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ABSTRACT
We present a set of visualization methods for the analysis
of multivariate data recorded from the measurement of the
performance of athletes during training. We use a modi-
fied training device to measure the force, acceleration, dis-
placement, and speed of the athlete’s feet and arms while
performing a certain training exercise. We are interested
in visually measuring and comparing the performance over
several training sessions of the same and/or different ath-
letes. For this, we adapt and extend several visualization
methods for multivariate data. First, we use an enhanced
signal plot and statistics plot to visualize the regularityof
repetitions within a given exercise. Second, we use a novel
texture-based signal plot to eliminate signal noise and em-
phasize the average repetitive pattern of the exercise. Fi-
nally, we use a signal clustering technique, visualized with
a matrix plot, to detect similar exercises over long periods
of time. We demonstrate our approaches with actual data
from training sessions of several athletes.

KEY WORDS
Multivariate visualization, information visualization,vi-
sual analytics

1 Introduction

Modern training of high-performance sports athletes starts
making increasing use of computer equipment, data acqui-
sition, and data analysis technologies. Using such tech-
niques, both the athletes and their trainers can improve their
understanding of the way athletes perform during the exe-
cution of exercises or in the field. This insight is invalu-
able in optimizing several aspects of the training process
which are otherwise hard to detect and measure using con-
ventional training techniques. Computer-assisted training
techniques form an important element of the emerging do-
main of ’sports sciences’ [4, 1]

In our research, we are interested in understanding
and improving the performance of athletes involved in a
number of sports, such as swimming, rowing, and boxing.
In a typical training session, the athlete repeats a given mo-
tion, e.g. a row strike, or one sweep of a swim strike, sev-
eral times. During the session, we measure several signals
such as heart beat, and position, force, and acceleration of
the athlete’s limbs, as functions of time. A training session
is repeated several times a day, but also during different

days in a month or even over the period of an entire year.
This scenario delivers hundreds of megabytes of data per
athlete, which are stored for further analysis.

From such data, trainers are interested in answering a
number of questions to improve the athlete’s performance.
Typical examples include (from simple to complex):

• What is the acquired data? A simple method for
checking the raw acquired data is needed for control
purposes.

• How regular is an exercise? Delivering regular, rhyth-
mic, performance is a key quality factor for an athlete.
However, measuring regularity can be quite complex.

• How do signals correlate in time? For the swimming
exercise example, it is interesting to see how (and
whether) the left and right arms work in rhythm.

• How do signals evolve in time? The quality (e.g.
rhythm, speed, regularity) of an exercise can increase
or decrease during a session. Ways to make this visi-
ble are of great importance.

• How do several training sessions resemble each other?
This question is important for comparing either the
performance of an athlete during a longer period (e.g.
a whole year) or for comparing different athletes.

In this paper, we present a number of data analy-
sis and visualization methods which support answering the
above questions. Our methods adapt and extend existing
visualization techniques for multivariate time series. First,
we use an enhanced signal plot and statistics plot to visu-
alize the regularity of repetitions within a given exercise.
Second, we use a novel texture-based signal plot to elimi-
nate signal noise and emphasize the average repetitive pat-
tern of the exercise. Finally, we use a signal clustering
technique, visualized with a matrix plot, to detect similar
exercises over long periods of time. All in all, our visual-
izations empower trainers in detecting averages and trends
and discovering outliers in the athletes’ training in better
ways as compared to their regular procedures.

This paper is structured as follows. Section 2 presents
the work methodology and involved data types. Section 3
presents our enhanced visualization methods. Section 4
discusses our findings. Section 5 concludes the paper.



2 Methodology

The training application pipeline is sketched in Figure 1).
First, we measure a number of exercise dynamic param-
eters, using a combination of body sensors on the ath-
lete himself as well as several analog-to-digital converters
mounted on the training device. The measurement tech-
nology is described in detail elsewhere [2]. As the athlete
performs a number of repetitive exercises on the training
device, several signals are monitored on his/her body and
recorded. For a swimming exercise, for example, these sig-
nals include:

• thestrike force the athlete strikes the water with

• thedisplacement of the athlete’s arms

• thespeed andacceleration of the athlete’s arms

• theheart beat during the exercise

All above are measured for both the left and the right arms,
yieldingN = 8 signals. The acquired dataset is structured
as follows. For each sessionS, all the signalss1, . . . , sN

are recorded. A signalsi = {sj
i}j is a time series, or dis-

crete set of numerical sampless
j
i measured by the acqui-

sition devices, which represent the sampling of the time
functions(t). The sampling frequency can be different for
each signal of the same or different sessions, depending on
the measuring technology, but is typical quite high (tens of
samples a second). The typical duration of a session is of
5-10 minutes. For each athlete in a team, several hundred
sessionsSk are recorded during a whole year. All in all,
this generates several hundreds of megabytes of data per
athlete.

