
An Object-Oriented Interactive System for
Scientific Simulations: Design and Applications

A.C. Telea and C.W.A.M. van Overveld

Eindhoven University of Technology, Department of Mathematics and Computing
Science, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands
E-mail: alext@win.tue.nl, wsinkvo@win.tue.nl

Abstract. Better insight in complex physical processes requires integration of sci-
entific visualization and numerical simulation in a single interactive framework.
This paper presents an object-oriented environment which combines the tasks of
numerical simulation, visualization, simulation specification, run-time monitoring
and steering.

We first review the different existing approaches to the above tasks and outline
their relative limitations. Next, we present a model for a framework which attempts
to provide a general approach to the tasks of simulation specification and steering
in an object-oriented manner. An implementation of the framework is described.

We have built an object-oriented library for finite element computations and
integrated it into the simulation system. An example in which our system has been
used to solve a practical engineering problem illustrates the combination of object-
oriented numerics and interactivity.

1 Introduction

Scientific visualization has been massively used in numerous fields in order to
get an insight into various complex physical processes. Interactivity, seen as
the ability of the user to examine and modify the universe she observes, has
become a critical requirement of simulation and visualization tools, whether
they represent numerical simulations of physical processes, computer anima-
tions or virtual reality world models. Interaction can come in the form of
changing visualization parameters, in which case we have a visualization sys-
tem, or changing parameters of the modelled process, in which case we have
a more general simulation system.

Modelling capabilities represent another essential requirement for simula-
tion systems which should provide an easy, natural way to specify the simu-
lated universe in terms of high-level, modular entities which closely parallel
the concepts of the real problem to be described.

Although many simulation and visualization systems exist, few of them
provide a generic framework combining the abstractions required for mod-
elling complex physically-based or virtual universes together with full inter-
action freedom with all the simulation parameters.

We have attempted to answer to the above requirements by designing
a general purpose system for scientific simulations. The proposed system



2 A.C. Telea and C.W.A.M. van Overveld

addresses the tasks of simulation specification and interactivity in a uniform
manner, via a high-level object-oriented user interface.

The organization of this article is as follows. Section 2 presents an overview
of the existing types of simulation frameworks and outlines their relative
limitations. Section 3 presents the conceptual model and the design of the
proposed system. For this we firstly introduce the concepts of dependency
graphs and relationships in object-oriented programming. Then, we show how
we combine object-oriented specifications with constraint management into
a homogeneous, interactive environment. Although the presented simulation
system is general purpose, we have concentrated on support for simulations
using the finite element (FEM) method. Section 4 introduces a FEM sim-
ulation library that we have built and integrated in our system. Sections 6
and 7 illustrate the functionality of the FEM library by a couple of simulation
examples. The last section discusses the directions of our ongoing research.

2 Previous Work

The simplest simulation frameworks come as libraries dedicated to a limited
range of operations, such as geometrical modelling [1], linear algebra [2] or vi-
sualization [3]. Object-oriented libraries such as Diffpack [5] or LAPACK++
[6] provide a more abstract application programming interface (API) by which
the user can represent simulation concepts as objects.

Specification of complex simulations can be however only partially done
by such libraries. Besides modelling the simulation’s entities by objects, the
programmer should represent the relationships between these entities. For
example, a numerical simulation can have many parameters depending on
each other in complex ways. Such dependencies impose constraints on the
time evolution of the parameters they involve. Since it is complicated and
error-prone for the user to ’steer’ such a simulation by explicitly changing
all its parameters and maintaining the constraints, a constraint management
mechanism is provided to specify and automatically enforce constraint rela-
tionships. A good example of a simulation library offering constraint man-
agement is OpenInventor [4].

Adding interactivity to simulation systems takes yet another step in mod-
elling reality. While some systems allow only the monitoring of time depen-
dent data, interactive steering systems practically integrate numerical compu-
tations and visualization in one tool, which can monitor but also interactively
steer a running simulation. Haber and McNabb [7] and Marshall et al. [8] give
a good survey of interactive simulation systems.

