
The Gap between Visualization Research and Visualization Software (VisGap) (2020)
C. Gillmann, M. Krone, G. Reina, T. Wischgoll (Editors)

Selecting and Sharing Multidimensional Projection Algorithms: A
Practical View

M. Espadoto 1,4†, E. F. Vernier2,4† and A. C. Telea3

1Institute of Mathematics and Statistics, University of São Paulo, Brazil
2Institute of Informatics, Federal University of Rio Grande do Sul, Brazil

3Department of Information and Computing Sciences, Utrecht University, The Netherlands
4Johann Bernoulli Institute, University of Groningen, The Netherlands

Abstract
Multidimensional Projection techniques are often used by data analysts for exploring multivariate datasets, but the task of
selecting the best technique for the job is not trivial, as there are many candidates and the reasons for picking one over another
are usually unclear. On the other hand, researchers developing new techniques can have a hard time comparing their new
technique to existing ones and sharing their code in a way that makes it readily available for the public. In this paper, we try
to address those issues systematically by analyzing recent surveys in the area, identifying the methods and tools used, and
discussing challenges, limitations, and ideas for further work.
CCS Concepts
• Visualization → Visual analytics; • Computing methodologies → Dimensionality reduction and manifold learning;

1. Introduction
Multidimensional projections, also called Dimensionality Reduction
(DR) techniques, have a key place in the toolset of data scientists.
They support many tasks dealing with high-dimensional data, such
as analysis (finding interesting patterns in the data, e.g., clusters,
subspaces, or outliers); simplification (reducing the number of dimen-
sions needed to capture the data structure); prediction (classification
or regression tasks executed on the data samples); and visualization
(presenting the data for exploration or communication via 2D or 3D
scatterplots) [HG02, LMW∗15, KH13, TLZM16].

Different audiences have different requirements for DR algorithms.
Practitioners want to apply DR to solve their specific analysis, sim-
plification, prediction, or visualization tasks on their data. Their main
question relates to how to find the DR technique implementation
that optimally covers their requirements, including adding such al-
gorithms to their data-processing pipeline. Researchers that develop
novel DR techniques need to compare their (new) technique with
existing ones to demonstrate its added value, and next want to share
it with an as wide as possible public.

Having worked in both practitioner and researcher roles in various
teams for over 10 years, we have observed several challenges, which
we summarize by two key questions, as follows:

• QP (Practitioners): How to choose the best DR algorithm imple-
mentation for my context from the wide set of options available in
the public arena?

† This study was financed in part by CNPq (304336/2019-0) and the Coorde-
nação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) -
Finance Code 001

• QR (Researchers): How to compare my new DR algorithm
against the existing ones, and next share it with as many other
practitioners and/or researchers as possible?

Both questions can be answered in many ways, and using many
instruments, e.g., surveys, benchmarks, and open-source repositories.
At a meta level, we ask ourselves: How to answer these questions
efficiently and effectively? For practitioners, the search space (of
existing DR algorithm implementations) is huge. How to approach
the search process, starting from one’s context-specific requirements,
to find as quickly as possible the best DR techniques that fit these
requirements? For researchers, the effort of developing new DR
techniques is already large. How to ensure, with minimal effort, that
the developed techniques are indeed better (and if so, how to measure
this) than existing ones?

In this paper, we examine both above questions in a systematic way.
We identify the workflows that typical practitioners and researchers
follow when answering these questions. Next, we identify available
instruments to complete each step of these workflows, and discuss the
challenges and limitations we observed when applying these instru-
ments. In particular, we propose an architecture for a benchmark for
DR evaluation that is generic and extensible in terms of datasets, DR
algorithms, quality metrics, and visualizations. Finally, we discuss
ways forward for the community of practitioners and researchers
interested in applying, respectively developing, DR algorithms.

2. Background

We first introduce a few definitions. A projection technique is a
function P : Rn→ Rm, which maps a set D⊂ Rn of n-dimensional
points to a same-size m-dimensional scatterplot P(D)⊂ Rm, where
typically m ∈ {2,3}. P aims to capture the structure of an input

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

M. Espadoto & E. F. Vernier, A. C. Telea / Selecting and Sharing Multidimensional Projection Algorithms: A Practical View

dataset D, by preserving various aspects thereof in P(D), e.g., inter-
point distances or point neighborhoods. To quantify how well P
preserves such data aspects, quality metrics [BTK11] are used. An
implementation of a projection technique P is a reusable software
component, e.g. executable or library, that computes the function P.

Two types of requirements come into play when answering QP
and QR, as usual when engineering software systems:

• functional requirements describe properties of the DR technique it-
self. These include the type of data the projection accepts (nD sam-
ples or a distance matrix), whether P is deterministic or stochas-
tic, linear or non-linear, global or local, quality (measured by
quality metrics), computational and memory scalability, and out-
of-sample ability. Such aspects can be usually inferred from the
technique’s description;
• non-functional requirements describe properties of implementa-

tions of DR techniques, e.g. ease of use, documentation, portabil-
ity, third-party software components and programming language
needed, and interoperability with other toolkits. Finding these
typically requires one to study specific implementations of P.

The questions QP and QR listed in Sec. 1 have preoccupied both
practitioners and researchers, increasingly more in the last decade,
when many DR techniques have emerged in the literature. Several
sources of information are typically used to answer them. We rank
these sources based on how strongly they support answering QR and
QP, on an ordinal scale ranging from ‘- -’ (least) to ’++’ (most), as
follows.

Papers (QR : ++;QP :−−): Technical papers describing DR tech-
niques are the prime information source for researchers aiming to
understand and/or extend such techniques. Papers discuss functional
aspects of the presented techniques well, but comparisons with other
techniques are in general limited to a few. Non-functional aspects and
implementation details are less thoroughly touched upon in papers,
which leaves QP largely unanswered.

Surveys (QR : +;QP : +): Surveys compare (tens of) projections
and consider more functional aspects (e.g., metrics) than technical
papers (see e.g. [NA18, vP09, EMK∗19a, EHH12, SVM14]. Surveys
offer a very good way to choose techniques based on their functional
properties. Yet, surveys rarely discuss how to choose specific imple-
mentations of these techniques, and also discuss less non-functional
aspects.

