Numerical Methods for Time-Dependent PDEs Spring 2024

Exercises for Lecture 10

Exercise 10.1

Consider the following stationary convection-diffusion PDE:

$$-\Delta u + \beta \cdot \nabla u = g(x, y), \ (x, y) \in \Omega := [0, 1] \times [0, 1]$$
(1)

with $g \in \mathcal{L}_2(\Omega)$, constant velocity vector β and homogeneous Dirichlet boundary conditions $u|_{\partial\Omega} = 0$.

(a) Formulate the variational form connected to PDE (1):

$$b(u, v) = (g, v) := L(g), \quad \forall v \in V.$$
 (2)

Which space V would be appropriate? Describe the norm $||h||_V$ for an arbitrary function $v \in V$.

Let V_h be the space of piecewise linear functions: $V_h \subset V$.

(b) What kind of subdivision of the domain would you choose? Sketch a typical basis function $\phi_i(x, y) \in V_h$.

Next, choose $\beta = (0, 0)^T$.

- (c) Show that the bilinear form b(.,.) in (2) is V-elliptic and continuous.
- (d) Prove that the solution u(x, y) of (2) satisfies the stability estimate:

$$||u||_V \le \frac{\Lambda}{\alpha}$$

for certain positive constants Λ and α . Where do Λ and α come from?

(e) Show that, for the finite element solution $u_h(x,y) \in V_h$ of the discrete system,

$$b(u_h, v) = L(v), \quad \forall \ v \in V_h \tag{3}$$

the following two estimates hold:

$$\begin{split} ||u_h||_V &\leq \frac{\Lambda}{\alpha} \quad (stability), \\ ||u - u_h||_V &\leq \frac{\gamma}{\alpha} ||u - v||_V, \quad \forall \ v \in V_h, \gamma > 0. \end{split}$$

(the second inequality indicates that u_h is the 'best approximation' of u in the space V_h)

(f) Check that both problem (2) and problem (3) have a unique solution.

Consider now again the case $\beta \neq (0,0)^T$ and the finite element approximation $u_h = \sum_i \xi_j \phi_j \in V_h$.

(g) Work out the general form of the linear system $C\vec{\xi} = \vec{g}$. In particular, describe the structure of the matrix C in terms of the innerproducts. Is the matrix C symmetric?

(h) For the one-dimensional case, calculate the innerproducts from part (g).

Exercise 10.2

In this exercise we consider the bi-harmonic model

$$\Delta\Delta u = f(x, y), \quad (x, y) \in \Omega,$$

$$u = \frac{\partial u}{\partial n} = 0, \quad (x, y) \in \partial\Omega,$$

(4)

where $\Omega \subset \mathbb{R}^2$ is an open bounded region, *n* the outward normal vector and $f \in \mathcal{L}^2(\Omega)$. This PDE models a thin elastic plate with external forces.

Introduce the function space $\mathcal{H}_0^{2,2}(\Omega) := \{ v \in \mathcal{H}^{2,2}(\Omega) : v = \frac{\partial v}{\partial n} = 0 \text{ on } \partial \Omega \},\$ where $\mathcal{H}^{2,2}(\Omega) = \{ v \in \mathcal{L}^2(\Omega) : D^{\alpha}v \in \mathcal{L}^2, \forall |\alpha| \leq 2 \}.$

(a) Show that the variational problem for this model can be written as

find the solution u that satisfies:

$$a(u,v) := \int_{\Omega} \Delta u \Delta v \ d\Omega = \int_{\Omega} f \ v \ d\Omega := L(v), \quad \forall v \in \mathcal{H}_0^{0,0}(\Omega).$$
⁽⁵⁾

(b) Which space of piecewise polynomials¹ would be useful for the finite element space V_h . Discuss why piecewise linear polynomials are not suitable for this purpose.

¹answer this question for the 1D case.

Exercise 10.3

Consider the following one-dimensional time-dependent convection-diffusion PDE model:

$$\frac{\partial u}{\partial t} = \epsilon \frac{\partial^2 u}{\partial x^2} - \beta \frac{\partial u}{\partial x} + f(t), \ x \in \Omega := [0, \pi]$$
(6)

with $f \in \mathcal{L}_2(\Omega)$, initial condition $u(x,0) = u^0(x)$, constant velocity β , constant $\epsilon > 0$ and homogeneous Dirichlet boundary conditions $u|_{\partial\Omega} = 0$.

(a) First, show that, for $\beta = f = 0$ and $\epsilon = 1$, the following two relations hold:

$$u(x,t) = \sum_{j=1}^{\infty} u_j^0 e^{-j^2 t} \sin(jx) \quad \text{with} \quad u_j^0 = \sqrt{\frac{2}{\pi}} \int_0^{\pi} u^0(x) \sin(jx) \, dx,$$

and (7)

 $||u(t)||_{\mathcal{L}^{2}(\Omega)} \leq ||u(0)||_{\mathcal{L}^{2}(\Omega)}.$

(b) Re-write PDE (9) in the variational form:

$$(\dot{u}(t), v) + a(u, v) = (f(t), v), \quad \forall \ v \in V, t > 0.$$
(8)

Give the bilinear form a(.,.).

