaCPPManager andLibraryManager kernel subsystems. Besides observing the respective
events,MC++Browser does also send commands to the kernel for loading and unloading libraries,
and creating, deleting, renaming, cloning, and reparenting component instances.

The InteractorManagerView

The InteractorManager view implements the component interactor GUIs presented in Sec-
tion 4.3.1.InteractorManager has two main functions. First, it constructs the component inter-

5.2. THE VIEWS 101

LibraryBrowser

MetaclassBrowser
LIBRARY_LOAD
LIBRARY_UNLOAD

NEW_COMPONENT
DEL_COMPONENT

metaclass instances meta−group instances

Instance Table

metaclasses meta−typesmeta−groups

MetaCPPManager

MC++Browser

Dependency
Graph

li b2

li b3

li b4li b1

LibraryManager

Entity Table

InstanceBrowser

Kernel

Figure 5.11: TheMC++Browser view

actors from their MC++ declarations. Secondly, it manages the component interactors, i.e. updates
them when their port values change and writes their component ports when the end user interacts with
their widgets.

InteractorManager consists of three subsystems:InteractorMaster, PortEditor,
andInteractorTable. The way in which the subsystems ofInteractorManager implement
its two functions is described next.

Interactor Construction

TheInteractorMasterandPortEditorsubsystems implement the component interactor con-
struction algorithm described in Section 4.4. The construction process, exemplified for theExample
metaclass discussed in Section 4.3.1, Fig. 4.8, proceeds as follows (see also Fig. 5.12):

1. a requestconstruct("object") to construct an interactor for the instanceobject of
metaclassExample is sent to theInteractorMaster. The request can be sent by e.g. the
MC++Browser or theNetworkManager.

2. theInteractorMaster retrieves the MC++ declaration ofobject, i.e. theExample
metaclass, fromMetaCPPManager’s entity table.

3. a GUI widget is constructed for every port whose MC++ declaration does not specify theopt-
ional option (Section 4.4.3). The widgets are then assembled into the final interactor. In order
to construct a widget for a specific port,InteractorMaster calls uponPortEditor as
explained below.

4. PortEditorsearches for theMOTIFWidgetsubclass that can best edit the given port’s meta-
type, as explained in Section 4.4. This is done by determining, for each widgets inLibrary-
Manager’s WidgetTable, the likelihood to use it as editor for the given port (step 4.1). This
involves computing metrics in the C++ type space (Section 4.4), by calling on theInter-
preter reflection functions discussed in Section 5.1.4 (step 4.2)

5. the constructed GUI interactor is inserted into theInteractorTable and then displayed.

102 CHAPTER 5. DESIGN AND IMPLEMENTATION OFVISSION

Interpreter Kernel

metaclass instances meta−group instances

Instance Table

metaclasses meta−typesmeta−groups

MetaCPPManager

InteractorManager

LibraryManager

Entity Table

InteractorTable

widgets

WidgetTable
construct
widget

3InteractorMaster

2

PortEditor

4.1

get best widget

get port
meta−type

determine C++ type distance4.2

5

insert
new
interactor

construct interactor DEL_COMPONENT

destroy
interactor6

Figure 5.12: Interactor construction process

SinceInteractorManagerobserves theDEL COMPONENT event, interactors are destroyed auto-
matically when their components are destroyed (step 6 in Fig. 5.12).

Interactor Management

After a GUI interactor is constructed, it is used both to display the values of its component’s ports and to
modify its component’s write ports. Both processes are illustrated by means of an example (Fig. 5.13)
featuring a componentobj of typeFloat. This component represents a float number and has an input
and output port, both of the C++ float type.

At this point we introduce the interface of theMOTIFWidget class. As outlined in Section 4.4.1,
MOTIFWidget is a C++ base class for all user written widgets. This class declares two virtual meth-
odschar* getValue() andvoid setValue(char*)which represent the widget -VISSION

interface. Concrete widget implementations overridesetValue to set the widget’s visual value rep-
resentation to the value passed as a text C++ expression andgetValue to return the current widget
value as a text C++ expression.

Since the GUI interactor forobj has to be updated wheneverobj1 updates,Interactor-
Manager observes theUPDATE event. Upon reception of this event, the interactor is updated as
follows (see Fig. 5.13). First, the interactor for the component specified as theUPDATE event argu-
ment is fetched from theInteractorTable (1). Next, the fetched interactor is passed toInter-
actorMaster to be updated (2), which asksPortEditor to update the widgets of all modified
component ports (3). For every such widget,PortEditor calls itssetValue method with the
C++ value of its port, obtained fromMetaCPPManager’s read port (4). In the above example,
this means that the dial and the float label widget are redrawn to reflect their new port values.

Steering the component ports by the end user via GUI interactors is implemented as follows (see
Fig. 5.13). First, the end user interacts with a write port widget, e.g. turns the dial’s hand with the
mouse. The widget’s Motif callback, activated by the X event system, signals thePortEditor sub-
system (5). Finally,PortEditornotifies the kernel by callingMetaCPPManager’sport write

5.3. CONCLUSIONS 103

Kernel

metaclass instances meta−group instances

Instance Table

MetaCPPManager

InteractorManager

InteractorTable

update port
3

2 update

UPDATE("obj")

fetch
interactor1

InteractorMaster

6
port_wr ite(getValue())

PortEditor

4

setValue(port_read)

5
notification
callback

Figure 5.13: Interactor management process

operation with the value delivered by the widget’sgetValuemethod.
The above GUI interactor implementation can accommodate any type of widget as long as it com-

plies with the very simplesetValue/getValue MOTIFWidget interface. Several widgets have
been easily implemented asMOTIFWidget subclasses. The minimal widget interface gives the wid-
get developer total freedom to design the widget’s policy and look-and-feel. For instance, a dial widget
could notify thePortEditorof a value change when the user releases the hand at the end of turning,
or alternatively at every mouse motion during the turning. The former option is preferred for complex
dataflow networks which update slowly or when the edited value has to be carefully set. The latter op-
tion is very useful for fast dataflow networks to e.g. perform interactive data exploration and is essential
for simulation steering.

5.3 Conclusions

This chapter has presented the main aspects involved in the design and implementation ofVISSION.
VISSION’s design reflects closely itsfundaments which are based on the combination of object orien-
tation and dataflow modelling realised by the C++ and MC++ language combination, and itsusage,
based on several user interfaces which address the several application design, component design, and
end user tasks.

VISSION is consequently structured in two parts: the kernel and the views. The kernel implements
the combination of the C++ and MC++ languages which realises the kernel-component interface de-
scribed in Chapter 4. This implementation is based on a C++ virtual machine which offers the mecha-
nisms needed to manipulate all the C++ language constructs inVISSION’s dynamic environment. The
views implement several complementary user interfaces which provide visual component manipulation
and dataflow network construction, component browsing facilities, GUI interaction facilities with the

104 CHAPTER 5. DESIGN AND IMPLEMENTATION OFVISSION

components of a running application, command-line like interaction, and more. The views are comple-
menting and not competing with each other, and can be used independently by different user categories.
New views can be programmed and added without any modification to the kernel, as the two interact
via a well-defined kernel-view interface based on the event model. New views could be devised ei-
ther to augment the existing ones or to provide the same functionality in a different, more convenient
manner.

ThroughoutVISSION’s design and implementation a few particular requirements were sought:

� completeness: VISSION should be an exact implementation of the OO-dataflow architectural
model presented in Chapter 4. Since we have shown that this model does satisfy the combination
of our user requirements, summarised in the problem statement of the conclusions of Chapters
2 and 3, we are confident that its exact implementation will indeed address this problem state-
ment in practice. This is reflected in several design choices such as the choice of a full-fledged
independent C++ virtual machine for the system’s kernel.

� concern segregation: as mentioned,VISSION’s implementation is based on the OO-dataflow
architectural model. This model specifies clearly the system’s infrastructure but does not (and
can not) prescribe elements above this infrastructure. For example, the end user or application
designer GUIs can reflect the OO-dataflow combination in various ways, depending on the con-
venience of the actual users.VISSION’s actual implementation mirrors the separation of these
concerns by the client-server architecture based on the single kernel and open set of views.

In the next chapter, concrete SimVis applications will demonstrate how the actual implementation of
VISSION, based on the new OO-dataflow architectural model, satisfies our original problem statement
introduced in Chapter 1.

Chapter 6

Numerical Simulation Applications

The goal of this thesis, detailed in the second chapter, was the construction of a flexible software sys-
tem for simulation and visualisation. The desired system should answer the requirements of a research
environment, where users often need to switch quickly between the roles of end user, application de-
signer, and component developer.

In this chapter and the next one, we present several applications ofVISSION for various scientific
simulation and visualisation tasks. Next to these application, we will also present how specific func-
tionality was added toVISSION by means of external application component libraries. For each appli-
cation case, the advantages offered byVISSION as compared to alternative designs are discussed.

The outline of this chapter is as follows. Section 6.2 presents the application ofVISSION for the
computational steering of a particular numerical simulation. In the remainder of this chapter, we show
how the numerical setup presented in the first section is extended to a generic numerical library that
covers a large class of computational applications. The integration of scientific visualisation compo-
nents withinVISSION is the subject of the next chapter.

6.1 Introduction

As mentioned in Chapter 1, one of the main goals of this work is the integration of numerical simulation
and visualisation functionalities in a single interactive application. The dataflow application model is
generic and can describe both visualisation and computational applications, the difference between a
simulation and a visualisation network being only semantic, not structural. Building computational
steering applications inVISSION should therefore be an easy task.

Although reducible to a dataflow network structure, computational software has several particular
characteristics. These particularities raise several integration problems, as follows.

� numerical software comes most often in as libraries written in FORTRAN, or as monolithic ap-
plications with file-based data interfaces. Both these architectures are directly incompatible with
VISSION’s is component model built atop of the C++ class model described in the previous chap-
ters. The integration of such software inVISSION requires thus the construction of a component-
based interface to the existing libraries of monolithic applications. Depending on the architec-
tural model used by the numerical software to integrate, this operation may be very simple, such
as the construction of class wrappers , or might imply massive adaptation or even rewriting of
the numerical code.

� if we desire to add visualisation capabilities to existing monolithic numerical applications, there

105

106 CHAPTER 6. NUMERICAL SIMULATION APPLICATIONS

is no way in whichVISSION’s dataflow engine could gain control to process events during the
time the numerical code executes. This limitation, stemming fromVISSION’s single threaded
synchronous execution architecture, can severely decrease the interactivity of a back-end visu-
alisation coupled to a slow numerical engine.

� many numerical applications have an intrinsic iterative structure during which the solution to a
certain problem is progressively refined. Several hierarchies of loops might be present in a sin-
gle application, such as the internal loop of an iterative solver and the external loop involving
the solver in a time dependent simulation. When such software is integrated with visualisation
operations in aVISSION network, we would like to expose one or both loops toVISSION’s net-
work traversal mechanism to be able to see the gradual solution refinement as well as the time
dependent evolution.

Several solutions can be envisaged for the above problems, depending on the requirements of the con-
crete SimVis application. In the following, severalVISSION applications that integrate numerical com-
putation and visualisation are presented. These applications illustrate the above integration problems
and various solutions that were adopted in function of their respective contexts.

6.2 Electrochemical Drilling

The electrochemical drilling (ECD) process is used by the engine construction industry to drill holes
in hard metal objects such as turbine blades. These holes are needed for cooling the blades, either
for internal cooling or film cooling. The cooling is caused by the flow of relatively cool air through
the holes. This cooling extends the lifetime of the blades significantly and even may allow for higher
working temperatures (i.e. higher efficiency) in the engine. In order to increase the heat transfer in
the holes, the wall of the cooling passage is provided with multiple ribs orturbulators which cause
turbulence in the air flow and consequently a better air-metal heat transfer.

The ECD technique is used for drilling the complex geometry of the turbulator holes. An elec-
trolytic process is employed where an anode, acting like a drill, advances slowly into the turbine blade
acting as a cathode. The anode speed and the voltage applied between the drill and the plate must be
varied in time in a well controlled manner in order to produce the desired turbulator geometry. Finding
the correct voltage and speed variations in time that produce the desired geometry involves many ex-
pensive experiments. To reduce these costs, a numerical simulation of the ECD process was produced.

An important issue in modelling the ECD process is its real time characteristics and the ability
to simulate it with a computer program. In the above process, there are several physical parameters
which have to vary in time in order to obtain a desired shape for the turbulators. Finding the values
of the parameters that produce the desired geometry involves in fact solving an inverse problem. This
implies the ability to run the ECD numerical simulation, change its input parameters interactively, and
visualise the process evolution in real time. What is actually needed is an ECD process simulation
providing computational steering and on-line visualisation. The remainder of this section presents how
such a simulation has been constructed, starting from the physical model, followed by the numerical
approach used, and ending with the software implementation of the coupling between the visualisation
and simulation parts (see also [76]).

6.2.1 Physical Modelling

As already mentioned, the ECD process is based on electrolysis. A cylindrical drill insulated on the
outside is lowered into the material with a certain speed and voltage applied to it, in order to produce

6.2. ELECTROCHEMICAL DRILLING 107

a cylindrically shaped hole. Because of the problem’s axisymmetry, a two-dimensional computational
model is used (Fig. 6.1 a).

To describe the electrolysis process, Faraday’s law is used. This yields for the material volumetric
removal rate:

dV

dt
�

ea

�a
I� (6.1)

whereV is the anode’s volume, and�a andea are the anode’s density and electrochemical equivalent
respectively, both assumed to be constant. The current flowJ in the electrolyte is described by Ohm’s
law

J � �ke grad �� (6.2)

whereJ is the current density caused by a potential difference� andke is the electrolytic conductivity
assumed constant. As the electrolyte solution is overall electrically neutral, the electric field is assumed
to be divergence free

div J � �� (6.3)

Overall, equations (6.2) and (6.3) result in the Laplace equation for describing the electric potential�.

titanium electrode
cathode

electrolyte
 inflow

insulating
coating

super alloy
anode +

− −

ez

er

a) b)

δΩa

δΩc

insulating
boundary

Ω

Figure 6.1: Electrochemical drilling

As the electrodes are assumed to be perfectly conducting, essential boundary conditions are imposed
on� at the electrode’s surface.

6.2.2 Mathematical Equations

As previously mentioned, the ECD process is modelled by the Laplace equation. The two-dimensional
boundary�� of the considered computational domain� is split into the anode boundary��a which
represents the instantaneous surface of the drilled hole, the cathode boundary��c which is maintained

108 CHAPTER 6. NUMERICAL SIMULATION APPLICATIONS

at a constant potentialU . On the remainder of the boundary, a homogeneous Neumann condition is
imposed to model its insulating characteristics. Now the formulation for the electric potential� yields:

div��kegrad�� � � in � (6.4)

� � � on ��a

� � �U on ��c

��

�n
� � on ��� ���a � ��c��

wheren is the outwards normal vector to the boundary��.
Assuming that the current density is constant for a short time interval, the shift of anode boundary

��a, along its normal due to the electrolytic erosion, can be computed from:

dx

dt
�

ea

�a
�J�x��n�n� (6.5)

for all pointsx on ��a. Time is treated explicitly, as bothU and the position of the boundary��c are
functions of time. Starting from an initial hole geometry, the potential distribution can be computed.
Next, the current density on the anode boundary and the anode recession are computed. The process
loop is closed by recomputing the new potential distribution, moving the anode boundary, and so on.

6.2.3 Numerical Approach

The ECD process equations presented above are discretised numerically by using a finite element ap-
proach with conformal elements. From the discrete approximation of�, the current density fluxJ is
computed by numerical derivation. If a mixed finite element approach were employed, one could com-
pute both the potential� and the fluxJ instead of obtaining the latter by derivation of�. Solving the
flux implicitly with the potential would produce more accurate results and handle well singularities in
the solution such as, for example, close to the cathode’s tip. However, it can be shown that the mixed
method is almost 2.5 times more expensive per iteration than the conforming method [76]. As the do-
main� of the ECD simulation is constantly expanding, the number of elements can increase quite
rapidly. To keep the computation time within interactive or nearly interactive limits, we prefer to use
the conforming method.

We have implemented the ECD numerical simulation by using a general purpose finite element
library written by us in C++ [107, 76]. The library provides software components for describing the
problem computational domain, boundary conditions, and differential equation to be solved. More-
over, the library implements several iterative solvers, preconditioners, and matrix storage formats. In
this approach, a numerical simulation is described as a dataflow network of computational objects. Its
integration inVISSION posed therefore no particular problems.

Figure 6.2 shows theVISSION dataflow network for the ECD numerical simulation. The network
starts with theBoundaryCurvescomponent that describes the various curves which create the com-
putational domain’s boundary, as described in the previous sections. The boundary curves are read by
a mesh generator engine that produces a triangulation of the 2D computational domain� in function
of various user-specified meshing parameters such as average element size, mesh refinement factors,
and so on. The produced triangulation is stored in theMesh dataset object. Several mesh generators
specialisations are provided, such as a Delaunay-based and an own triangulator, both capable to handle
arbitrary concave domains containing holes and local mesh refinements. for the ECD simulation,

6.2. ELECTROCHEMICAL DRILLING 109

Figure 6.2: ECD simulation dataflow pipeline

Following the mesh computation, the finite element discretisation of the Laplace equation is mod-
elled by theFEProblemmodule. The same module also provides inputs to specify the types and val-
ues of the boundary conditions and material properties of the domain�. TheFEProblem assembles
the global stiffness matrix in theMatrix dataset connected to its output. Once the matrix is assem-
bled, a numerical solver is used to compute the discrete solution for the potential�. In the example
illustrated in Fig. 6.2, a conjugate gradient iterative solver with a successive overrelaxation (SSOR)
preconditioner is used. The potential solution� and the current density fluxJ calculated by numer-
ical derivation are computed as a 2D scalar and vector field respectively by theScalarField and
VectorField dataset objects. These objects are the input for the visualisation pipeline, which is
contained in theVisualizationmeta-group module.

As described in the previous sections, the computational domain� is changing in time. The bound-
ary��c modelling the drill’s tip advances with a constant distance every time step. Also the boundary
��a evolves freely, displaced by the vector fieldJ as specified by Faraday’s law (Equation 6.1). In
order to obtain the new domain boundary��i��, every pointx of the current discrete boundary��i is
displaced by forward Euler integration

xi�� � xi ��t
ea

�a
�J�xi��n�n� x � ��i

a (6.6)

xi�� � xi ��ts�ti�ez� x � ��i
c (6.7)

wheres�ti� is the drill’s speed at momentti, and�t is the time step, taken constant. The above equa-
tions for moving the boundary are implemented by theBoundaryDisplacer modules that takes
the current density fluxJ as input and modifies theBoundaryCurves object by writing into it.

110 CHAPTER 6. NUMERICAL SIMULATION APPLICATIONS

6.2.4 Computational Steering

The ECD simulation contains two loops. The first loop is encapsulated in theCGSolvermodule and
represents the iterative solving procedure for the linear equation system output from the problem dis-
cretisation. As this loop takes place within one module, its iterations are invisible toVISSION and thus
also to the end user, who notices a new solution only after it has fully converged or the maximum num-
ber of iterations allowed has been spent. The second loop is closed by theBoundaryDisplacer
module which uses the computed current density flux solution to displace the domain’s boundary. This
loop takes place at theVISSION level, in contrast to the previous one which was contained in a black
box fashion within one component. Consequently,VISSION’s dataflow engine will compute a new po-
tential and current density flow solution, display them to the end user, displace the boundary, remesh
the domain, reassemble a new global matrix, compute a new solution, re-read the user interface con-
trols, and so on, until the end user locks a module of the loop or opens the loop by disconnecting one
of the involved links.

Figure 6.3: ECD simulation user interface

Building a computational loop with components at theVISSION network level has several advan-
tages. First, the visualisation back-end is signalled by the dataflow engine whenever a new solution is
produced, which enables the end user monitor the ECD simulation (mesh deformation, solution, and
so on) interactively as they are computed. Secondly, the user can vary several parameters of the sim-
ulation as this one is running, such as the drill speed or potential difference. This models exactly the
real physical process of creating various turbulator shapes by using several variations of the drill volt-
age and speed in time. The end user can thus easily investigate the inverse problem of determining a
desired turbulator shape as a function of the potential and speed evolutions in time.