Dataflow systems like AVS [9], Khoros, Iris Explorer or apE provide some
of the above features. The simulation is interactively specified by means of a
graphical user interface (GUI) which allows connecting various computational
modules in a directed graph, called a flow network. While the simulation runs,
data flows from its source through modules which perform various operations
on it up to the modules which perform the effective visualization.



An Object-Oriented Simulation System 3

Although powerful, most dataflow systems have a series of limitations. Ex-
plicit (by value) data transfer between modules is mainly used, which is time
and memory consuming in case of large data sets. Secondly, most dataflow
systems use purely procedural (state-less) modules, which often don’t offer
the abstraction level required for modelling complex processes (e.g. simu-
lations described by coupled partial differential equations). Moreover, the
dataflow model can express constraints only by pipelining modules in a flow
network. We would like a more abstract, possibly object-oriented way of spec-
ifying relationships between the entities involved in a simulation. Finally, the
integration of many existing object-oriented libraries in a dataflow system
raises serious problems. These are partly caused by the system’s interface
inability to deal with object-oriented entities and relationships, partly by the
dynamic and interactive nature of a simulation which may conflict with the
library’s design philosophy.

The simulation framework we propose uses an object-oriented approach to
simulation specification, user interaction and visualization. Constraint spec-
ification can be done either in the manner provided by dataflow systems or
in a more powerful, objectual way, via an object-oriented GUI of a special
design. The next section presents these issues.

3 Conceptual Model and Design of the Simulation
System

We shall firstly present a conceptual model of a simulation, which is used by
the software system as a simulation basic representation form. Atop of this
basic model, the system uses a more sophisticated specification paradigm,
which we designed by combining the object-oriented and constraint speci-
fication policies. We present the advantages of the combined specification
approach and show how it is mapped on the basic representation.

3.1 Conceptual Model

The conceptual model is based on the notion of state, defined as the set of
parameters that fully characterize the system at a given time instant. These
parameters (also called state variables) can model physical quantities of the
system (e.g. simulation time, velocity of a body in an animation, pressure
and vorticity of a fluid in a flow simulation) but can also be parameters of
the visualization system monitoring a simulation or the convergence rate of
a linear algebra solver.

A second concept is the dependency or law. If a state parameter b depends
on a state parameter a, then whenever a changes, b must change as well
in order to maintain a constitutive law of the process. For example, if the
position x of a body depends on time t, this can be expressed by a law
x = x(t). More complex laws can express the dependency of the temperature



4 A.C. Telea and C.W.A.M. van Overveld

in each point of a body on the temperature on its boundary by means of a
diffusion partial differential equation (PDE).

The set of all state variables and dependencies of a simulation constitutes
the system’s dependency graph.

a b

c d

r

user

ui

t

Fig. 1. Dependency graph illustrating state variables and laws. A directed arc (e.g.
from node a to b) represents a dependency of the form b = b(a)

Figure 1 depicts such a dependency graph. A dependency b = b(a) can
be implemented as a a functional or procedural module which evaluates the
state parameter b given the parameter a. The system’s parameters directly
controlled by the user (i.e. the user interface) are modelled by the state
parameter ui, while the state parameter r represents all parameters directly
observable by the user (e.g. graphics or numerical output). An interesting
feature of the model is that the human user can be represented by a parameter
determining the ui parameter and depending on the system’s r parameter via
a complex feedback law. Time t is the only independent parameter since all
other parameters are, directly or indirectly, seen as functions of time. The
human user’s implicit dependency on time is represented by a dotted arrow.

A dependency graph is a complete specification of an arbitrarily complex
simulation. Indeed, all entities in the simulation are completely characterized
by their state parameters, the system’s behaviour in time is described by
the laws or dependencies between these parameters and user interaction with
the system is described in terms of the ui and r state parameters. When a
state parameter changes, the system traverses the dependency graph from the
corresponding node and uses the existing laws to evaluate all the parameters
encountered during the traversal.

