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A novel editing method for large triangular
meshes is presented. We detect surface fea-
tures, such as edge and corners, by comput-
ing local zero and first surface moments, us-
ing a robust and noise resistant method. The
feature detection is encoded in a finite ele-
ment matrix, passed to an algebraic multigrid
(AMG) algorithm. The AMG algorithm gen-
erates a matrix hierarchy ranging from fine
to coarse representations of the initial fine
grid matrix. This hierarchy comes along with
a corresponding multiscale of basis func-
tions, which reflect the surface features on all
hierarchy levels. We consider either these ba-
sis functions or distinct sets from an induced
multiscale domain decomposition as handles
for surface manipulation. We present a mul-
tiscale editor which enables Boolean opera-
tions on this domain decomposition and sim-
ply algebraic operations on the basis func-
tions. Users can interactively design their
favorite surface handles by simple group-
ing operations on the multiscale of domains.
Several applications on large meshes under-
line the effectiveness and flexibility of the
presented tool.
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Flexible, interactive surface modeling is a chal-
lenging topic in computer graphics. In particular,
multiresolution strategies have proved to be an ef-
ficient way for processing large triangular surface
meshes [18, 20, 22]. Surfaces of a complicated shape
and nontrivial topology have to be treated and pro-
cessed in an intuitive and interactive way [34].
Hereby, surface features such as edges and corners
are of particular interest. The set of all surface fea-
tures is usually characterized by different scales.
Usually, one finds prominent, sharp, and long edges,
together with less pronounced, slightly curved fea-
tures, confined in smaller surface regions. Usually,
such features separate the surface in a number of
smooth regions that correspond intuitively to dif-
ferent object parts. Just as the edge features, these
parts come at different scales, e.g., the dragon’s horn
and tongue on finer scales, and the head and body,
on coarser scales. To our knowledge, this multiscale
nature of surface features has not been previously
considered. In this paper we present a novel ap-
proach to surface modeling that

– Robustly detects features on large and small
scales,

– Computes a multiscale library of surface handles
reflecting features, and

– Enables a flexible interactive, and reliable multi-
scale surface editing.

In the following, we outline the main steps of the
proposed method (see also Fig. 2 and the example
in Fig. 1). The method is based on a local zero and
first moment analysis to classify features on discrete
surface. The zero and first moment integral quanti-
ties are stable to compute and they give less noisy
results as compared to discrete curvature quantities.
The resulting local surface classification, computed
at the triangulation vertices of the surface, is encoded
in a finite element stiffness matrix. Thereby, the ma-
trix describes the coupling of regions on the surface.
By construction, this coupling is much weaker along
feature edges than in smooth areas. Next, an alge-
braic multigrid (AMG) method is applied to this ma-
trix. The AMG delivers a matrix representation on
multiple scales and an accompanying multiscale li-
brary of discrete basis functions that can be seen as
feature-sensitive surface handles. In other words, the
AMG delivers a multiscale representation of our sur-
face classifier. Coarse levels show the main surface
characteristics, i.e., the smooth regions separated by
the most salient surface features. Finer levels show
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Fig. 1. Surface processing example. a Feature detector; b Feature-guided surface decomposition; c Features selected for
deletion; d Surface after feature deletion
Fig. 2. Steps of the multiscale surface editing method

the (usually smaller) regions separated by less pro-
nounced, detail surface features. To build general
surface handles, an editor tool is presented that al-
lows for combining basis functions from the multi-
scale library. Figure 1 shows the different ingredients
of the approach: the robust feature detection showing
the weak coupling along feature edges, the AMG-
based domain decomposition on a particular scale,
several surface handles selected form the multiscale
library, and finally the surface edited by deleting the
selected handles.

Review of related work

The method we present here is related to other ap-
plications of AMG also related to preconditioning.
In particular, in [28], AMG is used to segment im-
ages via a multiscale method. In these applications
the coarsening is comparable to a hierarchical wa-
tershed algorithm [24], where homogenous regions
on surfaces, bounded by curvature features, are ex-
tracted. Furthermore, AMG has been applied to op-
timal graph drawing applications [33]. Here, AMG
serves again as an appropriate clustering algorithm.
The common multiscale characteristic distinguishes
these particular approaches from other surface de-
composition methods, such as those given in [35],

