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Abstract

A robust and efficient method in 2D and 3D for the calculation of skeletons for arbitrary objects is presented. The
method is based on the calculation of the distance function with respect to the object boundary. Thisis combined,
in a post processing step, with a new indicator to identify the skeleton, which coincides with the singularity set of
the distance map. The indicator is defined as a suitable function of certain local momenta of this distance map
and allows a robust and accurate computation of the distance fromthe skeleton set. This distanceis then extended,
again via the level set method, onto the whole space. Several applications in 2D and 3D are presented.

1. Introduction ods: the produced skeletons are numerically accurate, dis-

Skeletons and medial axes are of significant interest in many tance |n_format|0n 0 thg bound_ary can be cpmputed o per-
o ; . form object reconstruction, arbitrary topologies are handled

appllc_atlon areas sugh. as object representa_ltlon,. data Com'by default, and local grid refinement can be easily added to

pressmn,_compgter vision, and computer anlm_atlon. Skele- accelerate computations.

tons provide a simple and compact representation of a 2D or

3D shape that preserves many of the topological and size

characteristics of the original. A is the set to be skele-

tonized andd(x,0A) the distance fronA's boundaryodA at

a pointx, then the skeletoBis defined via

S={x€ A|3y,z€ A, y#2 dist(x,0A) =[xyl = [x— 2]}

Skeletonization methods based on continuous approaches
have become increasingly interesting for research&gs.
These methods detect the skeleton by looking for the sin-
gularities (i.e. creases or ridges) of tHistance transform

(DT) of the object’'s boundary. (see example in Figs. 1, 2,3,
and 4). It has been showf? that this definition of the skele-

ton is equivalent with the skeleton definition as the geometric a) b)

locus of the centers of maximal distsMoreover, the DT-

based skeleton definition is equivalent with the 'prairie fire ~ Figure 1: Object (a) and distance transform (DT) (b)

model’?, in which the object’s boundary evolves in direction

of its normal, with constant speed. The skeleton is then de-

fined as the 'shock’ points where the moving front collapses  The DT, or equivalently the front evolution, can be com-
onto itself. These points coincide largely with the singulari- puted by level set methods, such as the fast marching method
ties of the DT, as the evolving front coincides with the DT's (FMM) introduced by Sethiatl. However, the FMM is
isolines, or level sets Continuous skeletonization methods not explicitly detecting the DT singularities or shock points
have several advantages as compared to e.g. thinning meth-of the moving front. Direct computation of the singulari-
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a) a) b)

Figure 2: Evolved boundary under constant speed (a) and Figure 4: DT of skeleton (a) and inflated skeleton (b) for

skeleton detector (b) objectin Fig. 1
ties is a numerically unstable and delicate proce¥s’ 3 method for detecting the singularities of the DT. The method
which usually delivers disconnected poi#ts$. Other con- benefits of the full advantages of a continuous formulation.

tinuous skeletonization methods, sucl? asse the observa- ~ Moreover, we do not make explicit use of derivative, gradi-
tion that skeleton points are generated by compact boundaryent, or divergence operations, so our method is more stable
segments delimited by curvature extrema along the bound- than other continuous methods as cited above. Furthermore,
ary. The skeleton is then built from the separate DTs of the the new approach comes a long with a useful scale space
boundary segments separated by the curvature extrema angroperty. In detail, our skeleton indicator relies on a cer-
is restricted to 2D. However, this method relies on accurate tain filtering of the distance transform, where the filter width
detection of curvature extrema along a possibly noisy bound- acts as a scale parameter. For increasing filter width, more
ary. Moreover, shapes with holes are treated in a rather com- and more skeleton details are ignored and only the dominant
plex manner. Another method for front evolutibadvances parts of the skeleton remain. In Section 2, we introduce the
the front by tracking marker particles. The skeleton is de- moment concept, with which we build our singularity de-
fined as the shock points where an energy conservation prin-tector, as shown in Sec. 3. Section 4 presents the complete
ciple is violated. Although numerically more stable than di- algorithm. Section 5 shows several 2D and 3D applications.
rect singularity detection, this method is hard to implement
and computationally expensive: particles must be inserted .

