
IEEE TVCG, 2021 1

UnProjection: Leveraging Inverse-Projections for
Visual Analytics of High-Dimensional Data

Mateus Espadoto , Gabriel Appleby , Ashley Suh , Dylan Cashman , Mingwei Li ,
Carlos Scheidegger, Erik W Anderson , Remco Chang , Alexandru C Telea

Abstract—Projection techniques are often used to visualize high-dimensional data, allowing users to better understand the overall
structure of multi-dimensional spaces on a 2D screen. Although many such methods exist, comparably little work has been done on
generalizable methods of inverse-projection – the process of mapping the projected points, or more generally, the projection space
back to the original high-dimensional space. In this paper we present NNInv, a deep learning technique with the ability to approximate
the inverse of any projection or mapping. NNInv learns to reconstruct high-dimensional data from any arbitrary point on a 2D projection
space, giving users the ability to interact with the learned high-dimensional representation in a visual analytics system. We provide an
analysis of the parameter space of NNInv, and offer guidance in selecting these parameters. We extend validation of the effectiveness
of NNInv through a series of quantitative and qualitative analyses. We then demonstrate the method’s utility by applying it to three
visualization tasks: interactive instance interpolation, classifier agreement, and gradient visualization.

Index Terms—Multidimensional data, Multidimensional projection, Inverse-projection, Back-projection.

F

1 INTRODUCTION

H IGH-DIMENSIONAL data is created at unprecedented
rates by scientific fields as diverse as information

technology, bioinformatics, and astronomy [1]. As a result,
there is a growing need for visualization and interaction
methods for high-dimensional data. A common choice is to
project the high-dimensional data to two dimensions using
methods such as t-SNE [2], PCA [3], LLE [4], or UMAP [5],
among the many other existing options [6].

Projections allow better insight into the overall structure
of data and can be enriched by interactions that allow users
to reason about the corresponding high-dimensional data
by selecting, brushing, and querying the 2D scatterplots
they create. For example, t-SNE has allowed computational
biologists to investigate human genetic data, revealing oth-
erwise obfuscated population stratification [7]. However,
any projection technique will create errors when mapping
complex and high-dimensional datasets to a low number of
dimensions [8], [9]. Moreover, projections are often complex
algorithms, so the way they map the high-dimensional
data to low-dimensional space can be difficult for users to
fully interpret. As such, additional mechanisms need to be
complement projections to empower users to better explore
the high-dimensional data.

Recently attention has turned to inverse-projection, a pro-
cess that allows one to compute the inverse mapping from
the projection space back to the original high-dimensional
data space [10]. Also called back-projections, these methods
help users to explore projections by allowing a user to inter-
actively query the projection space to find high-dimensional

• M. Espadoto is with the University of University of Sao Paulo.
• G. Appleby, A. Suh, and R. Chang are with Tufts University.
• D. Cashman was with Tufts University. He is now with Novartis.
• M. Li, and C. Scheidegger are with the University of Arizona.
• E. Anderson was with Northeastern University. He is now with Novartis.
• A. Telea is with the University of Utrecht.

Final details to be inserted.

data points. These points correspond to specific locations
in the low-dimensional projection. Inverse-projections are
also instrumental in explaining the decision boundaries of
machine learning classifiers [11] and data augmentation sce-
narios [10]. In contrast to the many existing projection tech-
niques [6], only a handful of inverse projection algorithms
exist, including iLAMP [10] and its extension that uses
radial basis functions (RBFs) [12]. Algorithms like iLAMP
and RBF are quite slow, and have multiple free parameters,
making it hard to use them in interactive data exploration
scenarios [11].

In this paper, we present NNInv, a technique for com-
puting the inverse of any projection using a deep learning
approach. Our idea is inspired by the recent work of Es-
padoto et al. [13] that demonstrates that deep learning can
learn to imitate the style of any projection technique, and is
parametric and stable to data changes (and thereby offers
out-of-sample capabilities). Following their approach, we
show that NNInv is a scalable, robust, high-quality inverse
projection method which supports multiple applications.

Using NNInv, we introduce three use cases across a
number of well-known datasets to illustrate how the use
of inverse-projection can improve the user’s interaction, ex-
ploration, and understanding of high-dimensional data in a
2D visualization. Additionally, we provide an evaluation of
iLAMP, RBF, and NNInv in terms of scalability and accuracy.
To this end, we provide a novel visualization for evaluating
the joint quality of a pair of inverse-projection and direct-
projection methods. We make a point of studying the NNInv
inverse-projection method on two synthetic datasets with
well-known topology (i.e., a 3D sphere dataset and a 3D
swissroll dataset), allowing us to illustrate the behaviors of
the learned inverse function.

Applications for this work are numerous. First, we use
inverse-projections to explore the “empty” spaces in a 2D
projection of high-dimensional data. While the user inter-

https://orcid.org/0000-0002-1922-4309
https://orcid.org/0000-0003-2436-2121
https://orcid.org/0000-0001-6513-8447
https://orcid.org/0000-0003-4853-5701
https://orcid.org/0000-0002-0457-8091
https://orcid.org/0000-0002-0334-8497
https://orcid.org/0000-0002-6484-6430
https://orcid.org/0000-0003-0750-0502

IEEE TVCG, 2021 2

Fig. 1. End-to-end pipeline of direct and inverse projections. A high-
dimensional vector representing an image of the number two is fed into
a projection technique. The orange numbers are the 2D projection of
this vector. The inverse projection NNInv takes this 2D representation
and yields a high-dimensional vector corresponding to it.

actively brushes such spaces, high-dimensional instances
corresponding to the visited 2D points are synthesized and
displayed, thus allowing one to form a better mental map
of how the 2D image represents the entire high-dimensional
data space, beyond how a 2D scatterplot represents a high-
dimensional dataset.

Second, we present a visualization of the decision
boundary of an ensemble classifier. Visualizing cluster
boundaries can help users see patterns within the data and
the behaviors of the classifiers (see the classifier comparison
by Scikit-Learn [14]). We show that the use of an inverse
projection method such as NNInv makes it possible to
visualize this important information with high-dimensional
data (see Fig. 2). Finally, we introduce a gradient map
visualization to help users find projection artifacts. This
method highlights regions where the projection shrinks and
expands the relationships between points by visualizing
the rate of change between the learned 2D embedding and
the original high-dimensional space. We show that NNInv
provides an alternative approach to helping the user “see”
the high-dimensional space in 2D.

In summary, the main contributions of this paper are:

• A deep learning approach to inverse-projection,
which is fast enough to be used at scale.

• A comparison to existing inverse-projection meth-
ods.

• An exploration of the behavior of NNInv on datasets
with well-known topology.

• Two novel visualizations for evaluating inverse-
projection methods.

• A showcase of visual exploration techniques enabled
by inverse-projection.

2 RELATED WORK

We divide our discussion of related work into two main
topics – visualization of high-dimensional data (Sec. 2.1) and
deep learning latent spaces (Sec. 2.2).

2.1 Visualization of High-Dimensional Data
We first list the notation used for the remainder of the paper.
Let x ∈ Rd be a d-dimensional data point, also called a

sample or an observation. Let D = {xi}, 1 ≤ i ≤ N be a
dataset of N such samples. The need to examine, interpret,
and explore high-dimensional datasets is not new. As early
as the 1970’s, Andrews [15] recognized the need to visualize
data whose dimension d exceeded the limits of what can
conventionally be drawn on a 2D plane. Geng [16] presented
several techniques and systems from stereoscopic imaging
to volumetric displays that allow visualizing d = 3 dimen-
sional data. Yet, as the dimensionality d grows beyond three
or four, it becomes clear that increasing the dimensionality
of display technology is not a solution.

2.1.1 Projections
Also called Dimensionality Reduction (DR) methods, pro-
jections are techniques that aim to go beyond the aforemen-
tioned limitations of high-dimensional visualization tech-
niques [17], [18], [19], [20], [21], [22], [23]. Formally put, a
projection technique P : D → Rm is a function that maps
every point x ∈ D of a high-dimensional dataset to a low-
dimensional counterpart P (x). Typically m ∈ {2, 3}, which
allows directly depicting the projection P (D) = {P (x)|x ∈
D} as a 2D or 3D scatterplot, respectively.

Projection techniques P aim to preserve the so-called
data structure between the original dataset D and its low-
dimensional counterpart P (D). Structure is captured in
terms of inter-point distances [4], [19], [24], point neigh-
borhoods [2], [5], or clusters [25]. Projections can be fur-
ther classified as linear [26] or nonlinear [18], [27]. Linear
techniques, such as PCA, are simple and fast to compute,
have an intuitive geometric interpretation, and robust asso-
ciation with statistical analysis. Nonlinear techniques, such
as UMAP, are generally more computationally expensive,
but strive to represent local neighborhood information with
minimal distortion. There are also a number of projection
techniques that generally fit under the RadViz family [28],
[29], [30]. RadViz is able to visualize multidimensional data
in 2D by anchoring each feature around the perimeter of
a circle, and leverages spring forces from those points to
assign each instance a location inside the circle. Projection
techniques are further classified, analyzed, and compared
both theoretically and practically in a number of surveys
[6], [9], [21], [31], [32], [33], to which we refer the reader.

