

Interactive Visual Mechanisms for Exploring Source Code Evolution

Alexandru Telea Lucian Voinea

Technische Universiteit Eindhoven
Department of Mathematics and Computer Science

Den Dolech 2, 5600 MB Eindhoven, the Netherlands
 alext@win.tue.nl, l.voinea@tue.nl

Abstract

The Visual Code Navigator (VCN) is an ongoing effort
to build a visual environment for interactive visualization
of large source code bases. We present two techniques
that extend the previous work done on the VCN. We
propose an efficient and effective mechanism for
specifying and visualizing queries on the source code.
Next, we show a new project evolution view that offers
global insight in change correlations that span several
files, and thus lets users sport possible inconsistencies,
problems, or undesired project structuring. We illustrate
both mechanisms using a real-life C++ source code base.

1. Introduction

Program understanding is an important aspect of
software maintenance. Current industrial projects are
often based on collaborative development of millions of
code lines. Industry practice studies have shown that
maintainers spend 50% of their time on understanding this
code [8].

In this paper, we present our ongoing effort to construct
a Visual Code Navigator (VCN). VCN uses solely the
code base, i.e. a set of source code files, as this is often
the only up-to-date, reliable source of information on a
software project, and also the main material involved in
the maintenance phase. VCN consists of several
interrelated tools, or views. Every view focuses on a
separate code aspect and uses potentially different
visualization and interaction techniques to bring that
aspect to the user. We present two extensions we designed
and built in the VCN toolset. First, we describe a generic
query system added to VCN’s syntactic view. This view
generalizes the ‘syntax highlighting’ provided by
integrated development environments (IDEs) by drawing
syntactic structures (e.g. for loops, classes, scopes) in
custom ways [5]. Just as the syntactic view itself
generalizes syntax highlighting present in IDEs, our query
system generalizes the point-and-click code queries
offered by the same IDEs. Users can program new queries

as separate plug-ins and easily integrate them in VCN.
Next, they can apply these queries on the code shown in
the syntax view, by an easy point-and-click interface. In
contrast to most IDEs, which open new (text-based) views
to show query results, we display these results in-place in
the syntactic view. This diminishes the cognitive
disruption caused by view switching, and also allows
query cascading, i.e. building complex queries from
simple ones. Secondly, we add a new project view to the
VCN. While the existing VCN file view shows the
evolution of a single file in time [5], the project view
displays the evolution of a whole project, seen as a set of
files, in time. The file view focuses on low-level changes,
at code line level. The project view covers higher-level
changes, at file level.

In Section 2, we review related work on queryable,
interactive source code visualization. Section 3 presents
the VCN and its syntactic, file evolution, and project
evolution views, and the query mechanism. Section 4
concludes the paper.

2. Related Work

Several tools address the challenge of source code
visualization. SeeSoft [1], Augur [3], Aspect Browser [4],
GSee [2], sv3D [6], and Almost [7] offer a line-oriented
code visualization. Files are reduced to a ‘zoomed out’
image where the code layout is preserved but every
textual code line becomes a pixel line, colored by code
attributes and metrics, thus condensing tens of thousands
of lines on one screen. This technique uses the assumption
that developers are comfortable with viewing their code in
the same spatial context in which it was constructed
(written). A recent effort in this area is the Visual Code
Navigator (VCN) [5]. VCN proposes an open architecture
in which new (complementary) code visualization
techniques can be added, to provide different insights in a
code base. We extend VCN’s capabilities with two new
techniques: a project evolution view showing high-level
changes during a project’s lifetime, and a generic query

architecture that allows users to construct complex queries
and interactively apply them on the visualized code.

3. Code Visualization Views

We first outline the architecture of the VCN toolset
(Figure 1). For detailed information, see [5].

code base

CVS

CVSgrab

Syntactic view

File evolution
view

Project
evolution

view

fact
extractor
or file version

author
commit time

syntax tree
Data model

Figure 1: VCN system architecture

Our data source is the CVS version control management
system. CVS holds several versions Vij of several source
files Fj, called a project. For every version, the
commitment date (time when added to the repository),
and author (who added it). To decouple CVS from VCN
and allow for other data sources, extraction is done by a
separate tool, called CVSgrab. The extracted versions Vij
of all files Fj are passed to a syntax fact extractor built by
us. This is a modified GNU C/C++ compiler, with no
code generation, which extracts all syntactic facts from
the source code, e.g. classes, data members, function
signatures, macros, templates, for-loops, etc, but also
complete lexical information, such as the line and column
positions where every code construct starts and ends. We
obtain an ‘enhanced’ syntax tree from which we can
render the source code at character level. This is essential
for building the syntactic view and query mechanism
described later in this section.

