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ABSTRACT

We present a novel multiscale approach for flow visualization. We
define a local alignment tensor that encodes a measure for align-
ment to the direction of a given flow field. This tensor induces
an anisotropic differential operator on the flow domain, which is
discretized with a standard finite element technique. The entries
of the corresponding stiffness matrix represent the anisotropically
weighted couplings of adjacent nodes of the domain mesh. We
use an algebraic multigrid algorithm to generate a hierarchy of fine
to coarse descriptions for the above coupling data. This hierarchy
comprises a set of coarse grid nodes, a multiscale of basis functions
and their corresponding supports. We use these supports to obtain a
multilevel decomposition of the flow structure. Standard streamline
icons are used to visualize this decomposition at any user-selected
level of detail. The method provides a single framework for vec-
tor field decomposition independent on the domain dimension or
mesh type. Applications are shown in 2D, for flow fields on curved
surfaces, and for 3D volumetric flow fields.

Keywords: algebraic multigrid, multiscale visualization, flow vi-
sualization

1 INTRODUCTION

Present computing hardware and efficient numerical algorithms
enable large scientific simulations which deliver enormous data
amounts. Various visualization strategies have been proposed to
represent such data in an intuitively understandable way. The larger
and more complex the simulation results become, the stronger is the
need for a suitable multiscale visualization technique. Simplified
data representations, useful to show global patterns, can be grad-
ually refined for further insight. Moreover, different viewers need
different representations. Numerical experts might want to see the
full detail data. Technological experts might want to see certain
features such as vortices. Other users may desire a simplified pre-
sentation.

Clustering, well-known from statistics, provides such a multi-
scale approach. Data are grouped in successively larger sets which
have a strong internal correlation. Many techniques are available
for scattered and scalar data, e.g. based on wavelet or Fourier anal-
ysis. However, for vector data, only few multiscale visualization
methods are available. Regular subsampling, still commonly used,
is well-known to produce alias effects. A second class of methods
represents the vector field by equally spaced streamline icons, with
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user-prescribed spacing. Different heuristics [16] and energy mini-
mization stragegies [26] are used to compute the icons’ positions.

Several multiscale clustering approaches for vector data have
been proposed. These methods build a hierarchical clustering tree
and visualize the clusters with curved arrow icons. Heckel et
al. [14] place all data points in a single cluster, which is recur-
sively split in a top-down manner. At each step, the cluster with the
strongest discrepancy between streamlines generated by the origi-
nal field and its approximation by the cluster is bisected by a plane,
using principal component analysis. Although this guarantees con-
vex clusters, an accurate representation may require a large cluster
count. Telea and Van Wijk [21] place each data point in a cluster.
Next, similar clusters are merged bottom-up, using a metric of the
difference in position and orientation of the vectors that represent
the clusters. The cluster shapes are indirectly constrained by adapt-
ing the weights of the metric terms. However, this method may
be sensitive to the weight tuning, leading to clusters that are not
aligned with the flow.

A separate class of vector field simplification methods explicitly
detects features such as saddles, sources, sinks, and vortices. A
multiscale simplification is then obtained by successively removing
pairs of critical points based on some relevance metric [24]. In [10],
a pattern matching approach using Clifford algebra convolution op-
erations is proposed. Vortex features are found by matching a par-
ticular vortex mask against the flow field. Similar approaches are
presented by [22] and [1]. Here, the multiscale is given in a scale-
space fashion by the convolution operator’s size. Overall, such
methods are quite sensitive to the feature definition (’what is a vor-
tex?’) and the detection process used, especially for 3D fields.

A different approach, proposed by [17], decomposes the field
into a divergence free, a rotation free, and a harmonic component,
which are separately simplified by detecting critical points corre-
sponding to the components’ extrema. This method avoids some of
the critical point detection problems in standard topological meth-
ods. A similar method that also incorporates multiple scales via
component filtering has been recently presented by [23].

Finally, we mention the class of physics-based, continuous clus-
tering approaches. These methods simulate a physical process, such
as anisotropic diffusion [9, 11], applied to an initial fine-grained,
noise-like signal. The initial clusters, represented implicitly by the
fine-grained noise, are coarsened and aligned to the flow, which de-
termines the anisotropy of the operator. The diffusion time serves
as a multiscale parameter.

