
The Metric Lens: Visualizing Metrics and Structure on Software Diagrams

Heorhiy Byelas and Alexandru Telea
Institute of Mathematics and Computer Science, University of Groningen, the Netherlands

h.v.byelas@rug.nl, a.c.telea@rug.nl

Abstract

We present the metric lens, a new visualization of method-
level code metrics atop UML class diagrams, which allows
performing metric-metric and metric-structure correlations
on large diagrams. We demonstrate an interactive visualiza-
tion tool in which users can quickly specify a wide palette
of analyses, based on color-mapping, scaling, and sorting
metric tables on UML diagrams. We illustrate our technique
and tool by a sample complexity assessment analysis of a
real-world C++ software system.

1. Introduction

In reverse engineering, one way to understand source code
is to represent it on a higher abstraction level,e.g. as design
or architectures. For object-oriented systems, UML diagrams
are be a conventional choice to represent the system on a de-
sign level. Diagrams show the types of software elements and
relationships in a system,i.e. the system structure. Software
attributes, encoded by software metrics, convey complemen-
tary insights in system properties such as quality, maintain-
ability, and modularity. Combining metrics and structure in-
formation in a single representation should be an effective
way to help several types of system assessments, such as
spotting (cor)relations among code attributes, relations, and
diagram element types.

We propose here a technique that combines thetable
lens, a known technique for visualizing numerical tables,
with UML diagrams, to scalably visualize code-level soft-
ware metrics and structure. Section 2 presents our new
structure-and-metric visualization and outlines its implemen-
tation. Section 3 shows a case study of our technique in
understanding a real-world software system. Section 4 dis-
cusses the results and future work directions.

2. Metric Lens

As basis of our visualization, we use a traditional UML
class diagram, which shows all textual methods1 within each

1Data members (also called data fields) are treated identically

class frame (see Fig. 1). For each classCi, we organize its
method-level software metricsmij , extracted from code us-
ing one of the many available tools (e.g. Understand or SD-
metrics), in a table structureTi, with one row per methodi
and one column per metricj. Next, we render each tableTi

atop of each classCi in the diagram, using an adaption of the
known table-lens visualization technique [2]. Missing metric
values have no icon. The order of rows and columns in all
metric tables of a diagram can be changed by various sort-
ing criteria, such as method names or metric values, enabling
different types of analyses.

Each table cellTij shows its metric value using a metric
icon, i.e. a horizontal bar, scaled and/or colored by its metric
valuemij . The actual value-to-color or value-to-size map-
pings are fully user-controlled by a separate metric-lenswid-
get, which acts also as a metric-value legend (Fig. 1 low-left).
Next, we provide two independent zoom mechanisms, atdia-
gram andclass level. Diagram zooming allows users to focus
on a specific subsystem. Class-level zooming, in combina-
tion with metric table sorting, is essentially the application of
the classical table-lens principle within each class frame, and
allows smoothly navigating between seeing an overview of
each class as a set of colored bar graphs (when zoomed out),
and seeing the individual member signatures (when zoomed
in).

We implemented the metric-lens in a fully integrated
reverse-engineering tool aimed at C++ code bases, atop the
MetricView UML diagram tool [3]. Our tool includes soft-
ware architecture extraction from source code and metric
computation (not detailed here). All visualization is im-
plemented using OpenGL. Additionally, our tool visualizes
other architectural aspects using theareas-of-interest (AOI)
technique [1].

3. Case study

To assess the effectiveness of our metric-lens visualiza-
tion, we conducted a case study. Our question was: Could
an investigator, not involved in a system’s development but
experienced in C++ and reverse-engineering, use our metric-
lens visualization tool for a short period, to derive insight
regarding the system’s maintenance problems?



UML Data 

Model

Visualization

Data Model

Visualization Core

most complex and largest classes

A

A

A

B

B

B

B

A

moderately complex and large classes

LOC MVG

Figure 1. Complexity assessment of a UML diagram with three subsystems

In the example shown here, we analyze how complexity
is spread over a C++ system containing about 15000 lines
of code, in search for so-called complexity hot-spots,i.e.
classes which may prove hard to understand or maintain. Fig-
ure 1 shows an extracted UML diagram with three subsys-
tems (shown as colored areas-of-interest): UML Data Model,
Visualization Data Model and Visualization Core (imple-
mentation). We computed the following metrics: lines-of-
code (LOC) and McCabe’s cyclomatic complexity (MV G)
for each method. Using the metric-lens widget (shown lower-
right), we mapped theLOC metric to rainbow-colormapped
constant-size bars, the red color denoting values of 50 or
larger. This is the left bar-graph in the classes in the figure.
TheMV G metric is visualized with purple bars scaled to the
metric value, the longest bar denoting values of 10 or larger.
This is the right bar-graph in the classes in the figure. Next,
we sorted the metric tables decreasingly onLOC (from top
to bottom of the class icons). We now quickly discover meth-
ods larger than 50 LOC and/or having a complexity above 10,
which are figures that we consider to indicate a “complex”
method, by looking for red, respectively long purple, bars.

We see that the Data Model classes are quite small and
of low complexity, so Data Model is relatively simple and
easy to maintain. In contrast, Visualization Core has large
classes with large methods (warm colors in left bar braphs),
and also the largestand most complex classe (markedA).
This subsystem concentrates likely the highest complexity.

Finally, Visualization Data Model contains small and low-to-
medium complexity classes (e.g. the two markedB).

4. Conclusion and Future Work

During the validation phase, the developer confirmed the
observations made, and conclusions drawn, by the investiga-
tor. Summarizing, we can say that combining the metric-lens
technique (showing numerical values) with UML diagrams
(showing system structure) effectively helps understanding
the relations between metrics and structure at a finer level
than diagrams themselves. We next plan to investigate how
to display more metrics on the limited space offered by a
class in a UML diagram, and also how to make the visual
correlation of diagram relations and metrics more effective.

References

[1] H. Byelas and A. Telea. Visualization of areas of interest in
software architecture diagrams. InProc. ACM SoftVis, pages
105–114, 2006.

[2] R. Rao and S. Card. The table lens: Merging graphical and
symbolic representations in an interactive focus+context visu-
alization for tabular information. InProc. CHI, pages 222–230.
ACM, 1994.

[3] M. Termeer, C. Lange, A. Telea, and M. Chaudron. Visual
exploration of combined architectural and metric information.
In Proc. VISSOFT, pages 21–26. IEEE Press, 2005.