All projection techniques P transform data between the
original space D and the projection space Rm. Several
techniques aim to show errors in this process, i.e., areas
in P (D) that may miss or not reflect actual structures in
D. For example, Stress Maps [34] is a visual analysis tool
that displays the local stress values, or how local distance
relationships have changed, under a projection algorithm.
Other error metrics and subsequent visualization mecha-
nisms include trustworthiness and continuity [35], false and
missing neighbors [8], [36], and false neighborhoods and
tears [37], [38]. Surveys of such metrics are given in [6], [9].
In order to demonstrate potential changes of P (D) caused
by a hypothetical perturbation of the data in D, DimReader
[39] utilized a filled contour plot in the background. t-viSNE
[40] focuses on helping users understand t-SNE projections,
such as how hyperparameters affect the properties of the
final projection. Probing Projections [41] allows users to
display the value of any attribute through a background
heat map, and also enables users to correct distance errors

IEEE TVCG, 2021 3

in the projection by moving individual points in P (D) on
the 2D projection space. A similar technique is proposed
by LAMP [19]. In contrast, Dis-Function [42] updates the
mapping P from the user’s dragging of data points to
generate new, and hopefully better, projections. Sirius [43]
allows practitioners to investigate both the observations and
attributes of a dataset through symmetric projections.

Choosing a good projection – one which yields a low
projection error on a given family of datasets, is simple to
use in terms of parameter setting, is robust to small changes
in the data D, and is computationally scalable to large di-
mensions d and sample counts N – is challenging. Recently,
Neural Network Projection (NNP) [44] was proposed as a
method to achieve these goals by leveraging deep learning:
Given a dataset D, a small subset DS ∈ D is chosen and
projected by any user-chosen technique P . After a suitable
projection P (DS) is obtained by tuning P ’s parameters, a
fully-connected feed-forward neural network is trained to
infer P (DS) from DS . The trained network is then used
to project any data drawn from a similar distribution as DS .
NNP has shown remarkable ability in producing projections
that mimic a wide range of techniques P on many types of
datasets, with little or no parameter tuning [13]. Moreover,
NNP is parametric, making it robust to small-scale data
changes inD while also providing an out-of-sample capabil-
ity – that is, NNP learns a continuous function P : Rn → Rm
with n << m rather than a discrete mapping formed by a
non-parametric projection. NNP is important as a basis for
the discussion of inverse-projections in the next section.

2.1.2 Inverse Projection

Inverse-projection can be seen as a function P−1 : Rm →
Rn, which should ideally be the mathematical inverse of
a given projection P , i.e., P−1(P (x)) = x,∀x ∈ D. A
crucial component of inverse-projections is that they should
have an out-of-sample ability that can be expressed as a
continuous mapping, which is generally not the case for
direct (discrete) projections. Thus, P−1 can be used to invert
points that fall between the points of the scatterplot P (D),
helping the user to understand what kind of data samples
could project at a particular location in P (D). This ability
further supports applications such as data augmentation
and classifier exploration [11], [45].

Inverse-projection is inherently harder than direct projec-
tion due to the need for an out-of-sample ability and the fact
that P−1 needs to synthesize a high number of dimensions
d from a lower dimension m. Early on, autoencoders were
proposed to jointly infer both P and P−1 by deep learning
to minimize the projection error from Rn to Rm [46]. While
autoencoders are parametric, the resulting mappings are
not always intuitive [18] and autoencoders can be difficult
to train [47]. Amorim et al. approach inverse-projection in
iLAMP [10] by using local affine transformations, following
the earlier idea of the LAMP direct projection technique
[19]. Mamani et al. also use local affine transformations in
their inverse-projections as a part of their work on user-
driven feature space transformation [48]. iLAMP was later
extended by leveraging radial basis functions (RBFs) to pro-
vide a smoother inverse mapping P−1, which was shown to
be useful for data augmentation [12]. Kriegeskorte and Mur

[49] proposed inverse MDS, which infers pairwise dissim-
ilarities from multiple 2D arrangements of items. Cavallo
et al. [50] used inverse-projection in Praxis, an interactive
exploratory analysis tool for high-dimensional data. The
authors leveraged the analytical inverse of PCA in addition
to an autoencoder to both project and inverse-project data.
Similarly, Zhao et al. [51] used a Grammar Variational Au-
toencoder (GVAE) [52] to project and inverse-project data
charts for steering exploratory visual analysis.

2.2 Latent Spaces with Neural Networks
Recent developments in machine learning and AI have
shown that deep learning approaches are both accurate and
flexible when used and trained properly [53]. In general,
neural network encoders work by learning a mapping from
the input data space Rd to a lower dimensional representa-
tion Rm called the latent space. This mapping, conceptually
similar to our projection P , is often difficult to interpret
as the latent dimensions are abstract. Moreover, the neu-
ral network’s operation is harder to understand than the
equivalent operation of a typical projection function P .

2.2.1 Interpreting the Latent Space
Interactive visualization tools have been developed to help
with analysis tasks that give a better understanding of latent
spaces. In particular, when a neural network model has
a generative component (e.g. autoencoders and Generative
Adversarial Networks), its latent space can be explained
by bringing data points back to the original space via its
generative component. Liu et al. [54] presented a latent
space cartography (LSC) visual analysis system for vector
space embeddings. The LSC system was created to address
common interpretation tasks for latent spaces. It provides
a means to both quantify attribute vector uncertainty and
compare multiple attribute vectors. Spinner et al. [55] also
used latent spaces to visually compare autoencoders with
variational autoencoders. A number of techniques have
been developed in order to try to disentangle the latent
features of autoencoders [56], [57], [58]. A recent work by
Gou et al. moved these advances forward within a full visual
analytics system for traffic light detection [59]. Additional
visualizations making use of, and explaining, latent spaces
are discussed in a recent survey [60].

3 LEARNING THE INVERSE PROJECTION

Figure 1 shows the operation of NNInv. Given a dataset
D ⊂ Rd, of N points, let P (D) = {P (xi)|xi ∈ D}, 1 ≤ i ≤
N be its projection by any user-chosen projection method
P . In practice, P (D) is a m = 2 dimensional scatterplot, so
P (D) ∈ R2. NNInv constructs an approximation B : R2 →
Rd of the inverse P−1 of P by using deep learning. Let

x̂ = B(θ,y) (1)

be a d-dimensional point x̂ inferred by the neural network
B from a 2D point y. Here, θ are the learned parameters of
the function B (i.e., the weights of the network). To train the
model, we minimize the loss between each predicted x̂i and
true xi within the training set (Ds ⊂ D, Ps ⊂ P (D)) using
some loss function.

IEEE TVCG, 2021 4

A B C D E

Fig. 2. Example of back projection-enabled interpolation in the original space, as a user explores regions between original data points. As the user
moves the mouse from a point representing the digit 0 (A) to a point representing the digit 6 (E), the pixel under the mouse is used as input to the
back projection. B-D show how, as the user moves closer to the original point, the recovered high-dimensional data is meaningfully interpolated.

3.1 Data
We used five different datasets across our evaluation and
proposed applications.

MNIST: This dataset [61] has N = 70K grayscale images
of hand-drawn digits, zero through nine. Each image is at
a resolution of 28× 28. The images have been translated so
that the center of mass of the pixels is at the center of the
image. The MNIST dataset is commonly used to illustrate
and measure the quality of projection techniques [2], [6],
[18], [44], [62].

Fashion-MNIST: This dataset [63] is constructed in the
same manner as the original MNIST dataset, but contains
pictures of different items of clothing. It was designed as a
slightly more difficult replacement for the MNIST dataset.

Blobs: This synthetic dataset has N = 70K points sampled
from a Gaussian distribution with 5 different centers
(clusters) in d = 50 dimensions.

Sphere: This dataset consists of N = 8K points uniformly
sampled from a 3D unit sphere. It allows us to clearly
demonstrate the behaviour of the projection techniques
included, and more importantly, offer a simple illustration
of our gradient map visualization.

Swiss Roll: This dataset consists of N = 70K points sam-
pled from a densely-sampled 2D patch which was smoothly
mapped to a “roll” in 3D. It is commonly used to gauge the
capability of projections to “unroll” the data back to its 2D
configuration [10], [19], [64].

3.2 Implementation
We next describe the design and tuning of the neural net-
work used to learn the inverse projection. Following [65],
and also the method used to tune NNP [13], we used grid
search to explore different architecture configurations: total
number of neurons, neurons per layer, and dropout values.

