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Abstract
We present a framework for computing generalized distance transforms and skeletons of two-dimensional objects
using graphics hardware. Our method is based on the concept of footprint splatting. Combining different splats
produces weighted distance transforms for different metrics, as well as the corresponding skeletons and Voronoi
diagrams. We present a hierarchical acceleration scheme and a subdivision scheme that allows visualizing the
computed skeletons with subpixel accuracy in real time. Our splatting approach allows one to easily change all
the metric parameters, treat any 2D boundaries, and easily produce both DTs and skeletons. We illustrate the
method by several examples.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and
object representation; Picture/Image Generation - Bitmap and frame buffer operations

1. Introduction

Distance transforms and skeletons are well-known shape
representation tools with many applications in collision de-
tection, geometric simplification and reconstruction, robot
motion planning, mesh generation, and animation. Given an
object boundary δΩ, the distance transform (briefly DT) of
δΩ is defined as

DT(p) = min
q∈δΩ

(dist(p,q)) (1)

for all points p ∈ Ω. The distance metric is usually the Eu-
clidean one dist(p,q) = ‖p− q‖2. The above assigns to ev-
ery point p the distance to the closest boundary point q. This
definition can be extended to the so-called complete or fea-
ture distance transform (FDT), as follows

FDT(p) = {DT(p),{q}}, q = arg min
q∈δΩ

(dist(p,q)) (2)

The FDT labels every point with its DT value and the bound-
ary points {q} for which this value gets realized.

Skeletons, or medial axes, are defined as the set of centers
of maximal balls contained in δΩ, or the locus of points at
equal distance from at least two boundary points:

S(δΩ) = {p ∈ Ω |∃q,r ∈ δΩ, q 6= r : dist(p,q) = dist(p,r)}
(3)

Skeletons are useful as they characterize an object by a struc-
ture one dimension lower: The skeleton of a 3D volume is a
2D manifold, and the skeleton of a 2D surface is a 1D curve.
Skeletons can be used to easily perform topological reason-
ing about the object, which is useful in shape analysis, regis-
tration, and recognition. If the DT is stored for every skele-
ton point, one obtains the medial axis transform (MAT). The
entire boundary representation can be reconstructed from the
MAT [TVW02, PSS∗03]. By removing (pruning) less im-
portant parts of the skeleton, one can reconstruct simplified
versions of the original object. If δΩ consists of several dis-
connected components, or sites, the set S(δΩ) corresponds
to the Voronoi diagram of the sites. Different types of met-
rics in Eqns. 1-3 lead to the so-called generalized Voronoi
diagrams [TVW01]. For example, by using a multiplicative
weighted metric dist(p,q) = Kp‖p−q‖, where p ∈ δΩ and
q ∈ Ω, one obtains the Apollonius diagrams, describing the
growth of plant cells and areas of best received transmit-
ters [Aur91]. By using additive weights for the sites in the
metric dist(p,q) = Kp + ‖p − q‖, we obtain the Johnson-
Mehl diagrams which describe the growth of crystals from a
given seed set [Aur91]. Yet other generalizations exist, such
as using the L1, or Manhattan distance metric [TVW01].

Computing DTs and skeletons for objects given on an uni-
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form pixel (in 2D) or voxel (in 3D) grid is a special case.
Such objects frequently arise from digitized images or volu-
metric scanning, and are characterized by a large number of
noisy boundary points. Given the large sizes Ω to be consid-
ered (e.g. mega-pixel images in 2D), as well as the inherent
support for pixel and voxel data in graphics hardware, accel-
erating FDT and skeleton computation in graphics hardware
has recently gained increased attention.

