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Abstract: We present dense medial descriptors, a new technique which generalizes the well-known medial axes to en-
code and manipulate whole 2D grayvalue images, rather than binary shapes. To compute our descriptors, we
first reduce an image to a set of threshold-sets in luminance space. Next, we compute a simplified represen-
tation of each threshold-set using a noise-resistant medial axis transform. Finally, we use these medial axis
transforms to perform a range of operations on the input image, from perfect reconstruction to segmentation,
simplification, and artistic effects. Our pipeline can robustly handle any 2D grayscale image, is easy to use,
and allows an efficient CPU or GPU-based implementation. We demonstrateour dense medial descriptors
with several image-processing applications.

1 INTRODUCTION

Skeletons, or medial axes, are well-known 2D
shape descriptors used in many applications in shape
analysis and classification, shape recognition, shape
matching, topological analysis, image registration,
and path planning. Medial axis structures, augmented
with distance information from the medial axis to its
corresponding shape, generate the so-called Medial
Axis Transform (MAT), which is a true dual for the
input shape. In other words, the MAT can be used
for the exact reconstruction and also for the simplifi-
cation of shapes at user-specified levels of detail. 2D
skeletons and MATs have been extended to three di-
mensions to create surface and curve skeletons and
their corresponding medial surface transform (MST),
which allow processing of 3D shapes analogously to
their 2D counterparts. In this paper, we focus on 2D
skeletons and MATs.

However powerful, skeletons and MATs have the
crucial limitation that they require as input a digital
shape,i.e. a closed boundary which divides the em-
bedding space into inside and outside regions. This
limits their direct application to datasets containing
pre-segmented shapes. However, in many applica-
tions, one has continuous fields as inputs, such as
grayscale or color 2D images or 3D scalar volumes
such as CT or MRI scans. Although pre-segmenting
such datasets into binary shapes and further using
skeletons to analyze such shapes is possible, this is a

non-trivial process which requiresa priori knowledge
on the nature and position of the shapes of interest.
Moreover, since skeletons require binary shapes, they
cannot directly handle fuzzy shapes whose bound-
aries are defined by a range of scalar values. Elim-
inating this limitation,i.e. enabling skeletal and MST
descriptors to directly handle grayscale images, can
open new ways for using the analytic power of such
descriptors for image segmentation, editing, and clas-
sification applications.

In this paper, we present a framework for repre-
senting and manipulating 2D images using a new de-
scriptor: Dense medial axes. Our framework operates
in three steps. First, we decompose a grayscale im-
age into several so-called threshold setsTi , i.e. pixels
whose values exceed a given set of scalar valuesvi .
Next, we compute a simplified medial axis transform
Mi of each threshold setTi , using a suitable simplifi-
cation valueτi . Finally, we use the medial transforms
Mi to perform several types of image processing op-
erations on the initial image, ranging from perfect im-
age reconstruction to image simplification, segmenta-
tion, editing, and artistic painting effects. The set of
threshold-valuesvi and medial simplification values
τi effectively create a two-dimensional scale-space in
which we encode the image luminance variations and
shapes present in the image, respectively. We propose
an efficient GPU-based implementation of our dense
medial descriptors, which can compute these and the
associated image processing operations in real-time



on mega-pixel images. We demonstrate our frame-
work with several image processing applications.

The structure of this paper is as follows. Sec-
tion 2 overviews related work on 2D medial descrip-
tors. Section 3 details the three steps of our frame-
work: threshold-set computation (Sec. 3.1), medial
transform computation (Sec. 3.2), and image recon-
struction (Sec. 3.3). Section 4 presents ways in which
we can parameterize the above-described steps of our
pipeline to achieve several types of image processing
operations, and illustrates these with examples. Sec-
tion 5 discusses our framework. Section 6 concludes
the paper.

2 RELATED WORK

Given a two-dimensional binary shapeΩ ⊂ R
2

with boundary∂Ω, we first define itsdistance trans-
form DT∂Ω : Ω → R+ as

DT∂Ω(x ∈ Ω) = min
y∈∂Ω

‖x−y‖ (1)

The skeleton, or medial axis, ofΩ is next defined as

S(∂Ω) = { x ∈ Ω|∃ f1, f2 ∈ ∂Ω, f1 6= f2, (2)

‖x− f1‖= ‖x− f2‖= DT(x)},

where f1 and f2 are the contact points with∂Ω of
the maximally inscribed disc inΩ centered atx, also
called feature transform(FT) points (Strzodka and
Telea, 2004) orspoke vectors(Stolpner et al., 2009),
where the feature transform is defined as

FT∂Ω(x ∈ Ω) = argmin
y∈∂Ω

‖x−y‖. (3)

The skeleton, together with the distance transform,
form the Medial Axis Transform (MAT), which can
be used to exactly reconstruct the input shapeΩ (Sid-
diqi and Pizer, 2009; Telea and van Wijk, 2002).

