
Preserving Sharp Edges with Volume Clipping

M. A. Termeer1, J. Oliván Bescós2 and A.C. Telea3

1Institute of Computer Graphics and Algorithms, TU Wien, Austria
2Philips Medical Systems, Best, The Netherlands

3Department of Computer Science and Mathematics, TU Eindhoven, The Netherlands

Abstract

Volume clipping is a useful aid for exploring vol-
umetric datasets. To maximize the effectiveness
of this technique, the clipping geometry should be
flexibly specified and the resulting images should
not contain artifacts due to the clipping techniques.
We present an improvement to an existing illumina-
tion model for volume clipping to allow sharp edges
in the data to stay visible. These sharp edges often
originate from material transitions in the volume or
structures being partially cut by the clipping geom-
etry. The focus is on high, industrial image qual-
ity and flexibility of the algorithm; techniques for
using high-resolution polygonal meshes as clipping
algorithms and removal of artifacts are presented.
Features of the latest consumer graphics hardware
are exploited to provide the visualization at an in-
teractive framerate without the need for multipass-
ing. We have validated the techniques presented
here by implementing them in the context of a pro-
fessional volume rendering application at Philips
Medical Systems, and comparing our results with
current results produced by existing solutions.

1 Introduction

In clinical environments, Direct Volume Rendering
(DVR) requires a high image quality, flexibility and
performance in order to become more widely ac-
cepted as the visualization method of choice. While
providing excellent anatomical context, current im-
plementations often lack a good combination of the
aforementioned requirements. Intensive research is
being directed at image quality and performance.
Conversely, very flexible solutions for DVR are of-
ten not capable to provide the utmost quality fine-
tuned, more specific ones deliver.

An important tool for exploring medical datasets
is volume clipping. This applies for example to

imaging the coronary arteries. The complex ge-
ometry of these small vessels surrounding the heart
can be perfectly visualized by DVR. By visualizing
a large part of the coronary artery tree in a single
image, detection of stenosis is accelerated. How-
ever, the human heart is surrounded by many other
smaller structures often occluding the view. Vol-
ume clipping provides an effective way of removing
these occluding structures. Since the clipping ge-
ometry should fit tightly around the heart for good
results, support for complex clipping geometry is
essential.

While solutions for volume clipping using com-
plex clipping geometries have been suggested, im-
age quality was not up to the required level in any of
the presented models. This often leads to distract-
ing artifacts in the visualizations or a misinterpreta-
tion of structures. We present a number of improve-
ments to current volume clipping solutions to attack
this problem. First, we present an improvement to
an existing illumination model for volume clipping
that gives a better representation of sharp edges in
the data, in combination with a high quality GPU-
based ray casting volume rendering solution. Sec-
ond, we prove that quality of GPU-based ray cast-
ing of volume data, both with and without clipping
techniques applied, can be significantly improved
by stochastic ray shifting. Finally we present an
analysis of our solution, identifying shortcomings
in branching behavior of current graphics hardware.

The organization of this paper is as follows. Sec-
tion 2 gives a brief overview of related work in vol-
ume clipping and GPU-based ray casting of volume
data. Section 3 describes our improvements to the
volume clipping techniques. Section 4 explains our
ray casting approach and its characteristics. In sec-
tion 5 we propose the use of stochastic ray shifting
for improved image quality. Section 6 evaluates the
performance and quality of our solution. A conclu-
sion is given in section 7.



2 Related Work

Weiskopf et al. presented a technique for high-
quality volume clipping [12] capable of using any
polygonal mesh, possibly concave, as a clipping ge-
ometry. Their solution focuses on using the raster-
ization capabilities of graphics hardware to cause a
minimal overhead to the volume rendering. They
also present an illumination model that takes the
surface of the clipping geometry into account. To
prevent discontinuities in lighting, they propose to
“impregnate” the gradient of the clipping geometry
along a small layer of constant thickness along the
boundary thereof. While originally targeted at slice-
based volume rendering, their solution extends well
to a ray casting-based volume rendering solution.