and removed to preserve a dense and constant particle distri-2- Moment Analysis

bution on the boundary. In this section, we introduce theoments of ad dimensional
scalar function. In what follows, we will show how to use
differently scaled zero moments to localize the singularities
of the boundary’s distance transform DT. The first moment
encodes directional information of the skeleton. However, in
this paper we focus on the zero order moment, the use of the
first order moment being subject of a forthcoming paper.

Let us assume that: Q — R is a solution of the Eikonal
equationtt 3;

IIVT] =1 @)

whereQ ¢ R" with n= 2,3 has the boundarly = 3Q, and
I e C%1. As mentioned in Sec. T, is the signed distance
a) b) function to the boundary in the regular case. As a working
example, consider the 2D shape in Fig. 1 a. We now regard
Figure 3: Skeleton (a) and detail of distance close to skele- T as a graph irR'H’l over the whole SpacRn oQ (See
ton (b) for object in Fig. 1 Fig. 1 b). As explained in Sec. 1, the ridges of this graph are
the branches of's skeleton. From this graph, we calculate
the first moment, which turns out to be a useful indicator for
We present a skeletonization technique based on a newthe graph's ridges. The zero-order momaift(x) and the
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first momentMZ(x), in then+ 1 dimensional current point
X, are defined as:

MEC) = (rantei] o Tl ) VTR
M) = oo oo | 7l ) =)
o (4% )-m00] Ve TTIRSY

whereBg(X) is a small ball of radiug in the parameter do-
mainR", Grap!B; is the graph under the distance transform,
and |Bg(x)| and |GraptBe(x)| are respectively the areas of
the ball and the graph. Figure. 5 shows the abovenfer2,

when the graph is a 2-dimensional surface embedded in 3D.

Using the Eikonal equation (Eqgn. 1), we can simplify the

X3
Graph B¢( x)

Graph
T(x)

~y

X

Figure5: Definition of zero and first order moments of graph
of T(x)

moments’ expressions. For tiie+ 1)th component of the
zero moment — which we denote B (x) and call from now
on the zero moment of — we obtain:

TS (09 = (M X)nsa = [Be0]

T(y)dy
Be(X)

The first momentVi(x) gives further information on the
normal and tangent space of the skelef®and allows to
identify singularities on the skeleton, such as branching
points. In this paper we focus on the zero moment only,
which turns out to be a sufficient tool for the calculation of
a robust and reliable distance function from the skeleton in
areas where the skeleton is a smooth submanifolR"bf

3. Singularity Detection

Let us now study the relation of the singularitiesTaf) and
its zero moments evaluated for different scales

3.1. Unidimensional Case

We start with the case = 1. Suppose that there is a singu-
larity of the distance map at a distance from the current
positionx, and thatd < € (Fig. 6 a). We denote by, and
s_ the absolute values of the slopes of the grapf of the
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left, respectively right side of the singularity. Foe= 1 we
deduce from the Eikonal equation (Eqgn. 1) that

sy =s_=1.

The difference of the actual value ®fand its zero moment
is:

T(X)—TE () = 2—1£/X+ST

X—€&

(= T()dy= 1 (st +5-)(e—)?

whered = digt(x, S) is the distance from the current point
to the skeletors. Thus we can compute this distance as

(T -T2 (09) _ gy [2T00-To0)
St+5_ €

=€—

)
)

Outside are neighborhood of the skeletoh(x) — T¢ ()
vanishes, sincd& is locally a linear function (for n=1). In
conclusion, the quantit{f (x) — T (x) is a good indicator
for singularities in then = 1 case: ifT (x) — T (X) # 0 then
x is closer thare from the skeleton and the distance can be
computed using Eqgn 2.