where another watershed approach is taken into ac-
count, and in [10], where a combinatorial approach is
presented.
One of the building blocks of our method is reli-
able surface feature detection, an indispensable tool
in image and surface processing. Features such as
edges and corners in images have to be classified in
a stable way to enable edge preserving image “de-
noising” [1, 26] and robust segmentation of image
subdomains bounded by edges [8]. In image process-
ing, a straightforward identification of edges can be
based on an evaluation of the image gradient. A suffi-
ciently large gradient is supposed to indicate an edge.
Alternatively, a frequently considered edge indica-
tor is the Canny edge indicator, which searches for
extrema of the second derivatives in the gradient di-
rection [13]. Furthermore, the structure tensor [31]
enables a robust classification of edges and edge di-
rection in images.
Stable local classification of triangular meshes has
been considered in surface applications, too [19, 23],
with the aim to improve surface processing. Fea-
ture detection is usually based on the measurement
of dihedral angles [22] or on local curvature anal-
ysis [19, 22]. An edge is supposed to be indicated
by one sufficiently large principle curvature and the
corresponding principle curvature direction is per-
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pendicular to the edge on the surface. A well-known
approach for curvature evaluation on discrete sur-
faces is the algorithm proposed in [25]. In [11], the
principal curvatures are evaluated based on a local
projection of the mesh onto quadratic polynomial
graphs. If concerned with large triangular and irreg-
ular grids, e.g., those generated by marching cubes,
such detectors are tedious to treat and a robust clas-
sification is hard to achieve. In critical applications,
features are usually extracted manually [17]. Various
applications rely on robust feature detection. In sur-
face fairing, a given initial, noisy meshes have to be
smoothed, while simultaneously preserving edges on
the surface [11, 14]. In recent mesh decimation tools,
surface meshes are simplified while edge features are
retained [32]. As a final application, we mention au-
tomatic texture generation, where it is desirable that
the texture map is bounded by feature lines [23].
Moment analysis for feature detection has already
been present in the graphics and computer vision ar-
eas [21, 29]. Here we focus on using moments as
a multiscale feature classification tool and provide
details for their robust computation. Finally, there
is a wealth of literature addressing the topic of sur-
face editing, such as [34] and [2]. However, to our
knowledge, no similar methods based on algebraic
multigrid (AMG) exist. Since the main message of
this paper is the novel introduction of the AMG in the
field of multiscale surface processing, we shall not
insist on reviewing specific surface editing methods
and tools.
The paper is organized as follows. In Sect. 2 we
briefly review algebraic multigrid methods. Then the
local classification of surfaces based on moments is
discussed in Sect. 3. We will use this classification
to define a matrix encoding the features of the sur-
face in Sect. 4 and in Sect. 5 a multiscale library of
surface handles will be computed applying algebraic
multigrid to this matrix. The multiscale surface ed-
itor will be introduced in Sect. 6 and in Sect. 7 we
present some applications. Finally in Sect. 8 we draw
conclusions and indicate future work directions.

Notation

Before we develop our approach to multi-resolution
modeling, let us first briefly introduce some basic no-
tation. For a detailed introduction to geometry and
differential calculus we refer to [15]. Let us consider
a closed and orientable surface M ⊂R3. Let x : Ω →

M ; ξ �→ x(ξ) be some coordinate map from an at-
las. For each point x on M the tangent space TxM
is spanned by the basis { ∂x

∂ξ1
, ∂x

∂ξ2
}. By T M we de-

note the tangent bundle. The measuring length on
M requires the definition of a metric g(·, ·) : TxM×
TxM →R. As the corresponding matrix notation we
obtain the first fundamental form g = (gij)ij with
gij = ∂x

∂ξi
· ∂x

∂ξ j
, where · indicates the scalar product

in R3. The inverse of g is denoted by g−1 = (gij)ij .
The gradient ∇M f of a function f is defined as the
representation of d f with respect to the metric g. In
coordinates we obtain

∇M f :=
∑
i, j

gij ∂( f ◦ x)

∂ξ j

∂

∂ξi
.

We define the divergence divMv of a vector field v ∈
T M as the dual operator of the gradient with respect
to the L2-product on M and obtain in coordinates

divMv :=
∑

i

∂

∂ξi

(
(vi ◦ x)

√
det g

) 1√
det g

.

Finally, the Laplace Beltrami operator ∆M is given
by

∆Mu := divM∇Mu .

Let us denote by N the normal field on the sur-
face M.

2 A brief introduction to AMG

In this section we give a short review of the basic
algebraic multigrid algorithm (for scalar partial dif-
ferential equations, or PDEs) and the heuristics that
led to its development, see [30] for a detailed intro-
duction to AMG.
Algebraic multigrid methods were first introduced
in the early 1980s [3–6, 27] for the solution of lin-
ear systems Au = f coming from the discretization
of scalar elliptic PDEs. The development of AMG
was led by the idea to mimic (geometric) multigrid
methods, i.e., their functionality and convergence be-
havior, in applications where a hierarchy of (nested)
meshes and interlevel transfer operators could not (or
only with huge effort) be provided. The amount of
input information for the iteration scheme should be
minimal, i.e., the linear system itself should provide
all the information needed for the algorithm.
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Roughly speaking, we define a sequence of matrices
Al from the input (fine level) matrix A0 := A via the
a natural coarsening (often named Galerkin projec-
tion)

Al := Rl Al−1 Pl = (Pl)T Al−1 Pl ,

where Pl is an appropriately chosen prolongation
matrix (encoding how coarse scale (l) basis func-
tions are combined using the basis functions on the
finer scale (l − 1). In particular, AMG constructs
a sequence of appropriate prolongation matrixes
{Pl}l=0,··· ,L using information from the matrix Al−1

on the previous level l −1 only. The construction of
a prolongation matrix can also be viewed as the con-
struction of a problem-dependent basis {Ψ l,i}. We
construct a coarser basis {Ψ l,i}, which captures the
appropriate features relevant for the approximation
of the corresponding continuous problem, i.e., the
underlying differential operator (see Sect. 4). The
theory and the design of efficient AMG packages
are rather involved. We here require the basic AMG
capabilities. There are several suitable AMG pack-
ages available on the Web (e.g., atwww.mgnet.org
and the software discussed in [33]). Let us recall the
essential ingredients of AMG algorithms. In general,
any AMG implementation works as follows (see also
Fig. 4):

– Given fine grid matrix A0 := A
– Construct prolongation P1, i.e., coarse basis

functions {Ψ 1,i}
– Define restriction R1 := (P1)T

– Define the coarse matrix A1 := R1 A0 P1 via the
Galerkin identity

– Recursive application gives a sequence of prolon-
gation Pl and restriction Rl matrices, as well as
matrices Al on all levels l = 0, . . . , L .