We employ a similar idea: We construct a multiscale decom-
position via an anisotropic diffusion operator. However, we con-
struct the cluster hierarchy in a strictly algebraic fashion. Given
a flow domain, we define a particular anisotropic diffusion ten-
sor based on the flow direction. Discretizing the correspond-
ing anisotropic differential operator using finite elements defines
strong (flow-aligned) and weak (flow-orthogonal) couplings be-
tween mesh neighbor points. We obtain a finite element stiffness
matrix encoding the flow on the finest level. Next, we use the alge-
braic multigrid (AMG) method, a well-known technique for accel-
erating the solution of systems of linear equations. AMG computes
a sequence of progressively simplified stiffness matrices which ap-
proximate the operator as well as possible with a given number of
degrees of freedom. Together with each simplified matrix, AMG
delivers a set of basis functions associated with the actual degrees
of freedom. AMG’s coarsening procedure ensures that the basis



functions reflect the operator-encoded coupling and that their sup-
ports are flow-aligned. Finer level basis functions reflect finer flow
details. Coarser levels contain fewer basis functions, which reflect
coarse-scale flow patterns. At any simplification level, we define
the domain of a basis function as the subset of its support where
this function is maximal among all other basis functions on that
level. This yields a flow domain decomposition in flow-aligned
disjoint regions, at the desired level of detail. Finally, we visualize
these domains either by direct color coding or by using curved ar-
row icons, as in [21, 11]. Our method shares its conceptual origin
with an AMG-based multiscale, feature-sensitive editing tool for
surfaces [8].

In summary, our method solves the question ”show a vector field
with n flow icons, for a given n” not only very effectively but also
very efficiently: Given AMG’s high computational performance,
we can treat 2D and 3D vector fields in a few seconds up to tens of
seconds, respectively.

This paper is structured as follows. We first define the operator
describing the neighbor mesh point coupling (Sec. 2). Next, we
briefly review the algebraic multigrid as a general tool for coars-
ening discrete differential operators (Sec. 3). Section 4 explains
the discretization of our anisotropic diffusion operator. The flow
domain decomposition based on the sequence of AMG basis func-
tions is discussed in detail in Sec. 5. Section 6 presents various
applications. Section 7 discusses how to select a local level of de-
tail. Finally, we draw conclusions in Section 9.

2 AN OPERATOR ENCODING THE FLOW ALIGNMENT

Any clustering algorithm relies on a given coupling of the objects to
be clustered [15]. Our goal is to cluster flow fields, so we first define
a local coupling on the flow domain. We desire a strong coupling
in the direction of the flow and a weak coupling orthogonal to the
flow. Let us consider a stationary flow field

v : Ω → IRd

on a flow domain Ω ⊂ IRd . We first restrict ourselves to the case
of a two-dimensional flat domain (d = 2) or a three-dimensional
volume (d = 3). We will generalize our approach to flow fields on
curved surfaces (Sec. 6.3).

We encode our coupling in a local coupling tensor. Let us sup-
pose that v �= 0 on Ω. Then, at each point x ∈ Ω, there exists a rota-
tion B(v(x)) generating a coordinate transform with B(v)v = ‖v‖e0 ,
where {ei}i=1,··· ,d is the standard basis in IRd . Taking into account
this coordinate transform, we define a local coupling tensor

a(v) = B(v)T
(

α(‖v‖)
εIdd−1

)
B(v)

where α : IR+ → IR+ represents the strong coupling in the flow di-
rection, and Idd−1 is the identity matrix in dimension d −1. In any
direction orthogonal to v we have a coupling with weight ε , which
is supposed to be small. A good choice for the function α(·) is a
monotone function α with α(0) = ε and lims→∞ α(s) = ᾱ for some
constant ᾱ > 1. This approach is useful even when the magnitude
of the vector field spatially varies over several orders. For fields
having less variation in their vector magnitudes, and for normal-
ized fields, we use the simple form α(s) = s+ε , with ε = 0.001. A
similar coupling tensor was used for flow visualization in [9], where
the tensor induced a diffusive growth of flow aligned patterns.