In contrast to this, we preferred to code the inner simulation loop in a single module (theCG-

6.3. THENUMLAB NUMERICAL LABORATORY 111

Solver) for two reasons, as follows. First, for every time step several tenths of inner iterations are
done. If we want to achieve an interactive simulation, i.e. a few time steps per second, it is better to code
the inner loop iterations in highly optimised compiled code rather than to involveVISSION’s dataflow
engine, which in turn invokes the C++ interpreter and the visualisation back-end, at every inner itera-
tion. Secondly, monitoring the convergence of the solution at a given time step is less important for the
ECD end user, typically an engineer. Optimal results have been achieved in practice by using a small
time step, in which case the user can control the ECD simulation in real time by interactively changing
the drill speed and voltage. Figure 6.3 shows the graphics interface of the ECD simulation which offers
various controls for the drill speed, voltage, and visualisation options, such as zoom, pan, and display
the potential solution (shown in the actual figure), current flow density vector field, or triangle mesh.

Besides the end user interactive steering and visualisation features, the ECD simulation can be cus-
tomised also at application design level, by connecting different modules in theVISSION network ed-
itor instead of the ones discussed above. The application designer can switch between various types
of mesh generators, iterative solvers, and preconditioners with a few mouse clicks. Similarly, the pro-
duced datasets could be visualised in other ways than the discussed ones.

6.2.5 Conclusion

The electro-chemical drilling simulation shows the ability ofVISSION to be used for constructing and
steering computational applications of a turnkey-type, given the appropriate application domain com-
ponents. Besides the end user interactive steering and visualisation features, the ECD simulation can
be customised also at application design level, by connecting different modules in theVISSION net-
work editor instead of the ones discussed above. Different types of mesh generators, iterative solvers,
and preconditioners can be switched with a few mouse clicks. Similarly, the produced datasets could
be visualised in other ways than the discussed ones.

6.3 The NUMLAB Numerical Laboratory

The previous section has described the implementation of a particular computational application into a
component library and its interactive design and control in theVISSION system. The numerical compo-
nents involved have, however, been specifically designed for the limited scope of the ECD application.
It is hard, for example, to extend these components to address other problems, such as other PDEs,
ODEs, to use different types of elements, or to implement finite difference computations.

However, it would be desirable to generalise the positive results experienced for the ECD applica-
tion in terms of interactive design, control, and visualisation of numerical applications. The proposed
goal is to achieve a system into which the same application design and use facilities are provided for a
large range of numerical applications. Such applications should encompass ordinary differential equa-
tions (ODEs), partial differential equations (PDEs), image manipulation and data compression, non-
linear systems of equations, and matrix computations.

A wide range of applications addresses such problems. Following the classification introduced in
chapter 2, these applications come as:

� Libraries: LAPACK [4], NAGLIB [73], or IMSL [48],

� Turnkey systems: Matlab [66], Mathematica [118],

� Computational frameworks: Diffpack [14], SciLab [49], Oorange [41].

112 CHAPTER 6. NUMERICAL SIMULATION APPLICATIONS

Though efficient and effective, most existing computational frameworks are limited in several respects.
These limitations concern the end user, application designer, and component developer, as overviewed
by several authors [6, 88, 27, 110]. A short overview hereof follows.

First, few computational frameworks facilitate convenient interaction between visualisation (data
exploration) and computations (numerical exploration), both essential to the end user. Secondly, from
the application designer perspective, the visual programming facility, often provided in visualisation
frameworks such as AVS or Explorer [113, 44], usually is not available for numerical frameworks.
Conversely, it is quite difficult to integrate large scale computational libraries in visualisation frame-
works [88]. From the numerical component developer perspective, understanding and extending a
framework’s architecture is still (usually) a very complex task, albeit noticeably simplified in object-
oriented environments such as Diffpack or VTK.

Next to limitation with respect to the three types of users, many computational frameworks are con-
strained in a more structural manner: Similar mathematical concepts are not factored out into similar
software components. As a consequence, most existing numerical software is heterogeneous, thus hard
to deploy and understand. For instance, in order to speed up the iterative solution of a system of linear
equations, a preconditioner is often used. Though iterative solvers and preconditioners fit into the same
mathematical concept – that of an approximationx which is mapped into a subsequent approximation
z � F�x� – most computational software implements them incompatibly, so preconditioners cannot
be used as iterative solvers and vice versa [14].

Another example emerges from finite element libraries. Such libraries frequently restrict reference
element geometry and bases to a (sub)set of possibilities found in the literature. Because this set is hard
coded, extensions to different geometries and bases for research purposes is difficult, or even impos-
sible.

We have addressed the above limitations by designing the NUMLAB numerical library and inte-
grating it intoVISSION. NUMLAB is a numerical framework which provides C++ software compo-
nents (objects) for the development of a large range of interdisciplinary applications (PDEs, ODEs,
non-linear systems, signal processing, and all combinations). We integrated NUMLAB in VISSION to
provide it with interactive application design/use facilities. Its computational libraries factor out fun-
damental notions with respect to numerical computations (such as evaluation of operatorsz � F�x�
and their derivatives), which keeps the amount of basic components small.

The remainder of this chapter presents the NUMLAB framework. In section 6.4, the mathematics
that we wish to model in software is reduced to a set of simple but generic concepts. Section 6.5 shows
how these concepts are mapped to software entities. Section 6.7 illustrates the above for the concrete
case of solving the Navier-Stokes partial differential equation. Section 6.8 presents how concrete sim-
ulations combining computations and visualisation are constructed with the NUMLAB-VISSION com-
bination.

6.4 The mathematical framework

In order to reduce the complexity of the entire software solution, we show how NUMLAB formulates
different mathematical concepts with a few basic mathematical notions. It turns out that in general
NUMLAB’s components are either operatorsF, or their vector space argumentsx�y. The most fre-
quent NUMLAB operations are therefore operator evaluationsF�x� and vector space operations such
asx�y. Important is the manner in which NUMLAB facilitates the construction of complex problem-
specific operators (for instance transient Navier-Stokes equation with heat transfer), and related com-
plex solvers. NUMLAB offers:

6.4. THE MATHEMATICAL FRAMEWORK 113

1. Solvers for systems of linear equations: Such systems are also operatorsF�x� � Ax�b. Their
solution is reduced to a sequence of operator evaluations and vector space operations.

2. Solvers for systems of non-linear equations: Such systems are operators, and their solution is
reduced to the solution of a sequence of linear systems

3. Problem-specific solvers for systems of ODEs: Time-step and time-integration operators formu-
lated with the use of (parts of) the problem-specific operators mentioned above. The former op-
erators require non-linear solvers for the computation of solutions.

4. Problem-specific operators: Transient Finite Element, Volume, Difference operatorsF for tran-
sient boundary value problems (BVPs); Operators which formulate systems of ordinary differ-
ential equations (ODEs); operators which act on linear operators (for instance image filters). The
operator framework is open, users can define customised operatorsz � F�x�.

The reduction from one type of operator into another proceeds as follows. Section 6.4.1, examines
systems of (non-)linear equations and preconditioners, section 6.4.2 considers the reduction of sys-
tems of ODEs to non-linear systems, and section 6.4.3 deals with an initial boundary value problem.
The presented mathematical reductions are de facto standards. The new aspect is NUMLAB’s software
implementation which maps one to one with these techniques.

6.4.1 Non-linear systems and preconditioners

This section presents NUMLAB’s operator approach , and demonstrates how operator evaluations re-
duce to repeated vector space operations and operator evaluations. This is illustrated by means of ex-
amples, which include (non-)linear systems, and preconditioning techniques.

First, consider linear systems of the formF�x� � f . HereF�x� � Ax is a linear operator, with
anN by N coefficient matrixA, andf � RN is a right hand side. The NUMLAB implementation of
the evaluationz � F�x� is:

F.eval(z, x);

The actual implementation ofeval() varies with the application type (for instance full matrix, sparse
matrix, image, etc.). Thoughz is a resulting value, its initial value can be used for computations (for
instance as an initial guess).

Next, NUMLAB formulates a linear systemF�x� � f with the use of an affine operatorG:

G�x� � F�x�� f � (6.8)

The user constructs this NUMLAB system by providingG with the the linear operator and a right hand
side vector:

G.setO(F);
G.setI(f);

The residualz � G�x� is computed with:

G.eval(z, x);

114 CHAPTER 6. NUMERICAL SIMULATION APPLICATIONS

Next, letx � RN be a given vector, and focus on the solution(s) ofG�z� � x, i.e, on solution
methods for affine operators. Assume that operatorR approximatesG��:

G�z� � x�� z � G���x��� z � R�x�� (6.9)

For the sake of demonstration, and without loss of generality, we assume thatR is a left-preconditioned
Richardson iterative solution method [67], with preconditionerP. Such a method is based on a suc-
cessive substitution process:

z�k��� � z�k� �P�G�z�k��� x�� (6.10)

The process is terminated by a user-specified stopping criterion of the formS 	 Rn �� f�� �g. The
iterations stop as soon asS�P�G�z�k�� � x�� � �. This recursion will converge if for instanceG is
as in (6.9) withF positive definite, and ifP�x� � hx with h positive and small enough.

The related NUMLAB operatorR for (6.10) is defined by its implementation of itseval()
method:

R.eval(z, x)
{
P.setO(G);
repeat
{
G.eval(r, z);
r -= x;
P.eval(s = 0, r);
z -= s;

}
while (S(s) > 0);
}

The systemG�z� � x is solved with two lines of code:

R.setO(G).setP(T).setS(S);
R.eval(z, x);

Observe that solverR usesz both as initial guessz��� � RN and as final approximate solution, whereas
preconditionerP must use� as an initial guess. If a preconditioner is not provided, a default – the
identity operator – is substituted. The stopping criteria are similarly dealt with. Note that operators can
make use of operators: The preconditioner for Richardson’s algorithm could have been Richardson’s
algorithm itself, a diagonal preconditioner, an (incomplete) LU factorisation, and so forth. Further-
more, theeval()methods of the solverR, preconditionerP and systemG are syntax-wise identical.

The pseudo code forR above executesP.setO(G), so preconditionerP can use (has access to)
G and its Jacobian. Further, the linear systemF�z� � f could have been solved directly withR:

R.setO(F);
R.eval(z, f);

NUMLAB formulates systems, solvers and preconditioners all with the use ofset- andeval()
syntax – though related mathematical concepts differ. Few other methods such asupdate() exist,

6.4. THE MATHEMATICAL FRAMEWORK 115

and relate to data flow concepts, outside the current paper’s scope.

A closer examination of the Richardson operator reveals more information of interest. NUMLAB

implements all its operator evaluations with: (1) Vector space operations; and (2) all which remains:
Nested operator evaluations. This is clearly demonstrated byR’s implementation above:

r
���
� G�z�k��

r
���
� r� x

s
���
� P�r�

z�k���
���
� z�k� � s�

(6.11)

where,��� denotesoperator evaluationand��� vector space operation. This clear cut classification of
operations thoroughly simplifies the mathematical framework.

Though NUMLAB regards preconditioning as approximate function evaluation – which simplifies
its framework – this does not solve the problem of proper preconditioning. Specific iterative solution
methods might require preconditioners to preserve for instance symmetry (such as the preconditioned
conjugate gradient method PCG [10]) or at least positive definiteness of the symmetric part (for min-
imal residual methods, see [92] for GMRES and [7] for GCGLS). All iterative solvers have some re-
quirements: Robust methods (e.g. [57]), multi-level methods (e.g. [9] and [62]), multi-grid methods
(e.g. [43]), and incomplete factorisation methods (e.g. [42]).

The application designer should keep these mathematical restrictions in mind, when designing a
suitable solver for the problem at hand.

Similar to linear systems, NUMLAB also formulates non-linear systems with the use of operators
G, and looks for solutions ofG�z� � x. The Jacobian (Frechet derivative) of a (non-linear) operator
G at pointx is denoted byDG�x� – or byDG if G is linear.

Related non-linear solvers are again formulated as operators. Non-linear operatorsG which do
not provide derivative evaluation, can be solved with the use of a fixed point method (comparable to
the Richardson method above), or with a combinatorial fixed point method [112] (a multi-dimensional
variant of the bisection method). Non-linear operatorsG which provide derivative evaluation can also
be solved with (damped, inexact) Newton methods (see [25] and [28]). A typical NUMLAB code for
an undamped Newton method is:

Newton.eval(z, x)
{
repeat
{
G.eval(r, z);
r -= x;

Solver.setO(G.getJacobian(z));
Solver.eval(s, r);
z -= s;

}
while (S(s) > 0);
}

116 CHAPTER 6. NUMERICAL SIMULATION APPLICATIONS

and a systemG�z� � x is solved by this method with:

Newton.setO(G).setSolver(R);
Newton.eval(z, x).

Here Richardson’s method is used to solve the linear systems.
Again, the application designer should take care that the fixed point function is chosen properly,

so it preserves properties ofF, such as symmetry and positive definiteness of the symmetric part.
In order to close this section on systems of equations and solvers, note that images are also treated

as operators

F�x� � Ax � (6.12)

whereA is a matrix (or block-diagonal) matrix of colour intensities. Thus, image visualisation reduces
to Jacobian visualisation.

6.4.2 Ordinary differential equations

Standard discretisations of ordinary differential equations can also be formulated as operators whose
evaluation reduces to a sequence of vector space operations and function evaluations. For instance, let
E be an operator, and consider the initial value problem: Findx�t� for which:

d

dt
x�t� � E�t�x�t�� �t � ��� x��� � x� � (6.13)

Let h � � denote the discrete time-step, and definetk � kh for all k � �� �� �� � � � . Provided with an
approximationx�k� of x�tk�, a fixed-step Euler backward method determines an approximationx�k���

of x�tk���

x�k��� � x�k� � hE�tk���x
�k����� (6.14)

which can be rewritten as

x�k��� � x�k� � hE�tk���x
�k���� � � � (6.15)

Define the operatorT as follows:

T�x� � x� x�k� � hE�tk���x�� (6.16)

Thenx�k��� is a solution ofT�x� � �. Of course,T depends on the user-provided valuesx�k� andh.
The NUMLAB evaluation code ofz � T�x� is:

T.eval(z, x)
{
t[k+1] = t[k] + h;
E.setT(t[k+1]);
E.eval(z, x);
z *= h;
z += x;
z -= x_1;

}

6.4. THE MATHEMATICAL FRAMEWORK 117

Because the approximate solution ontk��, i.e.,x�k��� is a root ofT, it is computed with the code:

T.setT(t[k]).setX(x[k]).setH(t[k+1] - t[k]);
Newton.setO(G).setSolver(R);
Newton.eval(z, 0);

The operator formulationx�k��� � T����� applies to all explicit methods such as Runge Kutta type
methods [17], as well as to all implicit discretisation methods, such as Euler Backward and Backward
Difference Formulas (BDF) [39].

It is obvious that the evaluation ofT at a givenx again only involvesvector space operationsand
operator evaluations. SolvingT�x� � � can thus be done by several methods: Successive substitution,
Newton type methods, preconditioned methods, etc.

Naturally, a time-step integrator complements the time-step mechanism. NUMLAB provides stan-
dard fixed time-step methods and – required for stiff problems – adaptive time-step integrators of the
PEC and PECE type [67].

6.4.3 Partial differential equations and initial boundary value problems

In order to show how partial differential equations (PDEs) are reduced to (non-)linear systems of equa-
tions, consider an initial boundary value problem. Let� 	 Rd be the bounded region of interest, and
let �� denote its boundary. We denote points in this region withc � � (x is reserved for vectors and
related iterands). The problem of interest is: Find a solutionu on ���
�� � which satisfies

�

�t
u � �u� f �t � ��� (6.17)

subject to initial conditionu��� c� � u��c� for all c � �, and boundary conditionsu�t� c� � 	�c�
for all t � ���
� andc � ��. For the sake of presentation, the boundary conditions are all assumed
to be of Dirichlet type. With a method of Lines (MOL) approach, equation (6.17) fits into the frame-
work (6.13), for a suitable operatorE, to be defined.

As an alternative, one can first discretise in time, and next discretise in space, or simultaneously
discretise with respect to both (see for instance [8]).

For a MOL solution of (6.17), the region of interest� is covered with a grid of elements (with the
use of a uniform, Delaunay, or bisection type [68] grid generator). Next, the static equation��u � f

is discretised with one of the available methods (standard conforming higher order finite elements, and
non-forming elements as for instance in [51]).

A standard Galerkin approach assumes that the solutionu is in a linear vector spaceV with basis
fvjg

N
j��. For the method of lines approach applied to (6.17) one sets

u�t� c� �
X
i

xi�t�vi�c�� (6.18)

for all time t andc � �. Functions inV are identified with their coefficient vectors inRn, sou is
identified withx. Multiplication of (6.17) with (test) functionsfvjgNj��, followed by partial integration
over� leads to a system of ODEs

M
d

dt
x�t� � �G�x�t��� �t � ��� (6.19)

118 CHAPTER 6. NUMERICAL SIMULATION APPLICATIONS

Here,

�G�x�i �

�����r

�
� NX

j��

xjvj

�
Arvi � fvi � (6.20)

if variable i � �� � � � � N is not related to a Dirichlet point and

�G�x�i � � (6.21)

otherwise. Moreover

�Mij �

�����vjvi� (6.22)

if neither variablei nor variablej is related to a Dirichlet point, otherwise

�Mij � �ij � (6.23)

where�ij is the Kronecker Delta.M is the so-called mass-matrix.
The JacobianDG of G is

�DGij �

�����rvjrvi (6.24)

if neither variablei nor variablej is related to a Dirichlet point, and�DGij � �ij , the Kronecker Delta
otherwise.

Functions in the linear vector spaceV do not need to satisfy the Dirichlet boundary conditions. Let

 	 �� �� R. Define the set (not necessarily a vector space)

V � � fx � V 	 x �
 at ��g� (6.25)

ThenV � (homogeneous boundary conditions) is a vector space, andV� is the set of all function which
satisfy the Dirichlet boundary conditions.

The solutionz of G�z� � � is obtained by application of Newton’s method

z� � z� �DG�z�����G�z� (6.26)

to an initial guessz���. The NUMLAB code for the above is:

Newton.setO(G).setSolver(R);
Newton.eval(z, 0);

In this code, Richardson’s iterative solverR is used to solveG�x� � �.
Note that operatorG in (6.20) mapsV ontoV�, and that its Jacobian matrixDG in (6.24) mapsV�

ontoV �. Assume that the (iterative) solver for the solution of the linear system maps (1)V� ontoV �

and (2) is the identity onV �V�. Then, by induction, also (6.26) satisfies both assumptions. Because
all common linear solvers such as PCG, GCGLS, CGS, etc. mapV� ontoV �, all of NUMLAB’s solvers
mapV � ontoV � . This holds for the (non-)linear (iterative) solvers, as well as for the solvers of systems
of ordinary differential equations.

For linear systemsG�z� � � with G affine, as for instance in (6.20), the use of Newton’s
method (6.26) may seem an overkill. However, this is not the case: Under the assumption that all

6.4. THE MATHEMATICAL FRAMEWORK 119

coefficients ofx are degrees of freedom – including those related to Dirichlet points – the solution of
G�z� � � requires the solution of (6.26) above.

In order to see this, define the linear systemF�x� � f with

�F�x�i �

�����r

�
� NX

j��

xjvj

�
Arvi � (6.27)

and

�f i �

�����fvi � (6.28)

for all i. The problemF�x� � f has no unique solution becauseF is singular. F�x� � f is be-
low transformed in a standard manner, which results in the systemG�x� � �, and requires solution
method (6.26).

First, define the projectionC 	 RN �� RN by

�C�x�i � xi for all related non-Dirichlet supportsci �
� � elsewise�

(6.29)

Next, the vectorx is coefficient-wise split into a vector which contains all Dirichlet related function
valuesx��� and interior degrees of freedomd, i.e., we set

x � x��� � d� (6.30)

Thenx��� turns out to be the solution to

��I �C� �CDF�x����CT �d � C�f � F�x����� � (6.31)

This shows that for the solution of a linear boundary value problemF�x� � f , we must solve (6.26),
and in fact exactly solveG�x� � �.