Two-dimensional MAT techniques can be clas-
sified into three groups.Geometricmethods use a
polygonized version of∂Ω to compute its Voronoi
diagram and the skeleton as a subset thereof (Og-
niewicz and Kubler, 1995). Thinning methods it-
eratively remove∂Ω pixels while preserving con-
nectivity (Palagyi and Kuba, 1999). Pixel re-
moval in distance-to-boundary order enforces cen-
teredness (Pudney, 1998). Such methods are sim-
pler than geometric methods and they also directly
use a pixel-based image representation.Distance
field methods find the MAT along singularities of
DT∂Ω (Rumpf and Telea, 2002; Telea and van Wijk,
2002; Wan et al., 2001; Siddiqi et al., 2002; Hes-
selink and Roerdink, 2008), and can be efficiently

implemented on GPUs (Strzodka and Telea, 2004;
Sud et al., 2005; van Dortmont et al., 2006; Cao
et al., 2010). General-field methods use fields
smoother (with less singularities) than distance trans-
forms (Ahuja and Chuang, 1997; Cornea et al., 2005;
Hassouna and Farag, 2009), thus are more robust for
noisy shapes. Foskeyet al. compute theθ-SMA, an
approximate simplified medial axis, using the angle
between feature vectors (Foskey et al., 2003). The
θ-SMA can get disconnected along the so-called lig-
ature branches. An accuracy comparison of different
field methods for 2D distance and feature transforms
is given in (Reniers and Telea, 2007).

Clear, or regularized, skeletons are extracted from
noisy shapes by thresholdingimportance measures
to prune skeleton pixels caused by small shape de-
tails (Shaked and Bruckstein, 1998). One of the sim-
plest, and most effective, such measures is the col-
lapsed boundary length metricρ : S→ R+, which
ranks skeleton pixelsx by the boundary length, along
∂Ω, between their feature points (Ogniewicz and
Kubler, 1995; Costa and Cesar, 2000; Telea and van
Wijk, 2002), i.e.

ρ(x ∈ S) = ‖∂Ω(f1, f2)‖, (4)

where f1 and f2 are the feature points of the skele-
ton point x. The metricρ increases monotonically
on skeletons of genus 0 shapes from their periphery
to their center, so thresholding it is guaranteed to di-
rectly yield a connected skeleton (Costa and Cesar,
2000; Telea and van Wijk, 2002).

However effective for shape registration (Sundar
et al., 2003), matching (Bai and Latecki, 2008; van
Eede et al., 2006), classification (Costa and Cesar,
2000), and recognition (Macrini et al., 2008), skele-
tons can only be computed forbinary shapesΩ.
Given a grayscale image,Ω can be computed using
various segmentation methods (Kass et al., 1988; Co-
maniciu and Meer, 2002; Shi and Malik, 2000; Li
et al., 2010). Simpler, but more generic, segmentation
methods include classical level-sets and threshold-
sets (Sethian, 2002), which are nested structures that
capture all image points whose grayvalue is equal to,
or respectively larger than, a given value. However,
segmentation poses two problems. First, we need to
know, in advance, which shapes we are searching for
in a given image. Secondly, this approach only de-
livers skeletons of the image subset captured by the
segmentation. In other words, we do not have a me-
dial descriptor for theentire image,e.g., we cannot
talk about the skeleton of a fuzzy shape.
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Figure 1: Dense medial descriptor computation pipeline.

3 PROPOSED FRAMEWORK

We propose to join the grayvalue information
present in threshold set descriptors with the shape in-
formation delivered by medial descriptors in a single
newdensemedial descriptor (DMD), as follows (see
also Fig. 1). First, we reduce an image to a set of
threshold-sets (Sec. 3.1). Secondly, we compute a
simplified MAT for each threshold-set (Sec. 3.2). Fi-
nally, we use the threshold-set grayvalues and com-
puted MATs to generate our DMD (Sec. 3.3), which
we can use next for various image processing opera-
tions (Sec. 4).

