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Abstract—We present a tool that helps C/C++ developers to
estimate the effort and automate software porting. Our tool
supports project leaders in planning a porting project by showing
where a project must be changed, how many changes are needed,
what kinds of changes are needed, and how these interact with the
code. For developers, we provide an overview of where a given file
must be changed, the structure of that file, and close interaction
with typical code editors. To this end, we integrate code querying,
program transformation, and software visualization techniques.
We illustrate our solution with use-cases on real-world code bases.

I. I NTRODUCTION

A common problem of adapting large software systems to
changing dependencies,e.g. libraries, is the sheer number of
code changes required. For suchporting activities, we need to
realistically estimate the effort and automate changes to reduce
slow, cumbersome, and error prone manual work.

We present a KDevelop extension [15] that assists porting
C/C++ code bases to newer versions of their dependencies. A
project-wide view shows the required changes with hints about
the difficulty of each change. A file-level view shows where in
a file which kind of changes are needed, and how these interact
with the current code context where they are to be done. For
this, we find the code fragments prone to being modified during
porting by a generic, lightweight, query mechanism executed
on the code base’s abstract syntax graph. Next, we express
automatic porting activities as source-code-rewriting rules for
the queried fragments. Finally, we use several views to show
the amount, type, and location of porting effort and how porting
activities depend on their code context.

Section II presents related work in visual code refactoringand
porting tools. Section III describes the visualizations and queries
proposed in our tool: the effort estimation view, the rewrite
impact view, and the impact distribution view. Section IV shows
the application of our tool for porting a real-world large C++
code base. Section V discusses our techniques. Finally, Sec-
tion VI concludes the paper and outlines future work directions.

II. RELATED WORK

Related work covers visualization tools and techniques for
program comprehension at code level, as follows.

First,static analysistools extract facts on the code to port,e.g.
abstract syntax trees (ASTs) or annotated syntax graphs (ASGs).
Program transformations use these facts to (semi)automatically
rewrite code via rewrite rules. Efficient and scalable C++
analyzers include Columbus/CAN [10], EDG [8], Elsa [18],
Clang [7], Eclipse’s CDT [22], PUMA [1], and SolidFX [24].
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C++ program transformation tools include ASF+SDF [26],
Stratego [27], Transformers [2], and DMS [3]. The features
of these tools vary widely, often in terms of subtle (but
crucial) details, such as C/C++ dialect or template support,
integration with a preprocessor, completeness and correctness
of the produced ASG, range of supported transforms, and APIs
for third-party tool integration. A comparison of C/C++ static
analyzers is given in [4], [6]. IDEs like Visual Studio, Eclipse,
KDevelop [15], and QtCreator [20] include lightweight analyz-
ers, good for code completion and cross-references, but which
cannot perform program rewrites. Static analysis also delivers
code quality metrics useful to assess the porting effort [16].

Getting insight into a set of planned code rewrites is as im-
portant as doing the rewrites themselves.Program visualization
offers several solutions. Code-level visualizations, pioneered
by Eick et al. [9], show large code amounts with table-
lens techniques [21]. Colors encode attributes such as code
type and code faults [12], evolution metrics [28], or query
results [24]. Program structure, dependencies, and metrics,
encoded as attributed compound graphs, can be visualized using
edge bundling techniques [11] or matrix plots [25], [29]. Code-
level and structure-level visualizations serve complementary
understanding goals by focusing on different abstraction levels.

III. V ISUALIZATION TOOL OVERVIEW

We aim to support the entire process of code porting: def-
inition of a set of code transformations or rewrites, assessing
their impact on a given code base, applying the rewrites, and
assessing their effects. For this, we need insight on the impact of
rewrites at several levels, such asproject level(see the rewrites’
distribution of across an entire projecte.g. hundreds of files);
file level(see the effect of several rewrites on a given file); and
source level(see the effect of typically one rewrite at the level
of individual code lines).

