Feature Preserving Smoothing of Shapes using
Saliency Skeletons

Alexandru Telea

Abstract We present a novel method that uses shape skeletons, acthésdguan-
tities, for feature-preserving smoothing of shapes intdigmages. We preserve, or
smooth out, features based on a saliency measure thatsréateire size to lo-
cal object size, both computed using the shape’s skeletow-daliency convex
features (cusps) are smoothed out, and low-saliency cerfeatures (dents) are
filled in, respectively, by inflating simplified versions it shape’s foreground and
background skeletons. The method is simple to implememntksio real time, and
robustly removes large-scale contour and binary speckienehereas preserving
salient features. We demonstrate the method with seveaahgbes on datasets the
shape analysis application domain.

1 Introduction

Noisy shapes occur in a wide variety of applications and dosauch as image
acquisition and processing in medical imaging and compuigérn, object retrieval
and matching from shape databases, image compressiomatadicsimplification
in computer graphics. Considerable work has been investdeveloping process-
ing methods that are able to remove certain characteradtecgiven shape, regarded
to benoisefrom the perspective of the application at hand, and keegyen en-
hance) other characteristics, knownfasatures In the following, we shall refer to
such methods as feature-preserving smoothing methods.

Numerous feature-preserving smoothing techniques hase theveloped. They
differ in several respectg.g.the definition of what are features (to preserve) and
noise (to be removed), shape representation (implicit pli@g, shape dimension-
ality (typically 2D or 3D), and space discretization (Lagg@n or Eulerian). If we
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consider shape@ € R", n= {2, 3}, as having (closed) orientable and locally differ-
entiable boundariedQ, then a common definition of features and noise is based on
the analysis of local perturbations of the surfaee, typically in normal direction.

Traditionally, such perturbations are measured usinguarinstruments based
on higher-order surface derivatives, such as gradientsipal components or mo-
ments. Although a wealth of such techniques exists, curgatstimation on noisy
shapes, discretized or not, is still a delicate process f/pe of smoothing typically
implies some form of signal filtering. Bg.g.inversely correlating the filter width
with the strength of the feature signal, smoothing can aetaecertain degree of fea-
ture preservation. Filtering can be applied on severakscéthereby smoothing the
shape at several levels of detail. However, filtering of dise signals usually cannot
avoid some finite amount of undesired smoothi&g,in regions where one wants to
preserve features. Figure 1 illustrates the idea: Typioalature-based smoothing
will produce the smooth shape (b) from the noisy shape (ajetly removing cusps
and dents but also smoothing out the perceptually imporeatangle corners. The
method proposed here produces image (c), which smoothsieutoise but keeps
the corners sharp at pixel level.

In this paper, we approach the goal of smoothing shapes iataréepreserving
manner from a different angle. First, we characterize be#tiures and noise on a
shape’s boundargQ by a new saliency metric computed on the shape’s skeleton or
medial axisS(Q). The saliency metric relates the size of a boundary pertiora
encoded by the skeleton’s so-called importance metridye¢ddcal object size, en-
coded by the shape’s distance transform. Secondly, we phersaliency-attributed
skeleton by simple upper thresholding. Due to the propedfeur saliency metric
on the skeletor§(Q), this effectively removes all features below a given saljen
value but fully preserves features above that value, a prpméich is relatively
difficult to achieve when using purely local techniques.rdllyi we reconstruct the
smoothed shape by inflating the pruned skeleton. By cornsgldroth the fore-
ground and background skeletons of a digital image, we camgnout cusps (pro-
trusions) and fill dents (concavities) respectively.

The paper is structured as follows. Section 2 overviewsedhaork in the area of
feature-preserving shape smoothing and related medishaeihods. Section 3 in-
troduces our new saliency metric. Section4 describes #iarfe-preserving smooth-
ing algorithm. Section 5 presents implementation detSixtion 6 presents several
results obtained on different datasets related to mediwhlige sciences, and dis-
cusses our method. Section 7 discusses various aspects pfebented method.
Finally, Section 8 concludes the paper.