We ran the grid search across the four datasets
introduced in Sec. 3.1. As the direct projection P , we
used t-SNE, which was earlier shown to be the hardest
projection from a set of nine different projections to mimic
via deep learning [44]. Hence, we believe that t-SNE is
also a hard challenge to invert via NNInv. We varied the
training-set size |Ds| between 5250, 10500, 21000, and 42000
samples. To account for variation in random initialization
of the neural network weights, we ran each configuration
three times and averaged the results into a single error
score. We measure quality via mean absolute error (MAE)

Dataset L1 L2 L3 L4 MAE STD

Blobs

64 128 256 512 0.036941 3e-06
128 256 512 1024 0.036944 2.5e-05
256 512 1024 2048 0.036945 2.1e-05
640 1280 1280 640 0.03695 3.3e-05
240 240 240 240 0.036961 3.1e-05

MNIST

128 256 512 1024 0.06241 0.000425
640 320 320 640 0.062606 0.000113
640 320 320 640 0.062787 0.000551
480 480 480 480 0.06303 5e-05
480 480 480 480 0.063168 0.000258

FashionMNIST

1024 2048 4096 8192 0.072804 0.000411
1280 2560 2560 1280 0.072873 0.000136
512 1024 2048 4096 0.073108 0.000268
1280 640 640 1280 0.073209 6.5e-05
256 512 1024 2048 0.073214 0.00064

Swiss

64 128 256 512 0.011698 0.000489
256 512 1024 2048 0.012288 0.001286
640 1280 1280 640 0.013136 0.000805
160 320 320 160 0.013209 0.001
640 320 320 640 0.013929 0.001523

TABLE 1
Top five configurations per dataset sorted by lowest mean absolute

error (MAE), computed by averaging three different runs. Columns Li

show the number of neurons used in the respective hidden layers.

1
N

∑N
i=1 |xi − x̂i|, and also provide its standard deviation

across the three runs. Training is stopped automatically on
convergence, defined as the moment when the validation
loss stops decreasing. We next discuss the hyperparameters
investigated.

Network Architectures: We restricted ourselves to fully-
connected layers and used four hidden layers (L1, . . . , L4)
in each configuration. We varied the network shape and
number of neurons in each layer. The total number of
neurons ν in each network varied between 240, 480, 960,
1920, 3840, 7680, and 15360. We experimented with four
network shapes (see Table 2).

Shape |L1| |L2| |L3| |L4|
straight ν/4 ν/4 ν/4 ν/4
wide ν/6 ν/3 ν/3 ν/6
bottleneck ν/3 ν/6 ν/6 ν/3
fan-out ν/15 ν/7.5 ν/3.84 ν/1.875

TABLE 2
Shapes of the tested networks for learning NNInv.

Activation Functions: We used a ReLU activation function
for all hidden layers. Since the input data D is normalized
such that each of the d dimensions ranges over [0, 1], we
used a sigmoid activation function on the output layer.

Regularization: We used both early stopping and dropout,
with dropout probabilities of 0.125, 0.25, 0.5. Experiments

IEEE TVCG, 2021 5

showed dropout was not generally effective. We believe
that this is due to the fact that overfitting is unlikely given
that we used smaller networks and early stopping.

Loss Function: For the loss function we used MAE.

Optimizer: We used the Adam optimizer [66], given its
good performance with NNP [13], [44].

Table 1 shows the MAE and standard deviation (STD)
results for the top-five configurations of the 1536 tested
ones, i.e., the ones obtaining lowest error. The full results
including all configurations tested is available in the sup-
plemental material. The best architectures for each dataset
either had the same number of neurons in each layer, or
used a widening architecture which doubles or quadruples
the number of neurons in each successive layer.

Our results suggest that smaller architectures can be
used other than the original architecture from Espadoto et al.
[62]. The only dataset that performs better with more than
1920 neurons is the FashionMNIST dataset. For this dataset,
we obtain a slightly lower MAE when using 7680 neurons.
However, as in most cases observed, the error decrease is
negligible compared to the increase in complexity (network
size). Summarizing our findings from the tested datasets, we
offer suggestions for future experimentation: (1) networks
should follow a straight or fan-out style shape as described
in Table 2, and (2) even relatively small networks can
perform exceptionally well at this task as seen in Table 1.

4 APPLICATIONS OF INVERSE PROJECTION IN VI-
SUAL ANALYTICS

Traditional error calculations may tell something of the
overall loss, i.e., going from high-dimensional space to 2D
and back to the original space. However, a robust analysis
of an inverse-projection technique must include more than
just this type of error. This section focuses on a qualitative
evaluation of inverse projections using applications that
are of interest to the visualization community. In partic-
ular, we explore three use cases of inverse-projection in
visual analytics: (1) direct interpolation of high-dimensional
data using the 2D screen, (2) leveraging the generation of
high-dimensional data across the screen to per-pixel color
classifier agreement, and (3) using the generated high-
dimensional data to illustrate high gradient areas of the
projection.

4.1 Case Study 1: Dynamic Imputation

One shortcoming of the current use of projection methods
is that the projections are “one-way streets.” From a user
interaction and exploration standpoint, the most that a user
can do using such techniques is to select a data point in
the (2D) visualization and look up the original values of
that point in high-dimensional space. Due to this limitation,
the user’s exploration of the data is restricted. For example,
the user would have no easy way of knowing why two
data points appear close to each other in the 2D space, or
what other data points, if they existed, would appear near
or between these points.

4.1.1 Example with MNIST
In this case study, we demonstrate the use of inverse-
projection to perform “dynamic imputation.” The inspira-
tion for this case study comes from recent works by Cavallo
et al. [50] that explores inverse-projection with PCA and
autoencoders, and Kwon et al. [67] that generates graph
layouts from the user’s interactions in a 2D latent space.

Consider Figure 2: The user can select projected data
points in a 2D visualization (of the MNIST dataset) and see
their original values (see Figure 2A and Figure 2E), similar
to traditional visual analytics systems. However, with the
use of inverse-projection, the user can also select an “empty”
space between these data points (see the three inner images).
The inverse-projection function implicitly performs imputa-
tion (i.e., generating a new data point) when performing
inference over the 2D pixel location to find its position in
high-dimensional space.

Since the inference step of a trained neural network
is fast, this computation can be done in a web browser
and be made fully interactive using mouse hovering. In
this example, the computation time of inverse-projecting a
point in tensorflow.js on an Intel i7-8650U CPU is below
10 milliseconds. With this high degree of interactivity, the
user can quickly explore both the high-dimensional dataset
as well as the high-dimensional space (between data points)
itself. Figure 3 further showcases the ability of using inverse-
projection to interpolate between clusters. Here, the images
furthest to the left and right represent two visually distinct
objects (i.e., a pair of pants and a dress, and the digits 6 and
5). The images in between are interpolations generated by
the inverse-projection algorithm.

4.1.2 Evaluation of the Inverse Projection
Using this framework, we can also visually evaluate the
quality of the inverse-projection algorithm. Specifically, in-
stead of selecting an “empty” pixel, a user can select the 2D
position of an existing data point. We can then compare the
original values of the data point with the values generated
by the inverse-projection algorithm. For example, the two
images on the upper left side of Figure 4 are two different
styles of pants from the original Fashion-MNIST dataset.
The two images directly below, on the lower left side, are
those generated by the inverse-projection. Similarly, images
on the upper right side of Figure 4 are from the original
MNIST dataset, and images on the lower right side of
Figure 4 are generated. In both cases, the generated images
are “blurrier” than the originals. However, it is shown that
the inverse-projection function has successfully learned the

Fig. 3. Images generated when moving from one cluster to another
within a projection, and feeding the x and y coordinates into NNInv. Top
row: FashionMNIST, moving from class “pants” to class “dress”; bottom
row: MNIST, moving from class 6 to class 5.

IEEE TVCG, 2021 6

 Fashion-MNIST MNIST

D
e

co
de

d

O

rig
in

al

Fig. 4. Data points from the test portion of both datasets. The images
labeled as “Generated” illustrate the inverse-projection corresponding to
the projection of the images labeled as “original”.

important visual features of these images and can reproduce
them with high fidelity.

4.1.3 Implications to Visual Analytics
Although we used two relatively simple image datasets in
this case study (MNIST and Fashion-MNIST) for illustrative
purposes, the use of inverse-projection for dynamic imputa-
tion should be extendable to visual analysis of other high-
dimensional datasets, including temporal data, geographic
data, and tabular data. As such, having an accurate inverse-
projection function in a visual analytics system can allow the
system designer and the user to explore high-dimensional
data in ways that have not been possible. For example, in
the context of business analysis, the use of inverse-projection
for data imputation can serve as a “hypothesis generator” (e.g.,
Figure 2). With inverse-projection, the user can interpolate
between the 0 and the 6 from the original data, and use
inverse-projection to generate hybrid examples between.
While the generated data points are estimates of the inverse-
projection function, they may nonetheless serve as potential
hypotheses for an analyst to further explore.

4.2 Case Study 2: Model Agreements

Previous work in defining and interpreting back projections
has shown that creating dense pixel maps in the 2D projec-
tion space can provide additional insight into the behavior
of classification type tasks [11], [45], [62]. Figure 5 shows
how this concept is extended to highlight regions of lower
classification agreement.