The recent advances in graphics hardware devel-
opment have led to a more flexible and fully pro-
grammable accelerated graphics pipeline. It has
been proved that current consumer graphics hard-
ware is well capable of performing volume ren-
dering by ray casting [9, 6]. This approach re-
lies on fragment shader functionality and three-
dimensional texturing capabilities. A major advan-
tage of such a ray casting based approach to volume
rendering is that it produces images of high quality,
is flexible in that it combines well with many exist-
ing extensions and is relatively easy to implement.
Recent further improvements in graphics hardware
have lead to the development of solutions perform-
ing the volume rendering by ray casting in a single
pass [5, 11].

3 High Quality Volume Clipping

An advanced volume clipping technique designed
for use on consumer graphics hardware was pre-
sented by Weiskopf et al. [12]. Various approaches
were presented there, which all have in common
that they somehow extract the depth-structure of the
clipping geometry and use it to determine the visi-
ble parts of the volume. The most versatile tech-
nique to extract depth information from a polygonal
mesh using graphics hardware is the depth-peeling
algorithm [3].

The depth-peeling algorithm is a multi-pass al-
gorithm that uses a second depth-buffer to store the
depth-information of the previous pass. It is a varia-
tion of the dual depth-buffer technique [1]. The sec-
ond depth buffer is used to cull any fragments that

were rendered in any of the previous passes, effec-
tively “peeling off” a depth-layer each pass. The
combination of all depth buffers forms the depth
structure of the clipping geometry.

Figure 1: Intersecting depth-structures to yield vol-
ume probing (left) or cutting (right); the part of the
volume that is to be rendered is colored gray.

Once the depth structure of the clipping geome-
try is available, volume clipping is easily combined
with ray casting-based volume rendering. As can
be seen in Figure 1, the depth information controls
which part of the viewing ray should be rendered
and allows for both volume cutting and probing.

A naive implementation of volume clipping in-
troduces problems with the illumination near the
edges of the clipping geometry. Near the edge of the
clipping geometry, the gradient of the volume data
may exhibit unwanted behavior due to the exposure
of homogeneous regions in the volume. In these
regions, the volume gradient has a very small mag-
nitude and is primarily dominated by small varia-
tions or noise in the volume data. Moreover, the
volume gradient most likely does not reflect the sur-
face structure of the clipping object. The obvious
solution is to use the gradient of the clipping object
near the edge of this object. It can easily be ex-
tracted and stored during the depth peeling process.
The gradient information is usually only required
for the first depth-layer, as the illumination of the
remaining layers commonly contributes very little
to the final image.

The most intuitive approach to use the gradient of
the clipping object into the visualization is to “im-
pregnate” the gradient along the edge of the clip-
ping object. Note that this differs slightly from the
technique proposed by Weiskopf et al. [12], where
the interpolation of illumination terms is proposed.
Since illumination terms are non-linear, we prefer to
interpolate gradients instead. After the intersection



with the clipping object, a weighted combination of
both the gradient of the clipping object and that of
the volume is used along a fixed distance, usually
a few voxels. The distance to the clipping object is
generally not available, but using the distance to the
last intersection along the viewing ray is a suitable
approximation and does normally not lead to visible
artifacts.

Figure 2: Gradient impregnation along a fixed-
width layer (top) and gradient magnitude guided
gradient impregnation (bottom) on the engine
dataset with a phantom clipping object.

Material transitions can cause steep changes in
the volume data. If the two different correspond-
ing data values are mapped to significantly different
opacities, this results in a visible hard edge between
the two materials. If such a transition is cut by the
clipping geometry, i.e. the hard edge is intersecting
the edge of the clipping geometry, the linear inter-
polation of the two gradients causes an incorrect il-
lumination of the edge. In Figure 2 (top) the edges
appears to be rounded due to the incorrect illumi-
nation, while they are in fact a hard edges. Using
a stepwise weighting function would cause the im-
pregnation layer to become visible due to the dis-
continuity in the gradient, which is even less prefer-
able.

We give a simple but effective solution to the

above problem. The hard edge is caused by a steep
change in opacity, due to a difference in value of
the volume data. In this area of change, there is a
well defined and well behaving gradient in the vol-
ume data. In order to apply the gradient impreg-
nation only in the areas where needed, the homo-
geneous areas in the volume with a near-zero gra-
dient, an accumulated gradient magnitude can be
computed during the volume rendering. As soon
as this accumulated volume gradient magnitude has
exceeded a predefined threshold, the gradient im-
pregnation is disabled (up to the next intersection
with the clipping object). The threshold should
be proportional to the small variations in gradient
in homogeneous regions of the volume data. This
effectively causes the gradient impregnation layer
thickness to be controlled by the gradient magni-
tudes in the corresponding areas, instead of using a
fixed layer thickness.