The standard splitting (6.30) for linear systems makes use of anx��� � V � (in (6.31)) which is
zero at all nodal points, except those at the Dirichlet boundary. This so called elimination of bound-
ary conditions is a poor choice becausex� has steep gradients near Dirichlet boundaries, whence the
induced initial residualr��� for the iterative solver is large. Fortunately, from (6.30) it follows that we
can also take differentx��� � V �. In order to minimize the amount of iterative solution steps, one can
use a smoothx���.

Finally, we consider the NUMLAB formulation of (6.17). Under the assumption that the solution
x � V , equation (6.17) is equivalent to the autonomous ODE

M
d

dt
x � �G�x� �t � ��� (6.32)

wherex��� is the coefficient vector related to the initial condition. At its turn, (6.32) is equivalent
to (6.13) forE�t�x� � �G�x� andT�x� � M�x � x�k�� � hE�tk���x�. Therefore, the initial
boundary value problem (6.17) reduces to a sequence of systems of non-linear equations. Due to the
particular choice ofT, its Jacobian is symmetric positive definite for small positiveh, if G’s Jacobian
has this property.

120 CHAPTER 6. NUMERICAL SIMULATION APPLICATIONS

6.4.4 Conclusions

The examples in sections 6.4.1, 6.4.2 and 6.4.3 have shown how mathematical problems with a seem-
ingly different formulation can be reduced to the two basic operations of vector space computations
and operator evaluation. Because of this, the NUMLAB software provides the basic notions as well as
concrete specialisations of vector spacesV and operatorsG onV .

6.5 From the Mathematical to the Software Framework

In this section, we show how the notion of operatorsF and argumentsv in (cross-product) spacesV
map to a software framework. As outlined in the previous section, a large class of solution methods for
problems of the formF�x� � �, can be reduced to a simple mathematical framework based on finite
dimensional linear vector spaces and operators on those spaces. The software framework we propose
will closely follow the mathematical model. As a consequence, the obtained software product will be
simple and generic as well.

Consider the mathematical framework for spacesV and operatorsF in more detail. In general, let
� be the bounded polygonal/polyhedral domain of interest, with smooth enough boundary��. The
linear vector spaceV � V��� � ��Vn is a cross-product space ofn spaces (n is the amount of degrees
of freedom). Each spaceVi is spanned by basis functionsfvijg

Ni

j�� wherevij 	 � �� R. An element
x � V is a vector function from� toRn, and is written asx � �x�� � � � � xn, a vector of component
functions. Each componentxi � Vi is a linear combination of basis functions: for allc � �

xi�c� �

NiX
j��

xij�t�vij�c�� (6.33)

Each elementxi is associated with a unique scalar vectorXi � �xi�� � � � � xiNi
 � RNi . At its turn,X

denotes the aggregate of these vectors:X � �X�� � � � �Xn, andXij � �Xij . Summarised, we have
vector functionsx � �x�� � � � � xn and related vectors of coefficient vectorsX � �X�� � � � � Xn.

Whenevern � �, we use a more standard notation. In this case, the space isV , spanned by basis
functionsfvjgNj��, and elementsx � V are related to coefficient vectorx � �x�� � � � � xN .

For most finite element computations, the basis functionsvij of Vi have local support. How-
ever,basis functions have global support in spectral finite elements computations. The local supports,
also called elements, are created with the use of a triangulation algorithm.

The next subsections describe NUMLAB’s software components related to the mathematical con-
cepts discussed in this section: Grid generation in section 6.5.1, bases generation in section 6.5.2, vec-
tor functions in section 6.5.3, and related operators in section 6.5.4.

6.5.1 The Grid module

To be able to define local support for the basis functionsvij later on, we need to discretise the func-
tion’s domain�. This is modelled in the software framework by theGrid module, which covers the
function’s domain with elementse. ThisGrid module takes aContour as input, which describes
the boundary�� of �. The default contour is the unit square’s contour.

In NUMLAB, the grid covers regions� in any dimension (e.g. 2D planar, manifold or 3D spa-
tial), and consists of a variety of element shapes, such as triangles, quadrilaterals, tetrahedra, prisms,

6.5. FROM THE MATHEMATICAL TO THE SOFTWARE FRAMEWORK 121

hexahedrals,n-simplices (see [68]), and so on. All grids implement a common interface. This inter-
face provides a few services. These include: Iteration over the grid elements and their related vertices,
topological queries such as the element which contains a given point. The amount of services is a min-
imum: Modules which use a grid generator and need more service must compute the required relations
from the provided information.

SpecificGrid generator modules produce grids in different manners. NUMLAB contains Delau-
nay generators, simplicial generators, and regular generators, and ”generators” which read an existing
grid from a file.

6.5.2 The Space module

The linear vector spaceV is implemented by the software moduleSpace. Space takes aGrid and
BoundaryConditionsas inputs. The grid’s discretisation in combination with the boundary con-
ditions are used to build the supports of its basis functionsvij. The default boundary conditions are
homogeneous Dirichlet type conditions for all solution components. In general, Dirichlet, Robin, Neu-
mann, vectorial of no boundary conditions can be specified per boundary part. Recall that elements in
V do not have to satisfy the Dirichlet boundary conditions. Recall that elements ofV do not have to
satisfy the essential boundary conditions.

BecauseGrid has a minimal interface, some information – required bySpace for the construc-
tion of the basis functions – is not provided. Whenever this happens,Space internally computes the
required information with the use ofGrid’s services. A specificSpace module implements a spe-
cific set of basis functions, such as constant, linear, quadratic, or even higher order polynomial degree,
matched to the elements’ geometry. The interface of theSpace module follows the mathematical
properties of the vector spaceV presented so far: Elementsx�y � V can be added together or scaled
by real values. Furthermore, elementsvij ofV are functions, andV permits evaluation at pointsc � �
of such functions and their derivatives.

It should be kept in mind that elements ofV are functions, not linear combinations of functions.
Therefore, the nameSPACE is somewhat misleading. However, for the brevity of demonstration, the
nameSPACEwill also be used in the sequel.

In most cases, the required basis functions have local support, also called element-wise support.
The restriction of global basis functionvij to supporte is said to be local functionvir. In software, this
is coded as follows: For space componenti (soVi), elemente, and local basis functionr thereon,j :=
j(i, r) induces basis functionvij. The software implementation is on element-level for efficiency
purposes: Given a pointc � �, Space determines which supporte containsc for the evaluation of
vij�c�.

6.5.3 The Function module

As discussed, a vector functionx 	 � �� Rn in a spaceV generated byvij is uniquely related to
a coefficient vectorX with coefficientsXij . Based on this observation, NUMLAB software module
Function implements a vector functionx as a block vector of real-valued coefficientsXij, combined
with a reference to the relatedSpace – which contains related functionsvij .

TheFunction module provides services to evaluate the function and its derivatives at a given
point c � �. To this end, bothx’s coefficient vectorX and the pointc are passed to theSpace
module referred to byx. At its turn, theSpace module returns the value ofx�c�. This is computed
following the definitionx�c� � �

P
j xijvij�c�, as described in the previous section. The computation

of the partial derivatives of a given functionx in a pointc follows a similar implementation.

122 CHAPTER 6. NUMERICAL SIMULATION APPLICATIONS

Providing evaluation of functionsx � V and of their derivatives at given points is, strictly speak-
ing, the minimal interface theSpacemodule has to implement. However, it is sometimes convenient
to be able to evaluate a function at a point given as an element number and local coordinates within that
element. This is especially important for efficiency in the case where one operation is iterated over all
elements of aGrid, such as in the case of numerical integration. If theSpacemodule allows evaluat-
ing functions at points specified as elements and local element coordinates, the implementation of the
numerical integration is considerably faster than when point-to-element location has to be performed.
Consequently, we also provided theSpacemodule with a function evaluation interface which accepts
an element number and a point defined in the element local coordinates.

6.5.4 The Operator module

As described previously, an operatorF 	 V �� W maps an elementx � V to an elementz � W.
The evaluationz � G�x� computes the coefficientszij of z from the coefficientsxij of x, as well as
from the basesfvijg andfwijg ofV andW respectively. Next to the evaluation ofG, derivatives such
as the Jacobian operatorDG of G are evaluated in a similar manner. Such derivatives are important
in several applications. For example, they can be used in order to find a solution ofG�z� � x, with
Newton’s method.

The software implementation of the operator notion follows straightforwardly the mathematical
concepts introduced in Section 6.4. The implementation is done by theOperator module, which
offers two services: evaluation ofz � G�x�, coded asG.eval(z,x), and of the Jacobian ofG in
pointy, z � DG�y�x, coded asG.getJ(y).eval(z,x). To evaluatez � G�x�, theOperator
module takes twoFunction objectsz andx as input and computes the coefficientszij using the
coefficientsxij and the bases of theSpace objectsz andx carry with them. It is important that both
the ’input’ z and the ’output’x of theOperator module are provided, since it is in this way that
Operators determine the spacesV, respectivelyW.

To evaluatez � DG�y�x, theOperator proceeds similarly. Internally,DG�y� is usually im-
plemented as a coefficient matrix, and the operationDG�y�x is a matrix-vector multiplication. How-
ever, the implementation details are hidden from the user (DG�y�x may be computed element-wise,
i.e. matrix-free), who works only with theFunction andOperatormathematical notions.

SpecificOperator implementations differ in the way they compute the above two evaluations.
For example, a simpleDiffusion operatorz � G�x� may operate on a scalar function and produce
a functionz wherezi � xi�� � �xi � xi��. A genericLinear operator may produce a vector of
coefficientsz � Ax whereA is a matrix. ASummator operatorz � G��x� � G��x� may take
two inputsG� andG� and produce a vector of coefficientszi � �G��x�i � �G��x�i. Remark that
the modules implementing theLinear andSummator operators actually have two inputs each. In
both cases the functionx is the first input, while the second is the matrixA for theLinear operator
and the operatorsG� andG� for theSummator operator. These values could be as well hard-coded
in the operator implementation. In both cases however, we seeOperator as a function of asingle
variablex, as described in the mathematical framework.

6.5.5 The Solver module

We model the solving ofG�z� � x by the moduleSolver in our software framework. Mathemati-
cally speaking,Solver is similar to an operatorS 	 V ��W, whereV andW are function spaces.
The interface ofSolver provides evaluation at functionsx �W, similarly to theOperatormod-
ule. The implementation of theSolver evaluation operationz � S�x� should provide an approxi-

6.6. AN OBJECT-ORIENTED APPROACH TO THE SOFTWARE FRAMEWORK 123

mationz to z � F���x�. However,Solver does not provide evaluation of its Jacobian, as this may
be undesirably complex to compute in the general case.

Practically,Solver takes as input an initial guessFunction objectx and anOperator ob-
jectG. Its outputz is such thatG�z� � x. The operations done by the solver are either vector space
operations orOperator evaluations, or evaluations of similar operatorsG�z�. In the actual imple-
mentation, this is modelled by providing theSolver module with one or more extra inputs of type
Solver. In this way, one can for example connect a nested chain of preconditioners to an iterative
solver module.

The implementation of a specificSolver follows straightforwardly from its mathematical de-
scription. Iterative solvers such as Richardson, GMRES, (bi)conjugate gradient, with or without pre-
conditioners, are easily implemented in this software framework.

The framework makes no distinction between a solver and a preconditioner, as discussed in Sec-
tion 6.4. The sole difference between a solver and a preconditioner in this framework is semantic, not
structural. A solver is supposed to produce anexact solution ofG�z� � � (up to a desired numeri-
cal accuracy), whereas the preconditioner issupposed to return anapproximate one. Both are imple-
mented asSolvermodules, which allows easy cascading of a chain of preconditioners to an iterative
solver as well as using preconditioners and solvers interchangeably in applications. Furthermore, the
framework makes no structural distinction between direct and iterative solvers. For example, anILU-
Solver module is implemented to compute an incomplete LU factorisation of its input operatorG.
TheILUSolvermodule can be used as a preconditioner for aConjugateGradientsolver mod-
ule. In the case theILUSolver is not connected to theConjugateGradient module’s input,
the latter performs non preconditioned computations. Alternatively, aLUSolver module is imple-
mented to provide a complete LU factorisation of its input operatorG. TheLUSolver can be used
either directly to solve the equationG�z� � x, or as preconditioner for anotherSolver module.

6.6 An object-oriented approach to the software framework

So far, we have outlined the structure of the proposed numerical software framework. This structure
is based upon a few basic modules which parallel the mathematical concepts ofGrid, Function,
Space, Operator, andSolver. These modules provide their functionality via interfaces con-
taining a small number of operations, such as theOperator’s evaluation operation or theGrid’s
element-related services previously outlined.

As stated in the beginning of this section, a large range of numerical problems can be modelled
with these few generic modules. In order to capture the specifics of a given problem, such as the type
of PDE to be solved or the basis functions of an approximation space, the generic modules have to be
specialised. The specialised modules provide the interface declared by their class, but can implement
it in any desirable fashion. For example, aConjugateGradientmodule implements theSolver
interface of evaluatingz � G��x by using the conjugate gradient iterative method.

The above architectural requirements are elegantly and efficiently captured by using an object-
oriented approach to software design [16, 91, 69, 12]. Consequently, we have implemented our nu-
merical software framework as an object-oriented library written in the C++ language [102]. This de-
sign enabled us to naturally model the concepts of basic and specialised modules as class hierarchies.
The software framework implements a few base classesGrid,Function,Space,Operator, and
Solver. These base classes declare the interface to their operations. The interface is next imple-
mented by various specialisations of these base classes. An overview of the implemented specialisa-
tions follows:

124 CHAPTER 6. NUMERICAL SIMULATION APPLICATIONS

� Grid: 2D and 3D grid generators for regular and unstructured grids, and grid file readers;

� Function: Several specific functionsvij are generated, such as sines, cosines, or piecewise
(non-)conforming polynomial functions in several dimensions;

� Space: There is a singleSpace class, but a multitude of basis functions are implemented, as
described further in Section 6.8;

� Operator: Operators for several ODEs, PDEs, and non-linear systems have been imple-
mented, such as Laplace, Stokes, Navier-Stokes, and elasticity problems. Next, several opera-
tors for matrix manipulation and image processing have been implemented. For example, matrix
sparsity patterns can be easily visualised, as in other applications like Matlab.

� Solver: A range of iterative solvers including bi-conjugate gradient, GMRES, GCGLS,
QMR, etc. are implemented. Several preconditioners such as ILU are also provided asSolver
specialisations, following the common treatment of solver and preconditioner modules previ-
ously described.

Besides the natural modelling of the mathematics in terms of class hierarchies, the object-oriented de-
sign allows users to easily extend the current framework with new software modules. Implementing a
new solver, preconditioner, or operator usually involves writing only a few tens of lines of C++ to ex-
tend an existing one. The same approach also facilitates the reuse of existing numerical libraries such
as LAPACK [4] or Templates [11] by integrating them in the current object-oriented framework.

6.7 Transient Navier-Stokes equations

This section examines the mathematical concepts at the foundations of a NUMLAB solver for transient
Navier-Stokes equations. These concepts (1) – (4) in section 6.4, have been examined in sections 6.4.1
– 6.4.3 for small model problems, suited for presentation purposes. Here, these concepts are all worked
out in relation to a single problem, the solution of transient Navier-Stokes equations. Section 6.8 dis-
cusses the design of a NUMLAB application with the NUMLAB operators discussed here.

The transient Navier-Stokes equations have been chosen since related finite element operators re-
quire a finite dimensional cross product vector spaceV of basis functions, and because the transient
formulation leads to differential algebraic equations, and requires solution techniques related to ODEs.
The DAE class of equations is non-trivial to solve, and common in industrial problems. Our claim is
– see section 6.8 for details – that NUMLAB provides a sophisticated framework for the integration
of complex Navier-Stokes solvers, not that NUMLAB provides solvers better than those found in the
literature.

First we examine the static problem. For a particular discretisation, we show that there exists a
straightforward and lucid relation between the mathematical formulas and the NUMLAB software im-
plementation: The NUMLAB implementation ofF accomplishes the finite element required (numeri-
cal) integration without spaceV exposing its basis functions and element geometries toF.

The static case is followed with the mathematical formulation of the transient problem. We demon-
strate that (components of) the static problem operatorF can be used in combination with all suitable
time-integratorsS – suited for indefinite/stiff problems.

Due to the high degree of orthogonality betweenF, V and time-stepper methods, NUMLAB can
and does offer a range of finite element types – higher order, as well as non-conforming Crouzeix-
Raviart (see [24]) – on rather arbitrary support geometries: simplices, parallelipipeda, prisms, etc. It

6.7. TRANSIENT NAVIER-STOKES EQUATIONS 125

facilitates and supports user-defined reference bases and geometries, as well as user-supplied geome-
tries and grid generators. Existing applications do not have to be adapted for new bases and geometries,
as long as all required mathematical conditions hold.

6.7.1 The Navier-Stokes equations

The incompressible Navier-Stokes equations describe an incompressible fluid subject to forcesf . For
the sake of brevity, we assume the case of a finite 2D domain,� 	 R�. We denote the fluid velocities
by u � �u�� u�, and the pressure byp. To start with, we consider the stationary case. The classical
problem is to find sufficiently smooth�u� p� such that in�:

�
���u� uru�rp � f �

r�u � ��
(6.34)

For the sake of exposition, all boundary conditions are presumed to be of Dirichlet type (parabolic
in/outflow profiles and no-slip along walls).

Problem (6.34) is discretised by a finite element method. To this end, one first covers� by ele-
ments with the use of a grid generator moduleGrid (the construction and refinement of a suitable
computational grid is a problem of its own (see for instance [32]). Then a triplet of finite dimensional
(Hilbert) finite element spacesV 	� V��V��V	 is chosen such thatV��V� andV	 satisfy the L.B.B.
condition [5]. The NUMLAB implementation creates oneSpace moduleV, provided with three ref-
erenceBasis modules. For the sake of presentation, quadratic conforming finite element bases are
used for the velocities (V� andV�), and a piecewise linear conforming finite element basis is used for
the pressure (V).

Next, the equations (6.34) are multiplied by test functions�v� q� � V, after which the first one is
partially integrated. This procedure results in a variational problem: Findx � �u�� u�� p � �u� p� �
V such that for all�v� q� � V

����
��	

�����ru 	 rv� prv � �uru� f�v � ������r�u q � ��
(6.35)

Various other finite element discretisations of (6.34) are also possible. In order to facilitate the for-
mulation of a NUMLAB application for our problem, system (6.35) is now reformulated into operator
form: F�X� � �.

The operatorF related to the discrete variational formulation (6.35) has three componentsF 	�
�F��F��F	, each related to one equation. For the definition of these components, first definex �
�x�� x�� x	 	� �u�� u�� p � V, and setz � �z�� z�� z	 � V (assume we use a Galerkin procedure).
Recall that each vector functionx is uniquely related to coefficientsxij, at their turn related to functions

126 CHAPTER 6. NUMERICAL SIMULATION APPLICATIONS

vij from � toR. The discrete Navier-Stokes operator, discretised in space, now is:

Z�j � F�X� � �F��X�� X�� X	�j

�

�����rx�rv�j�x	�xv�j��x��xx��x��yx��f��v�j

Z�j � F�X� � �F��X�� X�� X	�j

�

�����rx�rv�j�x	�yv�j��x��xx��x��yx��f��v�j

Z	j � F�X� � �F	�X�� X�� X	�j

�

������xx���yx��v	j �

(6.36)

Here,x� is the function related to coefficientsX�, and so forth. It is evident – as stated earlier – that
F uses the coefficients ofx as well as the bases functions in order to compute the coefficients of the
resultz.