We now define a differential operator A on the domain Ω, which
encodes an anisotropic stiffness described by the pointwise defined
tensor a on Ω. For any function u ∈C2(Ω) we set

A u := −div(a(v)∇u) .

Figure 1: Spring model of local coupling tensor. The thick springs in
the two magnified areas indicate larger stiffness, hence strong cou-
pling, as compared to the thinner (weaker) springs.

In other words, the flow domain is considered to be locally stiff in
the flow direction and less stiff in the perpendicular direction. This
can be depicted using a simple spring model (cf. Fig. 1). Springs
are stiff if they couple nodes along a streamline and weak if the
spring is perpendicular to the flow. Alternatively, we can de-
scribe the role of A in terms of diffusion. To this end, we consider
an anisotropic diffusion process controlled by an operator A with
strong diffusion in direction of the flow field.

We now can ask for a multiscale (fine to coarse) representation
of the operator A . Fortunatly, there is a well-developed mathemat-
ical theory for such a multiscale representation. In the following,
we will discretize A via piecewise linear finite elements on a trian-
gular (in 2D) or tetrahedral (in 3D) mesh covering the flow domain
and then apply a suitable algebraic multigrid method to compute
successively coarser representations of the discrete fine grid opera-
tor. Finally, we will derive a multiscale domain decomposition from
this multiscale of discrete operators. This domain decomposition is
our final clustering result. To motivate the later discussion, we next
review the basics of algebraic multigrid.

3 A BRIEF REVIEW OF AMG

Here we give an overview of the basic aspects of the algebraic
multigrid algorithm (AMG) and the heuristics which led to its de-
velopment. We refer to [25] for a detailed introduction. Alge-
braic multigrid methods were first introduced in the early 1980’s
[2, 3, 4, 5, 18] for the solution of discrete linear systems AU = F
of equations coming from the discretization of a linear differential
equation A u = f on a domain Ω with suitable boundary condi-
tions. Here U is supposed to be a finite element approximation of
the continuous solution u and A the finite element stiffness matrix
corresponding to A . Finally, F is the corresponding discrete right
hand side. The development of AMG was led by the idea to mim-
ick classical (geometric) multigrid methods in applications where
a hierarchy of nested meshes is either not available at all, or can-
not reflect particular properties such as strength of diffusion of the
discretized operator appropriately on coarse grid levels. Hence, one
has to work with the matrix A and its algebraic structure. AMG tries
to coarsen this matrix independently from any underlying fine grid
discretization, yet maintaining optimal computational complexity
O(n), where n is the number of rows of the initial matrix. AMG
computes a sequence of prolongation matrices Pl which encodes
how coarse scale (l) basis functions are combined using the basis
functions on the finer scale (l −1). This induces a sequence of cor-
responding matrices Al , defined by the so-called Galerkin projec-
tion Al := RlAl−1Pl , where the restriction Rl is given as the trans-
pose of the prolongation Pl (Rl := (Pl)T ). The prolongation ma-
trices {Pl}l=1,··· ,L are computed using information from the matrix

Al−1 on the previous level l − 1 only. The sequence of prolon-
gation matrix allows for the construction of a problem-dependent



Figure 2: General AMG construction. From the fine scale matrix A0

input, AMG computes prolongations Pl , restrictions Rl , and coarse
scale matrices Al on successively coarser scales l = 1, · · · ,L.

basis {Ψl,i}. One constructs a coarser basis {Ψl,i} which captures
the appropriate features relevant for the approximation of the cor-
responding continuous problem, i.e. the underlying differential op-
erator (Sec. 4). The theory and design of efficient AMG tools is
rather involved. However, our flow clustering requires just basic
AMG capabilities. We perform no specific tuning of the AMG for
flow clustering. One could use several AMG packages available on
the web (see www.mgnet.org) in a black-box manner: feed the fine
grid matrix A to the AMG tool and read the produced matrices Pl

