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Abstract

A new method for the simplification of flow fields is presented. It is
based on continuous clustering. A well-known physical clustering
model, the Cahn Hillard model which describes phase separation, is
modified to reflect the properties of the data to be visualized. Clus-
ters are defined implicitly as connected components of the positivity
set of a density function. An evolution equation for this function is
obtained as a suitable gradient flow of an underlying anisotropic
energy functional. Here, time serves as the scale parameter. The
evolution is characterized by a successive coarsening of patterns —
the actual clustering — and meanwhile the underlying simulation
data specifies preferable pattern boundaries. Here we discuss the
applicability of this new type of approach mainly for flow fields,
where the cluster energy penalizes cross streamline boundaries, but
the method also carries provisions in other fields as well. The clus-
ters are visualized via iconic representations. A skeletonization al-
gorithm is used to find suitable positions for the icons.

1 Introduction

Nowadays, fast computing hardware and efficient numerical algo-
rithms enable highly detailed and large scientific simulations which
deliver enormous amounts of data. Various visualization strategies
have been proposed to represent such data in an intuitively under-
standable way.

The larger and more complex the simulation results become, the
stronger is the need for a suitable multiscale visualization approach.
Simplified representations of the data, useful to see the global pat-
tern, can be further gradually refined for further insight. Moreover,
different viewers need different representations. Numerical experts
might want to see the raw data in full detail, technological experts
might want to see certain features such as vortices, whereas the
management might need a simplified presentation.

Clustering, well-known from statistics, is such a multiscale ap-
proach. Data are grouped in successively larger sets of strong in-
ternal correlation. Many techniques are available for scattered and
scalar data, e.g. based onwavelet or Fourier analysis [11, 25].
However, for vector data, only few multiscale visualization meth-
ods are available. The most ubiquitous vector field simplification
method is still regular subsampling, which is well-known to pro-
duce aliases (see e.g. Fig. 1). Turk [23] uses an energy minimiz-
ing approach to place equally distributed streamlines at a user pre-
scribed resolution on the screen. Selected streamline drawings are
furthermore considered by Jobard et al. [9].

Recently, two approaches for clustering vector data have been
proposed. In both approaches a hierarchical clustering tree is pro-
duced and the resulting clusters are visualized with arrows. Heckel
et al. [8] start from scattered points with vector data. Initially all
points are stored in a single cluster, which is recursively split in a
top-down manner. At each step, the cluster with the strongest dis-
crepancy between streamlines generated by the original field and its

�[harald jtpreuss jrumpf j wkd]@iam.uni-bonn.de
[alext jvanwijk]@win.tue.nl

Figure 1: Vector field visualization: hedgehog plot (left), proposed
clustering method (right).

approximation by the cluster is bisected with a plane, using princi-
pal component analysis. The resulting clusters are guaranteed to
be convex, as a result of this bisection approach. However, accu-
rately representing complex fields with convex clusters may require
a large cluster count.

Telea and Van Wijk [21] use a bottom-up approach. Initially,
each data point is a cluster, next these clusters are merged. In each
step the most similar clusters are merged, according to a measure
of the difference in position and orientation of the vectors that rep-
resent the clusters. The cluster shapes are constrained only indi-
rectly by adapting the weights of the various terms in the error mea-
sure. However, this method is sometimes sensitive to the mentioned
weight tuning.

Here we propose a continuous clustering method based on dif-
fusion. The main difference to the other approaches is, that no
boolean merging or splitting decisions have to be made. Instead
a suitable diffusion process continuously enhances strong correla-
tions in the cluster sets. In contrast with Heckel’s method, these
clusters are not necessarily convex. Hence, curved flow fields can
be represented more effectively, as Fig. 1 — obtained with our
method — shows. Our approach is motivated by a well-known
physical model for phase separation in binary alloys which can
be understood as a clustering of material in order to decrease the
free energy of the physical system. As major application we con-
sider clustering on flow fields. The method is related to multi-
scale image processing methodology which leads to second order
parabolic equations, whereas our model here will be a fourth oder
problem. Perona and Malik [15] have introduced a continuous dif-
fusion model which allows the denoising of images together with
edge enhancing. The recovery of lower dimensional structures in
images is analyzed by Weickert [24], who introduced an anisotropic
nonlinear diffusion method where the diffusion matrix depends on
the so called structure tensor of the image. Preußer and Rumpf pre-
sented an efficient implementation for large scale image data [17]
and used an anisotropic diffusion approach for flow visualization
[18].