Although the above model is general and very convenient for expressing
and enforcing dependencies, the description of a simulation in terms of state
variables is a too low level modelling paradigm. A different approach views
a simulation in terms of objects, which practically group subsets of state
variables and allow the user to treat them as a whole by means of specialized



An Object-Oriented Simulation System 5

methods. Although objects elegantly model simulation concepts, they are
unable to directly express and enforce dependencies between their parameters.

We have combined the two paradigms into one system. Firstly, we use ob-
jects (implemented in the C++ programming language) to model the entities
of our simulation. Then, we express dependencies between these objects in
order to describe the laws of our simulation. Finally, we provide a mechanism
which automatically enforces these dependencies.

Interactivity introduces a third degree of freedom in the system’s design.
The user should be able to create, destroy, modify and examine objects while
the simulation is running. We designed an object-oriented graphical user in-
terface (GUI) which associates an objectual ’widget’ to each class in the sys-
tem. The GUI also offers an object-oriented means to managing dependencies
between objects.

We have kept the three design issues involved in the system (object-
oriented programming, constraint programming and interactivity) orthog-
onal. That is, simulation objects can be designed independently on the con-
straint specification mechanism (see [12] about a discussion on the problems
which arise) and on the interaction paradigm the system uses. Firstly, this
allows us to use class libraries which have been designed independently on
our simulation system. Constraint management can be transparently added
to such classes without having to reprogram them. The same is true for the
object-oriented GUI widgets associated to the classes. In conclusion, we can
change or upgrade any component of the system without changing the other
two.

3.2 Design of an Object-Oriented Simulation System

The simulation system consists of three main parts, implementing the three
main functionalities previously outlined: the object manager, the dependency
manager and the interaction manager (see Fig. 2 for an overview). All these
parts communicate together by sharing the dependency graph simulation
description.

The object manager is the interface between the system and the simulation-
specific class libraries. It keeps a registry of all the classes known by the sim-
ulation system and allows the user to dynamically create, destroy and copy
instances of any of these classes at run-time via a GUI. Instances are refer-
enced by names, exactly like objects in the C++ language. Since the object
manager does not use any information on simulation classes besides their
names, any application-specific class library can be easily integrated into the
system.

The dependency manager offers a way to interactively express dependen-
cies between simulation objects. Dependencies are represented by objects
which are similar to the computational modules encountered in dataflow
systems. Besides such dependencies, the system introduces the capability



6 A.C. Telea and C.W.A.M. van Overveld

A

B

C

DObject manager

Dependency manager

Interaction manager

Run manager

Simulation description
  (dependency graph)

Objects
Dependencies

Class libraries Class interactors

Fig. 2. Overview of the object-oriented simulation system.

to interactively build ’has-a’ and ’uses-a’ relationships which are specific to
object-oriented programming.

A class A has-a class B if A has B as a member. Similarly, class A uses-
a class B if A has a pointer to B as a member (Fig. 3 b). Together with
inheritance (the is-a relationship), the has-a and uses-a relationships are the
fundamental tools for expressing data dependencies in object-oriented class
libraries. While is-a is a ’static’ relationship (class hierarchies are constructed
at compile-time), the has-a and uses-a relationships are established at run-
time.

The dependency manager allows the user to create or destroy has-a and
uses-a relationships between classes in an interactive way. The objectual has-a
and uses-a relationships are automatically translated into a low level depen-
dency graph similar to the one presented in the previous section. The nodes
of this graph are the simulation objects and the arcs are the relationships be-
tween objects. A node has a set of typed ports which represent the publicly
accessible data members of its object (i.e. its state). An arc is a connection
between two ports of compatible types, meaning that there is a dependency
between the data members corresponding to the ports (Fig. 3 c). Arcs can ex-
press both has-a (by-value) data dependencies (data is copied from one port
to another to enforce the equality constraint) or uses-a (by-reference) de-
pendencies (the two ports share the same physical data member). The user’s
attempts to create invalid relationships are prevented by an object-oriented
run-time type checking component. If the user wishes however to have to-
tal control over the existing constraints, she can directly interact with the
dependency graph and add or remove connections between ports in a way
similar to the network management of the Oorange system [11].