3.1 Threshold set computation

Given a grayscale imageI : R2 →R+ and a grayvalue
v∈ R+, we define the threshold-set

T(v) = {x ∈ R
2|I(x)≥ v}. (5)

By definition, threshold-sets for increasing grayscale
values are nested 2D structures. For a digitaln-bit-
per-pixel image, we have thus 2n threshold sets, or
layers,Ti = T(i),0 ≤ i < 2n. Here and further, we
use a value ofn= 8. Further, from each layer, we re-
move foreground and background islands with an area
ε smaller than 3% of the layer’s area|Ti |. This further
simplifies our medial descriptors used to encode the
layers (Sec. 3.2).

The density of layer borders is proportional with
the probability of having an edge in the image: Low-
density areas indicate that consecutive layers are far
apart, thus the image is relatively flat. High-density
areas indicate close consecutive layers,i.e. quickly
varying grayvalues. We will further use this observa-
tion in the reconstruction pass (Sec. 3.3). Threshold-
sets are nested,i.e. ∀i < j,Tj ⊂ Ti . This observation
is important, as it implies that if we remove a pixel
from Tj , this pixel will get the (darker) grayvalue of
its closest parent layer.

3.2 Simplified medial axis

A threshold-setTi can be seen as an arbitrary ‘slice’
in the image grayvalue space. Geometrically speak-
ing, Ti can have any shape,e.g. a collection of noisy
disconnected components. We propose here to use
MATs to capture the essence of the shape of aTi and
remove its spurious details.

For this, we compute the distance transformDTi =
DT(Ti) and simplified skeletonSi = S(Ti), follow-
ing Eqns. 1 and 3 respectively. We computeDTi us-
ing the GPU-based exact Euclidean method of Caoet
al. (Cao et al., 2010). This method also computes the
feature transform of a shape (Eqn. 3). Hence, it is
trivial to modify this method to determine, for each
point x ∈ T i , which are its two feature points, and
next, following a simple arc-length parameterization
of ∂Ti , analogous to (Telea and van Wijk, 2002), the
collapsed boundary length atx.

As noted earlier,Ti can contain a large amount of
geometrical and topological noise. Once we haveSi
andDTi , we can remove these easily. As skeleton im-
portance, we use the so-calledsalience metric

σ : S→ R+ = ρ/DT, (6)

equal to the collapsed boundary lengthρ (Eqn. 4)
divided by the distance transform (Eqn. 1) (Telea,
2012). This metric has the desirable property that
it removes small-scale boundary noise, but it keeps
salient features, such as cusps or dents. Figure 2 illus-
trates this: The input image is an 8-bit noisy human
brain CT (a), from which we select the threshold-set
corresponding to the level 132 (b). Next, we remove
small foreground and background islands (as men-
tioned in Sec. 3.1), compute the simplified MAT of
this threshold-set, regularized by the saliency metric
σ, and reconstruct this set from this skeleton. The
result (c) captures the main shape described by the
threshold-set (b), ignoring small-scale details such as
specks, holes, and boundary noise.
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Figure 2: Salience metric for skeleton simplification: (a)
grayvalue image; (b) threshold set; (c) threshold set recon-
structed from saliency skeleton.

3.3 Image reconstruction

So far, we have reduced our input grayvalue image
I to a set of threshold-setsTi , each having an MAT
Si . We can reconstruct a simplified versionT̃i of each
Ti (in increasing order ofi, i.e. from dark to light
layers) from its corresponding MAT(Si ,DTi) by ei-
ther executing a Fast-Marching-Method (FMM) ‘in-
flation’ of Si outwards until each pointx ∈ Si reaches
the distanceDTi(x) (Sethian, 2002; Telea and van
Wijk, 2002), or alternatively drawing discs centered
at x with radiusDTi(x), and coloring each layerTi
with the grayvaluei. The first approach (FMM) works
best on a CPU, while the second scales better on the
GPU. However, this method is basically a nearest-
neighbor (zero-order interpolation) reconstruction of
I , so it shows intensity-banding effects around the
boundaries∂Ti of the layersTi . A better way is as
follows: For each two consecutive layersi and i +1,
whrere i ∈ [0,255], we reconstruct the layersTi and
Ti+1 as above (either on the CPU or GPU), and next,
we set the grayvaluev(x) of each pixelx located be-
tween the boundaries∂Ti and∂Ti+1 to

v(x)=
1
2

[

min

(

DTTi

DTTi+1

,1

)

vi +max

(

1− DTTi+1

DTTi

,0

)

vi+1

]

(7)
This achieves a smooth distance-based interpolation

between the boundaries∂Ti (with grayvaluevi) and
∂Ti+1 (with grayvaluevi+1) in the Hausdorff sense.
Applying Eqn. 7 at all pixelsx of the image space
yields our final reconstructed imageĨ . Examples of
reconstruction are discussed next in Sec. 4.1.