There are several tasks to support during a code porting:

Effort estimation: For a code base and set of rewrites, how are
the rewrites spread over its files? This gives a good estimate
of the porting effortbeforeactually doing it. Code porting by
rewrite engines is rarely fully automatic. Developers needto
review the performed rewrites to ensure that these are indeed
correct and desirable,e.g. do not change the code to alter
program semantics or given coding styles. Few rewrites or
rewrites grouped in a few files indicate minor, localized, changes
which arguably take less effort to understand, execute, or review
than many rewrites spanning the whole code base.

Rewrite impact: When the same code fragment is affected by
several rewrites, their order may be important. Even when the



Fig. 1. Overview of our code porting framework

semanticeffect is order independent, different orders may lead
to different code layouts, some of which are less readable than
others. Depending on the rewrite engine and actual rewrites
used, some rewrites may be conflictual; getting an overview of
code fragments affected by such rewrites is useful.

To support the above tasks, we have developed a porting
engine, or extension, for the KDevelop IDE (Fig. 1). We use
KDevelop’s C++ static analyzer to extract ASG data from a
given code base. Second, we created a query engine which
finds code fragments (and their ASGs) that match user-specified
patterns which have to be rewritten. These patterns are next
transformed in the ASG based on user-specified rewrite rules;
this is the actual porting. Third, we created a set of views which
address the effort estimation and rewrite impact understanding
tasks at project, file, and source code level. The query, rewrite,
and visualization engines are integrated in KDevelop as linked
views, which lets one query, rewrite, and visualize code in an
integrated way (see Fig. 2 for an overview).

source code editor

project browser

query hits view porting visualizations

porting extension panel

Fig. 2. KDevelop IDE with integrated porting extension

We describe the components of our porting extension.

A. Querying and transformation

To support automated porting, we must first describe which
code constructs are affected by porting. Examples are usageof
a given API (set of functions or classes); inclusion of certain
headers; and usage of certain language featurese.g.constructors,
default arguments, or templates which is specific to a given API
version. We describe constructs of interest as results ofqueries

Q(A×SQ)→{H⋆}, Q(a∈ A,sQ ∈ SQ) = {hi ∈ a} (1)

A query takes an ASTa∈ A and a query patternsQ ∈ SQ and
produces a set ofhits h= {hi} ∈ a, i.e. AST nodes which match
the query pattern. Hits also have location (token, line, column)
data provided by the KDevelop parser. Our query languageSQ is
largely similar with the one of the EFES and SolidFX C++ static
analyzers [4], [24]. We also find hits by matching patterns with
actual AST fragments with a visitor design. A full specification
of our query language is given at [6]. Querying uses KDevelop’s
DUchain (definition-uses chain) system and it correctly finds
all uses of a symbol,e.g. function, type or variable, across
translation unit boundaries. This is essential for the nextstep:
program-wide code rewrites.

A query outputs code fragments which we may want to
change via automatic program rewriting. Two main techniques
exist here.Procedural rewriting changes selected AST frag-
ments (our hitshi) based on given rules [2], [17]. However
generic, this approach has some problems. Data not contained
in an AST, such as code layout, comments, or macros, is
hard to maintain. This may generate code which is correct
but otherwise illegible, and may loose lexical-level information.
DMS alleviates this by intermixing C++ preprocessing and
parsing at the expense of a more complex implementation [3].
Source-to-source rewriterules, in contrast, work directly at
source-level,i.e. on the actual tokens. This method is far easier
to implement than the one in DMS, and is sufficient for the less
general transforms needed for porting,e.g. identifier renaming,
changes of function signatures and call arguments, and changes
of scope qualifiers for symbols. We define a transform as:

T(SQ×H×ST)→C, T(sQ ∈SQ,h∈H,sT ∈ST) = c∈C (2)

A transformT takes a hith= Q(a,sQ) from applying a query
sQ on an input programa (Eqn. 1), and a set of rewrite rules
ST , and produces a source-level changec of the code inh.
Rewrite rules can refer to specific syntactic parts of the query
result, as captured by the query patternsQ. In this way, we can
rewrite conditionally on thevalues of specific elements,e.g.
only rename a symbol if it occurs in a scope with a given name.
A rewrite rule performs insertion and replacement actions on the
code it acts. Like conditions, insertions and replacementscan act
on specific code parts as described by the rewrite specification
sT . For instance, we can erase the last argument of a function
call, or qualify a symbol with desired scope names. A full
description of the transform languageST is given in [6].