A special component of the dependency manager, called the run manager,
uses the dependency graph to propagate changes when an object is modified,
thus ensuring the constraint satisfaction completely transparent to the user.



An Object-Oriented Simulation System 7

p2

p3

This

This
c2

Start point

End point

Line
element
size

G_LINE c2

a. c.

b.

G_POINT p2

G_POINT p3

double 0.1

compile()

Fig. 3. Objects, constraints and interactors. a) Interactor for a class G LINE.
b) Structure of class G LINE (arrows are uses relationships, while lines are has
relationships). c) Dependency graph for a G LINE object (port names are written
in italics).

The interaction manager offers a GUI to all objects in the system. The
user can visually examine all the data members of any existing object, change
their values (and see the effects the changes have on other objects if the
changed items are involved in dependencies) or call the object’s methods.
Each class in the system has an interactor, which is a GUI widget displaying
all public methods and data members of that class (Fig. 3 a). As sketched
in Fig. 2, there is a one to one correspondence between simulation class
hierarchies and interactor class hierarchies. This allows the programmer of a
new simulation class which inherits from an existing class to rapidly derive
an interactor from the one of the original class. Creating GUI interactors for
existing C++ classes is facilitated by a set of predefined basic interactors for
the fundamental C++ types (integers, floats, booleans, enumerations, typed
pointers, arrays, etc).

To illustrate the relationship between classes, interactors and constraints,
we shall use a very simple example of a line class (Figure 3. A class G LINE
represents a line as two references to two G POINT objects being the line’s
end points, a double being the size of the element obtained when the line is
meshed, a method compile() and some other less relevant data (Fig. 3 b).
Three objects have been created: the line c2 and the two end points p1
and p2. We say that c2 uses p1 and p2 has a double member (unnamed).
Figure 3 a shows the interactor for class G LINE, which allows visual control
over all the line’s members, e.g. change the start and end points or the line
element size, call the compile() method or change the line object’s name.



8 A.C. Telea and C.W.A.M. van Overveld

Figure 3 c) pictures the dependency graph, showing how c1 depends on both
p1 and p2. The dependency graph is automatically modified as the user
employs the GUI interactor to change, for example, the values of the Start
point or End point widgets.

4 A Finite Elements Object-Oriented Library

Most of the existing finite element (FE) applications come in form of packages
whose input is given as batch files and output is visualized in a postprocessing
(post simulation analysis) phase. This separation of modelling, computations
and result visualization limits the user’s freedom to change and examine
parameters of the FEM simulation to the preprocessing and postprocessing
stages.

We have addressed the above limitation by designing an object-oriented
library for finite element methods (FEM) and integrating it in the general-
purpose simulation system previously presented. The library can be used also
standalone, similarly to other object-oriented FE libraries such as Diffpack
[5].

The combination of the OO FEM library with the simulation system cre-
ates a ”virtual simulation and mathematical research” laboratory in which
the problem specification, computation and result visualization tasks are fully
interactive. End users of a simulation such as engineers can steer the ongoing
process and monitor its evolution without quitting the simulation environ-
ment in order to redefine input files or recompile. Researchers can run FEM
problems interactively and experiment with different numerical techniques or
monitor error or convergence rates.

5 Structure of a Generic FE Simulation

Although functionally different, most FE simulations exhibit a similar generic
structure. This structure and the FE library classes which occur in it are
presented in the following.

A generic FE simulation has a dependency graph which consists of three
main parts (Fig. 4), which correspond roughly to the modelling, computa-
tion and result visualization stages presented in the previous section. The
main difference between such a dependency graph and the ’classical’ 3-stages
pipeline is that objects belonging to different simulation stages can be con-
nected. This less clear separation between stages corresponds to an interleav-
ing of modelling, computations and visualization and results in an increased
interactivity.

A top-down presentation of the FE library classes found in each stage
follows:



An Object-Oriented Simulation System 9

Modelling Stage

cam

Visualization Stage

p1

pn

c1

cn

. . .

Computational Stage

POINT CURVE

vol

solver

solpr gsol

gvol

bc

s1

sn

. . .

. . .