The fundamental ingredient in this AMG construc-
tion is the notion of algebraic smoothness. With
the help of such a smoothness measure we can set
up a reduced graph of the matrix from which we
can then “merge” fine level basis functions Ψ l−1,i

on level l − 1 in an appropriate fashion to define
the coarse basis {Ψ l,i} on level l. Hence, algebraic
smoothness is defined as a generalization of the con-
cept of geometric smoothness with the aim to ex-
tract some measurable quantity that can be (easily)
computed from the matrix. In particular, in our ap-
plication we weight the geometric smoothness of
a surface (cf. Sect. 4) with the help of local surface

3

4

Fig. 3. Coarse matrix A1 definition illustrating matrix
sizes
Fig. 4. General AMG construction

classifier (cf. Sect. 3). Several different measures for
algebraic smoothness are used today in the various
algebraic multigrid methods [7, 9, 27]. Common to
all these heuristic definitions is the general observa-
tion that a simple relaxation scheme – most often
Gauss–Seidel smoothing is used in AMG – damps
(efficiently) high energy components, i.e., eigenvec-
tors associated with large eigenvalues, only. Conse-
quently, the coarse grid correction must be able to
deal with the remaining small energy components.
These small energy functions should be represented
accurately on coarser grids.
The construction of the coarse basis {Ψ l,i} itself is
a two-step process. First, we select so-called coarse
grid points, i.e., a subset of indices that give the spar-
sity pattern of the prolongation matrix Pl. Then in
a second step we define an interpolation formula,
i.e., the weights of the prolongation matrix Pl. This
tells us how a coefficient vector on a coarser level
l is represented with respect to the finer level l −1.
Thus, we define how information from the coarse
basis {Ψ l,i} is represented in terms of the fine level
basis {Ψ l−1,i}. There are many different approaches
to the definition of AMG prolongation matrixes.
Our numerical experiments with different prolon-
gation matrices showed that a renormalized variant
of a very classical and widely used interpolation
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scheme (see, e.g., [16]) gave the most favorable
results. Hence, throughout the paper we used this in-
terpolation scheme with a simple averaging of the
interpolation weights to enforce mass conservation.
Note that this two-step process can also be viewed as
a graph coarsening scheme: We select a subset of fine
level vertices as the coarse vertex set and define an
appropriate sum of the weights of the removed edges
on the fine level as weights for the coarse level edges
(cf. Sect. 5).
To illustrate the performance of AMG, we give here
a very basic first example. Consider a flat square do-
main Ω = [−1; 1]2 ⊂ R2. Now we select the subset
Σ = B1/2 − B1/2−δ, where δ is a small positive real
and Br is the ball of radius r centered at the origin 0.
Next, we define the function

C(x) =
{

2000, x ∈ Ω −Σ
0.002, x ∈ Σ

.

In other words, the operator C is smooth over-
all but exhibits a discontinuous jump on the ring-
shaped boundary of Σ. Next, we define the fol-
lowing differential operator ∆C = −div(C∇ ·). We
discretize this problem by the usual finite ele-
ment procedure. Hence, we define a quadratic form
a(ϕ,ψ) = ∫

Ω
C (∇ϕ,∇ψ) corresponding to this op-

erator. Then, let Vh be the finite element space cor-
responding to a triangulation of Ω and {Φ1, . . . Φn}
the basis of hat shaped basis functions, where n is
the number of nodes of the triangulation. Finally, we
compute the n ×n finite element stiffness matrix A:

Aij := a(Φi,Φ j) =
∫
Ω

C ∇Φi ·∇Φ j .

The multiscale of AMG basis functions is depicted
in Fig. 5. These basis functions clearly follow the
discontinuities of C. However, note that in smooth
regions the bases have a nonzero overlap. Moreover,
the AMG method does not impose any constraints
on the way this overlap takes place. For instance, it
does not guarantee that a smooth region is entirely
covered by a single basis function or by a number of
bases having the same nonzero support size. Never-
theless, this is not a serious problem for our method
(see, for more details, Sect. 5).
Obviously, the above is just a succinct presentation
of the AMG method. However, we stress again that
AMG tools have been developed with the very pur-
pose of being used as black box solvers. Since our

Fig. 5. For a simple second order differential operator on a pla-
nar domain, algebraic multigrid basis functions are depicted
on different scales (upper row: coarsest scale; middle row
and lower row: successively finer scales). The basis functions
clearly reflect the ring type feature region encoded in the opera-
tor

method does not explicitly rely on the specific pa-
rameters or coarsening strategy of a given AMG
solver, one should be able to easily substitute the
AMG solver one avails of, instead of the one we
used, and obtain similar results. Different AMG pa-
rameter settings and coarsening strategies are likely
to deliver slightly different basis functions, espe-
cially in the smooth areas. However, given the strong
classifier discontinuities following the edge features,
various AMG tools should deliver the same basis
function behavior along these features.

3 Moment-based surface analysis

In the following, we will introduce and discuss lo-
cal surface classification based on zero and first order
surface moments. This will, in particular, allow us to
robustly distinguish smooth regions from the vicinity
of edges or corners on surfaces. For a surface M, the
zero moment is given by the local barycenter of M
with respect to an Euclidian ball Bε(x) centered at x:

M0
ε (x(ξ)) :=

∫
−

Bε∩M

x dx .
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The parameter ε serves as a filter width. Further-
more, the first moment is defined by

M1
ε (x) :=

∫
−

Bε(x)∩M

(x − M0
ε (x))⊗ (x − M0

ε (x))) dx

=
∫
−

Bε(x)∩M

x ⊗ x dx − M0
ε (x)⊗ M0

ε (x) ,

where y ⊗ z := (yiz j)i, j=1,... ,3. Due to the definition
via local integration, the zero and the first moment is
expected to be robust with respect to noise.

