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Abstract We present a novel method that uses shape skeletons, and associated quan-
tities, for feature-preserving smoothing of shapes in digital images. We preserve, or
smooth out, features based on a saliency measure that relates feature size to lo-
cal object size, both computed using the shape’s skeleton. Low-saliency convex
features (cusps) are smoothed out, and low-saliency concave features (dents) are
filled in, respectively, by inflating simplified versions of the shape’s foreground and
background skeletons. The method is simple to implement, works in real time, and
robustly removes large-scale contour and binary speckle noise whereas preserving
salient features. We demonstrate the method with several examples on datasets the
shape analysis application domain.

1 Introduction

Noisy shapes occur in a wide variety of applications and domains, such as image
acquisition and processing in medical imaging and computervision, object retrieval
and matching from shape databases, image compression, and contour simplification
in computer graphics. Considerable work has been invested in developing process-
ing methods that are able to remove certain characteristicsof a given shape, regarded
to benoisefrom the perspective of the application at hand, and keep (oreven en-
hance) other characteristics, known asfeatures. In the following, we shall refer to
such methods as feature-preserving smoothing methods.

Numerous feature-preserving smoothing techniques have been developed. They
differ in several respects,e.g. the definition of what are features (to preserve) and
noise (to be removed), shape representation (implicit or explicit), shape dimension-
ality (typically 2D or 3D), and space discretization (Lagrangian or Eulerian). If we
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consider shapesΩ ∈Rn,n= {2,3}, as having (closed) orientable and locally differ-
entiable boundaries∂Ω , then a common definition of features and noise is based on
the analysis of local perturbations of the surface∂Ω , typically in normal direction.

Traditionally, such perturbations are measured using various instruments based
on higher-order surface derivatives, such as gradients, principal components or mo-
ments. Although a wealth of such techniques exists, curvature estimation on noisy
shapes, discretized or not, is still a delicate process. This type of smoothing typically
implies some form of signal filtering. Bye.g. inversely correlating the filter width
with the strength of the feature signal, smoothing can achieve a certain degree of fea-
ture preservation. Filtering can be applied on several scales, thereby smoothing the
shape at several levels of detail. However, filtering of discrete signals usually cannot
avoid some finite amount of undesired smoothing,e.g.in regions where one wants to
preserve features. Figure 1 illustrates the idea: Typical curvature-based smoothing
will produce the smooth shape (b) from the noisy shape (a), thereby removing cusps
and dents but also smoothing out the perceptually importantrectangle corners. The
method proposed here produces image (c), which smooths out the noise but keeps
the corners sharp at pixel level.

In this paper, we approach the goal of smoothing shapes in a feature-preserving
manner from a different angle. First, we characterize both features and noise on a
shape’s boundary∂Ω by a new saliency metric computed on the shape’s skeleton or
medial axisS(Ω). The saliency metric relates the size of a boundary perturbation,
encoded by the skeleton’s so-called importance metric, to the local object size, en-
coded by the shape’s distance transform. Secondly, we prunethe saliency-attributed
skeleton by simple upper thresholding. Due to the properties of our saliency metric
on the skeletonS(Ω), this effectively removes all features below a given saliency
value but fully preserves features above that value, a property which is relatively
difficult to achieve when using purely local techniques. Thirdly, we reconstruct the
smoothed shape by inflating the pruned skeleton. By considering both the fore-
ground and background skeletons of a digital image, we can smooth out cusps (pro-
trusions) and fill dents (concavities) respectively.

The paper is structured as follows. Section 2 overviews related work in the area of
feature-preserving shape smoothing and related medial axis methods. Section 3 in-
troduces our new saliency metric. Section4 describes the feature-preserving smooth-
ing algorithm. Section 5 presents implementation details.Section 6 presents several
results obtained on different datasets related to medical and life sciences, and dis-
cusses our method. Section 7 discusses various aspects of the presented method.
Finally, Section 8 concludes the paper.

