
Combining Object Orientation and Dataflow Modelling in the
vission Simulation System

Alexandru Telea
Department of Mathematics and Computer Science

Eindhoven University of Technology, The Netherlands
alext@win.tue.nl

Abstract

Scientific visualization and simulation frameworks mostly use data/event flow mechanisms
for simulation specification, control, and interactivity. Even though object orientation pow-
erfully and elegantly models many application domains, integration of OO libraries in such
systems remains difficult. The elegance and simplicity of OO design gets lost in the inte-
gration phase, as most systems do not support combination of OO and dataflow concepts.
We propose a general-purpose OO visualization and simulation system which addresses sim-
ulation design, control and interactivity by merging OO and dataflow modelling in a single
abstraction. The system’s advantages over similar ones are illustrated by a comprehensive
set of examples.

1: Introduction

Computer simulation and visualization (VisSym) have become well established tools for
disciplines as computational fluid dynamics (CFD), medical sciences, and realistic image
synthesis. Simulation software has evolved from problem-specific, monolithic applications to
general-purpose frameworks offering application interactive monitoring, control, and design,
using domain-specific components which are programmed independently on the framework
itself. Traditional VisSym framework design is usually centered on a dataflow mechanism:
applications are modelled as networks of computational modules exchanging data to perform
the required task. Interactive modelling is done by building the network in terms of visual
components’ representations selected from various domain-specific libraries. Interactive mon-
itoring and control is done by editing the modules’ input parameters and visually monitoring
their outputs. To be effective, such systems must offer also easy ways to design, reuse, and
extend application components and a preferably automatic way to import them into the
framework.

Object-oriented (OO) design is the favourite technique for designing, reusing and extending
component libraries. Current dataflow-based frameworks are however not built on object-
oriented foundations, at least not up to the point where integration of OO component libraries
would be a simple, automatic task. Users must often manually redesign the components to
the framework’s policy, a difficult and time-consuming task. Integrating the many existing,
independently developed OO component libraries is even a more formidable task, at which
existing frameworks usually fail.

We believe that the above problem is caused by the different views of the framework and the
libraries on the (OO) component notion. We addressed this by designing vission, a general

1

purpose environment for visualization and steering of simulations with objectual networks.
vission merges the data/event flow modelling familiar to visualization scientists with the
OO modelling familiar to application library developers in a single component abstraction.
Based on this abstraction which extends a C++ class, vission provides a better user in-
terface for simulation monitoring and steering than similar systems [5, 7, 15], and a visual
programming tool for dataflow network construction directly from C++ classes. Integration
of independently developed C++ libraries becomes a simple process.

In section 2 overview the requirements for VisSym frameworks and outline the limitations
of existing systems. Section 3 a gives a top-down outline of vission, showing how it meets the
previously described concepts. Section 4 outlines visison’s architecture and implementation.
Section 5 presents various applications. Section 6 concludes the paper with our current
research directions.

2: Simulation and Visualization Frameworks: Requirements and
Limitations

2.1: Requirements and User Roles

Modern VisSym tools [11, 17, 15] strive to satisfy the requirements of three user classes.
End-users (EU) investigate and steer simulations by virtual cameras, direct manipulation,
graphics user interfaces (GUIs), or some scripting language. Application designers (AD)
build simulations for the EU by assembling a set of predefined components. They require
a preferably visual tool for selecting components from various application domains to inter-
actively build the EU application. This is usually done by connecting the components in a
directed graph called a dataflow network. As the simulation runs, data flows from its source
through modules processing it up to the visualization modules [7, 5, 12]. The component
developers (CD) forms the third user category: he builds application libraries by writing or
reusing existing code. The CD needs to easily extend and reuse existing code as applica-
tion components, and that the system loading the components should constrain their design.
Most frameworks address the CD’s requirements by supporting some form of object-oriented
components. We shall use the term OO component to denote an OO software entity directly
reusable in a give framework’s context. Often the same person cycles through all roles (e.g.
a researcher who develops his code as a CD, then builds a test experiment as an AD, and
monitors and steers the final application as an EU). The cycle is repeated, as end-user insight
triggers application re-design for the AD, which may induce component changes, a task for
the CD. As the same person must quickly and frequently switch roles, frameworks should
not only offer freedom for each role, but also an ideally automatic way to make the work of
a role immediately available to the next role.