Benchmarks (QR : −;QP : ++): Benchmarks gather concrete
datasets and projection/metric implementations to help both practi-
tioners and researchers to compare practically DR techniques against
each other. They also help replicability and are very common in
other fields of computer science, e.g. machine learning [MCC∗19]
or medical imaging [RKHH09, MFM∗13]. However, benchmarks
are rare in the DR community. Three notable recent benchmarks are
Espadoto et al. [EMK∗19a] (18 datasets, 44 projection techniques,
and 7 metrics); Vernier et al. [VGdS∗20] (focus in dynamic DR – 10
datasets, 11 techniques, 12 metrics); and SmallVis [Mel] (focus on
t-SNE, UMAP, and LargeVis [TLZM16]).

Frameworks (QR : −−;QP : ++): Frameworks are collections of
DR technique implementations designed, documented, and coded for
reusability. They come as libraries, e.g. scikit-learn [PVG∗11], Tap-
kee [LWG13]; and turnkey systems, e.g. MATLAB (which provides
out-of-the-box implementations of PCA, Factor Analysis [Jol86],
NMF [LS01], MDS [Tor58, Kru64] and t-SNE [vH08]), Projection-
Explorer [JCC∗11], and VisPipeline [vis], which provide end-to-end
tools for interactive exploration of projections. An extreme model

of frameworks are code bases that implement a single technique,
e.g. Van der Maaten’s t-SNE [vH08], dt-SNE [RFT16], and Es-
padoto’s deep-learning DR technique [EHT19]. While frameworks
best support QP, finding which implementations (in which frame-
works) best match a practitioner’s set of requirements still requires
significant manual trial-and-error testing of the DR implementations
they provide.

From the above, we see that the search space for QP and QR is
large and heterogeneously structured. This affects both practitioners
– it is not evident where to start searching, and how to systematically
search; and researchers – there’s no unanimously accepted answer to
what to compare against, what to compare on, how to compare, and
how to report the results; also, researchers face the question on how
to best share their results with others, e.g., simply release their code
or take the time to integrate it with some framework. Hence, we find
a salient gap between DR research and practice. Our aim next is to
provide insights on how to fill this gap with a low effort, and where
the largest unanswered challenges reside.

3. Operational Workflows

We identify two related, but not identical, workflows that practi-
tioners, respectively researchers, follow to answer their respective
questions QP and QR stated in Sec. 1. We inferred these workflows
both from studies of existing papers and surveys in the DR literature,
and from our own experience with answering both QP and QR in
practice. Concerning our experience, we have studied 46 actual DR
implementations. These implementations, and their main functional
and non-functional aspects, are listed in Tab. 1. Additional func-
tional aspects of these techniques, such as complexity and quality are
provided in recent surveys [EMK∗19a, VGdS∗20].

Figure 1 depicts the steps of both these workflows, which we
detail next. Colored dots in the middle table show which informa-
tion sources (surveys, papers, benchmarks, or our own analysis in
Tab. 1) are mainly used to support every workflow step. For each
step, we next discuss the main questions asked by practitioners and
researchers, outline how these can be answered, and which are the
challenges we observed in doing this.

3.1. Practitioner workflow

A. Search techniques. Where do I start searching? Starting points
for this search are, obviously, technical papers on DR techniques
and, more broadly, surveys thereof [EMK∗19a, NA18]. Additional
search sources are conference presentations, blogs, and peer input.
This search typically delivers a (large) subset of potentially suitable
DR technique candidates (but usually no specific implementations).

B. Search implementations. Where do I find implementations? Ta-
ble 1 provides our survey of available implementations, with frame-
works providing these in Tab. 2. Related to the search process, we
observed several points. Since many data science projects use Python,
practitioners would likely favor Python-based DR implementations.
We found out that scikit-learn [PVG∗11] provides high-quality im-
plementations of many well-known DR techniques. However, other
techniques come in different languages (Tapkee [LWG13]: C++;
Van Der Maaten’s DR Toolbox [VdMPvdH07]: MATLAB; and
Vispipeline [vis]: Java). These require manual Python wrapping,
which is not easy for the average user, and may hamper adoption of
less known DR techniques, which are not available anywhere else.

C. Select implementations. How to do this selection? This involves
considering both functional and non-functional requirements. For the

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

M. Espadoto & E. F. Vernier, A. C. Telea / Selecting and Sharing Multidimensional Projection Algorithms: A Practical View

Table 1: Studied DR technique implementations with their functional and non-functional aspects listed.