2 Related work

Shape smoothing methods can be classified along the way in which features and
noise are defined, measured, and represented, as follows.
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a) noisy shape b) naive 

smoothing

c) feature-preserving

smoothing

Fig. 1 a) Noisy shape. b) Local smoothing methods affect the corners. c) Feature-preserving
smoothing removes noise but keeps corners sharp

2.1 Local methods

A first main class of methods models features and noise locally, using the surface
curvature tensor. In this way, corners of 2D shapes and corners and edges of 3D
shapes can be detected. Many methods exist for curvature evaluation on discrete sur-
faces,e.g. [Moreton and Śequin, 1992, Clarenz et al., 2004a, Desbrun et al., 1999,
Peng et al., 2001]. Besides curvature, surface classifiers can be based on related
integral quantities, such as moments [Clarenz et al., 2004b]. Gaussian scale-space
representations of progressively smoothed shapes can be obtained by successive
convolutions [Koenderink, 1984].

Distinction between features and noise are typically takenby analyzing the mag-
nitude of the detector signal. Smoothing attempts then to preserve the former, and re-
move the latter, bye.g.convolving the classifier signal with filters correlated with the
signal’s strength [ter Haar Romeny, 1994, Weickert, 1997, Clarenz et al., 2004a].
When normals are present in the input data, they can be used to efficiently per-
form feature-preserving filtering [Osher and Sethian, 1988, Fleishman et al., 2003].
However, if normals lack, their computation from position data involves a finite
amount of smoothing, similar to curvature estimation. All in all, since differential
classifiers decide whether a certain signal variation at point x ∈ ∂Ω is a feature
or noise based on the analysis of a small neighborhoodN(x) ⊂ ∂Ω or size, or
diameter,δ , aroundx, they will typically smooth both features and noise details
below scaleδ . Also, discrete curvature computations need to be regularized, typ-
ically by local integration over a neighborhood of finite size smaller or equal to
the noise sizeδ , which introduces some artificial smoothing. An early example of
the challenges involved in curvature-based salient feature detection in a multireso-
lution setting is offered by [Fernmuller and Kropatsch, 1992]. A good overview of
the above-mentioned challenges involved in discrete curvecurvature computations
is given in [Jalba et al., 2006].
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2.2 Global methods

A second class of smoothing methods models features and noise in a more global
manner, using the so-calledskeleton, or medial axis, of a shape, defined as follows.
For a shape boundary∂Ω , we first define the distance transformD : Ω → R+ and
the feature transformF : Ω → P(∂Ω) as

D(x∈ Ω) = min
y∈∂Ω

‖x−y‖ (1)

F(x∈ Ω) = {y∈ ∂Ω |‖x−y‖ = D(x)} (2)

The skeleton of∂Ω is defined as the locus of centers of maximally inscribed balls.
Since these balls touch∂Ω in at least two feature points [Kimmel et al., 1995], we
have

S(Ω) = {x∈ Ω | |F(x)| ≥ 2} (3)

It is well known that the terminations of the skeleton branches (which are curves
in 2D and manifolds in 3D) map, via the feature transform, to curvature maxima
on ∂Ω [Kimmel et al., 1995]. Several methods exploit this property to smooth a
shape by pruning, or regularizing, its skeleton and then inflating it back. Prun-
ing a so-called skeleton terminal branchb ∈ S effectively corresponds to replac-
ing the pointsF(x ∈ b) ⊂ ∂Ω by a circle arc (in 2D) or spherical sector (in 3D).
Skeleton-based shape simplification is intimately relatedto differential shape pro-
cessing,e.g.curvature flow: The so-called skeleton scale-space obtained by com-
puting skeletons of increasingly smoothed versions of a given shapeΩ , corre-
sponds to increasingly pruning the skeleton ofΩ from its endpoints to its cen-
ter [Bai et al., 2007, Ogniewicz and Kubler, 1995, Pizer et al., 1987].

