
1

ClonEvol: Visualizing Software Evolution with
Code Clones

Avdo Hanjalić
Department of Computing Science

University of Groningen, the Netherlands
E-mail: a.hanjalic@student.rug.nl

Abstract—We present ClonEvol, a visual analysis tool that
assists in obtaining insight into the state and the evolution
of a C/C++/Java source code base on project, file and scope
level. ClonEvol combines information obtained from the software
versioning system and contents of files that change between
versions; The tool operates as tool-chain of Subversion (SVN),
Doxygen (applied as static analyzer) and Simian as code du-
plication detector. The consolidated information is presented
to the user in an interactive visual manner. The focus of the
presented tool lies on scalability (in time and space) concerning
data acquisition, data processing and visualization, and ease
of use. The visualization is approached by using a (mirrored)
radial tree to show the file and scope structures, complemented
with hierarchically bundled edges that show clone relations. We
demonstrate the use of ClonEvol on a real world code base.

Index Terms—Software Visualization; Software Evolution
Analysis; Code Clones

I. INTRODUCTION

Usage of software versioning and revision control systems
such as SVN, GIT, Mercurial are common practice nowadays.
In the corporate world these are known as Software config-
uration management (SCM) systems. These systems offer a
vast amount of information that can help to understand (the
evolution of) a source code base. The amount, location and
span of code clones are a reliable measure when assessing
quality of (the source code of) a software project. Tools,
such as Code Flows [9] and the Solid* toolset [7], can be
used for mining of facts from an SCM, such as file and
project-level evolution, (high-level) code structure and code
duplicates. However, not many tools exist that combine SCM
versioning information with code clones for the analysis of
clone evolution.

We present the tool ClonEvol, that assists in obtaining
insight into the state and evolution of a C/C++/Java code base
on project, file and scope level. This is achieved by combining
information obtained from the software versioning system
and contents of files that have changed between versions.
More precisely, the tool combines the version change-logs
with static analysis (of file contents) and clone detection. The
consolidated information is presented to the user in a visual
and interactive manner.

The focus of the presented tool lies on scalability (in
time and space) concerning data acquisition, data processing
and visualization, genericity and ease of use. Scalability is
achieved by limiting data acquisition and fact extraction to

differences between code base versions. ClonEvol in theory
supports all languages that are supported by both Doxygen
and Simian, which assures genericity.

The visualization is achieved with a mirrored radial tree
to show the file and scope structures, complemented with
hierarchically bundled edges that indicate the clone relations.
Users can scroll through time to search for events of interest,
which are highlighted by the following three color-maps:
• The structure color-map shows object types in the code

base (files, classes, functions) and the existing clones. It
is used as first overview to help the user understand the
visualization of the project.

• The difference color-map can be used to visualize raw
changes in the files and scopes, performed in a range
of consecutive code base versions. Implications of the
changes, such as added, removed and persisting code
clones are visualized. Moreover, code drifts, splits and
merges, being indicators of code refactoring, are empha-
sized.

• The activity color-map emphasizes frequently changed
files and the related clones, for the purpose of identifying
tightly coupled code and/or stubborn clones that form a
sore spot for maintenance.

The color-maps can be used in this order to obtain insight into
the dependencies and evolution of an unknown code base, or
in inverse order to better understand the impact of a certain
effort on a known code base.

Section II describes the design of the tool-chain and related
data structures. Section III illustrates our tool with results from
a real-world C/C++ code base. The paper ends with a short
discussion of the results and remaining work in Section IV.

II. ARCHITECTURE

Code Flows is a method to visualize the evolution of
source code, geared to the understanding of fine and mid-
level scale changes across several versions [9]. We adopt here
a similar approach, but take several design decisions to make
our tool scale to real-world code bases that contain thousands
of versions and source-code files. The data mining part of
ClonEvol is a tool-chain based on open source applications
Doxygen [11] and Simian [4]. Fig. 1 depicts the high-level
process.