In detail the aims of our method are

� to extract a collection of nicely shaped subsets of the physi-
cal domain, where each of them is being characterized by a
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strong correlation in the underlying physical data and they all
together are supposed to cover an approximately fixed frac-
tion of the domain,

� to consider not only one such representation, but a scale of
them ranging from fine granularity in the subdivision to very
few and coarse cluster sets.

This multiscale should enable the exploration of complicated simu-
lation data and the visual perception of correlations in such data
sets at different resolutions. In our model, the clusters will be
represented implicity by a function evolving in time. Concerning
the graphical representation we straightforwardly could use a color
coded representation of this function on the physical domain as a
texture. In the last decade dedicated to flow visualization a variety
of such texturing methods has been presented. We mention here
the spot noise technique by Van Wijk [5], the line integral convolu-
tion method by Cabral and Leedom [2], several improvements and
modifications of this method [26, 7, 19], and the already mentioned
nonlinear anisotropic diffusion method [18]. Here we use the actual
clustering as a precomputing step and pipe the output into an iconic
representation approach. Thus, the distinct subsets at any scale have
to be represented by suitable graphical icons. This allows a further
reduction of graphically represented data, while maintaining and
strengthening the informational content.

The ingredients of our continuous clustering strategy are the fol-
lowing:

� We formulate anevolution problemfor a function which im-
plicitly describes the set of clusters. The evolution can be
interpreted as the gradient flow with respect to an appropriate
energy.

� There aretwo energy contributions. The first one leads tothe
nucleation of cluster setson the physical domain. The second
one gives rise for asuccessive coarsening of the clusters.

� Depending on the underlying physical datasurface segments
are weighted depending on their location and orientation. I. e.
they are considerably penalized if they are oriented in cross di-
rection to the correlation. Otherwise their energy contribution
is kept small.

� On any scale a skeletonization method is used to reduce the in-
formational content of the cluster sets to their essence, which
is to be further visualized.

� Finally geometric icons are selected to represent the extracted
skeleton information graphically, e. g. arrows in case of vector
data.

Let us emphasize that the actual physical data enter the cluster-
ing method only via the anisotropic surface energy and the evolved
function is solely used to define the cluster sets without any further
physical meaning.

As application we mainly consider flow fields, where the con-
cept of correlation along streamlines is near at hand. Nevertheless
the methodology is not restricted to flow visualization and thus pre-
sented here for more general data.

The organization of the paper is as follows. In Section 2 we out-
line the physical model of phase separation in binary alloys which
motivates this work. Then in the following Section 3 we expand this
model and interprete it in terms of a multiscale cluster analysis. A
finite element discretization is described in Section 4. In Section 5
the skeletonization approach is outlined and we discuss graphical
icons in case of vector data.

Finally in Section 6 we discuss the results and in Section 7 we
draw conclusions.

Figure 2: Three timesteps of the original Cahn Hillard phase sepa-
ration.