3.2. Higher Dimensional Case

Forn>1,s; ands_ are no longer constant in the considered
neighborhood and (-) is, in general, a nonlinear function.
Sincee is small, the graph of can be approximated by a
linear function on both sides of the singularity up to second
order in€ in areas where the skelet@his a smooth sub-
manifold. Consequently, bothy ands_ are assumed to be
constant quantities up to first orderdrn the considered-
neighborhood. On the skeleton and close to a poihe sum

S+ +s— is computed as:

St +s- =[VT(x)-N]s+O(e),

whereN is the normal to the skeleton afids the jump op-
erator onS. The error term () compensates the variation
of the slope at the interface. From now on, we denots;by
ands_ respectively the slopes of the distance transform at
the point on the skeleton closest to a given pa&int

We compute again our singularity indicafbfx) — T2(x).
Supposeal = d(x) := dist(x, S) is the distance from the point
x to the skeletorS. Thus, consider a baB(x) with radius
€, centered in origin, and a spherical dafg,d) determined
by slicing the ball at distanagfrom the origin. With respect
to our smoothness assumption we suppose that inside the
ball B¢(x) the slice is a approximation of the local skeleton
up to first order in position. Denote Hythe cap’s height
(Fig. 6 b,c). Hence we obtain fa¥(x) — TO(x):

T00=T ~ B0l ([ on=d) dy) (51 +5)
+ O()

The second order approximationdtis due to the symmetry
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Figure 6: Sngularity detection in 1D (a), singularity detector computation in 2D and 3D (b,c)

of the geometric configuration. If we mtroduqe: =, we In the abovef is defined orf0, 1],
have
1

T00-T900 = eBa¥| ([ 0= dy) (s ) 2
C(Ly) and is strictly monotonically decreasing [y 1] with | f'| >
+ O(e?) ¢> 0. Indeedg(-) andgd' () are both monotonically decreas-
ing andg > 0, thus

f0)==, f(1)=0,

To simplify the notation in the following discussion, we de-

fine g 19Me(d) - 39v9 (3)
g(y) = B (x| (/ (¥n —v)dy) ‘
C(Ly) 1 ’ 1 /
_— . < 221 |9 (Ve = 59v)g(v)
With this notation, we get (2)
gy
T =T —e(se +5)aV)+OE) (3 < ¥ <o
whereg(y) can be explicitly computed based on the integral - encef is invertible. Since we can numerically compute the
transform T()-T2(x)
ratio TRH—TL)" we can compute the distancexafrom the
2 3
oy 2||§1 || 12— y2"2gr, skeletonS up to second order ia
i _ 1 [T -T2 2
whereS] 2 is then— 2 dimensional unit sphere afi&2|| dist(x, ) = ey(x) = &f (T(x) —T0(x) +0(e%). (4)
; ) X ; %
its n — 2 dimensional volume (see Appendix for the con-
crete expressions). In the following section, we shallg(sg Knowingy, we can also evaluate the jump OfT - N at the

to evaluate the distance to the skeleton in a small skeleton closest point on the skelet@up to an error Ce):
neighborhood. T(x) TO( )

X)— lg'(X 2
VT(X)-N]s=sy+s- = ————=+0(¢
[VT(9-N] 0 (€)
3.3. Distance Computation Let us emphasize that the above defined local distance to
the skeleton can be considered as a complete solution of the
skeletonization problem. First of all, it implicitly defines the
skeleton itself as the pre image of the zero distance. Sec-

Consider the singularity detector (Eqn. 3) computed using a
larger ballBy(x). This gives

T(X) — Tzos(X) =2eg (Y) (St +5_)+O(e?) ondly,_ if we consider interpolation on a discrete grid where
2 the grid points are naixactly located on the skeleton, our lo-
To solve fory, we define the ratid of evaluations ofy(-) cal distance classifies points close to the skeleton precisely

with respect to dyadic scales. This coincides up to first order Py their distance value. This is obviously the best we can
in € with the ratio of the singularity detectors computed with do without generating a new data structure for the skeleton,

two different ballsBe(x) andBy (), that is: such as a nonuniform grid refinement, which is not our focus
here. Our aim is to stay confined to uniform volumetric re-
Fy) = ay) _ T¥-— T2(x) +O(e) spresentations only. Finally, our approach based on moments
29 (\?/) T(x) — Tzos(x) is robust with respect to discretization, where we replace the
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exact distance transform with respect to the boundarpy
a numerical solution of the fast marching method (FMM).