In this paper, we present a graphics hardware framework
for computing generalized complete distance transforms and
skeletons of two-dimensional objects. Regarding the DTs,
our framework directly supports any distance metric, com-
putes a pixel-exact complete distance transform, and sup-
ports boundary representations given as a set of possibly dis-
connected pixels. For the skeletons, we fully support the fol-
lowing quality requirements:

• produce one pixel thin, connected skeletons (R1)
• produce skeletons for all generalized DT metrics (R2)
• robustly handle noisy objects (R3)
• allow an intuitive skeleton simplification (R4)
• allow reconstructing objects from skeletons (R5)

In Section 2, we review the existing graphics hardware
methods for FDT and skeleton computation. Section 3.1 in-
troduces generalized distance splatting, the simple key idea
of our framework. Section 3 shows how splatting can be
used to compute FDTs as well as skeletons. In Section 4,
we refine the basic splatting with a hierarchical acceleration
scheme that enhances the performance by an order of mag-
nitude. We demonstrate our approach by several applications
in Section 5. In Section 5.3, we show how to compute sub-
pixel resolution skeletons that respect the mentioned quality
requirements. Finally, we conclude the paper with a discus-
sion and future research directions in Section 6.

2. Related Work

Since we are interested in computing both the DT and skele-
ton, we overview here only those (hardware based) meth-
ods that produce both. Concerning discretization, most hard-
ware based methods represent δΩ as a sequence of linear
primitives, i.e. lines in 2D and polygons in 3D. Virtually all
methods represent the DT as a 2D pixel or 3D voxel image.
Graphics hardware is used to efficiently compute the primi-
tive DTs and to combine those into the complete DT field.

Skeletons can be computed either after DT computation,
by postprocessing this field, or during the DT computation.
Postprocessing methods, the most numerous, define and de-
tect the skeleton as the singularity set of the DT. For ex-
ample, the θ-SMA method detects the skeleton points p by
computing the maximal angle θ formed by p and the bound-
ary points q that p is closest to [FLM03, SM03]. Keeping the
points with large θ values yields a simplified skeleton. How-
ever, as the authors explain, the θ-SMA method does not pro-
duce connected skeletons, and is sensitive to boundary noise

such as sharp details. Conceptually, one could combine any
local skeleton detector (such as divergence based [SBTZ99]
or moment-based [RT02] detectors) with any DT computa-
tion. However, local detectors which classify a point as being
skeleton or not using its immediate surroundings, have two
problems. If the boundary and DT are not discretized on a
very fine grid, singularity detectors using local derivation or
integration fail producing a one pixel thin skeleton (R1 in
Sec. 1). Fine grids imply considerably higher computational
costs. Secondly, a pruning criterion not based on some global
quantity always disconnects the skeleton at some point, i.e.
fails R1.

Most acceleration schemes employ some Voronoi parti-
tion of the space around linear sites to limit the effect of a
site on the complete DT to its vicinity [SP03, Mau03]. How-
ever, in our case every boundary point is a site, so computing
such a Voronoi diagram is equivalent to the initial problem
itself.

The second class of methods computes the skeleton to-
gether with the DT. Boundary information is propagated
which allows both skeleton detection and pruning. The
only graphics hardware based method which explicitely
propagates boundary information is described by Hoff et
al. [HCK∗99] for generalized Voronoi diagrams. For a set
of point and line sites, the DT graph of every site is encoded
as a polygonal height mesh. Next, all DT graphs are drawn
using depth testing, yielding the complete DT in the depth
buffer. If the DT graphs are drawn in different colors, the
color buffer will hold the sites’ Voronoi regions colored by
the sites’ colors. Voronoi edges are found by applying edge
detection on the frame buffer. The method has two related
drawbacks. First, the DT graphs are only (linear) approx-
imations of the exact DTs. This causes no problems for a
few, large sites, or when interested just in the DT. However,
we consider boundaries where every pixel is a separate site.
When not using the exact DT graphs of the sites, even small
DT errors are sufficient to propagate the wrong site color
and yield wrong skeletons (see Fig. 1). This inevitably leads
to noisy, disconnected, thus incorrect, skeletons. Exact point
site DT graphs require a mesh of pixel-thin polygons. As
explained in [HCK∗99, SM03], this would dramatically in-
crease computation time. In particular for point sites, the di-
rect use of non-linear point site DT functions is therefore
more efficient [SP03].

