
Visualizing Dynamic Memory Allocations

Sergio Moreta and Alexandru Telea
Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, the Netherlands

s.moreta@student.tue.nl, alext@win.tue.nl

Abstract

We present a visualization tool for dynamic memory allo-
cation information obtained from instrumenting the runtime
allocator used by C programs. The goal of the presented vi-
sualization techniques is to convey insight in the dynamic
behavior of the allocator. The purpose is to help the alloca-
tor designers understand how the performance and work-
ing of the allocator depend on the actual allocation sce-
narios in order to optimize its functionality by decreasing
fragmentation and improving response time. We use an or-
thogonal dense pixel layout of time versus memory space
which can show tens of thousands of allocation events on
a single screen. We enhance the basic idea with several
new techniques: antialiased metric bars for detecting high
and low activity areas; cushion cursors for checking cor-
relations of multiple views; and a view to show correlation
between program structure (functions) and memory alloca-
tions. The presented techniques are demonstrated on data
from a real application.

1 Introduction

Dynamic memory allocators are an important compo-
nent of the runtime support of virtually all programming
languages. Such allocators are responsible for providing
memory blocks on the heap upon requests from the appli-
cation, as offered by themalloc C function andnew C++
operator. When the memory is not needed any longer, the
allocated blocks are returned to the runtime, either via ex-
plicit calls tofree (C) or delete (C++) or via garbage
collection mechanisms, such as in Java. The design of an
efficient memory allocator is of crucial importance for the
performance of modern software.

Several performance metrics are relevant in this context.
First, the allocator should minimize memoryfragmentation,
i.e. the amount of non-contiguous free memory blocks.
This reduces the chance that an allocation request will fail
when the free memory is split into many small blocks inter-

leaved with allocated blocks. Second, the allocator should
minimize thewaste, i.e. the amount of memory used for in-
ternal management which is not made available to applica-
tions. Waste can occur e.g. when only fixed-size blocks are
allocated, in which case it is also known asinternal frag-
mentation. Third, the allocator should provide a good re-
sponse time for both allocation and free requests for a wide
mix of scenarios,e.g. concurrent allocating processes, dif-
ferent block sizes, and request frequencies. In practice, the
performance of a memory allocator is measured by logging
data on such metrics from an instrumented allocator. The
data is next analyzed and the allocator strategy and param-
eters are tuned accordingly.

However, understanding log data to detect sub-optimal
performance andwhen andwhy this occurs is difficult. Typ-
ical logs can easily contain hundreds of thousands of high-
frequency events. Detecting patterns and correlations in
such logs is a daunting task, especially if one does not know
what to look for exactly. For example, the total allocated
memory is a simple to measure metric which can be mon-
itored by a single numeric value. However, understanding
fragmentation patterns is much more difficult.

A different use of analyzing dynamic memory allocator
patterns is for studying the behavior of a given program.
Incorrect or inefficient behavior can be hard to quantify
in concrete queries or metrics, but can be spotted by see-
ing memory usage patterns. Examples are finding incor-
rect allocation/deallocation sequences which could lead to
memory leaks, dangling pointers, or uninitialized memory
reads. Such analyses can be conducted by using automated
tools such as Purify [10]. Yet, a visual presentation can
be easier to follow, and can showtrends leading to poten-
tial problems, whereas automated analysis typically detects
only ’hard’ errors.

In this paper, we present an approach for the visual anal-
ysis of the behavior of dynamic memory allocators. Our
log data is a weakly structured dataset containing hundreds
of thousands of (de)allocation events. We use a simple, yet
effective visualization able to display tens of thousands of
events on a single screen and antialiasing to emphasize high



activity areas. We extend and specialize these core tech-
niques, introduced by us in [8], to get more insight from
memory allocations, as follows. We use a new antialias-
ing to render occupancy metric bars to support separating
high from low activity areas (Sec. 4.1.3). We use a new
layout to correlate memory visualizations along the address
and/or time dimensions; besides allocation metrics, we also
show information on the allocating functions; finally, we
enhance the correlated views with a new interactive tech-
nique, called cushion cursors (Sec. 4.1.4). We demonstrate
our techniques by answering several concrete questions on
allocation data collected from a real application.