The integrals in (6.36) are computed support-wise, with the use numerical integration, involving
integration pointsxk. As can be deduced from (6.36), required are the valuesvi�r�xk� andrvi�r�xk� as
well as the valuesxi�xk� andrxi�xk�. In the NUMLAB code below, these values are returned in arrays
v(i)(k)(r),dv(i)(k)(r),x(i)(k), respectivelydx(i)(k). The selectiondv(i)(k)(r)(dY)
returns the individual gradient component�yvi�r�xk�. DefineU1 = 0, U2 = 1, P = 2. The
NUMLAB evaluation ofz = F(x) andz = DF(x)*y for supporte (typeset to fit this layout) is:

Operator z = F(x):

z(U1)(j(U1)(r)) += qw(k)* (eps*dx(U1)(k)*dv(U1)(k)(r) -
x(P)(k)*dv(U1)(k)(r)(dX) + (x(U1)(k)*dx(U1)(k)(dX) +
x(U2)(k)*dx(U1)(k)(dY) - f1(qp(k)) * v(U1)(k)(r)));

z(U2)(j(U2)(r)) += qw(k)* (eps*dx(U2)(k)*dv(U2)(k)(r) -
x(P)(k)*dv(U2)(k)(r)(dY) + (x(U1)(k)*dx(U2)(k)(dX) +
x(U2)(k)*dx(U2)(k)(dY) - f2(qp(k)) * v(U2)(k)(r)));

z(P)(j(P)(r)) += qw(k)* ((dx(U1)(k)(dX) + dx(U2)(k)(dY))*
v(P)(k)(r));

Jacobian z = DF(x)*y:

DF(U1)(U1)(j(U1)(r))(j(U1)(s)) += qw(k)* (dv(U1)(k)(s)*
dv(U1)(k)(r) + v(U1)(k)(s)*dx(U1)(k)(dX) + x(U1)(k)*
dv(U1)(k)(s)(dX));

...

DF(P)(U2)(j(P)(r))(j(U2)(s)) += qw(k)*
(dv(U2)(k)(s)(dY)*v(P)(k)(r));

z = DF * y;

Both evaluation operations have an almost identical loop structure:

V = x->getSpace();
for (Integer e = 0; e < V->NElements(); e++)

6.7. TRANSIENT NAVIER-STOKES EQUATIONS 127

V->fetch(e, j, v, dv, x, dx,);
for (Integer i = 0; i < j.size(); i++)
for (Integer r = 0; r < j(i).size(); r++)
for (Integer k = 0; k < x(i).size(); k++)

The Jacobian has an extra inner loop over trial functionss. With regard to this implementation, several
observations come to mind:

� First,F does not have spacesV andW as input (i.e., as auxiliary variables). The spaces are
obtained from the input/output variables. This technique simplifies computational networks.

� Secondly, becauseF performs numerical integration, it solely requiresthe valueof (partial
derivatives of) the basis functions at the quadrature points. The basis functions themselves are
not required, soF operates orthogonal toV andW.

� Finally, the NUMLAB operator models the discrete Navier-Stokes equations in (6.35) in a con-
venient fashion. The software implementation is one-to-one with the mathematical syntax, and
can in fact be automated.

Finally, recall that the derivative operator acts as the identity operator on Dirichlet point related vari-
ables, which requiresfetch to deliver the related information. This information is also required for
non-homogeneous Neumann boundary conditions and Robin conditions.

6.7.2 The time discretisation

A transient version of the Navier-Stokes equations in the previous section can be formulated as so-
called differential algebraical equations (DAEs):

�
�
�t
u � ��u� uru�rp� f �

r�u � ��
�t � �� (6.37)

with initial conditionu��� c� � u��c� on� and boundary conditionsu�t� c� � u��c� for all t � ���
�
andc � ��. We now construct a non-linear NUMLAB time-step operatorF for a MOL discretisation
of (6.37), which is implicit with respect to the constraintr�u � �.

For the sake of presentation, for a discretisation of the first vectorial equation in (6.37), we will use
a rather basic time-step method: the�-method – recall the constrained will be treated in an implicit
way below. In practice, for stiff problems – high Reynolds number – one would rather use a backward
difference method. For� � ��� �, the�-method for a general non-linear system of ODEs

d

dt
u�t� � E�t�u�t��� (6.38)

leads to the recursion:

u� � u����
uk�� � uk � h�E�tk�uk� � h�� � ��E�tk���uk���� (6.39)

This all fits into the NUMLAB Operatorstyle, if we define the time-step operatorT 	� Ttk�u�k��tk��

as follows:

T�u� 	� u� u�k� � h�E�tk�u
�k��� h�� � ��E�tk���u�� (6.40)

128 CHAPTER 6. NUMERICAL SIMULATION APPLICATIONS

In this way, the Jacobian ofT is positive definite for smallh, if the Jacobian ofE is, and the approxi-
mationu�k��� of u�tk��� is a root of

T�u� � �� (6.41)

For the solution of (6.37), we first discretise (6.37), in a manner similar to how (6.34) was discretised
to obtain (6.36), with a discrete solution as formulated in (6.18). This leads to a discretised version
of (6.37): ��

	
M d

dt
X��t� � �F��X�t��

M d
dt
X��t� � �F��X�t��

� � F	�X�t���

(6.42)

subjected to initial conditions on the two velocity componentsX���� � g�,X���� � g�. The operators
Fi are those defined in (6.36), andM is the mass matrix. DefineY�t� � �X��t��X��t�, i.e.,X�t� �
�Y�t��X	�t�, and operatorE�X� 	� ��F��X���F��X�, then (6.42) reduces to

�
M d

dt
Y � E�X�
� � F	�X��

(6.43)

with related initial and boundary conditions. Thus, when we apply the�-method (6.40), every approx-
imate solutionX�k��� � �Y�k���� X

�k���
	 must both solveG�X� 	� �T�X��F	�X� � ��� �, where

T�X� 	� Y �Y�k� � h�E�tk�X
�k��� h��� ��E�tk���X� � (6.44)

Summarising (6.37) – (6.44), we have shown that each approximate solutionX�k� ofX�tk� must solve
a non-linear system of equationsG�X� � �. The related non-linear operatorG can be supplied to a
NUMLAB non-linear solver.

Finally, some remarks and observations. First, the value which operatorG attains atX, is com-
posed of the values whichF attains at related points. Therefore, the JacobianDG�X� can be formu-
lated in terms ofDF at related points. The NUMLAB implementation of time-steps exploits this: The
JacobianDG�X� is a sequence of call-backs to the JacobiansDF. Secondly, a NUMLAB discretised
system of partial differential equations leads to an operatorF�X� which can betheoperator provided
to an ODE step method. In this case, the PDE and ODE discretisations are used strictly orthogonal in
the software implementation.

The saddle point problems related to (6.42) are hard to solve ([90], [32]).

6.8 Application design and use

The previous sections have presented the structure of the NUMLAB computational framework. It has
been shown how new algorithms and numerical models can easily be embedded in the NUMLAB frame-
work, due to its design based on few generic mathematical concepts. This section treats the numerical
application construction and use with the NUMLAB system.

As stated in section 6.3, a numerical framework should provide an easy way to construct numeri-
cal experiments by assembling predefined components such as grids, problem definitions, solvers, and
preconditioners. Next, one should be able to interactively change all parameters of the constructed ap-
plication and monitor the produced results in a numerical or visual form. Shortly, we need to address
the three roles of component development, application design, and interactive use for the scientific
computing domain.

6.8. APPLICATION DESIGN AND USE 129

5

1

2

3

4

a) b)

Figure 6.4: a) Navier-Stokes simulation built with NUMLAB components. b) User interface for the
grid generator module

We have approached the above by integrating the NUMLAB component library in theVISSION sys-
tem. As NUMLAB is written as a C++ component library, its integration intoVISSION was easy. More-
over, the structure of NUMLAB as a set of components that communicate by data streams in order to
perform the desired computation matches wellVISSION’s dataflow application model. As no modifi-
cation of the NUMLAB code was necessary, its integration inVISSION took only a few hours of work.

Once all the NUMLAB components were integrated intoVISSION, constructing numerical applica-
tions with interactive computational steering and visualisation was easily achieved by usingVISSION’s
visual network construction and end user interaction facilities described in chapter 4. We illustrate this
next with the Navier-Stokes problem discussed in the previous section.

6.8.1 The Navier-Stokes simulation

As outlined previously, numerical applications built with the NUMLAB components are actuallyVIS-
SION dataflow networks. Figure 6.4 a) shows such a network built for the Navier-Stokes problem. The
modules in the Navier-Stokes computational network in Fig. 6.4 are arranged in five groups. The func-
tionality of these groups is explained in the following.

6.8.2 The computational domain

The first group contains modules that define the geometry of the computational domain. These modules
accomplish three functions:

130 CHAPTER 6. NUMERICAL SIMULATION APPLICATIONS

1. definition of the computational domain’s contour.

2. definition of the reference geometric element.

3. mesh generation

In our example, the computational domain is a rectangular region whose boundary is defined by the
GeometryContourUnitSquareStandard module. This module allows the specification of
the rectangle’s sizes, as well as a distribution of mesh points on the contour. Next, theGeometry-
GridUniformTrianglemodule produces a meshing of the rectangle into triangles. The reference
triangle geometry is given by theGeometryReferenceTriangle. The mesh produced by the
GeometryGridUniformTriangle module conforms both to the reference element supplied
as input and to the boundary points output by theGeometryContourUnitSquareStandard
module. Different combinations of contour definitions, mesh generators, and reference elements are
easily achieved by using different modules. In this way, 2D and 3D regular and unstructured meshes
of various element types such as triangles, quadrilaterals, hexahedra, or tetrahedra can be produced.
The produced mesh can be directly visualised or further used to define a computational problem.

6.8.3 Function spaces

The second group contains modules that define the function spaceV over the computational domain.
The modules in this group perform two functions:

1. definition of a set of basis functionsvi that spanV .

2. definition ofV from the basis functions and the discretised computational domain.

The first task is done by theSpaceReferenceTriangleLinearandSpaceReferenceTri-
angleQuadraticmodules, which define linear, respectively quadratic basis functions on the geo-
metric triangles. The functions are next input into theSpace module, which has already been dis-
cussed in the previous sections. The support of the basis functions is defined by the computational
domain’s discretisation which is also input intoSpace. In our case,Space uses the quadratic ba-
sis function module twice and the linear basis function module once, as the 2D Navier-Stokes problem
has two velocity components to be approximated quadratically and one linearly approximated pressure
component.

An important advantage of the design of NUMLAB is the orthogonal combination of basis functions
and geometric grids. Several other (e.g. higher order) basis function modules are provided as well,
defined on different geometric elements. By combining them as inputs to theSpacemodule, one can
easily define a large range of approximation spaces for various computational problems. In the case
of a diffusion PDE solved on a grid of quadrilaterals, for example, one would use a singleSpace-
ReferenceQuadLinear basis function input to theSpace module.

6.8.4 Operators and solvers

The third group contains modules that define the functionF for which the equationF�x� � � is to
be solved, as well as the solution method to be used. This group contains thus specialisations of the
Operator and
tt Solver modules described in the previous sections.

6.8. APPLICATION DESIGN AND USE 131

In our example, the discrete formulation of (6.36) discussed in the previous section is implemented
by theOperatorImplementationFiniteElementNavierStokesmodule. The static Na-
vier-Stokes problem is solved by a Newton solver implemented by theOperatorIteratorNon-
LinearNewtonDampedmodule. The linear system output by the Newton module is then solved by
a conjugate gradient solver implemented by theOperatorIteratorLinearCGSmodule. The so-
lution is accelerated by using an incomplete LU preconditionerOperatorIteratorLinearILU
which is passed as input to the conjugate gradient solver.

Other problems can be readily modelled by choosing other operator implementations. Similarly, to
use another solution or preconditioning method, a chain ofSolver specialisations can be constructed.
As solvers have an input of the sameSolver type, complex solution algorithms can be built on the
fly.

6.8.5 Functions

The fourth group contains specialisations of theFunctionmodule. These model both the solution of
a numerical problem as well as its initial conditions or other involved quantities such as material prop-
erties. In our example, theFunctionVectormodule holds both the velocity and pressure solution
of the Navier-Stokes equation. The solution is updated at every iteration, as this module is connected
to the solver module’s output. As explained in the previous sections, a function is associated with a
space. This is seen in theFunction’s input connection to theSpace module.

The solution of the problem is initialised by connecting theFunctionSymbolicBubblemod-
ule to theFunctionVector’s input. When the user changes the initial solution value, by changing
an input of theFunctionSymbolicBubble signal or by replacing it with another function, the
network restarts the computations from this new value.

6.8.6 Output monitoring

The last group of modules provides visualisation facilities to the computational network. The main
module in here is theFunctionVTKViewermeta-group which takes as input the current solution
of the Navier-Stokes equation and the grid upon which it is defined. In our example, theFunction-
VTKViewermodule inputs the velocity and pressure solution components into various visualisation
algorithms, such as stream lines and hedgehogs for the vectorial, respectively colour plots and isolines
for the scalar component. The visualisation facilities are provided inVISSION by a separate component
library described in detail in chapter 7.

Several other visualisation methods can be easily attached to the Navier-Stokes simulation, by
editing the contents of theFunctionVTKViewermeta-group. Keeping the visualisation back-end
pipeline inside a single meta-group allows a natural separation of the computational network from the
post-processing operations. This also helps to reduce the overall visual complexity of the network.

6.8.7 Navier-Stokes simulation steering and monitoring

Once the Navier-Stokes computational network is constructed, one can start an interactive simulation
by changing the parameters of the various modules involved, such as mesh refinement, solver tolerance,
or initial solution value. All the numerical parameters, as well as the parameters of the visualisation
back-end are accessible via the module interactors automatically created byVISSION (Fig. 6.4 b).

Moreover, the evolution of the intermediate solutions produced by the Newton solver can be inter-
actively visualised. This is achieved by constructing a loop which connects the output of theOper-

132 CHAPTER 6. NUMERICAL SIMULATION APPLICATIONS

atorIteratorNonLinearNewtonDamped module to its input. The module will then change
theFunctionVector, and thus the visualisation pipeline downstream of it, at every iteration. This
allows one to interactively monitor the improvement of the solution at a given time step, and eventually
change other parameters to experiment new solvers or preconditioners.

Figure 6.5 shows a snapshot from an interactive Navier-Stokes simulation. The simulation domain
(Fig. 6.5 upper left) consists of a 2D rectangular vessel with an inflow and an outflow. The inflow and
outflow have both parabolic essential boundary conditions on the fluid velocity. The sharp obstacle
placed in the middle of the container can be interactively manipulated by the end user by dragging its
tip with the mouse anywhere inside the vessel. Once the obstacle’s shape is changed, the NUMLAB net-
work re-meshes the new domain, recomputes the stationary solution for the Navier-Stokes simulation
defined on this new domain, and displays the pressure and velocity solutions. Various other parameters,
such as fluid viscosity, mesh refinement, and solver accuracy, can also be interactively controlled. The
computational steering of the above problem proceeds at near-interactive rates. Consequently, such
NUMLAB setups can be used for quick, interactive testing of the robustness and accuracy of various
solvers, preconditioners, and mesh generators. For example, one can test the speed and robustness of
an iterative solver for different combinations of obstacle size and shape, mesh coarseness, and fluid
viscosity for the above problem.

obstacle tip

inflow outflow

Figure 6.5: Interactive Navier-Stokes simulation: domain definition, mesh, pressure, and velocity so-
lutions

NUMLAB can also be used for solving large computational problems. In the following example,
glass pressing in the industry is considered. The process of moulding a hot glass blob pressed by a
parison is simulated. The glass is modelled as a viscous fluid, subjected to the Navier-Stokes equations.
The pressing simulation is a time-dependent process, where the size and shape of the computational
domain is changed at every step, after which the stationary Navier-Stokes equations are solved on the
new domain. The flow equations can be solved on a two-dimensional cross-section in the glass, since
the real 3D domain is axisymmetric.

The simulation is analogous in many respects to the one previously presented. However, a mesh

6.8. APPLICATION DESIGN AND USE 133

in the glass pressing simulation involves tens of thousands of finite elements, whereas the previous
example used only a few hundreds. Consequently, the latter simulation can not be steered interac-
tively. However, all computational parameters of the involved NUMLAB network can be interactively
controlled at the beginning of the process, or between computation steps. Figure 6.6 shows several
results of the glass pressing simulation. The first row depicts several snapshots of the 3D geometry of
the moulded glass, reconstructed and realistically rendered in NUMLAB from the 2D computational
domain. The second row in Fig. 6.6 shows fluid pressure snapshots taken during the 2D numerical
simulation. The output of the NUMLAB visualisation pipeline can be connected to an MPEG movie
creation module. In this way, one can produce movies of the time-dependent simulation which can be
visualised outside theVISSION environment as well.

The above has presented two computational applications built with the NUMLAB library in the
VISSION system. However different in terms of interactivity, computational complexity, and visuali-
sation needs, these applications illustrate well the smooth integration of numerics, user interaction, and
on-line visualisation that is achieved by embedding the NUMLAB library in theVISSION environment.

Figure 6.6: 3D visualisation of glass pressing (top row). Pressure magnitude in 2D cross-section (bot-
tom row)

134 CHAPTER 6. NUMERICAL SIMULATION APPLICATIONS

6.9 Conclusion

The numerical laboratory NUMLAB was designed to address two categories of limitations of current
computational environments.

First, NUMLAB addresses the functional limitations of many computational systems by factoring
out of a few fundamental mathematical notions: Vector functionsx, spacesV, operatorsF on such
spaces, and implementation of the evaluation ofz � F�x�. Consequently, a large class of iterative so-
lution methods, preconditioners, time steppers etc. are instances of approximate evaluationsx�k��� �
F�x�k��. This makes using and extending NUMLAB easy and close to the modelled mathematics.

Secondly, NUMLAB addresses the structural limitations of many computational environments that
make them hard to extend, customise, and use for a large class of applications. The embedding of
the C++ NUMLAB library in the generic dataflow environmentVISSION provides interactive applica-
tion construction, steering, and visualisation. These features are added to the numerical components
without writing a single line of graphics user interface or dataflow synchronisation code. InVISSION,
NUMLAB components can be freely intermixed with other visualisation, data processing, and data in-
terchange components. There is a clear separation between the numerical, visualisation, user interac-
tion and dataflow code, provided by the NUMLAB, VTK, andVISSION subsystems respectively. This
makes their extension, maintenance, and understanding much easier than in systems where the above
operations are amalgamated in the same (source) code. The NUMLAB computational code and VTK
visualisation code can be used also outside of theVISSION environment, if the interactive application
construction and steering facilities offered byVISSION are not required.

Chapter 7

Scientific Visualisation Applications

In the previous chapter we have presented the application ofVISSION to the construction and use of
computational applications. Visualisation of the computed data is an important component of these
applications. In the previous chapter, we focused on the numerical components that enter the structure
of these applications. In this chapter, we describe the construction and use of visualisation applica-
tions in VISSION . Section 7.1 states the requirements we formulate for the visualisation capabilities
of VISSION. Section 7.2 presents the way these requirements are fulfilled by the integration of the VTK
library in VISSION. Several limitations of VTK are removed by the integration inVISSION of the Open
Inventor library, as discussed in Section 7.3. Finally, section 7.4 presents the use ofVISSION in realistic
rendering applications.

7.1 Introduction

A large amount of scientific visualisation software available exists, whether in the form of dedicated
turnkey systems [79, 34, 6], or general purpose environments such as AVS [113], IRIS Explorer [44], or
Oorange [41]. AsVISSION is specifically designed for supporting generic software components from
any application domain, the challenge is to provide it with general purpose visualisation capabilities
similar to the aforementioned environments. We would thus like to offer to the visualisation researcher
a set of visualisation primitives of a similar richness and domain coverage as, for example, the AVS
system does.

For the above task, we need thus a visualisation component library that supports:

� severaldataset representations, such as structured, unstructured, curvilinear, rectilinear, and uni-
form grids, with several types of values defined per node or per cell (scalar, vector, tensor, colour,
etc). Support for image datasets should be provided as well. Besides these discrete datasets, the
possibility of defining continuous datasets (e.g. implicit functions) should also be taken into ac-
count.