Hisadaet al. detect salient features (edges) of polygonal surfaces by extract-
ing the 3D skeleton, detecting the terminations (edges) of the separate 3D skele-
tal sheets, and mapping these back to the shape [Hisada et al., 2002]. Since both
the shape and skeleton are represented as a non-uniformly sampled point set,
problems arise with the density and continuity of the detected salient features.
The skeleton computation, based on Voronoi techniques and related to the power
crust [Amenta et al., 2001], is extremely noise sensitive. Robustness is achieved by
Laplacian smoothing of both the surface and it skeleton, butthis actually removes
salient details one wants to find.

Computing robust, exact, and connected skeletons is, however, perfectly doable
for noisy 2D and 3D shapes. Among others, Teleaet al.achieved this by defining the
importanceρ(x) of each skeleton pointx as the longest shortest-path length between
any two feature points ofx. Intuitively, ρ equals the boundary length subtended
by a skeleton point’s features. Efficient implementations are provided for 2D im-
ages [Telea and van Wijk, 2002] and 3D voxel volumes [Renierset al., 2008]. A key
observation is thatρ is minimal at skeleton endpoints and increases monotonically
towards the skeleton’s center or root [Ogniewicz and Kubler, 1995, Reniers et al., 2008].
Hence, a regularized robust skeletonSρ can be obtained by upper-thresholdingρ
with a desired valueρmin. Using this property, Renierset al. proposed a skeleton-
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based classifier for 3D shapes, which detects salient features such as valleys and
ridges simply by computing the image ofF(x∈ S,ρ(x) > ρmin) for a given saliency
valueρmin. This classifier showed to be more noise-resistant than curvature-based
classifierse.g.[Taubin, 1995]. However, the classifier is not further used to smooth
the shape.

Tek and Kimia presented probably the earliest result in boundary smoothing us-
ing skeletons [Tek and Kimia, 2001]. They iteratively smooth a 2D shape by apply-
ing a so-called splice transform, which removes terminal branches from both the
inner and outer skeletons. Removals are ordered by saliencymeasure, which is de-
fined as the area difference between the smoothed and original shapes divided by
skeleton branch length. The splice transform, however, needs to manipulate a rela-
tively complex graph representation of the skeleton, and maintain explicit connec-
tions between Lagrangian curve representations of boundary segments and Eulerian
representations of the distance transform.

Our proposal is related to [Tek and Kimia, 2001] as follows. We exploit the same
principle of smoothing a shape by pruning its internal and external skeletons. How-
ever, our saliency metric is different (see Sec. 3), and so isthe skeleton pruning
order, algorithm, and results (Secs. 5 and 7). We work fully in a pixel-based (Eu-
lerian) setting, without the need of maintaining a skeletongraph representation or
to explicitly manipulate boundary curve segments represented in a Lagrangian set-
ting. In particular, we obtain the reconstructed (smoothed) shape by inflating the
regularized skeleton using its distance transform, ratherthan explicitly editing the
boundary to replace fragments by circular arcs. This yieldsa much simpler overall
implementation with arguably lower complexity, which enables us to smooth con-
siderably more complex shapes (see Sec. 6).

3 Skeleton-based Saliency Metric

Our general aim is similar to that of Tek and Kimia [Tek and Kimia, 2001]: We
want to build a multiscale shape representation so thatperceptuallysalient features,
such as sharp corners, are retained on coarse scales. Consider Figure 1: On a coarse
scale, we arguably see a rectangle with sharp corners but no noise on the edges
(Fig. 1 c), and not a rectangle with rounded corners (Fig. 1 b). Hence, the saliency
of a feature relates not just to its size, but to whether that feature is relevant for
the local interpretation of the object (see also [Dudek and Tsotsos, 1997]). In the
following, we consider first convex salient features. Concave features are treated
similarly (see Sec. 4.4).