and Al .
The general AMG procedure is sketched in Fig. 2. The funda-

mental ingredient in this AMG construction is the notion of alge-
braic smoothness. Using such a smoothness measure, we can set
up a reduced matrix graph from which we can then “merge” fine
level basis functions Ψl−1,i on level l−1 appropriately to define the
coarse basis {Ψl,i} on level l. This merging is actually encoded in
the columns of the prolongation matrix Pl . Common to nowadays
algebraic smoothness criteria [18, 6, 7] is the general observation
that a simple relaxation scheme – most often Gauss–Seidel smooth-
ing – efficiently damps components in the direction of eigenvectors
associated with large eigenvalues. Consequently, the coarse basis
functions are chosen such that they deal with the remaining com-
ponents of an eigenvector decomposition. Given the anisotropic
diffusion tensor a of Sec. 4, AMG joins flow-aligned basis func-
tions automatically in the construction of coarser basis functions.
For further details on the specific AMG implementation we used,
we refer to [12, 13].

4 A MATRIX ENCODING THE FLOW STRUCTURE

Based on our local tensor a(v), which encodes the flow-aligned cou-
pling, we have defined the differential operator A which globally
represents the flow structure in terms of the local couplings on Ω.
We consider now a discretization which follows the general finite
element paradigm. Let Vh be the space of piecewise linear finite ele-
ments corresponding to a triangulation of Ω with nodes (Xi)i=1,··· ,n.
The piecewise linear basis {Φi}i=1,···n of hat functions is uniquely
defined by the property Φi(Xj) = δi j for all vertices Xj , where δi j
is the Kronecker symbol. In the following, we use capital letters
for discrete objects to distinguish them from continuous objects de-
noted with lower case letters. We compute the n×n finite element
stiffness matrix A = (Ai j)i j where

Ai j :=
∫

Ω
a(v) ∇Φi ·∇Φ j dx.

This matrix describes the weighted coupling of adjacent triangula-
tion nodes on the discrete domain using the local coupling tensor a.

This matrix is obviously sparse. We expect a non-vanishing entry
Ai j if and only if the node i has a mesh edge to the node j.

The assembly of A uses the standard finite element procedure.
In case of a 2D flow domain defined on a triangle mesh, we start
by initializing A = 0, followed by a traversal of all triangles T .
On each triangle T with nodes P0,P1,P2, we compute a local ma-
trix (Aloc

i j (T ))i j, corresponding to all pairings of local nodal basis
functions. This local matrix is next added to the corresponding lo-
cations in the global matrix A, i. e. for every pair i, j we update
Aβ (i),β ( j) = Aβ (i),β ( j) +Aloc

i j (T ). Here β (i) is defined as the global
index of the node with local index i. For the local matrix, we define
the local coupling tensor a for every triangle T as a = a(v(CT )),
where CT denotes the barycenter of the triangle T . We obtain for
the local matrix:

ai j(T ) = a(v(CT ))∇T Φi ·∇T Φ j |T |

where |T | is the area of T . Given the sparsity of A, we use a
compressed row matrix storage, i.e., we store only the nonzero en-
tries and their column indices for every matrix row. 3D tetrahedral
meshes are treated in a completely analogous fashion. Similar as-
sembly procedures can be devised for 2D quad meshes and 3D hex-
ahedral meshes, or even mixed element meshes, if desired. Table 1
shows the assembly times for various meshes.

5 MULTISCALE DECOMPOSITION

The matrix A defined in Sec. 4 can be seen as a description of the
structure of a flow field v. In particular, flow alignment is encoded
in this matrix. The matrix simultaneously represents dominant flow
patterns as well as successively finer, more detailed flow structures.
At this point, we require a tool able to represent flow patterns in a
hierarchical multiscale fashion. We compute this multiscale using
the AMG method of Section 3. AMG delivers a set of descriptions
of the flow-induced coupling in terms of matrices Al for l = 0, · · ·L,
ranging from detailed (A0 = A) to very coarse (AL). Let us now il-
lustrate how AMG works using two simple examples. Consider the
flow fields v1(x) = (−1,1) and v2(x) = (1,1) on the square domain
Ω = [−1;1]2 ⊂ IR2. This implies a coupling tensors

a = BT
( √

2+0.001 0
0 0.001

)
B ,

where B is a rotation of ∓45 degrees, respectively. We then con-
sider the corresponding differential operator A = div(a∇·) and
apply the AMG method to the matrix which results from the dis-
cretization of A on a regular triangulation.