The visualization pipeline is complemented by a shared
repository (DataStore), where the output of each “pipe” is

2

Fig. 1: Visualization Pipeline

stored rather than passed forward. Each pipe requires all of
the mined data, therefore it would not make sense to forward
it each time. This design follows the pipes and filters and
shared repository architectural patterns [2]. We next detail
the DataStore, data mining and data refinement processes, and
filtering and visualization components of our tool.

A. DataStore

The DataStore contains revisions R, that consist of four
components; Each revision is a set Rn = {F,S,CC,SC}, where
F is the FileTree of modified, added and deleted files, S is
the ScopeTree containing scopes s ∈ f ∈ F , CC contains sets
of related code blocks so that {(f ∈ F, linestart , lineend)} ∈
cc ∈ CC and last SC contains scope-clone relations so that
(sa,sb) ∈ SC, a 6= b. F , S and CC are built up during the
mining procedure and SC is generated by the refinement
procedure. The purpose of each of the DataStore components
is as follows:
• FileTree F : The final visualization must be file-centric.

To be able to produce it, a hierarchy of (relevant) files is
required. Moreover, the (changed) files must be acquired
before the contained scopes can be mined.

• ScopeTree S: Scopes are used to provide fine-grained
information on code changes, below the scope of an
entire file; The ScopeTree is a unification of abstract
syntax trees (AST) from Fn and therefore contains more
information than the separate syntax trees.

• Code-clones CC: The raw code clone relations are nec-
essary to relate similar scopes.

• Scope-clones SC: Changes in similarity relations between
scopes form the data that is ultimately to be visualized.

The mapping of elements from F to S is one to many and the
reverse mapping S to F is one to one; A file can contain
multiple scopes but each scope has one main file where
its skeleton is implemented and its sub-scopes are defined
(forward declared). In order to unite F and S, it seems obvious
to pick one of the hierarchies as master and embed the other.
However, the chosen approach is to keep both trees and
interconnect the leaves in a Compound Graph. We do this by
creating a graph from F and S, where containment relations
between the elements are explicitly modeled. This allows us
to visualize the data from both a file and scope point of view.

B. Data Mining

Unlike most other project-level analysis tools, ClonEvol
only requires the modified files Fn to be acquired for Rn and
Rn−1 to produce the desired information. The SCM provides
meta-information in the form of change-logs, that contain
records of files modified from revision Rn−1 to Rn. Files

that were not changed cannot be subject to code drifts, as
a drift implies that a certain piece of code was moved and
therefore the file must differ between revisions Rn and Rn−1.
The change-log is used to build Fn and then acquire each
f ∈ Fn to continue with the next step.

To model the changes in a source code base, scope informa-
tion must be extracted from the source files, a job performed
by static analyzers. Doxygen is a code documentation tool that
supports C, C++, Java programming languages among many
others [11]. It extracts structural data down to class attribute
level and can be used as a lightweight, zero-configuration,
static analyzer.

Next, by means of similarity analysis we extract code
clones within the same revision (intra-clones) and between
subsequent revisions (inter-clones). Roy et al. have performed
a comparison of code clone detection tools and techniques and
give an overview of several aspects including performance,
accuracy, flexibility and license type [8]. Simian [4] is an
open source similarity analyzer that can compare virtually any
text based file and indicate which blocks of code are clones.
This property nicely complements Doxygen’s static analysis
features, and allows our tool to be easily extended to other
languages. The mining process is depicted in Fig. 2.

Fig. 2: Data mining procedure

C. Data Refining

Precision of the raw data is increased by combining in-
formation in the components of DataStore, to ultimately
find changes in similarity relations. Initially, the operation
performed on a scope (modified, added, deleted) is inherited
from the file that contains the scope. For s ∈ Sn, the scope
operations are refined by comparing their existence in Rn and
Rn−1: s ∈ Sn\Sn−1are marked as added, s ∈ Sn−1\Sn are added
to Sn and marked as deleted. This approach indeed works, as
f ∈ Fn have also been acquired for Rn−1. The generation of
scope-level clones is performed by matching the line numbers
of code-clones cc ∈CC with the elements of Sn and Sn−1.