ρ

Ψ

Figure 3: Chemical energy as function of concentration

2 Reviewing a physical clustering model

Before we discuss our model of continuous clustering on simula-
tion data we will review in this section a physical model for clus-
tering in metal alloys, which goes back to Cahn and Hilliard [3].
The Cahn–Hilliard model was introduced to describe phase separa-
tion and coarsening in binary alloys. Phase separation occurs when
a uniform mixture of the alloy is quenched below a certain crit-
ical temperature underneath which the uniform mixture becomes
unstable. As a result a very fine microstructure of two spatially
separated phases with different concentrations develops. In later
stages of the evolution on a much slower time scale than the initial
phase separation the structures become coarser: either by merging
of particles or by growing of bigger particles at the cost of smaller
ones. This coarsening can be understood as a clustering, where
the system mainly tries to decrease the surface energy of the parti-
cles which leads to coarser and coarser structures during the evolu-
tion. In the basic Cahn–Hilliard model this surface energy will be
isotropic. There are no prefered directions of the interfaces. Hence
the particles tend to be ball shaped (cf. Fig. 2). We now shortly
outline the basic ideas of the Cahn–Hilliard model. For more details
we refer to the review papers by Elliott [6] and Novick–Cohen [14].
The Cahn–Hilliard model is based on a Ginzburg–Landau free en-
ergy which is a functional in terms of the concentration difference�

of the two material components. The Ginzburg–Landau free energy
E is defined to be

E(�) :=

Z



n
	(�) +



2
jr�j

2
o
;

where
 is a bounded domain. The first term in the free energy,
	(�), is the chemical energy density and typically has a double
well form. In this paper we take

	(�) =
1

4

�
�
2
� �

2
�2

with a constant� 2 (0; 1] (cf. Fig. 3). We note that the system is
locally in one of the two phases if the value of� is close to one of
the two minima�� of 	. Now, the diffusion equation for the
concentration� is given by

@�

@t
= �w
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onR+ �
. In the equation above we denote byw the local chem-
ical potential difference which is given as the variational derivative
ÆE
Æ�

of E with respect to� (cf. Section 3). Thus, we obtain

w = ���+	0(�):

The system has to be supplemented with boundary and initial
conditions. Here we request@

@�
w = @

@�
� = 0, where� is the outer

normal on@
, and�(0; �) = �0(�) for some initial concentration
distribution �0. We remark that with these boundary conditions
mass is conserved and that the Ginzburg–Landau free energy is a
Lyapunov functional, i.e. we have

d

dt

Z



�(x; t)dx = 0 and
d

dt
E (�(t)) � 0:

Starting with a random perturbation of a constant state�u0, which
has a values in the unstable concave part of	, we observe the
following: In the beginning the chemical energy decreases rapidly
whereas the gradient energy increases. This is due to the fact that
during phase separation� attains values which are at large portions
of the domain close to the minima of the chemical energy	. Since
regions of different phase are separated by transition zones with
large gradients of�, the gradient energy increases during phase sep-
aration. In the second stage of the evolution — the actual clustering
— when the structures become coarser, the total amount of tran-
sition zones decreases. Correspondingly the amount of gradient
energy becomes smaller again.

3 A Multiscale clustering approach

The aim of this section is to derive a continuous clustering model
mainly on flow data. Motivated by the Cahn Hilliard model for
phase separation and particle coarsening (cf. Section 2), we intro-
duce a cluster mappingu : R+0 �
! R which will be the solution
of an appropriate evolution problem. Thereby, time will serve as the
scale parameter leading from fine cluster granularity to successively
coarser clusters. For fixed timet our definition of the set of clusters
C(t) is founded on the functionu by

C(t) = fx ju(t; x) � 0g:

This set splits up into the actual clusters

C(t) =
[
i

Ci(t)

wherefCi(t)gi are the connected components ofC(t).
Now we study the evolution problem which controls the quantity

u. We suppose this evolution to be a suitable clustering model, if
for the inducedC(t)

� the number of clusters generically decreases in time,

� the shape of the cluster components strongly corresponds to
correlations in the data field,

� the volume fraction covered byC(t) is approximately constant
in t, i. e. jC(t)j

j
j
� � for � 2 (0; 1).

We pick up the physical Cahn-Hilliard model and consider a dou-
ble well separation potential	(u) and define a separation energy
Es =

R


es(u)dx with energy densityes(u) = 	(u). Under allu

with
R


u dx = �u0 = const.the energyEs is minimal if u attains

only the values��. This leads to a binary decomposition of the do-
main into two parts, where one part corresponds tofx ju(x) = �g.