The first step in our saliency metric design is to measure the size of a feature.
For this, we use its boundary length, which is exactly the importance metricρ intro-
duced in Sec. 2 [Telea and van Wijk, 2002]. Consider the case of the noisy rectangle
in Fig. 1. The color-coded importanceρ is shown in Fig. 2 a using a rainbow col-
ormap. Terminal skeleton branch pixels have lowρ values (blue), whereas pixels
closer to the skeleton center have high values (red).
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Let us compare the skeleton branches corresponding to the upper-eight rect-
angle corner, respectively the neighboring small-scale noise in this figure. Along
the corner branch,ρ increases steadily. Along the two cusp branches,ρ increases
until the branches leave the cusp and enter the rump of the shape. After that,
ρ stays constant on that branch, indicating the presence of so-called ligature
points[August et al., 1999],i.e.skeleton points that connect a branch fragment, cor-
responding to a small protrusion, with the skeleton’s main part.

Fig. 2 Comparison of skeleton importanceρ (a) with saliency metricσ (b). Whileρ stays constant
along ligature branches,σ decreases markedly

By upper thresholdingρ with some desired valueρmin, and inflating back the reg-
ularized skeletonSρ , we achieve smoothing which essentially replaces all boundary
features shorter thanρ with circle arcs (Fig. 1 b). However, what we want is to keep
the rectangle’s corners sharp and smooth out the cusp.

We first make two observations concerning the perceptual saliency of a shape
detail:

• saliency is proportional withsize, which can be measured by boundary length.
Longer features are more salient than shorter ones [Ogniewicz and Kubler, 1995];

• saliency is inversely proportional with local objectthickness. A feature located
on a thick object is less salient than the same feature located on a thin ob-
ject [Tek and Kimia, 2001].

Hence, we can define a saliency metricσ on the skeleton of a shape as

σ(x∈ S(Ω)) =
ρ(x)
D(x)

(4)

whereρ(x) is the skeleton importance defined as in [Telea and van Wijk, 2002] and
D(x) is the distance transform (Eqn. 1).
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Figure 2 b shows the saliency computed for the noisy rectangle shape. We see
thatσ stays constant along the branches corresponding to the rectangle corners, but
decreases rapidly along ligature portions of the small-scale cusp branches, as indi-
cated from the light-blue to dark-blue color transitions. Following Eqn. 4,σ is 0 for
all non-skeletal points, has a constant value of 2/tan(α) for points along the skele-
ton branch of an angular cusp of aperture angleα, and has a theoretical maximal
value of|∂Ω |/Φ , where|∂Ω | is the shape’s perimeter andΦ = minx∈S(Ω) D(x) is
the shape’s minimal local thickness.

Computingσ (Eqn. 4) for any pixel or voxel-based shape is immediate. Here, we
use the AFMM Star implementation [Reniers and Telea, 2007, Telea and van Wijk, 2002]
which delivers us the skeletonS, importanceρ , and distance and feature transforms
D andF .

4 Saliency-preserving smoothing

Now that we have a saliency indicator, we can use it to selectively smooth out low-
saliency features. In the following, we consider low-saliency convex features, or
cusps(seee.g.Fig. 1). Concave features are treated analogously (see Sec.4.4). The
entire smoothing pipeline, illustrated in Fig. 3, is described below.

input:

noisy shape

output: 

smooth shape

foreground

skeleton S

background

skeleton S
_

 salience σ

_
 salience σ

 simpli!ed

skeleton Sσ

 reconstructed Ω
 r

 simpli!ed

skeleton Sσ
_

Legend

 S  skeletonization

 C       salience computation

 P simpli!cation & pruning

 R reconstruction

 S 

 S 

 C 

 C 

 P 

 P 

 R 

 R 

 r

 r

Fig. 3 Feature-preserving smoothing pipeline. See Section 4) for details
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4.1 Saliency-based pruning

The first smoothing step is to prune the skeletonS to Sσ retaining all points where
σ exceeds a minimal saliencyσmin

Sσ = {x∈ S|σ(x) ≥ σmin} (5)

In Eqn. 5,Sdenotes thefull skeleton of a given shapeΩ . In practical terms of the
implementation used (see Sec. 5), this means all image points whereρ > 1. Using
the full skeleton, thus having a method able to compute it with pixel precision, is
essential, as we later inflate this skeleton and wish to exactly reconstruct salient
features (Sec. 4.3).