Source-to-source transforms using code rewrite rules have
several advantages. First, rewriteactionscan ignore KDevelop’s
internal C++ grammar representation. We have found this to
be highly desirable for developers who do not want to get
deeply involved with such issues. Secondly, the rewrite-engine



stays relatively simple, and still can keep source code layout,
comments, and macros largely similar between original and
transformed code. The key to this is that rewrite rules specify
code to be changed in terms ofsyntax, but do the actual
changes (insertion on replacement) in terms ofranges(start-end
locations) in the code. This fully preserves layout, preprocessing
macros, and comments outside changed code. Since KDevelop’s
ASG captures semantic data, relatively complex changes such
as replacing a symbol in all scopes where it is used, or changing
all instances of a given C++ template, work as expected.

However, our solution also has some limitations. Our rewrite
rules are local,i.e. can only modify code within their input hit
range. This excludes transforms such as rewriting code around
a function call when the function’s return type is changed.
Secondly, if different queries yield overlapping hits, we cannot
apply a set of transforms in a single step, but need to perform
pairs of query-and-transform steps one at a time.

Given the above, user inspection of the effects of a given
query-and-transform set is important. We next present a setof
visualizations which address this concern and, at a higher level,
support developers in planning and executing porting tasks.

most important �les

qt_cast QIconSet QPtrList QString::latin1

Fig. 3. Effort estimation view, sorted on total hits per file

B. Effort estimation view

Our first view addresses the task of estimating the overall
effort of porting thekdelibs 3.5.10code base. Our code base
has to be ported from version 3 of the well-known user interface
C++ Qt library (Qt3) to version 4 (Qt4). We use a table-lens
approach (see Fig. 3). The query set (15 queries shown here
out of a few tens in total) captures code patterns involved in

this port, following [19]. For each of the 550 files in the code
base, a table row shows the number of hits for each query in
the query set. The first column shows the sum of all hits for the
respective file. The table can be zoomed out, reducing rows to
colored pixel bars, and sorted on any column. The bottom image
shows files sorted by total number of query hits. We see here that
most porting effort is located in about 5 to 10% of the entire
set of files. The most important queries, thus main types of
changes to be done, areqt cast (Qt typecast macro),QIconSet
(construct QIconSet objects),QPtrList<T> (templated object
pointer containers), andQString::latin1(string localization),i.e.
table columns 2 to 5, since these have most cells with large
values. To further support effort estimation, developers may
define, for each query, a porting difficulty level, which reflects
how well the rewrite engine handles that specific construct
(Sec. III-A). Column headers are colored to reflect this difficulty
with a green-red (easy-hard) colormap. In Fig. 3, we see for
instance thatQString::latin1 is frequent, but can be easily
ported; however,QPtrList<T> also affects many files, but has
a high porting difficulty. Overall, the porting view assist porting
decisionse.g. trigger the development of new rewrite rules;
allocate specific developers to specific project parts; and choose
to do some porting activities by hand and automate others.

C. Rewrite impact view

As explained in Sec. III-A, code rewriting is rarely fully
automated. Apart from our rewrite engine limitations, we have
seen that developers first want to see what such an engine would
change in their code before firing it off, especially for code
bases having many rewrite locations (hits). Typical questions
are: which code fragments are affected by a given rewrite rule,
or by more rules; and how do rewrites spread over a file (e.g.
are they condensed in specific parts like the leading includeor
declaration sections, or do they affect the whole file).

