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Spring 2024

Exercises for Lecture 10

Exercise 10.1

Consider the following stationary convection-diffusion PDE:

−∆u+ β · ∇u = g(x, y), (x, y) ∈ Ω := [0, 1]× [0, 1] (1)

with g ∈ L2(Ω), constant velocity vector β and homogeneous Dirichlet bound-
ary conditions u|∂Ω = 0.

(a) Formulate the variational form connected to PDE (1):

b(u, v) = (g, v) := L(g), ∀ v ∈ V. (2)

Which space V would be appropriate? Describe the norm ||h||V for an arbitrary
function v ∈ V .

Let Vh be the space of piecewise linear functions: Vh ⊂ V .

(b) What kind of subdivision of the domain would you choose? Sketch a typical
basisfunction ϕi(x, y) ∈ Vh.

Next, choose β = (0, 0)T .

(c) Show that the bilinear form b(., .) in (2) is V -elliptic and continuous.

(d) Prove that the solution u(x, y) of (2) satisfies the stability estimate:

||u||V ≤ Λ

α

for certain positive constants Λ and α. Where do Λ and α come from?

(e) Show that, for the finite element solution uh(x, y) ∈ Vh of the discrete
system,

b(uh, v) = L(v), ∀ v ∈ Vh (3)

the following two estimates hold:

||uh||V ≤ Λ
α (stability),

||u− uh||V ≤ γ
α ||u− v||V , ∀ v ∈ Vh, γ > 0.
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(the second inequality indicates that uh is the ‘best approximation’ of u in the
space Vh)

(f) Check that both problem (2) and problem (3) have a unique solution.

Consider now again the case β ̸= (0, 0)T and the finite element approxima-
tion uh =

∑
j ξjϕj ∈ Vh.

(g) Work out the general form of the linear system Cξ⃗ = g⃗. In particular,
describe the structure of the matrix C in terms of the innerproducts. Is the
matrix C symmetric?

(h) For the one-dimensional case, calculate the innerproducts from part (g).

Exercise 10.2

In this exercise we consider the bi-harmonic model

∆∆u = f(x, y), (x, y) ∈ Ω,

u = ∂u
∂n = 0, (x, y) ∈ ∂Ω,

(4)

where Ω ⊂ R2 is an open bounded region, n the outward normal vector and
f ∈ L2(Ω). This PDE models a thin elastic plate with external forces.

Introduce the function space H2,2
0 (Ω) := {v ∈ H2,2(Ω) : v = ∂v

∂n = 0 on ∂Ω},
where H2,2(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2,∀ |α| ≤ 2}.

(a) Show that the variational problem for this model can be written as

find the solution u that satisfies:

a(u, v) :=
∫
Ω
∆u∆v dΩ =

∫
Ω
f v dΩ := L(v), ∀v ∈ H0,0

0 (Ω).
(5)

(b) Which space of piecewise polynomials1 would be useful for the finite element
space Vh. Discuss why piecewise linear polynomials are not suitable for this
purpose.

1answer this question for the 1D case.
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Exercise 10.3

Consider the following one-dimensional time-dependent convection-diffusion PDE
model:

∂u

∂t
= ϵ

∂2u

∂x2
− β

∂u

∂x
+ f(t), x ∈ Ω := [0, π] (6)

with f ∈ L2(Ω), initial condition u(x, 0) = u0(x), constant velocity β, constant
ϵ > 0 and homogeneous Dirichlet boundary conditions u|∂Ω = 0.

(a) First, show that, for β = f = 0 and ϵ = 1, the following two relations
hold:

u(x, t) =
∑∞

j=1 u
0
je

−j2t sin(jx) with u0
j =

√
2
π

∫ π

0
u0(x) sin(jx) dx,

and

||u(t)||L2(Ω) ≤ ||u(0)||L2(Ω).

(7)

(b) Re-write PDE (9) in the variational form:

(u̇(t), v) + a(u, v) = (f(t), v), ∀ v ∈ V, t > 0. (8)

Give the bilinear form a(., .).