Projection Linearity Input Neighborhood Parameters Out-of-sample Deterministic Implementation
Autoencoder [HS06] NL S G network size yes no Keras
Diffusion Maps [LL06] NL S L 2 no yes Tapkee
Factor Analysis [Jol86] LIN S G 1 yes yes scikit-learn
Fastmap [FL95] NL D G 0 no yes Vispipeline
GDA [BA00] NL D G 1 no yes DR Toolbox
GPLVM [Law04] NL D G 1 no no DR Toolbox
Fast ICA [Hyv99] LIN S G 2 yes yes scikit-learn
IDMAP [MPL06] NL S L 3 no yes Vispipeline
Isomap [TDL00] NL S L 1 yes yes scikit-learn
Landmark Isomap [CCG06] NL S L 1 no no Vispipeline
LAMP [JCC∗11] NL S L 3 yes no Vispipeline
Laplacian Eigenmaps [BN02] NL D L 0 no no scikit-learn
LLC [TR02] NL S L 3 no yes DR Toolbox
LLE [RS00] NL S L 3 yes no scikit-learn
Hessian LLE [DG03] NL S L 3 yes no scikit-learn
Modified LLE [ZW07] NL S L 3 yes no scikit-learn
LMNN [WBS06] LIN S L 3 no yes DR Toolbox
LPP [HN04] LIN S G 1 yes yes Tapkee
LSP [PNML08] NL S L 4 no yes Vispipeline
LTSA [ZZ04] NL S L 3 yes no scikit-learn
Linear LTSA [ZYZG07] LIN S L 1 no no Tapkee
Manifold Charting [Bra02] NL S L 2 no yes DR Toolbox
MCML [GR06] NL S L 0 no no DR Toolbox
MDS [Tor58] NL D G 2 no no scikit-learn
Landmark MDS [DT04] NL D G 1 no no Tapkee
Nonmetric MDS [Kru64] NL S G 2 no no scikit-learn
Landmark MVU [WPS05] NL S G 2 no no DR Toolbox
NMF [LS01] LIN S G 4 yes no scikit-learn
PBC [PM06] NL S L 4 no yes Vispipeline
PCA [Jol86] LIN S G 0 yes yes scikit-learn
Incremental PCA [RLLY08] LIN S G 0 yes no scikit-learn
Kernel PCA (polynomial) [SSM98] NL S G 1 yes no scikit-learn
Kernel PCA (RBF) [SSM98] NL S G 1 yes no scikit-learn
Kernel PCA (Sigmoid) [SSM98] NL S G 1 yes no scikit-learn
Probabilistic PCA [TB99] LIN S G 1 yes yes DR Toolbox
Sparse PCA [ZHT06] LIN S G 3 yes yes scikit-learn
PLSP [PEP∗11] NL S G 0 no yes Vispipeline
Random Projection (Gaussian) [Das00] NL S G 0 yes no scikit-learn
Random Projection (Sparse) [Das00] NL S G 0 yes no scikit-learn
Rapid Sammon [PdRDK99] NL S G 0 yes no Vispipeline
t-SNE [vH08] NL D L 3 no no Multicore TSNE, t-SNE archive, TFJS-t-SNE
SPE [Agr03] NL S G 2 no no Tapkee
Truncated SVD [HMT09] LIN S G 1 yes no scikit-learn
UMAP [MHM18] NL D L 3 yes no umap-learn
dt-SNE [RFT16] NL D L 4 no no dt-SNE repository
NNproj [EHT19] NL S L network size yes yes NNProj code

Table 2: DR frameworks used in the study.

Framework name Available at Programming Language(s) Documentation Quality
DR Toolbox lvdmaaten.github.io/drtoolbox MATLAB −−
Multicore TSNE github.com/DmitryUlyanov/Multicore-TSNE Python and C++ −−
scikit-learn scikit- learn.org Python ++
Tapkee tapkee.lisitsyn.me C++ −−
umap-learn github.com/lmcinnes/umap Python ++
Vispipeline vicg.icmc.usp.br/vicg/tool/1/projection-explorer-pex Java −−
Keras keras.io Python ++
t-SNE archive https://lvdmaaten.github.io/tsne MATLAB, Python, C++, JavaScript, CUDA, R, Java +
dt-SNE repository https://github.com/paulorauber/thesne Python −−
TFJS-t-SNE https://nicola17.github.io/tfjs-tsne-demo Python + WebGL +
NNproj repository https://github.com/mespadoto/dlmp Python +

former, one can easily screen DR techniques based on their properties
listed in recent surveys [EMK∗19a,NA18]. For the latter, we point to
our own survey in Tabs. 1 and 2. Based on both requirement types, a
ranking is made and a subset of candidates are selected. We observe
several points concerning non-functional requirements. Regarding
documentation, outside of scikit-learn and UMAP, which are well
documented, most libraries we found had little to no documentation
at all (Tab. 2), making adoption hard. In some cases, reading the
source code is the only option, like in the case of many techniques
found in Van Der Maaten’s DR Toolbox. Even in the cases where
the library is well documented, we often found not enough details on
the role of each parameter in the final quality of the projection, and
even less on the interaction between parameters. Separately, the API
design promoted by DR libraries can vary enormously. Each library
has its own conventions on data format and parameters, which makes
the problem of interfacing hard. Take, for example, the examples
below, which run t-SNE [vH08] on some dataset X using scikit-learn

and Tapkee (Listings 1 and 2). We believe the two-step API of scikit-
learn (create object with parameters, call fit_transform()) to be much
simpler to understand for the average user than Tapkee’s method of
chaining with globally-namespaced, non-specific keywords.

Listing 1: t-SNE example with scikit-learn

from s k l e a r n . m a n i f o l d import TSNE
t s n e = TSNE(p e r p l e x i t y =30)
o u t p u t = t s n e . f i t _ t r a n s f o r m (X)

Listing 2: t-SNE example with Tapkee

us ing t a p k e e ;
TapkeeOutpu t t s n e = i n i t i a l i z e ()

. w i t h P a r a m e t e r s ((
method= t D i s t r i b u t e d S t o c h a s t i c N e i g h b o r E m b e d d i n g ,
t a r g e t _ d i m e n s i o n =2 ,
s n e _ p e r p l e x i t y = 3 0))

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

lvdmaaten.github.io/drtoolbox
github.com/DmitryUlyanov/Multicore-TSNE
scikit-learn.org
tapkee.lisitsyn.me
github.com/lmcinnes/umap
vicg.icmc.usp.br/vicg/tool/1/projection-explorer-pex
keras.io
https://lvdmaaten.github.io/tsne
https://github.com/paulorauber/thesne
https://nicola17.github.io/tfjs-tsne-demo
https://github.com/mespadoto/dlmp

M. Espadoto & E. F. Vernier, A. C. Telea / Selecting and Sharing Multidimensional Projection Algorithms: A Practical View

A. Search

techniques

surveys
papers

B. Implement

own technique

table 1

C. Test

implementation

D. Share

implementation

benchmark

frameworks

benchmarks

Search

start
Final

result

A. Search

techniques

B. Search

implementations

C. Select

implementations

functional

requirements

non-functional

requirements

D. Test

implementations

benchmark

frameworks

Search

start
Final

result

popular

frameworks

P
ra

ct
it

io
n

er
 w

o
rk

fl
o

w
R

es
ea

rc
h

er
 w

o
rk

fl
o

w
In

p
u

t
d

at
a

O
p

ti
m

al
 e

xi
st

in
g

im
p

le
m

en
ta

ti
o

n

Im
p

le
m

en
ta

ti
o

n

o
f

n
ew

 t
ec

h
n

iq
u

e

Figure 1: Workflows for selecting DR implementations for practitioners (top, see Sec. 3.1) and researchers (bottom, see Sec. 3.2). Colored
dots indicate which input data (surveys, papers, benchmarks, Tab. 1) are used by the two roles in each step.