The rewrite impact viewaddresses these questions (Fig. 4).
A tree browser in the left panel shows all files in the code base,
and the specific queries and query hits for each file. When we
select a file in this view, the right panel shows the query hits
in that file. In this panel, thex axis maps to the file extent
(left=first line, right=last line). Each horizontal bar shows hits
for a specific query; hits are red blocks. The bar itself is a
condensed view of the code in the queried file. To render this,
we traverse the file’s AST in depth-first order and render each
node as a bar block. The block’sx position and width reflect
the node’s size (in lines of code, LOC) and location in the file.
The block’s height reflects the nesting level: deeper nodes are
drawn as blocks inside their parents’ blocks. Block colors show
AST node types,e.g. brown for loops (for, do, while), purple
for control statements (if, switch), cyan for C-style functions,
green for public methods, orange for protected methods, andred
for private methods. This colormap covers only a small subset
of all C++ AST node typesi.e. the constructs of interest during
porting. Node types not in the colormap and nodes whose blocks
are smaller than a few pixels in either dimension are not drawn,
so that the view stays uncluttered. The red hit blocks are always
drawn at full height; their width shows the hit range. Hit block
widths are limited to a few pixels so hits always stay visible.
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Fig. 4. Rewrite impact view with syntax structure of a selected files overlaid by query hits (see Secs.III-C and IV-B)

The rewrite view can be zoomed on thex axis like a table lens.
Zooming in makes the screen-size of deeper nested nodes larger,
so these become visible. Zooming out emphasizes large, global-
scope constructs,e.g.function definitions and class declarations.

The rewrite impact view outlines query hit distribution at
file level. Vertical red bars show code ranges with overlapping
hits, thus areas of potential automatic rewrite problems. The
spread of red bars in the file indicate where rewrites will
occur in the file,e.g. in the preamble or main code range, and
also with respect to code constructs,e.g. within function or
class declarations. This view is linked to KDevelop’s editor by
brushing and selection, so developers can examine in detailthe
potential effects of a given rewrite before actually doing it.

IV. A PPLICATIONS

We now present three use-cases for our visual porting support.
As input, we take thekdelibsC++ code base (750 KLOC, 550
files) and the Qt3 to Qt4 porting scenario along the official
porting guidelines [19]. Porting code from Qt3 to Qt4 is mainly
related to rewriting code which uses Qt3 API calls or data types
to their Qt4 equivalents. This involves several syntactic and
semantic changes related to the evolution of the Qt toolkit API.

A. Estimating the effort

When starting a porting job, developers want a quick assess-
ment of the challenge at hand,i.e. the porting effort and type
of work involved (automatic vs manual rewriting). The effort
estimation view (Fig. 3), sorted by total aggregated query hits
per file, supports this. Forkdelibs, this view shows that the main
effort is condensed in 5 to 10% of the project files; most rewrite
actions can be done automatically; but there are a few such
actions, like the rewriting ofQPtrList<T> template class uses,
which the current rewrite engine cannot handle (see Sec. III-B).
Hits of a given query in a given file can be examined in detail
by clicking on their cells in the table-lens view in Fig. 3, which
selects their code is KDevelop’s editor.

We should stress that porting effortestimation, based on
query hits, and actual portingexecution, based on automatic
and/or manual rewriting, are separate activities. The effort
estimation view only highlights how much and where must work
be done, and if this can be automated or not. Developers are free
in how they do the rewriting,e.g. use our own rewrite engine
(when fully automatic transforms exist for specific queries),

manually rewrite the code, or use third-partly rewrite engines
such as, in our case, theqt32qt4 engine provided by Qt itself.
The developer is not obliged to provide transforms forall
queries pertaining to a given porting task.