Figure 3 shows the coupling strengths encoded in the matrices
Al for the first three finest levels l = 0,1,2, for the fields v1 = (1,1)
and v2 = (−1,1), using a blue-to-red colormap. Edges represent
(nonzero) matrix entries. For the same fields, Fig. 4 shows selected
basis functions on the four coarsest decomposition levels. The spar-
sity of the finest level (Fig. 3 a,d) corresponds to the regular trian-
gular mesh connectivity. The coarse matrices (Fig. 3 b,c,e,f) are
sparse, too. In general, however, their sparsity pattern does not cor-
respond to edges of a coarsened finite element grid. Indeed, the
lines in Figs. 3 b,c,e,f, which indicate coarse matrix entries, do not
correspond to edges in the initial grid. Furthermore, we see that
the coupling strengths differ for the two fields v1 and v2, (Fig. 3 a-
c vs Fig. 3 d-f). This is due to the relative orientation of the field
to the mesh. The field v1 is perfectly aligned with the mesh struc-
ture, whereas there are no mesh edges in the direction of the field v2.
Still, we see in both cases that the strong couplings (red lines) match
the field direction. Moreover, the basis function shapes nicely fol-
low the field direction in both cases (Fig. 4). This can also be seen



a) b) c)

d) e) f)

Figure 3: Color-coded coupling strength (zoomed in). Three finest
levels (left to right) are shown for the fields v1 = (−1,1) (bottom row)
and v2 = (1,1) (top row). The white arrows show the field direction.

a) b) c) d)

d) e) f) g)

Figure 4: Selected basis functions, on the four coarsest levels, for the
fields v1 = (−1,1) (bottom row) and v2 = (1,1) (top row)

in Fig. 12 c which shows several basis functions for the more com-
plex flow from Fig. 7.

Let us now explicitly derive the multiscale of basis functions
from the sequence of prolongation matrices. When we apply the
AMG algorithm (Sec. 3) to the matrix A ∈ IRn,n introduced in the
previous section, we obtain a sequence of prolongation matrices

Pl ∈ IRnl−1,nl .

as output, where nl for l = 0, · · · ,L are the decreasing numbers of
remaining unknowns and n0 = n. The entries in each column i =
1, · · · ,nl of Pl give the coefficients of the linear combination of the
finer basis functions Ψl−1, j for j = 1, · · · ,nl−1 corresponsing to the

coarser basis function Ψl,i on level l. In other words, each matrix Al

delivered by the AMG, starting with the initial, finest one A0 = A
down to the coarsest one AL, approximates the fine grid operator
using the (matrix-dependent) basis {Ψl,i}i=1,··· ,nl

:

Al
i j = AΨl,i ·Ψl, j =

∫
Ω

a(v)∇Ψl,i ·∇Ψl, j ,

where Ψl,i is the nodal vector corresponding to the function Ψl,i,
i. e. Ψl,i = ∑ j=1,··· ,n(Ψl,i) jΦ

j where Φ j denotes the initial basis
functions.

Hence, the following simple recursive recipe can be used to cal-
culate the multiscale of basis functions Ψl,i (cf. Fig. 4):

Ψl,i := ∑
j=1,··· ,nl−1

Pl
jiΨ

l−1, j ∀i = 1, · · ·n; l = 1, · · ·L

Ψ0,i := Φi ∀i1, · · ·n
The shapes of the basis functions clearly shows the strength of

the local coupling (compare Fig. 4 with Fig. 3). The AMG method
clusters vertices along a streamline already on a fine scale, since
they are strongly coupled. Vertices not aligned to the flow are clus-
tered on coarser scales, since their coupling is relatively weaker.

As usual with finite elements, the supports of basis functions on
a given scale are overlapping. Hence, we need to derive a multi-
scale of domain decompositions from the set of basis functions to
partition the domain into disjoint clusters. Such a domain decom-
position

D l := {D l,i}i=1,··· ,nl

can easily be defined for every l = 0, · · ·L as follows (cf. Fig.5):

D l,i := {x ∈ Ω |Ψl,i(x) ≥ Ψl, j(x)∀ j = 1, · · · ,nl}

In other words, a domain D l,i on level l is the set of points where
the basis Ψl,i is maximal on that level. Figure 5 shows the domains,

a) b) c) d)

e) f) g) h)

Figure 5: Domain decomposition for the two fields in Figs. 4 and 3

on the four coarsest levels from left to right, for the two sample
fields v1 and v2 discussed above. We visualize the domains by as-
signing different colors, picked from a small prescribed color set,
to neighboring domains.