2 Related work

Shape smoothing methods can be classified along the way chvilaatures and
noise are defined, measured, and represented, as follows.
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a) noisy shape b) naive c) feature-preserving
smoothing smoothing

Fig. 1 a) Noisy shape. b) Local smoothing methods affect the corners. atuféepreserving
smoothing removes noise but keeps corners sharp

2.1 Local methods

A first main class of methods models features and noise igagading the surface
curvature tensor. In this way, corners of 2D shapes and comared edges of 3D
shapes can be detected. Many methods exist for curvatuteéea on discrete sur-
faces,e.g. [Moreton and &quin, 1992, Clarenz et al., 2004a, Desbrun et al., 1999,
Peng et al., 2001]. Besides curvature, surface classifemsbe based on related
integral quantities, such as moments [Clarenz et al., Z0@&ussian scale-space
representations of progressively smoothed shapes canthmad by successive
convolutions [Koenderink, 1984].

Distinction between features and noise are typically tdigeanalyzing the mag-
nitude of the detector signal. Smoothing attempts thendsgiwe the former, and re-
move the latter, bg.g.convolving the classifier signal with filters correlatediwiite
signal’s strength [ter Haar Romeny, 1994, Weickert, 199laréhz et al., 2004a].
When normals are present in the input data, they can be useffidierdly per-
form feature-preserving filtering [Osher and Sethian, 1#&shman et al., 2003].
However, if normals lack, their computation from positioatal involves a finite
amount of smoothing, similar to curvature estimation. Allall, since differential
classifiers decide whether a certain signal variation amtpoiE dQ is a feature
or noise based on the analysis of a small neighborieod C dQ or size, or
diameter,d, aroundx, they will typically smooth both features and noise details
below scaled. Also, discrete curvature computations need to be regadyityp-
ically by local integration over a neighborhood of finite esigmaller or equal to
the noise sizé, which introduces some artificial smoothing. An early ex&amgf
the challenges involved in curvature-based salient feadetection in a multireso-
lution setting is offered by [Fernmuller and Kropatsch, 2P good overview of
the above-mentioned challenges involved in discrete couveature computations
is given in [Jalba et al., 2006].
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2.2 Global methods

A second class of smoothing methods models features and imo&gsmore global
manner, using the so-callstteletonor medial axis, of a shape, defined as follows.
For a shape boundag/Q, we first define the distance transfobn Q — R, and
the feature transfor : Q — Z(0Q) as

D(xe Q) = min x| (1)
F(xe Q) = {ye 09| x—y| = D(x)} )

The skeleton 09 Q is defined as the locus of centers of maximally inscribedsball
Since these balls touahQ in at least two feature points [Kimmel et al., 1995], we
have

Q) = {xe Q[[F (x| = 2} ®)

It is well known that the terminations of the skeleton braggfwhich are curves
in 2D and manifolds in 3D) map, via the feature transform, dovature maxima
on dQ [Kimmel et al., 1995]. Several methods exploit this propdd smooth a
shape by pruning, or regularizing, its skeleton and theratinfy it back. Prun-
ing a so-called skeleton terminal branblke S effectively corresponds to replac-
ing the pointsF(x € b) C dQ by a circle arc (in 2D) or spherical sector (in 3D).
Skeleton-based shape simplification is intimately relatedifferential shape pro-
cessinge.g.curvature flow: The so-called skeleton scale-space olutdigecom-
puting skeletons of increasingly smoothed versions of &rgishapeQ, corre-
sponds to increasingly pruning the skeleton(®ffrom its endpoints to its cen-
ter [Bai et al., 2007, Ogniewicz and Kubler, 1995, Pizer gti#187].

Hisadaet al. detect salient features (edges) of polygonal surfaces baax
ing the 3D skeleton, detecting the terminations (edgeshefseparate 3D skele-
tal sheets, and mapping these back to the shape [Hisadaz2@®]. Since both
the shape and skeleton are represented as a non-uniformiylezh point set,
problems arise with the density and continuity of the de@calient features.
The skeleton computation, based on Voronoi techniques elated to the power
crust [Amenta et al., 2001], is extremely noise sensitivebldtness is achieved by
Laplacian smoothing of both the surface and it skeletonHiatactually removes
salient details one wants to find.