B. Performing the porting

After the developer has assessed that the porting effort fora
code base is acceptable, actual porting starts. Here, one would
like to use the rewrite engine as much as possible. Since, as
already explained, this may not work correctly in all cases,a
good strategy is to examine the code file by file, or query by
query, and assess when automatic rewriting is safe. For this, we
use the rewrite impact view (Fig. 4).

cursor position (rewrite impact view)

cursor position (editor view)

QGuardedPtr<T>

query hits

QGuardedPtr<T>

query hit (editor view)

Situation before applying the rewriting

Situation after rewriting

Fig. 5. Potential rewrite inspecting (top). After the rewriting (bottom)

Several points can be made here (see Fig. 5). The selected
file contains many public methods, as shown by the many small
light green blocks. Apart from these, we see a few private
methods halfway the file (pink blocks) and a few protected
methods in the left-middle area (orange blocks). The red hits



in the white areas near the beginning of the file (left region)
show code to be ported as well, located in very small functions,
whose screen size is under a few pixels in this view. We also see
some larger functions containing consecutive and nested control
structures (purple blocks) and loops (brown blocks). Finally, we
see a class definition (dark green block at the beginning).

Next, the developer wants to examine change locations in
more detail. This serves to understand why certain hits occur;
for instance, hits of a certain query in a file may show constructs
which one did not expect to be present. This occurse.g. for
code bases maintained by many developers, such as in open-
source projects. Another use-case is examining overlapping hits,
i.e. vertical red bars; these are potential automatic rewriting
problems. For details, the user clicks in an area of interest
in the rewrite impact view. This opens a KDevelop editor for
the respective file and places the edit cursor at the location
corresponding to thex position clicked in the bar. Clicking on
a red hit block selects the hit’s code range in the editor (see
Fig. 5 top). The location selected in the rewrite impact view,
matching the cursor position in the editor, is shown in this view
as a thin blue marker. The marker is updated when the user
clicks on the color bar and when moving the cursor in the editor,
so the editor and rewrite impact view are linked in both ways.

In our case (Fig. 5 top), the hit is a Qt3QGuardedPtr<T>
construct, to be ported to its Qt4 syntax (QPointer<T>). Note
that this query correctly handles C++ template instantiations, in
our case the instance beingQGuardedPtr<KHTMLPart>. Now
the user can decide how to do the rewrite. Here, he uses the
rewrite engine, since the construct occurs in a simple context,
and, from the rewrite rule details, one knowns that this rewrite
has no side effects. A right-button click menu on the hit (not
shown in the image) does the rewriting. Figure 5 bottom shows
the rewriting effect: TheQGuardedPtr<T> hits have vanished
from the list of query hits in the rewrite impact view, which
has now three queries (colored bars) as compared to four before
rewriting. The code in the editor is updated automatically,since
the rewrite affects the underlying source file. Manual rewriting
works conversely: the user changes the code in the editor and
the impact view is updated.

Before zooming

After zooming

hits

Fig. 6. Zooming the rewrite impact view to analize query hits

We next show the zooming the rewrite impact view. This
helps deciding whether certain hits which seem to overlap in
the zoomed-out view truly refer to the same code range or not.
The mouse wheel zooms the view around the mouse position.

Figure 6 shows how this works. Before zooming, we see two
groups of two hits each, which seem to overlap (Fig. 6 top).
After zooming in this area (Fig. 6 bottom), we see that the
first two hits are closely spaced, but not overlapping, inside
one control structure (purple block). The two other hits, inside
a public method (green block), fall further apart. As no hits
overlap, they can be ported in one step using the rewrite engine.

C. Complexity assessment for affected code

The decision to rewrite automatically or manually, rewrite
ordering, and the overall rewrite difficulty depend on more than
the query hit count, hit locations, and hit overlaps. Other factors
include the overallcontextof a code fragment,e.g. location,
surrounding code constructs, and related comments. To support
more kinds of reasoning about the impact of a rewrite on a given
file, we added additional metrics in the rewrite impact view.
Different color schemes serve different analyses. One example
which proved useful was to compare changes in public method
declarations to changes in protected or private declarations.
The hypothesis is that changes in public declarations have a
higher impact on a code base than changes on protected or
private declarations. Hence, a rewrite of a public declaration
should be done with more care (if done manually) than one
of protected or private declarations. Similarly, changes in the
implementation of a method are more localized than changes
in the (public) interface of a class. However, in this case, the
complexity of the code around the change is important. For
example, rewrites in deeply nested control and loop structures
or in C-style casts potentially make the code more unreadable
than rewrites in simpler code like assignment sequences, since
the former are already more complex than the latter even before
rewriting [23]. Hence, rewrites on complex structures should be
done with greater care.