Few software skeletonization methods match all
requirements listed in Sec. 1. For an overview,
see [PSS∗03, TVW02]. A good candidate in this class is
the AFMM (Augmented Fast Marching Method) [TVW02].
Essentially, the AFMM computes the DT on a pixel grid
Ω by solving the Eikonal equation ∇(DT) = 1 starting
with DT = 0 on δΩ. Besides the distance, every pixel gets
the id U of the closest boundary point, so the AFMM
computes the FDT. U is initialized on δΩ to an arc length
parameterization. That is, a point’s id equals the distance
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along δΩ to some fixed start point). The simplified skeleton
of δΩ is given by a thresholded derivative

S(δΩ,U) = {(i, j) | max(Ui+1, j −Ui, j,Ui, j+1 −Ui, j) > τ}
(4)

of the signal U on Ω. Objects with non compact bound-
aries (e.g. holes) are treated by transporting two ids U 1

and U2 initialized from two different boundary start points.
The skeleton is given by min(S(δΩ,U 1),S(δΩ,U2)). The
AFMM is based on the fast marching method. Recently,
level set methods have been implemented in graphics hard-
ware [RS01, LKHW03]. But level set methods suffer from
numerical diffusion, which causes problems when comput-
ing skeletons, as shown in Sec. 3.5. For an overview of re-
lated computational methods using graphics hardware, see
also [Har].

Given the above, we advocate a combination of the
AFMM boundary length skeleton detector, a signal propaga-
tion as in [HCK∗99] and direct use of non-linear point site
DT functions similar to [SP03]. Our combination results in a
simple and efficient hardware based scheme and fulfills the
quality requirements of the AFMM scheme.

3. Distance and Skeleton Construction

We assume an object boundary δΩ given as a set of im-
age pixels. We lay no further constraints on δΩ, such as
computability of quantities like curvature or gradients, as
other methods do [SBTZ99, SM03, RT02]. Our model fits
well data coming with no high level (e.g. continuous) object
model. Typical examples are scanned, possibly noisy, digi-
tal images, from which digital boundaries are extracted by
image segmentation methods.

3.1. Distance Splatting

Since our boundary representation is just a set of discrete
points, we proceed from this level on with the DT con-
struction. Both the boundary and the DT are discretized
on the same pixel grid G = {(i ∗ ∆x, j ∗ ∆y)}. Denote by
PDF0(q − p) the distance between any two points p and
q . This depends on some supplied point distance function
(PDF) PDF0 : R

2 → R, e.g. the Euclidean norm PDF0(v) =
‖v‖2. We do not put any assumptions on this function. To
conveniently measure distances form a point p we define

PDFp(q) = PDF0(q− p).

With the above, the generation of the complete discrete
FDT of a given boundary δΩ can be summarized in a simple
algorithm.

1 initialize DT to max_value
2 initialize U on boundary
3 for all boundary points p
4 for every point q
5 if (PDF_p(q) < DT(q))

6 DT(q) = PDF_p(q)
7 U(q) = U(p)

The skeleton can now be obtained by applying the thresh-
olded derivative in Eqn. 4 to the computed signal U . For
stable skeletons, it is essential to compute the derivative on
the U values and not on the DT. The parameter τ simplifies
the skeleton by removing those points which correspond to
boundary details shorter than τ pixels.

If we ignored the transport of the signal U , i.e omit line
7, then lines 5 and 6 would reduce to a simple minimiza-
tion (DT(q) = min(DT(q),PDFp(q))) and we could trivially
implement the DT computation in graphics hardware using
standard OpenGL. For this, we encode the PDF as a sin-
gle channel (luminance) texture of size D2 pixels. A conser-
vative estimate should set D to Ω’s diameter, such that all
object points get affected by all boundary points. Consecu-
tively drawing the texture centered at every boundary point
with the blending mode set to GL_MIN yields the DT. A sim-
ilar technique is used by [YW03] for performing hardware
based morphological operations.