Computing robust, exact, and connected skeletons is, rmwgerfectly doable
for noisy 2D and 3D shapes. Among others, Telkal. achieved this by defining the
importancep(x) of each skeleton pointas the longest shortest-path length between
any two feature points of. Intuitively, p equals the boundary length subtended
by a skeleton point’s features. Efficient implementatiores @rovided for 2D im-
ages [Telea and van Wijk, 2002] and 3D voxel volumes [Rergeed., 2008]. A key
observation is thap is minimal at skeleton endpoints and increases monotdyical
towards the skeleton’s center or root [Ogniewicz and Kyldlg®5, Reniers et al., 2008].
Hence, a regularized robust skelet&ncan be obtained by upper-thresholding
with a desired valu@min. Using this property, Reniemst al. proposed a skeleton-
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based classifier for 3D shapes, which detects salient f=atuch as valleys and
ridges simply by computing the image®fx € S p(X) > pmin) for a given saliency
value pnmin. This classifier showed to be more noise-resistant tharatune-based
classifiersee.g.[Taubin, 1995]. However, the classifier is not further usedrhooth
the shape.

Tek and Kimia presented probably the earliest result in datyhsmoothing us-
ing skeletons [Tek and Kimia, 2001]. They iteratively snfoat2D shape by apply-
ing a so-called splice transform, which removes terminahbhes from both the
inner and outer skeletons. Removals are ordered by salieeegure, which is de-
fined as the area difference between the smoothed and dridiapes divided by
skeleton branch length. The splice transform, howeveildiée manipulate a rela-
tively complex graph representation of the skeleton, ancht@ia explicit connec-
tions between Lagrangian curve representations of boyrségments and Eulerian
representations of the distance transform.

Our proposal is related to [Tek and Kimia, 2001] as follow® &ploit the same
principle of smoothing a shape by pruning its internal anémeal skeletons. How-
ever, our saliency metric is different (see Sec. 3), and gbesskeleton pruning
order, algorithm, and results (Secs. 5 and 7). We work fuila ipixel-based (Eu-
lerian) setting, without the need of maintaining a skelejosph representation or
to explicitly manipulate boundary curve segments reprieseim a Lagrangian set-
ting. In particular, we obtain the reconstructed (smoothgthpe by inflating the
regularized skeleton using its distance transform, rathem explicitly editing the
boundary to replace fragments by circular arcs. This yialdsuch simpler overall
implementation with arguably lower complexity, which elegbus to smooth con-
siderably more complex shapes (see Sec. 6).

3 Skeleton-based Saliency Metric

Our general aim is similar to that of Tek and Kimia [Tek and KinR001]: We
want to build a multiscale shape representation sogbeteptuallysalient features,
such as sharp corners, are retained on coarse scales. €drigiare 1: On a coarse
scale, we arguably see a rectangle with sharp corners bubise on the edges
(Fig. 1 c), and not a rectangle with rounded corners (Fig.. Hepce, the saliency
of a feature relates not just to its size, but to whether thature is relevant for
the local interpretation of the object (see also [Dudek aswtJos, 1997]). In the
following, we consider first convex salient features. Caecteatures are treated
similarly (see Sec. 4.4).

The first step in our saliency metric design is to measure iteeaf a feature.
For this, we use its boundary length, which is exactly thedrtgnce metri@ intro-
duced in Sec. 2 [Telea and van Wijk, 2002]. Consider the ciigeemoisy rectangle
in Fig. 1. The color-coded importangeis shown in Fig. 2 a using a rainbow col-
ormap. Terminal skeleton branch pixels have lowalues (blue), whereas pixels
closer to the skeleton center have high values (red).



6 Alexandru Telea

Let us compare the skeleton branches corresponding to ther-@pght rect-
angle corner, respectively the neighboring small-scaleenim this figure. Along
the corner branchyp increases steadily. Along the two cusp branclges)creases
until the branches leave the cusp and enter the rump of thegeshfter that,

p stays constant on that branch, indicating the presence -chlged ligature
points[August et al., 1999]i.e. skeleton points that connect a branch fragment, cor-
responding to a small protrusion, with the skeleton’s mairt.p

CUsp corner Cusp corner

a)

Fig. 2 Comparison of skeleton importanpda) with saliency metrio (b). While p stays constant
along ligature branches; decreases markedly

By upper thresholding with some desired valyanin, and inflating back the reg-
ularized skeletors,, we achieve smoothing which essentially replaces all bapnd
features shorter thgmwith circle arcs (Fig. 1 b). However, what we want is to keep
the rectangle’s corners sharp and smooth out the cusp.