This data model, essentially a hierarchy ranging from
high-level file-in-project data to low-level lexical details,
is visualized by several views. The syntactic view shows
all syntax constructs in a file (Section 3.1). We extend this
view with a generic way to interactively define complex
queries on the code (Section 3.2). The file evolution view
shows the evolution of a single file [5]. We extend this by
a project evolution view that shows the evolution of a
whole project (Sec. 3.3).

3.1. Syntactic view

The syntactic view is essentially a classical text editor
with three main changes. First, for every syntactic
construct extracted by the parser, we render a shaded
cushion whose outline matches the construct’s text extent.
Shaded cushions were introduced first by Van Wijk et al.
to enhance treemap visualization techniques [11] by
adding a block-nesting visual cue via the shading effect.
Figure 2 shows the idea: given the if block (a), we
render a shaded cushion to show its extent (b). In detail,

we draw a polygon shaped as the stippled outline (a)
textured with the cushion image (b). Merging cushions
and text yields a ‘generalized’ syntax highlighting (c).
Figure 4 shows our method for a code fragment of nesting
depth 5. The eye perceives the cushions’ height to be
proportional with the nesting depth.

a) b)

c)

Figure 2: Code cushion design

Cushions allow drawing tree-like hierarchies of thousands
of elements on a single screen, as shown in various
applications, e.g. [11]. This allows us to visualize large,
real-world code bases. Cushions combine best with 2D
spatial layouts. This serves us well, as our syntactic view
uses a 2D line-based layout: the x-axis maps the files
visualized together, and the y-axis maps the lines in a file
(Figure 3). Cushions are efficiently rendered with
hardware-accelerated OpenGL, allowing interactive zoom
and pan in the views, an essential usability aspect.

Secondly, we allow programmers to smoothly navigate
between the familiar, trusted text editor view and the
syntactic cushion view. We do this by blending the text
over the cushions (Figure 2c). Sliders allow tuning both
text (αt) and cushion (αc) transparencies to instantly
change the visual focus from text (Figure 4 left, αt=1,
αc=0.2) to syntax. (Figure 4 right, αt=0.3, αc=0.6).

Third, we color cushions to show the type of syntax
construct they display. Users can browse all C/C++
constructs in a tree widget and change their color and
visibility (Figure 3). In Figure 4 we used yellow for for
loops, green for comments, gray for functions, light blue
for if statements, white for declarations and conditions,
and red for macros. Turning off visibility for finer-grained
constructs (e.g. identifiers) avoids visual cluttering and
focuses on larger extent constructs, such as scopes, which
help us grasp overall program structure.

By choosing from predefined color schemes, we can
answer queries such as “show all iterations (for, while,
do)”, “is the code heavily using macros?”, “is the code
deeply nested?” or “is the code richly commented?”

Fourth, by changing the font height, and thus the text
block and cushion sizes, we tune the amount of code
shown on a single screen. For one-pixel tall fonts, the
syntactic view becomes very similar to line-based
visualizations [5]. Figure 3 shows this for 11 files. The
largest is a C++ implementation file of 635 lines, the other
10 ones are header files. In total, this view shows over
3400 code lines. Although the actual text is not visible
due to the small font size, the cushion view shows the

file axis (x)

line
axis
(y)

cushion view

syntax
browser

Figure 3: Syntactic view of 11 files with cushions (left) and without (right)

code structure, which is not visible in the classical text
view.

Figure 4: Cushion and text blending

3.2. A generic visual query mechanism

The syntactic view presented above allows
interactive display and navigation in tens of files of
hundreds of lines each on a single screen. Code
overviews can be done by zooming out (decreasing
font size), fading out (decreasing text opacity), and
making desired syntactic elements invisible. When
working on code details, programmers often think in
terms of: “I want to go to the start of the third previous
function in this file”, “go to that deeply nested for loop
somewhere below this point”, or “go to the
implementation stuff below those class declarations”.
The cushioned code view serves precisely these
requests, as one quickly sees the source code size,
nesting, type, and structure. However, we often
require more complex queries. IDEs such as Eclipse or

Visual Studio offer predefined queries, e.g. “show
where a symbol is defined or used” or “show type of
an object”. Three problems exist with the
implementation of such queries. First, query output is
often displayed in a different way, or place, than query
input. For example, the user clicks on a function in the
editor and gets its call locations listed in a separate
window, from where he can go, one by one, to other
windows showing the actual call locations. This
causes users to get confused and lose orientation in
code space. Second, different queries have different
ways to specify their input and display their output,
causing more confusion. Finally, it is hard to cascade
simple queries into more complex ones, or to add
one’s own queries.