. embedUsing (X) ;
auto o u t p u t = t s n e . embedding . t r a n s p o s e () ;

D. Test implementations. How to test the selected implementations?
Surveys and code inspection cannot tell everything about a specific
DR implementation. One needs to actually test an implementation
on given datasets and against a set of metrics. For this, benchmarks
are needed. To our knowledge, only three such benchmarks exist in
DR landscape [EMK∗19a, VGdS∗20, Mel]. Yet, such benchmarks
are never complete, so they need to be extended with additional
DR implementations, datasets, and metrics. We discuss how such
benchmarks can be designed for extensibility next in Sec. 4.

3.2. Researcher workflow

A. Search techniques. This step is largely similar to step A for
practitioners (Sec. 3.1). The focus is though different for researchers,
who are mainly interested in finding functional limitations of existing
DR techniques that they want to improve upon, rather than the non-
functional ones that are more relevant to practitioners.

B. Implement own technique. This step can proceed, for the most
part, independently from existing DR implementations. However,
some researchers may choose to follow coding standards and API
conventions of existing (successful) DR implementations to already
maximize exposure at this stage.

C. Test implementation. This step typically uses the same bench-
marks as in step D for practitioners. An important part of this step
is presenting the test results. While less important for practitioners,
researchers need compelling ways to show that their (novel) tech-
niques perform well vs many other techniques on many metrics to
convince their peer researchers. For this, metric visualizations are
used, the most prominent being bar and boxplot charts [vP09], ta-
bles [NA18], and space-filling charts [EMK∗19a]. A challenging

aspect here is that the space to visualize is at least four-dimensional
(datasets, metrics, DR techniques, parameter settings). Ideally, cre-
ating such visualizations, and adding new visualizations, should be
supported by the benchmarks.

D. Share implementation. Once a DR implementation has been suc-
cessfully tested, its further impact critically depends on how easily
it is shared with practitioners. Doing this follows two approaches.
Standalone code is the easiest way – the researcher just makes her
DR implementation available via a website or software repository.
Examples hereof are dt-SNE, NNproj, and DR Toolbox. One issue
with this approach is that integrating DR code having non-standard
APIs with other components of a data science pipeline can be hard.
Also, standalone code is less visible to practitioners than code shared
via well-known frameworks (discussed next). Finally, adaptive main-
tenance is less often done on standalone code, which can easily break
it upon the evolution of third-party components it uses. An example
hereof is dt-SNE, which depends on the unmaintained Theano [the]
library. However, good examples of standalone code sharing exist,
such as t-SNE archive and UMAP (Tab. 2), discussed below. Frame-
work integration, the second approach, adds the DR implementation
to a mainstream data science or similar framework. Examples hereof
are scikit-learn, Tapkee, MATLAB, and Vispipeline. This takes con-
siderably more effort than sharing standalone code, as the code to
integrate must comply with framework APIs and documentation con-
straints, but favors (far) larger exposure. Framework integration can
be hard for DR techniques which need more than data input-output
communication with the framework. Examples hereof are projections
which advertise landmarks interactively placed by the user, such as
LAMP [JCC∗11] or for techniques which use GPU acceleration,
e.g. TFJS-t-SNE [PTM∗19]. To integrate these, a framework should
provide APIs for interaction, respectively for GPU computing.

Standalone code sharing has limitations, but can still be very
successful. Two good examples are UMAP [MHM18] and t-SNE

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

M. Espadoto & E. F. Vernier, A. C. Telea / Selecting and Sharing Multidimensional Projection Algorithms: A Practical View

[vH08]. UMAP’s author did an excellent job of providing a Python
library which is API-compatible with scikit-learn, easy to install and
use, and well documented. We believe the availability of the UMAP
library via the standard Python package manager and its scikit-learn
compatibility are key factors (apart from UMAP’s quality) of its
growing popularity. In contrast, the t-SNE archive (maintained by
Van der Maaten) chose to provide a ‘portal’ for implementations in
several languages (C++, Python, JavaScript, CUDA, R, Java, MAT-
LAB), thereby simplifying integration with third-party code in all
these languages.

4. Architecting an Evaluation Benchmark

Having a benchmark to quantitatively evaluate DR algorithms is es-
sential for both the practitioner and researcher workflows (see Sec. 3).
As mentioned there, not many such benchmarks exist. Importantly,
by a benchmark, we do not understand here just a ‘passive’ collec-
tion of high-dimensional datasets to battle-test DR techniques, but
rather a runnable software system that lets one select datasets, DR
technique implementations (and their parameter values), metrics,
execute them, and visually inspect the results in an easy and highly
automated way. The only two benchmarks that approach this defini-
tion are [EMK∗19a] (for static DR techniques) and [VGdS∗20] (for
dynamic DR techniques). However, these benchmarks have their own
limitations. Extending them involves, at points, manually reading and
reverse-engineering their code, which is hard. Creating an even better
(broader, easier to use) benchmark is a high-effort task involving
many decisions.

We aim to support the interested users in either the extension
task or the design-from-scratch task by proposing a generic archi-
tectural template for such a benchmark (see Fig. 2. We created this
architecture by studying the two benchmarks [EMK∗19a,VGdS∗20],
including the implementation [EMK∗19b] of the former, and next
unifying their design and implementation, aiming to generalize and
simplify. We believe that our proposal meets well the genericity and
extensibility requirements, as detailed next.