4.2.1 Example with MNIST and Fashion-MNIST
We demonstrate ensemble classification confidence by cre-
ating dense pixel maps to show the classifier agreement of
two of the ten digits in the MNIST dataset (digits 1 and
7) and two of the objects in the Fashion-MNIST dataset
(handbags and shirts). While there is nothing preventing the
technique from being extended to multiclass classification,
as in previous work [11], [45], [62], we limit ourselves to
binary classification. In both cases, we begin by inverse-
projecting each screen pixel to learn its position in the high-
dimensional space. This high-dimensional point is then put
through some number (greater than one) of classification
methods. Since our dataset only contains two classes, each
of the classifiers will simply assign a data point to one
class or the other. We then color the pixel based on the

number of classifiers that predicted each class. As shown
in Figure 5, we color a pixel bright blue if the majority of
classifiers predicted class one, and bright red if the majority
of classifiers predicted class two. In between these two
extremes, pixels are colored by decreasing the amount of
saturation such that complete disagreement between the
models results in a white pixel – that is, half of the classifiers
says the data point inverse-projected from the respective
pixel belongs to class 1, while the other half says the point
belongs to class 2.

The ensemble is formed by nine classifiers, namely
Logistic regression, Linear SVM, SVM with radial basis
function, K-Nearest Neighbors, Gaussian Process, Decision
Tree, Random Forest, Adaboost, Gaussian Naive Bayes, and
Quadratic Discriminant Analysis. These classifiers represent
a diverse number of classification algorithms, including
linear and non-linear methods. The output from the nine
classifiers is used to generate the images in Figure 5, where
not only can we see the class memberships of each point,
we can also see the shape of the decision boundaries. For
example, we can combine the use of inverse-projection for
visualizing decision boundaries with its use for dynamic im-
putation, resulting in an interactive visual exploring system
for understanding the uncertainty of the classifiers.

As an illustrative example, consider the differences be-
tween t-SNE and UMAP in Figure 5. When only considering
the separability of the two clusters, one would likely assume
that UMAP outperforms t-SNE, especially for the MNIST
dataset (top row of Figure 5). However, when inspecting
the decision boundaries, it becomes less clear that the sep-
arability affects the classifiers’ abilities to distinguish data
points from one class to another. Specifically, in the t-SNE
example, although the separation between the two clusters
in the MNIST data is small, the boundaries are sharp and
clean. Conversely, while UMAP produces high separation
between the two clusters, there are disagreements between
the classifiers in that space.

4.2.2 Implications to Visual Analytics

While there has been a number of proposed methods for
illustrating the decision boundaries for classifiers of high-
dimensional data [11], [45], [68], [69], [70], our proposed
use of inverse-projection offers an alternative that can be
more flexible for visual analytics systems. As illustrated in
Figure 6, the user can hover over areas with low model
agreement (e.g., pixels that are white or near white), and see
what characteristics of the data might cause the classifier
models to disagree.

In the context of designing new visual analytics tech-
niques, the use of inverse-projection to help users better
understand the behaviors of machine learning models can
prove to be invaluable. Colloquially referred to as Explain-
able AI (or XAI), visualization researchers have been ac-
tive in developing novel visualization and interaction tech-
niques that can help a user understand, debug, and improve
a complex machine learning model. While the space of XAI
is large, we posit that the inverse-projection technique can
contribute to this broad space of research.

IEEE TVCG, 2021 7

F
as

hi
on

 M
N

IS
T

 M
N

IS
T

 t-SNE PCA LLE UMAP

1

0

Fig. 5. Classifier agreement map. Top row shows the result of classification of two digits in the MNIST data (digits 1 and 7), bottom shows
classification of two objects in the MNIST-Fashion data (handbags and shirts). Color in these images denote agreement between 9 classifiers. Red
represents agreements for class 1 and blue for class 2. More saturated colors indicate higher agreement. In between clusters where agreement is
low, the colors tend to be desaturated (white).

Fig. 6. Visual inspection of points in the decision boundary as yielded
by the ensemble classifier and drawn using back projection.

4.3 Case Study 3: Gradient Map Visualization

Related to Explainable AI (XAI), one of the primary use
cases for multidimensional projection is the visualization
and interaction of data that exists in high-dimensional
spaces that humans have difficulty interpreting. Unfortu-
nately, a side effect of projection is the loss of informa-
tion. To help mitigate the consequences of information loss
imposed by projection, most techniques strive to maintain
local relationships. In other words, they seek to preserve the
relative distances between neighboring data points in the
high-dimensional space in the two-dimensional projection.
Of course, keeping these relationships intact after projecting
is not always possible.

Using the concepts of data imputation, a more holistic
view of how a projection represents the spatial relationships
between data points is presented. The ability to determine
high-dimensional coordinates from a projected point in 2D
enables a more complete investigation of the consequences
of selecting a given projection technique by inspecting its

Fig. 7. Two equal length line segments (green and blue) are placed
on a Mercator projection of the Earth overlaid with its gradient image.
After inverse projection, the lengths of these segments are dramatically
different. The degree of change corresponds to the difference in the
pseudo total derivative, shown by the gradient image overlay in the
projection. Note that the green segment (in a region of low gradient)
shrinks vs the blue segment (in a high gradient region around the
equator). This figure is an illustrative example of how gradient images
function (note that the figure does not reflect the actual gradients of the
sphere).

gradient image (see Fig. 9). This image D is a 2D scalar field
representing a pseudo total derivative of inverse projection
function B computed using central differences as

Dx(y) =
B(y + (w, 0))−B(y − (w, 0))

2w

Dy(y) =
B(y + (0, h))−B(y − (0, h))

2h

D(y) =
√
‖Dx(y)‖2 + ‖Dy(y)‖2

where y is a point in the 2D projection space andw and h are
a pixel’s width and height, respectively. In summary, regions
of a projection with large gradient values illustrate where
the high-dimensional distance is changing most rapidly
with respect to the low-dimensional distance. Figure 8
demonstrates how values on either side of large gradient

IEEE TVCG, 2021 8

Fig. 8. An illustration of how illuminated areas in the gradient map show
areas where a small change in the low-dimensional space signifies a
large change in the high-dimensional space. On the left, there is a 2-
dimensional t-SNE projection of a 3-dimensional sphere, with a gradient
map underlaid. Two similar distances are highlighted, one that crosses a
highlighted area (green line), and one that crosses a dark area (orange
line). On the right, two spheres are drawn, one for the green area, and
one for the orange area. The dots on the spheres are the two closest
points to the green and orange lines in the projection. The points closest
to either end of the green line on the projection are much further away
on the sphere than the points closest to either end of the orange line.

values map to larger distances in the original data space,
compared to values on either side of small gradient values.
While the above method uses simple finite differences, any
method for computing the gradient magnitude of B is
appropriate.

4.3.1 Example with Sphere Data

Figure 7 shows how, under a standard projection for pa-
rameterization, even a simple three-dimensional sphere is
transformed into a stretched and squeezed plane. Here, two
equal length lines are placed on the parameterized plane
at different locations. When each line segment is inverse-
projected to recover the coordinates on the sphere, it is clear
that the relative lengths of each segment have changed con-
siderably. The degree of change is more completely under-
stood when it is observed in the context of the gradient map
overlaid onto this plane. In this case, areas towards the poles
of the globe intuitively have a gradient that approaches zero,
while the equator will have the highest gradient. Thus, a
line segment back projected from the two-dimensional plane
will necessarily shrink; however, a similar line segment
positioned near the equator will grow in length.

In the top row of Figure 9, a uniformly sampled three-
dimensional sphere was projected to a two-dimensional
plane using t-SNE, PCA, LLE, and UMAP. In these im-
ages, the sample points on the sphere are represented by
blue dots, while the background is colored with the gra-
dient image. In the cases of t-SNE, LLE, and UMAP, the
projections maintain similar gradient characteristics with
respect to neighboring points. However, there are some
points that project to regions of high gradient. These regions
are inevitable, as tears in the three-dimensional sphere are
required in order to represent it on a plane. Conversely, PCA
is a linear projection method that does not seek to preserve
neighborhood information between data points. As a result,

the gradient map under the data points is constant and
reflects the planar nature of the projection space.

4.3.2 Implications to Visual Analytics
The gradient maps shown in Figure 9 illustrate the use
of inverse-projection to help users see the quality of the
projection. It is relevant to note that the gradient maps
do not show the topology of an embedding space created
using a projection function, which is the goal of works like
Stress Maps [34]. Instead, these gradient maps represent
the reconstructed embedding space by the inverse-projection
function. In some cases the inverse-projection function does
not perfectly recover the original embedding space. For
example, the top row of the PCA column in Figure 9 shows
the reconstruction of a plane created by PCA in the 3D
sphere dataset. Notice that the reconstructed surface is not
perfectly linear as should be the case of PCA projections.