We first make two observations concerning the perceptusdreal of a shape
detail:

e saliency is proportional witlsize which can be measured by boundary length.
Longer features are more salient than shorter ones [Ogeieavid Kubler, 1995];

e saliency is inversely proportional with local objabicknessA feature located
on a thick object is less salient than the same feature ldoatea thin ob-
ject [Tek and Kimia, 2001].

Hence, we can define a saliency metiion the skeleton of a shape as

olxe si@) = 5 @

wherep(x) is the skeleton importance defined as in [Telea and van Wg@2Pand
D(x) is the distance transform (Eqn. 1).
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Figure 2 b shows the saliency computed for the noisy rectasighpe. We see
thato stays constant along the branches corresponding to trenggetcorners, but
decreases rapidly along ligature portions of the smallescasp branches, as indi-
cated from the light-blue to dark-blue color transitionsll&wing Egn. 4,0 is O for
all non-skeletal points, has a constant value g488(a) for points along the skele-
ton branch of an angular cusp of aperture arml@and has a theoretical maximal
value of[0Q|/®, where[d Q] is the shape’s perimeter aml= min,.g o) D(X) is
the shape’s minimal local thickness.

Computingo (Egn. 4) for any pixel or voxel-based shape is immediateeHee
use the AFMM Star implementation [Reniers and Telea, 208l&aland van Wijk, 2002]
which delivers us the skeletd@) importancep, and distance and feature transforms
D andF.

4 Saliency-preserving smoothing

Now that we have a saliency indicator, we can use it to sekdgtsmooth out low-
saliency features. In the following, we consider low-sadie convex features, or
cusps(seee.g.Fig. 1). Concave features are treated analogously (seel3g¢cThe
entire smoothing pipeline, illustrated in Fig. 3, is delsed below.

input: foreground simpliﬁedr
noisy shape skeleton S salience o skeleton S

output:
smooth shape

P A

reconstructed Q" background salience & simplified
skeleton S skeleton S,

Legend

S skeletonization

C salience computation

P simplification & pruning

R reconstruction

Fig. 3 Feature-preserving smoothing pipeline. See Section 4) failset
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4.1 Saliency-based pruning

The first smoothing step is to prune the skele&io S, retaining all points where
o exceeds a minimal salien@n

Sy = {x€ Y0 (X) > Omin} )

In Egn. 5,Sdenotes théull skeleton of a given shag®. In practical terms of the
implementation used (see Sec. 5), this means all imagespoimtrep > 1. Using
the full skeleton, thus having a method able to compute it pikel precision, is
essential, as we later inflate this skeleton and wish to Bxaetonstruct salient
features (Sec. 4.3).

4.2 Connected component detection

Since the signat is not monotonic ovef2, S; will be a collection of disconnected,
compact, skeletal components. For 2D shapes, disconndatimediately follows
the thresholding in Eqgn. 5, since the skele®omputed by the AFMM is always
one pixel thick [Reniers and Telea, 2007]. Note, howeveat this is not always
valid for 3D shapes (Sec. 7). These skeletal componentesmond to multiple
small fragments located inside low-saliency features,amlarge 'core’ fragment
containing the skeleton rump. Note that this holds also ighdr-genus shapeise.
shapes with holes.

The second step isolates the skeleton rump compoBgrt, Sy, defined as the
connected component 85 which passes through max p(x). This is easily done
e.g. by performing a 8-connected flood-fill d& from the maximum ofo. S is
a different regularization o8 thanS, introduced in Sec. 3. Whil&, eliminates
both ligature branches corresponding to small-scale niviakso shortens branches
corresponding to salient features by the same faotdn contrast,S; eliminates
entire branches that have ligature components, but does not talientsfeature
branches.

4.3 Reconstruction

The third and last step inflate}; back to reconstruct a smoothed shape For
this, we use the well-known Fast Marching Method [Sethi@®9]: We evolve each
pointx € S until it reaches its distance transform valDéx). To simplify the stop-
ping criterion, we actually solve

ar =1
Tlo=-D
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on the image domain, and obtain the reconstructed shapeecdsvifl set T(0).
This effectively removes all shape details which correspimthe pruned skeleton
branches.