The setfx ju(x) = �g however can have many connected com-
ponents and may even be very unstructured. Furthermore there is no
mechanism which enforces a successive coarsening and thus a true
multiscale of clusters. Therefore, we want to introduce a term pe-
nalizing the occurrence of many disconnected cluster components
with high interfacial area. Motivated by the Cahn–Hilliard theory
of phase transition we choose a gradient energyE@ =

R


e@ dx

with local energy densitye@ that penalizes rapid spatial variations
of u.

In order to have flexibility to choose an anisotropic and inhomo-
geneous gradient energy, an appropriate definition of an interfacial
energy density is given by

e@(ru) =


2
Aru � ru;

where “�” denotes the scalar product inRn ,  is a scaling coefficient
andA 2 R

n�n is some symmetric positive definite matrix that may
depend on the space variable and other quantities involved.

In the following we will call the set@fx ju(x) = 0g the inter-
face. The orientation of the interface can be described by the normal
to the interface which, in the case thatru 6= 0, is given by

� =
ru

kruk
:

We remark that the interface between the set of positive and nega-
tive values ofu is perpendicular to�. ForA = Id all gradients ofu
and hence, all interfaces are penalized equally independent of their
orientation. With respect to our clustering intention we consider an
anisotropic energy density which strongly depends on the orienta-
tion of the local interface and thereby on the direction ofru.

Let us assumev : 
! R
n to be some vector field on the domain


. Typically such a field induces a flow on
 with streamlines
which are solution of the ordinary differential equation_x = v(x).
Now, a natural clustering should emphasize the coherence along
the induced streamlines. Thus, cross streamline interfaces have to
be penalized significantly by the gradient energy. We choose

A := B(v)T
�

1 0
0 �(kvk)Idn�1

�
B(v)

where Idn�1 is the identity mapping inRn�1 and for givenr 2 Rn

the mappingB(r) 2 SO(n) is a coordinate rotation withB(r)r =
krke1. Since interfaces that cross streamlines have to have larger
energy we choose a positive� with � � 1.

Now we define the first variation of the energy

w =
ÆE

Æu
;

which is defined on
 by
Z



ÆE

Æu
� dx :=

d

d�
E(u+ ��)

���
�=0

:

We obtainw = 	0(u)�  div(Aru).
Let us assume that the evolution of the cluster mappingu is gov-

erned by diffusion where the corresponding flux linearly depends
on the negative gradient of the first variation of energy. As the
simplest model we choose@

@t
u � �w = 0 and end up with the

following fourth order parabolic problem:
Find a continuous cluster mappingu : R+0 � 
! R, such that

@

@t
u��w = 0 (1)

w = 	0(u)�  div(Aru) (2)
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with boundary conditions@
@�
u = @

@�
w = 0 and prescribed initial

datau(0; �) = u0(�).
This modified Cahn–Hilliard equation can be interpreted as the

H
�1 gradient flow for the energyE (see [14] for a discussion of

this fact in the case of the standard Cahn–Hilliard equation). In
particular we immediately obtain the Lyapunov property

@

@t
E(u) � 0 : (3)

This energy decay is in fundamental accordance to the desired suc-
cessive pattern coarsening in the evolution. After an initial short
period of phase separation it is mainly the interfacial energy contri-
bution which is successively reduced. Furthermore, as in the case
of the standard Cahn–Hilliard equation, we obtain that

R


u(x; t)dx

is constant in time, which corresponds to the approximate volume
conservation of the generated scale of cluster sets.