2.2: Limitations

Matching the above requirements to the most known VisSym frameworks, we have identi-
fied the following limitations:

2.2.1: Extensibility and Reuse Problems

While OO libraries written in e.g. C++ or Java are easily extensible by e.g. subclassing
(e.g. vtk [6] and Open Inventor [3] for C++ or Java3D for Java [14]), most frameworks require

relinking or recompilation to use new libary versions. They also often force components to
inherit from a common root class (hierarchies having different roots are not accepted) or use
only single inheritance (SI) in e.g. the C++ case [3, 7, 6].

2.2.2: Inflexible I/O Typing

By providing component typed inputs and outputs (also called ports in the dataflow termi-
nology), frameworks assist the AD with run-time type checking to forbid connections between
incompatible types. However, most systems’ run-time typing has only a few basic types (in-
teger, float, string, and arrays of these), and is not extensible with user defined types. By
value and by reference data passing are also rarely both supported in the same framework.
To provide run-time data conversion from one type to another, explicit conversion modules
[5, 6] or complicated run-time schemes to register conversion functions [3] are used, instead of
more elegant schemes present in some programming languages such as conversion operators
or copy constructors.

2.2.3: Intrusive code integration

As the development language is often richer in concepts than the target framework, the
CD must change his code to match the system’s standard (e.g. give up multiple inheritance,
pass by value, etc). Other frameworks require the components to be interfaced in a language
different from the development one (e.g. the tcl language used by [6, 7, 16] to interface C++
components), thus manual creation of wrapper classes. Sometimes the CD must add system-
specific code to his components in order to add dataflow and GUI functionality [5, 11, 15].
Many researchers reported that otherwise well-designed OO libraries could not be integrated
in VisSym frameworks due to the need to intrusively adapt their source code (sometimes
libraries were not available in source form).

2.2.4: Different Run-Time and Compile-Time Languages

Most VisSym frameworks implement their components in directly executable (compiled)
code for speed, and offer the EU interpreted languages to quickly set up experiments or issue
commands. The component development language is different and usually more powerful
than the run-time one for most frameworks (e.g. tcl for [7], V for avs, cli for [5]), making
some features of the latter unavailable in the former, and forcing users to learn two languages.

2.2.5: Manual GUI Construction

Even though GUIs could be automatically created from the components specification,
the CD usually must manually program (or interactively build [5]) them. Moreover, most
frameworks’ GUIs can edit only a few basic types (integers, strings, floats). There is no
support for editing user-defined types (e.g. a 3D vector) or user defined GUI widgets (e.g. a
3-dimensional virtual spaceball).

3: Overview of the vission System

From the presented limitations, we infer that the inability of current VisSym frameworks to
cope with their requirements is caused by their inability to directly accept the OO component
development language.

class IVSoLight
{ public:
 BOOL on;
 void setIntensity(float);
 float getIntensity();
 void setColor(IVSbColor&);
 IVSbColor getColor();
};

class IVSoDirectionalLight: public IVSoLight
{ public:
 void setDirection(IVSbVec3f&);
 IVSbVec3f getDirection();
};

node IVSoLight
{ input:
 WRPort "intensity" (setIntensity,getIntensity)

 editor: Slider
 WRport "color" (setColor,getColor)
 WRport "light on" (on)
}

node IVSoDirectionalLight: IVSoLight
{ input:
 WRPort "direction" (setDirection,getDirection)
}

Metaclasses: C++ classes:

Figure 1. Example of C++ class hierarchy and corresponding metaclass hierarchy

Our solution employs the C++ language in compiled form for the development of com-
ponent libraries, and in interpreted form for the application developer and the end user.
vission’s kernel is a C++ interpreter able to call C++ compiled code from dynamically
loadable user-written libraries, execute on-the-fly synthesized C++ code, and offer a reflec-
tion API. Next, we completely merge the OO and dataflow modelling concepts in a new
abstraction called a metaclass, which extends a C++ class with dataflow semantics to create
our framework’s component.