This paper is structured as follows. Section 2 overviews
efforts in visualizing memory allocation logs and related
event data. Section 3 describes our problem in detail. Sec-
tion 4 presents our core visualization design and the three
new techniques: antialiased occupancy bars that separate
activity patterns, correlated views in memory and time, and
the cushion cursors. Section 5 describes the findings we
obtained from a concrete study performed on real log data.
Finally, section 7 summarizes our findings and outlines fu-
ture research directions.

2 Related work

Several methods exist for visualizing dynamic memory
allocation data. Event logs, created by code instrumenting
and profiling tools [1, 6, 16, 10], record record allocation
and deallocation events, and various metrics, e.g. memory
fragmentation, occupancy, and block size distribution [5].
Several applications have been developed to visualize such
logs. Earlier work include Rivet [3, 2], LynxInsure [7],
Polka [12], and the more general TANGO animation frame-
work [11].

A recent development is represented by the GCspy
framework [4, 9]. GCspy provides facilities for collec-
tion, transmission, storage, and replay of memory manage-
ment behavior. The set of mechanisms provided for getting
to the data is impressive, including user-specified triggers,
scalable client-server communication, remote monitoring,
and allocator genericity. GCspy was used in conjunction
to Java’s virtual machine memory manager and also the
C/C++ runtime, via thedlmalloc allocator. However,
GCspy’s visualization is rather coarse-grained. Time plots
of metrics of interest, such as occupancy, are shown. How-
ever, time-dependent metrics show only aggregated facts
and little structural insight, so finer-grained visualizations
are needed. A second view shows the coarse-grained (e.g.
16 K) memory blocks as a grid of tiles colored by block
metrics such as occupancy [9]. However useful, this visual-
ization does not show detailed insight into high-frequency
events such as generated when monitoring the C dynamic
allocator. Also, this view shows a snapshot of the allocated

memory pattern, but does not reveal its evolution in time.

3 Problem definition

We aim to analyze the behavior of a C runtime allocator
running on an embedded platform. The allocator should be
able to serve tens of processes with thousands ofmalloc
and free calls per second. The allocator manages the
memory in apool, partitioned intoB fixed-size bins, and
an unstructuredheap. Each binbi has a fixed numberNbi

of free blocks of equal sizedim0 < dimi < dimB . A
malloc request of sizes < dimB is served by allocating
a full block in the binbi whose block size best fitss. If
bi is full or s > dimB , memory is allocated on the heap.
(De)allocation events are monitored by instrumented C li-
brary functionsmalloc andfree and saved to a log file
which is next visualized. The log contains a set of events
S = {ei}. An eventei contains the operation type (allocate
or free), the address range[addrlow, addrhigh] affected, the
time t, the calling process ID, and in which bin (or heap) it
is served. A typical log contains hundreds of thousands of
events.

Important quality metrics include occupancy, waste and
fragmentation.Occupancy is the amount of used memory
in a bin.Waste equals the memory lost because of the fixed
block sizes.Fragmentation manifests itself by having scat-
tered instead of contiguous free blocks. Typical questions
we address are:

• How does fragmentation depend on time and pool?

• How does waste depend on time and pool?

• Which are the largest quasi-compact regions allocated?

• Are the (de)allocations served in the right order?

• How does the allocator speed depend on the operation
type and parameters?

To answer these questions, we have developed several
visualization techniques. These are presented next.

4 Core visualization design

Our visualization design is driven by several goals: scal-
ability, limited cluttering, insight into fine-scale behavior,
intuitiveness, and ease of use. Our core visualization shows
all events in each bin separately, as follows. We use a 2D
Cartesian layout which maps event timetj and memory ad-
dresses to thex andy axes respectively. Hence, every event
ei is an axis-aligned rectangle. This layout has several ad-
vantages. It iscompact (hundreds of thousands of elements
can fit on a screen) anddense (no screen space is wasted).
Empty areas convey actual information, i.e. they show free



Main visualization

Time axis

Memory axis

Occupancy bar

Block detail view

Context view

Figure 1. Interactive tool for visualizing dynamic memory a llocations

memory. Following thex axis, we can see what happens
over a given memory range in time. Following they axis,
we see a snapshot of the memory at a given moment. Rect-
angle sizes show the lifetime and size of blocks. This layout
is fast and straightforward to compute. We color every rect-
angle to show a data attributeai

j via a suitable color map-
ping scheme.

time (seconds)

memory (KB)