In general it does not make sense to consider certain initial data,
if no a priori information on the clustering is known. As initial
datau0 we thus choose a constant value�u0 plus some small ran-
dom noise. The constant�u0 depends on the volume fraction� of
the domain later on to be covered by the clusters, i.e. by the sets
fx ju(t; x) � 0g. Therefore, we choose

�u0 = �� � (1��)�:

Starting with a random perturbation of this constant first very
rapidly cluster patterns will grow without any prescribed location
and orientation. This is in order to decreaseEs =

R


	(u)dx

which forces the solution to obtain values close to�� in most of
the domain
. After this process the clusters orientate themself in
an anisotropic way to decrease the amount of the anisotropic gradi-
ent energyE@ . In addition, the cluster becomes coarser and coarser
due to the fact that smaller particles shrink and larger ones grow.
We remark that in particular one observes that a large particle that
is surrounded by smaller ones grow to the expense of the smaller
ones. This implies that as time evolves locally only the main fea-
tures of the clusters will be kept.

Altogether, we obtain a scaleu(t; �) of cluster mappings and in-
duced cluster setsC(t). They represent a successively coarser repre-
sentation of simulation data and continuously enhances coherences
in the underlying simulation data set, where the cluster setC(t)will
cover a volume of approximate size�j
j. As already mentioned,
the multiscale property comes along with the decay of the energy
E(u) (see (3)).

To summarize, the vector field that is to be represented defines
the anisotropy of the energy and therefore governs the diffusion pro-
cess ofu. Roughly speaking, the vector field determines in which
direction an interface between phases is relatively ”cheap” (from an
energy point of view). As the energy is minimized during the evo-
lution the interfaces will move in such a way that there are mostly
”cheap” interfaces (i.e. interfaces whereru is roughly perpendicu-
lar tov, which means that the interface is roughly parallel tov). So
for any particle most of its boundary will be aligned with the vector
field v. If not to large the particles themselves will be aligned to the
vector field.

4 Discretization of the Diffusion Problem

In what follows we briefly discuss the discretization and implemen-
tation of the evolution problem for the cluster mappingu and the set
of clustersC(t). For this purpose a finite element discretization in
space and some discrete scheme in time are considered. Here, up-
percase letters denote discrete quantities which correspond to con-
tinuous quantities in lowercase letters. Hence, we consider an ap-

Figure 4: Continuous clustering of a vector field: time evolution
(upper row), effect of increasing anisotropy (lower row). The com-
putation is based on a grid of resolution2572.

propriate continuous variational formulation for (1), (2), given by�
@

@t
u; �

�
+ (rw;r�) = 0;

(w; �) =
�
	0(u); �

�
+ (Aru;r�) ;

which shall hold for all�; � 2 C
1(�
), where(�; �) denotes the

L
2 product on the domain
. For a finite element implementa-

tion we now replace the continuous solution and test functions in
this formulation by discrete approximations in some finite element
space. Here we have restricted ourselves to finite elements on reg-
ular adaptive gridsMh in 2D and 3D generated by recursive sub-
division of elementsE. On these grids we consider the bilinear,
respectively trilinear finite element spacesV h for the approxima-
tion of u andw on 
. Numerical integration of theL2 products
is based on the lumped masses product(�; �)h [22]. Furthermore
we consider a center of mass quadrature rule for the bilinear forms
(r�;r �) and(Ar�;r �). Especially, we replaceA by the piece-
wise constant diffusion tensorAh, withAh

jE = A(cE), wherecE
is the element’s center of mass.

For the discretization in time we have taken into account two
possibilities: a first order implicit Euler scheme and a second or-
der�–splitting scheme (see Bristeau et al. [1] and M¨uller Urbaniak
[13]). Both are known to be strongly A–stable. While we can prove
the energy decay property (3) for the implicit Euler scheme, we use
the �–splitting for practical computations as it allows larger time
steps.

In the case of the implicit Euler scheme the time derivative is
discretized by@

@t
u((n+1)� ) � Un+1

�Un

�
where� is the selected

time step andUn an approximation ofu(n�). A brief introduction
to the more complicated�–splitting can be found in the appendix.