Annotation of intra and inter-clones is needed to be able to
distinguish movements of code between revisions from already
existing clones. It concerns a trivial procedure, as the two
types can be separated by comparing the revision number of
the scope-clone’s source and target; An intra-clone has both
its source and target in Ri, while an inter-clone has a source
in Rn−1 and target in Rn.

Drifts are scopes that have changed from Rn and Rn−1 but
still have similar contents. They are inter-clones, that have
no related intra-clones. The amount of sources and/or targets
is not defined, however either the source or target must be
unique; Any case with multiple sources and targets will involve
intra-clones. To illustrate that this is indeed the case, try to

3

Fig. 3: Data refinement procedure

answer the following question: If a scope an−1 = bn = cn,
has an−1 drifted to bn or cn? The remaining cases can be
distinguished as drift (one source to one target), split (one
source to many targets) and merge (multiple sources to one
target).

Although intra-revision clones cannot be drifts, information
in terms of changes in time can be harvested from them.
Moreover, they are crucial for filtering out meaningless inter-
clones. The refinement process is depicted in Fig. 3.

D. Filtering & Visualization

For visualization a radial tree view (cf. Fig. 4) is chosen as
it can preserve the space needed for visualization. Moreover,
edges can be drawn without occluding the nodes.

The nodes of the radial tree represent the file-scope hierar-
chy and the edges show clone relations. In order to maintain
stability of the visualization, the visual elements are mapped
from the union of all revisions’ files, scopes and clones.
Only elements that exist in the user selected revision range
are color-mapped. A node can be expanded as root of the
visualization, to allow investigation of fine-grained details,
e.g. clones between functions; Fig. 4 shows a sub-directory
of FileZilla code base with all its child nodes.

To prevent occlusion when visualizing a large code base,
nodes can be filtered by type. The full code base of FileZilla
is shown in Fig. 5, where the level of detail is limited to
directories, files and classes. Clone relations of hidden child
nodes are aggregated and drawn as edges between (visible)
parent nodes. When aggregation of child relations results in
self-clones, these are shown as glyphs. Relations between
nodes that are not in the innermost ring, e.g. files that are
obstructed by classes, are indicated as ’hidden’ clones.

Hierarchical Edge Bundling (HEB) [5] is used to group
edges that connect scopes with similar parent scopes and/or
files. HEB is combined with Catmull-Rom spline interpolation
[10] to draw of smooth edges between cloned scopes.

The mirrored radial tree is accompanied by the structure
(cf. Fig. 5), difference and activity color-maps depicted on top
and bottom of Fig. 6 respectively. The first visualization was
achieved by using libgraphicstreeview [1], which is based on
Qt [3] and already provides the basics needed for interaction.

III. RESULTS

We next demonstrate our tool on the analysis of clone
evolution in FileZilla client [6] (430 files, 5165 revisions,
average of 3.6 changed files per revision). Fig. 4 shows a
snapshot from our tool’s interface. Block 1 is used to provide
the repository URL and revisions of interest. Block 2 is used
to filter and modify the rendering. Block 3 is used to select
a range of revisions and scroll through them. The radial tree

Fig. 4: Screenshot of ClonEvol application

provides interactivity to open files and folders for investigation
of lower-level changes.

The structure color-map in Fig. 5 shows the structure and
state of FileZilla code base at revision 5,165. We see that the
majority of code is written in an object oriented language.
After inspection of the directories and files, by hovering over
or double-clicking on them in the tool, the files containing
classes appear to be written in C++. The smaller directories
that do not contain classes turn out to be written in C. The
most clones can be found in src/interface, which is
not surprising as the programming of interface components
involves much repetition. Furthermore, the latter directory
shows high cohesion with src/engine.

In Fig. 6 a time lapse is shown of the evolution of FileZilla
code base. The difference color-map is an aggregation of
changes that were made between the selected start and end
revision; It can be interpreted as the union of the sepa-
rate change-sets. We see that most clone changes and code
drifts occurred in src/interface. Most refactoring was
performed between revision 3,000 and 4,000, where clone
deletions and code drifts are most prominent. The project
seems to have reached a stable state around revision 4,000
as the clone activity was minimal ever since.