� severaldataset processing tools, such as dataset readers and writers for various data formats, fil-
ters producing streamlines, streamribbons, isosurfaces, warp planes, slices, dataset simplifica-
tions, feature extraction, and so on. Imaging operations should also be supported, such as image
filtering, Fourier transforms, image segmentation, colour processing, etc.

� severalvisualisation primitives, such as 2D and 3D rendering or objects with various shading
models, mapping scalars to colours via various colourmaps, direct manipulation of the viewed

135

136 CHAPTER 7. SCIENTIFIC VISUALISATION APPLICATIONS

objects, interactive data probing and object picking, hard copy options, animation creation, and
so on.

A second requirement is that such a visualisation library should be open for extension or customisation,
as researchers often need to extend, adapt, optimise, or experiment otherwise with various visualisation
algorithms and data structures.

Writing such a general purpose library is clearly a task out of the scope of a single person. More-
over, such libraries exist, offering various degrees of application domain specificity and numbers of
components. The simplest scenario would be thus to integrate such a library (or libraries) intoVIS-
SION. This should be an easy task, asVISSION’s open architecture is especially designed for flexible,
non intrusive code integration.

7.2 The Visualization Toolkit

In order to provideVISSION with the desired visualisation capabilities, we have integrated the Visual-
ization Toolkit (shortly VTK) [94] into it. VTK is one of the most powerful freely available scientific
visualisation libraries. VTK implements over 400 components for a wide range of applications, such
as scalar, vector, and tensor visualisation, imaging, volume rendering, charting, and more. VTK has
a classical white-box framework design, where components are implemented as C++ classes that spe-
cialise a few basic concepts such as datasets, filters, mappers, actors, viewers, and data readers and
writers, as described in Chapter 2. Besides implementing the dataset and process object functional-
ity, VTK also implements a sophisticated demand-driven dataflow execution model that supports data
streamlining, caching, and multithreading transparently. Overall, the architecture of VTK follows the
lines of the UML methodology (see Section 2.2), which confers it a sound, relatively easy to understand
structure. VTK components can be used directly from compiled C++ programs, following the appli-
cation library model described in Section 2.2.1. Most of VTK functionality for building and executing
visualisation pipelines is provided also in an interpreted fashion by tcl [74] and Java [23] wrappers.

Figure 7.1: Visualisation network for the blunt fin dataset

7.2. THE VISUALIZATION TOOLKIT 137

A couple of scientific visualisation applications built with VTK inVISSION are presented next.

7.2.1 Blunt Fin Visualisation

A well known dataset for visualisation benchmarks is the blunt fin dataset. The dataset is produced
by simulating the 3D air flow close to a blunt fin. For every cell in the domain discretisation, several
quantities such as the air velocity, pressure, and density are computed. The data set is delivered with
the VTK distribution.

first rake

second
rake

a) b)

c) d)

Figure 7.2: Blunt fin visualisation: a) streamlines; b) rakes; c) slice extraction network; d) slice

Figure 7.1 shows aVISSION network built for the blunt fin visualisation displayed in Fig. 7.2 a. The
data set is first read from the VTK file delivered in PLOT3D format [114]. Next, two sets of stream
tubes are traced from two linear rakes. A rake is a set of points from which stream lines are traced in a
vector field. We use two sets of points uniformly distributed along two line segments by theVTKLi-
neSourcemodules (Fig. 7.2 b). The first rake starts 15 streamlines equally spaced along the dataset’s
width (Fig. 7.2 a). These streamlines give a good overall insight in the flow. The second rake starts 8

138 CHAPTER 7. SCIENTIFIC VISUALISATION APPLICATIONS

streamlines concentrated close to the dataset’s boundary depicted in gray. These streamlines show the
appearance of a boundary layer flow with a different aspect than the quasi uniform flow within the
domain’s core. The streamlines are next transformed into tubes whose radius is controlled by the air
pressure along the line. This conveys insight in two quantities, i.e. the flow velocity and pressure, in
the same image.

In the second example (Fig. 7.2 c,d), a 2D slice is extracted from the middle of the dataset. The min-
imum and maximum of the pressure field on the slice is determined by theVTKDataSetInspector
module and used to scale the slice’s colours. The slice is displayed also as wireframe, shifted by the
VTKTransformFilter so it is rendered in front of the coloured slice. By using a slider to control
the slice position, end users can interactively slice the dataset and get an impression of the pressure
variation in the 3D domain.

In the third example (Fig. 7.3), the blunt fin dataset is visualised by using arrow-shaped glyphs.
First, successive points are computed by theVTKStreamPointsmodule, along three streamlines.

a) b)

Figure 7.3: Glyphs along streamlines in the blunt fin dataset

Next, the moduleVTKGlyph3D places 3D arrow geometries, defined byVTKArrowSource, at the
computed points. The arrow glyphs are oriented and scaled according to the flow field direction, re-
spectively velocity magnitude, and coloured to reflect the pressure scalars. The end user can control the
number of initiated stream point sets and the density of the points along a stream line in the modules’
GUIs. In this way, the glyph density can be easily adjusted to obtain a visually satisfying distribution.
Figure 7.3 b illustrates the difference between the flow close to the vertical boundary, respectively close
to the fin profile.

7.2.2 Tensor Field Visualisation

In this visualisation example, we consider a tensor field generated by the application of a point load on
a semi-infinite 3D domain. The stress tensor is analytically computed and then sampled on a regular
3D grid by theVTKPointLoadmodule.

Tensor datasets can be visualised in a variety of ways. One possibility is to use the so-calledhyper-
streamlines (Fig. 7.4 a). The hyperstreamline’s direction is computed by integrating through a tensor

7.2. THE VISUALIZATION TOOLKIT 139

a) b)

c)

Figure 7.4: Tensor visualisation: a) hyperstreamlines; b) isosurfaces; c) network

field along the major eigenvector direction, i.e. the eigenvector that corresponds to the largest eigen-
value. The hyperstreamline cross-section is defined by the directions and sizes of the two other eigen-
vectors. Hyperstreamlines are thus tube-like structures with elliptic cross-sections. Because hyper-
streamlines are often created near regions that contain singularities, their cross-sections can vary very
rapidly over a small distance. To achieve a visually continuous rendering of the hyperstreamlines in
such situations, we scale the tubes’ cross-sections logarithmically.

Figure 7.4 a) visualises the point load tensor field produced with four hyperstreamlines. The po-
sition of the load is shown by a cone glyph. The four hyperstreamlines, computed by the four VTK
modules with the same name, are placed such that they give a good visual coverage of the considered
cubic domain. The hyperstreamlines are coloured to indicate the magnitude of the medium and minor
eigenvectors. Next, a 2D horizontal slice is performed in the tensor dataset. The slice is coloured by
the magnitude of the major eigenvector and displays isolines of the same quantity.

Next, the point load dataset is visualised by displaying the isosurfaces of the effective stress scalar

140 CHAPTER 7. SCIENTIFIC VISUALISATION APPLICATIONS

Figure 7.5: Network for point load isosurface visualisation

field (Fig. 7.4 b), with the network shown in Fig. 7.5. The moduleVTKContourFilter extracts
several isosurfaces, coloured by their respective effective stress values. Since the isosurfaces are nested
into each other, aVTKPropertymodule is used to render them half transparently.

A third way to visualise the point load tensor field is presented in (Fig. 7.6). Here, an elliptic
glyph is placed in every dataset point and oriented along a local reference frame created by the major,
medium, and minor eigenvectors of the tensor field at that point. The glyph is scaled along the axes
of the reference frame according to the magnitudes of the eigenvectors, and coloured by the effective
stress scalar value at the respective point. This type of visualisation is also frequently used for feature
extraction [115].

7.2.3 Medical Visualisation

In this example, we address the visualisation of a medical computer tomography (CT) dataset of a hu-
man head. The featured dataset is the one included in the VTK distribution. The dataset is read into the
visualisation network (Fig. 7.7 c) by theVTKVolume16Readermodule from a volume file contain-
ing a set of consecutive data slices. Next, theVTKMarchingCubesmodule extracts an isosurface
from the read dataset. To enhance the rendering speed, the isosurface’s 3D polygonal representation is
next converted into triangle strips by theVTKStrippermodule. This is needed in order to achieve
near interactive visualisation of large isosurfaces on low-end graphics workstations. By using a slider
for VTKMarchingCubes’s isosurface level input port, one can nearly interactively navigate through
the skin (Fig. 7.7 a), muscular tissue, fat, and bone (Fig. 7.7 b) features of the dataset.

Next, we display a 2D sagittal slice through the dataset. The slice is extracted from the 3D vol-
ume by theVTKExtractVOI module. Figure 7.7 a) shows the slice’s position by rendering it half
transparently and by extracting its outline (VTKFeatureEdges) and rendering it as a tubular bevel
(VTKTubeFilter). The same slice is extracted in Fig. 7.7 b and this time displayed by mapping the
slice scalar data to colours via a contrast-enhancing colourmap. In this way, various structures related

7.2. THE VISUALIZATION TOOLKIT 141

a) b)

Figure 7.6: Tensor field visualisation with oriented glyphs

to specific scalar values become visible. Similarly to the isosurface case, one can interactively trans-
late the slice through the dataset by means of a slider connected to one ofVTKExtractVOI’s input
ports.

7.2.4 VTK Limitations

However powerful, VTK is not intended as a full solution to building custom visualisations. This limi-
tation is partly due to VTK’s intent of being a programmer’s toolkit rather than an application develop-
ment environment, and partly to some architectural design decisions adopted in its construction. These
limitations and the methods we used to overcome them are discussed below.

1. VTK provides noend user interface (e.g. GUIs) for its components. Application developers
thus have to build such interfaces manually, using one of the GUI toolkits available on their plat-
forms, such as Motif [33] or Windows’ native GUI toolkit. One reason for the above is VTK’s
platform and interface policy independence. Another reason is that VTK is built upon a purely
compiled C++ model, which offers no reflection facilities. Automatic building of GUIs from the
components’ interfaces requires however such facilities, as described in chapters 5 and 3.

2. Code development and integration in VTK is made difficult by a couple of factors. First, VTK
components use arestricted typing for their input and output ports. Only basic types such as int,
float, character string, and pointers to VTK datasets can be passed between components. Next
comes VTK’s restriction to single inheritance only. These limitations stem from VTK’s white-
box model (see Section 2.2.3) and its choice for a multiple language (compiled C++, interpreted
tcl) design.

3. novisual dataflow network editor is provided. VTK applications are built by writing code, ei-
ther in C++ compiled form, or in one of the supported interpreted scripting languages. VTK
components are usually small, fine grained classes, so most VTK application networks tend to
be very large, e.g. over 20 nodes. Constructing such networks by writing plain text is clearly
more difficult than building them visually. Moreover, modifying a pipeline implies stopping the
actual application, editing, and possibly recompiling the application script.

142 CHAPTER 7. SCIENTIFIC VISUALISATION APPLICATIONS

a) b)

c)

Figure 7.7: Medical visualisation

4. VTK offers only the simplest primitives for objectdirect manipulation, picking, and location. In
contrast, most turnkey visualisation systems and even some application libraries such as Open
Inventor [116] provide several simple to use, high end tools. Among these we note 3D viewers
with integrated user interface controls, selectable viewing metaphors (fly, scene in hand, walk-
through), and visual manipulators with built-in policies for object rotation, scaling, or other user
defined transformations. Such tools are indispensable for most data exploration tasks, such as
streamline seed placement, data slicing and probing, or computational steering.

Despite the above limitations, VTK provides an excellent basis for building a large palette of visualisa-
tion applications. The first three VTK limitations discussed above are naturally overcome by its inte-
gration inVISSION, as follows. Providing GUIs, visual component representation, and visual dataflow
network editing are all operations thatVISSION’s design supplies by default with absolutely no effort
from the part of the component developer, as shown in chapter 4. The difficulties posed to code de-
velopment by VTK’s restrained coding policies (no multiple inheritance and simple data typing) are
overcome as well, sinceVISSION allows combining VTK components with other independently devel-

7.3. OPEN INVENTOR 143

oped C++ components.
The next sections present how VTK’s limitations concerning the direct manipulation and viewing

tasks were addressed by the inclusion inVISSION of the Open Inventor component library.

7.3 Open Inventor

Open Inventor is a C++ component library for the creation of interactive 3D graphics applications.
Originally Inventor was implemented atop of the IRIS 3D Graphics Library implemented on the Sili-
con Graphics platform. The Open Inventor follow-up is based on the OpenGL graphics library and is
currently available on a range of UNIX-X Windows platforms. The main components of the Inventor
library are presented below (see also Fig. 7.8).

manipulatorsscene objectsnode kitscomponents

 event
bindings

 OpenGL
 bindings

 basic
classes

OpenGL Xt toolkit

Inventor
library

scene graph

Figure 7.8: Open Inventor architecture

1. Scene graph: This is Inventor’s representation of the modelled 3D universe. A scene graph
is composed of nodes. According to their class, nodes represent various aspects of the mod-
elled scene, such as geometries, material and shading properties, lights, level of detail, geometric
transformations, camera parameters, and so on. Nodes are grouped hierarchically intosepara-
tor nodes that model the assembly of subobjects into larger objects. For example, Figure 7.9 a)

SoTexture

SoCone

SoSphere

SoCylinder

SoSeparatorSoSeparator

SoSeparator

SoTransform

SoExaminerViewer

a) b)

Figure 7.9: Open Inventor scene graph example (a) and its rendering (b)

shows a scene graph containing three objects: a coneSoCone, a sphereSoSphere, and a cylin-
derSoCylinder. The cone and sphere are both textured with a brick-like image by the texture

144 CHAPTER 7. SCIENTIFIC VISUALISATION APPLICATIONS

nodeSoTexture. The cylinder is deformed by aSoTransform node. The three objects are
viewed with aSoExaminerViewer interactive viewer tool, producing the image in Fig. 7.9 b.

2. Scene objects: These are the various node classes presented above. Every node has several pa-
rameters (or fields) that conceptually correspond to the input ports of a module in the dataflow
model. When a node parameter is modified, Inventor updates the node and possibly propagates
the change to other nodes in the graph, by traversing it from the modified node in a left-to-right,
bottom-to-top order. Inventor has thus a built-in event driven dataflow mechanism.

3. Manipulators: Manipulators are special nodes that react to user events (dispatched by the un-
derlying Xt library) and can be used to directly interact with the displayed objects, as outlined
in Section 7.2.4.

4. Node Kits: Node kits are customisable subgraphs with imposed structure but with editable pa-
rameters. They are similar toVISSION’s node groups (see Chapter 4) or AVS’s macro modules
[113].

5. Xt Components: Xt Components are interactive 2D and 3D viewers with a GUI that controls
various viewing parameters and provides a built-in direct manipulation interface, and material
and colour editor GUIs similar to the ones provided byVISSION (see Section 4.4.2).

a) b)

Figure 7.10: Inventor-based carpet plot visualisation network (a) and its rendering (b)

We have integrated over seventy Inventor components inVISSION by writing the required metaclasses.
Similarly to VTK’s integration, we didn’t have to change Inventor’s source code. The latter would not
have been possible anyway as Inventor is distributed only in its compiled version. Several visualisa-
tions that combine VTK and Inventor functionality are presented in the following.

7.3.1 Inventor visualisations

Visualisation of scalar functionsy � f�x� y� is required in many application areas. An ubiquitous tool
for such visualisations is the 3D carpet plot, provided by environments such as Matlab [66] and Math-
ematica [118]. AVISSION network for plotting such functions is shown in Fig. 7.10 a. Figure 7.10 b

7.3. OPEN INVENTOR 145

shows the plot of the functionf�x� y� � sin�x y�. The network starts with a moduleIVSoTest
which provides a text field for editing the function’s symbolic definition and constructs a carpet plot
by sampling the function on a regular mesh of quadrilaterals. The mesh is represented by the Inventor
moduleIVSoQuadMeshand visualised as a smooth shaded surface overlayed with a wireframe repre-
sentation (Fig. 7.10 b). In order to do this, two separator nodes are constructed. The first one groups the
mesh with the shading material properties that render the smooth shaded surface. The second separator
models the wireframe rendered over the smooth shaded plot. The wireframe’s black colour, drawing
mode, and its position in space are specified by the separator’sIVSoMaterial,IVSoDrawStyle,
andIVSoTransformchildren respectively. The carpet plot is finally visualised by an interactive 3D
viewerIVSoExaminerViewer.

a) b)

Figure 7.11: Interactors constructed for the Inventor components

The network coincides with the familiar Inventor scene graph. All its modules, except the inde-
pendently developedIVSoTest one, are exactly the Inventor C++ components with the same names.
The ports’ data types are the original C++ types of the Inventor class fields. GUI interactors are au-
tomatically constructed for these ports. Figures 7.11 a) and b) show the interactors built for theIV-
SoSeparatorandIVSoMaterialmodules. TheIVSoMaterial interactor shows several wid-
gets, such as text type-ins, a colour wheel, and colour sliders, for editing the material’s the ambient,
diffuse, and specular properties. The interactor offers the same functionality as Inventor’s own Xt-
basedSoMaterialEditor GUI. In contrast to Inventor’s GUI,VISSION’s interactor can be fully
user customisable, as explained in Section 4.4. TheIVSoSeparator interactor shows a widget for a
multiple input port, i.e. a port that can be connected to several other ports. This port, of typeWRPort-
DynArr (Section 3.3.4), perfectly models Inventor’s multiple field type, such as theIVSoSepara-
tor or theIVSoExaminerViewer input in the carpet plot network. The port’s GUI is an editable
list with the names of all ports connected to it. Using this widget, the user can e.g. group components
in the desired order into a separator node. The connection order is important, as Inventor will render
the components in this order when traversing the scene graph. For example, the material, draw style,

146 CHAPTER 7. SCIENTIFIC VISUALISATION APPLICATIONS

and transform property nodes must be connected before the mesh node in the two separators described
above in order to be used when rendering the mesh.

7.3.2 Inventor direct manipulation

We can easily add direct manipulation to the previous carpet plot visualisation by using Inventor’s ma-
nipulator components. Figure 7.12 b shows two manipulators added to the carpet plot network. The
IVSoSpotLightManip inserts a spot light in the scene graph and the possibility to control its di-
rection, position, and angular aperture parameters by directly manipulating a 3D actor with the mouse.
Directly controlling the lighting of a 3D plot is useful for emphasising the plot’s 3D appearance. The
second object (IVSoTabBoxDragger) is an Inventor dragger which comes as a wireframe box with
resize handles. The box can be translated and scaled by dragging its handles with the mouse. The drag-
ger’s output can be connected to theIVSoTestmodule’s input that defines the function’s domain, as
the dotted line in Fig. 7.12 a shows. When the dragger is interactively activated, the sizes of the new
domain and the carpet plot’s vertical scaling factor are passed to theIVSoTest module. The func-
tion plot, sampled on the new domain, is redisplayed in the viewer. The whole process takes place in
real time, so the user has the feeling he actually drags a rectangular ’data lens’ over the function’s 2D
definition domain.

a) b)

ligh t manipu lator

tab box dragger

Figure 7.12: Direct manipulation with Inventor components

Direct manipulation is convenient in the cases when the meaning of the controlled parameters is
visually coupled with other displayed entities. Inventor’s 25 manipulators and draggers offer a large
selection of direct interaction tools with 1D, 2D, and 3D rotation and translation degrees of freedom
such as trackballs, linear, circular, and planar sliders, general affine transformation boxes, and so on.
By incorporating these tools,VISSION offers the possibility to directly steer simulation pipelines in a
variety of ways. For precise parameter control, users can revert to the classical GUI interactors.

7.3.3 VTK and Inventor Combination

We have presented in the previous sections how Inventor and VTK components can be combined
in various visualisations inVISSION. The two toolkits exhibit a certain resemblance, especially in

7.3. OPEN INVENTOR 147

their dataflow and object-oriented architecture, as well as in the 3D rendering components provided.
However, they are designed with different application domains in mind. Inventor’s goal is to provide
general-purpose 3D scene modelling and animation. VTK focuses mostly on support for scientific
visualisation applications. The main differences between the two toolkits are summarised as follows.