{
zoom in

highly dynamic period

first phase second phase third phase

list

allocations

Figure 2. Visualizing allocations in one bin

Figure 2 illustrates the basic idea for a memory alloca-

tion log dataset containing 119932 allocations spanning a
period of 4 minutes done by 54 concurrent processes. Color
shows the allocating process ID1. This image shows sev-
eral facts: The ”blue” process allocates the most memory.
Since they axis maps to the address space, the long rectan-
gles at the image bottom show that the ”blue” process allo-
cates memory early and frees it as last. After start, almost
no extra memory is allocated in the first third of the mon-
itored period. Next, the ”green” process rapidly allocates
many equal-sized blocks, all at one moment, and frees them
quickly after, as shown by the thin vertical green stripes.
We discovered that this pattern of same-lifetime blocks is
typical for container objects such as lists. These lists use
about a third of the free memory (y axis), so they are quite
important. The second third of the period shows a high fre-
quency allocation-freeing pattern which almost fills up the
entire memory at some points. In the last third, there are
few allocations. All memory is freed in the end.

Figure 1 shows an actual snapshot of our visualiza-
tion tool. The main view shows the memory dynamics in
the currently selected bin. The view can be zoomed and
scrolled along the vertical (memory) axis, which is useful
when visualizing very large memory spaces (megabytes) or
bins with very small block sizes (few kilobytes). To the
right of the main view, acontext view acts like a scrollbar:
The complete memory range is visualized, and the user can
drag a slider (the red frame) to scroll the view to the area
of interest. Under the main view, anoccupancy bar is dis-

1We strongly recommend viewing all figures in full color



played. The bar shows, using a blue (low) to red (high) col-
ormap, the evolution in time of the total memory allocated
in the bin shown in the main view. Brushing the main view
with the mouse shows details for the block under the mouse,
such as the block size, exact allocation and deallocation
time, owner process, and function that allocates/deallocates
the block.

no cushions

parabolic

cushions

plateau

cushions

A

Figure 3. Block shading. Cushions (mid, low)
help showing structure. The cushion profile
is shown in the upperleft corner of each view

4.1 Showing Fine Structure

For logs containing hundreds of thousands of events,
the basic visualization design discussed before has several
problems. We discuss these in turn and present our solu-
tions.

4.1.1 Showing Block Structures

If we color blocks using flat shading, same-color neighbor
blocks cannot be distinguished (see Fig. 3 top). Drawing
line borders works only for zoomed-in views, where the
block sizes are larger than several pixels. We solve this
problem by overlaying each block using a so-calledshaded
cushion. This is a luminance texture dark at the border and
bright in the center. Shaded cushions have been success-
fully used to emphasize structure over rectangular layoutsin
many visualization applications, e.g. for file systems [13],
repository logs [15], and business data [14]. We use two
types of luminance profiles: parabolic and plateau, shown in
Figures 3 mid, low. Parabolic cushions show structure bet-
ter, but may create too dark images for long lifetime blocks.
Plateau cushions give a nice (albeit less contrasting) beveled
effect, and are in general better. We presented both cush-
ions to a group of about 20-25 test persons. Approximately
one half chose for the parabolic and one half for the plateau
cushions, so we kept both options.

1
2

3

Figure 4. Using antialiasing, many small-
scale events become visible (areas 1,2,3)

4.1.2 Showing Subpixel Structures

Since many (de)allocation events can occur at very high fre-
quencies, the size of an event rectangle can easily become
smaller than one pixel. Simply drawing the rectangles pro-
duces wrong effects, as a pixel will show a single rectangle,
or even no one, depending on round-off errors. For exam-
ple, in several areas there are memory blocks which seem to
’hang’ in the air (e.g. A in Figure 3 mid). This would mean
unnecessary fragmentation, since there is free memory be-
low the block (white space) which could be used.

To remove this problem, we must consider how to color a
pixel covered byN blockse1, . . . , eN of which we want to
show the attribute valuesa1, . . . , aN . Naive drawing shows



only the colorC of the last drawn elementC = c(aN ),
wherec is the attribute-to-color mapping function, or no
color, depending on the rounding-off done by the graphics
card. A partial answer is to use classical anti-aliasing, i.e.
computeC as an average of the colorsc(ai) weighted by
the pixel coverage fractionsfi ≤ 1 of the blocksei. This
answer is not ideal, since very thinand isolated blocks, such
as the one in Fig. 3 (A) are still hard to see. Seeing such
blocks is essential, as it can e.g. indicate the presence or
lack of fragmentation.