(c) Consider the finite-dimensional space of piecewise linear functions Vh ⊂ V
and choose the testfunctions v from the same space Vh. Give the semi-discrete
ODE system in terms of the finite element solution uh.

(d) For β = f = 0 and ϵ = 1, show that

||uh(t)||L2(Ω) ≤ ||u(0)||L2(Ω).

Exercise 10.4

Consider the two-dimensional version of PDE (9):

∂u

∂t
+ β1

∂u

∂x
+ β2

∂u

∂y
= ϵ∆u+ f(t), x ∈ Ω ⊂ R2 (9)

with u|∂Ω = 0 and u(x, y, 0) = u0(x, y), (x, y) ∈ Ω.

(a) Work out the variational formulation with test functions v ∈ Vh. (Vh a
finite dimensional subspace of V = H1

0(Ω)).

(b) Apply Euler-Backward to the semi-discrete ODE system and show that,
for the case f = 0:

||un
h|| ≤ ||u0

h|| ≤ ||u0||, n = 1, ..., N.
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(c) A similar question as in part (b), but now for the Crank-Nicolson method
applied to the ODE system.

Exercise 10.5

Formulate the Galerkin method for the wave equation

∂2u

∂t2
=

∂2u

∂x2
, x ∈ (0, 1), t > 0.

Show that we obtain an ODE system of the form:

A¨⃗u+ Bu⃗+ f⃗ = 0⃗.

Describe the finite element matrices A, B and the vector f⃗ .

*Exercise 10.6

Consider again PDE (9). Define the operator:

L(u) := ϵ
∂2u

∂x2
− β

∂u

∂x
+ f(t).

(a) Choose the piecewise linear function space Vh for the finite element approx-
imation uh. Calculate

∂uh

∂t .

(b) Minimize (using a least-squares approach and the L2 norm): ∂uh

∂t − L(uh),
i.e, write:

minu̇1,...,u̇N
||∂uh

∂t
− L(uh)||L2(Ω)

and find the ODE system in terms of ˙⃗u := (u̇1, ..., u̇N )T .

(c) Discus the correspondence with the ODE system from part (b) and the
one from exercise 7.3 (c).

*Exercise 10.7

The Sobolev space Hk,k(Ω) is defined by:

Hk,k(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2,∀ |α| ≤ k}.

(a) Check that, for the function g(x) = x−β , x ∈ [0, 1], the following two rela-
tions hold:

g ∈ L2([0, 1]) ⇔ β < 1
2 ,

g ∈ H1,2([0, 1]) ⇔ β < − 1
2 .
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Consider the unit ball in R3:

B := {x⃗ ∈ R3 : ||x⃗||2 ≤ 1, }

and the function v(x⃗) = ||x⃗||λ2 (λ ∈ R).

(b) Show that2:
v ∈ L2(B) ⇔ λ > − 3

2 ,

and

v ∈ Hk,2(B) ⇔ λ > k − 3
2 .

*Exercise 10.8

What do we mean with the ‘Poincaré-Friedrichs inequality’ ?

(a) Consider an bounded open region in Rd (with a sufficiently smooth bound-
ary ∂Ω). Let u ∈ H1,2

0 (Ω). Then there is a positive constant c∗(Ω) such that
for all u ∈ H1,2

0 (Ω) the following inequality holds:∫
Ω

|u(x⃗)|2 dx⃗ ≤ c∗

d∑
i=1

∫
Ω

| ∂u
∂xi

|2 dx⃗. (10)

This inequality is being used very frequently in the analysis of the finite element
method, among others, to verify the so-called V -ellipticity property.

(b) Take Ω = [0, 1] ⊂ R, i.e. d = 1. Show that inequality (10) holds3 for
c∗ = 1

2 .

(c) The same question as in part (b), but now for Ω = [0, 1] × [0, 1] ⊂ R2,
i.e. d = 2, and c∗ = 1

4 .

2use spherical coordinates in R3.
3use the inequality of Cauchy-Schwarz.
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