4 APPLICATIONS

We next present several applications of our dense
medial descriptor.

4.1 Reconstruction

Overall, the interpretation of our reconstruction tech-
nique is simple: Given several layersTi with cor-
responding MATs(Si ,DTi), we can reconstruct a

smooth version of the original imageI from which
Ti have been produced. Thus,I is integrally encoded
in our dense MAT(Si ,DTi). For instance, if we en-
codeall layersTi present in the original image, and
do not simplify at all the resulting MATsSi , the re-
construction presented in Sec. 3.3 is anexactcopy of
the original image, by definition,i.e. since we encode
all luminance layers and since an unsimplified skele-
ton exactly preserves the shape of each layer. Thus,
our dense medial descriptor (DMD) can encode the
full input information, if desired. However, our DMD
can be used to simplify the input imageI in several
ways, as follows.

First, we can only encode therelevant layersTi .
A layer is deemed relevant if its removal from the re-
construction (Sec. 3.3) causes a too large difference
between the original imageI and the reconstructed
image (Eqn. 7). Indeed, the advantage of our recon-
struction scheme is that it allows to easily remove,
or keep, layersTi in the reconstruction process. As
such, given a typical image with 255 layers, we can
decide on-the-fly which layers are relevant for the re-
construction or not, depending on application-specific
metrics.

The simplest of such metrics is therelevanceof a
layer: Given all layersTi , we can remove those which
contribute less to reconstructing an image close to the
input imageI . To compare the reconstructionĨ with
the original imageI , we use the well-known mean
structural similarity index (SSIM) metric (Wang et al.,
2004). Figure 3 ilustrates this. Here, we have re-
moved the least relevant layers to the reconstructed
image (as according to SSIM) and plotted the SSIM
metric. We see that we can remove around 30..50%
of the 255 layers of an 8-bit image without a percep-
tual decrease in image quality: Details such as salient
sharp boundaries, highlights, and even global small-
scale patterns (such as the mandrill’s hair structure)
are well preserved. Accordingly, this means we can
compressan image, by the same layer removal ratio,
i.e. 60% (a), 23% (b), 78% (c), and 37% (d) respec-
tively, with little perceptualloss. Consequently, if we
accept the implied perceptual difference, between the
input image and our simplification, techniques such
as JPEG encoding can be subsequently applied atop
of our simplification.

4.2 Segmentation

Segmenting an image into its salient shapes has count-
less applications in medical imaging, computer vi-
sion, and image classification. We show below how
our DMD representation can be used for image seg-
mentation. Given an imageI with 0≤ i < 256 gray-
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Figure 4: Segmentation example. (a) input image; (b) 5 most relevant layers selected; (c) reconstruction; (d) mean shift
segmentation comparison; (e) layer statistics visualization (see Sec. 4.2).
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Figure 5: Segmentation example. (a) input image; (b) our method (60% layers); (c) mean shift segmentation (see Sec. 4.2).

values, we compute, for each layerTi , its relevancer
as being the difference betweenI and the reconstruc-
tion using all layers exceptTi . Next, we select for re-
construction only thek most relevant layers, wherek
is a small user-supplied value. This will keep the most
’salient’ shapes present in the image. Moreover, since
the shape of each layer is simplified by island removal
(Sc. 3.1) and boundary jaggies removal (Sec. 3.2), the
resulting reconstruction will have simpler shapes.

Figure 4 shows an example. Statistics of the in-
put image (a) are displayed in Fig. 4e. The area
|Ti | of a layer is computed as the pixels that have
precisely grayvaluei. We notice, as expected, that
the darkest 20% layers are empty and brighter layers
have increasingly less pixels (highlights are smaller
than darker zones). The number of shapes (connected

components) per layer is relatively large for the layers
having a large area, which indicates that the image is
non-trivial to segment. The relevancer shows several
local peaks: These are layers which are (1) globally
significant for the image representation and (2) more
significant than layers having similar grayvalues. We
select thek= 6 most significant such layers as shown
in Figure 4b. Here, we do not use the linear inter-
polation of consecutive layer grayvalues (Eqn. 7), so
the result shows a luminance-quantization-like seg-
mentation of the image. In contrast, using linear in-
terpolation (Fig. 4c) blurs the reconstruction where
the original image has low contrast (since, as ex-
plained in Sec. 3.1, layers in such zones have far-apart
boundaries) but keeps sharp luminance edges visible
(since these correspond to high-density layer bound-
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c) input image (mandrill)
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Figure 3: Image reconstruction accuracy (vs SSIM) while
removing layers.

aries). This yields a fuzzy segmentation of the in-
put image. For comparison purposes, Fig. 4d shows
the result of mean-shift segmentation (Comaniciu and
Meer, 2002) applied on the input image. Although the
produced segments are not identical to ours (Fig. 4b),
the overall segmentation impression is similar.