Overall design: The benchmark follows a dataflow execution model
(see execute function in Fig. 2). Datasets d from a database D are
projected in turn by several DR technique implementations p from a
DR technique collection P , using several parameter values params,
yielding corresponding 2D scatterplots d2D = p(d, params). For each
such scatterplot, a set of projection quality metrics m(d,d2D) is com-
puted. The results d2D and m are stored in a result databaseR, imple-
mented using the Python “pickle” binary format files for efficiency.
These results can be next visually explored by visualizations selected
by the analyst from a given set V . We next detail each of the main
components outlined above.

Dataset collection D: This is the set of datasets to be considered
in the evaluation, stored as a name-value dictionary (dname,ddata).
The values ddata are URLs pointing to actual files that store the data
samples x1, . . . ,xN , each having n dimensions x1, . . . ,xn, in a table
format, using either CSV following the ‘tidy data’ [Wic14] standard
or binary NumPy [WCV11].

Projection techniques P: This is the set of DR technique imple-
mentations to be evaluated, as well as their parameters to be used
during evaluation, stored as a set of tuples (pname, pcode, pparams.
Here, pcode points to the Python implementation of a DR technique,
which is a function that expects a dataset dataset and parameter-set
params , and returns the computed 2D scatterplot d2D. pparams stores
a so-called parameter grid, i.e. a table having as many columns as
parameters p expects, and one row per parameter-set to be used

during the evaluation. For instance, if we want to evaluate a t-SNE
implementation of p that expects two parameters perplexity and num-
ber of iterations (see [vH08] for details on these parameters), which
range in perplexity ∈ {20,40} and iterations ∈ {100,150,200}, we
provide a parameter-grid pgrid table equal to the Cartesian product
{20,40}×{100,150,200}. This design allows flexibly evaluating
DR techniques having different numbers and types of parameters
over user-supplied parameter grids.

MetricsM: This is the set of quality metrics to be used to assess
the benchmarked projections, stored as a dictionary (mname,mcode.
Here, mcode points to the Python implementation of a metric, which
is a function that expects a dataset d ∈ D and its 2D projection d2D
computed by one of the techniques p ∈ P , and returns a metric
value (typically a scalar). As for projections, this design allows easily
incorporating any of the projection quality metrics known in the
literature.

Visualizations V: This is the set of visualization tools offered to the
analyst to explore an evaluated benchmark. Each visualization Vis is a
Python function receiving a tuple (dname, pname, params,d2D,m). If
a parameter is set to the predefined value each, then the visualization
will generate separate small-multiples for each of the values of that
parameter inR. If a parameter is set to the predefined value aggre-
gate, then the visualization will generate a single plot for all values
of that parameter. These two options are conceptually analogous to
the SQL operations SELECT *, respectively SELECT SUM. This
allows one to easily specify visualizations having different levels of
data aggregation. For example, if we want to display quality metrics,
setting dname = each, pname = each creates one separate metric plot
for each different pair of dataset and DR technique in R. Setting
dname = each, pname = aggregate creates one metric plot that shows,
for each dataset, the aggregate (e.g., average, depending on the actual
Vis implementation) values of metrics over all DR techniques. Finally,
setting a parameter to a specific value, e.g. pname = t-SNE, creates a
visualization only for the respective DR technique entries present in
R. The dictionary keys dname, pname,mname show now their purpose:
They are used both for the user to select specific entries in R to
visualize and to create labels in the generated visualizations. This
design allows specifying a quite large range of visualizations, see the
examples in [EMK∗19a, VGdS∗20].

In terms of implementation, actual visualizations can be coded as
Python scripts calling Matplotlib [Hun07] (as in [EMK∗19a]). A
more interactive and flexible development workflow can be achieved
by using Jupyter notebooks that allow for independent and interactive
execution of their code cells and rich presentation of their output
(visualizations, narrative text, mathematical equations, tables). Exe-
cution automation is supported by Papermill [pap] which allows the
parameterization, instantiation, and execution of Jupyter notebooks.
For example, to generate for each dataset d a separate video show-
ing a small-multiple display of all its time-dependent projections
p(d)|d ∈D, one can write a template video generation notebook and
use Papermill to instantiate a new notebook for each dataset d.

Extensibility and genericity: The above architecture is easily ex-
tensible: Adding new datasets, metrics, DR techniques, or parameter
grids implies simply adding entries to the respective dictionaries.
Dictionaries can be implemented either in Python or, even simpler,
as folders having filenames as keys and the respective file contents
as actual values. For large benchmarks, implementations using re-
lational databases (e.g., SQL) could also be done relatively easily
following the same template architecture. The architecture is also
generic, since the formats of datasets, respectively signatures of func-
tions implementing DR techniques, metrics, and visualizations, can

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

M. Espadoto & E. F. Vernier, A. C. Telea / Selecting and Sharing Multidimensional Projection Algorithms: A Practical View

accommodate most, if not all, concrete instantiations thereof that
we know of from the DR literature and practice. For instance, all
DR technique implementations in Tab. 1 fit this architecture. Paral-
lelization can also be easily incorporated, e.g., by simple running
of multiple processes at the level of the for-loops in execute (a de-
sign used in [EMK∗19a]). Finally, supporting time-dependent DR
techniques implies only a small change to the architecture, namely
having ddata point to a sequence of tables rather than a single one (as
done in [VGdS∗20]).

5. Discussion

Summarizing, we see a number of open challenges to the selection
and sharing of DR algorithms that, jointly, create a gap between the
state-of-the art work in DR literature and practical realities in the
field, as follows.

Implementation: For selection (adoption), we note the lack of anal-
ysis of DR implementations with respect to non-functional require-
ments such as programming language, documentation quality, and
ease of use. These make practitioners stay away from techniques
whose implementations score poorly along these requirements and,
conversely, favor techniques that have good-scoring implementations.
For sharing, we see that there is no single framework that provides
implementations of most DR techniques known in the literature – the
closest to this is scikit-learn which implements roughly half of the
DR techniques for which we found a mainstream implementation.
For sharing, we do not see yet a momentum for researchers to de-
velop DR algorithms within mainstream data science frameworks –
the dominant sharing form is still standalone code.