� Inventor’s data model covers the description of a 3D scene. The provided elements are geomet-
ric objects, transforms, and rendering and viewing properties. VTK’s data model covers more
data types common in the scientific visualisation community. It consists of datasets and process
objects, which represent respectively various data types and data processing operations encoun-
tered in scientific visualisation.

� Inventor offers high-level, specialised components for 3D viewing and direct manipulation, as
well as some GUI components. In contrast, VTK provides only some basic primitives such as
3D cameras and simple point-on-surface pick functions, and no GUI components.

� Inventor has a special dataflow network traversal policy in which several actions that share a
global state are applied over the whole scene graph. Unconnected nodes can still influence each
other by modifying the global state during the traversal, such as material or transform nodes
which affect all nodes encountered after them during a traversal. The overall Inventor network
traversal mechanism is quite complicated. Several action types can be applied during a traversal,
and the encountered nodes can respond in several ways to these actions [116]. In contrast, VTK
has a simpler dataflow mechanism in which no global state is maintained. Nodes communicate
only explicitly via data connections. There is a single traversal action, which consists in calling
the components’ update operation in a demand-driven fashion.

� Inventor’s rendering mechanism is highly tuned for speed by using several internal scene graph
transformations and caches. In contrast, VTK’s rendering components directly call the under-
lying graphics library, e.g. OpenGL. VTK has a lower overall rendering pipeline throughput,
especially for large scenes.

� Inventor is commercial software which has to be separately purchased for every new platform.
In contrast, VTK is freely available on a wide range of systems.

VISSION integrates both Inventor and VTK, so application designers may freely decide whether to use
Inventor or VTK components for a specific task. On high-end graphics workstations that have an In-
ventor installation, one could use the fast Inventor components for the 3D rendering and direct ma-
nipulation, instead of the similar VTK components. On machines where Inventor is not available, one
would use VTK to construct slower but functionally similar pipelines.

We shall illustrate the above by a visualisation provided in the VTK standard example set. In this
example, a scalar quadric function defined on a 3D domain is visualised by means of several isosur-
faces. The network (Fig. 7.13 a) starts with a moduleVTKQuadricwhich defines a quadric function
of the formf�x� y� z� � ax��by��cz��dxy�eyz�fxz�g, where the coefficientsa�g are input
by the user. Next,VTKSampleFunction samples the function onto a regular grid. Isosurfaces are
extracted from the sampled dataset by using the marching cubes algorithm [60]. The extracted isosur-
faces are next input in two different rendering pipelines. The left pipeline uses Inventor components
and end with the already describedIVSoExaminerViewer. (Fig. 7.14 a). The right pipeline uses
only VTK components and ends with an interactive 3D viewerVTKViewer (Fig. 7.14 b) which we
have built by enhancing the basic VTK viewer with GUI controls similar to the ones provided by the In-
ventor viewer. As seen in Figs. 7.13 a and 7.14, the VTK and Inventor rendering pipelines and viewers

148 CHAPTER 7. SCIENTIFIC VISUALISATION APPLICATIONS

are almost identical in structure and functionality. End users and application designers can thus con-
struct and utilise visualisation applications with the rendering pipeline which best suits their current
platform or availability constraints.

VTK pipelineInventor pipeline

VTKPolyDataMapper IVSoSeparator

VTKPolyIVMapper

a)

b)

Figure 7.13: Visualisation combining Inventor and VTK. Network (a) and adapter class (b)

In order to combine the VTK and Inventor pipelines, we had to write a simple data adapter class
VTKPolyIVMapper of around 120 C++ lines which translates VTK’s geometric dataset into the
equivalent Inventor representation. The design of this adapter is a good example of situation in which
multiple inheritance is needed (Fig. 7.13 b). On one hand, the adapter inherits from the InventorIV-
SoSeparator component, which makes it connectable to the Inventor scene graph, thus viewable.
On the other hand, the adapter inherits from the VTK componentsVTKPolyDataMapper, which
makes it take part to the VTK dataflow mechanism by reading a VTK data set. In order to merge the
two toolkits,VTKPolyIVMapperdefines its own update routine which translates the VTK polygonal
data set delivered by itsVTKPolyDataMapper parent, translates it to an Inventor representation,
and inserts this representation into itsIVSoSeparatorparent. As pointed out by Gamma et al. [37],
class adapters are the mechanism of choice for connecting independently developed class hierarchies,
such as the VTK and Inventor toolkits. Constructing such an adapter would however not have been
possible without multiple inheritance , if we do not wish to modify any of the two involved toolkits.
In our case,VISSION natively supports multiple inheritance, so the coupling of the VTK and Inventor
toolkits was done without any problems.

Combining VTK and Inventor components inVISSION is not limited to having alternative render-
ing back-ends. One can for example steer the input of a VTK computational pipeline with the out-
put of a manipulator acting on its Inventor rendering back-end, similarly to the network depicted in
Fig. 7.12 a. The VTK and Inventor components may have their own data communication mechanisms
and update policies among themselves and still perfectly cooperate and be freely intermixed in aVIS-
SION network. For example, in the visualisation described above the Inventor components use their
own built-in event-driven update mechanism and special scene graph traversal, while the VTK ones
use VTK’s own demand-driven dataflow policy. The two mechanisms are merged transparently as both
VTK and Inventor components interface withVISSION via the same metaclass layer described in Chap-

7.4. REALISTIC RENDERING 149

ter 3. Combining Inventor and VTK components would not have been possible without the presence
of the meta-layer abstraction (e.g. directly in compiled C++) as no common component dataflow in-
terface would have been available.

a) b)

Figure 7.14: Inventor (a) and VTK (b) 3D interactive viewers

7.4 Realistic rendering

Radiosity techniques [19, 98] are an important class of realistic image synthesis methods, due to their
ability to simulate indirect lighting and visually convincing shadows.

Radiosity simulation software often requires delicate tuning of many input parameters, and thus
can not be used as black box, monolithic application pipelines. Testing new algorithms requires
also the configurability of the radiosity pipeline. These options are however rarely available to non-
programming experts in current radiosity software. In contrast, software for other realistic rendering
techniques, such as raytracing, is much simpler to use and requires less parameter control by the end
users. Consequently radiosity applications, even though capable of producing high quality renderings,
are mostly employed only by specialists.

We addressed this problem by including intoVISSION a radiosity component library written in
C/C++ by us [108] beforeVISSION was conceived. Similarly to the other integration cases we de-
scribed, making the radiosity toolkit available inVISSION required the writing of the metaclasses and
the creation of a few dataset adaptors.

Application designers can now easily build various radiosity renderer setups by visually assem-
bling the provided radiosity components inVISSION’s network editor. Figure 7.15 shows a radiosity
pipeline built on the progressive refinement model [20]. The pipeline starts with a 3D scene reader
that creates the scene dataset, followed by an initiala priori scene subdivision into coarse elements,
or patches. Next an octree spatial partitioning is built from the subdivided scene. The algorithm core
consists of the iterative radiosity shooter based on raytracing which produces a progressively refined
rendering of the scene. During the progressive refinement, adaptive subdivision of the initial scene

150 CHAPTER 7. SCIENTIFIC VISUALISATION APPLICATIONS

mesh is performed based on various solution characteristics. The method maintains thus a two-level
hierarchy of non-uniform element meshes, and is thus similar with other hierarchical numerical meth-
ods known in the literature. The form factors governing the energy transfer are computed on the fly,
by adaptively sampling the source and target elements. Testing for spatial occlusion during the energy
shooting is done by raytracing, using the computed octree to speed up the ray-polygon intersections.
The 3D scene illumination solution is next visualised by being input into a VTK visualisation pipeline
(Fig. 7.16 a,b).

progressive
refinement
loop

Figure 7.15: Radiosity pipeline inVISSION

Using the dataflow application model for radiosity rendering has several advantages as compared
to a classical monolithic application setup. End users can now change all the ’hidden’ parameters along
the radiosity pipeline, such as refinement thresholds, maximum number of iterations, or normalisation
factors, and notice the rendering improvements almost instantly. This allows to monitor and time the
progressive improvement of a radiosity solution online, as the loop in Fig. 7.15 keeps iterating and
producing new solutions. Application designers can change a pipeline component even during its exe-
cution. This allows one to render a scene using a certain refinement algorithm up for e.g. 50 iterations
and then interactively switch to another algorithm by connecting its icon to the pipeline. For exam-
ple, Fig. 7.15 shows two possible mesh subdivision criteriaXFFTestDelta andXFFTestGradi-
ent that decide an element’s subdivision based on the solution’s first or second derivative respectively.
Component developers can write new radiosity algorithms or integrate existing ones by subclassing the
existing radiosity toolkit’s C++ base classes. Finally, results are available for interactive visualisations
or further postprocessing using the VTK components. For example, VTK’s 2D imaging components
were used to interactively process 2D snapshots produced by a running radiosity pipeline in order to
monitor the solution quality and detect illumination anomalies. Several problems of the original ra-

7.5. DISCUSSION 151

a) b)

Figure 7.16: Radiosity renderings: a) pillar room (60,000 elements, 50 iterations). b) office room
(13000 elements, 60 iterations)

diosity code left undiscovered in the non-interactive, batch mode setup, were quickly detected in the
VISSION based setup.

7.5 Discussion

In this and the previous chapter we have presented several application areas in whichVISSION was
successfully used. In the following several observations on the flexibility and limitations ofVISSION

are presented which addressVISSION’s suitability as a framework for domain specific application con-
struction and steering.

One of the most challenging problems SimVis researchers and software designers are confronted
with is the choice of the software platform or environment to suit a given application. In most cases, a
perfectly suited application does not exist, so one has to adapt an existing one or build a new one. In
research environments, coding and adapting new components and gluing existing ones together to pro-
duce several application setups is a routine task. It is, however, also this task that is the most tiresome
and error prone part of the research and development process. This is mainly due to the heterogeneity
of existing software components that range from monolithic applications to frameworks and libraries,
ending up with small, self developed algorithms. A frequent question SimVis software practitioners
asks themselves is: which software environment should I adopt such that I can easily combine my own
code with other people’s code, and with the powerful available large SimVis libraries?

In this respect,VISSION’s non intrusive code integration policy proved to be a powerful concept.
Code components which were developed on a totally independent basis, ranging from two very large
C++ libraries (VTK and Inventor) containing over 500 components each, to small libraries (under
20 components) and one-component code fragments independently developed by several researchers
could be integrated and coupled together. The only programming effort involved writing the corre-
sponding metaclasses having a size of approximately 6 MC++ lines per metaclass. This process could
be done gradually. First, only the base classes of VTK and a few concrete filters, mappers, and a 3D
viewer were integrated to test the concept. Next, the remaining VTK classes were integrated. No

152 CHAPTER 7. SCIENTIFIC VISUALISATION APPLICATIONS

modification to the original VTK code was done. In a few cases when we detected an erroneous or
otherwise undesired behaviour of the integrated VTK classes, we provided some simple C++ wrap-
pers around the original VTK code. These wrappers maintain the same interfaces and delegate their
operations to the underlying VTK implementation, but apply the desired checks or adaptation to the
original operations. As the original VTK code was not modified, we could use it as it evolved through
several releases with practically no change to our metaclasses. Only a few minor interface changes
were needed when the new VTK releases changed some component signatures.

other minor changes were sometimes needed, e.g. when ’wrapping’ an algorithm present as a fully
independent, console-based C program, into a C++ class declaration that communicates with the out-
side world via method calls instead of the standard input and output. In most cases this actually made
the original code even more reusable and context independent. Each component set preserved its own
typing policies, as there is no need to e.g. force all components to use the same dataset structures. The
same holds for execution mechanisms, as, for example, VTK uses internally a demand driven dataflow,
while Inventor has an event driven one. Components from the two libraries can, however, be freely in-
termixed inVISSION pipelines.

The above facts lead to the following strategy for a typicalVISSION user:

1. identify the application domain of interest (e.g., finite difference computations)

2. find an existing software library that addresses the respective domain. If such a library exist,
bring it to the form of a C++ class library. In virtually all cases, this should be relatively easy,
as C++ offers a clearly more powerful set of concepts and interface mechanisms than other lan-
guages such as C or FORTRAN.

3. test the library offline, e.g. in a classical console-based program.

4. write the meta-library for the existing C++ library. This is trivial in most cases, as MC++ was
especially designed to cope with C++ interfaced components.

5. use the library inVISSION, possibly by intermixing its components with other components al-
ready present inVISSION. In this way, one has to provide only the components particular to his
application domain, as many general-purpose visualisation and graphics primitives are already
present inVISSION via the VTK and Inventor libraries.

The above scenario was applied successfully to building over 50 visualisations and graphics applica-
tions by integrating the VTK and Inventor libraries inVISSION. Several other more specific application
domains such as numerical computations and realistic rendering were addressed in basically the same
way. In most cases, applications used components from two or three different libraries, which proves
that component reuse and interoperability takes indeed place inVISSION. The fact that several libraries
with over 600 components were made available inVISSION, either by adapting existing code or by
writing it from scratch proves that the system scales well.VISSION’s combination of visual dataflow
programming, supported by a flexible code integration mechanism proves to be an effective alternative
for SimVis researchers to the classical paradigm of writing a standalone program doing computations,
interaction, and visualisation for every new application.

One has to admit that classical programming is undoubtedly more flexible than visual dataflow
programming. If one has total freedom over the way code statements are written, it is obvious that
more control can be achieved over the shape of the final application than when combining a few tenths
of blocks controlled by a few parameters and a fixed dataflow execution model. However, one should
not forget which are the prices to pay for this freedom:

7.5. DISCUSSION 153

� Writing, debugging, understanding, and maintaining classical code is orders of magnitude more
difficult than doing the same to a visual network. Building a visual pipeline involvesno pro-
gramming knowledge, while building a similar application in a classical way involves familiarity
with a compiler and a programming language, component libraries, GUI libraries, windowing
systems, and possibly more. The time it takes to do the same operations in a visual environment
is much shorter, even for e.g. expert C++ programmers.

� Sharing data between peer researchers has taken place since long. Sharing applications and code
is however rarely done, as people have different coding styles. Visual dataflow programming and
the distribution of code asVISSION meta-libraries makes the interchange of code modules or full
applications much easier, as these now obey a standard form.

154 CHAPTER 7. SCIENTIFIC VISUALISATION APPLICATIONS

Chapter 8

Conclusions

8.1 Introduction

This thesis addresses the development of interactive scientific simulation and visualisation (SimVis)
applications in academic research environments. Such environments pose major challenges to the de-
velopment and use of SimVis software applications. Research applications usually have an experimen-
tal nature. They are built to test new concepts, algorithms, data structures, and so on. The nature of
the research process implies a continuously changing structure of the SimVis software applications. In-
sight or new ideas acquired during the (interactive) experimentation with the application often urge the
need to add or remove numerical or visualisation software components, recode components, or even
write new components from scratch.

8.2 SimVis Application Construction and Use

Visual programming environments are one of the most successful solutions to the development of in-
teractive SimVis applications in the research community. Such environments provide an architecture
that supports rapid and intuitive application construction and interactive steering in the form of visual
dataflow networks. The user can focus on steering the final application or on the development of cus-
tom numerical or visualisation code.

However flexible, most existing SimVis visual programming environments have important limi-
tations, especially with respect to the development of new software components or the integration of
independently developed components. In particular, we focus on object-oriented (OO) software tech-
niques, which offer well established tools in the software engineering community for large-scale code
organisation and reuse. Both object orientation and visual dataflow programming are new techniques.
Consequently, the combination of their advantages in the field of SimVis software design has been ad-
dressed only partially.

The aim of this thesis is to provide a SimVis system that offers a close combination of the above
two techniques. We approach this by first designing an abstract architecture that combines the dataflow
and object-oriented modelling principles. This architecture extends the object-oriented constructions
of the C++ language, such as typing, inheritance, and encapsulation, with the basic elements needed
by dataflow modelling, namely input-output ports and the update operation. The combination of the
two results in the MC++ component specification language, described in chapter 3.

MC++ provides a non-intrusive manner for extending C++ class libraries with the dataflow ele-
ments that make them eligible for use in dataflow network construction. We use a black-box, non

155

156 CHAPTER 8. CONCLUSIONS

intrusive code integration approach, in contrast to existing solutions for dataflow component design.
Rather than modifying the semantics of the C++ language by adding new constructions to its syntax
or designing a new language from scratch, as done by various SimVis systems, we defined MC++ as
a ’shell’ language, or meta-language. This implies two things. First, the MC++ specification files, or
meta-files, are separately analysed (e.g. parsed and interpreted) from the C++ files they extend. This
makes the MC++ language implementation simple and easy to extend. Secondly, the original C++ code
stays completely unchanged, which keeps it directly usable in other contexts, e.g. outside our SimVis
environment.

The second step of our work takes the OO-dataflow architecture and the MC++ language to a con-
crete implementation, theVISSION simulation and visualisation environment. Due to the syntactic and
semantic separation of concerns of C++ and MC++ described above, the implementation ofVISSION

was relatively simple, as compared to other similar SimVis environments. The key element of the im-
plementation was the use of a C++ interpreter, or virtual machine, responsible for the dynamic C++
component loading and code execution. The concern separation mentioned above enabled us to com-
pletely reuse an existing C++ virtual machine coming as about 80,000 lines of C/C++ source code. In
contrast, the MC++ virtual machine we implemented ourselves is not larger than 20,000 C++ lines. The
total of 100,000 lines of code is to be compared with similar SimVis system kernels of over 400,000
lines [113, 44, 118]. The design ofVISSION is the object of chapter 5.

Similarly to existing visual SimVis application builders,VISSION also offers a visual programming
interface for application construction and component interfaces for interactive monitoring and steering
of applications. The architecture ofVISSION, based on the C++ and MC+ virtual machines, enables
the automatic construction of both component iconic representations and component user interfaces
out of the component specification written in MC++. Practically, this means that all SimVis user in-
terface related aspects are provided inVISSION with no programming effort. The construction and use
of VISSION’s visual interfaces is described in chapter 4.

Our intention was not only to provide a better theoretical architectural framework for SimVis en-
vironments and an eventual prototype implementation. The success of any software environment is
ultimately measured by its effectivity and efficiency when facing its users. Consequently, we have
extensively usedVISSION for the whole pipeline of SimVis component development, and application
design and use, both for numerical simulation, as well as for visualisation applications. In the area of
numerical simulation, we usedVISSION for the computational steering of an electro-chemical drilling
(ECD) numerical simulation, as described in Section 6.2. The ECD problem illustrates well the use of
VISSION for producing turn-key applications, in which end users can intuitively control and monitor a
process via a simple interface.

A more extensive numerical application design and integration inVISSION is represented by the
NUMLAB component library. NUMLAB offers a comprehensive set of C++ components for modelling
a large class of numerical applications, such as ordinary and partial differential equations discretised
and solved with various methods, on 2D and 3D domains. NUMLAB was developed as an independent
C++ library. Its integration inVISSION and coupling with various visualisation components demon-
strates well the claim of easy application-independent component integration. Moreover, the object-
oriented design of the NUMLAB library enables the modelling of a large class of numerical problem
with a small set of software components. A major aim in the design of NUMLAB was orthogonality,
which allows the application designer to easily interchange one component type with another one of a
similar type, such as the interchange of numerical solvers, preconditioners, or mesh generators. As all
these actions are done viaVISSION’s visual interface, numerical experimentation is greatly simplified
as compared with other similar software applications. NUMLAB is presented in section 6.3.

The second application class forVISSION concerns scientific visualisation. The integration inVIS-

8.3. DIRECTIONS FOR FUTURE WORK 157

SION of the over 500 components of the VTK visualisation library demonstrates again the flexibility of
the proposed architecture. Several tens of visualisation applications were built using VTK components
in VISSION, such as scalar, flow, and image data visualisation. These are described in Section 7.2.

Finally, we look at another application domain, namely realistic rendering. Similarly to the ECD
application, we have integrated a C++ library for radiosity computations inVISSION. Using this li-
brary, one can easily set up a 3D scene, initiate its rendering, and experiment interactively with the
various parameters of the radiosity pipeline. Compared to the classical file input-output radiosity ap-
plications, this allows a more intuitive understanding and control of the convergence issues involved
in the radiosity process. This application is the object of Section 7.4.