Several observations can be made. First, the domains on differ-
ent scales need not be strictly spatially nested – the supports of the
shape functions are, but the decomposition arising from the max-
imal property is not. However, the domains are clearly aligned to
the flow field. All domains on a given level l have comparable sizes
and the average domain size is reduced by a factor, roughly equal to
2, from level l to level l +1. These properties are inherited from the
bottom-up coarsening scheme used by the AMG method. Further-
more, the clustering of the field v1 = (−1,1) (Fig. 5 a-d) is perfectly
aligned with the field (cf. the basis functions in Fig. 4 a-d). How-
ever, the clustering of the field v2 = (1,1), although very similar, is
less regular (Fig. 5 e-h). This is the unavoidable impact of the un-
derlying operator discretization (mesh). Since v2 is perpendicular
to the initial mesh edges, this is the worst-case scenario. How-
ever, even in this case, the constructed domains are still very much
aligned with the field. Figure 6 demonstrates this for a 2D circular
field. Finally, note that the supports of the basis functions, respec-
tively the induced domains on a given level, do not have exactly the



Figure 6: Circular field, levels C, C−2, C−4 (C=coarsest)

same size (area), since AMG cannot evaluate (integrate) the mass
of the basis functions. Indeed, AMG does not employ any geomet-
ric nodal information, but only a matrix of coupling strengths. As
discussed in Sec. 6, these restrictions cause no practical problems
for visualizing real-world datasets.

Figure 7: Convective flow decomposition, five coarsest levels (top
to bottom). Left: domains. Right: arrow icons colored by vector
magnitude

6 APPLICATIONS

6.1 2D flow fields

We first consider a convective, incompressible flow field on a two-
dimensional domain (Fig. 7). Heating from above and cooling from
below result in convective patterns. The flow is modelled by the
incompressible Navier–Stokes equations using the Boussinesq ap-
proximation. Figure 7 shows convective patterns of the resulting
flow at successively finer levels of detail. Besides color-coded do-
mains, we visualize the multiscale by velocity-colored curved ar-
row icons (cf. [21, 11]). For every domain D l,i, we draw one such
icon, using a streamline seeded at the point where the correspond-
ing basis Ψl,i is maximal. By construction (cf. Sec. 5) this point
stays inside the respective domain D l,i regardless of the domain’s

shape. Other choices for the seed point, or icon, are also possible.
Figure 10 shows the decomposition of a magneto-hydrodynamics
(MHD) flow dataset, as a second 2D example.

a) b) c)

d) e) f)

g) h) i)

Figure 8: Helix flow, selected domains (a-c), half-transparent do-
mains with arrow icons (d-f). Diagonal flow, selected domains (g-i).

6.2 3D flow fields

Our method works identically for 3D (volumetric) vector fields.
The only difference is the use of tetrahedral, instead of triangu-
lar, meshes. However, direct visualization of a color-coded domain
decomposition, as in the 2D case, is not effective due to the volu-
metric occlusion. Hence, we use a few postprocessing steps. For
every domain D l,i on a given level l, we construct a closed trian-
gle mesh that bounds D l,i. Next, we relax (smooth) these meshes
using e.g. a Laplacian filter or a windowed sync filter [19]. As a re-
sult, the meshes become slightly smaller, which allows us to better
separate them visually. Next, we implement an interactive naviga-
tion scheme in which domains D l,i can be made half or completely
transparent by a mouse click. Users can interactively ’carve’ into
the flow volume to e.g. remove uninteresting areas and bringing
inner flow structures into sight, see Fig. 8. Alternatively, we can
visualize the flow at a given level of detail using the same colored
arrow glyphs as in the 2D case.