Benchmarks – Datasets: Selecting a representative collection of
datasets to gauge DR techniques is hard. Typically, papers, surveys,
and benchmarks use datasets that are known in DR literature (for
historical reasons) or in a given application domain. However, gaug-
ing the quality of a DR technique at large should use datasets that
ideally represent well any problem. Espadoto et al. [EMK∗19a] do
a first attempt in this direction by characterizing datasets by traits
(e.g., dimensionality, intrinsic dimensionality, sparsity, provenance)
and create a benchmark by sampling these dimensions. Vernier et
al. [VGdS∗20] use the same idea and aim to also cover dataset dy-
namics. However, both these surveys admit to only very sparsely
sample the space of all possible datasets. Coming up with a good
such sampling is an open, and important problem, in DR practice.

Benchmarks – Techniques: To our knowledge, most DR surveys
and benchmarks focus on techniques that handle quantitative data,
and static projections (except [VGdS∗20]). Adding DR techniques
that handle other attribute types such as categorical is another open
direction towards creating comprehensive benchmarks.

Benchmarks – Metrics: DR literature knows tens of different qual-
ity metrics [BTK11]. However, existing benchmarks implement
only very few – the most being, to our knowledge, the 6 metrics
in [EMK∗19a]. A benchmark with a wide set of readily-implemented
metrics would be of high value to both practitioners and researchers.

Benchmarks – Extensibility: Some DR benchmarks [EMK∗19a,
EMK∗19a] provide code that allows the experiments to be repro-
duced and allow for some extensibility, in terms of adding new pro-
jection techniques, metrics and datasets. In terms of storing results
and creating visualizations, users would benefit from a more struc-
tured approach, with data saved in portable formats, and with some
form of integration with popular data visualization and exploration
tools, such as Tableau [CSH03].

6. Conclusions

We presented an overview of the challenges that exist in the process of
selecting and sharing DR techniques from the point of view of differ-
ent audiences, practitioners and researchers, where we described the
typical workflows used in their processes. We listed and ranked the
most common sources of information about DR techniques, namely,
papers, surveys, benchmarks, and frameworks, and compiled a list
with popular frameworks and techniques. We described the architec-
ture used in two recent benchmarks and showed how these can be
extended to consider more datasets, techniques, and metrics.

We believe the visualization community would benefit from a
more integrated, well-documented benchmark framework, where new
techniques, datasets, and metrics could be easily added by the user
with minimal programming, and with the capability of integration
with existing visualization tools.

References
[Agr03] AGRAFIOTIS D. K.: Stochastic proximity embedding. J Comput

Chem 24, 10 (2003), 1215–1221. 3

[BA00] BAUDAT G., ANOUAR F.: Generalized discriminant analysis using
a kernel approach. Neural computation 12, 10 (2000), 2385–2404. 3

[BN02] BELKIN M., NIYOGI P.: Laplacian eigenmaps and spectral tech-
niques for embedding and clustering. In Proc. NIPS (2002), pp. 585–591.
3

[Bra02] BRAND M.: Charting a manifold. In Proc. NIPS (2002), pp. 985–
992. 3

[BTK11] BERTINI E., TATU A., KEIM D.: Quality metrics in high-
dimensional data visualization: An overview and systematization. IEEE
TVCG 17, 12 (2011), 2203–2212. 2, 6

[CCG06] CHEN Y., CRAWFORD M., GHOSH J.: Improved nonlinear
manifold learning for land cover classification via intelligent landmark
selection. In Proc. IEEE IGARSS (2006), pp. 545–548. 3

[CSH03] CHABOT C., STOLTE C., HANRAHAN P.: Tableau software.
Tableau Software (2003). 6

[Das00] DASGUPTA S.: Experiments with random projection. In Proc.
UAI (2000), Morgan Kaufmann, pp. 143–151. 3

[DG03] DONOHO D. L., GRIMES C.: Hessian eigenmaps: Locally linear
embedding techniques for high-dimensional data. Proc. of the National
Academy of Sciences 100, 10 (2003), 5591–5596. 3

[DT04] DE SILVA V., TENENBAUM J. B.: Sparse multidimensional scaling
using landmark points. Tech. rep., Stanford University, 2004. 3

[EHH12] ENGEL D., HÜTTENBERGER L., HAMANN B.: A survey of
dimension reduction methods for high-dimensional data analysis and visu-
alization. In Proc. Dagstuhl IRTG Workshop (2012), pp. 135–149. 2

[EHT19] ESPADOTO M., HIRATA N. S., TELEA A. C.: Deep learning
multidimensional projections, 2019. arXiv:1902.07958. 2, 3

[EMK∗19a] ESPADOTO M., MARTINS R. M., KERREN A., HIRATA N. S.,
TELEA A. C.: Towards a quantitative survey of dimension reduction
techniques. IEEE TVCG (2019). 2, 3, 4, 5, 6

[EMK∗19b] ESPADOTO M., MARTINS R. M., KERREN A., HIRATA
N. S., TELEA A. C.: Towards a quantitative survey of dimension re-
duction techniques - companion site. mespadoto.github.io/proj-quant-eval/,
2019. 5

[FL95] FALOUTSOS C., LIN K.: FastMap: A fast algorithm for indexing,
data-mining and visualization of traditional and multimedia datasets. ACM
SIGMOD 24, 2 (1995), 163–174. 3

[GR06] GLOBERSON A., ROWEIS S. T.: Metric learning by collapsing
classes. In Proc. NIPS (2006), pp. 451–458. 3

[HG02] HOFFMAN P., GRINSTEIN G.: A survey of visualizations for high-
dimensional data mining. Information Visualization in Data Mining and
Knowledge Discovery 104 (2002), 47–82. 1

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

mespadoto.github.io/proj-quant-eval/

M. Espadoto & E. F. Vernier, A. C. Telea / Selecting and Sharing Multidimensional Projection Algorithms: A Practical View

Datasets D

dname ddata

mnist URL1
cifar URL2... ...

Dataset instance

x1

...

xn

...

x
1

x
N

...

...

dimensions

sa
m

pl
es

...