3.2. Accuracy

Choosing the right per-pixel resolution for the representa-
tion of the PDF is essential for producing exact DTs and
skeletons. If we use fixed point textures of b bits per pixel,
we could encode the distance values v ∈ [0..R] of a splat
of R pixels radius as ṽ = [2b(v/R)]. For different distances
v1 6= v2, we want different encodings ṽ1 6= ṽ2. Given an R,
we can evaluate the smallest occurring difference between
two distance values on the pixel grid:

∆minv = min
i, j,k,l∈0..R

(

√

i2 + j2 −
√

k2 + l2

)

∆minv must be distinguishable in fixed point, i.e.
2b(∆min/Rmax) must be greater than 1. For 8 bit tex-
tures, we obtain Rmax = 11 pixels. For 16 bit textures,
Rmax = 180 pixels, which allows objects of 360 pixels
maximal diameter, whereas 24 bits permit Rmax to exceed
3000 pixels. If we allocate a s23e8 floating point texture,
we have more than enough mantissa bits. In case we do
not avail of high precision textures, we can exactly encode
a 24 bit number by the 8 bit color channels of a RGB
texture. A dot product of this texture value with the constant
(2562,256,1) then reconstructs the original 24 bit value.

3.3. Computing the FDT

Adding the U propagation to the DT splatting presented
in the previous section cannot, however, be done in stan-
dard OpenGL. Specifically, standard OpenGL texturing and
imaging cannot efficiently implement the U propagation
conditioned on the DT test (lines 5-7 of the pseudocode
in Sec 3.1). The three efficient comparisons we could use
are GL_MIN type blending functions, the alpha test, and the
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depth test. Blending is the very last operation in the pipeline,
so we cannot further process its results in one pass. More-
over, blending can only be performed on 8 up to, in some
implementations, 16 bit colors, which would result in insuf-
ficient precision for the DT (see Sec. 3.2). Alpha testing only
works against a fixed value for all pixels. The only standard
OpenGL buffer which can be altered by rendering with 24 bit
precision is the depth buffer. However, depth testing works
efficiently only for linear primitives such as polygons, which
limit the DT precision (Sec. 2). There is no OpenGL primi-
tive allowing efficient drawing of non-linear depth images in
the depth buffer.

However, the functionality of DX8 and DX9 graphics
hardware allows per fragment replacement of depth values
by e.g. the fragment’s texture value. We use this mechanism
to construct two simple and accurate implementations of the
FDT splatting. These are discussed next.

3.4. Depth Replace

Depth replace refers to the ability to replace a fragment’s
depth value by other fragment data or any computed data.
This allows direct implementation of the splatting algorithm
in Sec. 3.1. The main algorithm (lines 1-5) stays the same,
i.e. draws the footprint of the PDF texture centered at every
boundary point. A fragment receives the distance value from
the PDF texture and the two signals U1 and U2, encoded in
fixed point in the RG, respectively BA channels of the frag-
ment’s RGBA color. The depth replace operation uses then
the distance value to replace the depth value, while the color
value stays unchanged. In this way, the depth test performs
the minimization (line 6) and also conditionally transports
the signals U1 and U2 (line 7). We obtain the desired signals
U1 and U2 in the color buffer and the DT in the depth buffer.
The corresponding pseudo-code simply reads

1 clear depth buffer to 1
2 set fragment processing to depth replace
3 for all boundary points p
4 set color to U(p)
5 draw PDF texture centered at p

As mentioned, there are two possibilities to implement the
depth replace: fragment programs and texture shaders. These
are presented next.

3.4.1. Fragment Programs

The standardized extension ARB_fragment_program
allows implementing the depth replace on any current DX9
hardware, as the depth value is one of the modifiable results.
Line 2 in the above pseudocode becomes the following frag-
ment program:

1 !!ARBfp1.0
2 TEMP R0;
3 TEX R0.x, fragment.texcoord[0],texture[0],

RECT;

4 MOV result.depth.z, R0.x;
5 MOV result.color, fragment.color.primary;
6 END

Line 3 reads the texture value, which is output by line 4
as depth. Line 5 sets the U signal encoded in color. Since
writing to other components than z in result.depth has
no effect, one could merge lines 3 and 4 into one. However,
we’ll need line 4 for an additional operation later (Sec. 5.1).