8.3 Directions for Future Work

Interactive construction and use of SimVis applications is a growing field. New application domains
are continuously coming into the focus of the researchers. New methods are devised to address existing
computational problems. Finally, more efficient or more generic software implementations appear for
existing application domains. The work presented in this thesis on SimVis application construction
can evolve in several directions, as follows.

First,VISSION can be used to provide interactive application construction, visualisation, and steer-
ing facilities for new application domains. For this, the domain-related functionality has to be provided
as a set of components, which are next to be integrated inVISSION by writing the corresponding MC++
specifications. The integration mechanism has been extensively put to test for the large-scale exam-
ples described in the previous section. We therefore expect that covering new application domains in
VISSION will be relatively easy. Object orientation is a well proven methodology for modelling a large
range of problem domains. We expect thatVISSION will scale well with the number and diversity of
application domains. In particular, the ongoing development of the NUMLAB numerical component li-
brary makesVISSION a very interesting environment for numerical computation and experimentation.
Ongoing work in scientific visualisation done inVISSION is described in [111, 38].

Secondly, there are promising research directions in extending the mechanisms ofVISSION’s kernel
itself. These directions are presented next from the perspective of the three user roles discussed in this
thesis.

From theend user’s perspective, we could imagine the development of new application steering
and monitoring mechanisms. Such mechanisms would be more convenient and natural for specific
SimVis domains than the generic graphics user interfaces described in chapter 5. For example, multi-
modal (e.g. voice or gesture based) control of a simulation could augment a standard graphics user
interface. A concrete scenario for such interfaces is a 3D data investigation application, in which the
user visualises the output of some simulation in 3D (e.g. isosurfaces) and in the same time controls
some simulation input parameters. Examining a 3D dataset usually involves the direct manipulation
of the visualised object in a graphics window by means of a mouse. Steering the input parameters in-
volves manipulating some widgets in another window. Performing both operations requires the user
to switch his attention from one window to the other, which is a disruptive process. By introducing a
voice or gesture based input inVISSION, the input steering and output examination actions could be
performed concurrently. For example, one could assign the right hand to the 3D mouse-based manip-
ulation and the voice or the left hand’s gestures to the input parameter steering. The implementation
of such alternative input devices inVISSION would be greatly facilitated by the modular structure of
the input devices, described in chapter 5.

Another aspect pertaining to the end user role concerns the construction of the end user graph-

158 CHAPTER 8. CONCLUSIONS

ics interface. Many SimVis systems offer sophisticated tools to design such interfaces visually. So
far, VISSION offers the automatic construction of component interactors and a programmatic way to
construct custom end user interfaces, both presented in chapter 4. Replacing the programmatic user
interface construction by a visual GUI editor would make the construction of custom user interfaces
a much easier task, especially for non programmers. Due to the modular design ofVISSION’s views,
this task should also be relatively easy to accomplish.

Finally, integrating an interactive documentation system withinVISSION would greatly help the
end user and application designer’s roles. SimVis systems such as AVS provide such a facility in terms
of per-module browsable hypertext pages. Work to provide a similar facility inVISSION in terms of
automatically generated HTML documentation from the MC++ and C++ component information is
under progress.

From theapplication designer’s perspective, new techniques could be imagined to make the
dataflow network construction easier. An important limitation of the scalability of the dataflow model
is the large number of components from which the designer has to choose the right ones for the problem
at hand. Documentation systems are of limited usability, since they offer general information, not re-
lated to the specific context of the network under construction. One technique for assisting the network
construction on which we have worked is a smart agent that learns the application designer’s prefer-
ences [109]. The agent assists the construction of a new network by providing the application designer
with hints for connecting modules based on information learnt from previous network constructions.
This concept could be extended with new heuristics or learning strategies to further simplify the task
of building dataflow networks. The development of visual techniques for managing large component
libraries is a promising research direction, related to the emerging information visualisation discipline.
One such technique would be to replace the ’flat’ presentation of component libraries as a scrollable
list of components by a two-dimensional graph of components, where similar or logically related
components would be placed close to each other. Browsing such a graph would provide a faster way
to understand the organisation of a large component library that the actual list-based interfaces.

Finally, VISSION could be extended from thecomponent developer’s perspective as well. An
important direction would be to extendVISSION’s component implementation language to other lan-
guages than C++, such as Java or Fortran. This would allow a direct integration of application libraries
written in these languages inVISSION and the transparent intermixing of components written in dif-
ferent languages in the same network. This task would be facilitated byVISSION’s architecture which
separates the dataflow (MC++) and implementation (C++) concerns, as presented in chapters 4 and 6.
However, an appropriate component model forVISSION’s context has to be found in these languages,
similarly to the class concept in C++. Another research direction would be to extend the dataflow
concept tocode flow. In code flow networks, source code, as well as data, could be produced and
consumed by modules. This would allow a network to change its operational semantics dynamically
depending on the user input, and thus allow a greater modelling power than the actual fixed-semantics
dataflow networks. Implementing code flow inVISSION would be facilitated by the existence of the
C++ interpreter in its kernel.

We conclude by remarking again that the success of any software system is ultimately determined
by two factors: its coverage of the user requirements and its ease of use.

Concerning the first factor, we should not forget that the SimVis application domain is extremely
broad, and that the requirements of its three user categories (end users, application designers, and com-
ponent developers) are often conflicting. TheVISSION system presented in this thesis improves some
already existing mechanisms, such as visual dataflow and object-oriented programming, and removes
some of the technical limitations of similar systems. However, there will always exist other systems
which are better suited for a narrow application domain than a general-purpose environment likeVIS-

8.3. DIRECTIONS FOR FUTURE WORK 159

SION.
Concerning the second factor,VISSION is a software product essentially built by a single program-

mer over a few years. Its ease of learn and use, measured in terms of its fault tolerance, end user inter-
face, and documentation, is thus hard to be compared with those of commercial products built by tens
of programmers over longer time periods. However, given a larger programming effort to be further
invested in the current implementation, we believe thatVISSION has a sound architecture to grow and
compete with most similar SimVis environments.

160 CHAPTER 8. CONCLUSIONS

Appendix A

Plates

161

162 APPENDIX A. PLATES

Figure A.1: Simulation and visualisation applications in theVISSION environment (chapters 6-7)

Appendix B

MC++ Syntax

This appendix presents the syntax of the MC++ specification language used for C++ component inte-
gration in theVISSION system. This summary of the MC++ syntax is intended to be an aid to compre-
hension. Similarly to the presentation of the C++ language grammar by Stroustrup [102], the MC++
grammar described here accepts a larger set of MC++ constructs than the semantically valid ones. This
is unavoidable, as, although syntactically simple, MC++ is a semantically rich language which covers
constructs such as scoping and inheritance. As pointed out by several authors [2, 47, 102, 100], cap-
turing such context-dependent semantics in a context-independent grammar is an almost impossible
task.

Consequently, several context-dependent and other semantics-related rules are used by the actual
MC++ parser implemented inVISSION to accept syntactically valid out meaningless constructs. As
described in chapter 5, the MC++ parser uses information from the C++ interpreter and meta-entity
table subsystems to provide the context needed for resolving the parsed lexical elements. The MC++
language analysis system ofVISSION follows the classical structure encountered in most compilers
and interpreters. First, a lexical analysis stage is performed to segment the MC++ input stream into
the lexical elements described in section B.1. Next, these elements are passed to the MC++ parser
which implements the MC++ language grammar described in sections B.2 and B.3.

B.1 Lexical Elements

As described in chapter 3, the MC++ language enhances the C++ language with dataflow semantics.
However, MC++ does not define notions that already exist in C++, such as data types. Consequently,
all MC++ lexical elements, or tokens, are imported form C++. Similarly, several more complex C++
constructs are directly used within MC++, such as C-style and C++ comments, expressions, type spec-
ifiers, code blocks, and function definitions.

This section introduces the lexical elements on which MC++ is built. There are nine such elements,
as follows:

1. Integer: any valid positive integer, e.g.0, 1, 100.

2. String: any valid C++ string enclosed between double quotes, e.g."abcd", "this is a
text". As in C++, newline characters can be used to define strings on multiple lines.

3. Identifier: any valid C++ identifier, containing letters, digits, and the underscore, e.g.abc01,
diff 23.

163

164 APPENDIX B. MC++ SYNTAX

4. Comments: any valid C-style or C++ comment, e.g./* comment */, // comment. Com-
ments can occur anywhere in a MC++ source file. They are eliminated during the lexical analysis
stage.

5. Types: any valid C++ type specifier, such asint,const Object*. The specified types must
be meaningful in the framework of the types already loaded by the C++ interpreter.

6. Expressions: any valid C++ expression, or r-value. Simple string"abcd", numerical-12.34,
string"abcd" expressions, and so on, are accepted. Expressions involving constructors, e.g.
RGBColor(1.0,0.0,1.0)are accepted as well, provided they are correct in the framework
of the types loaded by the C++ interpreter.

7. Code: any valid block-level C++ code, such asf int a=1; func(1.2,a+3); g. The
code may contain declarations and statements, e.g. function calls and loops, provided that it
uses only symbols known by the C++ interpreter in the current scope.

8. Function definitions: any valid global-scope C++ function definition, e.g.int f(float x)
f return x+12.3; g. The function definitions are subject to the same restrictions as the
code definitions described above.

In the following sections, we shall use the symbolsinteger, identifier, cpptype, cppexpr, cppcode, and
cppfunc to denote the corresponding elements described above. Strings are printed asbold text, while
courier text will denote lexical constructs that appear verbatim in the MC++ source. Italic text de-
notes grammar rules. The constructelementopt denotes zero or one occurrence of the grammar rule
element. The constructelement� denotes zero or more occurrences of the grammar ruleelement.
When several right-hand expressions are listed on different lines for the same left-hand production
name, any of them can be selected for that production name.

B.2. THE META-LIBRARY 165

B.2 The Meta-Library

The program unit in MC++ is the meta-library (Sec. 3.6). The grammar rules describing the library
follow.

library 	

header entity�

header 	

libname implemopt guilib� includelib� initcodeopt finalcodeopt

libname 	

library: sofilename

implem 	

implementation: sofilename

guilib 	

gui f nodelib� portlib� editor� g

nodelib 	

nodelib sofilename

portlib 	

portlib sofilename

editor 	

editor cppeditorclassname edtype f cpptypelist g

cppeditorclassname 	

identifier

cpptypelist 	

cpptypelist , cpptype

cpptype

includelib 	

include: mhfilename

initcode 	

initialization: cppcode

finalcode 	

finalization: cppcode

B.3 The Meta-entity

Besides the header, described in the previous section, a MC++ library contains three main constructs:
the metaclass (Sec. 3.3), the meta-group (Sec: 3.5), and the meta-type (Sec: 3.4). The grammar rules
for these are described in the next sections.

166 APPENDIX B. MC++ SYNTAX

B.3.1 The Metaclass

entity 	

module

group

type

module 	

module modulename basespecopt abstractopt f body g

basespec 	

: baselist

body 	

input spec�

output spec�

update specopt

category specopt

info specopt

modulename 	

identifier

input spec 	

input: port decl�

output spec 	

output: port decl�

update spec 	

update: update decl

category spec 	

category: categoryname

info spec 	

info: infotext

port decl 	

porttype *opt portname cpptype (arglist)

requiredopt optionalopt no iconopt preferred edopt

porttype 	

RDPortMem

RDPortMeth

WRPortMem

WRportMeth

RDPortSignal

WRPortSignal

RDPortDynArr

B.3. THE META-ENTITY 167

arglist 	

arglist ,cppmethodname

arglist ,cppmembername

cppmethodname

cppmembername

cppmethodname 	

identifier

cppmembername 	

identifier

preferred ed 	

editor: cppeditorclassname

updatedecl 	

f cppmethodname g

cppfunc

baselist 	

baselist ,modulename hiddenopt

modulename hiddenopt

hidden 	

(hidden inports hidden outportsopt)

hidden inports 	

portnamelist

portnamelist 	

portnamelist , portname

portname

hidden outports 	

; hidden inports

abstract 	

=0

168 APPENDIX B. MC++ SYNTAX

B.3.2 The Meta-group

group 	

group groupname basespecopt f groupbody g

groupbody 	

groupinput spec�

groupoutput spec�

children spec�

connect spec�

category specopt

info specopt

groupname 	

identifier

groupinput spec 	

input: groupportdecl�

groupoutput spec 	

output: groupportdecl�

groupportdecl 	

childname . portname port renameopt

port rename 	

as port newname

children spec 	

children: childdecl�

childname 	

identifier

childdecl 	

modulename childname

groupname childname

connect spec 	

connect: connectdecl�

connectdecl 	

childname . portname idxopt to childname . portname idxopt

idx 	

. integer

B.3. THE META-ENTITY 169

B.3.3 The Meta-type

type 	

type cpptype f typebody g

typebody 	

store declopt

default declopt

store decl 	

store: cppfunc

default decl 	

default: cppexpr

170 APPENDIX B. MC++ SYNTAX

Bibliography

[1] G. ABRAM, L. TREINISH, An Extended Data-Flow Architecture for Data Analysis and Visual-
ization, Proc. IEEE Visualization 1995, ACM Press, pp.263-270.

[2] A. A HO, R. SETHI, J. ULLMAN , Compilers: Principles, Techniques, and Tools, Addison-
Wesley, 1986.

[3] G.S. ALMASI AND A. GOTTLIEB, Highly parallel computing, Benjamin/Cummings Publishing
Company Inc., 1994.

[4] E. ANDERSON, Z. BAI , C. BISCHOF ET AL., LAPACK user’s guide, SIAM Philadelphia, 1995.

[5] D.N. ARNOLD, F. BREZZI AND M. FORTIN, A stable finite element for the Stokes equations,
Calcolo 21(1984), 337-344

[6] P. ASTHEIMER Sonification tools to supplement dataflow visualization, Scientific Visualization:
Advances and Challenges, Academic Press, 1994, pp. 251-263.

[7] O. AXELSSON, A generalized conjugate gradient, least square method, Numerische Mathe-
matik, 51(1987), 209-227

[8] O. AXELSSON ANDJ. MAUBACH, Global space-time finite element methods for time-dependent
convection diffusion problems, Advances in Optimization and Numerical Analysis, 275(1994),
165-184

[9] O. AXELSSON AND P.S. VASSILEVSKI, Algebraic multilevel preconditioning methods I, Nu-
merische Mathematik, 56(1989), 157-177

[10] O. AXELSSON AND V.A. BARKER, Finite Element Solution of Boundary Value Problems, Aca-
demic Press, Orlando, Florida, 1984

[11] R. BARRETT, M. BERRY, T. CHAN, J. DEMMEL, J. DONATO, J. DONGARRA, V. EIJKHOUT,
R. POZO, C. DOMINE, H. VAN DER VORST, Templates for the solution of linear systems: Build-
ing blocks for iterative methods, SIAM, Philadelphia, 1994.

[12] G. BOOCH, Object-Oriented Analysis and Design, Benjamin/Cummings, Redwood City, CA,
second edition, 1994.

[13] J.C. BROWNE, Parallel architectures for computer systems, Physics Today, 37(5):28-35, 1984.

[14] A. M. BRUASET, H. P. LANGTANGEN, A Comprehensive Set of Tools for Solving Partial Differ-
ential Equations: Diffpack, Numerical Methods and Software Tools in Industrial Mathematics,
(M. DAEHLEN AND A.-TVEITO, eds.), 1996.

171

172 BIBLIOGRAPHY

[15] R. BRUN, S. RADEMAKERS ROOT - An Object Oriented Data Analysis Framework, Proceedings
AIHENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in See also http://root.cern.ch/.

[16] T. BUDD, An Introduction to Object-Oriented Programming, Addison-Wesley, 1997.

[17] J.C. BUTCHER, The numerical analysis of ordinary differential equations : Runge-Kutta and
general linear methods, Wiley, 1987

[18] T. CATARCI, M. F. COSTABILE, S. LEVIALDI , Advanced Visual Interfaces, Proc. International
Workshop AVI ’92, Rome, Italy, May 27-29, 1992, WSCS Press, 1992.

[19] M. F. COHEN, J. R. WALLACE, Radiosity and Realistic Image Synthesis, Academic Press, San
Diego CA, 1993.

[20] M. F. COHEN, J. R. WALLACE , S. E. CHEN, D. P. GREENBERG, A Progressive Refinement Ap-
proach to Fast Radiosity Image Generation, Computer Graphics (SIGGRAPH ’95 Proceedings),
vol 22, no 4.

[21] J. O. COPLIEN, Advanced C++ Programming Styles and Idioms, Addison-Wesley, 1992

[22] INTRODUCTION TO ALGORITHMS, T. H. Cormen, C. E. Leiserson, R. L. Rivest, MIT Press, 1996.

[23] G. CORNELL AND C. S. HORSTMANN, Core Java, SunSoft Press, 1999.

[24] M. CROUZEIX AND P.A. RAVIART , Conforming and nonconforming finite element methods for
solving the stationary Stokes equations, I, R.A.I.R.O., 3(1973), 33-76

[25] R.S. DEMBO, S.C. EISENSTAT AND T. STEIHAUG, Inexact Newton methods, SIAM Journal on
Numerical Analysis, 19(1982), 400-408

[26] S. DEMEYER ET AL., Design Guidelines for ’Tailorable’ Frameworks, Communications of the
ACM, Vol. 40, No.10, Oct. 1997, pp. 60-65.

[27] A. M. DUCLOS, M. GRAVE, Reference models and formal specification for scientific visualiza-
tion, Scientific Visualization: Advances and Challenges, Academic Press, 1994, pp. 251-263.

[28] S.C. EISENSTAT AND H.F. WALKER, Globally convergent inexact Newton methods, SIAM Jour-
nal on Optimization 4(1994), 393-422

[29] ELECTRONICS STAFF, Computer technology shifts emphasis to software: a special report, Elec-
tronics, 8:142-150, May 1980.

[30] M. ELLIS, B. STROUSTRUP, Annotated C++ Reference Manual, Addison-Wesley, 1990.

[31] A. ENZMANN , L. KRETZSCHMAR, C. YOUNG, Ray Tracing Worlds With Pov-Ray, Waite Group
Press, 1993.

[32] V. ERVIN, W. LAYTON AND J. MAUBACH, A Posteriori error estimators for a two level finite
element method for the Navier-Stokes equations, Numerical Methods for PDEs, 12(1996), 333-
346

[33] P. M. FERGUSON, The Motif Reference Manual, O’Reilly and Asociates, 1994.

BIBLIOGRAPHY 173

[34] T. FRÜHAUF, M. GÖBEL, K. KARLSSON, Design of a Flexible Monolithic Visualization System,
Scientific Visualization: Advances and Challenges, Academic Press, 1994, pp. 265-286.

[35] R. P. GABRIEL, Patterns of Software - Tales from the Software Community, Oxford University
Press, New York, 1996.

[36] G. GAINES, D. CARNEY, J. FOREMAN, component-Based Software Development/COTS Inte-
gration, Software Technology Review, Software Engineering Institute, Carnegie Mellon Univer-
sity, 1997.

[37] E. GAMMA , R. HELM, R. JOHNSON, J. VLISSIDES, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995

[38] H. GARCKE, T. PREUSSER, M. RUMPF, A. TELEA, U. WEIKARD, J.J.VAN WIJK, Proceedings
of IEEE Visualization 2000, ACM Press, 2000.

[39] C. W. GEAR, Numerical initial value problems in ordinary differential equations, Prentice-Hall,
1971

[40] A. GOLDBERG AND D. ROBSON, Smalltalk-80: The Language and its Implementation,
Addosin-Wesley, 1983.