We solve this visibility problem using an improved an-
tialiasing function:

C =
Fc

(
P

K

i=1
fα

i
ai

F

)

+ BcB

F + B
(1)

whereF =
∑N

i=1
fα

i andB =
(

1 −
∑N

i=1
fi

)α

are the

pixel fractions covered by block colors and background
color cB respectively andα > 0 is a bias factor. The user
can tuneα interactively. Lowα values emphasize areas
containing fewand thin segments. If we compare Fig. 4
rendered with antialiasing to Fig. 3 mid, we clearly see a
high number of high-frequency events (areas 1,2,3) which
were first invisible.

4.1.3 Visualizing Activity in the Occupancy Bar

The occupancy bar, shown below the tool’s main view
(Fig. 1), has the same problem as the main view due to
high-frequency events. This bar is used to find high and
low activity zones, i.e. zones of frequent events, respec-
tively no events. Using a classical color-coded bar (Fig. 5 a)
does not show high activity if the occupancy stays rela-
tively constant. An improvement is to draw black bars out-
lining no-activity zones which are larger than a few pixels
(Fig. 5 b). This shows moments when the activity changes
suddenly, which indicate high strains on the allocator. Yet,
this doesn’t explicitly show at which side of such a bar
high, respectively low activity is. If we add add shaded
plateau cushions to the no-activity zones (Fig. 5 c), no-
activity zones (cushions) become clearly separated from
high-activity ones (flat). An alternative is to draw cush-
ions over all intervals formed by consecutive eventsei, ei+1

using antialiasing (Equation 1). This maps the activity to
the cushion visual density (Fig. 5 d). Figures 5 e,f show
the same idea as in (c,d), this time with parabolic cushions,
whose strong contrast makes no-activity areas more salient.

These enhancements of the occupancy bar have been in-
crementally designed (Fig. 5 a-e) processing user feedback.
Although dedicating such minute attention the rendering of
the occupancy bar might seem exaggerated, these cushion
designs proved very helpful in quickly separating low from

a) flat shading

b) flat shading with outlines

c) plateau cushions, no antialiasing

d) plateau cushions, antialiasing

e) parabolic cushions, no antialiasing

f) parabolic cushions, antialiasing {no activity period

{

high activity period

Figure 5. Occupancy bar rendering: flat shad-
ing (a), plateau cushions without/with an-
tialiasing (b,c), and parabolic cushions with-
out/with antialiasing (d,e)

high activity areas, the latter being of high interest to the
allocator designers.

4.1.4 Correlation of Multiple Views

As already explained, the main view (Fig. 2) shows the al-
locator activity in a single bin. An important task is to com-
pare different bins to detect possible unbalances, which can
be further corrected by adjusting the allocator parameters
(per-bin block size, total bin size, or allocation policy).We
provide two techniques for correlating multiple bin views.
The first technique, called address space correlation, lays
out several bin views, scaled to the same size, in a grid lay-
out aligned along the address space (y) axis (Fig. 8). This
allows correlating therelative occupancies of all bins, as
discussed in Sec. 5, Task 1. The second technique, called
time correlation, uses a similar layout but aligned along the
time (x) axis (Fig. 9). This allows correlating the activity of
all bins, as discussed in Sec. 5, Question 2.

resulting imagecushion texture

+ =

bin visualization

cursor position

Figure 7. Cushion cursor construction

However, just displaying bin views in a grid layout does
not allow users to easily see if certain values of interest
are indeed correlated. For example, we would like to see
whether a high/low activity pattern occurs in the same time
in different bins. We support this task by a new technique,
calledcushion cursors. These work as follows.



Figure 6. Visualization of occupancy evolution

Suppose we want to see if the activity burst in bin 1 be-
ginning at a third of the monitored period, which is visible
in both Figures 6 and 8, indeed matches a similar pattern
in the other bins. The user can click in bin 1 on the de-
sired pattern in the time correlation layout (Figure 9). A
vertical cursor appears at that point, which is drawn over
all bin views atop and below. Instead of using a line for
the cursor, we draw a shaded cushion texture whose trans-
parency varies horizontally according to a logarithmic pro-
file and blend it atop of the bin views (Fig. 7). More cursors
can be placed over a view, whereby several such textures
are drawn. Figure 9 shows two groups of three bin views
each, with two cushion cursors (i.e. four cushion textures)
drawn in each group. Cushion cursors work better than sim-
ple line cursors. They are softer, thus disturb the fine details
of the image below less than lines. The user can tune their
transparency to control softness. Also, they scale better than
lines when we draw several of them, nonuniformly spaced,
atop of several bin views.