Figure 8 a-f,g-i shows the first three coarsest decomposition lev-
els of a 3D helix flow and of a 3D laminar flow with v = (1,1,1)
respectively. We used the interactive technique sketched above to
remove the outer domains and to expose the more interesting in-
ner flow structure. The remaining smoothed domains are shown in
Fig. 8 a-c for the helix flow and Fig. 8 g-i for the laminar flow (com-
pare the latter with the 2D field in Fig. 5). Figures 8 d-f show the
same domains as Fig. 8 a-c, this time half transparent and with the
same arrow icon technique as in 2D (Sec. 6.1). Finally, we consider
the incompressible flow in a water basin with two interior walls,
an inlet (on the left) and an outlet (on the right), the same dataset
as in [9]. Figure 9 shows several multiscale levels, visualized with
curved arrow icons. These images show that our method scheme



works in 3D just as well as in 2D.

a) b)

c) d)

Figure 9: Water basin, four coarsest levels (a-d)

6.3 Flow fields on surfaces

So far we considered vector fields on domains which are subsets of
2D and 3D Euclidean space. We now extend our method to cluster
tangential flow fields on surfaces, such as weather-map wind fields
over the Earth, flow fields on streamsurfaces, or vector fields in dif-
ferential geometry. To this end, we have to generalize the differen-
tial operator A . Let us consider a smooth manifold M embedded
in IR3. On M we can define a gradient of a smooth function u as
follows: First we extend u to a neighbourhood of M , then we com-
pute the Euclidean gradient in IR3. Finally, we project this gradient
onto the tangent space TxM . Overall, this procedure leads to the
definition

∇M u := PTxM
∇

IR3 u ,

where u is assumed to be already extended to IR3 and PTxM
denotes

the projection onto the tangent space TxM . Furthermore, we define
the divergence divM v for a vector field v on the tangent bundle as
the dual operator of the gradient by

∫
M

divM v φ dA := −
∫
M

v ·∇M φ dA

for all smooth, compactly supported functions φ on M . With these
operators at hand, we obtain the analogue of the differential opera-
tor A on an Euclidean domain:

A u := −divM (A∇M u)

for C2 functions u in M . The finite element discretization is now
completely analogous to the above Euclidean case. In fact, we use
exactly the same code for all our applications. We approximate the
surface M by a triangulation Mh and obtain the stiffness matrix

Ai j :=
∫
Mh

a(v) ∇Φi ·∇Φ j dA ,

where Φi, i = 1, · · ·n, are the piecewise linear nodal basis functions
of the triangulation Mh, as in Sec. 4.

Figure 10: MHD flow decomposition

As an illustration, we give the multiscale decomposition of the
average wind stress field on the surface of the Earth in Fig. 11 (the
dataset is taken from [28]). The flow texture in the bottom row was
produced with the IBFV method described in [28].

7 LOCAL LEVEL OF DETAIL

Our multiscale method presented so far displays a flow field at a
user-selected global level of detail. However, it is often desired to
have a spatially varying level of detail that allows for a user-selected
focus on certain flow regions.



We provide this in an interactive, flexible and intuitive way using
our multiscale decomposition, as follows: Figures 12 a,b illustrate
the procedure for a Benard incompressible 2D flow. First, we se-
lect a point of interest with a mouse click. We next display a scale
of domains {Dk,p} , ranging from fine to coarse levels, which all
contain the selected point. These domains are shown in a nested
fashion with different colors (finest domain is red, see colormap in
Fig. 12 a). A second mouse click selects an area of interest, i.e.,
a particular domain D l,i on a level l from this scale. A third click
on one of the finer domains Dm, j from the scale {Dk,p} chooses
the level of detail m ≤ l. Finally, we cover the domain D l,i with
flow icons corresponding to all finer domains Dm, j which inter-
sect D l,i. The result of a four-fold application (12 clicks) of this
procedure is depicted in Figure 12 b. Here, we selected the four
vortices of the flow domain for display. For better orientation, we
also show all domains on the finest level in the gray background.
In Figure 12 c, we show several basis functions corresponding to
domains selected by this procedure, this time for the Boussinesq
dataset (Fig. 7). Finally, Figure 12 d shows three regions of interest
selected with 9 clicks for the Earth dataset, one above Europe and
two above Africa. This strategy can be also implemented for 3D
datasets in a straightforward way.