We address the above by a generic mechanism
consisting of a query model, visual representation, and
implementation model. We model a query as a
function q : SI ? SO, where SI = { ei

I }, SO = { ei
O }

are selections, i.e. sets of syntactic elements ei from
the syntax tree. A query maps from a set of syntactic
elements ei

I (the query input) to a similar set ei
O (the

query output). We call T(S) = { ti } the signature of a
selection set S = { ei

I }, where ti
I is the type of ei, e.g.,

class, method, function, variable, etc. We use this
model as follows:

1. The user builds a working selection S by shift-

clicking the syntactic elements in the cushion
view he wants to query. S is displayed in a special
selection color (e.g. red).

2. Right-clicking on any element of S shows a menu
with all queries that can be applied on S, i.e. all
queries whose input signature T(SI) matches T(S).
Two signatures T(U) = { ui } and T(V) = { vi }
match if types ui , vi match for all i. Type

matching follows the standard C/C++ language
rules [9].

3. The user selects a query q from the menu and
applies it on the selection S.

4. The output of q replaces the working selection. It
becomes immediately visible, since drawn in the
selection color.

This method has several advantages. Queries are
applied by a few mouse clicks. Both query input and
output are displayed in the same way and in the same
view, directly on the code. Queries are context-
sensitive by default. The context is the working
selection built by the user. For example, if one selects
classes, then the query menu shows only queries that
can be applied on classes. This considerably simplifies
the use of the queries, since the user sees only the
‘valid’ options from the possibly large total query set.
Cascading simple queries to perform more complex
ones is also trivial. Since the query output replaces the
query input (step 4), we can simply keep right clicking
on the working selection to query it. Formally, this
corresponds to a composition of the query functions q.
Finally, adding custom queries is easy. These are C++
functions with a fixed signature q : SI ? SO. One has
only to fill in the body of q to describe how to build SO
from SI.

A

B

D

Implementation Declaration

E

C

Figure 5: Visual cascading of queries

Figure 5 illustrates the query mechanism. First, the
user clicks on a local variable in a method in an
implementation file (A). Next, he applies the query
“show all instances of this variable” to get all
occurrences thereof in the method’s body, 9 in total
(B). Next, applying the query “show enclosing scope”
on one of these instances, leads us to the method name
(C). The query “show class” on the method name
leads us to the class owning the method, in a header

file (E). Finally, the query “show all public methods”
displays the public interface of this class, shown as the
red (dark) selected area in the right file in Figure 5.

3.3. File and project evolution views

The second code view in the VCN is the file
evolution view. This shows the evolution, or change,
in a file’s source during a project’s lifetime. It uses a
2D layout similar to the syntactic view (Section 3.1):
the x-axis maps the file version number and the y-axis
maps the line number.

V50 V77 V1 V110

F1

F2

F3

persistent
code

Figure 6: Evolution view

The file evolution view shows, for a file Fj, all its
versions Vij stacked along the x-axis. A version Vij is
drawn as a vertical pixel stripe, every horizontal pixel
line mapping a source code line in Vij, colored by line
type or line author, as detailed in [5]. The idea is to
reduce file versions to (thin) pixel stripes. Drawing
these stripes along each other allows correlating code
changes across several versions. Drawing several file
evolution views atop of each other allows correlating
changes across several files. Figure 6 shows the
evolution of three files F1, F2, and F3 across 110
versions. The largest version (V50) has 650 lines. Code
is colored by line type: green = comments, black
(dark) = function declarations, pink = strings, and blue
= C/C++ code, shaded by the nesting level (darker =
deeper nested).

before first commit (yellow) file lifetime (blue)

Figure 7: Project evolution view

The evolution view shows several aspects of the
source code. First, we quickly get an overview of the
file size evolution in time. Large changes between
consecutive versions, denoting major code rewriting,
are easy to spot, e.g. the code insertions around V50 for
F1 and F2 (top two images) and at V77 (code deletion

in F1 versus code insertion in F2). Sharing the time
axis allows correlating changes in different files that
happen at or around the same version, such as at V77
for F1 and F2. This signals an important change that
affected more than one file. Code persistence over
several versions can be detected by looking for
horizontal color bands spanning several versions
(Figure 6, middle image). The band waviness shows
code insertion or deletion.

We present now a new project evolution view that
works at a higher, more abstract, level. In this view,
different files are mapped to the y-axis and time (file
versions) is mapped to the x-axis (Figure 7). A file is
thus mapped to a thin horizontal pixel stripe.

Color shows commitment events. Files are yellow
(bright) before their first commit, and blue (dark)
after. White (brightest) shows the commit moments. In
the upper image in Figure 7, files are sorted in
alphabetical order. In the lower image, they are sorted
on decreasing order of the number of commit events.
This clusters the most frequently changed files at the
top of the image. Finally, we notice that the commit
events (bright dots) group themselves in several
vertical bright dotted stripes. These show commit
events corresponding to several files, which help us
detecting those changes that spanned (influenced)
more than one file. To get insight into the exact
changes that took place at this time, the user can select
the affected file versions at that time and open them in
the syntactic view, for the finest level of detail.