Component libraries are loaded in vission where the AD interactively builds dataflow
networks using a visual programming GUI based on simple mouse operations for component
instantiation, cloning, destruction, port connections and disconnections (Fig. 2) performed
on a visual representation of the metaclass instance. The visual icons for the metaclasses and
their instances, as well as the GUIs used for monitoring and modification of port values, are
automatically constructed by vission from the metaclass specification (Fig. 3).

3.1: The Metaclass Concept

A metaclass is a programming construct written in a simple object-oriented declarative
language. It adds a dataflow interface to a C++ class: a description of the inputs,outputs,
and update method, i.e. the code to be executed by the dataflow engine when the inputs
have changed. The metaclass inputs, outputs and update are delegated to its C++ class’s
public interface: when an input is written into, a C++ class method is called to perform the
write or a public member is written; when an output is read from, a method is called and
the return value is used or a public member is read. Inputs and outputs are typed by the
C++ types of their underlying methods or members. Metaclasses are object-oriented as they
can inherit inputs, outputs and update methods from other metaclasses (single, multiple and
virtual inheritance are supported) similarly to their underlying C++ classes, so a metaclass
hierarchy is isomorphic to the C++ hierarchy it extends. We added however some OO fea-
tures not present in C++ to the metaclasses, e.g. the possibility to selectively hide or rename
inherited features, similar to the approach described by Meyer in [9]. This proved useful when
managing complex metaclass hierarchies. Metaclasses having instantiable C++ classes can
be instantiated to create nodes which are connected in the dataflow network. A metaclass is
ultimately an object-oriented type for the dataflow mechanism, implemented in terms of the
C++ class type. Fig. 1 shows an example of two C++ classes of a larger hierarchy and their
corresponding metaclasses: the IVSoLight metaclass has three inputs for a light’s colour,
intensity, and on/off value, modelled by its C++ class’s methods with similar names, and of

types IVSbColor (a RGB colour triplet), float, and respectively boolean. Metaclass IVSoDi-
rectionalLight extends IVSoLight with an input for the light’s direction, of type IVSbVec3f
(a 3-space vector). Besides the C++ class member to metaclass port mapping, metaclasses
specify other informations such as the labels for the metaclass’s automatically constructed
GUI (Fig. 3) and optional widget preferences (for the intensity, a slider is preferred to a
typein in the above example). Appropriate widgets are automatically created based on the
ports’ C++ types (3 float typeins for IVSbColor and IVSbVec3f, a toggle for the boolean,
and a slider, as the user option specified, for the float). We address the requirements and
limitations from Section 2 as follows:

3.1.1: Extensibility and Reuse

The CD develops application C++ classes with no restriction imposed by vission (no
common root class required, multiple and virtual inheritance supported, etc) and organizes
them in application libraries. Dataflow semantics is next added by writing the metaclass de-
scriptions for the C++ classes in a straightforward fashion (the metaclass language has only
a few keywords and very simple declarative constructs). Metaclasses are grouped in libraries
using the C++ application libraries as implementation. Metaclass libraries can include other
metaclass libraries and metaclasses from one library can inherit from metaclasses in other
libraries, similarly to Java packages. When vission dynamically loads a metaclass library,
metaclasses from directly and indirectly included libraries are loaded, with their correspond-
ing C++ classes.