As such, we consider the gradient map as a debug-
ging mechanism similar to tools in the XAI community
for debugging machine learning models. In particular, the
gradient map can help data scientists and visual analytics
researchers to better understand the effect of projection and
inverse-projection when visualizing high-dimensional data.
For example, the top left image in Figure 9 shows the
projection of a 3D sphere using t-SNE. The intense colors
denote sharp discontinuities between the parts of the 3D
sphere separated by t-SNE. This information has illustrative
values and can be used to help a user better understand the
behaviors of a projection function such as t-SNE.

5 EVALUATION

We present an empirical evaluation of the inverse projection
function described in the previous section. In the following,
we split each dataset D into a training set Ds and a test
set Dp. We train NNInv using the pair (Ds, Ps). Within
Sections 5.1, 5.3, and 5.4 we restrict P to t-SNE, but also
explore PCA, LLE, and UMAP in Section 5.2. We next
evaluate the quality of NNInv using various error metrics
computed using Dp and Ps. We next discuss our method
in terms of scalability (Sec. 5.4), quantitative assessment of
quality (Sec. 5.1), qualitative assessment of quality (Sec. 5.2),
and our novel inverse-projection error map (Sec. 5.3).

5.1 Quantitative Assessment of Quality

Besides being fast, we want an inverse-projection to be
accurate. That is, given some ground truth pair (x ∈ Rd,y =
P (x) ∈ R2), unseen during training, we want B(y) to be as
close as possible to x. This follows the same idea as normal-
ized stress metrics used to gauge the quality of projections
in the literature [6], [18], [21] and also classical validation of
inference models in machine learning. We measure quality
in our case by computing the average inverse-projection
mean square error MSE = ‖x − B(P (x))‖2/|Dp| over the
test set Dp. The closer MSE is to zero, the better B is. While
we minimized MAE in our loss function, we report MSE
here to enable easier comparison to earlier papers [10], [12].

Figure 10 shows the MSE for our three datasets, two
projections (t-SNE and UMAP), and three tested inverse
projections (iLAMP, RBF, and NNInv). We also consider

IEEE TVCG, 2021 9

 t-SNE PCA LLE UMAP

S
w

is
s

R
ol

l

S

ph
er

e

1

0

Fig. 9. Gradient maps for 3D sphere dataset (top row) and 3D swissroll dataset (bottom row), showing the pseudo total derivative of the
neighborhoods of all inverse-projected data points. Blue dots represent the points projected from three dimensions to two. The gradient at each
pixel is determined by inverse-projecting each pixel’s neighborhood and computing the gradient in the recovered high-dimensional space. Overall,
the gradient maps show areas in the projections with high rates of change, suggesting peaks or valleys in the embedding space.

several training-set sizes |Ds| to show how MSE depends
on the training amount. For Blobs, a relatively easy-to-
project synthetic dataset, all methods have essentially zero
error except RBF. MNIST and FashionMNIST show simi-
lar behavior: Our method achieves consistently one of the
lowest errors. Errors are larger for these real-world complex
datasets than for the synthetic Blobs, which is expected.

Fig. 10. Mean square error of iLAMP, RBF, and NNInv inverse projec-
tions (from [62]). This graphic serves a dual purpose, illustrating how
MSE depends on training-set size, and NNInv’s ability to achieve one of
the lowest errors amongst two other inverse-projection methods.

5.2 Qualitative Exploration

We explore NNInv’s performance on two well-understood
synthetic datasets, Sphere and Swiss Roll (Sec. 3.1). Simple
datasets where the projections are well understood give us
greater ability to reason about the inverse projection. In
particular it is easier to understand how error is distributed
across a dataset, as well as which projections will incur
higher error. To illustrate this, we once again split the
datasets into training (Ds) and test sets (Dp), this time
having 75 and 25 percent of the total data, respectively. We
then plot the projections of test portion (Pp) of these two
datasets in Fig. 11 and color the points by the root-mean-
squared error between the inverse-projections (B(Pp)) and

the true high-dimensional data (Dp). Error colormaps are
normalized within each image, so that we can better see
error variations within a given projection. Hence, colors
cannot be compared across rows or columns of Fig. 11.

When analyzing inverse projection results, we must re-
member that the concept of error encompasses inaccuracies
and faults in both the projection and the inverse-projection
methods. For example, linear techniques like PCA will have
a substantially different error profile compared to non-linear
techniques such as t-SNE, LLE, or UMAP.

For the sphere, t-SNE and UMAP are able to peel away
the surface, and error seems to congregate along the edges
of the structures that make up the peel. In contrast, PCA
and LLE end up with a slice out of the sphere causing the
largest error in the center of their slices. For the Swiss Roll
dataset, t-SNE, LLE, and UMAP are able to remove the swirl,
with UMAP and t-SNE making similar ribboned shapes
and LLE unraveling to an rectangle with perspective. In
contrast, PCA keeps the general shape of the spiral, causing
a speckling of high error throughout the whole structure.

Projecting high-dimensional space down to 2D is inher-
ently lossy, and each method will project the data to 2D
differently. This difference is not only visual – each projec-
tion method emphasizes certain aspects of the data. As a re-
sult, different techniques throw away different portions and
amounts of the high-dimensional data when performing
the projection. This means that certain projection techniques
will be easier to inverse-project than others.

For example, PCA does not aim to prevent overdrawing
or projecting different points to the same two-dimensional
location. As such, several data points can be projected to
the same position in 2D space, making it impossible to
correctly learn an inverse. In contrast, t-SNE and other
non-linear techniques work to maintain local neighborhood
relationships; when projecting a set of points, they try to
preserve the relative distances in the projection that exist in
the original space. In cases where there is poor preserva-

IEEE TVCG, 2021 10

t-SNE

S
ph

er
e

S
w

is
s

R
ol

l

0.9

6.1

1.1

19

PCA

1.0

LLE

3.4

1.3

4.6

UMAP

0.0

0.0

0.0

0.2

0.0 0.0

0.10.1

Fig. 11. Validation maps showing inverse-projection error. Top row: Validation of the sphere dataset under four different projections. Bottom row:
Validation of the swiss roll dataset under the same projections. Reconstruction error is computed by comparing the inverse-projected location with
the original point’s location. Each figure is scaled separately to highlight how the error distributed within that figure, so figures cannot be directly
compared. The min and max error of each figure can be found below each plot on either end of a color legend.

tion of inter-cluster distances, NNInv remains a valuable
tool. If an area in the projection is shrunk or expanded
relative to the high-dimensional space, the rate of change
between inverse-projections will either increase or decrease
respectively. When the interpolation moves very quickly,
NNInv may be less useful for tasks like dynamic imputation
(Sec. 4.1), but NNInv can help identify these spots with
gradient maps (Sec. 4.3). The properties of each projection
technique inform and define the types of errors exhibited
during the inverse-projection process.

As Fig. 11 shows, one consequence of PCA projecting
multiple distant points to a small region on a 2D plane is
that the inverse-projected points will likely be erroneous.
In this case, the error increases as the distance in the high-
dimensional space increases between points co-located on
the 2D projection. Conversely, for t-SNE and UMAP, the
non-linear projections distort the input geometry, often into
shapes that no longer resemble the topology of the original
data. In return, the inverse-projected data points from 2D
back to the high-dimensional space are much closer to their
original positions, resulting in significantly smaller total
error. In other words, better grouping by similarity as well
as better separation of points will make inverse-projection
easier.

5.3 Dense map of inverse projection error

Evaluation of inverse-projection methods often uses error
metrics defined for direct projections such as stress or
reprojection error [10], [12]. However, the above metrics
only gauge the error at the locations of projection points
P (D). The same is actually the case for all errors for direct
projections we are aware of – they only gauge how good
a (direct) projection is at the locations of the scatterplot
points. As explained earlier in Sec. 2.1.2, the key use-case

of inverse projections is the out-of-sample one, where one
inversely projects different points than P (D).

We next propose a validation approach that considers
the out-of-sample case, i.e., evaluates the quality of B at all
points in R2. We proceed as follows. Given a dataset D,
we construct P (D) as usual given a user-chosen projection
technique P , and use (D,P (D)) to train our inverse projec-
tion B. Next, we discretize the projection space R2 using a
pixel grid with a given resolution R, in our case R = 400.
Then, for every pixel y, we compute the pixel y′ = P (B(y))
given by the “round trip” of back projecting it to Rd and
next projecting it again to R2. To perform this, we must
assume that P is parametric. Then, ideally, y = y′ for all
pixels y. This way, we can assess an inverse projection error
also for points in R2 which do not correspond to projections
of points in our given dataset D.

We visualize the round-trip errors as a dense map as
follows. We create a hue image by bilinear interpolation of
four different hues (Fig. 12a). Next, we color every pixel y
by the hue of the round-trip pixel y′ and set its luminance
to ‖y − y′‖. Dense map areas which show the same color
gradient as Fig. 12a have, thus, low inverse-projection er-
rors. Bright areas and/or hue differences from this gradient
show large projection errors. Scatterplot points are colored
in the same way, but use a slightly lower brightness value
to avoid confusion with the map pixels. Figures 12b-d show
the error maps for iLAMP, RBF, and NNInv for the inverse
projection of the MNIST dataset projected by t-SNE. We
see that NNInv creates a color gradient which is close to
the reference one, has minimal discontinuities, and has few
bright spots. Hence, NNInv can inverse-project the entire
2D space without introducing large amounts of error.