SURFACE

sc

VOLUME

vc

mgen
MESH_GENERATOR

FIELD FIELD

FIELD

PROBLEM

SOLVER

FIELD GEOM

HPLOT

CAMERA

Fig. 4. Dependency graph for a generic FE simulation illustrating the three simu-
lation stages with their respective objects and their classes.

5.1 Modelling Stage

Modelling comprises the specification of a geometric domain, boundary con-
ditions and a PDE to be solved. These tasks are implemented by specific
classes as follows:

Geometrical modelling: Geometries are specified by POINT, CURVE,
SURFACE and VOLUME classes (Fig. 4, objects p1..pn, c1..cn, s1..sn
and vol). Several MESH GENERATOR classes (mgen) are available for dis-
cretization of the geometrical domain.

Boundary conditions: Boundary conditions of several types (e.g. Neu-
mann, Dirichlet) are specified on the curves and/or surfaces of the geometri-
cal domain (bc, sc). Besides its type, a condition uses also a FIELD object
which represents an analytical or discrete function of position and gives the
values prescribed for that condition.

PDE: The PDE is modelled by a PROBLEM class which contains special-
ized methods for that PDE type (e.g. building the stiffness matrix).

5.2 Computation Stage

The key class of this stage is the problem created during modelling (actually
PROBLEM belongs to both the modelling and computation stages). In this
stage, the problem is solved and its solution is written to a FIELD object
sol. Other computation classes include several matrix types (sparse, diagonal,
etc), iterative solvers (bi-conjugate gradient, generalized minimum residual,



10 A.C. Telea and C.W.A.M. van Overveld

etc) and preconditioners, which overall form an OO linear algebra library
similar to SparseLib++ or IML++ [14]. A number of ’low-level’ FEM opera-
tions (building a stiffness matrix, renumbering schemes, etc) are implemented
by private classes thus shielding the user from such technical details.

5.3 Visualization

This final stage comprises a set of classes which permit interactive visualiza-
tion of the various data objects produced. Two types of classes are involved
in this stage. The first type is used to map various data entities into objects
which can be graphically represented (e.g. geometries GEOM, scalar and vec-
tor plots, Gouraud-shaded height plot classes HPLOT, etc). The second class
type represents the CAMERAs, i.e. objects that graphically display the out-
put of mappers and are interactively controlled by the user. Visualization
classes are functionally similar to AVS’s mapper and data output modules or
to vtk’s [10] rendering classes.

6 Example of Modelling a PDE: The Wave Equation

In this section we shall illustrate the FE library by a simple simulation based
on a wave equation ∆u+ c2 ∂2u

∂t2 = 0 solved on a square domain with essential
boundary conditions equal to zero. The wave is initiated by an exponential
excitation function excitation = height ∗ exp− x2+y2

width centered in some point
on the geometrical domain. The simulation will generate the time dependent
PDE solutions and present them to the user as 3D elevation plots. During the
simulation, the user can change the position, amplitude and width parameters
of the excitation and then superimpose the new excitation over the current
PDE solution. The simulation will resemble dropping water droplets in a
square bucket. The dependency graph for this simulation (Fig. 5) is presented
in the following.

Geometry: The square’s geometry is defined by four POINT objects p1..p4,
four LINE specializations of CURVE l1..l4 and a SURFACE square (the
square itself). Note how the line objects share the point objects.

Boundary conditions: All boundaries have zero essential boundary condi-
tions, specified by a specialization CONST FIELD of the FIELD class (object
bc) which models a constant field with zero value. This object is shared by
all the curves.

Excitation: The excitation excit is described by a specialization EXP FIELD
of the FIELD class which models an exponential function. Note that excit
depends on the floating-point objects x, y, height, width which are directly
user controlled.



An Object-Oriented Simulation System 11

p1
POINT

p2
POINT

p3
POINT

p4
POINT

l1

l2

l3

l4

bc

LINE

LINE

LINE

LINE

CONST_FIELD

square

SURFACE

pde
WAVE_EQN

EXP_FIELD
excit

x
FLOAT

y
FLOAT

height

FLOAT

width
FLOAT

FIELD

sol

TIME

t

HPLOT

elevation
CAMERA

cam

Fig. 5. Dependency graph for the wave equation simulation.