4.2 Connected component detection

Since the signalσ is not monotonic overΩ , Sσ will be a collection of disconnected,
compact, skeletal components. For 2D shapes, disconnection immediately follows
the thresholding in Eqn. 5, since the skeletonScomputed by the AFMM is always
one pixel thick [Reniers and Telea, 2007]. Note, however, that this is not always
valid for 3D shapes (Sec. 7). These skeletal components correspond to multiple
small fragments located inside low-saliency features, andone large ’core’ fragment
containing the skeleton rump. Note that this holds also for higher-genus shapes,i.e.
shapes with holes.

The second step isolates the skeleton rump component,Sr
σ ∈ Sσ , defined as the

connected component ofSσ which passes through maxx∈Ω ρ(x). This is easily done
e.g.by performing a 8-connected flood-fill onSσ from the maximum ofρ . Sr

σ is
a different regularization ofS than Sρ introduced in Sec. 3. WhileSρ eliminates
both ligature branches corresponding to small-scale noise, it also shortens branches
corresponding to salient features by the same factorρ . In contrast,Sr

σ eliminates
entire branches that have ligature components, but does not touch salient feature
branches.

4.3 Reconstruction

The third and last step inflatesSr
σ back to reconstruct a smoothed shapeΩ r . For

this, we use the well-known Fast Marching Method [Sethian, 1999]: We evolve each
pointx∈ Sr

σ until it reaches its distance transform valueD(x). To simplify the stop-
ping criterion, we actually solve

∇T = 1

T|Ω = − D



Feature Preserving Smoothing of Shapes using Saliency Skeletons 9

on the image domain, and obtain the reconstructed shape as the level set T(0).
This effectively removes all shape details which correspond to the pruned skeleton
branches.

4.4 Concave features

The result of the three-step procedure outlined above effectively eliminates small-
scaleconvexfeatures (cusps), while it preserves the coarse-scale convex features
intact. However, we would like to treatconcavefeatures (dents) similarly. For this,
we cannot use the shape’s skeleton directly. While convexities map to terminal
branches, which we can easily prune as described in Sec. 4.1,concavities map to
so-called inner skeleton branches [August et al., 1999], which cannot be edited with
the same ease, as they also describe other non-noise shape points.

An elegant solution is to use the background skeletonS̄, i.e. the skeleton of all
pointsΩ̄ located outside the shapeΩ . While Sdescribes (and allows the selective
smoothing of) the shape’s convexities,S̄describes, and allows the selective smooth-
ing of, the shape’s concavities. Figure 3 (bottom row) illustrates this by showing the
entire process described in Secs. 4.1-4.3 for the background of the rectangular shape
in the image. The background skeletonS̄, saliencyσ̄ and simplified skeleton̄Sr are
computed using the same settings,e.g.σmin, as their foreground counterparts. Note
that the background salience image in Fig. 3 is almost everywhere dark blue. This
is correct, sincēσ is very low everywhere for this shape. Indeed, the shape has no
salientdentswhich are to be preserved, like it would be the case, for example, with
the four concave corners of a cross shape.

When computinḡS, we must define a closed shapēΩ from the background pix-
els. One border of this shape will be the actual foreground shapeΩ . We create the
other, outer, border by artificially adding a thin one-pixelborder to the image. This
explains the form of the background skeletonS̄ in Fig.3 bottom.