Finally, we can derive a fully discrete scheme. For the “hat
shaped” multilinear basis functions�i and the discrete piecewise
constant anisotropic diffusion matrixAh we define by

Mh := ((�i;�j)h)ij ;

Lh(A) :=
�
(Ah

r�i;r�j)
�
ij

the diagonal lumped mass and the anisotropic stiffness matrix re-
spectively and byLh := Lh(Id) the standard stiffness matrix.
These global matricesMh, Lh, andLh(A) are assembled in a grid
traversal collecting the contributions on all local grid elements as it
is standard in finite element programming [4].
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If we indicate by a bar coefficient vectors corresponding to finite
element functions in the basisf�igi, we obtain the backward Euler
discretization

Mh
�Un+1 + �Lh( �	

0( �Un+1) +

M
�1
h Lh(A) �U

n+1) =Mh
�Un

withU0 = Ihu0, whereIh is the interpolation on gridMh. By ob-
vious notation�	0(�) := (	0(�))i is the vector of nodal wise deriva-
tives of	.

In each step of the discrete evolution we have to solve this system
of nonlinear equations. In order to do this we apply some Newton
scheme which typically converges in a few steps if we consider
moderate time steps and pick up the old solution at the old time
step as the initial guess for the newton iteration.

The efficiency of our approach is further increased by an adaptive
grid refinement and coarsening strategy. Here, we used a heuristic
strategy which refines in interfacial regions and coarses in the pure
phases.

In the case of the implicit Euler scheme, it is possible to prove
discrete counterparts of the mass conservation and energy decay
properties. I. e. Z




U
n dx =

Z



Ihu0 dx

and

Eh(U
n) :=

Z



n
Ih	(U

n) +A
h
rU

n
� rU

n
o

dx

is non increasing (discrete Lyapunov property) and thus gives rea-
son for the discrete multiscale property of our method

Eh(U
n+1) � Eh(U

n) � � � � � Eh(U
1) � Eh(Ihu0) :

5 Iconic Representation of the Clusters

The clustering method described in Section 3 produces clusters
which emphasize the spatial coherence in the data. In what fol-
lows concerning the iconic representation we focus to the case of
flow data. Nevertheless this exposition might inspire the reader to
think of different applications along the same guidelines. For flow
data, cluster interfaces tend to be tangent to the streamlines of the
underlying vector field, so the clusters’ shapes convey local insight
in the vector field direction. On the other hand, the physical phase
separation model presented in section 2 produces clusters which
tend to be evenly distributed over the domain of interest
.

Consequently, such clusters could be used as a starting point for
producing a simplified visualization of the structure of the underly-
ing vector field. For this, we propose to reduce each cluster to one
curved arrow icon. For every cluster, the size and spatial position of
the icon should reflect the size of the cluster, whereas the curvature
and arrow direction should be related to the vector field inside the
respective cluster. We have chosen to use the curved arrow icons as
they convey several information levels in a simple, easy to under-
stand manner [21], as compared to other, more abstract icons.

The iconic visualization pipeline based on the multiscale cluster-
ing proceeds as follows (see also Figs. 5 and 6). First, the clustersC

are extracted from the Cahn-Hilliard equation solutionu. Next, the
skeletons of the clusters are computed as sets of discrete points, as
shown further in section 5.2. Next, the center points of the skeletons
are detected and used to construct the curved arrows by streamline
tracing, as discussed in section 5.4. The reason why we use such
an apparently complicated method is, that typically the clusters are
large thin often curved structures and streamline tracing is rather
sensitive with respect to the choice of the starting point. The rest of
this section explains the several steps in detail.

5.1 Cluster Extraction

First we extract the clustersC from the scalar fieldu. For this, we
classify all the cells of the discretization of the fieldu as cluster out-
side, border, or inside cells, based on the sign ofu(x). Moreover,
all border and inside cells belonging to a given cluster are labelled
by the cluster’s ID as presented by e.g. Walsum et al. in [16].

5.2 Skeletonization

In the second step, clusters are reduced to theirskeletons. By skele-
ton, we understand here a set of points which, if connected, produce
a ’spine’ which conveys the shape information of the original clus-
ter in a compact manner.

There are numerous skeletonization algorithms [10, 12]. How-
ever, many such algorithms produce skeletons with complex, tree-
like topologies. As we intend here to use the skeletons only to pro-
duce the arrow icons, we prefer simple, polyline-like topologies.