PDE: The PDE is described by an instance pde of the class WAVE EQN
which contains all specific methods for the wave PDE. This object will get
automatically triggered when any of its dependencies is changed (e.g. time,
excitation, geometrical domain, etc) and write a new solution to the sol
FIELD object.

Time dependency: Time dependency of the PDE is modelled by a TIME
class object t on which the WAVE EQN object pde depends and which
plays the role of the time node depicted in Fig. 1. The TIME object runs
as a coroutine which advances time with a certain increment and triggers
computation of a new solution.

Visualization: There is a CAMERA cam which views a HPLOT height
plot object elevation of the PDE’s solution.

Interactivity The user can modify the excitation directly by changing the
x, y, height, width parameters (i.e. ’drop’ a new droplet in the bucket),
interact with the camera’s controls, change the time step to control the sim-
ulation speed, deform the domain by moving one of the points p1..p4, start
or stop the time t to pause or unpause the animation or experiment with the
solver’s or mesh generator parameters. Briefly, all parameters of all objects
are fully accessible for modification during the simulation.

Simulating a diffusion or Navier-Stokes PDE would involve only minor
modifications in the above setup (replacement of the WAVE EQN object by
a DIFFUSION or NAVIER STOKES object and adjustment of boundary
conditions and excitation to physically relevant values).



12 A.C. Telea and C.W.A.M. van Overveld

7 Use of the Simulation System in Engineering
Problems

We used the FEM class library and the simulation system to implement a
more complex numerical simulation of an electrochemical drilling (ECD) pro-
cess (an electrolytic process in which the anode acts like a drill that advances
into a metallic plate acting as a cathode). The anode speed and the volt-
age applied between the drill and the plate must be varied in time in a well
controlled way in order to produce holes of a complex geometry (see Fig. 8).
The problem is to find the correct voltage and speed variations in time that
produce holes with the desired geometry. The simulation that we have con-
structed enables an engineer to vary the process parameters in real time in
order to simulate the drilling of holes.

The user can control the variation of all process parameters by means
of different GUI widgets like sliders and to monitor the process evolution
in real time by selectively zooming in the areas of interest and/or choosing
different visualization metaphors (Fig. 6 e). As parameters are changed, the
system automatically performs new FE computations, domain re-meshing
and presents the new solution to the user (Fig. 8). The numerical analyst
can experiment by interactively changing the mesh generator or the solver
objects used in the FEM simulation with different ones and monitor the
convergence rate of the FE solver or change its tolerance if desired. A simple
extension would be to construct an object which automatically adapts the
solver’s tolerance or the mesh refinement to the solution’s gradient.

The ECD process is a good test case for the FEM simulation system since
it essentially relies on real time user control and evolution monitoring.

8 Conclusion

Better control of complex numerical simulations of physical processes de-
mands a general purpose simulation system which integrates modelling, com-
puting and visualization into a single environment. This paper has pre-
sented the conceptual model and structure of a simulation system which
combines the data dependency paradigm of dataflow applications with an
object-oriented modelling philosophy. The result is an integrated environment
in which simulations can be interactively built, steered and monitored. The
system offers the power of imperative programming via an object-oriented
GUI allowing visual manipulation of objects, methods and data members.
Secondly, constraint programming is provided by means of an object-oriented
visual specification of data dependencies.

We have designed an object-oriented library for finite elements and in-
tegrated it into the presented simulation system. The combination between
object-oriented numerics and interactive simulation specification yields an
environment where both high level, intuitive simulation steering and fine



An Object-Oriented Simulation System 13

control over numerical aspects are available. We illustrate this combination
by a set of examples including a practical engineering problem.