3.4.2. Texture Shaders

The older DX8 API also allows per-fragment replace-
ment of depth by texture values. To our knowledge, this
has been exposed in OpenGL only by the proprietary
NV_texture_shader(1,2,3) extensions. All exten-
sions implement depth replace, but this is simplest done
via NV_texture_shader3. The setup of texture shaders
reads

1 TS0: GL_TEXTURE_RECTANGLE_NV
2 TS1: GL_DOT_PRODUCT_AFFINE_DEPTH_REPLACE_NV

input: result of TS0

The first shader (TS0) simply samples the value of the PDF
texture, which is passed to the second shader (TS1). TS1
computes the dot product of the texture value RGB with the
texture coordinates STR and replaces the fragment’s depth.
The dot product is computed in s23e8 floating point preci-
sion, so we can use it to reconstruct a 24 bit precise distance
value from the 8 bit RGB colors, as described in Sec. 3.2.

3.5. Result Comparison

Both implementations deliver the same result, i.e. the sig-
nals U1 and U2 in a color pbuffer and the DT in the depth
buffer. The simplified skeleton is computed by sampling the
values U1 and U2 and implementing Eqn. 4 as a simple 2x2
filter in a separate fragment program or in the fixed frag-
ment pipeline of DX8 graphics hardware. On our GeForce
FX 5800 Ultra chip, the fragment program implementation
is about 10% faster than the texture shader. This happens,
however, because the graphics driver could not execute the
shader setup from Sec. 3.4.2 correctly. Instead, we had to
insert an ’empty’ shader between the two operations to re-
store functionality. With a correct driver, the texture shaders
would have been probably slightly faster than the fragment
program.

An important aspect of our method is that it extracts pixel-
level correct skeletons for all boundaries and threshold val-
ues, whereas the original AFMM, or similar methods based
on incremental propagation, such as many thinning methods,
do not. Figure 1 shows several problems such methods ex-
hibit. First, double parallel skeleton branches are created in
the one-hole plate in Fig. 1 c where single branches should
appear, as correctly shown in Fig. 1 d. Secondly, branches
passing close to high boundary curvature variations, such as
the one exiting the leaf’s twig, get incorrect angles (Fig 1 a
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Figure 1: Diffusion error (a,c). Correct skeletons (b,d)

vs the correct angle in Fig. 1 b). Finally, for thresholds lower
than 10 pixels, skeletons are noisy, disconnected, or have
branches thicker than one pixel (Fig. 1 a). Incremental prop-
agation, such as level set methods, suffer from a finite diffu-
sion error accumulation. This is not visible in the relatively
smooth distance field. However, such errors may translate
into incorrect closest boundary point labeling in the U field,
and given its discrete nature, thus to incorrect skeletons. The
method presented here has no such problems, as it propa-
gates information directly, and not incrementally, from the
boundary. Skeletons are correctly computed regardless of the
grid size or boundary noisiness. The threshold τ in Eqn. 4
can be set as low as the minimally possible value of 2 pixels.
Remark that a threshold of 1 would yield a skeleton equal to
the object, given that the U difference between two boundary
neighbors is 1.

Figure 2: Tiling in the hierarchical acceleration scheme

4. Adaptive Hierarchical FDT Computation

The hardware based skeletonization method presented in
the previous section is essentially limited by the pixel fill
rate. For an object Ω of maximal diameter D and bound-
ary δΩ of B pixels, the method needs to draw BD2 pix-
els. In the worst case, D is unknown, so one must consider
D = max(ΩW ,ΩH), where (ΩW ,ΩH) is the size of the ob-
ject’s bounding box, i.e. for every image pixel each bound-
ary point is considered in the minimization of the distance.
We can improve on the above by reducing the number of
boundary points relevant for the minimization of the distance
depending on the image region. The implementation of this
adaptivity into the graphics hardware algorithm bears some
resemblance to [LKHW03], where also a tiled representation
is used to cull unnecessary computation.

First, we produce a coarse scale version Ωc of the original
object image Ω. For every pixel tile in Ω of size (W,H) pix-
els, the corresponding pixel in Ωc is set to interior if any tile
pixel is an interior one, otherwise is set to exterior. Next, we
compute the distance transform DTc on Ωc using the method
described in Sec. 3.3, where the distance between two pixels
in Ωc is the maximal distance between any two pixels from
the corresponding tiles in Ω.