4. Skeletonization Algorithm

In this section, we put together the various parts described so
far into a complete skeletonization algorithm. The algorithm
consists of 5 steps (cf. Fig. 7):

1. We compute the distandeto the boundary of the object
to be skeletonized, by using the fast marching method
(FMM) to solve Eqgn. 1, as i#? 11, Concretely, we com-
puteT on a uniform pixel grid in 2D, respectively voxel
grid in 3D, inside the boundary (see example in Fig. 1).

2. We evaluate the singularity detecw (Eqn. 3)
on T, by numerical integration over all poinks(see ex-
ample in Color Plate i). For accurate results, we use an
integration ball size of 5 up to 30 grid points and 1 to 100
subsamples per grid cell.

3. Next, the detecto% (T —T2) is thresholded to retain all
points where it is larger than a given value. Sir%q‘é’ —
T0) is large close to the skeleton ande) elsewhere,
thresholding outputs an approximaaeighborhood of
the skeletonS. The threshold must be high enough to
limit the extracted neighborhood to a smathround the
skeleton, for the assumptions made in Sec. 3 to hold, but

rectangle
skeleton

Error (%)

Figure 8: Difference between exact and computed distance
to skeleton fields

5. Applications
5.1. Smoothing and Reconstruction

We have used the presented skeletonization method for ob-
ject smoothing and reconstruction (see the 2D examples in
Figs. 1, 9, as well as the 3D objects, rendered transparent,

low enough so that all skeleton branches are captured (seetogether with their skeletons, rendered opaque, in the Color

example in Fig. 1).

. We solve for the distance to the skeleton (dis$) for all
points x in the extracted neighborhood, as described in
Sec. 3.3. Equation 4 is easily solved by e.g. bisection or
Newton-Raphson methods, since we know that the func-
tion f is invertible.

. Finally, we propagate dist S) computed in the previ-
ous step to all points of the considered 2D or 3D space.
For this, we solve the Eikonal equation starting from an
isosurface of digk, S) located within the-neighborhood
of the skeleton, where dist S) was computed in step 4.
This isosurface is now marched outwards by the FMM
algorithm, thus calculating dist S) until we reachdA.
Now the distance to the skeleton distS) is known ev-
erywhere inside the initial sét (see example in Color
Plate j).

To check the method’s accuracy, we evaluated the differ-
ence between the dist field computed by our method for a 2D
rectangle discretized on a 521Qrid, and the exact distance-
to-skeleton field. For the rectangle, we can exactly evaluate
the latter since we know the exact skeleton. The two dis-
tance fields are approximately identical, except close to the
skeleton’s branching points and tips (Fig. 8), where the error
increases to about 2%. This is due to the fact that our local
distance transform based on the zero moments is valid only
in regions where the skeleton is a smooth submanyfold.

(© The Eurographics Association 2002.

Plate). Objects can be smoothed by computing their skele-
ton (Fig. 9 b) and then 'inflating’ the skeleton (Fig. 9 c), as
described in Sec. 4. The three processes involved (DT com-
putation, skeleton computation, and skeleton inflation) de-
liver a globally smoothed version of the original boundary.
Figures 9 d,e shows the difference between the smoothed re-
construction (gray area) and original boundary (thick white
line) for the leaf example. The above method can be used
to reconstruct simplified objects out of their skeleton, if
one avails of a skeleton simplification method. As already
sketched in the introduction the parameggulays the role

of a multiscale parameter: For increasing values,afore

and more details of the skeleton are disregarded and only the
major parts remain. This is a another useful intrinsic feature
of our approach requested by many skeletonization applica-
tions.