Figure 1. Data acquisition and visualization pipeline

3 Visualization

In the following, we describe several visualization meth-
ods that we have designed and implemented in a tool of

ourselves in order to address typical trainer questions, such
as those listed in Section 1.

Figure 2 shows a naive direct visualization of the
force and position signals (for both arms) as functions of
time for the swimming exercise. Given the high frequency
of the signals, this visualization is of little use: We can-
not detect any similarity or difference between the four
displayed signals. This basic display is, however, useful
to monitor the data acquisition on-line during the exercise,
e.g. for calibration purposes.

Figure 2. Force and position shown as functions of time

3.1 Two-signal visualization

Instead of visualizing a signal as a function of times =
s(t), it is considerably more useful to visualize a signalsi

as a function of another signalsj . We call this the two-
signal plot. Figure 3 shows the left arm position (x) ver-
sus the right arm position (y) signals for nine different ses-
sions (A..H). This simple but effective visualization already
shows a number of useful facts. First, theregularity of the
signals is now clearly captured in the picture. The graphs
appear to ’wind’ along themselves in cyclic patterns as the
repetitive exercise proceeds. Thetightness of the repeti-
tions is now also easily visible in the tightness of the wind-
ings of the graphs. For example, exercises A-C and G-I are
clearly the most regular (tight graphs), exercise D is some-
what looser but still has a clear pattern, whereas in exer-
cises the two arms are clearly not well coordinated (loose
graphs).

A second, more important, finding discovered when
discussing these images with the actual trainers is that ac-
tual exercise quality can be inferred from theshapes of the
graphs. For example, in exercise H the athlete is keeping
one arm at the starting (zero) position whereas doing a full
swing with the other - one arm is always at the zero posi-
tion. From this perspective, we can compare the efficiency
of an exercise by measuring the sumdx + dy of the dis-
tancesdx anddy along which a single arm position signal



A B C

D E F

G H I

dxdx

dy

dy

dy

dx
dx

dy

Figure 3. Left arm (x) versus right arm (y) position

of the two visualized is non-zero. Looking at exercise H,
we see this sum is quite large. Although his is a very reg-
ular exercise, it is a less efficient one as compared to the
other patterns, where both arms work together. For exam-
ple, in exercises B and I the sumdx + dy is, while not
optimal, still smaller than in exerciseH. ExerciseA is a
clear outlier too. Here, both arms work in almost perfect
symmetry, and the sum of the ’passive distances’dx + dy

is minimal. This was actually recognized by the trainer as
a high-quality exercise.

A limitation of the visualization in Fig. 3 is that the
exercise evolution in time is not visible. We solved this by
coloring the graph using a blue-to-red (rainbow) colormap
where blue denotest = 0 (exercise start) and redt = tmax

(exercise end). Figure 4 shows this method when visualiz-
ing the right arm force (x) versus left arm force (y) for four
different exercises. The first thing we see are the exercise
graph patterns. Exercises B and C show a L-shaped pat-
tern, which indicates that there is force applied only to one
arm at a time, similar to the position pattern in Fig. 3 H.
Exercise D shows a square-shaped pattern. This indicates a
’four-phase’ motion cycle, where both arms work together,
albeit in clearly delimited phases. Exercise A is a mix be-
tween the L-shaped and square-shaped pattern. The color
also conveys important information. In exercises A and D,
which are the less regular ones, we see that the graph lines
which tend to deviate from the regular pattern core, are
blue. This means the athlete started the exercise in a wrong
(suboptimal) state, but eventually entered in the rhythm.
The less blue lines in a graph, the quicker has the athlete
reached the regular, high-performance pattern.

t=0 (start) t=max (end)

A B

C D

Figure 4. Right arm force (x) versus left arm force (y).
Color indicates time.

3.2 Regularity visualization

After seeing the previous visualizations, one requirement
of the trainers was to visualize theaverage pattern, and
deviation from it, of a given exercise. We do this as follows.
Consider any of the measured signals as a function of time,
i.e. si = si(t). For each such signal, the measuring device
also records the time length, or period, of each repetition.
This signal, calledτi(t), has a typical sawtooth aspect, as
shown in Fig. 5 a. Let us callTk thek-th period, or pulse,
of τi(t). Detecting these periods is trivial once we haveτi.
We can now split the actual measured signalsi into a set of
signalsσk

i : Tk, one for each detected periodTk, i.e. one
per exercise repetition. From now on, we shall use the split
signalsσk

i instead of the complete signalsi, as these will
allow us to capture the repetition regularity.