3.1.2: Flexible I/O Typing

Data flow between ports is based on the full OO typing offered by C++: it can be passed
by value, by reference, and can be of any type (fundamental or class). For class types,
constructors and destructors are automatically called when data flows from an output to an
input. Port connection type checking obey all C++ typing rules: a port of C++ type A
can be connected to a port of type B if A conforms to B by trivial conversion, subclass to
baseclass conversion, user-defined constructor and conversion operator [1]. This generalizes
the dataflow typing used by other systems: The Oorange system [7], based on Objective C,
offers by-reference but no by-value data passing. AVS/Express [5] limits the data types to the
ones provided by its own OO V language which lacks concepts as constructors, destructors and
multiple inheritance. Compiled toolkits as Open Inventor [3] and vtk [6] are only statically
extendable (all types must be known at compile time), so are unsuitable for a dynamic,
interactive environment.

3.1.3: Non-intrusive code integration

Metaclasses contain all information needed to render a C++ class directly usable by vis-

sion. The metaclass-C++ class pair resembles the handle-body idiom [2] or the Adapter
pattern [13], but is simpler than e.g. manual Adapter coding as the management of the par-
allel hierarchies is done automatically by the system, not the user. Separating the dataflow
information in the metaclass allows adding dataflow semantics to existing class libraries, even
when they are not available as source. The CD can focus on his application code without car-
ing that it will be later integrated in a dynamic system, managed by a dataflow mechanism,
and interactively steered by a GUI.

node

e

a

c

b

f
g

metaclass
library

network
editor

d

Figure 2. vission network editor (a) and visualization examples (b-f)

output port

input ports

 metaclass name
IVSoDirectionalLight

instance name
 obj0

Figure 3. Left: Metaclass icon. The ports’ graphical signs encode C++ type, by
value/by reference and other attributes. Right: metaclass GUIs

3.1.4: Single language solution

C++ is vission’s single language: application libraries are written in C++, the metaclass
ports are typed also in C++. The EU can type C++ code in a vission console to be
dynamically executed by the C++ interpreter (thus obviating the need of an extra scripting
language). We implemented a generic persistence mechanism which saves the values of all
node inputs and the network topology as C++ source code. The simulation state is fully
described by its inputs and connections since the internal values of the C++ objects are
not visible to the dataflow model, so it is enough to load and interprete the saved C++
source to restore the simulation. Finally, animations based on arbitrarily complex control
sequences are easily produced by writing C or C++ script-like files which is executed by
vission using metaclasses from the application libraries. Users don’t have to learn special-
purpose animation scripting languages, as it is the case in most animation systems.

3.1.5: Automatic GUI Construction

vission automatically builds GUI interaction panels or shortly interactors to examine
and modify any metaclass’s port values. Interactors create the third object hierarchy in the
system, isomorphic with the C++ class and the metaclass hierarchies: an interactor inherits
the widgets of the interactors of its metaclass’ bases. The three hierarchies match to the three
user classes: EUs are concerned with the interactors, ADs with the metaclass interfaces, and
CDs with the C++ classes. The interactor widgets directly reflect the C++ types of their
ports. For example, a float port can be edited by a slider, a char* port by a text type-in, a
three-dimensional VECTOR port by a 3D widget directly manipulating a vector icon in 3D,
a boolean by a toggle button, and so on (Fig. 3). vission’s widget set for the fundamental
C++ types is extendable by the AD with widgets for application-specific C++ types. In this
way, we provided GUI widgets for C++ types used by a visualization library we included in
vission, such as 3D vectors, colours, rotation matrices, and light values. vission associates
widgets to port types automatically at run-time by picking out of the available widgets the
one whose C++ type best matches the type of the port to edit. The best match rules are
based on a distance metric in type space between the type to edit and the type editable by
a widget, similar to C++’s type conformance rules. Users can customize an automatically
built GUI by supplying new GUI widgets or by specifying preferred widgets for certain ports
(prefer a float type-in to a slider for a float port, for example). Users can also change a port’s
widget at run-time by a mouse-posted menu with all widgets capable of editing that port.
The loose coupling between OO widgets and OO ports via the run-time best match rule,
the user-specifiable hints and the interactive widget switching correspond again to the three
user layers (CD,AD,EU) and give vission a very flexible but simple way of automating the
GUI creation process. Finally, vission offers a GUI for inspection and modification of the
C++ objects used by the metaclasses, similar to the visual object browsers offered by several
debugger environments. This GUI shows all public class members (in a format suitable to
their type) and methods, and allows the user to modify the non const members or call the
methods with interactively supplied parameters. This interface is useful for the CDs who
want to directly monitor the C++ classes bypassing the metaclass abstraction level.