[41] C. GUNN, A. ORTMANN, U. PINKALL , K. POLTHIER, U. SCHWARZ, Oorange: A Virtual
Laboratory for Experimental Mathematics, Sonderforschungsbereich 288, Technical University
Berlin. URL http://www-sfb288.math.tu-berlin.de/oorange/OorangeDoc.html

[42] W. HACKBUSCH AND G. WITTUM (EDS.), ILU algorithms, theory and applications, Proceed-
ings Kiel 1992, in Notes on numerical fluid mechanics 41, Vieweg, 1993

[43] W. HACKBUSCH AND G. WITTUM (EDS.), Multigrid Methods, Proceedings of the European
Conference in Lecture notes in computational science and engineering, Springer Verlag, 1997

[44] M. A. HALSE, IRIS Explorer User’s Guide. Silicon Graphics Inc., Mountain View, California,
1993.

[45] W. HIBBARD, D. SANTEK, The Vis5D System for Easy Interactive Visualization, Proc. IEEE
Visualization ’90, ACM Press 1990, pp. 129-134.

[46] D.H. HILS, Visual languages and computing survey: data flow visual programming languages,
Journal of Visual Languages and Computing, 3:69-101, 1992.

[47] J. HOLMES, Object-Oriented Compiler Construction, Prentice Hall, 1994.

[48] IMSL, FORTRAN Subroutines for Mathematical Applications, User’s Manual, IMSL, 1987.

[49] INRIA-ROCQUENCOURT, Scilab Documentation for release 2.4.1,
http://www-rocq.inria.fr/scilab/doc.html, 2000

[50] D. JABLONOWSKI, J. D. BRUNER, B. BLISS, AND R. B. HABER, VASE: The visualization and
application steering environment, in Proceedings of Supercomputing ’93, pages 560-569, 1993

[51] V. JOHN, J.M. MAUBACH AND L. TOBISKA, A non-conforming streamline diffusion finite ele-
ment method for convection diffusion problems, Numerische Mathematik 78(1997), pp. 165-174

174 BIBLIOGRAPHY

[52] R. E. JOHNSON, Frameworks = (Components + Patterns), Communications of the ACM, Vol.
40, No.10, Oct. 1997, pp. 39-42.

[53] KHORAL RESEARCHINC., Khoros Professional Student Edition, Khoral Research Inc, 1997.

[54] G. KICZALES, J. DES RIVIERES, D. G. BOBROW, The Arto of the Metaobject Protocol, MIT
Press, 1991.

[55] L. KLANDER, Core Visual C++ 6.0, Prentice Hall, 1999.

[56] G. E. KRASNER, S. E. POPE, A cookbook for using the model view controller user inter-
face paradigm in Smalltalk-80, Journal of Object-Orientated Programming, 1(3):26-49, Au-
gust/September 1988.

[57] W. LAYTON, J.M. MAUBACH AND P. RABIER, Robust methods for highly non-symmetric prob-
lems, Contemporary Mathematics, 180(1994), 265-270

[58] S. LIPPMAN, Inside the C++ Object Model, Addison-Wesley, 1996.

[59] B. LISKOV, S. ZILLES, Programming with Abstract Data Types, SIGPLAN Notices, vol. 9, no.
4, April 1974, pp. 50-59.

[60] W. LORENSEN, H. CLINE, Marching cubes: A high -resolution 3D surface construction algo-
rithm, Proc. SIGGRAPH ’91,Computer Graphics, no. 25, ACM Press, 1991, pp. 285-288.

[61] MARC ANALYSIS RESEARCHCORPORATION, On the MARC Newsletter, MARC Analysis Re-
search Corporation, 1991-1999. Also online onhttp://www.marc.com.

[62] S.D. MARGENOV AND J.M. MAUBACH, Optimal algebraic multilevel preconditioning for local
refinement along a line, Journal of Numerical Linear Algebra with Applications 2(1995), 347-362

[63] R. MARTIN, Design Patterns for Dealing with Dual Inheritance Hierarchies in C++, C++ Re-
port, SIGS Publications, April 1997.

[64] R. MARTIN, The Open Closed Principle, C++ Report, SIGS Publications, January 1996.

[65] R. MARTIN, The Liskov Substitution Principle, C++ Report, SIGS Publications, March 1996.

[66] MATLAB , Matlab Reference Guide, The Math Works Inc., 1992.

[67] R. M. M. MATTHEIJ AND J. MOLENAAR, Ordinary differential equations in theory and prac-
tice, Wiley, 1996

[68] J. MAUBACH, Local bisection refinement for n-simplicial grids generated by reflections, SIAM
Journal on Scientific Computing, 16(1995), 210-227

[69] B. MEYER, Object-oriented software construction, Prentice Hall, 1997

[70] MICROSOFT, The Component Object Model Specification, Seattle WA, 1995.

[71] J. D. MULDER, Computational Steering with Parametrizable Geometric Objects, PhD thesis,
1998, Universiteit van Amsterdam, Wiskunde en Informatica, The Netherlands

BIBLIOGRAPHY 175

[72] J. D. MULDER, J. J.VAN WIJK, 3D computational steering with parametrized geometric ob-
jects, Proceedings of the 1995 Visualization Conference, eds. G. M. Nielson and D. Silver, p.304-
311, 1995.

[73] NAG, FORTRAN Library, Introductory Guide, Mark 14, Numerical Analysis Group Limited and
Inc., 1990.

[74] C. NELSON, Tcl/Tk: Programmer’s Reference, McGraw-Hill, 1999.

[75] O. NIERSTRASZ ANDL. DAMI , Component-Oriented Software Technology, in Object-Oriented
Software Composition, eds. O. Nierstrasz and D. Tsichritzis, Prentice Hall, 1995.

[76] M. J. NOOT, A. C. TELEA, J. K. M. JANSEN, R. M. M. MATTHEIJ, Real Time Numerical Simu-
lation and Visualization of Electrochemical Drilling, in Computing and Visualization in Science,
No 1, 1998

[77] A. NYE, The Xlib Programming Manual, O’Reilly and Asociates, 1990.

[78] A. NYE, The X Toolkit Programming Manual, O’Reilly and Asociates, 1990.

[79] H. G. PAGENDARM, HIGHEND, A Visualization System for 3D Data with Special Support
for Postprocessing of Fluid Dynamics Data, in Visualization in Scientific Computing, edited by
M. Grave, Y. LeLous, W. T. Hewitt, pp. 87-98, Springer, 1994.

[80] D. L. PARNAS, On Criteria to be Used in Decomposing Systems into Modules, Communications
of the ACM, Vol. 15, No.12, Dec. 1972, pp. 1053-1058.

[81] S. G. PARKER, D. M. WEINSTEIN, C. R. JOHNSON, The SCIRun computational steering soft-
ware system, in E. Arge, A. M. Bruaset, and H. P. Langtangen, editors,Modern Software Tools
for Scientific Computing, pages 1-40, Birkhaeuser Verlag AG, Switzerland, 1997

[82] E. PEETERS, Design of an Object-Oriented, Interactive Animation System, Ph.D. thesis, Eind-
hoven University of Tehcnology, Mathematics and Computing Science, 1995.

[83] L. PINSON, R. WIENER, Objective-C : Object-Oriented Programming Techniques, Addison-
Wesley, 1991.

[84] PRINCIPIA MATHEMATICA INC. The Visualization Studio Pipeline Editor, online product doc-
umentation:http://www.principiamathematica.com

[85] A. RASHID, D. PARSONS, A. SPECK, A. TELEA, A ”Framework” for Object Oriented Frame-
works Design, Proceedings of TOOLS’99 Europe, eds. R. Mitchell, A.C. Wills, J. Bosch, B.
Meyer, ACM Press, 1999.

[86] S. RATHMAYER AND M. L ENKE, A tool for on-line visualization and interactive steering of par-
allel hpc applications, in Proceedings of the 11th International Parallel Processing Symposium,
IPPS 97, 1997

[87] W. REISIG, Petri Nets: An Introduction, Springer-Verlag, 1985

[88] W. RIBARSKY, B. BROWN, T. MYERSON, R. FELDMANN , S. SMITH , AND L. TREINISH,
Object-oriented, dataflow visualization systems - a paradigm shift?, in Scientific Visualization:
Advances and Challenges, Academic Press (1994), pp. 251-263.

176 BIBLIOGRAPHY

[89] F. M. RIJNDERS, A Visual Programming Environment for Scientific Applications: Possibilities
and Limitations, PhD thesis, Vrije Universiteit Amsterdam, 1995.

[90] H.G. ROOS, M. STYNES AND L. TOBISKA, Numerical Methods for Singularly Perturbed Dif-
ferential Equations, Springer Verlag, 1996

[91] J. RUMBAUGH, M. BLAHA , W. PREMERLANI, F. EDDY, W. LORENSEN. Object-Oriented
Modelling and Design, Prentice-Hall, 1991

[92] Y. SAAD AND M.H. SCHULTZ, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7(1986),
856-869

[93] B. SCHNEIDERMANN, Designing the User Interface: Strategies for Effective Human-Computer
Interaction. Addison-Wesley, second edition, 1992

[94] W. SCHROEDER, K. MARTIN, B. LORENSEN, The Visualization Toolkit: An Object-Oriented
Approach to 3D Graphics, Prentice Hall, 1995

[95] J. SIEGEL, CORBA Fundamentals and Programming, John Wiley & Sons Inc. New York, 1996.

[96] SILICON GRAPHICS INC., ShowCase User Guide, Mountain View CA, 1993.

[97] SILICON GRAPHICS INC., CaseVision Software Developer Guide, Mountain View CA, 1995.

[98] F. X. SILLION , C. PUECH, Radiosity and Global Illumination, Morgan Kaufmann Publishers
Inc., San Francisco, 1994.

[99] P. SLUSALLEK, Vision: An Architecture for Physically-Based Rendering, PhD thesis, University
of Erlangen, Germany, 1995.

[100] C. SMINCHISESCU, A. TELEA An Object-Oriented Approach to C++ Compiler Technology,
PhDOOS’99 Workshop Report, inObject-Oriented Technology: ECOOP’99 Workshop Reader,
eds. A. Moreira, S. Demeyer, Springer, 1999, pp. 116-135.

[101] I. SOMMERVILLE , P. SAWYER, Requirements Engineering: a Good Practice Guide, John Wi-
ley and Sons, 1997.

[102] B. STROUSTRUP, The C++ Programming Manual, Addison-Wesley,1993.

[103] J. SHARP, Data flow computing, Ellis Horwood Ltd., Chichester, 1985.

[104] SUN MICROSYSTEMS, INC. The Java 3D Application Programming Interface,
http://java.sun.com/products/java-media/3D/

[105] C. SZYPERSKI, Component Software – Beyond Object-Oriented Programming, Addison-
Wesley, 1998.

[106] A. TELEA, Combining Object Orientation and Dataflow Modelling in the VISSION Simulation
System, Proceedings of TOOLS’99 Europe, eds. R. Mitchell, A.C. Wills, J. Bosch, B. Meyer,
ACM Press, 1999.

BIBLIOGRAPHY 177

[107] A. TELEA, C.W.A.M. VAN OVERVELD, An Object-Oriented Interactive System for Scientific
Simulations: Design and Applications, in Mathematical Visualization, H.-C. Hege and K. Polth-
ier (eds.), Springer Verlag 1998

[108] A. TELEA, C. W. A. M. VAN OVERVELD, The Close Objects Buffer: A Sharp Shadow De-
tection Technique for Radiosity Methods, theJournal of Graphics Tools, Volume 2, No 2, ACM
Press, 1997.

[109] A. TELEA, J. J.VAN WIJK, SMARTLINK : An Agent for Supporting Dataflow Application Con-
struction, in Proc. IEEE VisSym 2000, eds. R. van Liere, W. Ribarsky, Springer, 2000.

[110] A. TELEA, J. J.VAN WIJK, VISSION: An Object Oriented Dataflow System for Simulation and
Visualization, Proceedings of IEEE VisSym ’99, Springer, 1999.

[111] A. TELEA, J. J.VAN WIJK, Simplified Representation of Vector Fields, Proceedings of IEEE
Visualization ’99, ACM Press, 1999.

[112] M. J. TODD, The Computation of Fixed Points and Applications, Lecture Notes in Economics
and Mathematical Systems 124, Springer Verlag, 1976

[113] C. UPSON, T. FAULHABER, D. KAMINS, D. LAIDLAW , D. SCHLEGEL, J. VROOM, R. GUR-
WITZ, AND A. VAN DAM, The Application Visualization System: A Computational Environment
for Scientific Visualization., IEEE Computer Graphics and Applications, July 1989, 30–42.

[114] P. WALATKA , P. BUNING, L. PIERCE, P. ELSON, PLOT3D User’s Manual, NASA Technical
Memorandum 101067, March 1990.

[115] T. VAN WALSUM, F. H. POST, D. SILVER, F. J. POST, Feature Extraction and Iconic Visual-
ization, IEEE Transactions on Visualization and Computer Graphics, vol. 2, no. 2, June 1996, pp.
111-119.

[116] J. WERNECKE, The Inventor Mentor: Programming Object-Oriented 3D Graphics with Open
Inventor, Addison-Wesley, 1993.

[117] J. J.VAN WIJK AND R. VAN LIERE, An environment for computational steering, in G. M. Niel-
son, H. Mueller and H. Hagen, eds,Scientific Visualization: Overviews, Methodologies and Tech-
niques, computer Society Press, 1997

[118] S. WOLFRAM, The Mathematica Book, 4th edition, Cambridge University Press, 1999.

[119] M. WOO, J. NEIDER, T. DAVIS, D. SHREINER, The OpenGL Programming Guide, 3rd edition,
Adison-Wesley, 1999.

[120] E. YOURDON, L. CONSTANTINE, Structured Design: fundamentals of a Discipline of com-
puter Program and Systems Design, Prentice Hall, 1979.

178 BIBLIOGRAPHY

Summary

Better insight in complex physical processes requires the integration of scientific visualization and
numerical simulation in a single interactive software framework. Typical simulation and visualisa-
tion (SimVis) frameworks for research applications distinguish between three user roles. End users
steer and monitor a simulation via virtual cameras, direct manipulation, and graphics user interfaces.
Application designers construct applications by assembling domain-specific components visually in a
dataflow network. Component developers write or extend components using a programming language.

Although numerous SimVis frameworks exist, few of them provide sufficient freedom for all three
user roles and allow the user to easily switch between these roles. Their most important limitations
regard intrusive code integration, limited automation for visual interface construction, and limited sup-
port of custom (object-oriented) data types.

This thesis describes the design and implementation ofVISSION, a general-purpose environment
for VIsualization andSteering ofSImulations withObject-orientedNetworks. VISSION addresses the
above SimVis systems’ limitations by introducing a new method for combining object-oriented appli-
cation code and dataflow code non intrusively. The application code, provided as C++ class libraries,
is not constrained by theVISSION system, as in most other SimVis frameworks. The interface between
these libraries andVISSION is provided at a meta-language level, by the MC++ language. MC++ adds
dataflow notions such as data inputs, outputs, and update operations to the C++ classes in a non in-
trusive, white box manner. The original code remains unchanged, which makes it easy to maintain,
extend, or replace. The component-based architecture ofVISSION provides also the automatic con-
struction of the component icons used for visual network editing and graphics user interfaces used for
application steering and monitoring.VISSION’s architecture, based on a single component develop-
ment language and automatic visual interface construction, ensures an easy role transition from com-
ponent development to application design and use.

A large number of SimVis applications built withVISSION is presented. They cover several do-
mains such as finite elements and finite difference simulations, scientific visualization, animation, and
realistic rendering. These applications are based on the integration inVISSION of several existing class
libraries, such as Open Inventor and VTK, or newly designed ones, such as the NUMLAB computa-
tional library. Overall, theVISSION system proves to be as flexible and easy to use for its end users and
application designers as similar commercial systems, while being much more versatile and extendable
for its component developers.

179

180

Samenvatting

Beter inzicht in complexe physische processen vraagt om de integratie van wetenschappelijke visual-
isatie en numerieke simulatie in een interactief software framework. Typische simulatie en visualisatie
(SimVis) frameworks voor onderzoek maken een onderscheid tussen drie gebruikersroles. Eindge-
bruikers besturen en monitoren een simulatie met behulp van virtuele cameras, direkte manipulatie, en
graphische user interfaces. Applicatieontwerpers construeren de toepassingen door het assembleren
van gebied-specifieke componenten in een dataflow netwerk op een visuele manier. Componenton-
twikkelaars maken gebruik van een programmeringstaal om componenten te schrijven of uit te brei-
den.

Hoewel er een groot aantal van SimVis frameworks bestaat, weinigen leveren genoeg vrijheid op
voor alle drie gebruikersroles en brengen de gebruiker in stand om makkelijk van role te wisselen.
Hun meest belangrijke beperkingen betreffen de intrusieve codeintegratie, beperkte automatisering
van de constructie van visuele interfaces, en beperkte ondersteuning voor gebruikerspecifieke (objekt-
georiënteerde) datatypen.

Dit proefschrift beschrijft de ontwerp en implementatie vanVISSION, een algemene omgeving voor
VIsualisatie en beStuur vanSImulaties metObjekt-georiënteerde netwerken.VISSION beantwoort de
bovenstaande beperkingen van SimVis systemen door de introductie van een nieuwe methode om
objekt-georiënteerde applicatie-code met dataflow-code te combineren op een niet intrusieve manier.
De applicatie-code, ingeleverd als C++ classenbibliotheken, wordt niet beperkt door hetVISSION sys-
teem, zoals het gebeurt met meest andere SimVis frameworks. De interface tussen deze bibliotheken
en VISSION wordt uitgevoerd op een meta-taal niveau, met behulp van de MC++ taal. MC++ voegt
dataflow noties, zoals in- en uitvoeren en update operaties, bij de C++ classen, op een niet intrusieve,
white-box manier. De oorsprongelijke code blijft onveranderd, dus makkelijk te onderhouden, uit te
breiden, of vervangen. De component-gebasseerde architectuur vanVISSION levert ook de automa-
tische constructie van componenteniconen op die worden gebruikt voor de visuele netwerkseditering,
evenals de graphische user interfaces die gebruikt worden voor het besturen en monitoren van appli-
caties. De architectuur vanVISSION, die gebasseerd is op een enkele taal voor componentontwikkeling
en automatische constructie van de visuele interfaces, bepaalt een makkelijke roltransitie van compo-
nentontwikkeling naar applicatieontwerp en gebruik.

Een groot aantal SimVis toepassingen gemaakt metVISSION wordt voorgesteld. Deze toepassin-
gen bedekken verscheidene gebieden zoals eindige elementen en eindige differenties simulaties,
wetenschappelijke visualisatie, animatie, en realistische rendering. Deze toepassingen zijn gebasseerd
op de integratie van verschillende bestaande classenbibliotheken inVISSION. zoals Open Inventor en
VTK, of nieuwe bibliotheken, zoals de NUMLAB computationele bibliotheek. Alles samengesteld
bewijstVISSION zich om net zo flexibel en makkelijk te gebruiken te zijn voor zijn eindgebruikers en
applicatieontwerpers als similaire comerci¨ele systemen en om meer versatiel en uitbreidbaar te zijn
voor zijn componentontwikkelaars.

181

182

Curriculum Vitae

Alexandru Telea was born in Bucharest, Romania, on July 16th, 1972. After completing his pre-
university education at the Informatics Highschool in Bucharest, he started in the same year to study
at the Polytechnical University of Bucharest. During the five years of faculty study, he received
three three-months study grants at the Eindhoven University of Technology (EUT). He graduated in
September 1996 in electrical engineering and computer science on the subject of radiosity lighting
simulations, carried at EUT under the supervision of dr. C.W.A.M. van Overveld.

From September 1996, he worked as a trainee research assistant (AIO) on an interdisciplinary
project in the groups Scientific Computing and Technical Applications at the faculty of Mathemat-
ics and Computing Science of the TUE. The research on scientific simulation and visualisation and
object-oriented software construction carried out in the period September 1996 - June 2000 led to this
thesis.

The work on theVISSION system described in this thesis began in September 1997, inspired both by
the author’s discussion with the Oorange development team at the VisMath ’97 symposium in Berlin
and his previous experience with the AVS system. Development ofVISSION and growth of its user
group continues in the present, after its first stable release in spring 1998.

183