4.5 Convex and concave smoothing combination

If we simply apply the pipeline described above separately to the foreground, re-
spectively background, of a given image, we obtain two smoothed shapesΩ r and
Ω̄ r from which the cusps, respectively dents of the original shapeΩ have been re-
moved. However, how to combine these two shapes in one final result? Usinge.g.a
distance-based interpolation betweenΩ r andΩ̄ r would be doable, but it would have
the undesired effect of reducing the elimination of the cusps and dents to roughly
half.

A better solution is to apply the concave smoothing pass (Sec. 4.4) on the
background of the output of the convex smoothing pass,i.e. the background of
Ω r .(Sec. 4.3) rather than on the background of the original image Ω . This effec-
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tively combines the dent and cusp removal in one single result. Intuitively, the fore-
ground skeleton simplification pulls cusps inwards, whereas the background skele-
ton simplification pulls dents outwards.

The bottom-right image in Fig. 3 shows the final result. Note that the foreground
skeleton simplification can also affect branches which describe the convex borders
of a dent. For example, the smoothedΩ r in the same figure shows a rounded dent
on the left side. However, this is not a problem: This dent will be further removed
by the background skeleton simplification pass.

5 Implementation

The entire smoothing method is implemented in under 300 lines of C++, based
on the AFMM Star method, which provides skeletons, skeletonimportance values,
and feature transforms of digital images [Reniers and Telea, 2007]. As expected,
the method is very efficient: Images of roughly 10002 pixels can be processed in
under one second on a 2.5 GHz PC computer. For an image ofN pixels, the com-
plexity of the algorithm isN logN, determined by the underlying Fast Marching
Method [Sethian, 1999].

6 Results

Figure 4 shows feature-preserving smoothing applied to several datasets.
The first two rows (Fig. 4 a-h) show pairs of noisy shapes and their respective

smoothings. The shapes are used as test cases for several papers in the image pro-
cessing community (e.g. [Jalba et al., 2006, Ogniewicz and Kubler, 1995]). Small-
scale noise is eliminated, and sharp coarse-scale corners are kept unsmoothed,e.g.
the tails of the leafs. The method is able to handle relatively large-scale noise, as
illustrated by the star figure.

Multiscale smoothing: By succesively increasing the salience thresholdσmin, in-
creasingly more sharp features are removed, as illustratedby Fig. 4 i-l, whereσmin

was successively increased by 10%. The notion of scale corresponds to the defini-
tion of σ (Eqn. 4),i.e. feature size as a fraction of local object thickness. Fine scales
capture small wiggles at thick object parts, coarse scales capture large boundary
perturbations at thinner object parts.

The simplification of the foreground and background skeletons by increasing
σmin successively removes terminal branches, and hence only replaces (bot does not
add) sharp shape features by circle arcs with radii higher than minp∈∂Ω ,q∈Sσ ‖p−q‖.
As such, the so-called ’scale-space causality’ is respected, so the space of progres-
sively simplified shapes underσ has the necessary properties of a scale space. A
similar observation was made by [Tek and Kimia, 2001] for their skeleton-based
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a) b) c) d)

e) f ) g) h)

i) j) k) l)

m) n) o) p)

q) r) s) t)

Fig. 4 Feature-preserving shape smoothing examples. See Section 6 for explanations.

simplification method.
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Complex shapes: We have tested our method also on more complex shapes. Fig-
ure 4 m-p and q-t show the smoothing of two value-based segmentations of white
matter in MRI grayscale images, taken from [Shah, 2009, Rehmet al., 2004]. Since
no preprocessing of the segmented data was done, apart from asimple morpho-
logical pass to fill in tiny holes and remove specks, the shapes are quite noisy and
complex (Fig. 4 n,r). They exhibit both segmentation noise,visible as fine-level
’wiggles’ and filament-like structures along the boundary,but also actual shape in-
formation, visible as ondulations of the boundary at a levelof detail slightly coarser
than the noise. In certain areas, drawing a border between the actual shape boundary
and noise is quite challenging. The saliency valuesσ are shown in Figs. 4 p,t using
a blue (low) to red (high) colormap. The final results show that small-scale noise has
been eliminated, but the boundary has not been excessively rounded and smoothed
(Fig. 4 o,s).