4: Architecture

vission consists of three main parts: the object manager, the dataflow manager, and
the interaction manager (Fig. 4). Their operation is based on two secondary components:
the C++ interpreter and the library manager. All components communicate by sharing
the dataflow graph that describes the simulation. The key element is the C++ interpreter.
Operations throughout vission, such as connection or disconnection of ports, data transfer
between ports, node updates, GUI port editing, and command-line C++ interpretation are
all implemented as small C++ fragments dynamically sent to the interpreter. The GUI
construction and the port connection type checking use the interpreter’s reflection API. The
interpreter cooperates with the library manager to dynamically load and unload metaclass
libraries and their underlying compiled C++ classes, with the object manager to parse the
metaclass declarations and create and destroy nodes, and with the interaction manager to
manage the GUIs. Almost all code is executed from compiled C++ classes, leaving only a
tiny amount of interpreted C++. Performance loss as compared to a 100% compiled system
was estimated to be below 2%, even for complex networks intensively communicating with
the interpreter.

End user

Application developer

C++ Interpreter Interaction ManagerDataflow Manager

Dataflow Graph
Editor Widnow Editor Widnow

"type"

Center

Name

Value

ROTOR r1

12.45
-123.2
 60.66

Library Manager

Editor Widnow

Application libraries

Node n1

C++ Object obj1

void set(T)

C++ Interpreter

C++ Compiled
 Library

Node n2

C++ Object obj2

 U get()

transfer data (T1) port read (R1)

 interprete
"obj2.get()"
(R2)

call compiled
get() (R3)

port write (W1)

interprete
"obj1.set()"
 (W2)

call compiled
 set() (W3)

Data TransferUser Interface Write User Interface Read

(a) System Architecture (b) C++ Engine for Data Flow

Figure 4. Architecture of the Vission system

Figure 4 b presents the relationship between the port read and write operations, the
interpreted and compiled C++ code, and the high-level tasks (data transfer, GUI-based
inspection and modification of ports). A write operation in a GUI widget triggers a write to
a port of the GUI’s metaclass (step W1), which sends a C++ fragment of the form ”obj1.set()”
to the interpreter (step W2), the argument of set() being the data written to the GUI and the
target of the set() message being the metaclass’s C++ object obj1. The interpreter executes
the C++ fragment calling the set() method from the compiled application library (step W3).
A similar process occurs when reading a C++ value to refresh the GUI (steps R1,R2,R3).
To transfer data between two ports (step T1), a port read (steps R1,R2,R3) followed by a
port write (steps W1,W2,W3) is executed. The dataflow manager uses the above mechanism
to traverse networks automatically, calling node updates whenever an input changes. A less
common feature of vission is the support of networks containing loops, a very natural way
to describe iterative processes.