Projection techniques P

pname pcode

PCA file1.py
t-SNE URL2... ...

pgrid

URL1

...
file2.py

Projection implementation

function tSNE(dataset,params)

begin

...

end

Parameter grid

20

...

parameter names

pa
ra

m
et

er
va

lu
es

...

perplexity iterations

Metrics M

mname

stress
continuity

...

mcode

file1.py
file2.py

...

Metric implementation

function stress(d,d_2D)

begin

...

end

Benchmark Evaluation

function evaluate()

begin

 for (d_name,d_data) in D

 begin

 ProcessDataset(d_name,d_data)

 end

end

function ProcessDataset(d_name,d_data)

begin

 for (p_name,p_code,p_grid) in P

 begin

 for params in p_grid

 d_2D = p_code(d_data,params)

 m = ComputeMetrics(d_data,d_2d)

 add (d_name,p_name,params,d_2d,m) to R

 end

 end

end

function ComputeMetrics(d_data,d_2D)

begin

 for (m_name,m_code) in M

 begin

 val = m_code(d_data,d_2D)

 result.add(m_name,val)

 end

 return result

end

Result database R

dname pname

mnist t-SNE
cifar PCA

... ...

params md2D

20,100

100

...
40 100

x1

...

x2

x
1

x
N

...

2D coordinates

sa
m

pl
es ...

Scatterplot

file1.xy ...

...

VisualizationsV

function Vis(d_name,d_pname,params,d_2D,m)

begin

...

end

......

Analyst query

Results

Figure 2: Proposed benchmark architecture and its dataflow execution workflow (Sec. 4).

[HMT09] HALKO N., MARTINSSON P.-G., TROPP J. A.: Finding struc-
ture with randomness: Stochastic algorithms for constructing approximate
matrix decompositions, 2009. arXiv:0909.4061 [math.NA]. 3

[HN04] HE X., NIYOGI P.: Locality preserving projections. In Proc. NIPS
(2004), pp. 153–160. 3

[HS06] HINTON G., SALAKHUTDINOV R.: Reducing the dimensionality
of data with neural networks. Science 313, 5786 (2006), 504–507. 3

[Hun07] HUNTER J. D.: Matplotlib: A 2d graphics environment. Comput-
ing in science & engineering 9, 3 (2007), 90–95. 5

[Hyv99] HYVARINEN A.: Fast ICA for noisy data using Gaussian moments.
In Proc. IEEE ISCAS (1999), vol. 5, pp. 57–61. 3

[JCC∗11] JOIA P., COIMBRA D., CUMINATO J. A., PAULOVICH F. V.,
NONATO L. G.: Local affine multidimensional projection. IEEE TVCG
17, 12 (2011), 2563–2571. 2, 3, 4

[Jol86] JOLLIFFE I. T.: Principal component analysis and factor analysis.
In Principal Component Analysis. Springer, 1986, pp. 115–128. 2, 3

[KH13] KEHRER J., HAUSER H.: Visualization and visual analysis of

multifaceted scientific data: A survey. IEEE TVCG 19, 3 (2013), 495–513.
1

[Kru64] KRUSKAL J.: Multidimensional scaling by optimizing goodness
of fit to a nonmetric hypothesis. Psychometrika 29, 1 (1964), 1–27. 2, 3

[Law04] LAWRENCE N.: Gaussian process latent variable models for
visualisation of high dimensional data. In Proc. NIPS (2004), pp. 329–336.
3

[LL06] LAFON S., LEE A. B.: Diffusion maps and coarse-graining: A
unified framework for dimensionality reduction, graph partitioning, and
dataset parameterization. IEEE TVCG 28, 9 (2006), 1393–1403. 3

[LMW∗15] LIU S., MALJOVEC D., WANG B., BREMER P.-T., PASCUCCI
V.: Visualizing high-dimensional data: Advances in the past decade. IEEE
TVCG 23, 3 (2015), 1249–1268. 1

[LS01] LEE D. D., SEUNG H. S.: Algorithms for non-negative matrix
factorization. In Proc. NIPS (2001), pp. 556–562. 2, 3

[LWG13] LISITSYN S., WIDMER C., GARCIA F. J. I.: Tapkee: An effi-
cient dimension reduction library. JMLR 14, 1 (2013), 2355–2359. 2

[MCC∗19] MATTSON P., CHENG C., COLEMAN C., DIAMOS G., MI-

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

M. Espadoto & E. F. Vernier, A. C. Telea / Selecting and Sharing Multidimensional Projection Algorithms: A Practical View

CIKEVICIUS P., PATTERSON D., TANG H., WEI G.-Y., BAILIS P., BIT-
TORF V., ET AL.: MLPerf benchmark. arXiv:1910.01500 (2019). 2

[Mel] MELVILLE J.: SmallVis benchmark. github.com/jlmelville/smallvis.
2, 4

[MFM∗13] MENDONÇA T., FERREIRA P. M., MARQUES J. S., MARCAL
A. R., ROZEIRA J.: Ph 2-a dermoscopic image database for research
and benchmarking. In 2013 35th annual international conference of the
IEEE engineering in medicine and biology society (EMBC) (2013), IEEE,
pp. 5437–5440. 2

[MHM18] MCINNES L., HEALY J., MELVILLE J.: UMAP: Uniform
manifold approximation and projection for dimension reduction, 2018.
arXiv:1802.03426v2 [stat.ML]. 3, 4

[MPL06] MINGHIM R., PAULOVICH F. V., LOPES A. A.: Content-based
text mapping using multi-dimensional projections for exploration of docu-
ment collections. In Proc. SPIE (2006). 3

[NA18] NONATO L., AUPETIT M.: Multidimensional projection for visual
analytics: Linking techniques with distortions, tasks, and layout enrichment.
IEEE TVCG (2018). 2, 3, 4

[pap] Papermill. papermill.readthedocs.io. 5

[PdRDK99] PEKALSKA E., DE RIDDER D., DUIN R. P. W., KRAAIJVELD
M. A.: A new method of generalizing Sammon mapping with application
to algorithm speed-up. In Proc. ASCI (1999), vol. 99, pp. 221–228. 3