As a final example of the ability of the presented method to handle highly noisy
shapes, we show a smoothing of a value-based segmentation ofthe MRI image
from Fig.4 qprior to performing morphological hole filling and small-scale island
removal. The input image in Fig. 6 a, which is actually a set ofmany high-genus
shapes with complex boundaries, is smoothed to yield the output in Fig. 6 b. The
simplification of the foreground and background skeletons achieves similar effects
to the mophological operators used to create Fig. 4 r, at no added cost. The expla-
nation for this capability resides in the definition ofσ : small-scale ’islands’ in the
image have a low eccentricity (perimeter to maximal thickness ratio),i.e. a lowe
saliency, thus are readily removed by lowσmin thresholds.

(a) Highly noisy image (b) Smoothed image

Fig. 5 Smoothing of highly noisy images achieves the effect of morphological erosion and dilation
operators
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7 Discussion

Below we discuss a number of aspects of our proposed method.

Comparison with [Tek and Kimia, 2001]: Figure 6 compares our method with the
one proposed in [Tek and Kimia, 2001]. The image in Figure 10 btaken from the re-
spective publication. The initial noisy image is shown in black outline; the smoothed
result is filled green. Two insets show zoomed-in details. Looking at these, we see
that our method constructs the smoothed edge roughlybetweenthe cusp and dent
extremas, thereby behaving like an approximator of these points. In contrast, the
method of Tek and Kimia tends to pull the smoothed contour outwards in most
places, thereby preferring to fill the dents rather than remove the cusps. This is also
visible in other images from the respective paper. The explanation lies in the dif-
ferent type of saliency metric used and performed optimization: While we consider
feature size related to object thickness, Tek and Kimia remove branches in increas-
ing order of affecting the overall shape’s area. Also, we apply the dent smoothing
pass after the cusp filling pass, whereas Tek and Kimia interlace the two passes.

a) b)

Fig. 6 Feature-preserving shape smoothing. Tek and Kimia (a) and current method (b). Original
shape in black outline. Smoothed shape is shown filled. Insets show selected zoom-in details

Parameter setting: The method has one adimensional parameter:σmin, with a ge-
ometric meaning. For example, settingσmin to 0.1 means removing all wiggles
smaller than 10% of the local object thickness. The images inthis paper have
been produced withσmin ∈ [0.2,0.3]. Settingσmin is quite robust to small varia-
tions: In contrast toe.g.curvature-based methods, skeleton-based removal of noise
is a discreteprocess, as noise details go out in a successive sequence as skeleton
branches get pruned out. For all shapes we experimented with, we noticed there
are only a few critical values ofσmin where notable removal events happen. Sim-
ilar observation were made for a different type of shape descriptor, shock graphs,
by [Sebastian et al., 2004, Siddiqi et al., 2004].
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Saliency measure: The saliency metric proposed here essentially favors sharpcor-
ners which are far away from locally thick shape parts. As such, smoothed shapes
will exhibit long straight edges, without wiggles, but keepconvex or concave cor-
ners which connect coarse-scale edge-like structures. This is in line with the percep-
tual saliency model proposed by [Alter and Basri, 1995]. If desired, other saliency
measures can be easily incorporated. For example, given a skeleton pointx∈ S(Ω),
theA of the feature corresponding tox can be computed by cutting away the feature
from the shape’s rump using the line segment delimited by thefurthest two feature
points ofx (see Fig. 7)

{p1, p2} = argmax
p1,p2∈F(x)

‖p1− p2‖ (6)

x

p
1

p
2

α

λ

Ω

S

A

C

Fig. 7 Definition of additional skeleton-based saliency measures (see Sec. 7)

Sincex is a skeleton point, it is the center of a maximal ballC touching∂Ω at
p1 andp2, so the segmentp1p2 is fully enclosed inΩ . Defining a saliency based on
the so-called feature aperture angleα = p̂1xp2 can be done analogously.