IEEE TVCG, 2021 11

 a) Reference b) iLAMP c) RBF d) NNInv

Fig. 12. Differences of “round-trip errors” with three inverse techniques (iLAMP, RBF, and NNinv). See Sec. 5.3 for an in-depth discussion.

5.4 Scalability in Training and Inference

Scalability implies the effort required to train our method
and, separately, the effort needed to infer B(T) as function
of the size of the dataset Y to inversely project. Concerning
training, Table 3 shows the number of training epochs
needed to obtain convergence (defined as in Sec. 3.2) as
function of the training set size |Ds|, for all three considered
datasets and P = t-SNE. Columns 2..4 indicate averages for
multiple runs created by randomly sampling Ds from the
entire datasetD. Overall, we obtain convergence for roughly
150 epochs for all datasets and training-set sizes.

Training set Average # epochs for each dataset D Row
size |Ds| Blobs Fashion-MNIST MNIST averages

500 268.0 214.0 213.5 192.5
1000 190.5 129.0 147.5 149.0
2000 153.0 112.0 111.0 112.5
5000 103.0 120.5 138.0 127.5
7000 127.0 118.5 151.0 144.0
10000 82.0 124.5 142.5 146.5

column avg 153.9 136.4 150.6 145.3
TABLE 3

Training effort until convergence.

Figure 13 shows the inference speed for all three
datasets. Speed does not depend on the projection method
P – once NNInv is trained, its performance is linear in the
number of inversely-projected samples. When computing
inference speed, we inversely project any point in R2 and not
just points in P (D). Indeed, for assessing speed, we do not
need ground-truth information. Moreover, in real use cases,
one would inversely project unseen data, for which such
ground-truth information is not available. We see that both
RBF and iLAMP have a superlinear behavior, while NNInv
(our method) is basically linear. NNInv is roughly one
magnitude order faster than RBF and nearly two magnitude
orders faster than iLAMP for 40K samples or more. This
speed-up is crucial for applications that need to inversely
project hundreds of thousands of samples (or more), like in
the construction of dense maps [45], [62] and the maps in
Sec. 4.2 and 4.3. NNInv constructs such maps in seconds,
while iLAMP and RBF need (tens of) minutes, making
human-in-the-loop usage of such methods impossible in
visual analytics scenarios – one of the key reasons why
dense maps are built in the first place. This scalability is
one of the most important advantages of NNInv.

All experiments were run on a 4-core Intel E3-1240 v6 at
3.7 GHz with 64 GB RAM and an NVidia GeForce GTX 1070

GPU with 8 GB VRAM, and the code was implemented in
Python 3 using the Keras library (keras.io).

Fig. 13. Inverse-projection speed vs number of samples [62]. Inverse-
projection speed is of great importance for applications that require the
inverse-projection of many samples, as is the case for the aforemen-
tioned classifier and gradient maps (Secs. 4.2 and 4.3).

6 LIMITATIONS

NNInv is scalable, accurate, and relatively smooth, as shown
in Sec. 5. Yet, using a neural network does have its disad-
vantages [71]. A neural network (1) requires a particular
threshold of good quality training examples, (2) can be
computationally expensive to train, and (3) can be generally
hard to interpret. In Sec. 5.1 we show acceptable mean
squared error with as few as 500 training examples, and
caution that below that threshold, our technique will not
perform as successfully. In all of the examples in this pa-
per, the projections NNInv are trained on are good quality
projections, obtained by choosing reasonable values for the
projection’s hyperparameters. Good quality projections are
generally more likely to have the qualities (as described
in Sec. 5.2) required for accurate inverse-projection. While
NNInv is useful in helping to interpret projections (e.g.,
Fig. 2), it can be difficult to reason about NNInv itself,
since neural networks are hard to interpret in general. That
is, our metrics show that NNInv performs better as it can
approximate nonlinear patterns, but it is not obvious how
NNInv does this. We leave the explainability of NNInv’s
improved performance to future work.

7 DISCUSSION AND FUTURE WORK

Future inverse-projection research can take several interest-
ing directions. Of particular relevance is the discussion in
Sec. 5.2 regarding the properties of projection techniques
and their inverses.

keras.io

IEEE TVCG, 2021 12

As Sec. 5.2 shows, when discussing the invertibility of
projection functions, we find that not all projection methods
are equally suitable for the inverse-projection method: PCA
is worse than t-SNE or UMAP because multiple data points
can be projected into the same 2D pixel.

Interestingly, a type of projection that is designed specif-
ically for its invertibility is the encoder portion of an au-
toencoder. When trained together with the decoder, the
entire process optimizes for the recoverability of data points
from input to output. Yet, a user would have a hard
time understanding the embedding of a regular encoder
because there is no intentionally designed structure in the
embedding space created with an encoder. Also, there are
no guarantees about neighborhood preservation or relative
distance preservation.

The tradeoff between understandability of the latent
space created by a projection and the appropriateness of
the projection for learning its inverse is interesting. On one
hand, a projection technique may sacrifice some information
to create a more insightful, or more spatially intuitive, visu-
alization. Yet, the use of inverse-projection can lead to novel
visualization and interaction techniques that can better help
the user explore and understand a high-dimensional space.
Further steps should be taken to find a happy medium
between these two extremes, whether that be autoencoders
with some cost for occlusion, or spacing items too far apart,
or a projection technique with a greater loss for discarding
information.

Accessible and fast inverse projections will have far-
reaching impacts on visual analytics (VA) systems that use
projections. We believe that a deep learning approach to in-
verse projection is especially accessible given today’s robust
ecosystem for neural network development [72], [73], [74],
[75]. We hope that future works along this line of research
continue to leverage approachable methods and libraries
that ease adoption for tool builders. The most potential use-
case is hypothesis generation made possible by dynamic
imputation (Sec. 4.1), but several different augmentations
exist, e.g., adding extra information showing how models
understand the data space in the same vein as classifier
agreement maps (Sec. 4.2), or helping projection users to
better understand the underlying structure as in gradient
maps (Sec. 4.3). We are particularly interested in how com-
binations of these techniques, as the hypothesis generation
paired with gradient map style backgrounds, can help users
who are less familiar with projection techniques make sense
of overview projections in VA applications.

Lastly, we believe there are several applications of this
technique that should be explored further. Projections and
inverse-projections can be used to explore the space of
different 2D charts that have themselves been projected to
2D (in a manner similar to ChartSeer [51]), and data that is
often modeled on graphs, such as molecular data.

8 CONCLUSION

In this paper, we present NNInv, a deep learning approach
to learning the inverse of projection functions. Similar to
existing works such as iLAMP and RBF, NNInv is agnostic
of the projection used, i.e., it can learn to invert any pro-
jection algorithm (such as PCA, t-SNE, UMAP, LLE, etc.).

NNInv uses a trained neural network to learn the approx-
imate mapping from a given 2D scatterplot produced by a
projection algorithm to the corresponding high-dimensional
data. We find that NNInv can be more accurate than iLAMP
and RBF on both synthetic and real-world datasets, and is
more scalable to large datasets: Once trained, NNInv can
perform inferencing within less than 10 milliseconds when
running in a browser on a laptop, which makes NNInv a
more suitable technique than iLAMP and RBF for interac-
tive visualizations. Lastly, we show the potential of NNInv
for analysis tasks such as hypothesis generation, classifier
agreement, and gradient visualization. These are three areas
important to the field of visual analytics and serve as evi-
dence to the possibility of the broad applicability of NNInv
in high-dimensional data exploration and analysis.

ACKNOWLEDGMENTS

This work was supported by National Science Founda-
tion grants IIS1452977, OAC-1940175, OAC-1939945, DGE-
1855886, DARPA grant FA8750-17-2-0107, and DOD grant
HQ0860-20-C-7137. We would also like to thank the review-
ers for their helpful feedback.

REFERENCES

[1] P. Buhlmann, Statistics for high-dimensional data : methods, theory and
applications, ser. Springer series in statistics. Heidelberg ; New
York: Springer, 2011.

[2] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of Machine Learning Research, vol. 9, no. 86, pp. 2579–2605,
2008.

[3] K. Pearson, “LIII. on lines and planes of closest fit to systems of
points in space,” The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.

[4] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction
by locally linear embedding,” science, vol. 290, no. 5500, pp. 2323–
2326, 2000.

[5] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction,” ArXiv
e-prints, Feb. 2018.

[6] M. Espadoto, R. M. Martins, A. Kerren, N. S. T. Hirata, and A. C.
Telea, “Toward a quantitative survey of dimension reduction tech-
niques,” IEEE Transactions on Visualization and Computer Graphics,
vol. 27, no. 3, pp. 2153–2173, 2021.