Moments in smooth areas and at edges

In the following two sections we will explain how
zero and first moment information may be used to
distinguish between smooth and non-smooth surface
parts. It turns out, that the zero moment shift, defined
by

Nε(x) = M0
ε (x)− x ,

scales quadratically w.r.t. the filter width ε in smooth
surface domains, whereas on edges and corners, the
scaling is only linear (cf. Fig. 6). Furthermore, the
eigenvalues of the first moment M1

ε (x) give us addi-
tional information in the presence of an edge. This
justifies the usage of moments as detectors for sur-
face features. For a given, usually small, parameter ε,
only features larger than ε will be detected. The zero
moment shift Nε plays the role of a scaled approxi-
mate normal.
Indeed, the quadratic scaling of the zero moment is
given by the relation

Nε(x) = −ε2c(d)H(x)N(x)+o(ε2) .

The explicit constant c(d) = c(2) = 0.125 (we con-
sider 2D surfaces only). The quantity H(x)N(x) is
the mean curvature vector at x. For a proof we refer
to [12].
We now discuss the case of non-smooth surface fea-
tures, such as edges and corners. Let M be a surface
that is smooth up to the edge set ΣM on the surface.
Then, for X ∈ ΣM, there is a vector Ñ(x), such that

Nε(x) = ε Ñ(x)+o(ε) .

In this sense, the zero order moment scales lin-
early on the singularity set of the surface. Next, we
consider the first moment. Let us assume that for

Fig. 6. The intersections of a ball Bε(x) are drawn for points x
in smooth areas and on an edge, respectively. In addition, we
show the approximate normal Nε(x) and the eigen direction of
the first moment M1

ε (x) for a point x on an edge

X ∈ ΣM the apex angle of a surface edge is of size 2ϕ
(cf. Fig. 6). Then in ε the eigenvalues of the first mo-
ment are ε2γ , ε2γ sin2 ϕ and ε2δ cos2 ϕ up to higher
order terms, where γ = 0.25 and δ ≈ 0.0699. For
a formal proof, we refer again to [12].

Local surface feature classification

We will use these results to define local surface clas-
sifiers, i.e., quantities that enable us to robustly dis-
tinguish between smooth surface areas and features
such as edges and corners. This will later be en-
coded in a mathematical operator on the surface (see
Sect. 4). We have seen that the shift of the zero mo-
ment Nε differs by an order of magnitude in ε if com-
pared on edges and in smooth areas on the surface,
respectively. Hence, let us define a first local surface
classifier

C0
ε (x) = G

(‖Nε(x)‖
ε

)

where G(s) = 1
α+βs2 with suitably chosen α, β > 0.

In all our applications we have chosen α = 0.002
and β = 20. We observe that C0

ε (x) ≈ 1/α in smooth
regions on M and C0

ε (x)  1/α close to edges or
corners (cf. Fig. 7). Even though C0

ε can already
serve as a good classification tool, we can further im-
prove the feature detection quality by incorporating
first moment information. Suppose λmin, λmax to be
the smallest and largest eigenvalue of M1

ε (x), respec-
tively. From (1) we know that the quotient λmin/λmax
is approximately given by

λmin/λmax ≈ δ/γ cos2 ϕ ≈ 0.2796 cos2 ϕ , (1)

where 2ϕ is the apex angle of an edge feature.
This relation for λmin/λmax is valid for ϕ larger
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Fig. 7. The zero moment and the combined moment feature classifiers are compared on a triangular mesh. The combined
classifier detects the surface edges significantly more robustly
Fig. 8. For different triangular surface meshes we show the local feature classification result using color coding for the
classifier C0,1(·)

than 0.2726 ≈ 16◦. Especially, in the smooth case
(ϕ = π/2), this quotient vanishes where it increases
for decreasing ϕ. Hence, we can further pronounce
edges in the classification by the choice of a com-
bined zero and first moment classification

C0,1
ε = G

(‖Nε‖λmin

ε λmax

)
.

We mention that for ϕ smaller than 16◦, the quotient
of the eigenvalues again tends to 0, when ϕ → 0.
In this sense, very sharp features are detected in
a weaker sense than they should. However, as our ex-
periments showed, this seems to be only of theoret-
ical interest. Figure 7 compares the results obtained
by the classification with C0

ε and C0,1
ε . For all sur-

faces we tried, the combined classifier showed a bet-
ter separation of the feature areas (edges and corners)
from the smooth areas than the zero moment classi-
fier. Due to its superior quality we have applied the
classifier C0,1

ε in all applications below (cf. Fig. 8).