To support such analyses, we use a colormap which depicts
code complexity with respect to rewriting. All top-level struc-
tures such as class declarations and function bodies get thesame
light gray tint to show an overview of global structure. Loops
have different tints of green (depending on the loop typee.g.
for, do-while). Control structures have different purple tints (if,
switch, etc). C-style casts are light blue.

Figure 7 shows this colormap for three files of thekdelib
code base. The first file (A) is a header with no implementation
(e.g. inline methods) and thus has low complexity, as shown
by the gray-tint bar. For the next two files (B,C), we show the
whole file and a zoom-in of a complex part thereof. We see
that these files contain different kinds of deeply nested loops,
nested control structures, and several C-style casts. In file B, hits
show QString::latin1() function calls, which returns a Latin-1
encoding of a string object. In file B, we see a recurring pattern:
a do-while loop (light green) which ends with several C-casts
(nested cyan block), and has a hit in the last statement (red line)
i.e. in the loop control expressions containingQString::latin1()
calls. Also, we see that all hits are clustered within a single large
block roughly halfway the file, where we zoomed in. Here is a
method definition. For file C, we display hits for six different
queries. The first five queries have relatively few, clustered, hits
as shown by the red bar locations (Fig. 7, file C, unzoomed
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Fig. 7. Rewrite impact view colored to emphasize code complexity with respect to rewriting (see Sec. IV-C)

view). The last hit, again for theQString::latin1() query, has
more hits which are spread over a larger file portion. However,
few hits overlap, so porting can be done by manually rewriting
these overlapping regions followed by automatic rewritingof
the remaining cases. Zooming in over a small range of file C
shows that most hits are outside complex structures, exceptthe
QString::latin1() hits (red bars over green blocks).

D. Anticipating porting effort

For code bases which depend on third-party components,
porting is rarely a one-shot activity. When the interface of such
a component changes, the code base is likely to need rewriting.
Such porting efforts can be anticipated by checking the code
base’s usage of so-called deprecated APIs. These are APIs
which are (highly) likely to be dropped off in future releases,
thus whose usage implies future porting costs. Thekdepimlibs
library, part of the KDE framework [14], which contains code
for personal information management (PIM) functions, is a good
example. This library is widely used in thekdepimcomponent
of KDE. The evolution ofkdepimlibsfeatured several tens of
deprecated methods. Within this library, deprecated methods are
marked by special macros. We developed a query set for finding
such methods which resulted in 47 function queries spread over
15 classes ofkdepimlibs. Next, we checked how a new release
of kdepim(to be included with KDE 4.5) uses such methods
by searching this release with our query set.

Figure 8 shows the results of this analysis. Strikingly, there
are only 9 uses of 6 deprecated APIs (m1, . . . ,m6) within
kdepim, even though the size of the latter is over 500 KLOC.
This is a good signali.e. very low effort for portingkdepim
with respect tokdepimlibsAPI deprecation. As a reference,
we queriedkdepim for usage of non-deprecatedkdepimlib
functionality, i.e. the use of APIs in theAkonadi::Collection

m1 m2 m3 m4 m5 m6

Fig. 8. Deprecated API usage for anticipating porting efforts (Sec. IV-D)

class, which is a non-deprecated part ofkdepim. This yielded
2043 hits in 373 files. This implies thatkdepimlib is indeed
a non-trivial dependency ofkdepim. Further inquiries revealed
a possible explanation for the low usage ofkdepimlibsAPIs
within kdepim: the two components are largely maintained by
the same team, which suggests that concerted efforts have been
done to remove usage of deprecated APIs.