(c) Consider the finite-dimensional space of piecewise linear functions $V_h \subset V$ and choose the testfunctions v from the same space V_h . Give the semi-discrete ODE system in terms of the finite element solution u_h .

(d) For $\beta = f = 0$ and $\epsilon = 1$, show that

$$||u_h(t)||_{\mathcal{L}^2(\Omega)} \le ||u(0)||_{\mathcal{L}^2(\Omega)}.$$

Exercise 10.4

Consider the two-dimensional version of PDE (9):

$$\frac{\partial u}{\partial t} + \beta_1 \frac{\partial u}{\partial x} + \beta_2 \frac{\partial u}{\partial y} = \epsilon \Delta u + f(t), \ x \in \Omega \subset \mathbb{R}^2$$
(9)

with $u|_{\partial\Omega} = 0$ and $u(x, y, 0) = u^0(x, y), (x, y) \in \Omega$.

(a) Work out the variational formulation with test functions $v \in V_h$. $(V_h$ a finite dimensional subspace of $V = \mathcal{H}_0^1(\Omega)$).

(b) Apply Euler-Backward to the semi-discrete ODE system and show that, for the case f = 0:

$$||u_h^n|| \le ||u_h^0|| \le ||u^0||, \quad n = 1, ..., N.$$

(c) A similar question as in part (b), but now for the Crank-Nicolson method applied to the ODE system.

Exercise 10.5

Formulate the Galerkin method for the wave equation

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}, \ \ x \in (0,1), t>0.$$

Show that we obtain an ODE system of the form:

$$\mathcal{A}\ddot{\vec{u}} + \mathcal{B}\vec{u} + \vec{f} = \vec{0}$$

Describe the finite element matrices \mathcal{A}, \mathcal{B} and the vector \vec{f} .

*Exercise 10.6

Consider again PDE (9). Define the operator:

$$L(u) := \epsilon \frac{\partial^2 u}{\partial x^2} - \beta \frac{\partial u}{\partial x} + f(t)$$

(a) Choose the piecewise linear function space V_h for the finite element approximation u_h . Calculate $\frac{\partial u_h}{\partial t}$.

(b) Minimize (using a least-squares approach and the \mathcal{L}^2 norm): $\frac{\partial u_h}{\partial t} - L(u_h)$, i.e., write:

$$\min_{\dot{u}_1,\dots,\dot{u}_N} || \frac{\partial u_h}{\partial t} - L(u_h) ||_{\mathcal{L}^2(\Omega)}$$

and find the ODE system in terms of $\dot{\vec{u}} := (\dot{u}_1, ..., \dot{u}_N)^T$.

(c) Discus the correspondence with the ODE system from part (b) and the one from exercise 7.3 (c).

*Exercise 10.7

The Sobolev space $\mathcal{H}^{k,k}(\Omega)$ is defined by:

$$\mathcal{H}^{k,k}(\Omega) = \{ v \in \mathcal{L}^2(\Omega) : D^{\alpha}v \in \mathcal{L}^2, \forall \ |\alpha| \le k \}.$$

(a) Check that, for the function $g(x) = x^{-\beta}, x \in [0, 1]$, the following two relations hold:

$$g \in \mathcal{L}^{2}([0,1]) \Leftrightarrow \beta < \frac{1}{2},$$
$$g \in \mathcal{H}^{1,2}([0,1]) \Leftrightarrow \beta < -\frac{1}{2}.$$

Consider the unit ball in \mathbb{R}^3 :

$$\mathcal{B} := \{ \vec{x} \in \mathbb{R}^3 : ||\vec{x}||_2 \le 1, \}$$

and the function $v(\vec{x}) = ||\vec{x}||_2^{\lambda} \ (\lambda \in \mathbb{R}).$

(b) Show that²:

$$v \in \mathcal{L}^{2}(\mathcal{B}) \Leftrightarrow \lambda > -\frac{3}{2},$$

and
 $v \in \mathcal{H}^{k,2}(\mathcal{B}) \Leftrightarrow \lambda > k - \frac{3}{2}.$

*Exercise 10.8

What do we mean with the 'Poincaré-Friedrichs inequality'?

(a) Consider an bounded open region in \mathbb{R}^d (with a sufficiently smooth boundary $\partial\Omega$). Let $u \in \mathcal{H}^{1,2}_0(\Omega)$. Then there is a positive constant $c_*(\Omega)$ such that for all $u \in \mathcal{H}^{1,2}_0(\Omega)$ the following inequality holds:

$$\int_{\Omega} |u(\vec{x})|^2 \, d\vec{x} \le c_* \sum_{i=1}^d \int_{\Omega} |\frac{\partial u}{\partial x_i}|^2 \, d\vec{x}.$$
(10)

This inequality is being used very frequently in the analysis of the finite element method, among others, to verify the so-called V-ellipticity property.

(b) Take $\Omega = [0,1] \subset \mathbb{R}$, i.e. d = 1. Show that inequality (10) holds³ for $c_* = \frac{1}{2}$.

(c) The same question as in part (b), but now for $\Omega = [0,1] \times [0,1] \subset \mathbb{R}^2$, i.e. d = 2, and $c_* = \frac{1}{4}$.

²use spherical coordinates in \mathbb{R}^3 .

³use the inequality of Cauchy-Schwarz.