Current research goals include both the enhancement of the FEM object-
oriented library with new solvers, preconditioners and support for other PDE
types and investigation of better ways to interactively describe constraints
in scientific simulations. A possible development considers constraint speci-
fication in terms of implicit or explicit equations or laws and an automatic
conversion of these to the dependency graph representation. Another research
issue regards the implementation of a full-fledged run-time C++ interpreter
which should add the possibility to understand and execute complex pro-
cedural descriptions of simulations and possibly even the definition of new
classes at run-time.



14 A.C. Telea and C.W.A.M. van Overveld

References

1. J. Barry, GEOMPACK - A Software Package for the Generation of Meshes
using Geometric Algorithms, Adv. Eng. Software 13, pp. 325–331.

2. S. Carney, M. A. Heroux, G. Li, and K. Wu, A Revised Proposal for a
Sparse BLAS Toolkit, Army High Performance Computing Research Center
Technical Report 94-034, June 1994.

3. J. Neider, T. Davis, M. Woo, The OpenGL Programming Guide, Addison-
Wesley, 1993.

4. J. Wernecke, The Inventor Mentor: Programming Object-Oriented 3D Graph-
ics with Open Inventor, Addison-Wesley, 1993.

5. A. M. Bruaset, H. P. Langtangen, A Comprehensive Set of Tools for Solv-
ing Partial Differential Equations: Diffpack, Numerical Methods and Software
Tools in Industrial Mathematics, (M. Daehlen and A.-Tveito, eds.), 1996.

6. J. J. Dongarra, R. Pozo, D. Walker, LAPACK++: A Design Overview of
Object-Oriented Extensions for High Performance Linear Algebra, Proceedings
of Supercomputing ’93, IEEE Press, 1993, 162–171.

7. R. B. Haber, D. McNabb, Visualization idioms: a conceptual method for vi-
sualization systems, In Scientific Visualization: Advances and Challenges, Aca-
demic Press, 1994.

8. R. Marshall, J. Kempf, S. Dyer, and C. C. Yen, Visualization methods
and simulation steering for a 3D turbulence model of Lake Erie, Computer
Graphics 24, 1990.

9. C. Upson, T. Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel,

J. Vroom, R. Gurwitz, and A. van Dam, The Application Visualization Sys-
tem: A Computational Environment for Scientific Visualization., IEEE Com-
puter Graphics and Applications, July 1989, 30–42.

10. W. Schroeder, K. Martin, B. Lorensen, The Visualization Toolkit: An
Object-Oriented Approach to 3D Graphics, Prentice Hall, 1990

11. C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, U. Schwarz, Oor-
ange: A Virtual Laboratory for Experimental Mathematics, Sonderforschungs-
bereich 288, Technical University Berlin. URL http://www-sfb288.math.tu-
berlin.de/oorange/OorangeDoc.html

12. B. N. Freeman-Benson, A. Borning, Integrating Constraints with an Object-
Oriented Language, Proceedings ECOOP’92 – European Conference on Object-
Oriented Programming, (O. Lehrmann Madsen, ed.), Utrecht, 1992.

13. D. H. H. Ingalls, A Simple Technique for Handling Multiple Polymorphism,
In Proceedings of OOPSLA ’86, Object-Oriented Programming Systems, Lan-
guages and Applications, pp. 347–349, November 1986.

14. R. Pozo, K. A. Remington, A. Lumsdaine, SparseLib++: A Sparse
Matrix Class Library, Reference Guide, World Wide Web document
http://math.nist.gov/iml++/, April 1996.



An Object-Oriented Simulation System 15

Appendix: Color Plates



16 A.C. Telea and C.W.A.M. van Overveld

FEM Simulation of ECD process

1..12: electric potential at different
        time instants

left:    section in the 3D drilled
        cavity

1 2 3 4

5 6 7 8

9 10 11 12



An Object-Oriented Simulation System 17

(a)
(b)

(c)

(d)

(f)(e)

Fig. 6. Interactive FEM simulations. Diffusion process computed over a 3D cubic
domain (a). Temperature solution of a free convection simulation (mesh, solution
and solution 3D elevation) (b). Object-oriented interactor for the CAMERA class
(c). Temperature during a time dependent free convection simulation (d). Simula-
tion of waves (e). Interface of the ECD FEM simulation (f).