As networks often contain too many nodes to be handled in the editor, we introduced the
concept of node groups, which can contain arbitrarily nested subnetworks. Node groups can
be interactively constructed by adding nodes and ports to them, thus generalizing Oorange’s
nodes, AVS/Express’s macros, or Inventor’s node kits. Moreover, the EU can decide to
promote the structure of a node group to a ’type level’, i.e. automatically generate a metaclass
for it. This (the ’group’ metaclass) differs from the metaclasses presented so far (the ’C++-
based’ metaclasses) as its implementation is a whole metaclass subnetwork and not a C++
class. Group metaclasses can be stored in a metaclass library as usually and used later
exactly as C++-based metaclasses. They are very convenient for users who notice recurrent
subnetwork patterns in their applications and would like to manipulate them as named entities
in a single move, instead of building them from scratch every time.

5: Applications

The following presents some of the applications we have built with the vission framework.
We have chosen the Visualization Toolkit (shortly vtk) [6], a large, comprehensive C++
toolkit for scientific data representation, processing, and manipulation, and integrated it in
vission. in the vission system. For a rendering back-end we integrated Open Inventor [3],

a powerful 3D rendering and interaction toolkit. EUs can pick any vtk or Inventor class
(of the total of approximately 250, respectively 70) in the visual browser, instantiate, and
connect it with others, without knowing C++ or even knowing they are written in C++. We
had to write a single Adapter class [13] of around 120 C++ lines to connect all the Inventor
rendering and direct manipulation facilities to the vtk pipeline. Scalar, vector, tensor, and
medical visualizations were created with the vtk-Inventor metaclasses (Fig. 2 a,b,d,f) easier
than when using similar systems. The integration required writing around 320 metaclasses, of
an average length of 6 lines, and absolutely no change to the two libraries (of which, Inventor
was not even available as source code).

Radiosity-based illumination simulation software [10] often requires delicate tuning of many
input parameters, and thus can not be used as black box pipelines. Testing new algorithms
requires also the configurability of the radiosity pipeline. These options are however rarely
available to non-programmers in current radiosity software. We addressed this by including
a radiosity system written in C/C++ by us before vission was conceived, into vission. The
simulation’s output was easily made available for visualization in the Inventor library by the
creation of an Adapter module. Users can now change all the parameters along the radiosity
pipeline, easily insert new algorithms by e.g. subclassing, and visually monitor the rendered
output (Fig. 2 c).

Finite element (FE) applications mostly come as packages limiting the user’s interaction to
file input/output. By integrating our FE C++ library [8] in vission, we enable researchers
to specify and solve FE problems interactively, experiment with different numerical tech-
niques (some were written and loaded in vission in less than two hours), and monitor error
and convergence rates, without quitting the environment to redefine input files or recompile
(Fig. 2 g).

6: Conclusion

vission is a general-purpose visualization and simulation framework built on an object-
oriented foundation. It offers specification, monitoring, and steering of generic simulations
and removes many limitations of similar systems by merging the powerful, yet so far inde-
pendently used OO and dataflow modelling concepts, in the context of the C++ language.

We enhanced the traditional simulation system dataflow mechanism to an object-oriented
one by the metaclass concept, which extends C++ classes non-intrusively with dataflowse-
mantics. Adding application code to vission is simpler as compared to similar systems,
and clearly separates application library design from system-specific dataflow information
present in the metaclasses. We have provided a mechanism for automatic GUI construction
for the OO metaclasses, and a way to add type-specific, user-defined widgets, based on OO
typing. vission’s key design issue, the C++ interpreter/compiler combination, shows that
one can combine the advantages of interpreted environments (run-time flexibility, ease of
use, reflection APIs) with the speed and extensive set of features of compiled C++ (multiple
inheritance, pass by value for user types, etc). We could have implemented vission based
on the Java Beans component model as well, but we preferred C++ for the sake of direct
integration of existing C++ legacy code, speed, and also for the extra design freedom offered
e.g. by multiple inheritance and by value data passing.