8 DISCUSSION

The presented results clearly show that our approach for multiscale
representation of the structure of a vector field works robustly and
generically for 2D, curved surfaces, and 3D datasets. The main in-
gredients of our method are the use of a differential operator A
which encodes the flow field, and an AMG method which com-
putes a multiscale of basis functions based on a given fine level
discretization of A . A single set of parameters performed well for
all considered datasets.

a) b)

c) d)

click1 and 3

click 2

Figure 12: Local level of detail. Selection procedure (a), result after
four selections (b). Selected basis functions on Boussinesq dataset
(c). Three selections on Earth dataset (d)

Two aspects of our method must be emphasized again. First, our
AMG-based coarsening works purely bottom-up. First, clustering

decisions taken on a fine level cannot be reversed on a higher level.
Secondly, AMG operates on matrix data only. It has no access to
geometric information, as mentioned in Sec. 5. These two aspects
may lead to coarse levels where cluster sizes can be unbalanced and
vector field symmetries may not be exactly captured. These issues,
however, are encountered in many bottom-up clustering methods.
If desired, they can be corrected in an additional postprocessing
phase, e.g. by rebalancing the cluster masses via additive and mul-
tiplicative biasing of the defining basis functions (Sec. 5).

An important feature of our method is its speed and ability to
treat very large datsets. Table 1 shows, for several datasets, the time
and memory needed for the matrix assembly and the time needed by
the AMG multiscale computation on a Pentium 4 at 1.8 GHz with
1MB RAM running Linux. The actual computation of the domain
decomposition (Sec. 5) involves just the recursive multipication of
all prolongation matrices. This is done on-the-fly, as the user vi-
sually navigates through the multiscale. The run time of AMG
per node is roughly five times larger for 3D datasets than for 2D
datasets. This factor is exactly the ratio of the sparsities of the cor-
responding coupling matrices, i.e. the ratio of the number of nodal
neighbors in 3D tetrahedral and 2D triangular meshes respectively.
Using 3D hexahedral meshes only increases the time and memory
requirements, since the average node connectivity in such meshes
is larger. Moreover, our analysis of the results showed that hexahe-
dral meshes do no give any advantage with respect to the decom-
position quality. Finally, we remark that practically all the effort
is spent in computations involving matrix-vector products. Con-
sequently, classical speedup strategies, e.g. parallelization and/or
graphics hardware acceleration, can be directly applied.

Dataset Dimension Assembly AMG AMG speed Matrix
(nodes) time time µsecs/node (KB)

Laminar 2D 200x200 0.81 1.49 37 4.9
Circle 100x100 0.30 0.32 32 1.2
Benard 256x256 1.01 2.41 36 8.1
MHD 256x256 1.00 2.40 36 8.1
Boussinesq 256x512 2.05 4.62 35 16.2
Earth 12844 0.40 0.37 29 1.6
Laminar 3D 30x30x30 0.91 4.12 152 3.4
Helix 50x50x50 4.27 19.83 158 15.6
Waterbox 128x85x42 13.75 90.73 198 57.1

Table 1: Algorithm timings

9 CONCLUSIONS

We have presented a novel method for the multiscale representa-
tion and visualization of vector fields. Our method is based on an
encoding of the flow field in a differential operator. The discretiza-
tion of this operator, essentially a stiffness matrix which encodes
the flow, is transformed into a multiscale representation by the al-
gebraic multigrid (AMG) method. We then use the associated mul-
tiscale of basis functions to decompose the flow domain in flow-
aligned regions. Finally, this decomposition can be visualized e.g.
by classical flow icons. The most attractive aspect of our method
is probably its generality: We are able to treat flow fields on 2D
flat and 3D curved surfaces and 3D volumes with the same method
using the same implementation and parameter settings.

In the future, we plan to generalize our approach to other types
of flow operators, based on different coupling strength definitions
(e.g. using vorticity), which will result in different flow simplifica-
tions. Furthermore, the multiscale of basis functions constructed by
the AMG can be used to design different visualization techniques
as well (cf. Fig. 12 c). One idea is to use them as color and/or trans-
parency information in texture advection based methods [27, 20] to
produce multiscale textured animations of flow fields.



Figure 11: Climate dataset decomposition, five coarsest levels (left to right). Domains (top row) and flow texture overlaid with curved arrow icons
(bottom row)
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