[7] W. Li, J. E. Cerise, Y. Yang, and H. Han, “Application of t-sne
to human genetic data,” Journal of bioinformatics and computational
biology, vol. 15 4, p. 1750017, 2017.

[8] R. Martins, D. Coimbra, R. Minghim, and A. C. Telea, “Visual
analysis of dimensionality reduction quality for parameterized
projections,” Computers & Graphics, vol. 41, pp. 26–42, 2014.

[9] L. Nonato and M. Aupetit, “Multidimensional projection for visual
analytics: Linking techniques with distortions, tasks, and layout
enrichment,” IEEE TVCG, 2018.

[10] E. P. dos Santos Amorim, E. V. Brazil, J. Daniels, P. Joia, L. G.
Nonato, and M. C. Sousa, “iLAMP: Exploring high-dimensional
spacing through backward multidimensional projection,” in 2012
IEEE Conference on Visual Analytics Science and Technology (VAST),
2012, pp. 53–62.

[11] F. C. M. Rodrigues, M. Espadoto, R. Hirata, and A. C. Telea, “Con-
structing and visualizing high-quality classifier decision boundary
maps,” Information, vol. 10, no. 9, p. 280, Sep 2019.

[12] E. Amorim, E. V. Brazil], J. Mena-Chalco, L. Velho, L. G. Nonato,
F. Samavati, and M. C. Sousa], “Facing the high-dimensions:
Inverse projection with radial basis functions,” Computers & Graph-
ics, vol. 48, pp. 35 – 47, 2015.

[13] M. Espadoto, N. S. T. Hirata, A. X. Falcão, and A. C. Telea,
“Improving neural network-based multidimensional projections,”
in Proceedings of the 15th International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applications,
vol. 3. SCITEPRESS, 2020, pp. 29–41.

IEEE TVCG, 2021 13

[14] ScikitLearn.org, “Classifier comparison,” https://scikit-learn.org/
stable/auto examples/classification/plot classifier comparison.
html, retrieved April 30, 2020.

[15] D. F. Andrews, “Plots of high-dimensional data,” Biometrics,
vol. 28, no. 1, pp. 125–136, 1972.

[16] J. Geng, “Three-dimensional display technologies,” Advances in
optics and photonics, vol. 5, no. 4, pp. 456–535, 2013.

[17] A. N. Gorban, B. Kégl, D. C. Wunsch, A. Y. Zinovyev et al., Principal
manifolds for data visualization and dimension reduction. Springer,
2008, vol. 58.

[18] L. Van Der Maaten, E. Postma, and J. Van den Herik, “Dimension-
ality reduction: a comparative review,” J Mach Learn Res, vol. 10,
no. 66-71, p. 13, 2009.

[19] P. Joia, D. Coimbra, J. A. Cuminato, F. V. Paulovich, and L. G.
Nonato, “Local affine multidimensional projection,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 17, no. 12, pp.
2563–2571, 2011.

[20] C. T. Silva, F. V. Paulovich, and L. G. Nonato, “User-centered
multidimensional projection techniques,” Computing in Science
Engineering, vol. 14, no. 4, pp. 74–81, 2012.

[21] C. O. S. Sorzano, J. Vargas, and A. P. Montano, “A sur-
vey of dimensionality reduction techniques,” arXiv preprint
arXiv:1403.2877, 2014.

[22] D. Sacha, L. Zhang, M. Sedlmair, J. A. Lee, J. Peltonen,
D. Weiskopf, S. C. North, and D. A. Keim, “Visual interaction with
dimensionality reduction: A structured literature analysis,” IEEE
transactions on visualization and computer graphics, vol. 23, no. 1, pp.
241–250, 2016.

[23] D. H. Jeong, C. Ziemkiewicz, B. Fisher, W. Ribarsky, and R. Chang,
“iPCA: An interactive system for pca-based visual analytics,” in
Computer Graphics Forum, vol. 28, no. 3. Wiley Online Library,
2009, pp. 767–774.

[24] F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz,
“Least square projection: A fast high-precision multidimensional
projection technique and its application to document mapping,”
IEEE Transactions on Visualization and Computer Graphics, vol. 14,
no. 3, pp. 564–575, 2008.

[25] F. V. Paulovich and R. Minghim, “Text map explorer: a tool to
create and explore document maps,” in Proc. IEEE IV, 2006, pp.
245–251.

[26] J. P. Cunningham and Z. Ghahramani, “Linear dimensionality re-
duction: Survey, insights, and generalizations,” Journal of Machine
Learning Research, vol. 16, no. 89, pp. 2859–2900, 2015.

[27] H. Yin, “Nonlinear dimensionality reduction and data visualiza-
tion: A review,” Intl. Journal of Automation and Computing, vol. 4,
no. 3, pp. 294–303, 2007.

[28] P. Hoffman, G. Grinstein, K. Marx, I. Grosse, and E. Stanley, “Dna
visual and analytic data mining,” in Proceedings. Visualization ’97
(Cat. No. 97CB36155), 1997, pp. 437–441.

[29] M. Angelini, G. Blasilli, S. Lenti, A. Palleschi, and G. Santucci,
“Towards enhancing radviz analysis and interpretation,” in 2019
IEEE Visualization Conference (VIS). IEEE, 2019, pp. 226–230.

[30] L. d. C. Pagliosa and A. C. Telea, “Radviz++: Improvements on
radial-based visualizations,” in Informatics, vol. 6. Multidisci-
plinary Digital Publishing Institute, 2019, p. 16.

[31] P. Hoffman and G. Grinstein, “A survey of visualizations for high-
dimensional data mining,” Information Visualization in Data Mining
and Knowledge Discovery, vol. 104, pp. 47–82, 2002.

[32] K. Bunte, M. Biehl, and B. Hammer, “A general framework
for dimensionality reducing data visualization mapping,” Neural
Computation, vol. 24, no. 3, pp. 771–804, 2012.

[33] S. Liu, D. Maljovec, B. Wang, P.-T. Bremer, and V. Pascucci, “Vi-
sualizing high-dimensional data: Advances in the past decade,”
IEEE TVCG, vol. 23, no. 3, pp. 1249–1268, 2015.

[34] C. Seifert, V. Sabol, and W. Kienreich, “Stress maps: Analysing lo-
cal phenomena in dimensionality reduction based visualisations.”
in EuroVAST@ EuroVis, 2010.

[35] J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski, “Informa-
tion retrieval perspective to nonlinear dimensionality reduction
for data visualization,” JMLR, vol. 11, pp. 451–490, 2010.

[36] R. Martins, R. Minghim, and A. C. Telea, “Explaining neigh-
borhood preservation for multidimensional projections,” in Proc.
CGVC. Eurographics, 2015, pp. 121–128.

[37] M. Aupetit, “Visualizing distortions and recovering topology in
continuous projection techniques,” Neurocomputing, vol. 70, no. 7-
9, pp. 1304–1330, 2007.

[38] S. Lespinats and M. Aupetit, “Checkviz: Sanity check and topolog-
ical clues for linear and non-linear mappings,” Computer Graphics
Forum, vol. 30, no. 1, pp. 113–125, 2011.

[39] R. Faust, D. Glickenstein, and C. Scheidegger, “Dimreader: Axis
lines that explain non-linear projections,” IEEE transactions on
visualization and computer graphics, vol. 25, no. 1, pp. 481–490, 2018.

[40] A. Chatzimparmpas, R. M. Martins, and A. Kerren, “t-visne: In-
teractive assessment and interpretation of t-sne projections,” IEEE
Transactions on Visualization & Computer Graphics, vol. 26, no. 08,
pp. 2696–2714, aug 2020.

[41] J. Stahnke, M. Dörk, B. Müller, and A. Thom, “Probing projections:
Interaction techniques for interpreting arrangements and errors of
dimensionality reductions,” IEEE transactions on visualization and
computer graphics, vol. 22, no. 1, pp. 629–638, 2015.

[42] E. T. Brown, J. Liu, C. E. Brodley, and R. Chang, “Dis-function:
Learning distance functions interactively,” in Visual Analytics Sci-
ence and Technology. IEEE, 2012, pp. 83–92.

[43] M. Dowling, J. Wenskovitch, J. T. Fry, S. Leman, L. House, and
C. North, “Sirius: Dual, symmetric, interactive dimension reduc-
tions,” IEEE Transactions on Visualization and Computer Graphics,
vol. 25, no. 1, pp. 172–182, 2019.

[44] M. Espadoto, N. S. T. Hirata, and A. C. Telea, “Deep learning
multidimensional projections,” Information Visualization, vol. 19,
no. 3, pp. 247–269, 2020.

[45] F. C. M. Rodrigues, R. Hirata, and A. C. Telea, “Image-based
visualization of classifier decision boundaries,” in SIBGRAPI Con-
ference on Graphics, Patterns and Images, 2018, pp. 353–360.

[46] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimension-
ality of data with neural networks,” Science, vol. 313, no. 5786, pp.
504–507, 2006.