Fig. 5: Structure of FileZilla trunk/src at revision 5,165

4

Fig. 6: Evolution of FileZilla trunk/src from revision 1 to 5,165

The activity color-map shows the files, scopes and clones
that were most prominent in the change-sets. In each
snap-shot most changes occurred in src/interface and
src/engine. Three files appear to be very important for
the project as they repeatedly show high activity. In these files
the same clones re-appear in many change-sets, as illustrated
by clone activity, from which we can conclude that these are
’stubborn’ clones.

IV. DISCUSSION

We have shown the first results of ClonEvol, a tool-chain
for visualizing the evolution of a software project in a large
amount of versions. As well as virtually all source code
analysis tools, in this demonstration the data was displayed in a
file-oriented fashion. A feature yet unfinished is scope-oriented
view on the contents, which builds the tree starting from the
scopes instead of files/directories. This view is expected to be
of additional value, in particular for software (re-)designers;
They are often not interested in the complexity of code but
rather in that of ’logical’ components.

Time-wise, approximately 11:45 hours were needed to mine
5,160 versions of the FileZilla repository, containing 14,619
changed files, 10,741,843 lines-of-code in total. Hereof respec-
tively 4:00, 5:30 and 2:15 hours elapsed during file acquisition,
scope extraction and clone extraction. Used hardware included
an Intel Core i7 2600k CPU @ 4GHz and a Samsung 840
Pro SSD. The total amount of scope elements was 665,232,
which required about 580MB of RAM. User configuration was
needed only to supply an URL of the repository and set the
revisions to be mined. This illustrates that the tool is indeed
easy to use and scalable computationally and data-wise.

The main performance bottleneck is the scope extraction
step, particularly when C/C++ projects are imported; To be
able to process the contents of implementation files (.c and
.cpp), Doxygen requires the forward declarations of classes
(typically located in header files). The issue is currently
resolved by acquiring all headers for the first revision of

interest. Hence, complexity of the scope mining procedure
is O(h ∗ |R|), where h is the total amount of headers in the
repository’s (sub)directory and |R| the amount of revisions to
analyze. For comparison: the code clone mining complexity is
O(∑

|R|
i=1(|Fi|)) = O(|R|), as the average amount of (modified)

source files was 3.6 for 5,165 versions of FileZilla and 3.4 for
10,000 versions of TortoiseSVN.

ClonEvol is subject of the author’s MSc. thesis, which will
be made available November 2013. More information can be
found at: http://www.cs.rug.nl/svcg/SoftVis/ClonEvol.

ACKNOWLEDGMENT

I would like to thank my supervisor, Prof. Dr. Alexandru
C. Telea for his guidance during my work on ClonEvol.

REFERENCES

[1] S. Andrade, “libgraphicstreeview,” 2012. [Online]. Available: http:
//liveblue.wordpress.com/2012/05/

[2] P. Avgeriou and U. Zdun, “Architectural patterns revisited - a pattern
language,” 2005.

[3] Digia. (2013) Qt project. [Online]. Available: http://qt-project.org/
[4] S. Harris. (2011) Simian: Similarity analyser. [Online]. Available:

http://www.harukizaemon.com/simian/
[5] D. Holten, “Hierarchical edge bundles: Visualization of adjacency rela-

tions in hierarchical data,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 12, no. 5, pp. 741–748, 2006.

[6] T. Kosse. (2013) Filezilla - the free ftp solution. [Online]. Available:
http://filezilla-project.org/

[7] D. Reniers, L. Voinea, O. Ersoy, and A. Telea, “The solid* toolset
for software visual analytics of program structure and metrics com-
prehension: From research prototype to product,” Science of Computer
Programming, 2012.

[8] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[9] A. Telea and D. Auber, “Code flows: Visualizing structural evolution
of source code,” in Computer Graphics Forum, vol. 27, no. 3. Wiley
Online Library, 2008, pp. 831–838.

[10] C. Twigg, “Catmull-rom splines,” Computer, vol. 41, no. 6, pp. 4–6,
2003.

[11] D. van Heesch. (2013) Doxygen: Source code documentation generator
tool. [Online]. Available: http://www.doxygen.org/

