
Numerical Methods for Time-Dependent PDEs

Spring 2024

Exercises for Lecture 1

”well-posedness”

Exercise 1.1

Consider the heat equation in one space dimension:

{ ut = δuxx, 0 < x < 1, t > 0, δ > 0,
u(x, 0) = u0(x),
u(0, t) = u(1, t) = 0.

(1)

(a) show that: ||u(., t)||22 ≤ ||u0(.)||22. (”energy estimate”)
(b) using (a), show that the solution of PDE model (1) is unique.
(c) also, show continuity with respect to initial conditions.
Note that the existence of the solution of PDE (1) can be established using
Fourier series.

”PDE solutions”

Exercise 1.2

Solve the PDEs:

(a) yuy = u.
(b) cux − uy = 0. (introduce new variables)
(c)* uxx − uyy = 0. (introduce new variables)

Exercise 1.3

Consider the potential equation or Laplace equation ∆u = 0. Identify the
points (x, y) ∈ R2 with z = x + iy ∈ C. Check that u(x, y) = ℜ(f(z)) is the
solution of the potential equation for, for example, f(z) = 1, f(z) = z2 and
f(z) = log(z − z0), z0 ∈ C \ {0} (polar coordinates!).

Exercise 1.4

Check that both u(x, y) = sin(cx)e−c2y and u(x, y) = 1√
4πy

∫∞
−∞ u0(ξ)e

− (x−ξ)2

4y dξ

(with u(x, 0) = u0(x)) solve the PDE uxx − uy = 0.
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Exercise 1.5

Check that1:

(a) if u(x, y) and v(x, y) are solutions of the system:{
ux + vy = 0,
vx + uy = 0,

then they also solve the PDE in 1.1(c).
(b) if u(x, y) and v(x, y) are solutions of the Cauchy-Riemann differential equa-
tions: {

ux + vy = 0,
vx − uy = 0,

then they also solve the potential equation in exercise 1.3.
(c) if u(x, y) and v(x, y) are solutions of the PDE system:{

ux + vy = 0,
vx + u = 0,

then they also solve the PDE in exercise 1.4.

”classification”

Exercise 1.6

Classify each of the PDEs below as either hyperbolic, parabolic, or elliptic, de-
termine the characteristics (and transform the equations to canonical form*):

(a) 4uxx + 5uxy + uyy + ux + uy = 2
(b) yuxx + (x+ y)uxy + xuyy = 0
(c) yuxx − 2uxy + exuyy + x2ux − u = 0
(d) uxx + yuyy = 0
(e) y2uxx + x2uyy = 0
(f) xuxx + uyy = x2.

Exercise 1.7

(a) Show that the nonlinear equation u2uxx + 2uxuyuxy − u2uyy = 0 is hyper-
bolic for every solution u(x, y).

(b) Show that the nonlinear equation (1−u2
x)uxx− 2uxuyuxy +(1−u2

y)uyy = 0
in certain kinds of compressible fluid flow models is elliptic, parabolic, or hy-
perbolic for those solutions u(x, y) such that, respectively, |∇u| < 1, |∇u| = 1,
or |∇u| > 1.

1you may interchange partial derivatives.
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*Exercise 1.8

The following two PDEs are given:

(a) 2uxx + 3uxy + uyy = 0,
(b) uxx + 4uxuyuxy + 4uyy = 0.

Determine the type of both PDEs (hyperbolic, parabolic, elliptic).
(*Also, find the general solution u(x, y). For this, make use of a coordinate
transformation (x, y) → (ξ, η) to write the PDEs in a canonical form.)

”Fourier”

Exercise 1.9

Use the Fourier transform method to solve the following two linear PDEs with
initial condition u(x, 0) = u0(x):

(a) ut = uxx − 12u,
(b) ut = κuxx + γux.
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*Exercise 1.10

Show that for the linearized Korteweg-de Vries model3

ut = uxxx, u(x, 0) = u0(x)

we obtain (using Fourier transforms):

u(x, t) =
1√
2π

∫ ∞

−∞
û0(ξ)e

iξ(x−ξ2t) dξ,

with
|û(ξ, t)| = |û0(ξ)| ∀ t ≥ 0

just as for the advection equation. Here, we denote by û and û0 the Fourier-
transforms of the functions u and u0, respectively. Remark that the velocity at
wavenumber ξ is given by ξ2. These types of waves are called dispersive waves:
smooth initial data turn into oscillatory solutions for later points of time. A
big difference with the advection equation is that now the initial condition will
not be preserved, in general. The Fourier-components disperse relative to each
other.