5 Applications

In this section, we present some sample analysis tasks
and questions supported by our visualization tool.

Task 1: Compare the activity and waste in all bins
To achieve this, we show allB = 13 bins and the heap,
correlated in address space, as explained in Section ref-
sec:correlation (Fig. 8). Color shows per-block waste
(blue=none, red=maximal). A red bar right of each view
shows the free memory in that pool/heap. The black-framed
bars under the views show the occupancy evolution in time
(blue=all free, red=all full). We see several interesting facts.
Bins 1,9 and 12 have the most per-block waste (warm col-
ors) and bins 4 and 5 the least (cold colors). The heap has

zero waste (dark blue), which is indeed correct, as the heap
doesn’t use fixed-size blocks. Statistically, the waste is quite
low overall, which is good, except a few allocations in bin
0 (the red horizontal stripes). All in all, the block sizes
and best-fit policy perform quite well for the considered test
cases. Bins 9,11,12 and 13 are the fullest (shortest vertical
red bar). All bins begin with little fragmentation (compact
blocks at bottom of all bin views), but end up with a higher
one (less compact blocks at top of all bin views).

Task 2: Compare the occupancy all bins
To get clearer insight in the occupancy evolution, we con-
struct a different visualization which vertically stacks all
B = 13 occupancy bars so we can compare their evolutions
in time (Fig. 6). The ’flat shaded’, non-cushioned bar parts
rapid allocations followed by deallocations, i.e. short-lived
blocks and high allocator activity (Section 4.1.3). During
the second third of the monitored period, memory occu-
pancy suddenly increases. Yet, an overall occupancy drop
(Fig. 6 A) splits the occupancy patterns of bins 0,5,7 and
9 into two near-constant-occupancy ’plateaus’ (Fig. 6 B).
In the last third of the monitored period, occupancy de-
creases. Yet, there are three very short periods where mem-
ory occupancy bursts to a maximum in the heap (Fig. 6 C).
Our importance-based antialiasing revealed these danger-
ous moments which would otherwise have passed unde-
tected. Finally, the heap shows a higher block size varia-
tion (cushion height) as compared to all bins. This validates
again the desired best-fit allocator policy: all blocks which
don’t fit the bin sizes go into the heap.

Question 1: Are allocations always done from low to
high addresses?
This is apparently the case, if we look at Fig. 8: blocks fill
the memory space from bottom to top. However, a closer
look at the two list data structures allocated in bin 8 (shown



bin 1 bin 2 bin 3 bin 4 bin 5 bin 6 bin 7

bin 8 bin 9 bin 10 bin 11 bin 12 bin 13 heap

free memory in each bin

bin occupancy in time

Figure 8. Bins and heap occupancy visualization. Color show s per-block wasted memory

in the zoom-in in Fig. 2) tells a different story. The first
list (left in the zoom-in) gets allocated fromlow to high ad-
dresses, as shown by its slightly up-right slanted left side.
The second list (right in the zoom-in) gets however allo-
cated fromhigh to low addresses, as shown by its slightly
down-right slanted left side. This finding suggests that the
low-to-high allocation invariant is violated here. Finally, we
saw that in the heap blocks get allocated from high to low
addresses, conversely than for the bins (Fig. 8 lower-right).
This is indeed correct for this allocator.

Question 2: Is activity correlated with the memory-
allocating functions?
In our allocator, we log also the addresses of the functions
that (de)allocate blocks. We would like to see whether func-
tions correlate with allocation patterns, and how. For this,
we map function addresses to a set of unique IDs, and then
to colors, and visualize every block colored by its allocating
function ID. To answer the question if activity is correlated
with allocating functions, we use the time correlation layout
(Section 4.1.4) to show different bins. We use the cushion

cursors to find out, first of all, if activity patterns in different
bins match indeed. Figure 9 shows the result for two groups
of three bins each. Clearly, the first high-activity bursts oc-
curring in all bins after the first third of the monitored pe-
riod is correlated. Color shows us extra information. We
see that most blocks being allocated at that precise moment
are cyan. This means that asingle function is responsible
for that high-activity burst inall bins, i.e. for all memory
block sizes. Second, we see that most long lifetime blocks
(long horizontal strips) are red, green, and yellow. Hence,
these are the functions responsible for persistent data.