4.4 Concave features

The result of the three-step procedure outlined abovetefédg eliminates small-
scaleconvexfeatures (cusps), while it preserves the coarse-scaleerdieatures
intact. However, we would like to treabncavefeatures (dents) similarly. For this,
we cannot use the shape’s skeleton directly. While conesxithap to terminal
branches, which we can easily prune as described in Seccghtavities map to
so-called inner skeleton branches [August et al., 1999vbannot be edited with
the same ease, as they also describe other non-noise shafse po

An elegant solution is to use the background skel&oie. the skeleton of all
points Q located outside the shaj2. While S describes (and allows the selective
smoothing of) the shape’s convexiti&jescribes, and allows the selective smooth-
ing of, the shape’s concavities. Figure 3 (bottom row) thates this by showing the
entire process described in Secs. 4.1-4.3 for the backdroithe rectangular shape
in the image. The background skelet§rsaliencyo and simplified skeleto§ are
computed using the same settingsy. gmin, as their foreground counterparts. Note
that the background salience image in Fig. 3 is almost eveeygvdark blue. This
is correct, sinces is very low everywhere for this shape. Indeed, the shape tas n
salientdentswhich are to be preserved, like it would be the case, for eXamyth
the four concave corners of a cross shape. _

When computings, we must define a closed sha@efrom the background pix-
els. One border of this shape will be the actual foregrourzghek®. We create the
other, outer, border by artificially adding a thin one-piketder to the image. This
explains the form of the background skelet®im Fig.3 bottom.

4.5 Convex and concave smoothing combination

If we simply apply the pipeline described above separatelthé foreground, re-
spectively background, of a given image, we obtain two simedishapes2’ and
Q" from which the cusps, respectively dents of the originapsh@a have been re-
moved. However, how to combine these two shapes in one figaltPeUsinge.g.a
distance-based interpolation betwe2handQ" would be doable, but it would have
the undesired effect of reducing the elimination of the suspd dents to roughly
half.

A better solution is to apply the concave smoothing pass.(8ef) on the
background of the output of the convex smoothing passthe background of
Q'".(Sec. 4.3) rather than on the background of the originaga@. This effec-
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tively combines the dent and cusp removal in one single tdstiitively, the fore-
ground skeleton simplification pulls cusps inwards, whetba background skele-
ton simplification pulls dents outwards.

The bottom-right image in Fig. 3 shows the final result. No& the foreground
skeleton simplification can also affect branches which des¢he convex borders
of a dent. For example, the smooth@d in the same figure shows a rounded dent
on the left side. However, this is not a problem: This dent kel further removed
by the background skeleton simplification pass.

5 Implementation

The entire smoothing method is implemented in under 30Gs lweC++, based
on the AFMM Star method, which provides skeletons, skel@tgrortance values,
and feature transforms of digital images [Reniers and T&i@@7]. As expected,
the method is very efficient: Images of roughly 18@fixels can be processed in
under one second on a 2.5 GHz PC computer. For an imaljepifels, the com-
plexity of the algorithm isN logN, determined by the underlying Fast Marching
Method [Sethian, 1999].

6 Results

Figure 4 shows feature-preserving smoothing applied teratdatasets.

The first two rows (Fig. 4 a-h) show pairs of noisy shapes aei tlespective
smoothings. The shapes are used as test cases for severd pafhe image pro-
cessing communitye(g. [Jalba et al., 2006, Ogniewicz and Kubler, 1995]). Small-
scale noise is eliminated, and sharp coarse-scale conmeekejpt unsmoothed,.g.
the tails of the leafs. The method is able to handle relatilaaige-scale noise, as
illustrated by the star figure.

Multiscale smoothing: By succesively increasing the salience threshmigh, in-
creasingly more sharp features are removed, as illustiatédg. 4 i-l, whereomin
was successively increased by 10%. The notion of scalesgmnels to the defini-
tion of o (Egn. 4),i.e.feature size as a fraction of local object thickness. Fiiadesc
capture small wiggles at thick object parts, coarse scapstuce large boundary
perturbations at thinner object parts.