For the full scale image, we proceed as follows. For every
boundary point p with coordinates (xp,yp), we construct a
quad of coordinates (0,0),(W,0),(W,H),(0,H) and texture
coordinates (xS − xp,yS − yp),(xS − xp +W,yS − yp),(xS −
xp +W,yS − yp + H),(xS − xp,yS − yp + H), where (xS,yS)
is the center of the PDF splat. All quad coordinates are as-
sembled in an OpenGL vertex array A. Next, we iterate over
all image tiles Q and reject those for which Ωc(Q) is zero,
i.e. the tiles outside the boundary, since one typically wants
the DT and skeleton for the inside only. If this test passes,
the tile Q is splat from all boundary points p ∈ δΩ, as fol-
lows. For every p, we compute dmin, the minimal distance
between p and the tile Q (see Fig. 3). If dmin is larger than
DTc(Q), p cannot have any impact on the tile Q, so we skip
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Figure 3: Hierarchical acceleration scheme

splatting it. If not, we add p’s index in A to an index stream.
After all boundary points for the current tile are processed,
we set the coordinate and texture transforms to the transla-
tions Tcoord = (xQ,yQ) and Ttex = (xQ,yQ), such that the co-
ordinates from A will map to the current tile and the correct
splat texture coordinates respectively. Finally, we draw the
quads in the index stream and proceed with the next tile (the
complete pseudocode is given in Fig. 4). Figure 2 illustrates
the above scheme: the DT is visible only on the computed
tiles, the rejected tiles are black.

1   for all quads Q of the image
2   {
3      if Ωc(Q) is not background
4     {
5         set transforms Ttex and Tcoord
6           for all points p of boundary δΩ 
7         {
8             compute dmin between p and Q
9             if DTc(Q) > dmin
10               write index of p to stream       
11       }
12       draw stream
13    }   

14  }

Figure 4: Hierarchical acceleration algorithm

The efficiency of this hierarchical scheme depends on
the choice of the coarse scale. Choosing a small tile size
decreases the amount of overdraw, but increases the over-
head caused by constructing the vertex array, computing the
coarse DTc, and drawing the quads. Choosing a too large
tile size reduces the overhead, but also quadratically dimin-
ishes the savings. In practice, we have obtained optimal re-
sults by using a fixed tile size of 32 by 32 pixels. For this

tile size, the first test typically eliminates about half of the
quads. The second test eliminates between 80 and 97 per-
cent of the quads (and thus pixels) to be drawn, as compared
to the algorithm given in Sec. 3.1. The overhead caused by
constructing and rendering the quads is about 10 percent of
the total time, whereas computing the coarse scale FDT has
practically no overhead. Overall, the FDT splatting is accel-
erated by 8 to 9 times.

Figure 10 show a number of skeletons computed by our
accelerated methods from real data. The image in Fig. 10 c
is obtained by segmenting a 1800 by 1800 pixels digital pho-
tograph of the roots of a rice plant, grown in a semi transpar-
ent jelly. Skeletonization allows extracting a root data model
on which geometrical and topological measurements can be
performed to assess the plant growth (Fig. 10 d). Since a
large number of such images must be taken for different
plants, growth phases, and viewing angles, the speedup of-
fered by our method is important for this application. Similar
measurements can be performed after skeletal extraction on
the multipolar neuron image (Figs. 10 a,b).

Dataset Time Boundary Interior Total image
(AFMM) pixels pixels pixels

Leaf 1 4.81 2160 67393 182040
Leaf 2 5.36 2864 70315 247401
Leaf 3 8.16 4134 110791 291250
Plate 4.19 1006 59799 90000
Roots 56.10 44657 371804 3258000
Room 16.78 9997 199740 208978
Neuron 16.11 14820 82632 613309

Table 1: Software FDT Timings

Table 1 shows, for a number of datasets, the timings given
by a software AFMM implementation. Table 2 shows the
timings of the simple brute force hardware method (BF)
from Sec. 3.4 and the hierarchical variant (H), the percent-
age of tiles passing the two tests, and the speedup with re-
spect to the AFMM software method. The brute force variant
is slightly faster than the AFMM. However, the hierarchi-
cal variant gives a speedup of one order of magnitude. The
above scheme works for more than two resolution levels too,
however, for images up to thousands of pixels squared, two
levels suffice.