Implementation of zero and first moment

In the previous section we treated arbitrary sur-
faces. In applications, we usually deal with two-
dimensional, irregular, triangular grids. In the fol-

lowing we will detail the discretization of the pre-
sented local surface classification in this case. We
consider a triangular mesh Mh with grid size func-
tion h. In our implementation, we compute the mo-
ments centered at each node of the triangulation.
Let us fix one node Xi and denote the discrete mo-
ments by M0

ε,h and M1
ε,h . Given this radius ε, we first

collect all triangles {T1, . . . Tm} of the triangulation
such that Ti ∩ Bε(Xi) �= ∅, i = 1, . . . m, by perform-
ing a simple breadth first search from the node Xi
on the mesh connectivity graph. This set of triangles
splits into two subsets. The first one – denoted by T ◦
– consists of all elements with Ti ⊂ Bε(Xi). The sec-
ond one T ∂ is the complement. Now we iteratively
compute the integrals

∫−T ◦ x dA and
∫−T ◦ x ⊗ x dA. On

each triangle of T 0 we use the following exact inte-
gration formulas:

M0(Ti) = 1

3
(X0 + X1 + X2) ,∫

−
Ti

x ⊗ x dA = 1

3
(Y0 ⊗Y0 +Y1 ⊗Y1 +Y2 ⊗Y2) ,

where X0, X1, X2 are the nodes of Ti and Y0 = (X0 +
X1)/2, Y1 = (X1 + X2)/2 and Y2 = (X0 + X2)/2. For
the corresponding computations on T ∂ ∩ Bε we ap-
ply an approximation. For each triangle Tl ⊂ T ∂ , the
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intersection of the sphere ∂Bε and the edges of the
triangle consists of two points denoted by P1, P2.
We replace the curvilinear connection Tl ∩∂Bε by the
line segment connecting P1 and P2. Hence, we re-
place Tl ∩ Bε by a polygon we can again split into
triangles. We proceed now as above using exact inte-
gration on all these virtual triangles. To ensure a ro-
bust moment calculation we choose ε = 3 h in our
applications.

4 A matrix encoding features

Given a classifier C : M → R+
0 on a surface M, we

can define a mathematical operator A[C] that con-
siders the classifier as a spatial coupling weight on
the surface. Suppose C to be large in smooth surface
regions and small on edges and corners. In our appli-
cations, we choose C = C0,1

ε as above and define

A[C] := −divM(C ∇M ) .

In the case of a homogeneous surface with C = 1
we obtain a constant spatial coupling described
by the negative Laplace Beltrami operator ∆M :=
−divM∇M. If one thinks in terms of diffusion, C
is the diffusion coefficient, which is small on the
edges and approximately 1/α in smooth regions.
This type of operator has already proved to be a pow-
erful tool in feature preserving surface fairing and
image denoising [11, 26]. Here, we do not aim to pro-
cess the surface via a differential equation. Instead
we are interested in a multiscale decomposition of
the operator itself. With respect to our actual aim of
designing an editing tool for discrete, triangular sur-
faces instead of the continuous operator A, we treat
its discrete finite element counterpart Ah[C]. Hence,
following the general finite element paradigms we
first introduce the quadratic form A(φ,ψ) acting on
functions on M:

A(φ,ψ) :=
∫
M

C ∇Mφ ·∇Mψ dx .

Furthermore let

Vh = {ϕh ∈ C0(Mh)
∣∣ ϕh|T ∈ P1, T ∈ Mh}

be the finite element space on Mh consisting of those
continuous functions being affine linear on each tri-
angle of Mh . The usual basis {Φi}i=1,··· ,n, on Vh is
defined by Φi(X j) = δij where n is the number of

vertices of Mh and Φi(X j) = δij for all vertices X j .
Note that we use capital letters for discrete objects
to distinguish them from continuous objects denoted
with lower case letters. We now define a discrete op-
erator Ah acting on Vh and a corresponding n × n
matrix A where a matrix entry is given by

Aij := A(Φi,Φ j) =
∫

Mh

C ∇MΦi ·∇MΦ j dx

and {Φ1, . . . , ΦJ} is the standard basis of Vh . This
matrix describes the coupling on the discrete surface
weighted by the classifier C. This coupling is en-
coded in terms of the coupling of adjacent nodes of
the triangulation. Indeed, for every pair of adjacent
nodes Xi and X j the matrix entry Aij describes the
coupling strength. In Sect. 5 we will discuss the mul-
tiscale decomposition of this matrix, the central point
of our method.

Assembling the matrix

Before we discuss the multiscale decomposition of
the matrix A, we detail its actual computation. The
assembly of A is based on the standard finite element
assembly procedure. We start by initializing B = 0
followed by a traversal of all surface triangles T . On
each T with nodes P0, P1, P2, a corresponding lo-
cal matrix (aij(T ))ij is computed first, corresponding
to all pairings of local nodal basis functions. Next,
the local matrix is added to the matching locations in
the global matrix B, i.e., for every pair i, j we update
Aα(i),α( j) = Aα(i),α( j) +aij(T ). Here α(i) is defined as
the global index of the node with local index i. For
the local matrix we need a local surface classifier
C(T ) for every triangle T on Mh , which we define by
averaging. We obtain for the local matrix:

aij(T ) = C(T )

∫
T

∇T Φi ·∇T Φ j = C(T ) |T | νi

hi
· ν j

h j

= C(T )|T | ei

hi ‖ei‖ · e j

h j

∥∥e j

∥∥ = C(T )
ei · e j

4|T |
where |T | is the area of triangle T , Φi is the nodal
basis function corresponding to the node xi for any
local index i, ∇T the gradient on T , and νi the outer
normal to the edge ei opposite of xi . Finally hi is the
height of the triangle over the edge ei . The triangle-
wise classifier C(T ) is deduced by averaging from
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the classifier values on the nodes P1, P2 and P3

of the triangle T : C(T ) = 1/3(C(P0)+C(P1)+
C(P3)). Given the sparsity of A, we use a com-
pressed row matrix storage model, i.e., we store only
the nonzero entries and their column indexes, for ev-
ery matrix row. This confines the matrix memory
requirements to around 10 megabytes for a mesh of
280 472 triangles.