Online material about our tool is available for download
at: www.win.tue.nl/∼alext/MEMOVIEW

6 Acknowledgements

We are grateful to Christian del Rosso (Nokia Research)
for providing us with the case study and with useful feed-
back on the results of our visualization.



bin 1

bin 2

bin 3

bin 5 

bin 7

bin 13

Figure 9. Correlation of activity and allocat-
ing functions using cushion cursors

7 Conclusions

We have presented several new techniques for visualiz-
ing dynamic memory allocations. The entire set of tech-
niques revolves around a number of core design principles:
orthogonal layouts for simplicity of interpretation; dense
pixel displays for scalability; antialiasing for showing sub-
pixel data; and shaded cushions to show correlations and
structure in several places (the main memory view, the met-
ric bars, and the interactive user-driven cursors). The com-
bination of these techniques achieves a visualization scal-
able to hundreds of thousands of elements, as compared to
existing approaches [4, 9]. We demonstrate our applica-
tion by answering several non-trivial questions and analysis

tasks on a real memory allocation log dataset. Finally, let us
note that the presented techniques are quite generic, so they
could be used for other types of time-dependent data than
memory allocations.

In the future, we plan to enhance our visualization to also
support visual debugging of end-user applications, e.g. by
emphasizing memory leaks and relationships between al-
locating and deallocating code fragments in complex soft-
ware.

References

[1] B. Alpern, L. Carter, and T. Selker. Visualizing computer
memory architectures. InProc. IEEE Visualization, pages
107–113. IEEE Press, 1990.

[2] R. Bosch. Using Visualization to Understand the Behav-
ior of Computer Systems. PhD thesis, Stanford University,
2001.

[3] R. Bosch, C. Stolte, D. Tang, J. Gerth, M. Rosenblum, and
P. Hanrahan. Rivet: A flexible environment for computer
systems visualization.Computer Graphics, 34(1), 2000.

[4] A. Cheadle, A. Field, J. Ayres, N. Dunn, R. Hayden, and
J. Nystrom-Persson. Visualising dynamic memory alloca-
tors. In Proc. Intl. Symp. on Memory Management, pages
115–125, 2006.

[5] R. Griswold and R. Townsend. The visualization of dynamic
memory management in the icon programming language. In
Tech. Report 89-30. Dept. of Comp. Science, Univ. of Ari-
zona, Dec. 1989.

[6] C. Jeffery and R. Griswold. A framework for execution
monitoring in icon. Software - Practice and Experience,
24(11):1025–1049, 1994.

[7] LynuxWorks. TheLynxInsure++ analysis and visualization
toolkit, 2006. http://www.lynuxworks.com.

[8] S. Moreta and A. Telea. Multiscale visualization of dynamic
software logs. InProc. EG/IEEE EuroVis’07. IEEE Press, to
appear, May 2007, 2007.

[9] T. Printezis and R. Jones.GCspy: An adaptable heap vi-
sualisation framework. InProc. OOPSLA, pages 343–358.
ACM Press, 2002.

[10] Rational, Inc. ThePurify program analysis tool, 2007.
http://www.rational.com/purify.

[11] J. Stasko. Animating algorithms with x-tango.SIGACT
News, 23(2):67–71, 1992.

[12] J. Stasko and E. Kraemer. A methodology for building
application-specific visualizations of parallel programs.J. of
Parallel and Distributed Computing, 18(2):258–264, 1993.

[13] J. van Wijk and H. van de Wetering. Cushion treemaps:
Visualization of hierarchical information. InProc. IEEE In-
foVis, pages 73–78. IEEE Press, 1999.

[14] R. Vliegen, J. J. van Wijk, and E. van der Linden. Visual-
izing business data with generalized treemaps.IEEE TVCG
(Proc. InfoVis’06), 12(5):789–796, 2006.

[15] L. Voinea and A. Telea. Multiscale and multivariate visual-
izations of software evolution. InProc. ACM SoftVis, pages
47–56, 2006.

[16] J. Weidendorfer, M. Kowarschik, and C. Trinitis. A tool suite
for simulation based analysis of memory access behavior. In
Proc. ICCS, pages 440–447, 2004.


