Numerical Methods for Time-Dependent PDEs

Spring 2024

Exercises for Lecture 10

Exercise 10.1

Consider the following stationary convection-diffusion PDE:

$$
\begin{equation*}
-\Delta u+\beta \cdot \nabla u=g(x, y),(x, y) \in \Omega:=[0,1] \times[0,1] \tag{1}
\end{equation*}
$$

with $g \in \mathcal{L}_{2}(\Omega)$, constant velocity vector β and homogeneous Dirichlet boundary conditions $\left.u\right|_{\partial \Omega}=0$.
(a) Formulate the variational form connected to PDE (1):

$$
\begin{equation*}
b(u, v)=(g, v):=L(g), \quad \forall v \in V \tag{2}
\end{equation*}
$$

Which space V would be appropriate? Describe the norm $\|h\|_{V}$ for an arbitrary function $v \in V$.

Let V_{h} be the space of piecewise linear functions: $V_{h} \subset V$.
(b) What kind of subdivision of the domain would you choose? Sketch a typical basisfunction $\phi_{i}(x, y) \in V_{h}$.

Next, choose $\beta=(0,0)^{T}$.
(c) Show that the bilinear form $b(.,$.$) in (2) is V$-elliptic and continuous.
(d) Prove that the solution $u(x, y)$ of (2) satisfies the stability estimate:

$$
\|u\|_{V} \leq \frac{\Lambda}{\alpha}
$$

for certain positive constants Λ and α. Where do Λ and α come from?
(e) Show that, for the finite element solution $u_{h}(x, y) \in V_{h}$ of the discrete system,

$$
\begin{equation*}
b\left(u_{h}, v\right)=L(v), \quad \forall v \in V_{h} \tag{3}
\end{equation*}
$$

the following two estimates hold:

$$
\begin{aligned}
& \left\|u_{h}\right\|_{V} \leq \frac{\Lambda}{\alpha} \quad(\text { stability }) \\
& \left\|u-u_{h}\right\|_{V} \leq \frac{\gamma}{\alpha}\|u-v\|_{V}, \quad \forall v \in V_{h}, \gamma>0
\end{aligned}
$$

(the second inequality indicates that u_{h} is the 'best approximation' of u in the space V_{h})
(f) Check that both problem (2) and problem (3) have a unique solution.

Consider now again the case $\beta \neq(0,0)^{T}$ and the finite element approximation $u_{h}=\sum_{j} \xi_{j} \phi_{j} \in V_{h}$.
(g) Work out the general form of the linear system $\mathcal{C} \vec{\xi}=\vec{g}$. In particular, describe the structure of the matrix \mathcal{C} in terms of the innerproducts. Is the matrix \mathcal{C} symmetric?
(h) For the one-dimensional case, calculate the innerproducts from part (g).

Exercise 10.2

In this exercise we consider the bi-harmonic model

$$
\begin{align*}
& \Delta \Delta u=f(x, y), \quad(x, y) \in \Omega \\
& u=\frac{\partial u}{\partial n}=0, \quad(x, y) \in \partial \Omega \tag{4}
\end{align*}
$$

where $\Omega \subset \mathbb{R}^{2}$ is an open bounded region, n the outward normal vector and $f \in \mathcal{L}^{2}(\Omega)$. This PDE models a thin elastic plate with external forces.

Introduce the function space $\mathcal{H}_{0}^{2,2}(\Omega):=\left\{v \in \mathcal{H}^{2,2}(\Omega): v=\frac{\partial v}{\partial n}=0\right.$ on $\left.\partial \Omega\right\}$, where $\mathcal{H}^{2,2}(\Omega)=\left\{v \in \mathcal{L}^{2}(\Omega): D^{\alpha} v \in \mathcal{L}^{2}, \forall|\alpha| \leq 2\right\}$.
(a) Show that the variational problem for this model can be written as
find the solution u that satisfies:

$$
\begin{equation*}
a(u, v):=\int_{\Omega} \Delta u \Delta v d \Omega=\int_{\Omega} f v d \Omega:=L(v), \quad \forall v \in \mathcal{H}_{0}^{0,0}(\Omega) \tag{5}
\end{equation*}
$$

(b) Which space of piecewise polynomials ${ }^{1}$ would be useful for the finite element space V_{h}. Discuss why piecewise linear polynomials are not suitable for this purpose.