5.2. Morphing

The continuous treatment of the skeletons allows us to eas-
ily construct a smooth morphing between an object and its
skeleton. For this, consider the blending functiin

T4t D
2D’2" 2 T
whereT is the DT of an object’s boundary aiis the DT of

the object’s skeletorB achieves a smooth blending between

B = min( ,0)
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inwards singularity thresholding
FMM - detection [ close to
distance T field | maximum
| to boundary p|T-T°

_solving for outwards
field T-10] distance close [gistance] FMM [ global
closeto | toskeleton | cjgse to distance
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Figure 7: Skeletonization algorithm pipeline

LR

Figure 10: Morphing between object (leftmost image) and skeleton (rightmost image)

Figure 9: Sngularity detector (a), skeleton neighborhood
(b), inflated skeleton and original boundary (c), reconstruc-

tion detail (d)

the boundary and its skeleton. Indeed, for the leveTset0,

i.e. the object’s boundary, we hate= 0. For the level set
D =0, i.e. the object’s skeleton, we haBe= 1. For the level
setD =T, half way between the boundary and the skeleton, the higher order moments introduced in Sec. 2 for the topo-
we haveB = 0.5. Extracting consecutive level sets®be-
tween 0 and 1 gives thus a smooth blending of the object tons.

to its skeleton, as shown by the 3D example in Fig. 10 (the
3D dataset is taken from the Visualization Toolkit's (VTK)
distribution18).

6. Discussion

We have presented a robust and simple method to extract an
approximate skeleton for a arbitrary 2D or 3D set discretized
ona 2D or 3D regular grid. The proposed method is based on
a continuous approach and effectively discretized in a sec-
ond step using approved numerical methodology, such as the
fast marching method. No differentiation is required, only
integral moments have to be evaluated. This ensures a supe-
rior robustness as compared to similar methods. Finally, 2D
and 3D skeletons are handled in a single framework.

Concerning complexity, the method requires the applica-
tion of the fast marching method (FMM) with its cost of
O(N logN). The FMM runs in less than a second for 812
2D pixel grids and in a few seconds for Sixel grids on a
Pentium Il 800 MHz machine. The moment integration step
(Sec. 2 is the slowest part of the process, which(isl Gkg’)
for N grid cells,ssubsamples per cell, and an integration ball
of radiuske grid cells. Using about 20 samples per grid cell,
this takes a few seconds for the above mentioned 2D config-
uration, respectively around two minutes for the 3D configu-
ration. Here is still a huge potential for further improvements
of the performance of the algorithm. Finally, solving Eqn 4
numerically takes a few seconds in both the 2D and 3D case.

In the future, we plan to use the presented method in med-
ical imaging applications and for object modeling based on
modeling the objects’ skeletons. Moreover, we plan to use

logical analysis and simplification of the computed skele-
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7. Appendix 7.
The following details the computation affor the 2D and
3D cases by integration (Sec. 3.2).
8.
on Vi-¥
oY) = —4= (V1-r2—y)’rdr
23T/0
Vi-¥
= g r—r3+vPr —2yr/1—r2dr 9.
0
1-y?
_ 3 rz-l—yzrz_f_l_Z_y(1 rz)%
T4 2 4 3 0
3] 14 V¥ 2 1 10.
B {_12\’ 273",
11.
2 1-¥ 2
gn(y) = 2—/ (Vi-ri=y) ar
/o 7
1—
3 V=12
_ 1 r(1+y2)—r——y(r\/l—r2+arcsirr)}
s 3 0
ISR LA S i 13
1 .
- ﬁy<«/1—y2y+yarcsm\/1—y2
1 . 14.
= 3 {\/1—y2(2-|—y2)—3yar05| l—yz}
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Figure 11: 2D and 3D skeletonization applications
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