Figure 3: Effectively disabling gradient impreg-
nation at regions with a high gradient magnitude.
The lighter shape represents a region in the volume
data with a significantly different value than its sur-
roundings. The dark slab represents the gradient
impregnation layer.

A schematic overview of our idea is sketched in
Figure 3. Note that the lighter shape inside the fig-
ure need not necessarily be mapped to a different
opacity than its surroundings. Looking from the
viewpoint, the gradient impregnation is effectively
disabled after a change in volume gradient, as de-
scribed earlier. In figure 3 the gradient impregna-
tion has a uniform thickness, but variations in the
volume data may indeed cause the thickness of the
layer to vary over the volume as well. Most com-
mon is however the case shown in figure 3; steep



changes in volume gradient cause the threshold to
be exceeded and thus gradient impregnation to be
disabled, or small variations in the volume data
cause the layer to have a more or less constant thick-
ness.

Figure 2 (bottom) shows the result of our idea;
both the clipped edge and the remaining part of the
volume have correct illumination. Note that discon-
tinuities in the gradient may occur due to this ap-
proach in transitions between regions with different
intensities. These discontinuities are however justi-
fied by the sudden change in surface normal. Here
the difference in opacity was made large for illus-
trative purposes, but our solution also works for less
large differences and even equal opacities.

4 Ray Casting Volume Data

We integrated the volume clipping technique from
the previous section with a GPU-based ray cast-
ing volume rendering approach. The choice for ray
casting was based on the fact that the method pro-
duces images of high quality, is very flexible and is
easy to implement. We use standard direct volume
rendering with a constant step size, front-to-back
accumulation and a Phong-Blinn lighting model.
We also implemented early ray termination by us-
ing the dynamic branching capabilities of current
graphics hardware. The effect of this on the perfor-
mance is described in section 6. As ray casting on
the GPU has been described before [5, 11], we only
mention the novel elements of our approach.

4.1 Empty space skipping

To accelerate the rendering process, we use an
empty-space skipping technique that is based on
computing a tight bounding mesh of the volume
data based on the current transfer function. Simi-
lar techniques for empty space skipping have been
presented before [10, 7].

A major advantage of this approach is that it can
be efficiently implemented on graphics hardware.
The polygonal mesh can be rasterized, exploiting
the rasterization capabilities of the graphics hard-
ware, and the resulting depth-buffer can be used to
compute the start and end points of each ray. For
most practical cases, rendering two passes, one with
the front-most faces and one with the back-most
faces, is sufficient. For a more accurate depth struc-

ture one could apply the depth peeling algorithm to
account for occluded empty regions.

The technique integrates well with the volume
clipping. In fact, both the volume clipping and the
empty space skipping algorithms, either used with
depth peeling or not, result in a list of ray segments
to be rendered. Intersecting these lists can be done
using simple fragment operations and is very effi-
cient.

(a) (b) (c)

Figure 4: The empty-space skipping geometry;
without optimization (a); hidden edges removed
(b); tightly fit (c).

The bounding mesh is constructed from a col-
lection of bricks, typically 3x3x3 voxels. A brick
is only part of the mesh if it contains at least one
voxel that is not completely transparent according
to the current transfer function. This would lead
to a bounding mesh as depicted in Figure 4a. Re-
moving shared edges between bricks, as depicted
in Figure 4b, greatly reduces the number of faces
in the mesh without changing functionality. Fit-
ting the mesh more tightly around the volume, as
shown in Figure 4c, leads to a more efficient empty
space skipping structure. However, this may cause
neighboring bricks to become disconnected, so care
should be taken when combining the techniques of
Figures 4b and 4c.

The resulting structure is an efficient empty space
skipping technique that causes very little overhead.
During the volume rendering it requires only two
texture lookups to retrieve the information required
to alter the ray segment.

5 Stochastic Ray Shifting

Like many others, our implementation of DVR is a
discrete sampling based attempt to approximate the
volume rendering integral. The number of samples



taken during ray traversal controls the quality of the
approximation of the integral and thus image qual-
ity.