Next, we notice a blue (dark) vertical stripe-like
region at the right side of the visualization, where
there are no commits (bright dots), which spans about
15% of the project time axis. This final phase where
no commits are done is typical for closed, matured
software projects.

We used VCN in a study to understand VTK, a C++
library of hundreds of classes in over 2000 files,
spanning over 100 versions, developed by tens of
programmers over 10 years [10]. Our three users, who
were experienced with C++ but never used VTK,
acquired 100 versions of a few VTK files with
CVSgrab from the public VTK web repository,
analyzed them in VCN, and addressed several
questions. A fourth user, with over seven years of
VTK experience, specified the files to analyze, the
questions, and assessed the answers delivered after
two hours of investigation. The limited space here
precludes us from detailing all results of this study.
However, we must say that all users had very similar
conclusions, validated as correct by the experienced
user. Also, VCN was found to be very helpful in
getting quick insight in a large, unknown code base. A
VCN prototype and example datasets are available at:

http://www.win.tue.nl/ ~lvoinea/VCN.html

4. Conclusions and future work

We presented two extensions to the Visual Code
Navigator (VCN), as previously introduced in [5]: a
project evolution view and a generalized query
mechanism. The project view displays file-level
changes during a project evolution, i.e. file entry, exit,
and commit times in a project lifetime. The query
mechanism allows constructing complex queries on
the syntactic code view. Cascading simpler queries to
build more complex ones takes just a few mouse
clicks. Custom queries can be built by implementing a
function with a fixed, simple signature.

VCN supports, so far, only C/C++ code. Still, its
techniques are applicable to any programming
language for which syntax extractors (parsers) are
available. An interesting challenge is to add these in
the VCN architecture by some kind of generic plug-in
mechanism. This is by no means an easy task. A major
challenge here is to define a ‘generic grammar’ that is
able to cover several programming languages and
make them all ‘available’ to the visualization in an
uniform manner. Secondly, we plan to extend VCN by
enhancing the visual query mechanism beyond ‘plain’
query cascading and by building new source code
views, e.g. to visualize syntax-based code changes. To
do the latter, we must be able to compare source code
fragments beyond the basic capabilities of the purely
lexical diff operator. An option is to design a
syntactic diff operator which is able to compare
entire parse trees. Again, this is no easy task.

Concluding, we see a large number of challenges
and prospects for extending the Visual Code
Navigator with several techniques, in order to make it
even more effective in helping developers getting
insight in their source code and, hence, prove the
value of visual tools in supporting software
engineering.

References

[1] Eick, S. G., Steffen, J. L., Sumner, E. E., “SeeSoft:
A Tool for Visualizing Line Oriented Software
Statistics”, IEEE Trans. on Soft. Eng., 18(11),
1992, IEEE CS Press, pp. 957 – 968.

[2] Favre, J.M., “GSEE: A Generic Software
Exploration Environment”, Proc. IWPC'01, IEEE
CS Press, 2001, pp. 233 – 244

[3] Froehlich, J., Dourish, P., “Unifying artifacts and
activities in a visual tool for distributed software
development teams”, Proc. ICSE ‘04, IEEE CS
Press, 2004, pp. 387 – 396.

[4] Griswold, W.G., Yuan, J.J., Kato, Y.,”Exploiting
the Map Metaphor in a Tool for Software
Evolution”, Proc. ICSE ‘01, IEEE CS Press, 2001,
pp. 265 – 274.

[5] Lommerse, G., Nossin, F., Voinea, S.L., Telea, A.,
“The Visual Code Navigator: An Interactive
Toolset for Source Code Investigation”, accepted
for IEEE InfoVis 2005, IEEE CS Press. See also
http://www.win.tue.nl/~lvoinea/vcn.pdf

[6] Marcus, A., Feng, L., Maletic, J.I.,”3D
Representations for Software Visualization”, Proc.
ACM SoftVis ‘03, ACM Press, 2003, pp. 27 – 36.

[7] Renieris, M. and Reiss, S. P., "ALMOST:
exploring program traces", Proc. NPIVM' 99,
ACM Press, 1999, pp. 70 – 77.

[8] Standish, T.A. “An Essay on Software Reuse”,
IEEE Trans. on Software Engineering, 10 (5), Sep.
1984, IEEE CS Press, pp. 494 – 497

[9] Stroustrup, B., The C++ Programming
Language, Addison-Wesley Professional, 2000

[10] VTK Web Repository: http://www.kitware.com/

[11] Van Wijk, J.J., van de Wetering, H., “Cushion
treemaps: visualization of hierarchical
information”, Proc. InfoVis ‘99, IEEE CS Press,
pp. 73 –78