The line segmentp1p2 defined by Eqn. 6 represents the thickness of the feature
at its base,i.e. where it joins the main shape rump. If we want to smooth features
based on their thickness, one metric which can be used isε = λσ , whereλ = |p1p2|.
Figure 8 a-d illustrates this possibility. Here, the noisy brain segmentation contour
from Fig. 4 n was smoothed progressively for increasing values ofε. Comparing
with Fig. 4 s, we see now that features which are thin at the baseandhave a relatively
small length, are removed. Thereby, relatively narrow and short dents and cusps
disappear more rapidly, but without the effect of excessiveoverall rounding.

Combined smoothing: In this paper, we have used thefull, unsimplified, skeleton
as a starting point for the saliency computation (Sec. 4). This guarantees that sharp
corners are precisely kept. However, if desired, one can combine our saliency-based
smoothing, based onσ metric, with classical skeleton pruning based on the im-
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a) b) c) d)

Fig. 8 Progressive smoothing based on feature saliency and thickness (Sec. 7)

portanceρ , e.g.by first performing theρ-based pruning, followed by ourσ -based
smoothing. This allows combining smoothing of all corners with removal of noise
details. Studying the scale-space properties of the two-dimensional space created by
ρ andσ is a potentially interesting avenue.

Selective processing: Since cusps and dents are detected separately, they can be
processed accordingly with no additional effort. For example, one can imagine ap-
plications where cusps are to be smoothed more aggresively than dents, or con-
versely.

3D extension: Computing the skeletons, distance and feature transforms,andρ and
σ metrics is immediate for 3D shapes, usinge.g.the approach in [Reniers et al., 2008].
The only step of our smoothing method which does not immediately generalize to
3D shapes is the connected component detection following the saliency thresholding
(Sec. 4.2). Thresholdingσ will, in general, not disconnect the 3D skeleton. Think
for example of a cubic shape having a small-scale noisy cusp that extends from the
middle of a face to one of the cube’s edges. In 2D, this problemdoes not appear:
Removing a pixel from a skeleton branch corresponding to an arbitrary size cusp or
dent always disconnects the skeleton. We are currently investigating an extension of
the current analysis to handle 3D shapes.

Limitations: It is important to acknowledge several limitations of our method. First
and foremost, this method isnot to be used as a universal replacement for other
denoising methods such as local curvature-based ones. It performs best on shapes
which have inherent angular features, which cannot be distinguished locally from
high-amplitude boundary noise. Noisy shapes without such features can be better
smoothed by local methods. It would be interesting to study different application-
specific, quasi-global, saliency metrics in this context, as our framework should ac-
commodate a wide range hereof. Secondly, our current implementation only handles
shapes described as boundaries, not full grayscale images.For the latter, skeletons
are not (yet) effective descriptors.
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8 Conclusion

We have presented a method for feature-preserving smoothing of digital shapes us-
ing shape skeletons. Using a saliency metric that relates the importance of a shape
feature to its size and the local object thickness, this method is able to smooth
relatively large-scale boundary noise and fully preserve sharp convex and concave
corners. Another application is creating compact shapes from images corrupted by
high amounts of binary speckle noise. The method uses skeletons at various places:
to compute feature sizes, local object thickness, and to perform the actual feature
smoothing. A simple and efficient implementation is presented here that can ro-
bustly handle complex shapes.

In the future, we aim to extend this method to efficiently and effectively handle
3D shapes, as outlined in Sec. 7. Another extension is the ability to handle full
grayscale images,e.g. by representing these as a stack of skeletons for different
isophotes.
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