(a) (b)

Figure 5: Schematic occurrence of slicing artifacts
(a); effect of adding noise to entry-points (b).

Typical artifacts that occur when using a low
sampling rate are slicing artifacts, also called ring-
ing artifacts or staircase artifacts. Figure 6a shows
an example occurrence of this unwanted behavior.
This kind of artifact is most visible near regions
with a sudden change in opacity. The effect is that
the aliasing of the entry point in the more-opaque
region becomes visible. Figure 5a gives a schematic
view of this principle.

A common approach to reducing the visibility of
these artifacts is to use pre-integrated volume ren-
dering [2]. This technique aims at approximating
the volume rendering integral with a piecewise lin-
ear function instead of a piecewise constant func-
tion, gaining continuity. We have successfully inte-
grated this technique in our volume rendering solu-
tion. A downside of pre-integrated volume render-
ing is that the look-up table needs to be recomputed
whenever the transfer function is changed. Note
that this also holds for the empty-space skipping ge-
ometry described earlier. Although pre-integration
improves overall image quality, the slicing artifacts
still occur, but are less clearly visible. This is
demonstrated in Figure 6b.

A different solution is to shift the entry points
along a viewing ray by half the sampling distance
compared to each of the four neighboring pixels
[4, 8]. This solution dramatically reduces the vis-
ibility of the artifact in question by destroying the
regular spatial arrangement of the slices. The use
of a random pattern is also suggested and is clearly
preferable. Many other areas where similar patterns
are used, such as super-sampling schemes, have
shown that random patterns have a better masking

effect on the human visual system than regular ones.
The technique is similar to error diffusion used in
e.g. printers to enhance image quality. Figure 5b
shows the effect of adding a uniformly random off-
set of at most half the sampling distance to the en-
try point of each viewing ray. A practical result is
shown in Figure 6c, showing indeed a much im-
proved image quality. Note that as the resolution of
the image increases, the noise becomes less visible.
By combining both pre-integration and ray shifting
we obtain Figure 6d; clearly a much higher quality
while using the same sampling rate as Figure 6a.

6 Results

Figure 7 shows some results of our novel approach
to illuminating clipped regions. Figures (a) and
(b) demonstrate that our technique makes it possi-
ble to discriminate regions that are cut by the clip-
ping geometry, while the traditional approach does
not. Note that due to correct lighting the compli-
cated surface structure can also still be perceived.
Figures (c) and (d) show that the sharp edges al-
low for a much better perception of holes along the
clipped surface. Note the bumped structure of the
clipped surface; this is caused by the complex clip-
ping geometry. While the sharp edges around the
holes seem to be rounded with the traditional ap-
proach, their sharpness is clearly perceived with our
improvement. Overall it can be seen that the tech-
nique allows for an improved perception of struc-
tures within the data along the edges of the clipping
geometry.

We implemented our solution using OpenGL 2.0
and the OpenGL Shading Language (GLSL). The
use of assembly language for shaders was avoided
to maximize compatibility among different graph-
ics cards and driver versions as well as to have a
more efficient implementation process. Our result
is a versatile ray casting based volume rendering
implementation that produces high-quality render-
ings. A limitation of the current implementation is
that the maximum size of the volume is bounded
by 128 megabytes. This restriction is caused by the
video drivers and will probably change in the near
future. For a more robust handling of large volumes,
a technique using volume bricking can be used.

The empty-space skipping and the early ray ter-
mination have both proved to be effective perfor-
mance optimizations. The workload per fragment



(a) (b) (c) (d)

Figure 6: Slicing artifacts occurring while rendering part of a human skull (a); improved quality by pre-
integration (b); improved quality by noise masking (c); both techniques combined (d). Note that for all
figures the same sampling rate was used (approximately one sample each voxel).

(a) (b) (c) (d)

Figure 7: Discriminating regions that intersect the clipping geometry in an extreme blowup of a heart
rendering ((a) & (b)); A better perception of holes while clipping the engine dataset with the Stanford
bunny ((c) & (d)).