[^0]
Exercise 10.3

Consider the following one-dimensional time-dependent convection-diffusion PDE model:

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\epsilon \frac{\partial^{2} u}{\partial x^{2}}-\beta \frac{\partial u}{\partial x}+f(t), x \in \Omega:=[0, \pi] \tag{6}
\end{equation*}
$$

with $f \in \mathcal{L}_{2}(\Omega)$, initial condition $u(x, 0)=u^{0}(x)$, constant velocity β, constant $\epsilon>0$ and homogeneous Dirichlet boundary conditions $\left.u\right|_{\partial \Omega}=0$.
(a) First, show that, for $\beta=f=0$ and $\epsilon=1$, the following two relations hold:

$$
\begin{equation*}
u(x, t)=\sum_{j=1}^{\infty} u_{j}^{0} \mathrm{e}^{-j^{2} t} \sin (j x) \text { with } u_{j}^{0}=\sqrt{\frac{2}{\pi}} \int_{0}^{\pi} u^{0}(x) \sin (j x) d x \tag{7}
\end{equation*}
$$

and

$$
\|u(t)\|_{\mathcal{L}^{2}(\Omega)} \leq\|u(0)\|_{\mathcal{L}^{2}(\Omega)} .
$$

(b) Re-write PDE (9) in the variational form:

$$
\begin{equation*}
(\dot{u}(t), v)+a(u, v)=(f(t), v), \quad \forall v \in V, t>0 . \tag{8}
\end{equation*}
$$

Give the bilinear form $a(.,$.$) .$
(c) Consider the finite-dimensional space of piecewise linear functions $V_{h} \subset V$ and choose the testfunctions v from the same space V_{h}. Give the semi-discrete ODE system in terms of the finite element solution u_{h}.
(d) For $\beta=f=0$ and $\epsilon=1$, show that

$$
\left\|u_{h}(t)\right\|_{\mathcal{L}^{2}(\Omega)} \leq\|u(0)\|_{\mathcal{L}^{2}(\Omega)} .
$$

Exercise 10.4

Consider the two-dimensional version of PDE (9):

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\beta_{1} \frac{\partial u}{\partial x}+\beta_{2} \frac{\partial u}{\partial y}=\epsilon \Delta u+f(t), x \in \Omega \subset \mathbb{R}^{2} \tag{9}
\end{equation*}
$$

with $\left.u\right|_{\partial \Omega}=0$ and $u(x, y, 0)=u^{0}(x, y),(x, y) \in \Omega$.
(a) Work out the variational formulation with test functions $v \in V_{h} . \quad\left(V_{h}\right.$ a finite dimensional subspace of $\left.V=\mathcal{H}_{0}^{1}(\Omega)\right)$.
(b) Apply Euler-Backward to the semi-discrete ODE system and show that, for the case $f=0$:

$$
\left\|u_{h}^{n}\right\| \leq\left\|u_{h}^{0}\right\| \leq\left\|u^{0}\right\|, \quad n=1, \ldots, N .
$$

(c) A similar question as in part (b), but now for the Crank-Nicolson method applied to the ODE system.

Exercise 10.5

Formulate the Galerkin method for the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, \quad x \in(0,1), t>0
$$

Show that we obtain an ODE system of the form:

$$
\mathcal{A} \ddot{\vec{u}}+\mathcal{B} \vec{u}+\vec{f}=\overrightarrow{0}
$$

Describe the finite element matrices \mathcal{A}, \mathcal{B} and the vector \vec{f}.