Several applications illustrate the advantages a fully object-oriented computational steering
architecture provides. Component designers could include libraries for scientific visualization
and rendering (420 classes), radiosity (18 classes) and finite element analysis (25 classes) in

vission in a short time (approximately 2 months, 5 days, respectively 10 days). Application
designers and end users could effectively use vission in a matter of minutes. The strong
separation of pure application code (written by the component designer) from infrastructure
as dataflow mechanisms, GUIs, persistence (provided by vission) makes the code to be
written by the former clearer and also very concise. This is noteworthy since most existing
VisSym toolkits [4, 3, 6] (OO or not) dedicate up to 50% of their code to backbone services
implementation as the ones we mentioned. Library designers may thus save 50% of their time
if the infrastructural services are automatically provided. Moreover, once the backbone can
be reused, it is coded just once (in vission) and not replicated in endless flavours among the
open set of application libraries.

We are extending vission with features such as metaclass hierarchy browsing, automatic
documentation, and a generalization of the dataflow model to include also code flow, that
is to have modules exchange fragments of dynamically created C++ code to be interpreted,
which should create multiple new possibilities for modelling simulations. Parallel work is
targeted at the inclusion of other application domains as numerical iterative solvers and their
coupling with the already available libraries.

References

[1] B. Stroustrup, The C++ Programming Manual, Addison-Wesley,1993.

[2] J. O. Coplien, Advanced C++ Programming Styles and Idioms, Addison-Wesley, 1992

[3] J. Wernecke, The Inventor Mentor: Programming Object-Oriented 3D Graphics with Open Inventor,
Addison-Wesley, 1993.

[4] A. M. Bruaset, H. P. Langtangen, A Comprehensive Set of Tools for Solving Partial Differential
Equations: Diffpack, Numerical Methods and Software Tools in Industrial Mathematics, (M. Daehlen

and A.-Tveito, eds.), 1996.

[5] C. Upson, T. Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz, and

A. van Dam, The Application Visualization System: A Computational Environment for Scientific Visu-
alization., IEEE Computer Graphics and Applications, July 1989, 30–42.

[6] W. Schroeder, K. Martin, B. Lorensen, The Visualization Toolkit: An Object-Oriented Approach to
3D Graphics, Prentice Hall, 1995

[7] C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, U. Schwarz, Oorange: A Virtual Laboratory for
Experimental Mathematics, Sonderforschungsbereich 288, Technical University Berlin. URL http://www-
sfb288.math.tu-berlin.de/oorange/OorangeDoc.html

[8] A.C. Telea, C.W.A.M. van Overveld, An Object-Oriented Interactive System for Scientific Simu-
lations: Design and Applications, int Mathematical Visualization, H.-C. Hege and K. Polthier (eds.),
Springer Verlag 1998

[9] B. Meyer, Object-oriented software construction, Prentice Hall, 1997

[10] M. F. Cohen and J. Wallace, Radiosity and Realistic Image Synthesis, Academic Press, 1993

[11] J. J. van Wijk and R. van Liere, An environment for computational steering, in G. M. Nielson, H.
Mueller and H. Hagen, eds, Scientific Visualization: Overviews, Methodologies and Techniques, computer
Society Press, 1997

[12] S. Rathmayer and M. Lenke, A tool for on-line visualization and interactive steering of parallel hpc
applications, in Proceedings of the 11th International Parallel Processing Symposium, IPPS 97, 1997

[13] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995

[14] The Java 3D Application Programming Interface, http://java.sun.com/products/java-media/3D/

[15] D. Jablonowski, J. D. Bruner, B. Bliss, and R. B. Haber, VASE: The visualization and application
steering environment, in Proceedings of Supercomputing ’93, pages 560-569, 1993

[16] J. Lemordant, Linear Inductive Reductive Dataflow System for ViSC, in K. Polthier, H.C. Hege, editors,
Visualization and Mathematics, Springer Verlag, 1997.

[17] G. A. Geist, J. A. Kohl, P. M. Papadopoulos, CUMULVS: Providing fault tolerance, visualization,
and steering of parallel applications, in The International Journal of Supercomputer Applications and
High Performance Computing, 11(3): 224-235, 1997