2This equation models heat transfer in a long heated bar that is exchanging heat with the
surrounding medium.

3This PDE models water waves on shallow water surfaces.
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Exercise 1.11

Consider the PDE
ut = −uxxxx, u(x, 0) = u0(x).

Show that
û(ξ, t) = e−ξ4tû0(ξ)

and comment on the damping effect on the initial condition compared to the
damping in the heat equation. What happens for the PDEs ut = −uxx or
ut = +uxxxx?

Exercise 1.12

Use the Fourier series method (with separation of variables) to solve the fol-
lowing two linear PDEs with x ∈ [0, 1], initial condition u(x, 0) = u0(x) and
zero-Dirichlet boundary conditions u(0, t) = u(1, t) = 0:

(a) ut = uxx + 4ux (convection-diffusion PDE)
(b) utt − c2uxx + d2u = 0 (the Klein-Gordon problem)4.

*Exercise 1.13

In this exercise we are looking for a solution of the PDE model:

utt = −uxx,

with u(x, 0) = sin(2πx), ut(x, 0) = 0 and u(0, t) = u(1, t), ux(0, t) = ux(1, t)
(periodic boundary conditions).

(a) we write the solution in the form

u(x, t) =

∞∑
k=1

ak(t) sin(2πkx) +

∞∑
k=0

bk(t) cos(2πkx).

Show that ak = bk = 0 for all k ̸= 1 and that:{
ä1(t)− 4π2a1(t) = 0,

b̈1(t)− 4π2b1(t) = 0.

(b) re-write these two second-order ODEs as a system of four first-order ODEs.
Determine the eigenvalues and eigenvectors of this system and conclude that
u(x, t) = cosh(2πt) sin(2πx).

4extra initial condition: ut(x, 0) = 0.
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(c) A similar question for the PDE utt = ux with u(x, 0) = sin(2πx), ut(x, 0) = 0
and u(0, t) = u(1, t). Check that in this case: a1(t) = cosh(

√
πt) cos(

√
πt) and

b1(t) = sinh(
√
πt) sin(

√
πt).

Exercise 1.14

Use the Fourier series method (with separation of variables) to solve the linear
heat equation

ut = κuxx, κ ∈ R

with x ∈ [0, 1], initial condition u(x, 0) = sin(πx) and zero-Dirichlet boundary
conditions u(0, t) = u(1, t) = 0. Comment on the cases κ < 0 (backward heat
equation) and κ > 0 (forward heat equation).

”characteristics”

Exercise 1.15

Consider the hyperbolic PDE:

ut + aux + bu = f(x, t),

with initial condition u(x, 0) = u0(x), constants a, b and given function f . Ap-
ply a special coordinate transformation (x, t) → (ξ, τ) to solve this PDE.

Exercise 1.16

Solve the PDE:

ut +
1

1 + 1
2 cos(x)

ux = 0,

with initial condition u(x, 0) = u0(x). Show that the solution is given by
u(x, t) = u0(ξ), where ξ is the unique solution of the equation ξ + 1

2 sin(ξ) =
x+ 1

2 sin(x)− t.

*Exercise 1.17

Consider the equation:
ut + xux = 0,
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with initial condition

u(x, 0) = u0(x) =

{
1, 0 ≤ x ≤ 1,
0, elsewhere.

Show that the solution is given by u(x, t) = u0(ξ), where ξ is the unique solution
of the equation ξ + 1

2 sin(ξ) = x+ 1
2 sin(x)− t.

Show that, for t > 0, the solution is given by

u(x, t) =

{
1, 0 ≤ x ≤ et,
0, elsewhere.
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