Given the set ofK split-signalsσk
i , we now compute

the normalizedaverage signalsavg
i : [0, 1] as

s
avg
i (t) =

1

K

K∑
k=1

σk
i (t · Tk) (1)

That is, we average the signalsσk
i normalized over the time

domain[0, 1]. Similarly, we compute a normalizedstan-
dard deviation signal sstdev

i : [0, 1]. Given a two-signal
plot of somesi versussj , we computesavg

i , sstdev
i , s

avg
j ,

sstdev
j , and visualize them using a new method, called the

distribution plot, as follows. We plot the average signal
s

avg
i versussavg

j , just like the two-signal plot. Figure 5 b
shows this average signal drawn with white line for the
position-versus-force plot in Fig. 5 a. Next, we like to show
also the deviation from this average at every moment in
time. For this, we draw a band on both sides of the aver-
age plot curve whose width is given by the projection of
the vector(sstdev

i , sstdev
j ) along the normal of the average



plot curve. This gives a band which is thick where the stan-
dard deviations are highand normal to the curve direction,
and thin otherwise. Intuitively, this band conveys the ’lo-
cal tightness’ of the repetitive signals. Finally, we colorthe
band just as for the two-signal plot,i.e. by showing the
value of a third signal. We fade the intensity from maximal
at the band’s center to zero (black) at the periphery. This
creates a nice smooth effect which suggests the decreasing
density of signals as the standard deviation increases.

Figure 5 c illustrates the distribution plot for the
position-versus-force plot in Fig. 5 b. The color indicates
the value of the normalized timet in Equation 1,i.e. the
position along a repetition cycle, using the same blue-to-
red colormap as in Fig. 4. This image is clearly easier to
interpret than the original two-signal plot (Fig. 5 a), and
achieves exactly the desired goal of the trainers to see the
average exercise pattern (and its deviation) in time.

Yet, the distribution plot can be quite noisy in cases
of poorly coordinated repetitions of a given exercise. We
provided also a smoothed option to this plot, by applying
a Laplacian filter on both the average and deviation signals
(savg andsstdev) on both axes, prior to the visualization.
Figure 5 e shows the smoothed result for the noisy force
(left)-versus force (right) distribution plot in Figure 5 d.
The smoothed plot is useful when we are interested only
in comparing global exercise patterns and want to filter out
small-scale deviations.

3.3 Clustering visualization

The previous visualizations answer well questions that tar-
get the repetitions of a single signal or comparing two sig-
nals. In this section, we present a way to compare a whole
set containing hundreds of signals. This is useful to find
groups of exercises which are similar from the perspective
of a given signalsi, e.g. force, position, or velocity. Since
the comparison signal will be fixed, in the following we
shall use subscript indices to denote the exercise in a given
exercise set. If we compare exercises from the perspective
of the force signal, thensi will denote the force signal of
theith exercise from the total set ofE exercises.

For two exercisesi andj, we can define the distance
d(i, j) : [1, E] × [1, E] → R+ as

d(i, j) =

∫ 1

t=0

|savg
i (t) − s

avg
j (t)|dt (2)

This is the distance between the exercises’ average sig-
nals. The closer two exercises are, from the perspective
of their average signals, the smaller this distance is. We
have experimented also with different other distance met-
rics, such as a combination of the distance between aver-
ages and distance between standard deviations, the sim-
ple distance

∫ 1

0
|si(t) − sj(t)|dt and the minimal distance

mint∈[0,1] |si(t) − sj(t)|. The average distance has given
the most robust (and predictable) results.

We can visualize the distance using a matrix plot.
For this, we compute the similarity matrixM =

{mij}i,j∈[1,E], wheremij = d(i, j). Next, we draw the
matrix where every cellmij is colored using a blue-to-
red colormap as function of its distance value. Figure 6

a) average b) average + standard deviation

c) simple d) minimum

Figure 6. Distance matrix visualizations for different dis-
tance metrics. Blue indicates similar exercises, red indi-
cated different ones.

shows four matrix visualizations for the above-mentioned
distance metrics. Each row and column corresponds to an
exercise, and each cell shows the similarity of an exercise
pair. This visualization is the starting point for our main
goal: Showing the similarity of groups of exercises.