E. Assessing porting dependencies at system level

The effort estimation view (Fig. 3) only shows the relation of
porting changes (query hits) to code at the lowest level (files).
For large systems, developers may want to assess how a set
of (porting) changes affects their code at higher abstraction
levels,e.g.subsystems. For this, we use an existing dependency
visualization technique in a new way. Given a queryQ and a
code base with a set of filesF , we first compute all filesfQ ⊂ F
which contain at least one hith∈Q( f ∈F). Next, we construct a
compound graphG consisting of containment and dependency
relations. Containment relations reflect the software structure
(folders and files), readily available from KDevelop’s static
analysis. Dependency relations link all file nodes belonging to
the same setfQ, for all queriesQ. This reflects that porting the
code with respect to a queryQ needs to modify all filesfQ.



interfaces

kio

khtml

kscript

libraries

QPtrList<T>

misc.

kscript

QPtrList<T>

kio2

QString::latin1

Edge colors

Node colors Node colors

a) b) c)

kio2

Fig. 9. Understanding porting dependencies by visualizingquery hit relations between subsystems (Sec. IV-E)

To visualizeG, we use the hierarchical edge bundling (HEB)
technique of Holtenet al. [11], adapted to encode porting
attributes1. Figure 9 shows this for ourkdelibs example. The
left image (Fig. 9 a) shows a high-level view of the code. Nodes
are folders, colored by the number of query hits with a blue-to-
red rainbow colormap. Several folders stand out as containing
many hits,e.g. kio and khtml. Next, we select theinterfaces
folder and only show query hits relating this folder to the rest
of kdelibs, i.e. the KDE packages, colored by query type. This
shows that the Qt3-to-Qt4 changes in theinter f aces folder
which affect packages involveQPtrList<T> constructs in the
kscript sub-interface (green edges) and several other constructs
in the ktexteditorsub-interface (purple edges). We next zoom
in on the porting dependencies betweeninter f acesand kio,
by expandingkio to file level over the entire circumference
of the HEB view (Fig. 9 b). We now color nodes based
on their type (folders=green, C++ files=blue, headers=orange).
When we selectkscript, we see now precisely which files
shareQPtrList<T> porting dependencies withkscript - these
are the nodes connected by green edges with the highlighed
kscript node in Fig. 9 b,i.e. about 30% of all files inkio,
spread over most of thekio subsystems. Porting dependencies
of other types thanQPtrList<T> are shown in gray. We see a
large bundle of these in the lower-right area, and select them
for further inspection (Fig. 9 c): We now see that these are
QString::latin1 porting changes (orange edges) which relate
to the kio2 subsystem we just selected; they go to sibling
subsystems inkio and none tokscript. Hence, a Qt3-to-Qt4
porting affectskio at implementationlevel via QString::latin1
constructs and atinterface level via QPtrList<T> constructs
due to thekscript API.

V. D ISCUSSION

Ease of use:Our views, query engine, and rewrite engine are
tightly integrated with KDevelop. For this, we reuse the open
APIs of KDevelop for ASG access and GUI management. The
incremental code analysis in KDevelop ensures that queries
and transforms done on large code bases show their results in

1For HEB technical details, we refer to the paper of Holten [11]

the views on-the-fly as these become available, which gives a
smooth experience.

Queries and transforms are declaratively written in XML.
Although this offers less freedom thane.g.using an imperative
query and/or transform language, it reduces end-user effort.
Typically, users start with an existing (XML-based) query or
transform set, and modify these gradually to suit their needs.

Performance: The speed of KDevelop’s C++ analyzer (slightly
higher than compilation time) is key to the performance of our
solution. For the entireKDE code base (3.8 MLOC), this is
36 minutes on a 1.8 GHz machine with 2 GB RAM. Although
this may sound high, note that analysis is done once, and only
redone for those files which are changed. In practice, this yields
near-real-time response time for typical developer activities.

Generality: Our porting support solution depends on KDevelop
only in terms of implementation. The query, rewriting, and
visualizations techniques presented are generic and do not
rely in any way on C/C++ specifics. The only requirement
is the availability of a static analyzer that produces an ASG
with source code locations. Hence, our solution can be readily
integratede.g. in QtCreator [20] (which also has an API for its
internal C/C++ analyzer), KDevelop for other languages than
C/C++, or Eclipse (e.g. via the CDT C/C++ or Recoder Java
analyzers [22], [17]). The Recoder framework is particularly
suited, as it offers a powerful API for code rewriting.