5 Multiscale decomposition by AMG

As discussed, the matrix A defined above can be
regarded as a description of the surface shape. In
particular the smoothness modulus and the distinct
surface features are encoded in this matrix. Besides
prominent feature edges, successively finer, more de-
tailed edges are encoded. At this point, we require
a tool capable of analyzing and representing this
multiscale of features. Here AMG comes into play.
Given a matrix that encodes inhomogeneities on dif-
ferent scales – in our case the features detected by the
classifier – we apply AMG (cf. Sect. 2) to detect this
multiscale. AMG will deliver a scale of surface de-
scriptions in terms of matrices Al for l = 0, · · · , L
ranging from detailed (A0 = A) to very coarse (AL).
Together with these matrices we obtain basis func-
tions Ψ l,i on all scales. Hence, we obtain handles for
surface editing on different detail scales. One might
either manipulate large scale features such as the
head, tail, or legs of the meshes shown in this pa-
per. Alternatively, adjustments of small details, such
as finger tips or ears, can be performed. This section
describes the underlying mathematics related to the
multiscale representation. The next section presents
the actual editing tool, configured as a simple but ef-
fective “combiner” of basis functions.
Recalling from above, we apply the AMG algorithm
(cf. Sect. 2) to the matrix A ∈ Rn,n introduced in the
previous section. Running AMG on the matrix A we
obtain a sequence of prolongation matrices

Pl ∈ Rnl−1,nl ,

as output, where {nl}l=0,··· ,L is decreasing and n0 =n.
The entries in each column of Pl describe how
the basis functions Ψ l,i for i = 1, · · · , nl can be
generated from the basis functions Ψ l−1,i for i =
1, · · · , nl−1 on the previous, finer level. Indeed, we
obtain the following simple recursive recipe to calcu-
late a multiscale of basis functions

Fig. 9. Selected basis functions Ψ l,i are color coded on
a blue (low) to red (high) colormap on the coarsest scale
(upper row) and on the third coarsest scale (lower row)

Ψ l,i :=
∑

j=1,···,nl−1

Pl
jiΨ

l−1, j ∀i =1,· · ·, n; l =1,· · ·, L

Ψ 0,i := Φi ∀i1, · · · , n .

Collecting all basis functions Ψ l,i on all scales l =
0, · · · , L we build up a multiscale library

L(C) = {Ψ l,i} l=0,··· ,L
i=1,··· ,nl

of functions that reflects, on all scales, the surface
features encoded by the local surface classifier C
(cf. Fig. 9). Let us recall that the prolongation ma-
trices induce a sequence of matrix representations
Al ∈ Rnl,nl on different levels:

Al := Rl Al−1 Pl l = 1, · · · , L

A0 := A

where the restriction matrices Rl ∈ Rnl−1,nl are de-
fined as Rl = (Pl)T . In general, as outlined in Sect. 2,
the goal of AMG is to compute prolongations in such
a way that, for the number of degrees of freedom nl,
the mapping corresponding to the matrix Al is a suffi-
ciently good approximation of the original matrix A.
Hereby, the underlying algebraic smoothness crite-
rion depends on the problem setting. In our case,
smoothness is induced by the spatially varying sur-
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Fig. 10. On different scales (corresponding to
the columns) the domain decomposition Dl

is shown for several triangular surfaces. The
surfaces consist of 280 472 (bunny), 87 140
(dragon), 25 030 (hound), and 96 966 (horse)
triangles, respectively

face classifier C(·). An interpretation of the entries
of Al is that Al

ij measures of strength of the coupling
between the basis functions Ψ l,i and Ψ l, j or – if we
think in term or surface regions – the coupling of the
domains defined by the supports of the basis func-
tions. In particular, the coupling is expected to be
weak across edges, as described by C(·).
Furthermore, the shape of the basis functions will
clearly show the strength of the node coupling in the
matrix. On edges, the weights Aij are small, because
the classifier C(cot) is small in this region. Hence,
AMG will cluster vertices on both sides of an edge
on much finer scales and will collect vertices from
both sides of the edge at later stages of the coarsening
process. In particular, it is expensive – in terms of the
built-in optimization in a concrete AMG implemen-
tation – to generate basis functions whose masses
are equally distributed on different sides of an edge
feature (cf. Figs. 5 and 9). However, as already men-
tioned in Sect. 2, this is not a problem for the pro-
posed method, as will be explained next.
Usually, basis functions on a given scale overlap
each other. Hence, it turns out to be sometimes hard
to visualize basis functions directly in a graphical
user interface for, e.g., a surface editor or process-
ing tool. Hence, aiming to represent the set of over-
lapping basis functions {Ψ l,i}i=1,··· ,nl visually, let us

define a corresponding domain decomposition D l

for every l = 0, · · · , L (cf. Fig. 10). Here, we define
D l := {D l,i}i=1,··· ,nl , where

D l,i := {x ∈ Mh |Ψ l,i ≥ Ψ l, j ∀ j = 1, · · · , nl} .