[PEP∗11] PAULOVICH F., ELER D., POCO J., , BOTHA C., MINGHIM
R., NONATO L.: Piecewise laplacian-based projection for interactive data
exploration and organization. CGF 30, 3 (2011), 1091–1100. 3

[PM06] PAULOVICH F., MINGHIM R.: Text map explorer: a tool to create
and explore document maps. In Proc. IEEE IV (2006), pp. 245–251. 3

[PNML08] PAULOVICH F. V., NONATO L. G., MINGHIM R., LEV-
KOWITZ H.: Least square projection: A fast high-precision multidimen-
sional projection technique and its application to document mapping. IEEE
TVCG 14, 3 (2008), 564–575. 3

[PTM∗19] PEZZOTTI N., THIJSSEN J., MORDVINTSEV A., HOLLT T.,
VAN LEW B., LELIEVELDT B., EISEMANN E., VILANOVA A.: GPGPU
linear complexity t-SNE optimization, 2019. arXiv:1805.10817 [cs.LG]. 4

[PVG∗11] PEDREGOSA F., VAROQUAUX G., GRAMFORT A., MICHEL V.,
THIRION B., GRISEL O., BLONDEL M., ET AL.: Scikit-learn: Machine
learning in Python. JMLR 12, Oct (2011), 2825–2830. 2

[RFT16] RAUBER P., FALCÃO A., TELEA A.: Visualizing time-dependent
data using dynamic t-SNE. In EuroVis short papers (2016), pp. 73–77. 2,
3

[RKHH09] ROHKOHL C., KECK B., HOFMANN H., HORNEGGER J.: Rab-
bitctâĂŤan open platform for benchmarking 3d cone-beam reconstruction
algorithms a. Medical Physics 36, 9Part1 (2009), 3940–3944. 2

[RLLY08] ROSS D. A., LIM J., LIN R.-S., YANG M.-H.: Incremental
learning for robust visual tracking. IJCV 77, 1-3 (2008), 125–141. 3

[RS00] ROWEIS S. T., SAUL L. K.: Nonlinear dimensionality reduction
by locally linear embedding. Science 290, 5500 (2000), 2323–2326. 3

[SSM98] SCHÖLKOPF B., SMOLA A. J., MÜLLER K.-R.: Nonlinear
component analysis as a kernel eigenvalue problem. Neural Computation
10, 5 (1998), 1299–1319. 3

[SVM14] SORZANO C., VARGAS J., MONTANO A.: A survey of dimen-
sionality reduction techniques, 2014. arXiv:1403.2877 [stat.ML]. 2

[TB99] TIPPING M. E., BISHOP C. M.: Probabilistic principal component
analysis. Journal of the Royal Statistical Society 61, 3 (1999), 611–622. 3

[TDL00] TENENBAUM J. B., DE SILVA V., LANGFORD J. C.: A global
geometric framework for nonlinear dimensionality reduction. Science 290,
5500 (2000), 2319–2323. 3

[the] Theano library. deeplearning.net/software/theano. 4

[TLZM16] TANG J., LIU J., ZHANG M., MEI Q.: Visualizing large-scale
and high-dimensional data. In Proc. WWW (2016), pp. 287–297. 1, 2

[Tor58] TORGERSON W.: Theory and methods of scaling. Wiley, 1958. 2,
3

[TR02] TEH Y. W., ROWEIS S. T.: Automatic alignment of hidden repre-
sentations. In Proc. NIPS (2002), pp. 841–848. 3

[VdMPvdH07] VAN DER MAATEN L., POSTMA E., VAN DEN HERIK H.:
Matlab toolbox for dimensionality reduction. Maastricht Univ. (2007). 2

[VGdS∗20] VERNIER E., GARCIA R., DA SILVA I., COMBA J., TELEA
A.: Quantitative evaluation of time-dependent multidimensional projection
techniques. In Proc. EuroVis (2020). 2, 4, 5, 6

[vH08] VAN DER MAATEN L., HINTON G. E.: Visualizing data using
t-sne. JMLR 9 (2008), 2579–2605. 2, 3, 5

[vis] Vispipeline. vicg.icmc.usp.br/vicg/tool/1/projection-explorer-pex. 2

[vP09] VAN DER MAATEN L., POSTMA E.: Dimensionality Reduction: A
Comparative Review. Tech. rep., Tilburg University, Netherlands, 2009.
Tech. report TiCC TR 2009-005. 2, 4

[WBS06] WEINBERGER K., BLITZER J., SAUL L.: Distance metric learn-
ing for large margin nearest neighbor classification. In Proc. NIPS (2006),
pp. 1473–1480. 3

[WCV11] WALT S., COLBERT S. C., VAROQUAUX G.: The numpy array:
a structure for efficient numerical computation. Comp Sci Eng 13, 2 (2011),
22–30. 5

[Wic14] WICKHAM H.: Tidy data. Journal of Statistical Software 59
(2014). 5

[WPS05] WEINBERGER K. Q., PACKER B., SAUL L. K.: Nonlinear
dimensionality reduction by semidefinite programming and kernel matrix
factorization. In AISTATS (2005). 3

[ZHT06] ZOU H., HASTIE T., TIBSHIRANI R.: Sparse principal compo-
nent analysis. J Comput Graph Stat 15, 2 (2006), 265–286. 3

[ZW07] ZHANG Z., WANG J.: MLLE: Modified locally linear embedding
using multiple weights. In Proc. NIPS (2007), pp. 1593–1600. 3

[ZYZG07] ZHANG T., YANG J., ZHAO D., GE X.: Linear local tangent
space alignment and application to face recognition. Neurocomputing 70,
7-9 (2007), 1547–1553. 3

[ZZ04] ZHANG Z., ZHA H.: Principal manifolds and nonlinear dimension-
ality reduction via tangent space alignment. SIAM journal on scientific
computing 26, 1 (2004), 313–338. 3

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

github.com/jlmelville/smallvis
papermill.readthedocs.io
deeplearning.net/software/theano
vicg.icmc.usp.br/vicg/tool/1/projection-explorer-pex