Given the distance matrix, we now construct a hierar-
chical clustering of the exercises. The clustering algorithm
is bottom-up agglomerative with full linkage [3], and works
as follows. First, we create a list of clustersCi, one cluster
for each exercisei ∈ [1, E]. We next pick the two clus-
tersCi andCj from the list such thatd(Ci, Cj) is minimal,
remove them from the cluster list, and replace them with
a cluster containing both exercisesi andj. We repeat the
process until a single cluster is left in the list which con-
tains all exercises. The distanced(Ci, Cj) between two
clusters is computed as the minimal distance between any
pairs of exercises in the two cluster (this is the definition of
full linkage), i.e.

d(Ci, Cj) = min
ei∈Ci,ej∈Cj

d(ei, ej) (3)

The clustering produces a tree having the individual exer-
cises as leaves and groups of similar exercises as nodes.
Given this tree, one task we want to support is finding the
n most similar exercise groups, wheren is given by the
user. To do this, we simply selectn largest nodes in the
cluster tree which have disjoint subtrees. This gives us the
n largest,i.e. most representative, clusters. Finally, we
render all cells in the distance matrix corresponding to the
exercises in a given cluster with a distinct color. The ma-
trix cells which are not corresponding to pairs of exercises
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Figure 5. Visualizing signal regularity

in the same cluster are rendered in gray, with a luminance
value indicating their distance.

Figure 7 illustrates this technique. Here, we clus-
tered around 100 exercises. The similarity function uses
the force signal, and the similarity metric is the average dis-
tance (Equation 2). We picked four large clusters (A,B,C)
containing 43, 9, and 16 exercises respectively. The re-
maining 32 exercises are located in smaller clusters which
are not visualized. The large clusters are indicated in the
figure and drawn in three distinct colors. We also imple-
mented a ’details window’ which shows information for the
cluster under the mouse position, such as size (number of
exercises), diameter, and maximal error.

Although the clustering method is not forced to group

adjacent rows and columns in the same cluster, we easily
see that cluster A (largest one) is quite compact, occupying
the upper-left matrix quarter. Clusters B and C (the smaller
ones) are also relatively compact. This intrigued us and
made us have a deeper look at the data. We then discov-
ered that theorder of the rows and columns in the matrix
is temporal,i.e. the exercises are listed in increasing or-
der of their execution date over roughly two years. Using
the details window, we then discovered that the exercises in
the large cluster (A) have all taken place in the year 2005.
The pink cluster (C) corresponds to the first and last part of
2006, while the smallest, yellow, cluster (C) corresponds to
exercises done in mid-2006. This suggests that the training
was, at least regarding the athletes’ force, more regular in



2005 than in 2006. Moreover, we see a fragmentation of
the clusters around the moment corresponding to the center
of cluster C,i.e. August 2006. This indicates a high vari-
ability of exercises in that period. Interestingly, this find-
ing was confirmed by the trainers who remarked that the
athletes did undergo some major training schedule changes
around that moment.

cluster  A: 43 exercises

cluster  B: 

9 exercises

cluster  C: 16 exercises

details window

Figure 7. Hierarchical cluster visualization showing four
large clusters containing similar exercises.

4 Discussion

We tested the three visualizations discussed here,i.e. the
two-signal plot, the distribution plot, and the hierarchical
matrix plot, on several hundreds of exercise datasets, each
containing up to 16 different measured signals, for a couple
of athletes. We quickly discovered, after some discussions
with the trainers, that the two-signal plot is only useful
when augmented with color showing time (Fig. 4). Also,
the distribution plot design (Fig. 5) was fully derived from
discussions with the trainers, to satisfy the need for depict-
ing the regularity of an exercise.

Our entire visualization software is implemented in
C++ under Windows, using OpenGL for graphics [5]
and wxWidgets for the user interface [6]. The most
computation-expensive part is the distance matrix calcula-
tion and the full-linkage clustering, due to the costly dis-
tance integrals (Equation 2). A single integral takes tens of

thousands of sample points, and there areE2 integrals to
be computed in the worst case for a dataset ofE exercises,
whereE can be several hundred. To optimize this com-
putation, which takes several hours on a modern PC, we
added a file cache mechanism that saves and reuses already
computed distances for a given exercise set.

As expected, a careful design of the user interface was
very important to make our tool accepted, as the user group
(athlete trainers) are not typical savvy computer users and
required simple and intuitive interfaces. In this respect,
some improvements on the intuitiveness of the hierarchi-
cal matrix plot were suggested.

5 Conclusions

We have presented three correlated visualizations for ana-
lyzing large multivariate time series originating from mea-
suring athlete performance. The two-signal plot is a simple
but effective tool to measure the effectiveness, and detect
the type, of exercise patterns. The distribution plot sim-
plifies the two-signal plot by visualizing the average and
deviation with optional smoothing. The clustered matrix
view emphasizes groups of similar exercises by using a
hierarchical clustering technique based on inter-signal dis-
tances. Overall, the strongest confirmation we received for
our work was in the interest of the trainers and sports sci-
ence experts to use our tool in practice, and the fact that
they validated our findings by their direct experience.

We next plan to improve the above techniques by in-
cluding several signals in the exercise distance computation
instead of a single one; visualize additional data, such as
time of exercise and type of training; and finally compare
the results of different athletes to each other.
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