The exact selection of thek most important layers
is not critical for the segmentation results. Figure 5
shows an example. Here, we reconstructed the input
image (a) by using the 60% most relevant layers. The
result (b) is quite similar with the results of mean shift
segmentation (c), seee.g.the segments corresponding
to the house walls, window panes, and bush. Our seg-

ments are less jagged than the ones produced by mean
shift andstill preserve their salient sharp corners, see
e.g. the areas marked in red on the figure. The reason
for this is the working of the salience regularization
metric for medial axes, which, as explained, elimi-
nates small boundary jaggies but keeps salient cor-
ners unchanged. On the other hand, our result (b) has
a slightly more fuzzy segmentation aspect than mean
shift (c). If a more clear-cut segmentation is desired
(less segments), fewer most-relevant layers can be se-
lected, as shown in the earlier example (Fig. 4).

Figure 6 shows a final segmentation example. The
input image (a) shows a skin lesion (naevus) pho-
tograph taken with a Handyscope mobile dermatol-
ogy device in the framework of a digital dermatol-
ogy skin-cancer screening project. A typical network
naevus structure is visible herein. The central part of
the naevus has a slightly darker, and denser, network
pattern, which is only visible on the original high-
resolution 1936 by 2592 pixels image. The marked
boundary (in green) shows the segmentation of the le-
sion as manually drawn by a dermatology expert atop
of this image. We processed the input image, with-
out the manually-drawn segmentation, to obtain the
result in Figure (b). Here, we see the three most rele-
vant layers segmented from the input image,i.e., the
lesion’s extent atop of the healthy skin (A), and two
regions corresponding to the darker and denser central
area (B,C). This figure was obtained with relatively
low salience and island-removal values,ε = 0.03 and
σ = 2 (Secs. 3.1 and 3.2). If we increase these values
to ε = 0.05 andσ = 5, more small-scale islands and
also jaggies on the layers’ boundaries get removed.
Figure (c) shows the result: The lesion’s outer bound-
ary has now been considerably smoothed. Note, also,
that this layer is indeed by far the most relevant from
all the image’s layers, as indicated by its large rele-
vance value (Fig. 6d (A)), and its shape is quite sim-
ilar to the manual segmentation. The lesion’s inner
layers are also simplified, but to a lesser extent.

The target users (dermatology medical specialists)
noted that the tool can be very useful as a guided aid to
their manual work rather than an automatic segmen-
tation techinque: The relevance values suggest salient
structures in the input images. Seeing such values,
users select them in the relevance metric-bar, visual-
ize the corresponding structures, and decide whether
these are useful segments of the case under analysis.

4.3 Artistic editing

Our method can also be used to generate painting-
like effects from a given (sharp) photograph, simi-
lar to the artistic edge and corner preserving smooth-
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Figure 7: Original images: color example (a) and grayscale example (d). Painting-like effects obtained using the method
of (Papari et al., 2007) (b,d) and our method (c,f).

ing effect of Papariet al. (Papari et al., 2007). By
increasing the skeleton saliency metricσ (Eqn. 6),
we eliminate small-scale jaggies ofall threshold-sets,
i.e. isophote contours, while keeping their sharp cor-
ners. The reconstruction (Sec. 3.3) interpolates be-
tween these simplified contours, yielding effects akin
to painting. Figure 7 (c,f) illustrates this on two com-
plex, fine-grained detail, images. The resulting im-
ages, where MSTs have been simplified by a saliency
value of σ = 0.4 and we kept 65% of the original
threshold-sets, show a painting-like effect of the in-
put forest images, where small-scale details are ‘clus-
tered’ into larger shapes (due to the skeleton simpli-
fication), but the contrast is not unnecessarily blurred
(due to keeping a significant number of the original
grayvalues, or threshold-sets). As such, salient details
such as the dark thin trees and light spots are well
preserved, but small-scaleand weak-contrast details
such as the foliage, are simplified. The painting effect

is strikingly similar with the results produced by the
method of Papariet al., see Fig. 7 (b,e).