5. Applications

5.1. Generalized Voronoi diagrams and skeletons

The presented method directly supports computing most ver-
sions of generalized Voronoi diagrams. One can choose the
distance metric by simply sampling its footprint, for a point,
in a texture splat. Additionally, the metric for every boundary
point may be changed independently. For example, to im-
plement the classical additive and multiplicative Euclidean
metrics, we let every boundary point pi have two weights
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Dataset Time Time Test 1 Test 2 Speedup
(BF) (H) pass (%) pass (%) H/AFMM

Leaf 1 1.20 0.14 54.9 13.6 34.3
Leaf 2 2.10 0.20 46.0 11.1 26.8
Leaf 3 4.75 0.42 42.9 7.2 19.4
Plate 0.28 0.09 77.0 23.9 46.5
Roots 41.23 3.79 46.1 3.9 14.8
Room 3.31 0.64 100.0 9.9 26.1
Neuron 18.92 2.5 45.4 3.6 6.44

Table 2: Hardware FDT Timings

ai and bi. This translates to replacing line 4 in the fragment
program in Sec. 3.4.1 with a MAD instruction that performs
scaling and biasing with ai and bi respectively. Also, the DTc

and the estimate dmin in the hierarchical algorithm (Fig. 4)
have to be computed according to the new metric. Figure 5
shows, for a given point set, the additive (Johnson-Mehl)
(b), classical (c), and multiplicative (Apollonius) (d) dia-
grams. Color intensities indicate the weight values. Figure 6
shows the Voronoi diagrams and DTs for the Euclidean and
Manhattan distance metrics respectively on the more com-
plex building floor dataset used by Hoff et al. in [HCK∗99].
Such diagrams are often used in rigid motion path planning.
An unexpected result we discovered by this visualization is
that the diagrams for the two considered metrics are largely
similar in the area of interest, i.e. close to the sites (inside
the floor drawing), The differences become large only far
away from the sites (outside the drawing). This result could
be used to substitute more expensive by cheaper metrics in
computationally intensive path planning simulations, given
the diagrams of the two are similar.

a)

b)

c) d)

Figure 5: Generalized Voronoi diagrams and skeletons

An interesting related result is visualizing generalized
skeletons, i.e. skeletons of other metric than the Euclidean.
Figure 5 a shows such a skeleton, drawn in black over the
distance transform, for the Manhattan metric (compare with
Fig. 1 b for the Euclidean one). As for the Voronoi diagrams,
we notice a large similarity of the two skeletons close to the
boundary. Such generalized skeletons may open new possi-
bilities for object simplification and recognition to the clas-
sical Euclidean ones.

5.2. Feature preserving evolution

A related application of weighted distance transforms is
computing feature preserving evolutions. Given an object Ω
and its DT, the set Ωτ = {p ∈ Ω|DT(p) > τ} represents in-
creasingly ’shrunk’, or simplified, versions of the original
object. The parameter τ is the time of an evolution in which
the boundary δΩ advances with constant speed in its nor-
mal direction, as in a classical level set formulation [Set99].
In some applications it is desirable to preserve certain details
in the above evolution while removing others. This translates
to a low speed in the areas to be preserved and a high speed
in the areas to be simplified. We can use the weighted DTs
produced by our method to simulate the above. In the exam-
ple in Fig. 7 a, the user has marked the leaf’s twig and tips
to be preserved with red. The color intensity is interpreted as
a multiplicative weight for the Euclidean distance. Once the
DT is computed (Fig. 7 d), the parameter τ is interactively
set and used in a simple fragment program to threshold the
DT to deliver the evolved images Ωτ. Figure 7 b and c show
how the marked details are preserved during two instants of
the level set evolution. Figure 7 d shows the resulting dis-
tance transform overlaid with the generalized skeleton. One
notices how the skeletal branches bend in regions of high DT
gradients (close to the weighted areas) to follow the shortest
path to the boundary. Also, we notice the apparition of skele-
tal branches close to and parallel with the weighted boundary
features (leaf tips). In some sense, the skeleton gives now a
continuous transition from the object’s inside to its bound-
ary.