Validation: We have used our framework for several real-
world code porting contexts: work done at KDAB, Inc. [13],
a company specialized in software porting solutions and in
particular Qt-based code; and code refactoring work in the
KDevelop open-source project after the KDE 4.4 release. In
both cases, our framework has been able to handle complex code
bases of millions of LOC and help developers save valuable time
during porting activities.

We also compared our solution toqt32qt4, the official Qt3
to Qt4 porting tool in the Qt SDK. The aim of this tool is
largely similar to ours: assist developers in porting Qt3-based
code to the Qt4 API.qt32qt4uses a lightweight C++ analyzer



to find and rewrite code fragments which comply with a built-in
list of porting patterns. Given this,qt32qt4has several serious
limitations, including incorrectly rewriting syntactically similar,
but semantically different code (due to scoping and lookup
limitations), and not rewriting certain constructs. This results
in broken code that does not compile, or worse, compiles but
executes with different semantics. In contrast, our solution has
less limitations: although it cannot perform any type of code
transformation, the rewrites it handles do not result in compiling
but incorrect code. Moreover, our solution is more generic,i.e.
it can be used for C++ rewriting beyond porting Qt-based code.

Limitations: For code analysis, we are limited by the quality of
ASG information provided by KDevelop’s own C++ analyzer. In
particular, this analyzer does not perform a so-calledelaboration
phase on the ASG,i.e. the insertion of non-explicit constructs
for implicit cast operator calls and constructor calls, anddestruc-
tor calls for stack objects. However, such constructs need to be
handled during porting to maintain code semantics. Other C++
analyzers such as Clang [7], Elsa [18] or SolidFX [24] do this
and thus provide a richer ASG. Currently, we solve this problem
by inserting on-the-fly checks in our queries and transformsto
account for such constructs. However, this solution is not ideal,
as such code should belong to the C++ analyzer proper.

Our query engine is simpler than general-purpose ASG
pattern-matching engines like [24]. Specifically, we do not
support querying for patterns involving all nodes present in the
C/C++ grammar, but limit ourselves to the most interesting ones
for (API-related) porting scenarios,i.e. nodes which describe
the usage of an external API in terms of types, inheritance,
templates, class member access, and function calls. If desired,
all C/C++ AST nodes could be added to this model, resulting in
a query engine very similar to [24]. Similarly, our code rewriting
engine is geared towards changes which arelocal to a given
query context. For porting code, this is however adequate, since
typical changes here do not spread over large amounts of code.

It is tempting to consider third-party C++ analyzers to
remove KDevelop’s analyzer limitations. There are few open-
source C++ analyzers which do preprocessing, have code
location data, provide rewriting, are scalable, and cover C/C++
fully. The only suitable candidate we know is Clang [7].
However, integrating Clang in KDevelop is not trivial. Given
these reasons, our solution is a good compromise between
generality and development effort.

Availability: Our framework, including examples, is openly
available as a KDevelop 4.0.1 extension [5].

VI. CONCLUSIONS

In this paper, we have presented a visual assistant for porting
C/C++ code bases. Our solution assists users in assessing
the porting effort for a given code base, determining possi-
ble conflicts (and resolutions thereof) during porting, getting
an overview of the issues affecting code under porting, and
doing the porting semi-automatically. We presented two new
visualizations: the effort estimation view and the rewriteimpact
view, and used the existing HEB visualization in a new way.
Examples are shown for industrial and open-source code bases.

We next consider more generic, easier to specify ways to
select and transform code fragments. Also, we plan to augment
our visualizations to support more complex understanding sce-
narios such as the assessment of ripple effects determined by a
certain code change throughout an entire code base and semi-
automatic what-if scenario support for assessing the impact of
a given (set of) code modification(s) before these are actually
executed manually or automatically.
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