To produce such skeletons, we use a discrete method based on
the eikonal equation [20]. Given a boundary curve� in two dimen-
sions (or a boundary surface, in 3D) and a functionT , such that
T = 0 on �, the eikonal equation isjrT j = 1. If we regard�
as being the level set (e.g. isoline or isosurface) of the functionT ,
the above equation describes the evolution in time of� in normal
direction to�. In our case,� coincides with the previously detected
cluster boundaries.

As presented by Sethian [20], we discretize the above equation
on the same grid used to solve the Cahn-Hilliard equation, as fol-
lows (for the 2D case):

max(D�x
ij T; 0)

2 +min(D+x
ij T; 0)

2 +

max(D�y
ij T; 0)

2 +min(D+y
ij T; 0)

2 = F
�2
ij ;

(4)

where theij denotes the current grid point and the operatorsD
+

andD� denote the forward and backward differences at that grid
point. On a 2D regular grid of cell sizeh we haveD+x

ij T =
Ti+1;j�Tij

h
andD�x

ij T =
Tij�Ti�1;j

h
, and similarly for they axis.

Equation (4) is solved by using the fast marching method, as
described in [20]. The fast marching method starts constructing
the solutionT from the initially known points withT = 0 on the
boundary�. At each step, the solutionT is constructed from the
point with the smallest computedT value, by stepping away from
the boundary in a downwind direction. The boundary is marched
inwards until it collapses into a single line, namely the skeleton
points of the cluster�.

5.3 Reconnection and Center Detection

The skeletonization produces a set of usually disjoint skeleton
points. Next, these points are reconnected (based on a closest point
strategy) to form a polyline. For every cluster, we then compute the
center of its polyline and use it in the next step of the pipeline.

5.4 Icon Construction

From the skeleton centers detected in the previous step, streamlines
are traced in the vector field until they reach the borders of the clus-
ters within which they evolve. Next, curved arrow geometries are
constructed around the extracted streamlines. Finally we discuss
the application of the continuous clustering method and the associ-
ated curved arrow visualization to various vector fields.

The leftmost image in Fig. 6 shows a solutionu(t; �) of the Cahn-
Hilliard process driven by a 3-vortex vector field on a64 � 64 2D
grid.

The thresholding of the continuous signalu into clusters is
shown in the second image of Fig. 6. The clusters overlaid with the
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Figure 5: Pipeline for iconic cluster visualization

Figure 6: Clustering pipeline, from left to right: diffusion solution, clusters, skeleton points, curved arrow visualization. The underlying grid
is of size2572.

Figure 7: From left to right the results of two successive time steps
of the clustering evolution with corresponding icons are shown.

extracted skeleton points are shown in the third image of Fig. 6. The
rightmost image in Fig. 6 visualizes the vector field with streamline-
based icons. The curved arrows, initiated from the skeleton centers
depicted as small balls, are clipped by the borders of the clusters
into which they evolve.

A similar visualization is shown, for two different clustering time
instants, in Fig. 7. The multiscale feature of the clustering is vis-
ible in the reduction of the arrow count. An enhancement of the
proposed curved arrow visualization is shown in Fig. 8 by the addi-
tion of a spot noise textured background. Finally, Fig. 9 shows the
proposed method applied on a circular 2D vortex.

6 Discussion

In this section, we compare the presented continuous clustering
method with the discrete clustering method presented in [21]. Sim-
ilarly to the method presented here, discrete clustering builds a vec-

Figure 8: Two different convective vector fields are depicted by
the clustering method. On the left a fine representation is shown,
whereas on the right a resulting coarse respresentation is depicted.

tor field multiscale representation by merging neighbouring cells
with similar vector values. The time parameter of the Cahn-Hilliard
equation is equivalent with the iteration count in the bottom-up dis-
crete cluster merging. The continuous clustering method delivers
a continuous scale of successively coarser cluster sets. In contrast,
discrete clustering proceeds in distinct steps, where two clusters are
merged at each step.