The simplification of the foreground and background skelgtby increasing
Omin SUccessively removes terminal branches, and hence onécesp(bot does not
add) sharp shape features by circle arcs with radii higreer thin,cy o ges, [[P—dll-
As such, the so-called 'scale-space causality’ is resgestethe space of progres-
sively simplified shapes under has the necessary properties of a scale space. A
similar observation was made by [Tek and Kimia, 2001] forirtts&eleton-based
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Fig. 4 Feature-preserving shape smoothing examples. See Section @lanaions.

simplification method.
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Complex shapes. We have tested our method also on more complex shapes. Fig-
ure 4 m-p and g-t show the smoothing of two value-based segiti@ms of white
matter in MRI grayscale images, taken from [Shah, 2009, Rethath, 2004]. Since
no preprocessing of the segmented data was done, apart feimpé&e morpho-
logical pass to fill in tiny holes and remove specks, the sb@pe quite noisy and
complex (Fig. 4 n,r). They exhibit both segmentation noigsible as fine-level
‘'wiggles’ and filament-like structures along the boundéy, also actual shape in-
formation, visible as ondulations of the boundary at a lefeletail slightly coarser
than the noise. In certain areas, drawing a border betweesctinal shape boundary
and noise is quite challenging. The saliency valaese shown in Figs. 4 p,t using
a blue (low) to red (high) colormap. The final results showt imaall-scale noise has
been eliminated, but the boundary has not been excessaetyled and smoothed
(Fig. 4 0,s).

As a final example of the ability of the presented method talkeahighly noisy
shapes, we show a smoothing of a value-based segmentatitie &Rl image
from Fig.4 gprior to performing morphological hole filling and small-scalkisl
removal. The input image in Fig. 6 a, which is actually a setnainy high-genus
shapes with complex boundaries, is smoothed to yield theubun Fig. 6 b. The
simplification of the foreground and background skeletatseves similar effects
to the mophological operators used to create Fig. 4 r, at decgdost. The expla-
nation for this capability resides in the definition @f small-scale 'islands’ in the
image have a low eccentricity (perimeter to maximal thideeatio),i.e. a lowe
saliency, thus are readily removed by low;, thresholds.

(a) Highly noisy image (b) Smoothed image

Fig. 5 Smoothing of highly noisy images achieves the effect of morgiodd erosion and dilation
operators
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7 Discussion

Below we discuss a humber of aspects of our proposed method.

Comparison with [Tek and Kimia, 2001]: Figure 6 compares our method with the
one proposed in [Tek and Kimia, 2001]. The image in Figure fidkbn from the re-
spective publication. The initial noisy image is shown iadi outline; the smoothed
result is filled green. Two insets show zoomed-in detailsaliog at these, we see
that our method constructs the smoothed edge rougéiyweerthe cusp and dent
extremas, thereby behaving like an approximator of thegetgodn contrast, the
method of Tek and Kimia tends to pull the smoothed contouwards in most
places, thereby preferring to fill the dents rather than rentbe cusps. This is also
visible in other images from the respective paper. The exgtian lies in the dif-
ferent type of saliency metric used and performed optirianatWhile we consider
feature size related to object thickness, Tek and Kimia xentwanches in increas-
ing order of affecting the overall shape’s area. Also, welyafige dent smoothing
pass after the cusp filling pass, whereas Tek and Kimia aterthe two passes.

a) b)

Fig. 6 Feature-preserving shape smoothing. Tek and Kimia (a) and ¢umeghod (b). Original
shape in black outline. Smoothed shape is shown filled. Insets shegtestzoom-in details

Parameter setting: The method has one adimensional parametg;, with a ge-
ometric meaning. For example, settiog,, to 0.1 means removing all wiggles
smaller than 10% of the local object thickness. The imagethim paper have
been produced witlomi, € [0.2,0.3]. Setting omin IS quite robust to small varia-
tions: In contrast t@.g.curvature-based methods, skeleton-based removal of noise
is adiscreteprocess, as noise details go out in a successive sequenkelet®rs
branches get pruned out. For all shapes we experimented wthoticed there

are only a few critical values afini, where notable removal events happen. Sim-
ilar observation were made for a different type of shape rifgee, shock graphs,

by [Sebastian et al., 2004, Siddiqi et al., 2004].
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Saliency measure: The saliency metric proposed here essentially favors st@rp
ners which are far away from locally thick shape parts. Adissmoothed shapes
will exhibit long straight edges, without wiggles, but keegnvex or concave cor-
ners which connect coarse-scale edge-like structures.ighi line with the percep-
tual saliency model proposed by [Alter and Basri, 1995].d$ided, other saliency
measures can be easily incorporated. For example, givesletsk poinik € S(Q),
the A of the feature corresponding xacan be computed by cutting away the feature
from the shape’s rump using the line segment delimited byutteest two feature
points ofx (see Fig. 7)