5.3. Subpixel Resolution Skeletons

Since we compute the Voronoi diagrams and skeletons in
a per pixel fashion, we can exploit this to visualize these
structures with subpixel accuracy. We make use of the result
that for any Lk norm, any compact site has a compact and
bounded Voronoi region [SM03], as follows. Consider a 4 by
4 pixel area for which we have already computed the FDT
at input image resolution (Fig. 8). We call this resolution the
computation resolution. The closest boundary points q1..q4
to the pixel centers p1..p4 are labeled by the ids U1..U4.
For U , we may consider here any of the two signals U 1 and
U2. Given the convex Voronoi region properties mentioned
above, the closest boundary point to a point p situated in the
square p1 p2 p3 p4 belongs to the set {q1,q1,q3,q4}. Given
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Figure 6: Euclidean versus Manhattan distances in Voronoi diagrams

a) b) c) d)

Figure 7: Feature preserving evolution

an actual display resolution larger than the computation res-
olution, we explicitly compute for every display pixel the
closest boundary point by minimizing the four distances to
the computation resolution pixels p1..p4. This assigns the
closest point ids U to the display resolution pixels. Next, we
apply the same thresholded derivative (Eqn. 4) and obtain
the skeleton at the display resolution.

Figure 9 shows the skeleton on a zoomed region of the
image in Fig. 10 b computed with and without the subpixel
scheme. In the left image, the gray area shows the compu-
tation resolution, the subpixel skeleton being the thin black
line in the middle. The subpixel scheme produces skeletons
obeying the same quality requirements as the original ones.
For Euclidean metrics, the subpixel skeletons consist of line
segments over the computation pixel area. For other metrics,
they represent display pixel accurate approximations of the
actual skeletal curves. In all cases, the actual location of the

skeleton points is determined up to the user selected resolu-
tion.

The four point minimization scheme described above is
implemented as a fragment program. The actual boundary
point coordinates are determined by building a 2562 lookup
texture that encodes the boundary coordinates for every id
U . The two 8 bit components of the U1 value serve as
lookup indices into this texture. Although the complete sub-
pixel skeleton program has over two hundred assembly op-
erations, zooming the skeletons still occurs in real time.

6. Conclusions

We have presented a framework for computing distance
transforms, Voronoi diagrams, and skeletons of generalized
metrics using graphics hardware. When compared to the
most similar software-based method, the AFMM, our hard-
ware method exhibits a number of advantages:
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Figure 8: Subpixel resolution scheme

a) b)

Figure 9: Subpixel versus pixel resolution skeletons

• delivers pixel-accurate, correct results for all images and
simplification thresholds, which the AFMM did not.

• delivers a performance increase of about one order of
magnitude.

• easily supports different metrics and different site weight-
ing.

• delivers skeleton localization with subpixel precision.

The presented method is not a hardware-based reimplemen-
tation of the AFMM. As discussed in Sec. 2, the AFMM
is essentially a level set evolution, whereas our splatting
performs direct information propagation from the bound-
ary to its inside. The only direct overlap of the two is the
skeletal simplification scheme based on collapsed boundary
length. Also, it is interesting to compare our performance
with the 3D distance transform in graphics hardware pro-
posed by [SP03]. For an equal amount of rendered voxels
(vs pixels in our case) and voxels on the 3D input surface (vs
pixels on the 2D input boundary in our case), our method has
about 1.8 times less ’pixel throughput’. However, we solve a
far more general problem with arbitrary distance functions,

which neither allow a-priori bounds on the Voronoi cells nor
a direct computation of distances in the fragment programs.
Moreover, we compute the skeleton, so we propagate three
signals (DT,U1,U2) instead of one.

We envisage a number of extensions of the presented
method. Interactive visualization and exploration of skele-
tons for different metrics will give more insight in the simi-
larities and differences thereof. New metrics could be found
that allow more effective skeletal shape representation and
visualization than the classical Euclidean one. For example,
anisotropic distance metrics may open new ways for shape
modeling and visualization. Computing k order Voronoi di-
agrams which record, for every point, the kth closest site,
should be easy, by storing k distance texture values instead
of one. Finally, we consider extending the method to handle
generalized FDTs and robust skeletons in 3D.
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