Figure 8: Computational load of fragments mapped
to a light (low) to dark (high) gradient.

is massively reduced in most cases. For the most
situations however, a small amount of fragments re-
quires much computation. One can think of highly
transparent areas or the edges of the empty-space
skipping geometry. In the latter case fragments of
empty space are traversed. This takes a relatively

large amount of computation since the ray is not
terminated by early ray termination. An example of
this is shown in Figure 8, where the workload per
fragment was mapped to a light (low) to dark (high)
gradient in the rendering of a human skull. In some
areas, the cubic structure of the empty-space skip-
ping geometry is clearly visible in that the edges of
the “surfaces” are surrounded by a dark rim. Due
to the way dynamic branching is handled by the
nVidia GeForce 6 and 7 series, the fragments with a
high workload cause the processing of many other
fragments with a low workload to be stalled. Thus a
lot of time is spent on computing a relatively small
portion of the image. This causes strange behav-
ior sometimes; zooming in on an image may hide
empty (and thus uninteresting) areas of an image.
If these areas caused a high workload, a sudden in-
crease in performance, as much as a factor of five,
is observed.



0 0.2 0.4 0.6 0.8 1

ratio low/high workload fragments

0

2e4

4e4

6e4

8e4

1e5

1.2e5

re
n
d
e
ri

n
g
 t

im
e

coherent
random
random multipass

Figure 9: Dynamic branching performance on an
nVidia GeForce 6800 GPU.

The non-linear performance behavior or dynamic
branching is shown in Figure 9. The first graph (co-
herent) shows the rendering time of a scene with
two kinds of fragments; one kind has a low work-
load and the other a high workload. The ratio be-
tween the two kinds of fragments is mapped on the
horizontal axis. The graph where the two kinds
of fragments are spatially coherent clearly shows
a staircasing behavior; a small amount of high-
workload fragments causes an entire block to be
stalled. As the ratio increases, the high-workload
fragments span more blocks.

The second graph (random), where the two kinds
of fragments are spread randomly across the image,
shows a near constant behavior. Due to the ran-
dom distribution, each block is polluted with high-
workload fragments and thus processing of low-
workload fragments is stalled.

Kruger and Westermann proposed to use the
early Z-test for implementing early ray termination
[6]. This approach could also be used to group frag-
ments of similar workload into two passes. How-
ever, this approach is shown to fail in the third graph
(random multipass). The early Z-test is only effec-
tive if the fragments that need to be culled are spa-
tially coherent. At the lower ratio, the early Z-test
fails to cull any fragments and the scene is effec-
tively rendered twice. As the ratio approaches one,
the performance increases; the majority of the frag-
ments are of one kind and thus the fragments with
a high workload are more spatially coherent. This
causes the effectiveness of the early Z-to increase
and the performance converges to that of the single-
pass approach.

These results show that it is difficult to solve
the problems related to dynamic branching behav-
ior on the given architecture of the graphics hard-

ware. However, dynamic branching on graphics
hardware is still in its infancy and the ongoing de-
velopment of hardware will result in better perfor-
mance. For example, the latest graphics board from
ATi, the Radeon X1800 series, is claimed to have a
smaller block processing size precisely targeted at
solving this problem. A test board was not avail-
able to us, but predictions are that the implemented
volume rendering algorithm performs significantly
better on this graphics board due to the improved
dynamic branching handling features.

Table 1: Rendering performance.

Dataset Dimension Coverage Fps

Engine 2562x110 49% 12.5

CT Skull 5122x173 57% 3.52

CT Heart 5122x150 98% 6.17

Table 1 shows an overview of the performance of
our solution on images of 5122 pixels. The third
column indicates the image coverage; the amount
of pixels for which the fragment shader was instan-
tiated. Of course it is not possible to give a single
performance figure for the algorithm, as the perfor-
mance is heavily dependent on the transfer function
and sampling rate. Thus samples-per-second would
be a better performance measure, but is hard to
measure. Due to the excellent performance-quality
trade-off offered by the slicing artifact masking, any
performance measurement depends on the required
quality. As the focus was on high-quality, settings
were used such that further increase of the sampling
rate yielded no visible improvement in image qual-
ity. The performance overhead caused by the vol-
ume clipping, including our contribution of novel
illumination techniques, was not significant while
using polygonal meshes of up to 70,000 polygons
with two depth layers. The main reason for this
is that rasterization of polygonal meshes is much
faster than volume rendering on current graphics
hardware.