Figure 11 shows the discrete clustering of the two vector fields
discussed in the previous section. Regarding the cluster shapes, the
continuous clustering explicitly contrains the shape via the mini-
mization of the interfacial energy, in order to obtain vector-aligned,
smooth-shaped clusters. In contrast, the discrete clustering does
not constrain the cluster shapes in any manner, assuming that their
growth to a ’natural’ partition of the vector field can be governed
only by the inter-cluster similarity function. This can lead however
to ’badly’ shaped (e.g thin and long) clusters, which are hard to
represent by curved arrow icons. In this respect, we see the con-
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Figure 9: Visualization of a circular flow field by the clustering
method.

Figure 10: A 3D vectorfield is visualized by the clustering method

trolling of the cluster shape in the continuous clustering method
as an advantage. However, discrete clustering always merges the
two most resembling clusters, so the intrinsic symmetry of the un-
derlying vector field remains visible in the clustering (see [21] for
details). This may be seen as an advantage of the discrete clus-
tering method, see Fig. 11. Finally, the shapes produced by the
continuous clustering are not constrained to simple convex ones, as
in the method presented by Heckel et al [8]. We have applied the
continuous clustering method also to the visualization of 3D fields.
Fig. 10 shows the visualization of a 3D circular vortex field from
two different viewpoints. The produced arrow icons illustrate the
clustering of the data in the center of the domain, where the flow
is dominated by a vertical swirling motion, and along the domain’s
boundary, where the flow mainly rotates in horizontal planes.

Finally we present an application of our approach for 2D image
processing, where we generate a scale of brush stroke type repre-
sentations of a greyscale image. Thus, let us consider the intensity
of an image as a scalar functions : 
! R. If we intend to release
brush stroke along regions of homogeneous values of the scalar
quantitys, we need to energeticallyfavour interfaces which have
a tangent space locally perpendicular tors. Hence, we choose a
corresponding quadratic form with

A := B(rs)T
�
� 0
0 Idn�1

�
B(rs);

where for givenr 2 R
n the mappingB(r) 2 SO(n) is again

a coordinate rotation withB(r)r = krke1, and1 >> � > 0
(cf. Fig. 12).

Figure 11: Discrete clustering of a 3-vortex field (left) and a circular
vortex field (right).

Figure 12: Multiscale brush–stroke representation of a greyscale
Mona Lisa image.

7 Conclusions

We have presented a new multiscale clustering approach which is
based on a continuous model for clustering on scientific data. The
approach is motivated by well-known physical clustering models
describing the phase separation and coarsening process in metal al-
loys. As a case study we focused on the clustering of flow fields.
Future research could be directed to

� the improvement of the performance of the method with re-
spect to computing time, where parallization or implementa-
tion of the underlying diffusion in texture hardware may help
to overcome the computational bottleneck,

� the construction of further appropriate interfacial energies for
different applications,

� a detailed classification of the skeleton shapes and the selec-
tion of appropriate icons, e. g. for saddle points or vortices in
flow fields.
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Appendix

Here we briefly outline the implementation of the�-splitting
scheme. Due to its strong stability properties it allows much larger
timesteps scheme and we have used it in the current implementa-
tion of our clustering model. The scheme divides any time step in
three substeps (see Figure 13). In each substep the linear operator
is split up into two parts with coefficients� and1�� respectively,
one of which is taken implicitly the other explicitly. The nonlinear
term is taken implicitly in the middle substep only.

ttn tn + θτ tn +(1-θ)τ tn +τ

Figure 13:�–splitting, subdivision of time steps

For the parameter� 2 (0:5; 1], � = 1� � and� 2 (0; 0:5) the
scheme reads as follows:

�
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[26] M. Zöckler, D. Stalling, and H.-C. Hege. Interactive visual-
ization of 3D-Vector fields using illuminated streamlines. In
IEEE Visualization ’96. IEEE, Oct. 1996.

358