Let us remark that the domains on different scales
need not be strictly spatially nested. Nevertheless,
these domains are bounded by surface feature lines.
This characteristic is enough for building a simple
and intuitive way to represent and manipulate such
domains on different scales (see Sect. 6).
A major feature of our method is its speed. The AMG
computation of the prolongation matrices takes be-
tween 3 and 6 s for meshes up to 300 000 elements
on a Pentium 4 PC at 1.5 GHz running Linux. The
domain decomposition involves just multiplication
of the prolongations and thus takes, for the same
datasets and platform, 1 to 3 s. The slowest part
of the pipeline is assembling the classifier matrix,
which is linear in the number of mesh triangles, and
takes about 10 s for the largest mesh we tried, i.e.,
280 472 elements. The matrix assembly complexity
is quadratic in the radius ε of the integration ball
Bε (see Sect. 3). For all examples, a ball size of 3h,
where h is the average triangle size, was used. Larger
balls, that would slow down the assembly, are not re-
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Fig. 11. Selection steps in the feature editor (from left to right). First, for a picked point x, all active domains D l,i(x) are color
coded orange, red, yellow, green and violet for increasing scale l. Next, picking into one of these active domains at point y,
selects a particular scale l(y). This activates Dl(y),i(x) and the corresponding basis function Ψ l(y),i(x) . The support is drawn in
blue. Repeating this procedure adds a second basis function to the handle with two clicks

quired, as the surface features we are looking for in
the classifier are already present on this scale.

The graph perspective

The mesh M0 := Mh can be trivially encoded
in a graph G0 = G(N 0,E0), where the vertices
N 0 := Nh and the edges E0 := Eh of the mesh are the
graph nodes and edges, respectively. In case of our
affine finite element space Vh the sparsity pattern of
the matrix A0 is such that in the ith row, correspond-
ing to the vertex xi , the only nonzero entries A0

ij are
those corresponding to adjacent nodes x j , connected
to xi by an edge e0

ij ∈ E0, and the entry xi reflecting
the self-coupling of node i with itself. Hence, the en-
tries Aij in the matrix can be regarded as weights on
the edges E0 of the graph G0. Indeed, AMG generates
a sequence of graphs

Gl = G(N l,E l)

for l = 1, · · · , L . On level l the set of graph nodes
N l corresponds to the basis {Ψ l,i}i=1,··· ,nl and for ev-
ery entry Al

ij �= 0 their exists an edge el
ij ∈ E l with

that weight. One might ask whether the graphs Gl for
l > 0 again generate immersed polygonal grids Ml.
This is known to be a design principle of progressive
mesh algorithms. However, in our case there is in
general no such mesh nesting sequence and it would
be a much too severe restriction to formulate this
property in the AMG algorithm as a constraint.

6 A multiscale surface editor

The basis functions Ψ l,i from the multiscale library
Ł(C) can be directly used as handles to process the
surface. Frequently, however, the “handles” the user

has in mind to manipulate the surface are not pre-
cisely recovered by one of the available AMG ba-
sis functions. Desired handles can be generated by
combining a few basis functions from the AMG mul-
tiscale library of basis functions. We present here
a simple but effective feature editor based on this
strategy. The editor allows us to select a given basis
function on a given level by just two intuitive mouse
clicks. Several such bases can be then added to de-
sign the desired handle. In detail, for an arbitrary
surface point x – chosen by a first mouse click – we
extract from the multiscale domain decomposition
a sequence of activated domains {D l

x}l=0,··· ,L , where
D l,i(x) is the set D l,i from the domain decomposition
on level l for which x ∈ D l,i . A second point y – cho-
sen by a second mouse click – identifies now a single
active set D l(y),i(x) from the activated sets, where

l(y) = max{l | y ∈ D l,i(x)} .

Hence, the corresponding basis function Ψ l(y),i(x) is
interactively and intuitively selected form the mul-
tiscale library L(C). This function initializes the
handle

Ψ ← Ψ l(y),i(x) .

The process can be repeated, e.g., by picking another
two surface points x̃ and ỹ. The handle is updated

Ψ ← min{1, Ψ +Ψ l( ỹ),i(x̃)} .

Figure 11 shows an example. The first pick (at the
black arrow’s location) produces the activated do-
mains corresponding to the hand’s middle finger tip.
Surface color coding indicates the editor’s current
status. Picking a point x, the activated domains are
drawn in colors corresponding to the sequence pa-
rameter l, using a fixed color map (see Fig. 11). The
second pick (light blue arrow) now adds a basis to the
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12a 12b 12c 12d

12e 12f 12g 12h

12i 12j 12k 12l

13a 13b

13c 13d

14a 14b

14c 14d

14e 14f

Fig. 12. Application 1. In ten clicks, five features (ears,
front paws, tail) are selected (a–j). Next, the handle
and the edited surface are shown (k, l)
Fig. 13. Application 2. The left hind leg middle toe
is selected by two clicks on the red domain (a, b).
Similarly, other features are selected (c). Finally, the
selection is edited (d)
Fig. 14. Application 3. The dragon’s horn is selected
in a sequence of four clicks (a–d). Next, other features
are selected (e). Finally, the selection is erased (f)

current handle. The domain

Dδ = {z ∈ Mh |Ψ(z) > δ}
where we choose δ = 0.01, essentially being the sup-
port of the current handle Ψ , is always shown by
a fixed color (light blue, Fig. 11). Coloring guides
the user’s iterative handle selection. In all our appli-
cations, one to five selection iterations (i.e., two to
ten clicks) were sufficient to define the desired sur-
face handles (cf. Figs. 11, 12, 13, 14). In addition, we
provide a mechanism to step back in the handle con-

struction. Picking a point x in the already selected
domain D deletes the previously added basis func-
tion containing x in its support.