[47] E. Vernier, R. Garcia, I. da Silva, J. Comba, and A. Telea, “Quanti-
tative evaluation of time-dependent multidimensional projection
techniques,” Computer Graphics Forum, vol. 39, no. 3, 2020.

[48] G. M. H. Mamani, F. M. Fatore, L. G. Nonato, and F. V. Paulovich,
“User-driven feature space transformation,” Computer Graphics
Forum, vol. 32, no. 3pt3, pp. 291–299, 2013.

[49] N. Kriegeskorte and M. Mur, “Inverse mds: Inferring dissimilarity
structure from multiple item arrangements,” Frontiers in Psychol-
ogy, vol. 3, p. 245, 2012.

[50] M. Cavallo and c. Demiralp, “A visual interaction framework for
dimensionality reduction based data exploration,” in Conference on
Human Factors in Computing Systems, ser. CHI ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 1–13.

[51] J. Zhao, M. Fan, and M. Feng, “Chartseer: Interactive steering ex-
ploratory visual analysis with machine intelligence,” IEEE Trans-
actions on Visualization and Computer Graphics, pp. 1–1, 2020.

[52] M. J. Kusner, B. Paige, and J. M. Hernández-Lobato, “Grammar
variational autoencoder,” in International Conference on Machine
Learning. PMLR, 2017, pp. 1945–1954.

[53] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2017.

[54] Y. Liu, E. Jun, Q. Li, and J. Heer, “Latent space cartography: Visual
analysis of vector space embeddings,” in Computer Graphics Forum,
vol. 38. Wiley Online Library, 2019, pp. 67–78.

[55] T. Spinner, J. Körner, J. Görtler, and O. Deussen, “Towards an
interpretable latent space: an intuitive comparison of autoencoders
with variational autoencoders,” in Proceedings of the Workshop on
Visualization for AI Explainability 2018, 2018.

[56] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “beta-vae: Learning basic visual
concepts with a constrained variational framework,” in ICLR,
2017.

[57] H. Kim and A. Mnih, “Disentangling by factorising,” 2019.
[58] T. Q. Chen, X. Li, R. B. Grosse, and D. Duvenaud, “Isolating

sources of disentanglement in variational autoencoders,” CoRR,
vol. abs/1802.04942, 2018.

[59] L. Gou, L. Zou, N. Li, M. Hofmann, A. K. Shekar, A. Wendt, and
L. Ren, “Vatld: A visual analytics system to assess, understand and
improve traffic light detection,” IEEE Transactions on Visualization
and Computer Graphics, pp. 1–1, 2020.

[60] R. Garcia, A. Telea, B. da Silva, J. Torresen, and J. Comba, “A
task-and-technique centered survey on visual analytics for deep
learning model engineering,” Computers and Graphics, vol. 77, pp.
30–49, 2018.

[61] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten
digit database,” ATT Labs [Online]. Available: http://yann. lecun.
com/exdb/mnist, vol. 2, 2010.

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

IEEE TVCG, 2021 14

[62] M. Espadoto, F. C. M. Rodrigues, N. S. T. Hirata, R. Hirata Jr.,
and A. C. Telea, “Deep Learning Inverse Multidimensional Projec-
tions,” in EuroVis Workshop on Visual Analytics, T. v. Landesberger
and C. Turkay, Eds. The Eurographics Association, 2019.

[63] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” CoRR,
vol. abs/1708.07747, 2017.

[64] M. Balasubramanian and E. L. Schwartz, “The Isomap algorithm
and topological stability,” Science, vol. 295, no. 5552, pp. 7–7, 2002.

[65] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search:
A survey,” Journal of Machine Learning Research, vol. 20, no. 55, pp.
1–21, 2019.

[66] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[67] O. Kwon and K. Ma, “A deep generative model for graph layout,”
IEEE Transactions on Visualization and Computer Graphics, vol. 26,
no. 1, pp. 665–675, 1 2020.

[68] M. A. Migut, M. Worring, and C. J. Veenman, “Visualizing multi-
dimensional decision boundaries in 2D,” Data Mining and Knowl-
edge Discovery, vol. 29, no. 1, pp. 273–295, Jan. 2015.

[69] L. Hamel, “Visualization of support vector machines with un-
supervised learning,” in 2006 IEEE Symposium on Computational
Intelligence and Bioinformatics and Computational Biology, 2006, pp.
1–8.

[70] A. Schulz, A. Gisbrecht, and B. Hammer, “Using Discriminative
Dimensionality Reduction to Visualize Classifiers,” Neural Process-
ing Letters, vol. 42, no. 1, pp. 27–54, Aug. 2015.

[71] Y. Bengio, “Deep learning of representations: Looking forward,” in
International Conference on Statistical Language and Speech Processing.
Springer, 2013, pp. 1–37.

[72] F. Chollet et al., “Keras,” https://keras.io, 2015.
[73] G. LLC, “Keras-tuner,” https://github.com/keras-team/

keras-tuner, 2019.
[74] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,

G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Good-
fellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensor-
Flow: Large-scale machine learning on heterogeneous systems,”
2015.

[75] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative
style, high-performance deep learning library,” in Advances in
Neural Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds.
Curran Associates, Inc., 2019, pp. 8024–8035.

Mateus Espadoto received his PhD in Com-
puter Science from the Institute of Mathemat-
ics and Statistics, University of São Paulo and
from the Bernoulli Institute, University of Gronin-
gen. He has about 20 years of experience in
data science and software development. His re-
search interests include machine learning, high-
dimensional data visualization and visual analyt-
ics.

Gabriel Appleby received his MA degree in
Computer Science at Tufts University where he
is currently working towards his PhD. His re-
search spans the fields of data visualization,
visual analytics, and machine learning.

Ashley Suh received her MS in Computer Sci-
ence from Tufts University where she is currently
pursuing a PhD. Her research interests include
information visualization, visual analytics, and
graph visualization.

Dylan Cashman received his PhD in Computer
Science from Tufts University. He received a
bachelor of science in Mathematics from Brown
University. Since 2020 he is a senior expert in
data science and advanced visual analytics in
the Insights, Strategies, and Design group at No-
vartis Pharmaceuticals. His research interests
include visualization for data science and inter-
active machine learning.

Mingwei Li received his PhD in Computer Sci-
ence from University of Arizona. He received the
BEng in electronics engineering from the Hong
Kong University of Science and Technology. His
research interests include data visualization and
machine learning.

Carlos Scheidegger Carlos Scheidegger re-
ceived his PhD from the University of Utah,
where he worked on software infrastructure for
scientific collaboration. He is an assistant pro-
fessor in the Department of Computer Science,
University of Arizona. His research interests in-
clude large-scale data analysis, information visu-
alization, and more broadly, what happens when
people meet data.

https://keras.io
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner

IEEE TVCG, 2021 15

Erik W Anderson received his PhD (2011) in
Scientific Computing from the University of Utah,
USA. He was a senior scientist for Electrical
Geodesics, Inc (EGI) until 2017 and then worked
in research and development at Philips Neuro
until 2020. Since 2020 he has been the Head
of the Visualization and Visual Analytics group
and Novartis Inc’s AI Innovation Center in Cam-
bridge, MA USA. His interests include high-
dimensional visualization, multi-modal modeling
and visualization, and biomedical image visual-

ization

Remco Chang received his PhD in computer
science from the University of North Carolina
Charlotte. He is an associate professor in com-
puter science with Tufts University. His research
interests include visual analytics, information vi-
sualization, human computer interaction, and
databases.

Alexandru C. Telea received his PhD (2000)
in Computer Science from the Eindhoven Uni-
versity of Technology, the Netherlands. He was
assistant professor in visualization and computer
graphics at the same university (until 2007) and
then full professor of visualization at the Univer-
sity of Groningen, the Netherlands. Since 2019
he is full professor of visual data analytics at
Utrecht University, the Netherlands. His inter-
ests include high-dimensional visualization, vi-
sual analytics, and image-based information vi-

sualization.

	Introduction
	Related Work
	Visualization of High-Dimensional Data
	Projections
	Inverse Projection

	Latent Spaces with Neural Networks
	Interpreting the Latent Space

	Learning the Inverse Projection
	Data
	Implementation

	Applications of Inverse Projection in Visual Analytics
	Case Study 1: Dynamic Imputation
	Example with MNIST
	Evaluation of the Inverse Projection
	Implications to Visual Analytics

	Case Study 2: Model Agreements
	Example with MNIST and Fashion-MNIST
	Implications to Visual Analytics

	Case Study 3: Gradient Map Visualization
	Example with Sphere Data
	Implications to Visual Analytics

	Evaluation
	Quantitative Assessment of Quality
	Qualitative Exploration
	Dense map of inverse projection error
	Scalability in Training and Inference

	Limitations
	Discussion and Future Work
	Conclusion
	References
	Biographies
	Mateus Espadoto
	Gabriel Appleby
	Ashley Suh
	Dylan Cashman
	Mingwei Li
	Carlos Scheidegger
	Erik W Anderson
	Remco Chang
	Alexandru C. Telea