*Exercise 10.6

Consider again PDE (9). Define the operator:

$$
L(u):=\epsilon \frac{\partial^{2} u}{\partial x^{2}}-\beta \frac{\partial u}{\partial x}+f(t)
$$

(a) Choose the piecewise linear function space V_{h} for the finite element approximation u_{h}. Calculate $\frac{\partial u_{h}}{\partial t}$.
(b) Minimize (using a least-squares approach and the \mathcal{L}^{2} norm): $\frac{\partial u_{h}}{\partial t}-L\left(u_{h}\right)$, i.e, write:

$$
\min _{\dot{u}_{1}, \ldots, \dot{u}_{N}}\left\|\frac{\partial u_{h}}{\partial t}-L\left(u_{h}\right)\right\|_{\mathcal{L}^{2}(\Omega)}
$$

and find the ODE system in terms of $\dot{\vec{u}}:=\left(\dot{u}_{1}, \ldots, \dot{u}_{N}\right)^{T}$.
(c) Discus the correspondence with the ODE system from part (b) and the one from exercise 7.3 (c).

*Exercise 10.7

The Sobolev space $\mathcal{H}^{k, k}(\Omega)$ is defined by:

$$
\mathcal{H}^{k, k}(\Omega)=\left\{v \in \mathcal{L}^{2}(\Omega): D^{\alpha} v \in \mathcal{L}^{2}, \forall|\alpha| \leq k\right\}
$$

(a) Check that, for the function $g(x)=x^{-\beta}, x \in[0,1]$, the following two relations hold:

$$
\begin{aligned}
& g \in \mathcal{L}^{2}([0,1]) \Leftrightarrow \beta<\frac{1}{2} \\
& g \in \mathcal{H}^{1,2}([0,1]) \Leftrightarrow \beta<-\frac{1}{2}
\end{aligned}
$$

Consider the unit ball in \mathbb{R}^{3} :

$$
\mathcal{B}:=\left\{\vec{x} \in \mathbb{R}^{3}:\|\vec{x}\|_{2} \leq 1,\right\}
$$

and the function $v(\vec{x})=\|\vec{x}\|_{2}^{\lambda}(\lambda \in \mathbb{R})$.
(b) Show that ${ }^{2}$:

$$
\begin{aligned}
& v \in \mathcal{L}^{2}(\mathcal{B}) \Leftrightarrow \lambda>-\frac{3}{2}, \\
& \text { and } \\
& v \in \mathcal{H}^{k, 2}(\mathcal{B}) \Leftrightarrow \lambda>k-\frac{3}{2} .
\end{aligned}
$$

*Exercise 10.8

What do we mean with the 'Poincaré-Friedrichs inequality'?
(a) Consider an bounded open region in \mathbb{R}^{d} (with a sufficiently smooth boundary $\partial \Omega)$. Let $u \in \mathcal{H}_{0}^{1,2}(\Omega)$. Then there is a positive constant $c_{*}(\Omega)$ such that for all $u \in \mathcal{H}_{0}^{1,2}(\Omega)$ the following inequality holds:

$$
\begin{equation*}
\int_{\Omega}|u(\vec{x})|^{2} d \vec{x} \leq c_{*} \sum_{i=1}^{d} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{2} d \vec{x} . \tag{10}
\end{equation*}
$$

This inequality is being used very frequently in the analysis of the finite element method, among others, to verify the so-called V-ellipticity property.
(b) Take $\Omega=[0,1] \subset \mathbb{R}$, i.e. $d=1$. Show that inequality (10) holds ${ }^{3}$ for $c_{*}=\frac{1}{2}$.
(c) The same question as in part (b), but now for $\Omega=[0,1] \times[0,1] \subset \mathbb{R}^{2}$, i.e. $d=2$, and $c_{*}=\frac{1}{4}$.

[^1]
[^0]: ${ }^{1}$ answer this question for the 1 D case.

[^1]: ${ }^{2}$ use spherical coordinates in \mathbb{R}^{3}.
 ${ }^{3}$ use the inequality of Cauchy-Schwarz.