{p1, p2} = argmax||p1 — p2|| (6)
p1,p2€F(X)

Fig. 7 Definition of additional skeleton-based saliency measures (se&/pe

Sincex is a skeleton point, it is the center of a maximal i2alouchingdQ at
p1 andpy, so the segmerg; p2 is fully enclosed inQ. Defining a saliency based on
the so-called feature aperture angle= p1xp can be done analogously.

The line segmenp; p2 defined by Eqn. 6 represents the thickness of the feature
at its basej.e. where it joins the main shape rump. If we want to smooth festur
based on their thickness, one metric which can be usee-ia g, whereA = |p1p2|.
Figure 8 a-d illustrates this possibility. Here, the noisgib segmentation contour
from Fig. 4 n was smoothed progressively for increasing eslofe. Comparing
with Fig. 4 s, we see now that features which are thin at thedradhave a relatively
small length, are removed. Thereby, relatively narrow amortsdents and cusps
disappear more rapidly, but without the effect of excessixerall rounding.

Combined smoothing: In this paper, we have used thél, unsimplified, skeleton
as a starting point for the saliency computation (Sec. 4)s §harantees that sharp
corners are precisely kept. However, if desired, one carbamrour saliency-based
smoothing, based oa metric, with classical skeleton pruning based on the im-
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Fig. 8 Progressive smoothing based on feature saliency and thicknesg}Sec

portancep, e.g.by first performing thep-based pruning, followed by our-based
smoothing. This allows combining smoothing of all corneithwemoval of noise
details. Studying the scale-space properties of the tweedsional space created by
p andgo is a potentially interesting avenue.

Selective processing: Since cusps and dents are detected separately, they can be
processed accordingly with no additional effort. For exlempne can imagine ap-
plications where cusps are to be smoothed more aggresivaty dents, or con-
versely.

3D extension: Computing the skeletons, distance and feature transf@mnag and

o metrics is immediate for 3D shapes, using.the approach in [Reniers et al., 2008].
The only step of our smoothing method which does not immebjiageneralize to
3D shapes is the connected component detection followmgahiency thresholding
(Sec. 4.2). Thresholding will, in general, not disconnect the 3D skeleton. Think
for example of a cubic shape having a small-scale noisy tedektends from the
middle of a face to one of the cube’s edges. In 2D, this proldess not appear:
Removing a pixel from a skeleton branch corresponding tahbitrary size cusp or
dent always disconnects the skeleton. We are currentlgiigaing an extension of
the current analysis to handle 3D shapes.

Limitations: It is important to acknowledge several limitations of ourthwal. First
and foremost, this method it to be used as a universal replacement for other
denoising methods such as local curvature-based onegfdtrips best on shapes
which have inherent angular features, which cannot bendisished locally from
high-amplitude boundary noise. Noisy shapes without seelufes can be better
smoothed by local methods. It would be interesting to stuéigrént application-
specific, quasi-global, saliency metrics in this contegtoar framework should ac-
commodate a wide range hereof. Secondly, our current ingriéation only handles
shapes described as boundaries, not full grayscale imagethe latter, skeletons
are not (yet) effective descriptors.



16 Alexandru Telea

8 Conclusion

We have presented a method for feature-preserving smaodiidigital shapes us-
ing shape skeletons. Using a saliency metric that relategriportance of a shape
feature to its size and the local object thickness, this oteils able to smooth
relatively large-scale boundary noise and fully presehas s convex and concave
corners. Another application is creating compact shapas fmages corrupted by
high amounts of binary speckle noise. The method uses skslet various places:
to compute feature sizes, local object thickness, and tioperthe actual feature
smoothing. A simple and efficient implementation is presdrtiere that can ro-
bustly handle complex shapes.

In the future, we aim to extend this method to efficiently affdatively handle
3D shapes, as outlined in Sec. 7. Another extension is tHeyatai handle full
grayscale images.g. by representing these as a stack of skeletons for different
isophotes.
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