7 Applications

After having selected the desired surface handles,
one can edit the surface. We show here a number
of simple surface editing operations performed on
the selected handles. These operations serve only as
illustration for the presented multiscale surface de-



U. Clarenz et al.: Feature sensitive multiscale editing on surfaces 341

composition and handle construction. However, this
does not diminish the usability of our technique. In-
deed, state of the art surface processing operations
can be easily substituted in place of the ones shown
here.
In the first example (Fig. 12), we select five features
on the Stanford bunny dataset, i.e., the ears, front
paws, and tail. Using the handle construction method
(Sect. 6) these features are easily selected by just ten
mouse clicks, two for every feature, in the order: left
ear, right ear, left paw, right paw, tail (Figs. 12a–j).
The complete handle is shown in Fig. 12k. Next, we
remove the ears by smoothing the mesh. Smoothing
deforms the mesh in the inward normal direction and
performs a mesh decimation simultaneously by re-
moving triangles that become smaller than a fraction
of the average triangle size. Decimation is needed
to ensure that the deformed mesh does not contain
unnecessarily small triangles. Finally, we inflate the
paws and tail by mesh deformation in the outward
normal direction. Figure 12l shows the edited mesh
and the selected domain.
In the second example, we select eight features on
the mesh in Fig. 13, i.e., the ears, middle toes, and
tail. Selecting these fine details requires only two
clicks per feature. Figures 13a,b show the selection
of the left front toe. Next, we inflate the toes and ears
and round the tail (Fig. 13c). The inflation is done as
for the previous example. The tail rounding is a se-
quence of alternate mesh inflations and smoothings.
Finally, we separately select the body, also in two
clicks, and smooth it. Figure 13d shows the final re-
sult and the domain corresponding to the body.
In the last example, we select four features on the
dragon dataset (Fig. 14), i.e., the horn, tongue, hind
leg spike, and tail tip. We detail the selection of the
horn. The first click (Fig. 14a) produces the activa-
tion domains for the horn’s tip. A second click, in the
same place, selects the upper half of the horn only,
since there is no single basis covering the whole horn
(Fig. 14b). Two more clicks, both on the horn’s stem,
are needed to select the rest of the horn (Figs. 14c,d).
After all details are selected (Fig. 14e), we erase
them by mesh decimation, to yield the final result
(Fig. 14).

8 Conclusions

We have presented a novel technique for manipulat-
ing surface meshes at different levels of detail, con-

sisting of the following ingredients: the stable com-
putation of surface classifiers, the classifier assembly
into a finite element matrix, the computation of a se-
quence of basis functions on different detail levels
with the AMG method, and a simple but effective
surface editor based on these basis functions. Over-
all, selecting surface features at different detail levels
is done by a few mouse clicks. Although the machin-
ery behind the editor is quite involved, its users may
employ it being totally unaware of the underlying
complexities.
The whole process requires setting few (if any) pa-
rameters. The two classifier parameters α and β
(Sect. 3) were fixed for all our test surfaces. The
AMG tool specific parameters were fixed as well for
all surfaces. These parameters control the way the
prolongations Pi are constructed (Sect. 2). Differ-
ent parameter settings slightly change the number of
decomposition levels obtained and the shape of the
basis functions. However, the coarse levels, which
are the interesting ones for our editing tool, remain
practically unchanged. The reason is that the clas-
sifier design strongly distinguishes between flat and
curved areas (Sect. 3).
There is little else that could be automated in the pro-
cess. The most complex implementation part of the
entire pipeline is indeed the AMG tool. However, as
mentioned, several available AMG tools can be used,
virtually as black boxes. Implementing the moment-
based classifiers, matrix assembly, basis function
computation, and the editor, is straightforward.
Another point of discussion is the relation between
the decomposition quality and the mesh quality.
Here, the same well-known guidelines apply when
studying mesh quality influence on solving PDEs
using finite elements. Meshes containing bad as-
pect triangles (slivers) and/or high valence vertices
may encode the classifier at insufficient resolu-
tion. This problem is much more serious in PDE
solving via finite elements than in our case. In-
deed, as already stated, the large jumps in classi-
fier values (several orders of magnitude) will be
visible even on a poor quality mesh. Secondly,
the coarser levels produced by the AMG reflect
the coarse scale classifier variations and are, by
definition, less sensitive to small scale perturba-
tions. A good example of the robustness of our
decomposition with respect to mesh quality is the
hound (Fig. 13), which uses a poor quality mesh
(the mesh data is available at www.cs.virginia.edu/
gfx/Courses/2001/Advanced.spring.01/plymodels).
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The presented technique opens a multitude of direc-
tions for surface processing. Various other data, such
as surface parameterization, texture, shading, or nor-
mals can be represented on the multiscale induced by
surface features. State of the art surface processing
operations, such as editing, decimation, or morphing,
can be coupled with the surface decomposition out-
put. Such surface data can also be encoded into new
classifiers, to produce novel ways for multilevel sur-
face representations. Finally, an interesting question
is whether the presented AMG-based technique can
be applied to mesh-free, point-based surface repre-
sentations, such as the one used in the PointShop 3D
editing tool [36].
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23. Lévy B, Petitjean S, Ray N, Maillot J (2002) Least squares
conformal maps for automatic texture atlas generation. In:
Computer Graphics (SIGGRAPH’02 Proceedings), pp 362–
371

24. Mangan AP, Whitaker RT (1999) Partitioning 3D surface
meshes using watershed segmentation. IEEE Trans Vis
Comput Graph 5(4):308–321
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