7 Conclusion

We have presented an improvement to an earlier il-
lumination model for volume clipping [12] that is



capable of dealing with sharp edges in the volume
data. It thus allows for a much better perception
of complicated structures along the clipping geom-
etry by preserving the visibility of material or tissue
transitions in semi-transparent regions. The tech-
nique is independent of opacity mappings used for
the data.

We proved that this technique can be success-
fully integrated with single pass ray casting of vol-
ume data on graphics hardware. Second, we pre-
sented that a significant quality improvement can be
obtained by using a combination of pre-integrated
rendering and stochastic ray shifting. The latter
technique destroys the local coherency of deviations
from the volume rendering the human perceptual
system is so sensitive to.

Finally, we present a quantitative and qualitative
evaluation of the proposed volume rendering solu-
tion and show that high-quality visualizations can
be produced at interactive framerates. We have val-
idated the techniques presented here by implement-
ing them in the context of a professional volume
rendering application at Philips Medical Systems,
and comparing our results with current results pro-
duced by existing solutions.

The performance is hard to compare to that of
other volume rendering solutions targeting similar
hardware, since not all also employ volume clipping
techniques or produce similar quality. Our general
impression is however, that slice-based rendering is
not as flexible, versatile, high-quality, and easy to
implement as a pure ray casting solution. Overall
we believe that ray casting is a serious competitor
to slice-based DVR.

Current limitations of the presented solution in-
clude the inability to handle very large volumes, but
these could be overcome by using a GPU-focused
caching algorithm using multiple textures. Further
quality improvements may be achieved by explor-
ing the combination with frequency domain vol-
ume rendering or by using dynamic sampling rates.
Furthermore it has been shown that GPU-based ray
casting allows for a wide variety of visualization
techniques [11].

Acknowledgement

This work has been funded by Philips Medical Sys-
tems in the scope of the COMRADE project.

References

[1] Paul J. Diefenbach. Pipeline Rendering:
Interaction and Realism through Hardware-
Based Multi-Pass Rendering. PhD thesis, Uni-
versity of Pennsylvania, 1996.

[2] Klaus Engel, Martin Kraus, and Thomas Ertl.
High-quality pre-integrated volume rendering
using hardware-accelerated pixel shading. In
Proc. ACM HWWS ’01. ACM Press, 2001.

[3] Cass Everitt. Interactive order-independent
transparency. nVidia Corporation, 2001.

[4] Alexander Keller and Wolfgang Heidrich. In-
terleaved sampling. In Proc. Rendering Tech-
niques ’01, pages 269–276, 2001.

[5] T. Klein, M. Strengert, S. Stegmaier, and
T. Ertl. Exploiting frame-to-frame coherence
for accelerating high-quality volume raycast-
ing ongraphics hardware. In Proc. IEEE Visu-
alization ’05, pages 223–230, 2005.

[6] J. Kruger and R. Westermann. Acceleration
techniques for gpu-based volume rendering.
In Proc. IEEE Visualization ’03, 2003.

[7] Warren Leung, Neophytos Neophytou, and
Klaus Mueller. Simd-aware ray-casting. In
Proc. Volume Graphics ’06, 2006.

[8] Benjamin Mora, Jean-Pierre Jessel, and René
Caubet. A new object-order ray-casting algo-
rithm. In Proc. IEEE Visualization ’02. IEEE
CS Press, 2002.

[9] Stefan Roettger, Stefan Guthe, Daniel
Weiskopf, Thomas Ertl, and Wolfgang
Strasser. Smart hardware-accelerated volume
rendering. In Proc. VISSYM ’03, pages
231–238. Eurographics Association, 2003.

[10] Lisa M. Sobierajski and Ricardo S. Avila. A
hardware acceleration method for volumetric
ray tracing. In Proc. IEEE Visualization ’95,
page 27. IEEE CS Press, 1995.

[11] S. Stegmaier, M. Strengert, T. Klein, and
T. Ertl. A simple and flexible volume render-
ing framework for graphics-hardware–based
raycasting. In Proc. Workshop on Volume
Graphics ’05, pages 187–195, 2005.

[12] Daniel Weiskopf, Klaus Engel, and Thomas
Ertl. Interactive clipping techniques for
texture-based volume visualization and vol-
ume shading. In IEEE TVCG, volume 9, pages
298–312, 2003.