5 DISCUSSION

Below we discuss several aspects of our method.

Robustness:We use medial axes for saliency-based
simplification and encoding of image layers. Al-
though medial axes are known to be unstable and
not robust to noise, we should stress that this does
not affect our method. Indeed, we useregularized
medial axes,i.e. eliminate noisy branches by means
of the salience metric (Eqn. 6). As explained in detail
in (Telea and van Wijk, 2002; Telea, 2012), this
regularization produces medial axes which are robust
to arbitrary boundary noise for shapes of arbitrary



cba

Figure 8: Original color image (a). Simplified representation using our method in the RGB space (b) and HSV space (c).

genus. Also, we should note that the medial axes
are exact,i.e. precisely centered in their shapes and
pixel-thin, by construction, given the exact Euclidean
DT we use (Cao et al., 2010) and the underlying
skeletonization algorithm (Telea and van Wijk, 2002).

Speed:Our method relies on the fast computation of
distance transforms and skeletons (Secs. 3.2,3.3). On
the CPU, we have used for this the method presented
in (Telea and van Wijk, 2002), which is worst-case
O(n log(

√
n)) for an image ofn pixels. On the GPU,

using the method in (Cao et al., 2010), we achieve
a complexity ofO(n). For images of 5122 pixels,
our CPU method takes about 1 minute on a PC at 2.5
GHz, while on an Nvidia 330 GTM GPU, we take
1..2 seconds. The memory complexity isO(n), as we
only need to store a fixed set of 256 MSTs per image.

Parameters: Our method selects a subset of rel-
evant threshold-sets from the 256 possible sets,
and then computes simplified MSTs for each such
threshold-set according to the specified saliency.
Hence, saliency and relevance(σ, r) create a
two-dimensional scale-space for the input image. Se-
lecting less threshold-sets (highr) emphasizes fewer
high-relevance structures in the image (Sec. 3.3.
Simplifying each MST (highσ) reduces the border-
detail of such contours (Sec. 3.2). The third and
final parameter is the sizeε of the foreground and
background islands to be removed (Sec. 3.1). For
typical applications, settingε to values between 3 and
5% of the area of a layer achieves the desired effect,
i.e. removal of small isolated bright or dark specks.

Color images: Applying our DMD representation to
color images is trivial. For this, we apply the entire
pipeline (threshold sets, medial axes, and simplified
reconstruction) to each channel of a color image.
Figure 8 illustrates this. As visible, choosing either an
RGB or HSV color space does not create significant
differences, as both hues and luminances are well
preserved. Computing DMDs for color images is

three times slower than for grayscale images, given
that we process each color channel independently.

Applications: We have illustrated our method with
applications in image segmentation, simplification,
and artistic manipulation. For all such use-cases,
there exist obviously more specialized methods which
yield better results. Our purpose in selecting these
use-cases was mainly to illustrate the versatility of our
framework,i.e. the fact that the proposed DMD rep-
resentation can be seen as a potential, simple, alter-
native for a wide spectrum of image processing tasks.
As such, we see the DMD as a low-level descriptor
atop of which more advanced manipulations can be
built, and not as an end-user instrument by itself.

6 CONCLUSIONS

We have presented dense medial descriptors, a
new representation that encodes shape and luminance
information in grayvalue images. To allow using me-
dial descriptors for such images, we first decompose
an image into all its possible threshold-sets, and then
encode each such set using classical medial axes reg-
ularized by a corner-preserving saliency metric. The
resulting descriptor allows an exact reconstruction of
the initial image using distance-based interpolation
techniques, and also an application-dependent simpli-
fication by eliminating shapes, or shape details, of low
interest or relevance. We have implemented our de-
scriptor using GPU-based techniques to achieve near-
real-time performance. We demonstrate our proposal
with applications in image simplification, segmenta-
tion, and artistic painting effects.

Many possible extensions of our proposal ex-
ist. First, we can exploit the topological informa-
tion present in our dense medial axes,e.g. branching
or looping structures, to perform higher-level image
analysis tasks such as fuzzy object recognition. Sec-
ondly, we can exploit the spatial and topological re-
lations of medial axes of consecutive image layers to



perform new types of image editing,e.g. fuzzy object
deformation, and also to study new methods for im-
age compression. Finally, generalizing our method to
3D scalar volumes is an interesting avenue to explore.
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